WorldWideScience

Sample records for sustainable mars sample

  1. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    Directory of Open Access Journals (Sweden)

    Paula Lindgren

    2010-07-01

    Full Text Available On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission’s payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian

  2. Mars Sample Quarantine Protocol Workshop

    Science.gov (United States)

    DeVincenzi, Donald L. (Editor); Bagby, John (Editor); Race, Margaret (Editor); Rummel, John (Editor)

    1999-01-01

    The Mars Sample Quarantine Protocol (QP) Workshop was convened to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent uncontrolled release of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of live organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. During the first part of the Workshop, several tutorials were presented on topics related to the workshop in order to give all participants a common basis in the technical areas necessary to achieve the objectives of the Workshop.

  3. Illustration of Launching Samples Home from Mars

    Science.gov (United States)

    2005-01-01

    One crucial step in a Mars sample return mission would be to launch the collected sample away from the surface of Mars. This artist's concept depicts a Mars ascent vehicle for starting a sample of Mars rocks on their trip to Earth.

  4. Curation of Samples from Mars

    Science.gov (United States)

    Lindstrom, D.; Allen, C.

    One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. We have been conducting feasibility studies and developing designs for a facility that would be at least as capable as current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels exceeding those of the cleanest electronics manufacturing labs. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samp les require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation

  5. A Mars Sample Return Sample Handling System

    Science.gov (United States)

    Wilson, David; Stroker, Carol

    2013-01-01

    We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory

  6. Mars Surface Mobility Leading to Sustainable Exploration

    Science.gov (United States)

    Linne, Diane L.; Barsi, Stephen J.; Sjauw En Wa, Waldy K.; Landis, Geoffrey A.

    2012-01-01

    A Mars rocket-propelled hopper concept was evaluated for feasibility through analysis and experiments. The approach set forth in this paper is to combine the use of in-situ resources in a new Mars mobility concept that will greatly enhance the science return while providing the first opportunity towards reducing the risk of incorporating ISRU into the critical path for the highly coveted, but currently unaffordable, sample return mission. Experimental tests were performed on a high-pressure, self-throttling gaseous oxygen/methane propulsion system to simulate a two-burn-with-coast hop profile. Analysis of the trajectory, production plant requirements, and vehicle mass indicates that a small hopper vehicle could hop 2 km every 30 days with an initial mass of less than 60 kg. A larger vehicle can hop 15 km every 30 to 60 days with an initial mass of 300 to 430 kg.

  7. Mars Sample Return Landed with Red Dragon

    Science.gov (United States)

    Stoker, Carol R.; Lemke, Lawrence G.

    2013-01-01

    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged

  8. Low Cost Mars Sample Return Utilizing Dragon Lander Project

    Science.gov (United States)

    Stoker, Carol R.

    2014-01-01

    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  9. Recommended Maximum Temperature For Mars Returned Samples

    Science.gov (United States)

    Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Hays, L. E.

    2016-01-01

    The Returned Sample Science Board (RSSB) was established in 2015 by NASA to provide expertise from the planetary sample community to the Mars 2020 Project. The RSSB's first task was to address the effect of heating during acquisition and storage of samples on scientific investigations that could be expected to be conducted if the samples are returned to Earth. Sample heating may cause changes that could ad-versely affect scientific investigations. Previous studies of temperature requirements for returned mar-tian samples fall within a wide range (-73 to 50 degrees Centigrade) and, for mission concepts that have a life detection component, the recommended threshold was less than or equal to -20 degrees Centigrade. The RSSB was asked by the Mars 2020 project to determine whether or not a temperature requirement was needed within the range of 30 to 70 degrees Centigrade. There are eight expected temperature regimes to which the samples could be exposed, from the moment that they are drilled until they are placed into a temperature-controlled environment on Earth. Two of those - heating during sample acquisition (drilling) and heating while cached on the Martian surface - potentially subject samples to the highest temperatures. The RSSB focused on the upper temperature limit that Mars samples should be allowed to reach. We considered 11 scientific investigations where thermal excursions may have an adverse effect on the science outcome. Those are: (T-1) organic geochemistry, (T-2) stable isotope geochemistry, (T-3) prevention of mineral hydration/dehydration and phase transformation, (T-4) retention of water, (T-5) characterization of amorphous materials, (T-6) putative Martian organisms, (T-7) oxidation/reduction reactions, (T-8) (sup 4) He thermochronometry, (T-9) radiometric dating using fission, cosmic-ray or solar-flare tracks, (T-10) analyses of trapped gasses, and (T-11) magnetic studies.

  10. Mars Analogue Field Research and Sample Analysis

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    We describe results from the data analysis from a series of field research campaigns (ILEWG EuroMoonMars campaigns 2009 to 2016) in the Utah desert and in other extreme environments (Iceland, Eifel, La Reunion) relevant to habitability and astrobiology in Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL). We discuss results relevant to the scientific study of the habitability factors influenced by the properties of dust, organics, water history and the diagnostics and characterisation of microbial life. We also discuss perspectives for the preparation of future lander and sample return missions. We deployed at Mars Desert Research station, Utah, a suite of instruments and techniques including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. We find high diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed. A dominant factor seems to be soil porosity and lower clay-sized particle content. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples. We compare campaign results from 2009-2013 campaigns in Utah and other sites to new measurements concerning: the comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life.

  11. 5 in 1 Drill For Mars Sample Return Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating a Mars Sample Return Mission, consisting of at least three separate missions: 1) Mars Astrobiology Explorer-Cacher, MAX-C (sample acquisition...

  12. SPHERES Mars Orbiting Sample Return External Orbiting Capture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Mars Sample Return (MSR) mission scenario utilizes a small Orbiting Sample (OS) satellite, launched from the surface of Mars, which will rendezvous with an...

  13. Biological Sterilization of Returned Mars Samples

    Science.gov (United States)

    Allen, C. C.; Albert, F. G.; Combie, J.; Bodnar, R. J.; Hamilton, V. E.; Jolliff, B. L.; Kuebler, K.; Wang, A.; Lindstrom, D. J.; Morris, P. A.

    1999-01-01

    Martian rock and soil, collected by robotic spacecraft, will be returned to terrestrial laboratories early in the next century. Current plans call for the samples to be immediately placed into biological containment and tested for signs of present or past life and biological hazards. It is recommended that "Controlled distribution of unsterilized materials from Mars should occur only if rigorous analyses determine that the materials do not constitute a biological hazard. If any portion of the sample is removed from containment prior to completion of these analyses it should first be sterilized." While sterilization of Mars samples may not be required, an acceptable method must be available before the samples are returned to Earth. The sterilization method should be capable of destroying a wide range of organisms with minimal effects on the geologic samples. A variety of biological sterilization techniques and materials are currently in use, including dry heat, high pressure steam, gases, plasmas and ionizing radiation. Gamma radiation is routinely used to inactivate viruses and destroy bacteria in medical research. Many commercial sterilizers use Co-60 , which emits gamma photons of 1.17 and 1.33 MeV. Absorbed doses of approximately 1 Mrad (10(exp 8) ergs/g) destroy most bacteria. This study investigates the effects of lethal doses of Co-60 gamma radiation on materials similar to those anticipated to be returned from Mars. The goals are to determine the gamma dose required to kill microorganisms in rock and soil samples and to determine the effects of gamma sterilization on the samples' isotopic, chemical and physical properties. Additional information is contained in the original extended abstract.

  14. Sample Analysis at Mars Instrument Simulator

    Science.gov (United States)

    Benna, Mehdi; Nolan, Tom

    2013-01-01

    The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes

  15. Mars Sample Return Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  16. Mars Ascent Vehicle Gross Lift-off Mass Sensitivities for Robotic Mars Sample Return

    Science.gov (United States)

    Dux, Ian J.; Huwaldt, Joseph A.; McKamey, R. Steve; Dankanich, John W.

    2011-01-01

    The Mars ascent vehicle is a critical element of the robotic Mars Sample Return (MSR) mission. The Mars ascent vehicle must be developed to survive a variety of conditions including the trans-Mars journey, descent through the Martian atmosphere and the harsh Martian surface environments while maintaining the ability to deliver its payload to a low Mars orbit. The primary technology challenge of developing the Mars ascent vehicle system is designing for all conditions while ensuring the mass limitations of the entry descent and landing system are not exceeded. The NASA In-Space Propulsion technology project has initiated the development of Mars ascent vehicle technologies with propulsion system performance and launch environments yet to be defined. To support the project s evaluation and development of various technology options the sensitivity of the Mars ascent vehicle gross lift-off mass to engine performance, inert mass, target orbits, and launch conditions has been completed with the results presented herein.

  17. Precautionary Principle and Mars Sample Return

    Science.gov (United States)

    Arnould, Jacques

    Many space missions have today as an aim the exploration and the knowledge of the planet Mars; consequently, the return of Martian samples seems one of the next possible stages, at the horizon of about fifteen years. Devoted in the search of traces of life, passed or presents, such a mission presents a true stake not only from the scientific point of view but also from the ethical. Right now, the COSPAR specified the precautions to be taken to avoid or, at the very least, to limit the risk of contamination of the terrestrial biosphere by pathogenic the hitherto unknown ones. Are these recommendations sufficient? Do they concern only the scientific prudence or take truly counts of the good of humanity and the life on Earth? In the final analysis, is the incurred risk, even weak, to endanger this life worth the sorrow of it? Hitherto confined with the scientific circles of astronomy and astrobiology, this questioning could move the public opinion and this one would undoubtedly call some with the principle of precaution. In what this recourse would be relevant? The precaution aims indeed the hypothetical risks, not yet confirmed scientifically, but of which the possibility can be identified starting from empirical and scientific knowledge; such is well the case. But is it for as much possible to apply this principle to the case of the Martian samples, insofar as the objective of such a mission remains for the strictly scientific moment? Is it possible to manage the risks in the same manner when it is a question of appropriation and exploitation of the natural resources and energy (GMO, nuclear energy, etc.) and when it acts, in the case of Mars, that only search of the knowledge? How to manage the fundamental difference between the risks voluntarily taken and arbitrarily imposed, clarified and keep silent? The case of the return of the samples leads to the borders of the contemporary interrogations on the stakes and the benefits of science, on the share of risk

  18. Oxychlorine Species on Mars: Implications from Gale Crater Samples

    Science.gov (United States)

    Archer, P. Douglas, Jr.; Ming, Douglas W.; Sutter, Brad; Morris, Richard V.; Clark, B. C.; Mahaffy, P. H.; Wray, J. J.; Fairen, A. G.; Gellert, Ralf; Yen, Albert; hide

    2016-01-01

    Evidence of oxychlorine species such as perchlorates or chlorates have been detected in nearly every acquired sample analyzed on the surface of Mars. Perchlorates were first discovered by the Wet Chemistry Laboratory (WCL) instrument on the Phoenix lander in 2008. The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) has analyzed twelve samples from Gale Crater (as of July 2016), nine drilled samples and three scooped samples. After delivery to SAM, samples are heated to approximately 850 C and evolved gases are measured by a quadrupole mass spectrometer.

  19. Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System

    Science.gov (United States)

    Anderson, R. C.; Jandura, L.; Okon, A. B.; Sunshine, D.; Roumeliotis, C.; Beegle, L. W.; Hurowitz, J.; Kennedy, B.; Limonadi, D.; McCloskey, S.; Robinson, M.; Seybold, C.; Brown, K.

    2012-09-01

    The Mars Science Laboratory Mission (MSL), scheduled to land on Mars in the summer of 2012, consists of a rover and a scientific payload designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem will be the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)).

  20. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  1. Strategies for Investigating Early Mars Using Returned Samples

    Science.gov (United States)

    Carrier, B. L.; Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E. M.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; hide

    2017-01-01

    The 2011 Visions & Voyages Planeary Science Decadal Survey identified making significant progress toward the return of samples from Mars as the highest priority goal for flagship missions in next decade. Numerous scientific objectives have been identified that could be advanced through the potential return and analysis of martian rock, regolith, and atmospheric samples. The analysis of returned martian samples would be particularly valuable in in-creasing our understanding of Early Mars. There are many outstanding gaps in our knowledge about Early Mars in areas such as potential astrobiology, geochronology, planetary evolution (including the age, context, and processes of accretion, differentiation, magmatic, and magnetic history), the history of water at the martian surface, and the origin and evolution of the martian atmosphere. Here we will discuss scientific objectives that could be significantly advanced by Mars sample return.

  2. Lunar COTS: An Economical and Sustainable Approach to Reaching Mars

    Science.gov (United States)

    Zuniga, Allison F.; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar; Lepsch, Roger

    2015-01-01

    The NASA COTS (Commercial Orbital Transportation Services) Program was a very successful program that developed and demonstrated cost-effective development and acquisition of commercial cargo transportation services to the International Space Station (ISS). The COTS acquisition strategy utilized a newer model than normally accepted in traditional procurement practices. This new model used Space Act Agreements where NASA entered into partnerships with industry to jointly share cost, development and operational risks to demonstrate new capabilities for mutual benefit. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs while industry partners successfully expanded their market share of the global launch transportation business. The authors, who contributed to the development of the COTS model, would like to extend this model to a lunar commercial services program that will push development of technologies and capabilities that will serve a Mars architecture and lead to an economical and sustainable pathway to transporting humans to Mars. Over the past few decades, several architectures for the Moon and Mars have been proposed and studied but ultimately halted or not even started due to the projected costs significantly exceeding NASA's budgets. Therefore a new strategy is needed that will fit within NASA's projected budgets and takes advantage of the US commercial industry along with its creative and entrepreneurial attributes. The authors propose a new COTS-like program to enter into partnerships with industry to demonstrate cost-effective, cis-lunar commercial services, such as lunar transportation, lunar ISRU operations, and cis-lunar propellant depots that can enable an economical and sustainable Mars architecture. Similar to the original COTS program, the goals of the proposed program, being notionally referred to as Lunar Commercial Orbital Transfer Services (LCOTS

  3. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  4. Mars Sample Handling Protocol Workshop Series: Workshop 2a (Sterilization)

    Science.gov (United States)

    Rummel, John D. (Editor); Brunch, Carl W. (Editor); Setlow, Richard B. (Editor); DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The Space Studies Board of the National Research Council provided a series of recommendations to NASA on planetary protection requirements for future Mars sample return missions. One of the Board's key findings suggested, although current evidence of the martian surface suggests that life as we know it would not tolerate the planet's harsh environment, there remain 'plausible scenarios for extant microbial life on Mars.' Based on this conclusion, all samples returned from Mars should be considered potentially hazardous until it has been demonstrated that they are not. In response to the National Research Council's findings and recommendations, NASA has undertaken a series of workshops to address issues regarding NASA's proposed sample return missions. Work was previously undertaken at the Mars Sample Handling and Protocol Workshop 1 (March 2000) to formulate recommendations on effective methods for life detection and/or biohazard testing on returned samples. The NASA Planetary Protection Officer convened the Mars Sample Sterilization Workshop, the third in the Mars Sample Handling Protocol Workshop Series, on November 28-30, 2000 at the Holiday Inn Rosslyn Westpark, Arlington, Virginia. Because of the short timeframe between this Workshop and the second Workshop in the Series, which was convened in October 2000 in Bethesda, Maryland, they were developed in parallel, so the Sterilization Workshop and its report have therefore been designated as '2a'). The focus of Workshop 2a was to make recommendations for effective sterilization procedures for all phases of Mars sample return missions, and to answer the question of whether we can sterilize samples in such a way that the geological characteristics of the samples are not significantly altered.

  5. Defining the Mars Ascent Problem for Sample Return

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J

    2008-07-31

    Lifting geology samples off of Mars is both a daunting technical problem for propulsion experts and a cultural challenge for the entire community that plans and implements planetary science missions. The vast majority of science spacecraft require propulsive maneuvers that are similar to what is done routinely with communication satellites, so most needs have been met by adapting hardware and methods from the satellite industry. While it is even possible to reach Earth from the surface of the moon using such traditional technology, ascending from the surface of Mars is beyond proven capability for either solid or liquid propellant rocket technology. Miniature rocket stages for a Mars ascent vehicle would need to be over 80 percent propellant by mass. It is argued that the planetary community faces a steep learning curve toward nontraditional propulsion expertise, in order to successfully accomplish a Mars sample return mission. A cultural shift may be needed to accommodate more technical risk acceptance during the technology development phase.

  6. Progress Toward Sustainable Mussel Aquaculture in Mar Piccolo, Italy

    Directory of Open Access Journals (Sweden)

    Carmela Caroppo

    2012-09-01

    Full Text Available Mar Piccolo of Taranto is an estuarine basin heavily exploited for commercial mussel (Mytilus galloprovincialis L. farming. The historical renown of the Taranto mussels has suffered over the last decade following policy decisions to expand the mussel farms and to relocate a portion of the urban sewage to an outfall outside of Mar Piccolo. The resulting decline in mussel quality and the quandary of how to restore stability to Taranto mussel production became the focal issue for our application of the systems approach framework (SAF. We simulated the ecological, economic, and social interactions that affect mussel production. Stakeholders and mussel farmers contributed by participating in meetings during the entire exercise. Our simulation analysis provided them with a means for understanding the effects of policy scenarios on the system. We present three aspects from our initial results that demonstrate the value of the SAF, as: (1 an operational model to monitor and better research the status of the ecosystem, (2 a management tool to evaluate sustainable mussel farming strategies, and (3 an opportunity for improved communication with and engagement of stakeholders, policy, and the public. The application has also raised important questions about how the food chain is controlled, what could be changed to stabilize the ecosystem to a higher level of productivity, and what role the public and policy could play in promoting sustainable development.

  7. Sample Return - at hente en sten på Mars

    DEFF Research Database (Denmark)

    Kinch, Kjartan Münster

    2017-01-01

    Lige siden de første rumsonder landede på Mars i 1970'erne har planetforskere drømt om en såkaldt Sample Returnmission. Det vil sige en mission, som skal hente prøver af planetens sten, jord og atmosfære og flyve dem tilbage til Jorden. Med NASAs næste store rover-mission til Mars, som bliver sendt...

  8. Mars sample return mission architectures utilizing low thrust propulsion

    Science.gov (United States)

    Derz, Uwe; Seboldt, Wolfgang

    2012-08-01

    The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that

  9. The Sample Analysis at Mars Investigation and Instrument Suite

    Science.gov (United States)

    Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.

  10. In-Space Manufacturing: Pioneering a Sustainable Path to Mars

    Science.gov (United States)

    Werkheiser, Niki

    2015-01-01

    ISM is responsible for developing the on-demand manufacturing capabilities that will be required for affordable, sustainable operations during Exploration Missions (in-transit and on-surface) to destinations such as Mars. This includes advancing the needed technologies, as well as establishing the skills & processes (such as certification and characterization) that will enable the technologies to go from novel to institutionalized. These technologies are evolving rapidly due to terrestrial markets. ISM is leveraging this commercial development to develop these capabilities within a realistic timeframe and budget. ISM utilizes the International Space Station (ISS) as a test-bed to adapt these technologies for microgravity operations and evolve the current operations mindset from earth-reliant to earth-independent.

  11. Mars Rover/Sample Return - Phase A cost estimation

    Science.gov (United States)

    Stancati, Michael L.; Spadoni, Daniel J.

    1990-01-01

    This paper presents a preliminary cost estimate for the design and development of the Mars Rover/Sample Return (MRSR) mission. The estimate was generated using a modeling tool specifically built to provide useful cost estimates from design parameters of the type and fidelity usually available during early phases of mission design. The model approach and its application to MRSR are described.

  12. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling Subsystem: A Description of the Sampling Functionality

    Science.gov (United States)

    Jandura, L.; Burke, K.; Kennedy, B.; Melko, J.; Okon, A.; Sunshine, D.

    2009-12-01

    The Sample Acquisition/Sample Processing and Handling (SA/SPaH) subsystem for the Mars Science Library (MSL) is a rover-based sampling system scheduled to launch in 2011. The SA/SPaH consists of a powdering drill and a scooping, sieving, and portioning device mounted on a turret at the end of a robotic arm. Also on the turret is a dust removal tool for clearing the surface of scientific targets, and two science instruments mounted on vibration isolators. The SA/SPaH can acquire powder from rocks at depths of 20 to 50 mm and can also pick up loose regolith with its scoop. The acquired sample is sieved and portioned and delivered to one of two instruments inside the rover for analysis. The functionality of the system will be described along with the targets the system can acquire and the sample that can be delivered. Top View of the SA/SPaH on the Rover

  13. Advanced Curation Preparation for Mars Sample Return and Cold Curation

    Science.gov (United States)

    Fries, M. D.; Harrington, A. D.; McCubbin, F. M.; Mitchell, J.; Regberg, A. B.; Snead, C.

    2017-01-01

    NASA Curation is tasked with the care and distribution of NASA's sample collections, such as the Apollo lunar samples and cometary material collected by the Stardust spacecraft. Curation is also mandated to perform Advanced Curation research and development, which includes improving the curation of existing collections as well as preparing for future sample return missions. Advanced Curation has identified a suite of technologies and techniques that will require attention ahead of Mars sample return (MSR) and missions with cold curation (CCur) requirements, perhaps including comet sample return missions.

  14. An ElectroAdhesive "Stick Boom" for Mars Sample Return Orbiting Sample Capture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electroadhesive "Sticky Boom", an innovative method for rendezvous and docking, is proposed for the Orbiting Sample Capture (OSC) portion of the Mars...

  15. Affordable Exploration of Mars: Recommendations from a Community Workshop on Sustainable Initial Human Missions

    Science.gov (United States)

    Thronson, Harley; Carberry, Chris; Cassady, R. J.; Cooke, Doug; Hopkins, Joshua; Perino, Maria A.; Kirkpatrick, Jim; Raftery, Michael; Westenberg, Artemis; Zucker, Richard

    2013-01-01

    There is a growing consensus that within two decades initial human missions to Mars are affordable under plausible budget assumptions and with sustained international participation. In response to this idea, a distinguished group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December, 2013. Participants reviewed and discussed scenarios for affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station over the coming decade as the essential early step toward humans to Mars, possible "bridge" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and a usable definition of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop.

  16. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    Science.gov (United States)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  17. Planetary Protection Approaches for a Mars Atmospheric Sample Return

    Science.gov (United States)

    Clark, B.; Leshin, L.; Barengoltz, J.

    The Sample Collection for Investigation of Mars (SCIM) mission proposes to fly through the upper atmosphere of Mars at hypervelocity to collect airborne dust and gas, and return the material to Earth for detailed analysis in a variety of specialized and sophisticated laboratories. SCIM would accomplish the first low-cost return of martian material, and could provide crucial insights into the poorly understood history of water and weathering processes on Mars. Planetary protection forward contamination can be satisfied by straight-forward, established procedures. The more challenging concern for back-contamination of Earth has been directly addressed through a number of detailed engineering analyses to identify which portions of the spacecraft are susceptible to contamination by surviving organisms, combined with in-space heating to sterilize the aerogel collecting medium after acquisition of samples. Systems for "breaking-the-chain" of back contamination have been designed. Review of established heat sterilization procedures on Earth have provided a rationale for specifying a conservative temperature-time cycle for sterilization onboard the spacecraft. In-flight monitoring of onborad systems will provide the Planetary Protection Office with confirmatory information needed to enable approval for final re-targeting of the trajectory to return to Earth.

  18. Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars

    Science.gov (United States)

    Moses, Robert W.; Bushnell, Dennis M.

    2016-01-01

    The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars.

  19. Preliminary Concept for a Mars Sample Receiving Facility

    Science.gov (United States)

    Mani, Peter; Nelson, Bradley; Pauli, Urs; Kray, Randy; Huntley, Paul; Ross, Ferries; Heuer, Markus; Hofmann, Beda A.

    High Containment Facilities have been designed and constructedover 50 years, mainly focused on diagnostics of agriculture and human agents and more recently a focus on research of high consequence pathogens. With the project of Mars Sample Return to Earth, a new era on design has began. While in conventional containment design, the goal is mainly on the protection of staff and the environment, in SRF design an additional requirement becomes essential: the protection of the sample to a degree which is unknown and usually not requested in molecular biology. The talk presents preliminary results of an ESA study for a concept of a high containment that includes not only the highest standard for personnel and environmental protection but includes also modern technologies like Micro-robotics in order to guarantee for a pristine sample that allows Life Search and Biohazard tests without contamination of Earth bound organic material.

  20. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    Science.gov (United States)

    Gonzales, Andrew A.; Lemke, Lawrence G.; Stoker, Carol R.; Faber, Nicolas T.; Race, Margaret S.

    2014-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. The MAV uses a storable liquid bi-propellant propulsion system to deliver the ERV to a Mars phasing orbit. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Upon arrival at Earth, the ERV performs Earth and lunar swing-bys and is placed into a lunar trailing circular orbit - an Earth orbit, at lunar distance. A later mission, using Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release

  1. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    Science.gov (United States)

    Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Faber, Nicholas T.; Race, Margaret S.

    2013-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the

  2. Rock pushing and sampling under rocks on Mars

    Science.gov (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  3. Robotic Mars Sample Return: Risk Assessment and Analysis Report

    Science.gov (United States)

    Lalk, Thomas R.; Spence, Cliff A.

    2003-01-01

    A comparison of the risk associated with two alternative scenarios for a robotic Mars sample return mission was conducted. Two alternative mission scenarios were identified, the Jet Propulsion Lab (JPL) reference Mission and a mission proposed by Johnson Space Center (JSC). The JPL mission was characterized by two landers and an orbiter, and a Mars orbit rendezvous to retrieve the samples. The JSC mission (Direct/SEP) involves a solar electric propulsion (SEP) return to earth followed by a rendezvous with the space shuttle in earth orbit. A qualitative risk assessment to identify and characterize the risks, and a risk analysis to quantify the risks were conducted on these missions. Technical descriptions of the competing scenarios were developed in conjunction with NASA engineers and the sequence of events for each candidate mission was developed. Risk distributions associated with individual and combinations of events were consolidated using event tree analysis in conjunction with Monte Carlo techniques to develop probabilities of mission success for each of the various alternatives. The results were the probability of success of various end states for each candidate scenario. These end states ranged from complete success through various levels of partial success to complete failure. Overall probability of success for the Direct/SEP mission was determined to be 66% for the return of at least one sample and 58% for the JPL mission for the return of at least one sample cache. Values were also determined for intermediate events and end states as well as for the probability of violation of planetary protection. Overall mission planetary protection event probabilities of occurrence were determined to be 0.002% and 1.3% for the Direct/SEP and JPL Reference missions respectively.

  4. Mars Returned Sample Handling: Planetary Protection and Science Aspects

    Science.gov (United States)

    Beaty, D.; Campbell, J.; Lindstrom, D.; McBride, K.; Papanastassiou, D.

    The action of returning geological samples from Mars, should it be attempted by robotic missions, will require some careful planning on what would be done with the samples once they are on Earth, and the conditions under which they would need to be kept in order to realize their value. It is generally assumed that returned martian samples would be the subject of two primary kinds of analysis and investigation: planetary protection testing, and scientific analysis to support martian exploration objectives. Testing for the purpose of planetary protection would need to be carried out in a facility that has containment characteristics comparable to those of BSL-4 laboratories. This hypothetical facility has been informally referred to as the "Sample Receiving Facility" (SRF). However, it is not yet known if this capability would be optimized as a completely new facility, as a facility built in partnership with some other existing infrastructure, or if the required functionalities could even be distributed across multiple buildings, perhaps in quite different places. Although the essential purpose of planetary protection testing would be to assess whether or not the samples pose a biological hazard, many of the measurements called for in the draft test protocol, especially those related to preliminary examination/sample classification and life detection, are the same measurements called for to support scientific exploration objectives. Despite the uncertainties in the facility configuration required to carry out PP testing, it is clear that during such tests, the scientific integrity of the samples would need to be maintained. The primary challenge to scientific integrity revolves around contamination control. The science community has a need for the samples to be kept "clean", especially with regards to biological contaminants. However, specific definitions of "clean" have been difficult to establish. Further definition by the Mars science community of their scientific

  5. The Sample Handling System for the Mars Icebreaker Life Mission: from Dirt to Data

    Science.gov (United States)

    Dave, Arwen; Thompson, Sarah J.; McKay, Christopher P.; Stoker, Carol R.; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J.; Wilson, David; Bonaccorsi, Rosalba; hide

    2013-01-01

    The Mars icebreaker life mission will search for subsurface life on mars. It consists of three payload elements: a drill to retrieve soil samples from approx. 1 meter below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system.

  6. An Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System

    Science.gov (United States)

    Beegle, L. W.; Anderson, R. C.; Hurowitz, J. A.; Jandura, L.; Limonadi, D.

    2012-12-01

    The Mars Science Laboratory Mission (MSL), landed on Mars on August 5. The rover and a scientific payload are designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)). It is expected that the SA/SPaH system will have produced a scooped system and possibility a drilled sample in the first 90 sols of the mission. Results from these activities and the ongoing testing program will be presented.

  7. MEPAG Recommendations for a 2018 Mars Sample Return Caching Lander - Sample Types, Number, and Sizes

    Science.gov (United States)

    Allen, Carlton C.

    2011-01-01

    The return to Earth of geological and atmospheric samples from the surface of Mars is among the highest priority objectives of planetary science. The MEPAG Mars Sample Return (MSR) End-to-End International Science Analysis Group (MEPAG E2E-iSAG) was chartered to propose scientific objectives and priorities for returned sample science, and to map out the implications of these priorities, including for the proposed joint ESA-NASA 2018 mission that would be tasked with the crucial job of collecting and caching the samples. The E2E-iSAG identified four overarching scientific aims that relate to understanding: (A) the potential for life and its pre-biotic context, (B) the geologic processes that have affected the martian surface, (C) planetary evolution of Mars and its atmosphere, (D) potential for future human exploration. The types of samples deemed most likely to achieve the science objectives are, in priority order: (1A). Subaqueous or hydrothermal sediments (1B). Hydrothermally altered rocks or low temperature fluid-altered rocks (equal priority) (2). Unaltered igneous rocks (3). Regolith, including airfall dust (4). Present-day atmosphere and samples of sedimentary-igneous rocks containing ancient trapped atmosphere Collection of geologically well-characterized sample suites would add considerable value to interpretations of all collected rocks. To achieve this, the total number of rock samples should be about 30-40. In order to evaluate the size of individual samples required to meet the science objectives, the E2E-iSAG reviewed the analytical methods that would likely be applied to the returned samples by preliminary examination teams, for planetary protection (i.e., life detection, biohazard assessment) and, after distribution, by individual investigators. It was concluded that sample size should be sufficient to perform all high-priority analyses in triplicate. In keeping with long-established curatorial practice of extraterrestrial material, at least 40% by

  8. Selecting samples for Mars sample return: Triage by pyrolysis-FTIR

    Science.gov (United States)

    Sephton, Mark A.; Court, Richard W.; Lewis, James M.; Wright, Miriam C.; Gordon, Peter R.

    2013-04-01

    A future Mars Sample Return mission will deliver samples of the red planet to Earth laboratories for detailed analysis. A successful mission will require selection of the best samples that can be used to address the highest priority science objectives including assessment of past habitability and evidence of life. Pyrolysis is a commonly used method for extracting organic information from rocks but is most often coupled with complex analytical steps such as gas chromatography and mass spectrometry. Pyrolysis-Fourier transform infrared spectroscopy is a less resource demanding method that still allows sample characterisation. Here we demonstrate how pyrolysis-Fourier transform infrared spectroscopy could be used to triage samples destined to return to Earth, thereby maximising the scientific return from future sample return missions.

  9. A Sample Handling System for Mars Sample Return - Design and Status

    Science.gov (United States)

    Allouis, E.; Renouf, I.; Deridder, M.; Vrancken, D.; Gelmi, R.; Re, E.

    2009-04-01

    A mission to return atmosphere and soil samples form the Mars is highly desired by planetary scientists from around the world and space agencies are starting preparation for the launch of a sample return mission in the 2020 timeframe. Such a mission would return approximately 500 grams of atmosphere, rock and soil samples to Earth by 2025. Development of a wide range of new technology will be critical to the successful implementation of such a challenging mission. Technical developments required to realise the mission include guided atmospheric entry, soft landing, sample handling robotics, biological sealing, Mars atmospheric ascent sample rendezvous & capture and Earth return. The European Space Agency has been performing system definition studies along with numerous technology development studies under the framework of the Aurora programme. Within the scope of these activities Astrium has been responsible for defining an overall sample handling architecture in collaboration with European partners (sample acquisition and sample capture, Galileo Avionica; sample containment and automated bio-sealing, Verhaert). Our work has focused on the definition and development of the robotic systems required to move the sample through the transfer chain. This paper presents the Astrium team's high level design for the surface transfer system and the orbiter transfer system. The surface transfer system is envisaged to use two robotic arms of different sizes to allow flexible operations and to enable sample transfer over relatively large distances (~2 to 3 metres): The first to deploy/retract the Drill Assembly used for sample collection, the second for the transfer of the Sample Container (the vessel containing all the collected samples) from the Drill Assembly to the Mars Ascent Vehicle (MAV). The sample transfer actuator also features a complex end-effector for handling the Sample Container. The orbiter transfer system will transfer the Sample Container from the capture

  10. Advanced Curation Protocols for Mars Returned Sample Handling

    Science.gov (United States)

    Bell, M.; Mickelson, E.; Lindstrom, D.; Allton, J.

    Introduction: Johnson Space Center has over 30 years experience handling precious samples which include Lunar rocks and Antarctic meteorites. However, we recognize that future curation of samples from such missions as Genesis, Stardust, and Mars S mple Return, will require a high degree of biosafety combined witha extremely low levels of inorganic, organic, and biological contamination. To satisfy these requirements, research in the JSC Advanced Curation Lab is currently focused toward two major areas: preliminary examination techniques and cleaning and verification techniques . Preliminary Examination Techniques : In order to minimize the number of paths for contamination we are exploring the synergy between human &robotic sample handling in a controlled environment to help determine the limits of clean curation. Within the Advanced Curation Laboratory is a prototype, next-generation glovebox, which contains a robotic micromanipulator. The remotely operated manipulator has six degrees-of- freedom and can be programmed to perform repetitive sample handling tasks. Protocols are being tested and developed to perform curation tasks such as rock splitting, weighing, imaging, and storing. Techniques for sample transfer enabling more detailed remote examination without compromising the integrity of sample science are also being developed . The glovebox is equipped with a rapid transfer port through which samples can be passed without exposure. The transfer is accomplished by using a unique seal and engagement system which allows passage between containers while maintaining a first seal to the outside environment and a second seal to prevent the outside of the container cover and port door from becoming contaminated by the material being transferred. Cleaning and Verification Techniques: As part of the contamination control effort, innovative cleaning techniques are being identified and evaluated in conjunction with sensitive cleanliness verification methods. Towards this

  11. Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Navarro-Gonzalez, Rafael; Stern, Jennifer; Freissinet, Caroline; Franz, Heather; McKay, Christopher; Coll, Patrice; Sutter, Brad; Archer, Doug; McAdam, Amy; Cabane, Michel; Ming, Douglas; Glavin, Daniel; Eigenbrode, Jennifer; Leshin, Laurie; Wong, Michael; Atreya, Sushil; Wray, James; Steele, Andrew; Buch, Arnaud; Prats, Benito

    2014-05-01

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, a fraction of N2 has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars' history by photochemistry may later decompose back into N2 by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure NaNO3 of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150° C to 600° C. m/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present and are assessed. The origin of nitric oxide is discussed and its thermal evolution is

  12. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities.

    Science.gov (United States)

    Gonzales, Andrew A; Stoker, Carol R

    2016-06-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return

  13. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities

    Science.gov (United States)

    Gonzales, Andrew A.; Stoker, Carol R.

    2016-01-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as “Red Dragon”, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth

  14. Sample selection and preservation techniques for the Mars sample return mission

    Science.gov (United States)

    Tsay, Fun-Dow

    1988-01-01

    It is proposed that a miniaturized electron spin resonance (ESR) spectrometer be developed as an effective, nondestructivew sample selection and characterization instrument for the Mars Rover Sample Return mission. The ESR instrument can meet rover science payload requirements and yet has the capability and versatility to perform the following in situ Martian sample analyses: (1) detection of active oxygen species, and characterization of Martian surface chemistry and photocatalytic oxidation processes; (2) determination of paramagnetic Fe(3+) in clay silicate minerals, Mn(2+) in carbonates, and ferromagnetic centers of magnetite, maghemite and hematite; (3) search for organic compounds in the form of free radicals in subsoil, and detection of Martian fossil organic matter likely to be associated with carbonate and other sedimentary deposits. The proposed instrument is further detailed.

  15. O2/CO Ignition System for Mars Sample Return Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Returning a geological sample from the surface of Mars will require an ascent propulsion system with a comparatively large velocity change (delta-V) capability due...

  16. Identification of Phyllosilicates in Mudstone Samples Using Water Releases Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Hogancamp, J. V. (Clark); Ming, D. W.; McAdam, A. C.; Archer, P. D.; Morris, R. V.; Bristow, T. F.; Rampe, E. B.; Mahaffy, P. R.; Gellert, R.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected high temperature water releases from mud-stones in the areas of Yellowknife Bay, Pahrump Hills, Naukluft Plateau, and Murray Buttes in Gale crater. Dehydroxylation of phyllosilicates may have caused the high temperature water releases observed in these samples. Because each type of phyllosilicate undergoes dehydroxylation at distinct temperatures, these water releases can be used to help constrain the type of phyllosilicate present in each sample.

  17. Sampling and Studying Permafrost in Alaska and on Mars: Mars Arctic Regions Science Field Experience for Secondary Teachers (MARSFEST)

    Science.gov (United States)

    Keller, J. M.; Buxner, S. R.; Douglas, T. A.; Lombardi, D. A.; Shaner, A. J.

    2006-12-01

    Both neutron and gamma ray data from the Gamma Ray Spectrometer (GRS) instrument suite aboard the 2001 Mars Odyssey spacecraft provide compelling evidence for the presence of water ice buried within the upper few tens of centimeters of Mars at high latitudes.^{1-3} In May 2008, the Phoenix Mars Lander mission will arrive at the northern high latitudes of Mars to ground-truth the presence of this water ice. The mission will use a robotic arm to deliver samples of permafrost to several instruments on the deck of the spacecraft for detailed chemical and microscopic analyses. Two primary science objectives at the landing site are to study the history of water in all its phases and to characterize soil habitability.4 As part of the Education and Public Outreach efforts for both the Phoenix and Odyssey missions, 20 secondary science teachers from across the U.S. and Canada were selected to spend a week in Summer 2006 immersed in arctic region science around Fairbanks, Alaska. The focal point of the experience involved investigations conducted at the Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel.5 Teacher participants combined remote sensing and in situ observations of permafrost regions, conducted sample collection and analyses to investigate research questions generated by participants at the Permafrost Tunnel, explored comparisons between the terrestrial and Martian arctic, and completed inquiry- based classroom curriculum activities related to Mars and arctic science. A video documentary of the field experience is being produced by the NASA Mars Public Engagement program for education and public outreach purposes. The ten teacher teams involved in the workshop will now serve as educational ambassadors for the Phoenix Mars Lander mission over the next two years through to the completion of surface operations for the mission. They will be supported through monthly teleconferences updating them on mission status and continued research

  18. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  19. An Internationally Coordinated Science Management Plan for Samples Returned from Mars

    Science.gov (United States)

    Haltigin, T.; Smith, C. L.

    2015-12-01

    Mars Sample Return (MSR) remains a high priority of the planetary exploration community. Such an effort will undoubtedly be too large for any individual agency to conduct itself, and thus will require extensive global cooperation. To help prepare for an eventual MSR campaign, the International Mars Exploration Working Group (IMEWG) chartered the international Mars Architecture for the Return of Samples (iMARS) Phase II working group in 2014, consisting of representatives from 17 countries and agencies. The overarching task of the team was to provide recommendations for progressing towards campaign implementation, including a proposed science management plan. Building upon the iMARS Phase I (2008) outcomes, the Phase II team proposed the development of an International MSR Science Institute as part of the campaign governance, centering its deliberations around four themes: Organization: including an organizational structure for the Institute that outlines roles and responsibilities of key members and describes sample return facility requirements; Management: presenting issues surrounding scientific leadership, defining guidelines and assumptions for Institute membership, and proposing a possible funding model; Operations & Data: outlining a science implementation plan that details the preliminary sample examination flow, sample allocation process, and data policies; and Curation: introducing a sample curation plan that comprises sample tracking and routing procedures, sample sterilization considerations, and long-term archiving recommendations. This work presents a summary of the group's activities, findings, and recommendations, highlighting the role of international coordination in managing the returned samples.

  20. Report of the Workshop for Life Detection in Samples from Mars

    Science.gov (United States)

    Kminek, Gerhard; Conley, Catherine; Allen, Carlton C.; Bartlett, Douglas H.; Beaty, David W.; Benning, Liane G.; Bhartia, Rohit; Boston, Penelope J.; Duchaine, Caroline; Farmer, Jack D.; hide

    2014-01-01

    The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis' telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed 'planetary protection', are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars.

  1. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  2. Self-sustaining Mars colonies utilizing the North Polar Cap and the Martian atmosphere.

    Science.gov (United States)

    Powell, J; Maise, G; Paniagua, J

    2001-01-01

    A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean

  3. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  4. Sample Canister Capture Mechanism for Mars Sample Return: Functional and environmental test of the elegant breadboard model

    Science.gov (United States)

    Carta, R.; Filippetto, D.; Lavagna, M.; Mailland, F.; Falkner, P.; Larranaga, J.

    2015-12-01

    The paper provides recent updates about the ESA study: Sample Canister Capture Mechanism Design and Breadboard developed under the Mars Robotic Exploration Preparation (MREP) program. The study is part of a set of feasibility studies aimed at identifying, analysing and developing technology concepts enabling the future international Mars Sample Return (MSR) mission. The MSR is a challenging mission with the purpose of sending a Lander to Mars, acquire samples from its surface/subsurface and bring them back to Earth for further, more in depth, analyses. In particular, the technology object of the Study is relevant to the Capture Mechanism that, mounted on the Orbiter, is in charge of capturing and securing the Sample Canister, or Orbiting Sample, accommodating the Martian soil samples, previously delivered in Martian orbit by the Mars Ascent Vehicle. An elegant breadboard of such a device was implemented and qualified under an ESA contract primed by OHB-CGS S.p.A. and supported by Politecnico di Milano, Department of Aerospace Science and Technology: in particular, functional tests were conducted at PoliMi-DAST and thermal and mechanical test campaigns occurred at Serms s.r.l. facility. The effectiveness of the breadboard design was demonstrated and the obtained results, together with the design challenges, issues and adopted solutions are critically presented in the paper. The breadboard was also tested on a parabolic flight to raise its Technology Readiness Level to 6; the microgravity experiment design, adopted solutions and results are presented as well in the paper.

  5. Bringing Home a Piece of Mars from the Utah Desert: A Canadian Robotic Deployment in Support of Mars Sample Return

    Science.gov (United States)

    Haltigin, T.; Hipkin, V.; Picard, M.

    2016-12-01

    Mars Sample Return (MSR) remains one of the highest priorities of the international planetary science community. While the overall mission architecture required for MSR is relatively well defined, there remain a number of open questions regarding its implementation. In preparing for an eventual MSR campaign, simulating portions of the sample collection mission can provide important insight to address existing knowledge gaps. In 2015 and 2016, the Canadian Space Agency (CSA) led robotic deployments to address a variety of technical, scientific, operational, and educational objectives. Here we report on the results. The deployments were conducted at a field site near Hanskville, UT, USA, chosen to satisfy scientific, technical, and logistical considerations. The geology of the region is dominated by Jurassic-aged sandstones and mudstones, indicative of an ancient sedimentary environment. Moreover, a series of linear topographically inverted features are present, similar to morphologies observed in particular Martian landscapes. On both Earth and Mars, these features are interpreted as lithified and exhumed river channels. A science operations center was established in London, ON, Canada, at Western University. Here, a science team of > 30 students and professionals - unaware of the rover's actual location - were responsible for generating daily science plans, requesting observations, and interpreting downloaded data, all while respecting Mars-realistic flight rules and constraints for power, scheduling, and data. Rover commanding was performed by an engineering team at CSA headquarters in St. Hubert, QC, Canada, while a small out-of-simulation field team was present on-site to ensure safe operations of the rover and to provide data transfers. Between the 2015 and 2016 campaigns, nearly five weeks of operations were conducted. The team successfully collected scientifically-selected samples to address the group objectives, and the rover demonstrated system integration

  6. Automated Mars surface sample return mission concepts for achievement of essential scientific objectives

    Science.gov (United States)

    Weaver, W. L.; Norton, H. N.; Darnell, W. L.

    1975-01-01

    Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.

  7. Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover

    Science.gov (United States)

    Farley, K. A.; Williford, K.; Beaty, D W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; hide

    2017-01-01

    The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.

  8. Concept study for a low cost near-term Mars surface sample return mission

    Science.gov (United States)

    Draper, C.; Kemble, S.; Parkinson, R.; Smith, M.; Thatcher, J.; Reedman, T.; Sallaberger, C.; Pillinger, C.; Sims, M.

    Man has always had a fascination with the red planet and the quest to reveal its secrets. Although in the past this ques t has been confined to observation from afar and in-situ analysis by dated technology, the chance now exists to extract far more from the Martian surface than ever before - by bringing it home. The idea of a Mars Sample Return mission is not a new phenomenon and plans have been in existence for the last 30 years. The trouble is that these have always been restricted on the grounds of technology, politics and, more predominantly, cost. Many such missions have been estimated at well over 1billion, with huge development times and multiple launches for various mission stages. Plans for direct return missions from the Martian surface had the drawbacks of (a) being too expensive in terms of the launch costs required to lift the propellant needed for return and (b) being too slow if an in-situ resource propellant production technique was used. The alternative solution was to return via a rendezvous in Mars orbit, thus reducing the mass to be transported to and from the Martian surface. The most popular of the orbital rendezvous options involved the launch of a combined Mars Ascent Vehicle/Mars Rover mission to gather samples in readiness for a subsequent return to Earth via a second mission that would deliver an Earth Return Vehicle into Mars orbit with which to transport the samples back. This method had the disadvantages of incurring large costs from the prolonged stay at Mars and high launch costs due to the necessity of two separate launches. The concept of this study is to utilise the orbital rendezvous method but incorporate each of the elements into a single mission (i.e. one launch) using mature and affordable lander technology to return a small regolith core sample. This not only reduces launch and development costs, making the mission more `affordable', but also lowers the risk of mission failure compared to the two-launch method. An

  9. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio

    2017-04-01

    The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.

  10. X-Ray Computed Tomography: The First Step in Mars Sample Return Processing

    Science.gov (United States)

    Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.

    2017-01-01

    The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and

  11. Groundbreaking Mars Sample Return for Science and Human Exploration

    Science.gov (United States)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  12. Mars Biosignature - Detection Capabilities: A Method for Objective Comparison of In Situ Measurements and Sample Return

    Science.gov (United States)

    Weisbin, Charles R.; Lincoln, William; Papanastassiou, Dimitri A.; Coleman, Max L.

    2013-01-01

    A Mars sample-return mission has been proposed within NASA's Mars Exploration Program. Studying Martian samples in laboratories on Earth could address many important issues in planetary science, but arguably none is as scientifically compelling as the question of whether biosignatures indicative of past or present life exist on that planet. It is reasonable to ask before embarking on a sample-return mission whether equivalent investigation of Martian biosignatures could be conducted in situ. This study presents an approach to (1)identifying an optimal instrument suite for in situ detection of biosignatures on Mars,and (2)comparing the projected confidence level of in situ detection in a 2026 timeframe to that of Earth-based analysis. We identify a set of candidate instruments, the development of which is projected to be achievable by 2026 well within a $200 million cost cap. Assuming that any biosignatures near the surface of Mars are similar to those of terrestrial life, we find that this instrument suite, if successfully developed and deployed, would enable in situ biosignature detection at essentially the same level of confidence as that of Earth-based analysis of the same samples. At a cost cap of half that amount,the confidence level of in situbiosignature detection analysis could reach about 90% that of Earth-based investigations.

  13. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    Science.gov (United States)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  14. Technology Development and Advanced Planning for Curation of Returned Mars Samples

    Science.gov (United States)

    Lindstrom, D. J.; Allen, C. C.

    2002-05-01

    NASA/Johnson Space Center (JSC) curates extraterrestrial samples, providing the international science community with lunar rock and soil returned by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected in the stratosphere, and hardware exposed to the space environment. Curation comprises initial characterization of new samples, preparation and allocation of samples for research, and clean, secure long-term storage. The foundations of this effort are the specialized cleanrooms (class 10 to 10,000) for each of the four types of materials, the supporting facilities, and the people, many of whom have been doing detailed work in clean environments for decades. JSC is also preparing to curate the next generation of extraterrestrial samples. These include samples collected from the solar wind, a comet, and an asteroid. Early planning and R&D are underway to support post-mission sample handling and curation of samples returned from Mars. One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. JSC has been conducting feasibility studies and developing designs for a sample receiving facility that would offer biocontainment at least the equivalent of current maximum containment BSL-4 (Bio

  15. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  16. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling Subsystem: A Description of the Sampling Functionality of the System after being on the Surface for Two Years.

    Science.gov (United States)

    Beegle, L. W.; Anderson, R. C.; Abbey, W. J.

    2014-12-01

    The Sample Acquisition/Sample Processing and Handling (SA/SPaH) subsystem for the Mars Science Library (MSL) is a rover-based sampling system. SA/SPaH consists of a powdering drill and a scooping, sieving, and portioning device mounted on a turret at the end of a robotic arm. Curiosity rover preformed several sample acquisitions and processing of solid samples during its first year of operation. Material were processed and delivered to the two analytical instruments, Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM), both of which required specific particle size for the material delivered to them to perform their analysis to determine its mineralogy and geochemistry content. In this presentation, the functionality of the system will be explained along with the in-situ targets the system has acquire and the samples that were delivered.

  17. Thermal Analysis of Brazing Seal and Sterilizing Technique to Break Contamination Chain for Mars Sample Return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-01-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  18. Thermal analysis of brazing seal and sterilizing technique to break contamination chain for Mars sample return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-03-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  19. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  20. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.

    2016-10-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  1. Electrical and computer architecture of an autonomous Mars sample return rover prototype

    Science.gov (United States)

    Leslie, Caleb Thomas

    Space truly is the final frontier. As man looks to explore beyond the confines of our planet, we use the lessons learned from traveling to the Moon and orbiting in the International Space Station, and we set our sights upon Mars. For decades, Martian probes consisting of orbiters, landers, and even robotic rovers have been sent to study Mars. Their discoveries have yielded a wealth of new scientific knowledge regarding the Martian environment and the secrets it holds. Armed with this knowledge, NASA and others have begun preparations to send humans to Mars with the ultimate goal of colonization and permanent human habitation. The ultimate success of any long term manned mission to Mars will require in situ resource utilization techniques and technologies to both support their stay and make a return trip to Earth viable. A sample return mission to Mars will play a pivotal role in developing these necessary technologies to ensure such an endeavor to be a successful one. This thesis describes an electrical and computer architecture for autonomous robotic applications. The architecture is one that is modular, scalable, and adaptable. These traits are achieved by maximizing commonality and reusability within modules that can be added, removed, or reconfigured within the system. This architecture, called the Modular Architecture for Autonomous Robotic Systems (MAARS), was implemented on the University of Alabama's Collection and Extraction Rover for Extraterrestrial Samples (CERES). The CERES rover competed in the 2016 NASA Sample Return Robot Challenge where robots were tasked with autonomously finding, collecting, and returning samples to the landing site.

  2. Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

    Science.gov (United States)

    Englander, Jacob A.; Vavrina, Matthew; Merrill, Raymond G.; Qu, Min; Naasz, Bo J.

    2014-01-01

    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.

  3. A lunar-based analytical laboratory and contamination problems in analysis of Moon and Mars samples

    Science.gov (United States)

    Gehrke, Charles W.

    1997-07-01

    A summary follows of our experiences and techniques used in the analysis of samples from Apollo Missions 11 to 17. The studies were conducted at the Ames Research Center, Moffett Field, CA, the University of Missouri, Columbia, MO, and the University of Maryland, College Park, MD, 1969 - 1974. Our search was directed to water-extractable compounds with emphasis on amino acids. Gas chromatography, ion-exchange chromatography and gas chromatography combined with mass spectrometry were used for the analysis. It is our conclusion that amino acids are not present in the lunar regolith above the background levels of our investigation (ca. 1 - 3 ng/g). The scientific debate has become heated that primitive life existed on Mars 3.6 billion years ago as reported by the NASA-Stanford team led to David McKay. Mars is destined to receive humans early in the 21st Century, preceded by many international missions to Space Station Freedom and robotic missions to the Moon and Mars. First, we must `learn to live in space'. The Moon presents a base that provides the opportunities and challenges to assemble the international interdisciplinary intellectual scientific teams and partners with many disciplines to make the next step before human exploration of Mars and the search for evidence in Martian soil and samples returned to Earth laboratories. Our experiences learned in Moon analysis will be useful in Mars exploration and returned sample study. Sensitivity at the nanogram/gram level and selectivity of analysis are highly essential. As these figures show contamination of samples is a most serious problem. However with the use of ultraclean techniques in a 100 clean room contamination can be avoided. Our speck of dust, a tiny fragment of cigarette smoke, a particle of dandruff, a droplet of saliva, all can make your results questionable. In addition, the extraction of life molecules as amino acids from the Lunar samples was a difficult process and I am sure the same difficulties

  4. Sample Course Material for Biodiversity and Sustainable Education

    Science.gov (United States)

    Erten, Sinan

    2015-01-01

    This study was done in a period when there are attempts to develop a framework for the sustainable development and sustainable education in order to emphasize the universal significance of biodiversity, sustainable development, and sustainable education. The research reported here is a case study carried out in the spring semester of 2012-2013…

  5. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  6. Planning considerations for a Mars Sample Receiving Facility: summary and interpretation of three design studies.

    Science.gov (United States)

    Beaty, David W; Allen, Carlton C; Bass, Deborah S; Buxbaum, Karen L; Campbell, James K; Lindstrom, David J; Miller, Sylvia L; Papanastassiou, Dimitri A

    2009-10-01

    It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning.

  7. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    Science.gov (United States)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  8. Calibration of the Quadrupole Mass Spectrometer of the Sample Analysis at Mars Instrument Suite

    Science.gov (United States)

    Mahaffy, P. R.; Trainer, M. G.; Eigenbrode, J. L.; Franz, H. B.; Stern, J. C.; Harpold, D.; Conrad, P. G.; Raaen, E.; Lyness, E.

    2011-01-01

    The SAM suite of instruments on the "Curiosity" Rover of the Mars Science Laboratory (MSL) is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The mission of the MSL investigations is to advance beyond the successful search for aqueous transformation in surface environments at Mars toward a quantitative assessment of habitability and preservation through a series of chemical and geological measurements. The SAM suite was delivered in December 2010 (Figure 1) to the Jet Propulsion Laboratory for integration into the Curiosity Rover. We previously outlined the range of SAM solid and gas calibrations implemented or planned and here we discuss a specific set of calibration experiments to establish the response of the SAM Quadrupole Mass Spectrometer (QMS) to the four most abundant gases in the Martian atmosphere CO2, N2, Ar, and O2, A full SAM instrument description and calibration report is presently in preparation.

  9. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  10. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  11. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    Science.gov (United States)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  12. Concept Study For A Near-term Mars Surface Sample Return Mission

    Science.gov (United States)

    Smith, M. F.; Thatcher, J.; Sallaberger, C.; Reedman, T.; Pillinger, C. T.; Sims, M. R.

    The return of samples from the surface of Mars is a challenging problem. Present mission planning is for complex missions to return large, focused samples sometime in the next decade. There is, however, much scientific merit in returning a small sample of Martian regolith before the end of this decade at a fraction of the cost of the more ambitious missions. This paper sets out the key elements of this concept that builds on the work of the Beagle 2 project and space robotics work in Canada. The paper will expand the science case for returning a regolith sample that is only in the range of 50-250g but would nevertheless include plenty of interesting mate- rial as the regolith comprises soil grains from a wide variety of locations i.e. nearby rocks, sedimentary formations and materials moved by fluids, winds and impacts. It is possible that a fine core sample could also be extracted and returned. The mission concept is to send a lander sized at around 130kg on the 2007 or 2009 opportunity, immediately collect the sample from the surface, launch it to Mars orbit, collect it by the lander parent craft and make an immediate Earth return. Return to Earth orbit is envisaged rather than direct Earth re-entry. The lander concept is essen- tially a twice-size Beagle 2 carrying the sample collection and return capsule loading equipment plus the ascent vehicle. The return capsule is envisaged as no more than 1kg. An overall description of the mission along with methods for sample acquisition, or- bital rendezvous and capsule return will be outlined and the overall systems budgets presented. To demonstrate the near term feasibility of the mission, the use of existing Canadian and European technologies will be highlighted.

  13. Bionic Design for Mars Sampling Scoop Inspired by Himalayan Marmot Claw

    Directory of Open Access Journals (Sweden)

    Long Xue

    2016-01-01

    Full Text Available Cave animals are often adapted to digging and life underground, with claw toes similar in structure and function to a sampling scoop. In this paper, the clawed toes of the Himalayan marmot were selected as a biological prototype for bionic research. Based on geometric parameter optimization of the clawed toes, a bionic sampling scoop for use on Mars was designed. Using a 3D laser scanner, the point cloud data of the second front claw toe was acquired. Parametric equations and contour curves for the claw were then built with cubic polynomial fitting. We obtained 18 characteristic curve equations for the internal and external contours of the claw. A bionic sampling scoop was designed according to the structural parameters of Curiosity’s sampling shovel and the contours of the Himalayan marmot’s claw. Verifying test results showed that when the penetration angle was 45° and the sampling speed was 0.33 r/min, the bionic sampling scoops’ resistance torque was 49.6% less than that of the prototype sampling scoop. When the penetration angle was 60° and the sampling speed was 0.22 r/min, the resistance torque of the bionic sampling scoop was 28.8% lower than that of the prototype sampling scoop.

  14. Mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars

    Science.gov (United States)

    Mauersberger, Konrad; Mahaffy, Paul; Niemann, Hasso

    1992-01-01

    Results from the Viking mission will form the foundation for future in-depth investigations of atmosphere-surface interactions on Mars. The two Viking landers carried impressive instrumentation to obtain and analyze soil samples: the sites were observed by cameras, and the collector head was located on a long boom and allowed the collection of large samples at various depths. A selection of grain sizes was possible and a distribution system supplied a number of experiments with soil material. Despite stationary vehicles, a wide sampling field was reachable. The GCMS system, responsible for atmospheric as well as surface soil analysis, worked well on both landers. Atmospheric measurements resulted in the determination of the abundance of noble gases as well as of other molecular species. Isotopic composition measurements included the important ratios of C-13/C-12, N-15/N-14, and Ar-36/Ar-40. To verify these past results and to advance detailed studies of noble gas isotope ratios and minor constituents, better instrument sensitivities, higher precision, and lower background contributions are required in future Mars missions. Soil analysis during the Viking mission concentrated on organic material. Heating cycles were performed to 500 C and only water and carbon dioxide were identified. Higher pyrolysis temperatures are of primary importance to advance our understanding of the mineralogy and gas loading of surface material and atmospheric exchange.

  15. Conceptual study and key technology development for Mars Aeroflyby sample collection

    Science.gov (United States)

    Fujita, K.; Ozawa, T.; Okudaira, K.; Mikouchi, T.; Suzuki, T.; Takayanagi, H.; Tsuda, Y.; Ogawa, N.; Tachibana, S.; Satoh, T.

    2014-01-01

    Conceptual study of Mars Aeroflyby Sample Collection (MASC) is conducted as a part of the next Mars exploration mission currently entertained in Japan Aerospace Exploration Agency. In the mission scenario, an atmospheric entry vehicle is flown into the Martian atmosphere, collects the Martian dust particles as well as atmospheric gases during the guided hypersonic flight, exits the Martian atmosphere, and is inserted into a parking orbit from which a return system departs for the earth to deliver the dust and gas samples. In order to accomplish a controlled flight and a successful orbit insertion, aeroassist orbit transfer technologies are introduced into the guidance and control system. System analysis is conducted to assess the feasibility and to make a conceptual design, finding that the MASC system is feasible at the minimum system mass of 600 kg approximately. The aerogel, which is one of the candidates for the dust sample collector, is assessed by arcjet heating tests to examine its behavior when exposed to high-temperature gases, as well as by particle impingement tests to evaluate its dust capturing capability.

  16. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    Science.gov (United States)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  17. Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment

    Science.gov (United States)

    Newsom, Horton E.; Bishop, J.L.; Cockell, C.; Roush, T.L.; Johnson, J. R.

    2001-01-01

    The Marsokhod 1999 field experiment in the Mojave Desert included a simulation of a rover-based sample selection mission. As part of this mission, a test was made of strategies and analytical techniques for identifying past or present life in environments expected to be present on Mars. A combination of visual clues from high-resolution images and the detection of an important biomolecule (chlorophyll) with visible/near-infrared (NIR) spectroscopy led to the successful identification of a rock with evidence of cryptoendolithic organisms. The sample was identified in high-resolution images (3 times the resolution of the Imager for Mars Pathfinder camera) on the basis of a green tinge and textural information suggesting the presence of a thin, partially missing exfoliating layer revealing the organisms. The presence of chlorophyll bands in similar samples was observed in visible/NIR spectra of samples in the field and later confirmed in the laboratory using the same spectrometer. Raman spectroscopy in the laboratory, simulating a remote measurement technique, also detected evidence of carotenoids in samples from the same area. Laboratory analysis confirmed that the subsurface layer of the rock is inhabited by a community of coccoid Chroococcidioposis cyanobacteria. The identification of minerals in the field, including carbonates and serpentine, that are associated with aqueous processes was also demonstrated using the visible/NIR spectrometer. Other lessons learned that are applicable to future rover missions include the benefits of web-based programs for target selection and for daily mission planning and the need for involvement of the science team in optimizing image compression schemes based on the retention of visual signature characteristics. Copyright 2000 by the American Geophysical Union.

  18. Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent, and Landing of a Capsule Form Vehicle

    Science.gov (United States)

    Gonzales, Andrew A.; Lemke, Lawrence G.; Huynh, Loc C.

    2014-01-01

    This paper describes a critical portion of the work that has been done at NASA, Ames Research Center regarding the use of the commercially developed Dragon capsule as a delivery vehicle for the elements of a high priority Mars Sample Return mission. The objective of the investigation was to determine entry and landed mass capabilities that cover anticipated mission conditions. The "Red Dragon", Mars configuration, uses supersonic retro-propulsion, with no required parachute system, to perform Entry, Descent, and Landing (EDL) maneuvers. The propulsive system proposed for use is the same system that will perform an abort, if necessary, for a human rated version of the Dragon capsule. Standard trajectory analysis tools are applied to publically available information about Dragon and other legacy capsule forms in order to perform the investigation. Trajectory simulation parameters include entry velocity, flight path angle, lift to drag Ratio (L/D), landing site elevation, atmosphere density, and total entry mass, in addition engineering assumptions for the performance of the propulsion system are stated. Mass estimates for major elements of the overall proposed architecture are coupled to this EDL analysis to close the overall architecture. Three synodic launch opportunities, beginning with the 2022 opportunity, define the arrival conditions. Results state the relations between the analysis parameters as well as sensitivities to those parameters. The EDL performance envelope includes landing altitudes between 0 and -4 km referenced to the Mars Orbiter Laser Altimeter datum as well as minimum and maximum atmosphere density. Total entry masses between 7 and 10 mt are considered with architecture closure occurring between 9.0 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the Thermal Protection System (TPS) currently in use for

  19. Sustainable life support on Mars – the potential roles of cyanobacteria

    OpenAIRE

    Verseux, C.; Baqué, M; Lehto, K; de Vera, J.-P.P.; Rothschild, Lynn J; Billi, D

    2015-01-01

    Even though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed by in situ resource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. ...

  20. THE SUSTAINABILITY OF PUBLIC DEFICIT AND DEBTS: SAMPLE OF TURKEY

    Directory of Open Access Journals (Sweden)

    Selim YILDIRIM

    2017-09-01

    Full Text Available The developing countries which include Turkey as well, has been adversely effected in terms of sustainability of fiscal policy due to the 2001 crisis and the global crisis in 2008. These developments, which are important for the sustainability of fiscal policy, have increased the interest of researchers in the subject. Therefore, the purpose of this study is to determine whether Turkey's fiscal policy is sustainable for the period 1976-2016. In this study, which examines the sustainability of public debts in Turkey during the period 1976-2016, Bohn (1989 based econometric model with time-varying parameters was estimated by considering the structural changes experienced by the Turkish economy. In this model, the basic relationship is between the dependent variable ration of primary surplus to GDP (fdoranı and the explanatory variable of ration of public debt to GDP kboran. This relationship was empirically positive and statistically significant. This result provides evidence that public debt is sustainable when Turkey's budget policy is assessed for the period covered.

  1. An Instrument for In-situ Triage of Mars 2020 Rover Samples for Organics and Chronology

    Science.gov (United States)

    Anderson, F.; Whitaker, T.; Andrews, J.

    2013-12-01

    We have developed a prototype instrument for triaging samples for elemental chemistry, organics, and Rb-Sr dates on the Mars 2020 Rover. Determining organic content and rock age are key drivers for Mars Sample Return (MSR). By identifying samples with organics, and potentially a range of dates, we increase near-term science return, while maximizing scientific and political will to compel the ultimate return of samples. Though organics have proven difficult to identify in-situ, understanding their distribution and variety could provide key constraints on the possibility of life; on the other hand, datable outcrops are clearly present at a range of potential landing sites, and could provide insight into the evolution of both local and global geology, and the history of solar system bombardment. Our instrument uses laser desorption resonance ionization mass spectrometry (LDRIMS) for Rb-Sr dates, and a subset of the LDRIMS lasers for L2MS measurements of organics. With LDRIMS, a sample is placed in a time-of-flight (TOF) mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. The plume of expanding atoms is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, Rb . This eliminates isobars for Rb and Sr, and insures that the measured atoms come from the same ablation event, and hence target materials. L2MS uses high-power IR laser ablation to desorb neutral organic molecules, followed by a second, UV laser beam for ionization. Advantages of L2MS include the measurement of a wide array of elements, and it is one of the most sensitive available organic detection methods, with demonstrated detection to 10-18. We have previously demonstrated dates on granites with an average of 1.727×0.087 Ga (MSWD=1; ×0.062 for MSWD=2); both values have a precision and accuracy exceeding that called for by NASA. Finally, we have demonstrated ppm-level detections of organics in the

  2. Habitability Conditions Constrained by Martian Meteorites: Implications for Microbial Colonization and Mars Sample Return

    Science.gov (United States)

    Shivak, J. N.; Banerjee, N.; Flemming, R. L.

    2013-12-01

    We report the results of a comparative study of the crustal environmental conditions recorded by several Martian meteorites (Nakhla, Los Angeles, and Zagami). Though no samples have yet been returned from Mars, numerous meteorites are known and these provide the only samples of the Martian crust currently available for study. Terrestrial basalts and other mafic igneous rocks are analogous in many ways to much of the Martian crust, as evidenced by the composition of known Martian meteorites and measurements from planetary missions [1]. Microorganisms are known to thrive in the terrestrial geosphere and make use of many different substrates within rock in the subsurface of the Earth [2]. The action of aqueous solutions in the Martian crust has been well established through the study of alteration mineral assemblages present in many Martian meteorites, such as the nakhlites [3]. Aqueous activity in terrestrial chemolithoautotrophic habitats provides numerous energy and nutrient sources for microbes [4], suggesting the potential for habitable endolithic environments in Martian rocks. Fayalite in Nakhla has experienced extensive aqueous alteration to reddish-brown 'iddingsite' material within a pervasive fracture system. Textural imaging shows the replacement of primary olivine with various alteration phases and infiltration of this alteration front into host grains. Geochemical analysis of the alteration material shows the addition of iron and silica and removal of magnesium during alteration. Novel In situ Micro-XRD and Raman Spectroscopy of this material reveals a new assemblage consisting of iron oxides, smectite clays, carbonates, and a minor serpentine component. The alteration mineral assemblage here differs from several that have been previously reported [4] [5], allowing for a reevaluation of the environmental conditions during fluid action. Los Angeles and Zagami show no evidence of aqueous activity, though their primary basaltic mineralogies show many

  3. Field Research and Laboratory Sample Analysis of Dust-Water-Organics-Life from Mars Analogue Extreme Environments

    Science.gov (United States)

    Foing, Bernard H.; Ehrenfreund, Pascale; ILEWG EuroMoonMars Team

    2015-08-01

    We describe results from the data analysis from a series of field research campaigns (ILEWG EuroMoonMars campaigns 2009* to 2013) in the extreme environment of the Utah desert relevant to habitability and astrobiology in Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL). We discuss results relevant to the scientific study of the habitability factors influenced by the properties of dust, organics, water history and the diagnostics and characterisation of microbial life. We also discuss perspectives for the preparation of future lander and sample return missions. We deployed at Mars Desert Research station, Utah, a suite of instruments and techniques including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution a ected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. We find high diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with signi cant heterogeneity. An extraordinary variety of putative extremophiles was observed. A dominant factor seems to be soil porosity and lower clay-sized particle content. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples. We compare 2009 campaign results to new measurements from 2010-2013 campaigns: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life.References * in Foing, Stoker Ehrenfreund (Editors, 2011) Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International Journal of Astrobiology

  4. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    Science.gov (United States)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  5. Microbial Habitability in Gale Crater: Sample Analysis at Mars (SAM) Instrument Detection of Microbial Essential Carbon and Nitrogen

    Science.gov (United States)

    Sutter, B.; Ming, D. W.; Eigenbrode, J. E.; Steele, A.; Stern, J. C.; Gonzalez, R. N.; McAdam, A. C.; Mahaffy, P. R.

    2016-01-01

    Chemical analyses of Mars soils and sediments from previous landed missions have demonstrated that Mars surface materials possessed major (e.g., P, K, Ca, Mg, S) and minor (e.g., Fe, Mn, Zn, Ni, Cl) elements essential to support microbial life. However, the detection of microbial essential organic-carbon (C) and nitrate have been more elusive until the Mars Science Laboratory (MSL) rover mission. Nitrate and organic-C in Gale Crater, Mars have been detected by the Sample Analysis at Mars (SAM) instrument onboard the MSL Curiosity rover. Eolian fines and drilled sedimentary rock samples were heated in the SAM oven from approximately 30 to 860 degrees Centigrade where evolved gases (e.g., nitrous oxide (NO) and CO2) were released and analyzed by SAM’s quadrupole mass spectrometer (MS). The temperatures of evolved NO was assigned to nitrate while evolved CO2 was assigned to organic-C and carbonate. The CO2 releases in several samples occurred below 450 degrees Centigrade suggesting organic-C dominated in those samples. As much as 7 micromoles NO3-N per gram and 200 micromoles CO2-C per gram have been detected in the Gale Crater materials. These N and C levels coupled with assumed microbial biomass (9 x 10 (sup -7) micrograms per cell) C (0.5 micrograms C per micrograms cell) and N (0.14 micrograms N per micrograms cell) requirements, suggests that less than 1 percent and less than 10 percent of Gale Crater C and N, respectively, would be required if available, to accommodate biomass requirements of 1 by 10 (sup 5) cells per gram sediment. While nitrogen is the limiting nutrient, the potential exists that sufficient N and organic-C were present to support limited heterotrophic microbial populations that may have existed on ancient Mars.

  6. Achieving And Sustaining Human Exploration of Mars The Fourth Community Workshop (AM IV)

    Science.gov (United States)

    Thronson, Harley; Beaty, David; Carberry, Chris; Drake, Bret; Hays, Lindsay

    2017-01-01

    About a half decade ago, several professionals working mainly in industry on scenarios for initial human exploration of Mars exploration together recognized that, under generally similar assumptions, there was a fair degree of similarity among these scenarios. Moreover, opportunities should be sought for greater community input into NASAs own scenario-building for the future of human space flight. A series of focused community workshops were considered to be effective to critically assess the increasingly sophisticated scenarios. Explore Mars, Inc. the American Astronautical Society agreed to support them. Four workshops to date each involve about sixty professional scientists, engineers, technologists, and strategists from NASA, academia, aerospace corporations, the National Academies, consulting organizations, and potential international partners. Each workshop produced a series of presentations and reports briefed to NASA leadership and other stakeholders.

  7. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  8. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  9. Biomarker Analysis of Samples Visually Identified as Microbial in the Eocene Green River Formation: An Analogue for Mars.

    Science.gov (United States)

    Olcott Marshall, Alison; Cestari, Nicholas A

    2015-09-01

    One of the major exploration targets for current and future Mars missions are lithofacies suggestive of biotic activity. Although such lithofacies are not confirmation of biotic activity, they provide a way to identify samples for further analyses. To test the efficacy of this approach, we identified carbonate samples from the Eocene Green River Formation as "microbial" or "non-microbial" based on the macroscale morphology of their laminations. These samples were then crushed and analyzed by gas chromatography/mass spectroscopy (GC/MS) to determine their lipid biomarker composition. GC/MS analysis revealed that carbonates visually identified as "microbial" contained a higher concentration of more diverse biomarkers than those identified as "non-microbial," suggesting that this could be a viable detection strategy for selecting samples for further analysis or caching on Mars.

  10. A Plateau-Burning, Low Temperature-Operable Solid Propellant for Mars Sample Return Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars ascent vehicle (MAV) is required to endure a long space transit time, high-g loading during planetary entry, and high launch loads, all at low temperatures...

  11. Solid Rocket Motor for Ultralow Temperature Operation During the Mars Sample Return Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A small Mars (or other celestial body) ascent vehicle is unlikely to achieve the necessary propellant fraction required to achieve orbit. Scaling down of liquid...

  12. The Importance of Sample Return in Establishing Chemical Evidence for Life on Mars or Other Solar System Bodies

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    The search for evidence of life on Mars and elsewhere will continue to be one of the primary goals of NASA s robotic exploration program over the next decade. NASA and ESA are currently planning a series of robotic missions to Mars with the goal of understanding its climate, resources, and potential for harboring past or present life. One key goal will be the search for chemical biomarkers including complex organic compounds important in life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, nucleobases and sugars which form the backbone of DNA and RNA, and lipids, the structural components of cell membranes. Many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1], though, their molecular characteristics may distinguish a biological source [2]. It is possible that in situ instruments may reveal such characteristics, however, return of the right sample (i.e. one with biosignatures or having a high probability of biosignatures) to Earth would allow for more intensive laboratory studies using a broad array of powerful instrumentation for bulk characterization, molecular detection, isotopic and enantiomeric compositions, and spatially resolved chemistry that may be required for confirmation of extant or extinct Martian life. Here we will discuss the current analytical capabilities and strategies for the detection of organics on the Mars Science Laboratory (MSL) using the Sample Analysis at Mars (SAM) instrument suite and how sample return missions from Mars and other targets of astrobiological interest will help advance our understanding of chemical biosignatures in the solar system.

  13. Measuring Sulfur Isotope Ratios from Solid Samples with the Sample Analysis at Mars Instrument and the Effects of Dead Time Corrections

    Science.gov (United States)

    Franz, H. B.; Mahaffy, P. R.; Kasprzak, W.; Lyness, E.; Raaen, E.

    2011-01-01

    The Sample Analysis at Mars (SAM) instrument suite comprises the largest science payload on the Mars Science Laboratory (MSL) "Curiosity" rover. SAM will perform chemical and isotopic analysis of volatile compounds from atmospheric and solid samples to address questions pertaining to habitability and geochemical processes on Mars. Sulfur is a key element of interest in this regard, as sulfur compounds have been detected on the Martian surface by both in situ and remote sensing techniques. Their chemical and isotopic composition can belp constrain environmental conditions and mechanisms at the time of formation. A previous study examined the capability of the SAM quadrupole mass spectrometer (QMS) to determine sulfur isotope ratios of SO2 gas from a statistical perspective. Here we discuss the development of a method for determining sulfur isotope ratios with the QMS by sampling SO2 generated from heating of solid sulfate samples in SAM's pyrolysis oven. This analysis, which was performed with the SAM breadboard system, also required development of a novel treatment of the QMS dead time to accommodate the characteristics of an aging detector.

  14. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  15. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for In-Situ Mars Surface Sample Analysis

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Jerman, G. A.; Harvey, R. P.; Doloboff, I. J.; Neidholdt, E. L.

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Sciences (ROSES), will build upon previous miniaturized SEM designs and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. This project is a collaboration between NASA Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), electron gun and optics manufacturer Applied Physics Technologies, and small vacuum system manufacturer Creare. Dr. Ralph Harvery and environmental SEM (ESEM) inventor Dr. Gerry Danilatos serve as advisors to the team. Variable pressure SEMs allow for fine (nm-scale) resolution imaging and micron-scale chemical study of materials without sample preparation (e.g., carbon or gold coating). Charging of a sample is reduced or eliminated by the gas surrounding the sample. It is this property of ESEMs that make them ideal for locations where sample preparation is not yet feasible, such as the surface of Mars. In addition, the lack of sample preparation needed here will simplify the sample acquisition process and allow caching of the samples for future complementary payload use.

  16. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  17. Trace fossils of microbial colonization on Mars: Criteria for search and for sample return

    Science.gov (United States)

    Friedmann, E. I.

    1988-01-01

    The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures).

  18. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  19. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    OpenAIRE

    Paula Lindgren; Magnus Ivarsson

    2010-01-01

    On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from su...

  20. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; hide

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  1. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-like Worlds

    OpenAIRE

    Ehlmann, B. L.; Dressing, C.D.; Farley, K. A.; Fischer, W. W.; Knutson, H. A.; Stevenson, D. J.; Yung, Y. L.

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky pla...

  2. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    Science.gov (United States)

    Sutter, Brad; Eigenbrode, Jennifer L.; Steele, Andrew; Ming, Douglas W.

    2016-01-01

    Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on

  3. The viscous Fluid Mechanical Particle Barrier for the prevention of sample contamination on the Mars 2020 mission

    Science.gov (United States)

    Mikellides, Ioannis G.; Steltzner, Adam D.; Blakkolb, Brian K.; Matthews, Rebecca C.; Kipp, Kristina A.; Bernard, Douglas E.; Stricker, Moogega; Benardini, James N.; Shah, Parthiv; Robinson, Albert

    2017-08-01

    The Mars 2020 mission will land a rover on the surface of Mars that will acquire, encapsulate, and cache scientifically selected samples of martian material for possible return to Earth by a future mission. The samples will be individually encapsulated and sealed in sample tubes. Each sample, and therefore each sample tube, must be kept clean of viable organisms with a terrestrial origin, which may adhere to the rover on their own and/or on other abiological particles. It is shown that contamination of the tubes by such terrestrial remnant particles as small as 0.15 μm on the rover will be prevented using the Fluid Mechanical Particle Barrier (FMPB), a cylindrical enclosure within which each tube will be housed. The FMPB takes advantage of fluid viscosity to slow down the speed of the flow through a main thin annular orifice at the bottom of the device. An analytical solution of the fluid and particle dynamics in the FMPB has been developed and validated using 2-D and 3-D CFD simulations. Water tunnel tests have also been conducted that demonstrate the effectiveness of the FMPB to slow down the fluid through the orifice. It is found that for the flow speeds expected at the various phases of the mission, penetration of the smallest particles is not expected to exceed 10% of the orifice height. No penetration of particles >5 μm is expected inside the orifice. Large margins on the already low contamination probability of the tubes are allowed by the presence of a large-volume cavity immediately downstream of the long annular orifice. The cavity further slows down the expanding flow and, in turn, minimizes particle penetration even at the most extreme conditions expected on Mars. For example at wind speeds of 75 m/s, characteristic of the largest and rarest dust devils that can form on Mars, 0.15-μm particles are not expected to exceed a height larger than 3% of the cavity.

  4. Landing site rationality scaling for subsurface sampling on Mars—Case study for ExoMars Rover-like missions

    Science.gov (United States)

    Kereszturi, Akos

    2012-11-01

    Subsurface sampling will be important in the robotic exploration of Mars in the future, and this activity requires a somewhat different approach in landing site selection than earlier, surface analysis focused missions. In this work theoretical argumentation for the selection of ideal sites is summarized, including various parameters that were defined as examples for the earlier four candidate landing sites of Mars Science Laboratory. The aim here was to compare interesting sites; the decision on the final site does not affect this work. Analyzing the theoretical background, to identify ideal locations for subsurface analysis, several factors could be identified by remote sensing, including the dust and dune coverage, the cap layer distribution as well as the location of probable important outcrops. Beyond the fact that image based information on the rock hardness on Mars is lacking, more work would be also useful to put the interesting sites into global context and to understand the role of secondary cratering in age estimation. More laboratory work would be also necessary to improve our knowledge on the extraction and preservation of organic materials under different conditions. Beyond the theoretical argumentation mentioned above, the size and accessibility of possible important shallow subsurface materials were analyzed at the four earlier candidate landing sites of Mars Science Laboratory. At the sample terrains, interesting but inaccessible, interesting and sideward accessible, and interesting and from above accessible outcrops were identified. Surveying these outcrop types at the sample terrains, the currently available datasets showed only 3-9% of exposed strata over the entire analyzed area is present at Eberswalde and Holden crater, and individual outcrops have an average diameter between 100 and 400 m there. For Gale crater and Mawrth Valles region, these parameters were 46-35% of exposed strata, with an average outcrop diameter of ˜300 m. In the case

  5. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    Science.gov (United States)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  6. Note: Planetary gravities made simple: Sample test of a Mars rover wheel

    Science.gov (United States)

    Viera-López, G.; Serrano-Muñoz, A.; Amigó-Vega, J.; Cruzata, O.; Altshuler, E.

    2017-08-01

    We introduce an instrument for a wide spectrum of experiments on gravities other than our planet's. It is based on a large Atwood machine where one of the loads is a bucket equipped with a single board computer and different sensors. The computer is able to detect the falling (or rising) and then the stabilization of the effective gravity and to trigger actuators depending on the experiment. Gravities within the range 0.4 g-1.2 g are easily achieved with acceleration noise of the order of 0.01 g. Under Martian gravity, we are able to perform experiments of approximately 1.5 s duration. The system includes features such as WiFi and a web interface with tools for the setup, monitoring, and data analysis of the experiment. We briefly show a case study in testing the performance of a model Mars rover wheel in low gravities.

  7. Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission

    Science.gov (United States)

    Suzuki, Toshiyuki; Aoki, Takuya; Ogasawara, Toshio; Fujita, Kazuhisa

    2017-07-01

    In this study, the concept of a nonablative lightweight thermal protection system (NALT) were proposed for a Mars exploration mission currently under investigation in Japan. The NALT consists of a carbon/carbon (C/C) composite skin, insulator tiles, and a honeycomb sandwich panel. Basic thermal characteristics of the NALT were obtained by conducting heating tests in high-enthalpy facilities. Thermal conductivity values of the insulator tiles as well as the emissivity values of the C/C skin were measured to develop a numerical analysis code for predicting NALT's thermal performance in flight environments. Finally, a breadboard model of a 600-mm diameter NALT aeroshell was developed and qualified through vibration and thermal vacuum tests.

  8. Autonomous Science Analyses of Digital Images for Mars Sample Return and Beyond

    Science.gov (United States)

    Gulick, V. C.; Morris, R. L.; Ruzon, M.; Roush, T. L.

    1999-01-01

    To adequately explore high priority landing sites, scientists require rovers with greater mobility. Therefore, future Mars missions will involve rovers capable of traversing tens of kilometers (vs. tens of meters traversed by Mars Pathfinder's Sojourner). However, the current process by which scientists interact with a rover does not scale to such distances. A single science objective is achieved through many iterations of a basic command cycle: (1) all data must be transmitted to Earth and analyzed; (2) from this data, new targets are selected and the necessary information from the appropriate instruments are requested; (3) new commands are then uplinked and executed by the spacecraft and (4) the resulting data are returned to Earth, starting the process again. Experience with rover tests on Earth shows that this time intensive process cannot be substantially shortened given the limited data downlink bandwidth and command cycle opportunities of real missions. Sending complete multicolor panoramas at several waypoints, for example, is out of the question for a single downlink opportunity. As a result, long traverses requiring many science command cycles would likely require many weeks, months or even years, perhaps exceeding rover design life or other constraints. Autonomous onboard science analyses can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands, for example acquiring and returning spectra of "interesting" rocks along with the images in which they were detected. Such approaches, coupled with appropriate navigational software, address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing algorithms to enable such intelligent decision making by autonomous spacecraft. Reflecting the ultimate level of ability we aim for, this

  9. Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return

    Science.gov (United States)

    Paulsen, Gale; Indyk, Stephen; Zacny, Kris

    2014-01-01

    A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.

  10. Some lessons from Apollo for a sampling strategy on Mars for understanding the origin of the ancient igneous crust and the composition of the mantle

    Science.gov (United States)

    Korotev, Randy L.; Haskin, Larry A.

    1988-01-01

    Proper site selection for sample collection is crucial to determining the nature and time scales of major events on Mars. Analysis and interpretation of lunar samples acquired by the Apollo lunar missions provides valuable experience on the effects of site selection. Lunar selection techniques are briefly examined.

  11. Spacecraft Actuator Diagnosis with Principal Component Analysis: Application to the Rendez-Vous Phase of the Mars Sample Return Mission

    Directory of Open Access Journals (Sweden)

    Othman Nasri

    2015-01-01

    Full Text Available This paper presents a fault detection and isolation (FDI approach in order to detect and isolate actuators (thrusters and reaction wheels faults of an autonomous spacecraft involved in the rendez-vous phase of the Mars Sample Return (MSR mission. The principal component analysis (PCA has been adopted to estimate the relationships between the various variables of the process. To ensure the feasibility of the proposed FDI approach, a set of data provided by the industrial “high-fidelity” simulator of the MSR and representing the opening (resp., the rotation rates of the spacecraft thrusters (resp., reaction wheels has been considered. The test results demonstrate that the fault detection and isolation are successfully accomplished.

  12. In situ XRF and gamma ray spectrometer for Mars sample return mission

    Science.gov (United States)

    Lo, I. Yin; Trombka, Jacob I.; Evans, Larry G.; Squyres, Steven W.

    1988-01-01

    A combined in situ X-ray fluorescence (XRF) and passive gamma ray spectrometer instrument is proposed for the chemical elemental analysis of various Martian surfaces and samples. The combined instrument can be carried on board a rover. The passive gamma ray or the neutron excited gamma ray system would be used to determine the elemental composition of the Martian surface while the rover is in motion. The XRF system would be used to perform analysis either on the Martian surface or on collected samples when the rover is stationary. The latter function is important both in cataloging the collected samples and in the selection of samples to be returned to earth. For both systems, data accumulation time would be on the order of 30 minutes. No sample preparation would be necessary.

  13. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification

    Science.gov (United States)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.

    2017-01-01

    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.

  14. The Amorphous Composition of Three Mudstone Samples from Gale Crater: Implications for Weathering and Diagenetic Processes on Mars

    Science.gov (United States)

    Achilles, C. N.; Downs, R. T.; Rampe, E. B.; Morris, R. V.; Bristow, T. F.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Morrison, S. M.; Sutter, B.; hide

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is exploring the lowermost formation of Gale crater's central mound. Within this formation, three samples named Marimba, Quela, and Sebina have been analyzed by the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS) to determine mineralogy and bulk elemental chemistry, respectively. Marimba and Quela were also analyzed by the SAM (Sample Analysis at Mars) instrument to characterize the type and abundance of volatile phases detected in evolved gas analyses (EGA). CheMin data show similar proportions of plagioclase, hematite, and Ca-sulfates along with a mixture of di- and trioctahedral smectites at abundances of approximately 28, approximately 16, and approximately 18 wt% for Marimba, Quela, and Sebina. Approximately 50 wt% of each mudstone is comprised of X-ray amorphous and trace crystalline phases present below the CheMin detection limit (approximately 1 wt%). APXS measurements reveal a distinct bulk elemental chemistry that cannot be attributed to the clay mineral variation alone indicating a variable amorphous phase assemblage exists among the three mudstones. To explore the amorphous component, the calculated amorphous composition and SAM EGA results are used to identify amorphous phases unique to each mudstone. For example, the amorphous fraction of Marimba has twice the FeO wt% compared to Quela and Sebina yet, SAM EGA data show no evidence for Fe-sulfates. These data imply that Fe must reside in alternate Fe-bearing amorphous phases (e.g., nanophase iron oxides, ferrihydrite, etc.). Constraining the composition, abundances, and proposed identity of the amorphous fraction provides an opportunity to speculate on the past physical, chemical, and/or diagenetic processes which produced such phases in addition to sediment sources, lake chemistry, and the broader geologic history of Gale crater.

  15. Continuing to Build a Community Consensus on the Future of Human Space Flight: Report of the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV)

    Science.gov (United States)

    Thronson, Harley A.; Baker, John; Beaty, David; Carberry, Chris; Craig, Mark; Davis, Richard M.; Drake, Bret G.; Cassady, Joseph; Hays, Lindsay; Hoffman, Stephen J.; hide

    2016-01-01

    To continue to build broadly based consensus on the future of human space exploration, the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV), organized by Explore Mars, Inc. and the American Astronautical Society, was held at the Double Tree Inn in Monrovia, CA., December 68, 2016. Approximately 60 invited professionals from the industrial and commercial sectors, academia, and NASA, along with international colleagues, participated in the workshop. These individuals were chosen to be representative of the breadth of interests in astronaut and robotic Mars exploration.

  16. Pollen deposition in tauber traps and surface soil samples in the Mar Chiquita coastal lagoon area, pampa grasslands (Argentina

    Directory of Open Access Journals (Sweden)

    Fabiana Latorre

    2010-12-01

    Full Text Available Estimations of airborne pollen loadings deposited in Tauber traps were studied in a coastal lagoon from south-eastern Pampa grasslands, Argentina, in order to assess their relationship with surface samples and to interpret the representativeness of local, regional and extraregional vegetation. Three different environments were considered: a coastal dune barrier with a psammophytic community, a salt marsh with a halophytic community in Mar Chiquita lagoon, and a freshwater community at Hinojales freshwater lake. Based on a record of surface samples taken from a previous paper, a parametric model was built to classify Tauber samples gathered from the natural vegetation communities of the study area. Results revealed that just like their surface counterparts, Tauber trap records qualitatively reflect the predominant vegetation types, although ecological groups feature different quantitative representations depending on the record type. Pollen loadings showed that airborne pollen transport was predominantly of local range, in accordance with previous results from the same study area. Airborne - surface samples relationships enrich our knowledge of the present environment that could be useful to improve paleoecological interpretations of the area.Se estimó el depósito polínico atmosférico de trampas Tauber en una laguna costera del sudeste de la estepa pampeana argentina, con el objetivo de analizar su relación con muestras de polen superficial e interpretar la representatividad de la vegetación local, regional y extraregional. Se consideraron tres ambientes diferentes: una barrera costera de dunas con vegetación psamofítica, la marisma de la laguna costera Mar Chiquita, con vegetación halofítica, y la laguna continental Hinojales, con vegetación hidrofítica. En base a las muestras de superficie y análisis de un trabajo previo, se construyó un modelo paramétrico para clasificar las muestras Tauber tomadas en la vegetación natural del

  17. Survey of European and Major ISC Facilities for Supporting Mars and Sample Return Mission Aerothermodynamics and Tests Required for Thermal Protection System and Dynamic Stability

    Directory of Open Access Journals (Sweden)

    Mathilde Bugel

    2011-01-01

    Full Text Available In the frame of future sample return missions to Mars, asteroids, and comets, investigated by the European Space Agency, a review of the actual aerodynamics and aerothermodynamics capabilities in Europe for Mars entry of large vehicles and high-speed Earth reentry of sample return capsule has been undertaken. Additionally, capabilities in Canada and Australia for the assessment of dynamic stability, as well as major facilities for hypersonic flows available in ISC, have been included. This paper provides an overview of European current capabilities for aerothermodynamics and testing of thermal protection systems. This assessment has allowed the identification of the needs in new facilities or upgrade of existing ground tests for covering experimentally Mars entries and Earth high-speed reentries as far as aerodynamics, aerothermodynamics, and thermal protection system testing are concerned.

  18. Earth Entry Requirements for Mars, Europa and Enceladus Sample Return Missions: A Thermal Protection System Perspective

    Science.gov (United States)

    Venkatapathy, Ethiraj; Gage, Peter; Ellerby, Don; Mahzari, Milad; Peterson, Keith; Stackpoole, Mairead; Young, Zion

    2016-01-01

    This oral presentation will be given at the 13th International Planetary Probe Workshop on June 14th, 2016 and will cover the drivers for reliability and the challenges faced in selecting and designing the thermal protection system (TPS). In addition, an assessment is made on new emerging TPS related technologies that could help with designs to meet the planetary protection requirements to prevent backward (Earth) contamination by biohazardous samples.

  19. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.

    Science.gov (United States)

    Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen

    2015-06-26

    Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The utopia of sustainability. Realities, myths and controversies. A conversation with María Novo y Pilar Aznar

    Directory of Open Access Journals (Sweden)

    María Ángeles Murga Menoyo

    2015-07-01

    Full Text Available How to reference this articleMurga-Menoyo, M. A. (2015. La utopía de la sostenibilidad: realidades, mitos y controversias. Charla con María Novo y Pilar Aznar. Foro de Educación, 13(19, 409-426. doi: http://dx.doi.org/10.14516/fde.2015.013.019.018

  1. Analysis of Organic Molecules Extracted from Mars Analogues and Influence of Their Mineralogy Using N-Methyl-N-(tert-butyldimethylsilyl)Trifluoroacetamide Derivatization Coupled with Gas Chromatography Mass Spectrometry in Preparation for the Sample Analysis at Mars Derivatization Experiment on the Mars Science Laboratory Mission

    Science.gov (United States)

    Stalport, F.; Glavin, D. P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids will require a chemical extraction and derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed, a one-pot extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment on the Mars Science Laboratory (MSL). The temperature and duration the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 C for several minutes of a variety of terrestrial Mars analogue materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analogue materials that contained high abundances of hydrated minerals and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA, The combination of pyrolysis and two different chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars,

  2. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  3. The Importance of In Situ Measurements and Sample Return in the Search for Chemical Biosignatures on Mars or other Solar System Bodies (Invited)

    Science.gov (United States)

    Glavin, D. P.; Brinckerhoff, W. B.; Conrad, P. G.; Dworkin, J. P.; Eigenbrode, J. L.; Getty, S.; Mahaffy, P. R.

    2013-12-01

    The search for evidence of life on Mars and elsewhere will continue to be one of the primary goals of NASA's robotic exploration program for decades to come. NASA and ESA are currently planning a series of robotic missions to Mars with the goal of understanding its climate, resources, and potential for harboring past or present life. One key goal will be the search for chemical biomarkers including organic compounds important in life on Earth and their geological forms. These compounds include amino acids, the monomer building blocks of proteins and enzymes, nucleobases and sugars which form the backbone of DNA and RNA, and lipids, the structural components of cell membranes. Many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1], though, their molecular characteristics may distinguish a biological source [2]. It is possible that in situ instruments may reveal such characteristics, however, return of the right samples to Earth (i.e. samples containing chemical biosignatures or having a high probability of biosignature preservation) would enable more intensive laboratory studies using a broad array of powerful instrumentation for bulk characterization, molecular detection, isotopic and enantiomeric compositions, and spatially resolved chemistry that may be required for confirmation of extant or extinct life on Mars or elsewhere. In this presentation we will review the current in situ analytical capabilities and strategies for the detection of organics on the Mars Science Laboratory (MSL) rover using the Sample Analysis at Mars (SAM) instrument suite [3] and discuss how both future advanced in situ instrumentation [4] and laboratory measurements of samples returned from Mars and other targets of astrobiological interest including the icy moons of Jupiter and Saturn will help advance our understanding of chemical biosignatures in the Solar System. References: [1] Cronin, J. R and Chang S. (1993

  4. Isotopic Composition of Carbon Dioxide Released from Confidence Hills Sediment as Measured by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; Mahaffy, P. R.; Stern, J.; Archer, P., Jr.; Conrad, P.; Eigenbrode, J.; Freissinet, C.; Glavin, D.; Grotzinger, J. P.; Jones, J.; hide

    2015-01-01

    In October 2014, the Mars Science Laboratory (MSL) "Curiosity" rover drilled into the sediment at the base of Mount Sharp in a location namsed Cionfidence Hills (CH). CH marked the fifth sample pocessed by the Sample Analysis at Mars (SAM) instrument suite since Curiosity arrived in Gale Crater, with previous analyses performed at Rocknest (RN), John Klein (JK), Cumberland (CB), and Windjana (WJ). Evolved gas analysis (EGA) of all samples has indicated H2O as well as O-, C- and S-bearing phases in the samples, often at abundances that would be below the detection limit of the CheMin instrument. By examining the temperatures at which gases are evolved from samples, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases when their identities are unclear to CheMin. SAM may also detect gases evolved from amorphous material in solid samples, which is not suitable for analysis by CheMin. Finally, the isotopic composition of these gases may suggest possible formation scenarios and relationships between phases. We will discuss C isotope ratios of CO2 evolved from the CH sample as measured with SAM's quadrupole mass spectrometer (QMS) and draw comparisons to samples previously analyzed by SAM.

  5. 2005 Earth-Mars Round Trip

    Science.gov (United States)

    2000-01-01

    This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.

  6. Iron-rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) instrument in Gale Crater.

    Science.gov (United States)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D., Jr.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A.; Navarro-Gonzalez, R.; Mahaffy, P. R.; Stern, J. C.; Mertzman, S. A.

    2015-12-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502°C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through metamorphic and/or metasomatic processes.

  7. Iron-Rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502 C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through metamorphic and/or metasomatic processes.

  8. Mars Micromissions

    OpenAIRE

    Matousek, Steve; Leschly, Kim; Gershman, Bob; Reimer, John

    1999-01-01

    A Mars micromission launches as an Ariane 5 secondary as early as November I, 2002. One possible mission is a Comm/nav micromission .orbiter. The other possible mission is a Mars airplane. Both missions are enabled by a lowcost, common micromisson bus design. The future of Mars micromissions has at least two micromissions per Mars Opportunity In cooperation with CNES. Other destinations besides Mars are possible by small changes and technology Infusion in the micromission system design detail...

  9. The Investigation of Chlorate/Iron-Phase Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Clark, J.; Sutter, B.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P.; Mahaffy, P.; Navarro-Gonzalez, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected oxygen and HCl gas releases from all analyzed Gale Crater sediments. The presence of perchlorate ClO4(sup-) and/or chlorates ClO3(sup-) are potential sources of the aforementioned O2 releases. The detections of O2 and HCl gas releases and chlorinated hydrocarbons by SAM coupled with the detection of perchlorates by Phoenix Lander's 2008 Wet Chemistry Laboratory all suggest that perchlorates, and possibly chorates, may be present in the Gale Crater sediments. Previous laboratory studies have attempted to replicate these O2 releases by heating perchlorates and chlorates in instruments operated similarly to those in the SAM instrument. Early studies found that pure perchlorates release O2 at temperatures higher than those observed in SAM data. Subsequently, studies were done to test the effects of mixing iron-phase minerals, analogous to those detected on Mars by ChemMin, with perchlorates. The iron in these minerals acts as a catalyst and causes O2 to be released from the perchlorate at a lower temperature. These studies found that perchlorate solutions mixed with either Hawaii palagonite or ferrihydrite produce O2 releases at temperatures similar to the Rocknest (RN) windblown deposit and the John Klein (JK) drill sample from the Sheepbed mudstone. The study also determined that perchlorate mixtures with magnetite, hematite, fayalite-magnetite, ilmentite, and pyrrhotite produce O2 releases at temperatures similar to the Confidence Hills (CH) drill sample from the Murray mudstone. Oxygen re-leases from pure chlorates were recently compared with the SAM data. Laboratory analyses determined that Ca-chlorate produces O2 and HCl peaks that are similar to those detected in RN and JK materials. Currently, no perchlorate/chlorate mixture with iron-phase minerals can explain the O2 releases from either the Cumberland (CB) drill sample from the Sheepbed mudstone or Windjana (WJ) drill

  10. Effects of Kapton Sample Cell Windows on the Detection Limit of Smectite: Implications for CheMin on the Mars Science Laboratory Mission

    Science.gov (United States)

    Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.

    2012-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.

  11. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to

  12. Sustained Attention Across the Life Span in a Sample of 10,000: Dissociating Ability and Strategy.

    Science.gov (United States)

    Fortenbaugh, Francesca C; DeGutis, Joseph; Germine, Laura; Wilmer, Jeremy B; Grosso, Mallory; Russo, Kathryn; Esterman, Michael

    2015-09-01

    Normal and abnormal differences in sustained visual attention have long been of interest to scientists, educators, and clinicians. Still lacking, however, is a clear understanding of how sustained visual attention varies across the broad sweep of the human life span. In the present study, we filled this gap in two ways. First, using an unprecedentedly large 10,430-person sample, we modeled age-related differences with substantially greater precision than have prior efforts. Second, using the recently developed gradual-onset continuous performance test (gradCPT), we parsed sustained-attention performance over the life span into its ability and strategy components. We found that after the age of 15 years, the strategy and ability trajectories saliently diverge. Strategy becomes monotonically more conservative with age, whereas ability peaks in the early 40s and is followed by a gradual decline in older adults. These observed life-span trajectories for sustained attention are distinct from results of other life-span studies focusing on fluid and crystallized intelligence. © The Author(s) 2015.

  13. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Science.gov (United States)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  14. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.

    Science.gov (United States)

    Sutter, Brad; Brown, Adrian J; Stoker, Carol R

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  15. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds

    National Research Council Canada - National Science Library

    B L Ehlmann; F S Anderson; J Andrews-Hanna; D C Catling; P R Christensen; B A Cohen; C D Dressing; C S Edwards; L T Elkins-Tanton; K A Farley; C I Fassett; W W Fischer; A A Fraeman; M P Golombek; V E Hamilton; A G Hayes; C D K Herd; B Horgan; R Hu; B M Jakosky; J R Johnson; J F Kasting; L Kerber; K M Kinch; E S Kite; H A Knutson; J I Lunine; P R Mahaffy; N Mangold; F M McCubbin; J F Mustard; P B Niles; C Quantin-Nataf; M S Rice; K M Stack; D J Stevenson; S T Stewart; M J Toplis; T Usui; B P Weiss; S C Werner; R D Wordsworth; J J Wray; R A Yingst; Y L Yung; K J Zahnle

    2016-01-01

    ... control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere...

  16. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth‐like worlds

    National Research Council Canada - National Science Library

    Ehlmann, B. L; Anderson, F. S; Andrews‐Hanna, J; Catling, D. C; Christensen, P. R; Cohen, B. A; Dressing, C. D; Edwards, C. S; Elkins‐Tanton, L. T; Farley, K. A; Fassett, C. I; Fischer, W. W; Fraeman, A. A; Golombek, M. P; Hamilton, V. E; Hayes, A. G; Herd, C. D. K; Horgan, B; Hu, R; Jakosky, B. M; Johnson, J. R; Kasting, J. F; Kerber, L; Kinch, K. M; Kite, E. S; Knutson, H. A; Lunine, J. I; Mahaffy, P. R; Mangold, N; McCubbin, F. M; Mustard, J. F; Niles, P. B; Quantin‐Nataf, C; Rice, M. S; Stack, K. M; Stevenson, D. J; Stewart, S. T; Toplis, M. J; Usui, T; Weiss, B. P; Werner, S. C; Wordsworth, R. D; Wray, J. J; Yingst, R. A; Yung, Y. L; Zahnle, K. J

    2016-01-01

    .... Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere...

  17. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Mahaffy, P. R.; Ming, D. W.; Edgett, K. S.; Rampe, E. B.; Eigenbrode, J. L.; Franz, H. B.; Freissinet, C.; Grotzinger, J. P.; Steele, A.; House, C. H.; Archer, P. D.; Malespin, C. A.; Navarro-González, R.; Stern, J. C.; Bell, J. F.; Calef, F. J.; Gellert, R.; Glavin, D. P.; Thompson, L. M.; Yen, A. S.

    2017-12-01

    The sample analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H2, SO2, H2S, NO, CO2, CO, O2, and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO2 (160 ± 248-2373 ± 820 μgC(CO2)/g) and CO (11 ± 3-320 ± 130 μgC(CO)/g) suggest that organic C is present in Gale Crater materials. Five samples evolved CO2 at temperatures consistent with carbonate (0.32 ± 0.05-0.70 ± 0.1 wt % CO3). Evolved NO amounts to 0.002 ± 0.007-0.06 ± 0.03 wt % NO3. Evolution of O2 suggests that oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025-1.05 ± 0.44 wt % ClO4) are present, while SO2 evolution indicates the presence of crystalline and/or poorly crystalline Fe and Mg sulfate and possibly sulfide. Evolved H2O (0.9 ± 0.3-2.5 ± 1.6 wt % H2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2 and H2S suggest that reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, and carbonate). SAM results coupled with CheMin mineralogical and Alpha-Particle X-ray Spectrometer elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population.

  18. The Investigation of Magnesium Perchlorate/Iron Phase-mineral Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Archer, P. D.; Ming, D. W.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P. R.; Niles, P. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumber-land (CB) drill hole materials in Gale Crater (Fig. 1) [1,2]. Chlorinated hydrocarbons have also been detect-ed by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [1,2,3,4]. These detections along with the detection of perchlorate (ClO4(-)) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) [5] suggesting perchlo-rate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal tempera-ture match to the SAM O2 and HCl release data [1,2]. Catalytic reactions of Fe phases in the Gale Crater ma-terial with perchlorates can potentially reduce the de-composition temperatures of these otherwise pure per-chlorate/chlorate phases [e.g., 6,7]. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate was found to cause O2 release temperatures to be closer match to the SAM O2 release data and enhance HCl gas releases. Exact matches to the SAM data has unfortnunately not been achieved with Ca-perchlorate-Fe-phase mixtures [8]. The effects of Fe-phases on magnesium perchlorate thermal decomposi-tion release of O2 and HCl have not been evaluated and may provide improved matches to the SAM O2 and HCl release data. This work will evaluate the thermal decomposition of magnesium perchlorate mixed with fayalite/magnetite phase and a Mauna Kea palagonite (HWMK 919). The objectives are to 1) summarize O2 and HCl releases from the Gale Crater materials, and 2) evaluate the O2 and HCl releases from the Mg-perchlorate + Fe phase mixtures to determine if Mg-perchlorate mixed with Fe-phases can explain the Gale Crater O2 and HCl releases.

  19. The ecosystem of the Mid-Atlantic Ridge at the sub-polar front and Charlie-Gibbs Fracture Zone; ECO-MAR project strategy and description of the sampling programme 2007-2010

    Science.gov (United States)

    Priede, Imants G.; Billett, David S. M.; Brierley, Andrew S.; Hoelzel, A. Rus; Inall, Mark; Miller, Peter I.; Cousins, Nicola J.; Shields, Mark A.; Fujii, Toyonobu

    2013-12-01

    The ECOMAR project investigated photosynthetically-supported life on the North Mid-Atlantic Ridge (MAR) between the Azores and Iceland focussing on the Charlie-Gibbs Fracture Zone area in the vicinity of the sub-polar front where the North Atlantic Current crosses the MAR. Repeat visits were made to four stations at 2500 m depth on the flanks of the MAR in the years 2007-2010; a pair of northern stations at 54°N in cold water north of the sub-polar front and southern stations at 49°N in warmer water influenced by eddies from the North Atlantic Current. At each station an instrumented mooring was deployed with current meters and sediment traps (100 and 1000 m above the sea floor) to sample downward flux of particulate matter. The patterns of water flow, fronts, primary production and export flux in the region were studied by a combination of remote sensing and in situ measurements. Sonar, tow nets and profilers sampled pelagic fauna over the MAR. Swath bathymetry surveys across the ridge revealed sediment-covered flat terraces parallel to the axis of the MAR with intervening steep rocky slopes. Otter trawls, megacores, baited traps and a suite of tools carried by the R.O.V. Isis including push cores, grabs and a suction device collected benthic fauna. Video and photo surveys were also conducted using the SHRIMP towed vehicle and the R.O.V. Isis. Additional surveying and sampling by landers and R.O.V. focussed on the summit of a seamount (48°44‧N, 28°10‧W) on the western crest of the MAR between the two southern stations.

  20. Austere Human Missions to Mars

    Science.gov (United States)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  1. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  2. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Janosch Schirmack

    2016-05-01

    Full Text Available We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.

  3. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans.

    Science.gov (United States)

    Schirmack, Janosch; Fiebrandt, Marcel; Stapelmann, Katharina; Schulze-Makuch, Dirk

    2016-05-26

    We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.

  4. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans

    Science.gov (United States)

    Schirmack, Janosch; Fiebrandt, Marcel; Stapelmann, Katharina; Schulze-Makuch, Dirk

    2016-01-01

    We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples. PMID:27240407

  5. Sustainable transportation stage of change, decisional balance, and self-efficacy scale development and validation in two university samples.

    Science.gov (United States)

    Redding, Colleen A; Mundorf, Norbert; Kobayashi, Hisanori; Brick, Leslie; Horiuchi, Satoshi; Paiva, Andrea L; Prochaska, James O

    2015-01-01

    Single occupancy vehicle (SOV) transportation is a key contributor to climate change and air pollution. Sustainable transportation (ST), commuting by any means other than SOV, could both slow climate change and enhance public health. The transtheoretical model (TTM) provides a useful framework for examining how people progress towards adopting ST. Short valid and reliable measures for ST decisional balance, self-efficacy, and climate change doubt were developed and their relationship with stages of change was examined. Two large university-based volunteer samples participated in measurement studies. Using multiple procedures, three brief internally consistent measures were developed: decisional balance, self-efficacy, and climate change doubt. The stages of change correctly discriminated both decisional balance and self-efficacy, as well as replicated hypothesized relationships. Climate change doubt did not vary by stages; however, it may prove useful in future studies. Results support the validation of these measures and the application of the TTM to ST.

  6. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X‐ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    Science.gov (United States)

    Bish, David L.; Vaniman, David T.; Chipera, Steve J.; Blake, David F.; Ming, Doug W.; Morris, Richard V.; Bristow, Thomas F.; Morrison, Shaunna M.; Baker, Michael B.; Rampe, Elizabeth B.; Downs, Robert T.; Filiberto, Justin; Glazner, Allen F.; Gellert, Ralf; Thompson, Lucy M.; Schmidt, Mariek E.; Le Deit, Laetitia; Wiens, Roger C.; McAdam, Amy C.; Achilles, Cherie N.; Edgett, Kenneth S.; Farmer, Jack D.; Fendrich, Kim V.; Grotzinger, John P.; Gupta, Sanjeev; Morookian, John Michael; Newcombe, Megan E.; Rice, Melissa S.; Spray, John G.; Stolper, Edward M.; Sumner, Dawn Y.; Vasavada, Ashwin R.; Yen, Albert S.

    2016-01-01

    Abstract The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X‐ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X‐ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser‐Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K‐rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K‐rich sediment component is consistent with APXS and ChemCam observations of K‐rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar‐age terranes on Earth. PMID:27134806

  7. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater).

    Science.gov (United States)

    Treiman, Allan H; Bish, David L; Vaniman, David T; Chipera, Steve J; Blake, David F; Ming, Doug W; Morris, Richard V; Bristow, Thomas F; Morrison, Shaunna M; Baker, Michael B; Rampe, Elizabeth B; Downs, Robert T; Filiberto, Justin; Glazner, Allen F; Gellert, Ralf; Thompson, Lucy M; Schmidt, Mariek E; Le Deit, Laetitia; Wiens, Roger C; McAdam, Amy C; Achilles, Cherie N; Edgett, Kenneth S; Farmer, Jack D; Fendrich, Kim V; Grotzinger, John P; Gupta, Sanjeev; Morookian, John Michael; Newcombe, Megan E; Rice, Melissa S; Spray, John G; Stolper, Edward M; Sumner, Dawn Y; Vasavada, Ashwin R; Yen, Albert S

    2016-01-01

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

  8. Assessment of mammal reproduction for hunting sustainability through community-based sampling of species in the wild.

    Science.gov (United States)

    Mayor, Pedro; El Bizri, Hani; Bodmer, Richard E; Bowler, Mark

    2017-08-01

    Wildlife subsistence hunting is a major source of protein for tropical rural populations and a prominent conservation issue. The intrinsic rate of natural increase. (r max ) of populations is a key reproductive parameter in the most used assessments of hunting sustainability. However, researchers face severe difficulties in obtaining reproductive data in the wild, so these assessments often rely on classic reproductive rates calculated mostly from studies of captive animals conducted 30 years ago. The result is a flaw in almost 50% of studies, which hampers management decision making. We conducted a 15-year study in the Amazon in which we used reproductive data from the genitalia of 950 hunted female mammals. Genitalia were collected by local hunters. We examined tissue from these samples to estimate birthrates for wild populations of the 10 most hunted mammals. We compared our estimates with classic measures and considered the utility of the use of r max in sustainability assessments. For woolly monkey (Lagothrix poeppigii) and tapir (Tapirus terrestris), wild birthrates were similar to those from captive populations, whereas birthrates for other ungulates and lowland-paca (Cuniculus paca) were significantly lower than previous estimates. Conversely, for capuchin monkeys (Sapajus macrocephalus), agoutis (Dasyprocta sp.), and coatis (Nasua nasua), our calculated reproductive rates greatly exceeded often-used values. Researchers could keep applying classic measures compatible with our estimates, but for other species previous estimates of r max may not be appropriate. We suggest that data from local studies be used to set hunting quotas. Our maximum rates of population growth in the wild correlated with body weight, which suggests that our method is consistent and reliable. Integration of this method into community-based wildlife management and the training of local hunters to record pregnancies in hunted animals could efficiently generate useful information of life

  9. Nitrogen on Mars: Insights from Curiosity

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  10. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  11. A sample theory-based logic model to improve program development, implementation, and sustainability of Farm to School programs.

    Science.gov (United States)

    Ratcliffe, Michelle M

    2012-08-01

    Farm to School programs hold promise to address childhood obesity. These programs may increase students’ access to healthier foods, increase students’ knowledge of and desire to eat these foods, and increase their consumption of them. Implementing Farm to School programs requires the involvement of multiple people, including nutrition services, educators, and food producers. Because these groups have not traditionally worked together and each has different goals, it is important to demonstrate how Farm to School programs that are designed to decrease childhood obesity may also address others’ objectives, such as academic achievement and economic development. A logic model is an effective tool to help articulate a shared vision for how Farm to School programs may work to accomplish multiple goals. Furthermore, there is evidence that programs based on theory are more likely to be effective at changing individuals’ behaviors. Logic models based on theory may help to explain how a program works, aid in efficient and sustained implementation, and support the development of a coherent evaluation plan. This article presents a sample theory-based logic model for Farm to School programs. The presented logic model is informed by the polytheoretical model for food and garden-based education in school settings (PMFGBE). The logic model has been applied to multiple settings, including Farm to School program development and evaluation in urban and rural school districts. This article also includes a brief discussion on the development of the PMFGBE, a detailed explanation of how Farm to School programs may enhance the curricular, physical, and social learning environments of schools, and suggestions for the applicability of the logic model for practitioners, researchers, and policy makers.

  12. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  13. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  14. Assessment Of Physico-Chemical Property Of Water Samples From Port Harcourt Bonny And Opobo Coastal Areas For Sustainable Coastal Tourism Development In Rivers State Nigeria.

    OpenAIRE

    Obinwanne; Cletus Okechukwu

    2015-01-01

    Abstract The study evaluated some physico-chemical properties of water samples from Port Harcourt Bonny and Opobo to determine the safety of water from the areas for sustainable coastal tourism development in Rivers State Nigeria. Three water samples were collected with three sterilized plastic containers with a capacity of 25cl which were subjected to laboratory tests to know their constituents. The parameters tested were appearance temperature colour turbidity conductivity PH alkalinity lea...

  15. Mar Capeans

    CERN Multimedia

    2017-01-01

    Mar Capeans, CERN researcher, answers the question to "What can we do in the world of sciences and innovation to make visible the invisible?". This piece belongs to a series of videos made by the Spanish Aquae Foundation, a supporter of the CERN & Society Foundation.

  16. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    Science.gov (United States)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  17. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  18. From Mars with love.

    Science.gov (United States)

    Young, R S; Devincenzi, D L

    1974-11-08

    1) Sample return missions from Mars are feasible in the 1980's. 2) The least expensive missions (direct sample return without sterilization) may be criticizable because of the possibility of back-contamination, although upgrading the handling and containment facilities could make unsterile return acceptable. 3) Sample sterilization decreases the total scientific value appreciably, depending on the measurements to be made. Geology is least affected and biology and organic chemistry are most affected. 4) Quarantine in earth orbit, in the same sense as for the lunar samples, would not be feasible without very large increases in cost. Orbital quarantine facilities, either automated or manned, would be very expensive, risky, and of limited use because of size limitations. 5) Orbital quarantine may be feasible if the sample is split, part of it sterilized and returned to the earth for study, and the remainder studied for pathogenicity in the automated mode as best we can in the limited space available in orbit. Ground studies of sterilized material plus "live" studies in orbit may convince us of the safety of returning the remaining sample to the earth under carefully prescribed conditions. 6) Additional unmanned, Vikingtype missions to Mars can add considerably to our knowledge about a martian biota, or its absence, and thus increase the likelihood of being able to return an unaltered sample safely to the earth.

  19. Mars Analog Rio Tinto Experiment (MARTE): An Experimental Demonstration of Key Technologies for Searching for Life on Mars

    Science.gov (United States)

    Stoker, Carol

    2004-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms.

  20. HEDS-UP Mars Exploration Forum

    Science.gov (United States)

    Budden, Nancy Ann (Editor); Duke, Micheal B. (Editor)

    1998-01-01

    In the early 1990s, Duke and Budden convened a series of workshops addressing mission rationale, exploration objectives, and key constraints and issues facing human crews on Mars. The focal point was "why" the U.S. should fly humans to Mars. In the mid-1990s, strategies for a Mars mission matured and evolved, driven formally by NASA Johnson Space Center's Office of Exploration. In 1997, NASA published a report capturing the current thinking: the NASA Mars Reference Mission. In the 1997-1998 school year, HEDS-UP sponsored six universities to conduct design studies on Mars exploration, using the Reference Mission as a basis for their work. The 1998 Mars Exploration Forum presents the results of these university studies, suggesting "how" we might explore Mars, in terms of specific technical components that would enable human missions to Mars. A primary objective of the HEDS-UP Mars Exploration Forum was to provide a forum for active interaction among NASA, industry, and the university community on the subject of human missions to Mars. NASA scientists and engineers were asked to present the state of exploration for Mars mission options currently under study. This status "snapshot" of current Mars strategies set the stage for the six HEDS-UP universities to present their final design study results. Finally, a panel of industry experts discussed readiness for human missions to Mars as it pertains to the aerospace industries and technologies. A robust poster session provided the backdrop for government-industry-university discussions and allowed for feedback to NASA on the Mars Reference Mission. The common thread woven through the two days was discussion of technologies, proven and emerging, that will be required to launch, land, and sustain human crews on the Red Planet. As this decade (and indeed this millenium) draws to a close, Mars will continue to loom in our sights as the next target for human space exploration. It is our hope that the efforts of the Mars

  1. The Athena Mars Rover Investigation

    Science.gov (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2000-01-01

    The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.

  2. Past, present, and future life on Mars

    Science.gov (United States)

    McKay, C. P.

    1998-01-01

    Although the Viking results indicated that the surface of Mars is dry and lifeless, there is direct geomorphological evidence that Mars had large amounts of liquid water on its surface in the past. From a biological perspective the existence of liquid water, by itself, motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. The Mars environment 3.5 to 4.0 Gyr ago was comparable to that on the Earth at this time in that both contained liquid water. Life had originated on Earth and reached a fair degree of biological sophistication by 3.5 Gyr ago. To determine if life similarly arose on Mars may require extensive robotic exploration and ultimately human exploration. Intensive exploration of Mars will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research station can obtain its life support requirements directly from the martian environment enabling a high degree of self-sufficiency. In the longer term, it is possible that in the future we might restore a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history.

  3. Past, present, and future life on Mars.

    Science.gov (United States)

    McKay, C P

    1998-05-01

    Although the Viking results indicated that the surface of Mars is dry and lifeless, there is direct geomorphological evidence that Mars had large amounts of liquid water on its surface in the past. From a biological perspective the existence of liquid water, by itself, motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. The Mars environment 3.5 to 4.0 Gyr ago was comparable to that on the Earth at this time in that both contained liquid water. Life had originated on Earth and reached a fair degree of biological sophistication by 3.5 Gyr ago. To determine if life similarly arose on Mars may require extensive robotic exploration and ultimately human exploration. Intensive exploration of Mars will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research station can obtain its life support requirements directly from the martian environment enabling a high degree of self-sufficiency. In the longer term, it is possible that in the future we might restore a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history.

  4. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  5. Water on early Mars

    Science.gov (United States)

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment 3.8 Ga ago, with an inventory of water at the surface equivalent to at least a few hundred metres spread over the whole planet, as compared with 3 km for the Earth. The mantle of Mars is much drier than that of the Earth, possibly as a result of global melting at the end of accretion and the lack of plate tectonics to subsequently reintroduce water into the interior. The surface water resided primarily in a porous, kilometres-thick megaregolith created by the high impact rates. Under today's climatic conditions groundwater is trapped below a thick permafrost zone. At the end of heavy bombardment any permafrost zone would have been much thinner because of the high heat flows, but climatic conditions may have been very different then, as suggested by erosion rates 1000 times higher than subsequent rates. Water trapped below the permafrost periodically erupted onto the surface to form large flood channels and lakes. Given abundant water at the surface and sustained volcanism, hydrothermal activity must have frequently occurred but we have yet to make the appropriate observations to detect the results of such activity.

  6. Mars Public Engagement Overview

    Science.gov (United States)

    Johnson, Christine

    2009-01-01

    This viewgraph presentation reviews the Mars public engagement goal to understand and protect our home planet, explore the Universe and search for life, and to inspire the next generation of explorers. Teacher workshops, robotics education, Mars student imaging and analysis programs, MARS Student Imaging Project (MSIP), Russian student participation, MARS museum visualization alliance, and commercialization concepts are all addressed in this project.

  7. Mars Aqueous Processing System

    Science.gov (United States)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    ore concentrate, which demonstrates that lunar-derived material can be used in a manner similar to conventional terrestrial iron. Metallic iron was also produced from the Mars soil simulant. The aluminum and magnesium oxide products produced by MAPS from lunar and Mars soil simulants exhibited excellent thermal stability, and were shown to be capable of use for refractory oxide structural materials, or insulation at temperatures far in excess of what could be achieved using unrefined soils. These materials exhibited the refractory characteristics needed to support iron casting and forming operations, as well as other thermal processing needs. Extraction residue samples contained up to 79 percent silica. Such samples were successfully fused into a glass that exhibited high light transmittance.

  8. Mars aqueous chemistry experiment

    Science.gov (United States)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  9. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A sustained human presence on the Moon, Mars, or other celestial bodies, will require numerous disciplines to create technologies, solve current known...

  10. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NARCIS (Netherlands)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; Mcadam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M. P.

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater.

  11. Life On Mars: Past, Present and Future

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Cyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Cyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued

  12. Mars One - Bemanede missioner til Mars

    OpenAIRE

    Jørgensen, Joan; Kryger, Benjamin; Bundgaard, Silke Sophie; Albarazi, Lujain

    2015-01-01

    The Mars One Project has been widely reported in the media recently. However many people are skeptical about the project and do not believe it is realistic at all. In this project we explore the Mars One Project as we look into the psychological and physiological elements that can influence the mission. We look into personal interaction, group dynamics and zoom in on isolation and the consequences of isolation on people. We compare the situation on Mars with similar theories. We include da...

  13. Mars expert Edwin, 17, amazes Euro.

    CERN Multimedia

    2001-01-01

    Edwin Kite represented the UK in the 'Life in the Universe' competition held at CERN, Geneva. In his presentation Could Mars Have Supported Advanced Life?, he presented models of the Martian atmosphere over thousands of millions of years and demonstrated how the Red Planet could have sustained algae-like life between 3 and 4 thousand million years ago (1/2 page).

  14. Thermochemolysis: A New Sample Preparation Approach for the Detection of Organic Components of Complex Macromolecules in Mars Rocks via Gas Chromatography Mass Spectrometry in SAM on MSL

    Science.gov (United States)

    Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.

    2011-01-01

    Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.

  15. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.

    1999-01-01

    The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first...... FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from...... the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic...

  16. MNSM - A Future Mars Network Science Mission

    Science.gov (United States)

    Chicarro, A. F.

    2012-04-01

    Following ESA' s successful Mars Express mission, European efforts in Mars Exploration are now taking place within the joint ESA-NASA Mars Exploration Programme, starting in 2016 with the Trace Gases Orbiter (TGO) focusing on atmospheric trace gases and in particular methane, and with the Entry and Descent Module (EDM). In 2018, a joint NASA-ESA rover will perform sample caching as well as geological, geochemical and exobiological measurements of the surface and the subsurface of Mars. A number of missions for 2020 and beyond are currently under study. Among those, a possible candidate is a Mars Network Science Mission (MNSM) of 3-6 surface stations, to investigate the interior of the planet, its rotational parameters and its atmospheric dynamics. These important science goals have not been fully addressed by Mars exploration so far and can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet such as a Mars Network mission. In addition, the geology, mineralogy and astrobiological significance of each landing site would be addressed, as three new locations on Mars would be reached. Such Mars Network Science Mission has been considered a significant priority by the planetary science community worldwide for the past two decades. In fact, a Mars Network mission concept has a long heritage, as it was studied a number of times by ESA, NASA and CNES (e.g., Marsnet, Intermarsnet, Netlander and MarsNEXT mission studies) since 1990. Study work has been renewed in ESA recently with MNSM Science and Engineering Teams being set up to update the scientific objectives of the mission and to evaluate its technical feasibility, respectively. The current mission baseline includes three ESA-led small landers with a robotic arm to be launched with a Soyuz rocket and direct communications to Earth (no need of a dedicated orbiter). However, a larger network could be put in place through international collaboration, as several

  17. Calibration of a degassing-emanation line for 222Rn determination in seawater samples; Calibracao de uma linha de emanacao para determinacao de {sup 222}Rn em amostras de agua do mar

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Luciana Aparecida

    2002-07-01

    The purpose of this study is to calibrate a degassing-emanation line and to determine {sup 222}Rn and {sup 226}Ra activity concentrations in seawater samples. This methodology, also called Lucas method, consists in the extraction of radon (originally dissolved in seawater), collection of the gas in a liquid nitrogen cold trap and transfer from the trap to an alpha scintillation cell. Total extraction efficiencies of the 4 degassing-emanation systems were determined by measuring {sup 226}Ra reference solutions. The efficiencies obtained for these 4 systems varied from 21 % to 62%. This work also presents preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil: Flamengo Bay, Fortaleza Bay, Mar Virado Bay and Ubatuba Bay. Concentration of Rn in excess varied from 0,011 to 0,317 Bq/L for Flamengo Bay, from 0,009 to 0,130 Bq/L for Fortaleza Bay, from 0,018 to 0,050 Bq/L for Mar Virado Bay and from 0,004 to 0,120 Bq/L for Ubatuba Bay. The results obtained for the concentration of {sup 222}Rn in excess in a transect at Flamengo Bay varied from 0,002 to 0,036 Bq/L. Higher concentrations of {sup 222}Rn in excess were obtained in Flamengo Bay, Fortaleza Bay and Ubatuba bay. It was also observed that the concentration of {sup 222}Rn in excess increases with depth, as expected. (author)

  18. An Alternative Humans to Mars Approach: Reducing Mission Mass with Multiple Mars Flyby Trajectories and Minimal Capability Investments

    Science.gov (United States)

    Whitley, Ryan J.; Jedrey, Richard; Landau, Damon; Ocampo, Cesar

    2015-01-01

    Mars flyby trajectories and Earth return trajectories have the potential to enable lower- cost and sustainable human exploration of Mars. Flyby and return trajectories are true minimum energy paths with low to zero post-Earth departure maneuvers. By emplacing the large crew vehicles required for human transit on these paths, the total fuel cost can be reduced. The traditional full-up repeating Earth-Mars-Earth cycler concept requires significant infrastructure, but a Mars only flyby approach minimizes mission mass and maximizes opportunities to build-up missions in a stepwise manner. In this paper multiple strategies for sending a crew of 4 to Mars orbit and back are examined. With pre-emplaced assets in Mars orbit, a transit habitat and a minimally functional Mars taxi, a complete Mars mission can be accomplished in 3 SLS launches and 2 Mars Flyby's, including Orion. While some years are better than others, ample opportunities exist within a given 15-year Earth-Mars alignment cycle. Building up a mission cadence over time, this approach can translate to Mars surface access. Risk reduction, which is always a concern for human missions, is mitigated by the use of flybys with Earth return (some of which are true free returns) capability.

  19. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  20. Mars Exploration Rover's image analysis: Evidence of Microbialites on Mars.

    Science.gov (United States)

    Bianciardi, Giorgio; Rizzo, Vincenzo; Cantasano, Nicola

    2015-04-01

    The Mars Exploration Rovers, Opportunity and Spirit, investigated Martian plains, where sedimentary rocks are present. The Mars Exploration Rover's Athena morphological investigation showed microstructures organized in intertwined filaments of microspherules: a texture we have also found on samples of terrestrial (biogenic) stromatolites and other microbialites. We performed a quantitative image analysis to compare images of microbialites with the images photographed by the Rovers (corresponding, approximately, to 25,000/25,000 microstructures, Earth/Mars). Contours were extracted and morphometric indexes were obtained: geometric and algorithmic complexities, entropy, tortuosity, minimum and maximum diameters. Terrestrial and Martian textures present a multifractal aspect. Mean values and confidence intervals from the Martian images overlapped perfectly with those from the terrestrial samples. The probability of this occurring by chance is 1/2^8, less than pstromatolite images or Martian images with a less ordered texture (p<0.001). Our work shows the presumptive evidence of microbialites in the Martian outcroppings: the presence of unicellular life widespread on the ancient Mars.

  1. Beyond water on Mars

    OpenAIRE

    Grotzinger, John

    2009-01-01

    Mars exploration has been guided by the search for water. The more complex quest by Mars Science Laboratory for habitable environments should illuminate the Martian environmental history, and possibly deliver insights into extraterrestrial life.

  2. Mars - Water Ice Clouds

    Science.gov (United States)

    1997-01-01

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  3. Mars Gashopper Airplane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Gas Hopper Airplane, or "gashopper" is a novel concept for propulsion of a robust Mars flight and surface exploration vehicle that utilizes indigenous CO2...

  4. Saltation transport on Mars

    OpenAIRE

    Parteli, Eric J. R.; Herrmann, Hans J.

    2007-01-01

    We present the first calculation of saltation transport and dune formation on Mars and compare it to real dunes. We find that the rate at which grains are entrained into saltation on Mars is one order of magnitude higher than on Earth. With this fundamental novel ingredient, we reproduce the size and different shapes of Mars dunes, and give an estimate for the wind velocity on Mars.

  5. Mars: The Viking Discoveries.

    Science.gov (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  6. Mars Science Laboratory Engineering Cameras

    Science.gov (United States)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  7. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  8. Workshop on Water on Mars

    Science.gov (United States)

    Clifford, S. (Editor)

    1984-01-01

    The opening session of the Workshop focused on one of the most debated areas of Mars volatiles research-the size of the planet's past and present bulk water content. Current estimates of the inventory of H2O on Mars range from an equivalent layer of liquid 10-1000 meters deep averaged over the planet's surface. The most recent of these estimates, presented at the Workshop, is based on the now popular belief that the SNC class of meteorites represent actual samples of the Martian crust. From a model of planetary accretion and degassing founded on this assumption, it was determined that the present inventory of H2O on Mars is equivalent to a global layer no more than 50 meters deep. During the discussion generated by this estimate, several investigators expressed reservations about an H2O inventory as small as a few tens of meters, for it appears to directly contradict the seemingly abundant morphologic evidence that Mars is (or has been) water rich. Others, however, argued that the interpretation of much of this morphologic evidence is at best equivocal and that the case for a wet Mars is far from established. Atmospheric water vapor measurements, compiled by Earth based telescopes and the Viking Orbiter Mars Atmospheric Water Detectors (MAWD), now span a period of over six Martian years. Analysis of this data suggests that the seasonal cycle is governed by both the sublimation and condensation of H2O at the poles and by its adsorption/desorption within the regolith. So far, efforts to simulate the seasonal vapor cycle have failed to reproduce the observed behavior.

  9. Mars Science Laboratory Drill

    Science.gov (United States)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  10. Solar Power on Mars

    Science.gov (United States)

    2005-01-01

    This chart illustrates the variation in available solar power for each of NASA's twin Mars Exploration Rovers over the course of approximately two Mars years. Two factors affect the amount of available power: the tilt of Mars' axis and the eccentricity of the Mars' orbit about the sun. The horizontal scale is the number of Martian days (sols) after the Jan. 4, 2004, (Universal Time) landing of Spirit at Mars' Gusev Crater. The vertical scale on the right indicates the amount of available solar power as a ratio of the amount available at the equator when Mars is closest to the sun (perihelion). The red line indicates power availability at Spirit's landing site (Gusev). The blue line indicates power availability at Opportunity's landing site (Meridiani). The vertical scale on the right applies to the dotted line, indicating the latitude north or south of Mars' equator where the noon sun is overhead at different times of the Martian year.

  11. Assessment Of Physico-Chemical Property Of Water Samples From Port Harcourt Bonny And Opobo Coastal Areas For Sustainable Coastal Tourism Development In Rivers State Nigeria.

    Directory of Open Access Journals (Sweden)

    Obinwanne

    2015-08-01

    Full Text Available Abstract The study evaluated some physico-chemical properties of water samples from Port Harcourt Bonny and Opobo to determine the safety of water from the areas for sustainable coastal tourism development in Rivers State Nigeria. Three water samples were collected with three sterilized plastic containers with a capacity of 25cl which were subjected to laboratory tests to know their constituents. The parameters tested were appearance temperature colour turbidity conductivity PH alkalinity lead Pb Chromium Cr Cadmium Cd Ammonia BODs and Dissolved Oxygen. The results of the water samples were compared with World Health Organization WHO water quality standard and the Nigeria National Water Quality standard to determine the safety of the water for human consumption and tourism development. The study revealed that Port Harcourt site has more prospects for tourism development more than Opobo study site because the Ph alkalinity and BODs levels were lower than that of Opobo making the water safer except that the amount of dissolved oxygen was a little high in Opobo and turbidity was not detected in Opobo. The study revealed that Bonny water was very dense in appearance dark brown in colour highly turbid basic and with mean concentration of the heavy metals Lead chromium and cadmium higher than the recommended World Health Organization WHO water quality standard and the Nigeria National Water Quality standard and therefore not safe for drinking and swimming. Treated portable water should be provided for the people of Port Harcourt Opobo and Bonny especially people from Bonny area and development of tourism in the state to save the people and tourists from imminent danger of fecal contaminants and toxic substances.

  12. Mars aqueous chemistry experiment

    Science.gov (United States)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  13. The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Clark, J.; Sutter, B.; Min, D. W.; Mahaffy, P.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both

  14. The chances of detecting life on Mars

    Science.gov (United States)

    Sephton, Mark A.; Carter, Jonathan N.

    2015-07-01

    Missions to Mars progressively reveal the past and present habitability of the red planet. The current priority for Mars science is the recognition of definitive biosignatures related to past or present life. Success of life detection missions requires choices of the best mission design, location on Mars and particular sample to be analyzed. It is essential therefore to incorporate as much information as possible into the mission planning stages to maximize the precious opportunities provided by robotic operation on Mars. Bayesian statistics allow us to accommodate the many unknowns associated with a mission that has yet to take place. We have used Bayesian statistics to reveal that although in situ missions are less complex the overall probabilities of a successful mission to detect biosignatures on Mars are higher for sample return. If a mission has been designed with safe landing and operation as a priority, recognizing and avoiding those samples that do not contain the target biosignature is the most important characteristic, while for a mission where the best possible samples have been targeted the probability that the sample contains the target biosignature and that it can be correctly detected is the most dominant issue. Usefully, Bayesian statistics can be used to evaluate the chances of detecting past or present life for missions to different landing sites on Mars. A comparative assessment of Eberswelde Crater and Gale Crater indicates a higher probability of success for the latter and the probabilities of success are consistently higher for the sample return mission variant. Bayesian statistics, therefore, can inform future Mars mission planning steps to help maximize the possibility of success.

  15. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  16. Mars Solar Power

    Science.gov (United States)

    Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.

  17. Sample Encapsulation Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Science Mission Directorate is currently considering various sample cache and return missions to the Moon, Mars and asteroids. These missions involve the use...

  18. Liturgical calendar for Mars

    Directory of Open Access Journals (Sweden)

    Piotr Karocki

    2016-07-01

    Full Text Available This article presents problems related to creating liturgical calendar for Mars colonists, assumed to land on Mars (accordingly to Mars One Project in year 2024. It consist of five parts: why to colonize space; brief history of Earth calendar; deep correlation of liturgical calendar (e.g. fests with astronomical events; last two parts present idea of civil Martian calendar and list difficulties related to extraterrestrial liturgical calendar.

  19. Liturgical calendar for Mars

    OpenAIRE

    Piotr Karocki

    2016-01-01

    This article presents problems related to creating liturgical calendar for Mars colonists, assumed to land on Mars (accordingly to Mars One Project) in year 2024. It consist of five parts: why to colonize space; brief history of Earth calendar; deep correlation of liturgical calendar (e.g. fests) with astronomical events; last two parts present idea of civil Martian calendar and list difficulties related to extraterrestrial liturgical calendar.

  20. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  1. Digital cartography of Mars

    Science.gov (United States)

    Batson, R. M.

    1987-01-01

    A medium-resolution Digital Image Model (DIM) of Mars is being compiled. A DIM is a mosaic of radiometrically corrected, photometrically modelled spacecraft images displaying accurate reflectance properties at uniform resolution, and geometrically tied to the best available control. The Mars medium-resolution DIM contains approximately 4700 Viking Orbiter image frames that were used to compile the recently completed 1:2,000,000-scale controlled photomosaic series of Mars. This DIM provides a planimetric control base to which all other Mars maps will be registered. A similar control base of topographic elevations (Digital Terrain Model, or DTM) is also being compiled. These products are scheduled for completion in 1989.

  2. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  3. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    Science.gov (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  4. Life on Mars? II. Physical restrictions

    Science.gov (United States)

    Mancinelli, R. L.; Banin, A.

    1995-01-01

    The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.

  5. Pedogenetic processes on Mars

    Science.gov (United States)

    Chiara Tangari, Anna; Marinangeli, Lucia; Piluso, Eugenio; Pompilio, Loredana; Scarciglia, Fabio

    2014-05-01

    Clay minerals, such as Fe/Mg smectite and Al-rich phyllosilicates (i.e., montmorillonite and kaolinite) were detected in the last years on Mars by numerous missions[1,2]. These minerals can be formed by fluid/rock interaction. Therefore, their study may provide important information on the climatic conditions and consequent habitability of the Martian surface. In this work we compare the mineralogy observed with CRISM data in the eastern part of Valles Marineris (Coprates-Ganges-Capri-Eos Chasmata), Margaritifer Terra and Margaritifer Chaos regions, with soils sampled on the Etna volcano (Sicily) and Cerviero Mount (Calabria, Southern Italy). We use an integrated approach of remote sensing coupled with pedological, petrographical and mineralogical investigations. Our purpose, here, is to find possible analogies between some Andosols developed on the basaltic substrates of Etna and Cerviero Mount, and the Martian soils, based on their spectral response and formation processes. CRISM data show poor abundance of clay minerals, such as illite, smectite and montmorillonite, in the eastern part of Valles Marineris. On the contrary, these phases are widely exposed in the Margaritifer Terra and Margaritifer Chaos, where we detected allophone (poorly crystalline clay), vermiculite, chlorite and other phyllosilicates belonging to the smectite group, such as saponite and nontronite. The surrounding area shows dominant signatures of basaltic composition.Our preliminary analysis on terrestrial soil profiles, using X-ray diffraction analysis, shows similar characteristics to Mars in terms of bedrock composition and clay mineralogy. Etnean soils, formed from lavas and pyroclastics of various ages (from 12 ka to 122 BC) [3] show the presence of clay minerals, such as kaolinite and small amounts of illite. The Cerviero Mount soils, developed on pillow basalts of Maastrichtian-Paleocene ages [4] are composed of vermiculite, illite, chlorite and interstratified clays such as

  6. Affordable Exploration of Mars: Recommendations from a Community Workshop

    Science.gov (United States)

    Thronson, Harley A.; Carberry, Chris; Cassady, R. Joseph; Cooke, Doug; Kirkpatrick, Jim; Perino, Maria Antonietta; Raftery, Michael; Westenberg, Artemis; Zucker, Richard

    2014-01-01

    There is a growing opinion that within two decades initial human missions to Mars are affordable under plausible budget scenarios, with sustained international participation, and --- especially --- without requiring those first missions to achieve a burdensome number of goals. In response to this view, a group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December 2013. Participants reviewed scenarios for proposed affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station as the essential early step toward humans to Mars, possible "bridge" or "transition" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and usable definitions of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop. In the context of affordable early missions to Mars, we also discuss the recent report of the National Research Council on human space flight and a pair of recent scenarios that appear to promise reduced costs.

  7. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  8. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  9. Rat on Mars

    Science.gov (United States)

    2004-01-01

    This image taken on Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's rock abrasion tool, also known as 'rat' (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  10. Assessing sustainable remediation frameworks using sustainability principles.

    Science.gov (United States)

    Ridsdale, D Reanne; Noble, Bram F

    2016-12-15

    The remediation industry has grown exponentially in recent decades. International organizations of practitioners and remediation experts have developed several frameworks for integrating sustainability into remediation projects; however, there has been limited attention to how sustainability is approached and operationalized in sustainable remediation frameworks and practices - or whether sustainability plays any meaningful role at all in sustainable remediation. This paper examines how sustainability is represented in remediation frameworks and the guidance provided for practical application. Seven broad sustainability principles and review criteria are proposed and applied to a sample of six international remediation frameworks. Not all review criteria were equally satisfied and none of the frameworks fully met all criteria; however, the best performing frameworks were those identified as sustainability remediation frameworks. Intra-generational equity was addressed by all frameworks. Integrating social, economic and biophysical components beyond triple-bottom-line indicators was explicitly addressed only by the sustainable remediation frameworks. No frameworks provided principle- or rule-based guidance for dealing with trade-offs in sustainability decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. CLUPI, a high-performance imaging system on the rover of the 2018 mission to discover biofabrics on Mars

    Science.gov (United States)

    Josset, J.-L.; Westall, F.; Hofmann, B. A.; Spray, J. G.; Cockell, C.; Kempe, S.; Griffiths, A. D.; Coradini, A.; Colangeli, L.; Koschny, D.; Pullan, D.; Föllmi, K.; Diamond, L.; Josset, M.; Javaux, E.; Esposito, F.

    2011-10-01

    The scientific objectives of the 2018 ExoMars rover mission are to search for traces of past or present life and to characterise the near-sub surface. Both objectives require study of the rock/regolith materials in terms of structure, textures, mineralogy, and elemental and organic composition. The 2018 ExoMars rover payload consists of a suite of complementary instruments designed to reach these objectives. CLUPI, the high-performance colour close up imager, on board the 2018 ExoMars Rover plays an important role in attaining the mission objectives: it is the equivalent of the hand lens that no geologist is without when undertaking field work. CLUPI is a powerful, highly integrated miniaturized (smart assembly in titanium that can sustain a wide temperature range. The concept benefits from well-proven heritage: Proba, Rosetta, MarsExpress and Smart-1 missions… In a typical field scenario, the geologist will use his/her eyes to make an overview of an area and the outcrops within it to determine sites of particular interest for more detailed study. In the ExoMars scenario, the PanCam wide angle cameras (WACS) will be used for this task. After having made a preliminary general evaluation, the geologist will approach a particular outcrop for closer observation of structures at the decimetre to subdecimeter scale (ExoMars' High Resolution Camera) before finally getting very close up to the surface with a hand lens (ExoMars' CLUPI), and/or taking a hand specimen, for detailed observation of textures and minerals. Using structural, textural and preliminary compositional analysis, the geologist identifies the materials and makes a decision as to whether they are of sufficient interest to be subsampled for laboratory analysis (using the ExoMars drill and laboratory instruments). Given the time and energy expense necessary for drilling and analysing samples in the rover laboratory, preliminary screening of the materials to chose those most likely to be of interest is

  12. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  13. Probing Mars’ atmosphere with ExoMars Mars Climate Sounder

    OpenAIRE

    Irwin, Patrick G. J.; Calcutt, S. B.; Read, P. L.; Bowles, N. E.; Lewis, S.

    2011-01-01

    The 2016 Mars Trace Gas Mission will carry with it the ExoMars Mars Climate Sounder instrument, a development of the very successful Mars Climate Sounder instrument already in orbit about Mars on NASA's Mars Reconnaissance Orbiter spacecraft. EMCS will continue the monitoring of Mars global temperature/pressure/aerosol field, and will also be able to measure the vertical profile of water vapour across the planet from 0 – 50 km. Key components of EMCS will be provided by Oxford, Reading and Ca...

  14. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  15. Assessment of potential benefits from lunar/Mars propellant production for support of human exploration of the moon and Mars

    Science.gov (United States)

    Jacobs, Mark K.; Collins, John T.; Stancati, Michael L.

    1991-01-01

    This paper describes an assessment of potential benefits offered through use of lunar/Mars in situ propellant production to support manned missions to the moon and Mars. Resources available at each location and processing options for their extraction are discussed. Key infrastructure and support systems needed to sustain the propellant production operation and to deliver the propellants from their point of origin to the point of application are defined. The analysis focuses on reductions of earth launched mass over the course of multiple missions to assess the potential savings offered. Initial results show the impact of requirements for sustaining in situ propellant production systems on benefits offered during steady-state operation.

  16. Feasibility Study on Lunar and Mars Exploration

    Science.gov (United States)

    Mori, Hidehiko; Takazawa, Yoshisada; Kaneko, Yutaka; Kawazoe, Takeshi; Takano, Yutaka; Namura, Eijiro

    1996-10-01

    This technical memorandum summarizes the results of an in-house study on lunar and Mars drone explorations - observation, landing and mobile explorations and sample returns for lunar and Mars respectively. So far, lunar and planet explorations have been primarily performed by the United States and the Soviet Union. ISAS and ESA have also contributed to some extent. The main purpose has been scientific exploration. There are some arguments that lunar and planet explorations should be performed for scientific purposes and the exploitation of them is not necessary. However, most scientific research involve the existence and survival of humankind, so it is not the fact that they cannot be organized from the side of exploitation. Especially, if NASDA makes approaches to lunar and Mars exploration, it should inevitably embrace exploitation plans. In this preface we provide the outline of lunar and Mars exploitation scenarios set up as a premise of the review on lunar and Mars unmanned exploration plans. Various reviews have been performed on whether the Moon or Mars would allow for human activities or survival. Among them, He mill, the solar powered satellite material mill and construction project of relay station to Mars as well as Mars teraforming plan have important issues. These projects have not yet become feasible because their expected investments are too large to make them practical. However, the present time seems the most appropriate to get with lunar and Mars exploitation projects under international cooperation since the realization of a space station is imminent and the international cooperation is being created with the participation of Russia. The international space station project will be continued until the year 2015. The post project has not yet been decided. Therefore, we expect that Japan would propose two successive projects, one is to construct an orbital service station combining manned abilities of the station and orbital service system and the

  17. CLUPI, a high-performance imaging system on the ESA-NASA rover of the 2018 ExoMars mission to discover biofabrics on Mars

    Science.gov (United States)

    Josset, J.-L.; Westall, F.; Hofmann, B. A.; Spray, J. G.; Cockell, C.; Kempe, S.; Griffiths, A. D.; De Sanctis, M. C.; Colangeli, L.; Koschny, D.; Pullan, D.; Föllmi, K.; Diamond, L.; Josset, M.; Javaux, E.; Esposito, F.; Barnes, D.

    2012-04-01

    The scientific objectives of the ESA-NASA rover of the 2018 mission of the ExoMars Programme are to search for traces of past or present life and to characterise the near-sub surface. Both objectives require study of the rock/regolith materials in terms of structure, textures, mineralogy, and elemental and organic composition. The 2018 rover ExoMars payload consists of a suite of complementary instruments designed to reach these objectives. CLUPI, the high-performance colour close up imager, on board the 2018 ESA-NASA Rover plays an important role in attaining the mission objectives: it is the equivalent of the hand lens that no geologist is without when undertaking field work. CLUPI is a powerful, highly integrated miniaturized (smart assembly in titanium that can sustain a wide temperature range. The concept benefits from well-proven heritage: Proba, Rosetta, MarsExpress and Smart-1 missions… Because the main science objective of ExoMars concerns the search for life, whose traces on Mars are likely to be cryptic, close up observation of the rocks and granular regolith will be critical to the decision as whether to drill and sample the nearby underlying materials. Thus, CLUPI is the essential final step in the choice of drill site. But not only are CLUPI's observations of the rock outcrops important, but they also serve other purposes. CLUPI, could observe the placement of the drill head. It will also be able to observe the fines that come out of the drill hole, including any colour stratification linked to lithological changes with depth. Finally, CLUPI will provide detailed observation of the surface of the core drilled materials when they are in the sample drawer at a spatial resolution of 15 micrometer/pixel in color. The close-up imager CLUPI on the ESA-NASA rover of the 2018 mission will be described together with its capabilities to provide important information significantly contributing to the understanding of the geological environment and could

  18. Mars Equipment Transport System

    Science.gov (United States)

    Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick

    1993-01-01

    Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.

  19. Airbag Tracks on Mars

    Science.gov (United States)

    2004-01-01

    The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.

  20. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  1. The origin and timing of fluvial activity at Eberswalde crater, Mars

    NARCIS (Netherlands)

    Mangold, N.; Kite, E.S.; Kleinhans, M.G.; Newsom, H.; Ansan, V.; Hauber, E.; Kraal, E.; Quantin, C.; Tanaka, K.

    The fan deposit in Eberswalde crater has been interpreted as strong evidence for sustained liquid water on early Mars with a paleolake formed during the Noachian period (>3.7 Gy). This location became a key region for understanding the Mars paleo-environment. Eberswalde crater is located 50 km north

  2. Fluvial processes on Mars: Erosion and sedimentation

    Science.gov (United States)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  3. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    Science.gov (United States)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  4. Mars Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA’s Mars Exploration Program (MEP) calls for a series of highly ambitious missions over the next decade and beyond. The overall goals of the MEP must be...

  5. Mars Rover Photos API

    Data.gov (United States)

    National Aeronautics and Space Administration — This API is designed to collect image data gathered by NASA's Curiosity, Opportunity, and Spirit rovers on Mars and make it more easily available to other...

  6. Mars Meteor Survey

    Science.gov (United States)

    McGown, R. D.; Walden, B. E.; Billings, T. L.; York, C. L.; Taylor, A. G.; Frederick, R. D.

    2000-07-01

    We propose instruments be included on one or more Mars landers to identify and characterize the meteoroid flux at Mars. Mars orbiting spacecraft and ground operations, both manned and unmanned, are vulnerable to meteoroids. There is pure scientific interest in knowing the frequency, intensity, and radiants of martian meteor showers. Being in a different orbit than Earth and closer to the asteroid belt, Mars has unknown cycles and intensities of meteoroid hazards. Knowledge of these hazards can help us manage risk in future missions, particularly extended and crewed missions. To be most effective the detectors should be continuously active, day and night, for as long a period as possible. Detectors that rely on energy intensive transmitters, such as lasers, radio bounce or radar, are therefore less desirable. A staring instrument is preferable to one which must rapidly skew to track a meteor (requiring extra mechanical parts and susceptible to failure), and should be able to detect multiple meteors simultaneously.

  7. MARS PATHFINDER RADIO TRACKING

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Pathfinder (MPF) Radio Science (RS) data archive contains both raw radio tracking data collected during the surface lifetime of the MPF Lander and results...

  8. Airbag Deflates on Mars

    Science.gov (United States)

    2004-01-01

    This image, taken by the navigation camera onboard the Mars Exploration Rover Spirit, shows the airbags used to protect the rover during landing. One bright, dust-covered bag is slightly puffed up against the lander.

  9. Status of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  10. The way to Mars

    Science.gov (United States)

    Glushko, V.; Gorshkov, L.; Semenov, Y.

    1988-12-01

    An article from the Soviet newspaper, Pravda, is presented, which discusses issues related to missions to Mars. The type of vehicle needed for a Martian mission is examined, including the propulsion system, construction of the vehicle in earth orbit, living quarters, safety considerations, and the landing vehicle. Options for the mission route and ways of returning to earth are considered. Also, a proposal for a three phase program leading up to a manned mission to Mars is outlined.

  11. Modern myths of Mars

    Science.gov (United States)

    Levin, Gilbert V.

    2006-08-01

    July 30, 2006 was the 30 th anniversary of the Viking Mission's first Labeled Release (LR) life detection experiment on Mars. The strong response, together with supporting results from eight additional LR tests of Martian soil, established the presence of an active agent that was inhibited by heating. The data satisfied the pre-mission criteria for the detection of living microorganisms. However, the scientific community reacted cautiously, generally concluding that the activity in the soil was caused by chemistry or physics. Over the last three decades, investigation of Mars has greatly increased. Soil, rock and atmospheric analyses have been made. Multi-spectral observations have been made from Mars and Earth orbits and from Earth-based telescopes. Knowledge of extreme habitats and bizarre life forms that populate them on Earth has increased dramatically. However, this vast amount of new astrobiological information has yet to be integrated into an objective scientific evaluation of the LR results and the possibilities for life on Mars. Indeed, in part upon misinterpretations of the new findings, myths have been embedded into the scientific literature of Mars. Based on these myths as key ingredients, a false "standard model" of Martian life potential has been developed. It has been accepted by much of the astrobiological community, and, through its endorsement, the world at large. This paper attempts to bring the supportable facts together in calling for a revision of the current consensus regarding life on Mars. It recommends actions to facilitate the paradigm change.

  12. Life on Mars

    Science.gov (United States)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally.

  13. Mars by Way of Storytellers and Patrons

    Science.gov (United States)

    Polk, C.

    A business model is presented in which space-themed entertainment and educational media are harnessed to the goal of designing and financing the establishment of a self-sustaining Mars outpost. The model draws from two precedents: (i) The National Geographic Society's use of media sales to fund research and (ii) the historical role of patrons in the process of creativity. These precedents are combined in an international non-governmental organization (INGO) that is governed by the individuals who participate in the media businesses branded by the INGO - these individuals constitute a patron base of several tens of millions. Requiring only modest penetration into global media markets, expenditures of USD 5 billion per year (in 2008 dollars) can commence in 2025 and continue at an accelerating rate until the Mars outpost is established. The financing approach utilized, combined with a decision authority that is free to consider a broad range of solutions, will advance the technical state-of-the-art and result in an Earth-Mars infrastructure capable of expanding the initial Mars outpost into humanity's first second home.

  14. Sustainable Food & Sustainable Economics

    OpenAIRE

    Alvarez, Mavis Dora

    2012-01-01

    Cuba today is immersed in a very intense process of perfecting its agricultural production structures with the goal of making them more efficient and sustainable in their economic administration and in their social and environmental management. Agricultural cooperatives in Cuba have the responsibility of producing on 73% of the country's farmland. Their contributions are decisive to developing agricultural production and to ensuring more and better food for the population, in addition to redu...

  15. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  16. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  17. Mars Analytical Microimager

    Science.gov (United States)

    Batory, Krzysztof J.; Govindjee; Andersen, Dale; Presley, John; Lucas, John M.; Sears, S. Kelly; Vali, Hojatollah

    Unambiguous detection of extraterrestrial nitrogenous hydrocarbon microbiology requires an instrument both to recognize potential biogenic specimens and to successfully discriminate them from geochemical settings. Such detection should ideally be in-situ and not jeopardize other experiments by altering samples. Taken individually most biomarkers are inconclusive. For example, since amino acids can be synthesized abiotically they are not always considered reliable biomarkers. An enantiomeric imbalance, which is characteristic of all terrestrial life, may be questioned because chirality can also be altered abiotically. However, current scientific understanding holds that aggregates of identical proteins or proteinaceous complexes, with their well-defined amino acid residue sequences, are indisputable biomarkers. Our paper describes the Mars Analytical Microimager, an instrument for the simultaneous imaging of generic autofluorescent biomarkers and overall morphology. Autofluorescence from ultraviolet to near-infrared is emitted by all known terrestrial biology, and often as consistent complex bands uncharacteristic of abiotic mineral luminescence. The MAM acquires morphology, and even sub-micron morphogenesis, at a 3-centimeter working distance with resolution approaching a laser scanning microscope. Luminescence is simultaneously collected via a 2.5-micron aperture, thereby permitting accurate correlation of multi-dimensional optical behavior with specimen morphology. A variable wavelength excitation source and photospectrometer serve to obtain steady-state and excitation spectra of biotic and luminescent abiotic sources. We believe this is the first time instrumentation for detecting hydrated or desiccated microbiology non-destructively in-situ has been demonstrated. We have obtained excellent preliminary detection of biota and inorganic matrix discrimination from terrestrial polar analogues, and perimetric morphology of individual magnetotactic bacteria. Proposed

  18. Guidelines for 2008 MARS exercise

    CERN Multimedia

    HR Department

    2008-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://cern.ch/hr-dept/ https://cern.ch/hr-eguide/mars/mars.asp You will find on these pages: MARS procedures including the MARS timetable for proposals and decisions; Regulations with links to the scheme’s statutory basis; Frequently Asked Questions; Useful documents with links to relevant documentation; e.g. mandate of the Senior Staff Advisory Committee (SSAC); Related links and contacts. HR Department Tel. 73566

  19. The Mars Plasma Environment

    CERN Document Server

    Russell, C. T

    2007-01-01

    Mars sits very exposed to the solar wind and, because it is a small planet, has but a weak hold on its atmosphere. The solar wind therefore plays an important role in the evolution of the martian atmosphere. Over the last four decades a series of European missions, first from the Soviet Union and more recently from the European Space Agency, together with a single investigation from the U.S., the Mars Global Surveyor spacecraft, have added immeasurably to our understanding of the interplay between the solar wind and Mars atmosphere. Most recently the measurements of the plasma and fast neutral populations, conducted on the Mars Express spacecraft by the ASPERA-3 instrument have been acquired and analyzed. Their presentation to the public, most notably at the workshop "The Solar Wind Interaction and Atmosphere Evolution of Mars" held in Kiruna in early 2006, was the inspiration for this series of articles. However participation in the Kiruna conference was not a selection criterion for this volume. The papers ...

  20. Simulating "Mars on Earth"

    Science.gov (United States)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    By now, everyone who's heard of the Haughton-Mars Project knows that we travel to Devon Island to learn how people will live and work on Mars. But how do we learn about Mars operations from what happens in the Arctic? We must document our experience--traverses, life in the hab, instrument deployment, communications, and so on. Then we must analyze and formally model what happens. In short, while most scientists are studying the crater, other scientists must be studying the expedition itself. That's what I have done in the past four field seasons. I study field science, both as it naturally occurs at Haughton (unconstrained by a "Mars Sam") and as a constrained experiment using the Flashline Mars Arctic Research Station. During the second week of July 2001, I lived and worked in the hab as part of the Phase 2 crew of six. Besides participating in all activities, I took many photographs and time lapse video. The result of my work will be a computer simulation of how we lived and worked in the hab. It won't be a model of particular people or even my own phase per se, but a pastiche that demonstrates (a proof of concept) that we have appropriate tools for simulating the layout of the hab and daily routines followed by the group and individual scientists. Activities-how people spend their time-are the focus of my observations for building such a simulation model.

  1. Understanding if, how and why non-adherent decisions are made in an Australian community sample: a key to sustaining medication adherence in chronic disease?

    Science.gov (United States)

    Laba, Tracey-Lea; Lehnbom, Elin; Brien, Jo-Anne; Jan, Stephen

    2015-01-01

    Adherence to medications for chronic disease is sub-optimal. Current adherence-enhancing strategies do not seem to adequately address the fundamental need to sustain adherence or prevent non-adherence. Intentional non-adherence, involving active medication-taking decisions, is not well described within the Australian community setting. Understanding if, how and why non-adherent decisions are made may help develop strategies to sustain adherence in chronic disease. This study aimed to describe intentional non-adherent behavior in chronic disease within the Australian community setting and identify the factors that promote and prevent non-adherent decisions. In-depth, semi-structured interviews were conducted with 21 patients (12 rural, 9 metropolitan; New South Wales) prescribed medications for a diverse range of chronic conditions. Using the Theory of Planned Behavior as the theoretical framework, an iterative thematic framework analysis method was used to characterize the intentions and the decisions underlying non-adherent behavior. Data were indexed and charted within the thematic framework using Excel, and linked themes were combined, and associations and explanations drawn. Although there was a strong intent to follow prescribers' recommendations, most patients described instances of intentionally non-adherent behavior. Trading between perceived treatment inefficacy, unfavorable side effects and unaffordable medication costs promoted non-adherent decisions; trusting prescriber-patient relationships, positive family values and lack of perceived control over treatment choice maintained adherent intentions. Intentional non-adherence was mostly temporary. Intentional medication non-adherence in chronic disease appears reversible and amenable to interventions that address treatment-related barriers such as medication affordability. Strategies that strengthen patient-prescriber relationships and empower patients as informed decision-makers may help maintain

  2. Aerothermodynamic environments for Mars entry, Mars return, and lunar return aerobraking missions

    Science.gov (United States)

    Rochelle, W. C.; Bouslog, S. A.; Ting, P. C.; Curry, D. M.

    1990-06-01

    The aeroheating environments to vehicles undergoing Mars aerocapture, earth aerocapture from Mars, and earth aerocapture from the moon are presented. An engineering approach for the analysis of various types of vehicles and trajectories was taken, rather than performing a benchmark computation for a specific point at a selected time point in a trajectory. The radiation into Mars using the Mars Rover Sample Return (MRSR) 2-ft nose radius bionic remains a small contributor of heating for 6 to 10 km/sec; however, at 12 km/sec it becomes comparable with the convection. For earth aerocapture, returning from Mars, peak radiation for the MRSR SRC is only 25 percent of the peak convection for the 12-km/sec trajectory. However, when large vehicles are considered with this trajectory, peak radiation can become 2 to 4 times higher than the peak convection. For both Mars entry and return, a partially ablative Thermal Protection System (TPS) would be required, but for Lunar Transfer Vehicle return an all-reusable TPS can be used.

  3. Origin of the Mars Trojans

    Science.gov (United States)

    Jacobson, Seth A.; Polishook, David; Morbidelli, Alessandro; Ahronson, Oded

    2017-06-01

    The Mars Trojan Eureka and associated fragments possess a rare olivine-rich minerology spectrally identified as A-type. High olivine content rocks are typically associated with the interiors of differentiated bodies like Mars. Here, we show that impact ejecta from Mars is likely to have been captured as Mars Trojans in the final stages of terrestrial planet formation.We simulated the ejection of thousands of asteroids from Mars and modeled with the Symba N-body code how their orbits evolved with time due to perturbations from Mars and the other 7 planets. Scholl et al. identified a stable region in eccentricity (e < 0.2) and inclination (10° + 20° (e / 0.25) < i < 30) for Mars Trojans, so we measured what fraction of ejecta obtained these eccentricities and inclinations as a function of semi-major axis away from Mars.During the end stages of planet formation, the semi-major axis of Mars changed significantly for the final time. This last jump is responsible for capturing the Mars Trojans. Using simulations of terrestrial planet formation, we assessed the size and timing of this last jump relative to planetesimals accretion on Mars. By combining this analsysis with the orbital evolution of impact ejecta, we obtained Mars Trojan production rates of order 1 per 105. The production rate of Mars Trojans as a function of time between the impact which created the impact debris on Mars and the final semi-major axis jumpt of Mars. The production rate is per 105 ejecta, since it is expected that a Borealis Basin sized impact on Mars would create approximately that much debris with a diameter of 2 km or greater. Clearly, obtaining the Eureka progenitor from Mars ejecta is likely.

  4. "The Moon Village and Journey to Mars enable each other"

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    NASA has proposed the Journey to Mars, a multi-decade collaborative international effort to establish permanent manned operations on the Martian surface as well as in orbit, most likely on the Martian moons. NASA's proposed the Journey to Mars has come under politically motivated attack as illusory, as beyond NASA's capabilities and anticipated NASA budgets in the foreseeable future. [1]. Other concerns come from various communities of researchers concerned about securing sustaining funding for their largely robotic research missions. ESA's Director General Dietrich Woerner's proposed Moon Village faces challenges ESA member states concerned about sustaining funding for projects already underway or in planning. Both the Journey to Mars and Moon Village raise the question - who will or who can pay for it? The 2013 US Research Council study suggested potential benefits to a mission to Mars from activities on the Moon [2]. The NASA funded Flexible Lunar Architecture study came to similar conclusions using a different methodology [3]. A logistics analysis by an MIT team suggested the possibility of cost savings through use of lunar water for propellant to reach Mars [4]. The highly promising private-public financing approach has been examined for potential application to funding the costs of reaching Mars [5]. Insofar as the feasibility of utilization of lunar water has not been determined these conclusions are speculative. This study will examine the following alternative scenarios for establishing sustainable, manned operations on Mars and permanent manned operations on the Moon: A. NASA-led Journey to Mars without an ESA-led Moon Village B. ESA-led Moon Village without NASA-led Journey to Mars C. NASA-led Journey to Mars with an ESA-led Moon Village D. Shared Infrastructure scenario - NASA-led Journey to Mars with ESA-led Moon Village and with a potential JAXA-led space-based-solar power initiative E. Space Industrialization scenario - Shared Infrastructure scenario

  5. Telecommunications systems evolution for Mars Exploration

    Science.gov (United States)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  6. Mars Radiation Surface Model

    Science.gov (United States)

    Alzate, N.; Grande, M.; Matthiae, D.

    2017-09-01

    Planetary Space Weather Services (PSWS) within the Europlanet H2020 Research Infrastructure have been developed following protocols and standards available in Astrophysical, Solar Physics and Planetary Science Virtual Observatories. Several VO-compliant functionalities have been implemented in various tools. The PSWS extends the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. One of the five toolkits developed as part of these services is a model dedicated to the Mars environment. This model has been developed at Aberystwyth University and the Institut fur Luft- und Raumfahrtmedizin (DLR Cologne) using modeled average conditions available from Planetocosmics. It is available for tracing propagation of solar events through the Solar System and modeling the response of the Mars environment. The results have been synthesized into look-up tables parameterized to variable solar wind conditions at Mars.

  7. Magnetic storms on Mars

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2011-01-01

    Based on data from the Mars Global Surveyor magnetometer we examine periods of significantly enhanced magnetic disturbances in the martian space environment. Using almost seven years of observations during the maximum and early declining phase of the previous solar cycle the occurrence pattern...... and typical time profile of such periods is investigated and compared to solar wind measurements at Earth. Typical durations of the events are 20–40h, and there is a tendency for large events to last longer, but a large spread in duration and intensity are found. The large and medium intensity events at Mars...... field disturbance at Mars is solar wind dynamic pressure variations associated with the eccentricity of the martian orbit around the Sun....

  8. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  9. Meteorites on Mars

    Science.gov (United States)

    Flynn, G. J.; Mckay, D. S.

    1988-01-01

    Four types of meteoritic material should be found on Mars: (1) micrometeorites, many of which will survive atmospheric entry unmelted, which should fall relatively uniformly over the planet's surface, (2) ablation products from larger meteorites which ablate, break up and burn up in the Mars atmosphere, (3) debris from large, crater forming objects, which, by analogy to terrestrial and lunar impact events, will be concentrated in the crater ejecta blankets (except for rare, large events, such as the proposed C-T event on earth, which can distribute debris on a planetary scale), and (4) debris from the early, intense bombardment, which, in many areas of the planet, may now be incorporated into rocks by geologic processes subsequent to the intense bombardment era. To estimate the extent of meteoritic addition to indigenous Martian material, the meteoritic flux on Mars must be known. It is estimated that the overall flux is twice that for the Moon and 1.33 that for Earth. For small particles, whose orbital evolution is dominated by Poynting Robertson drag, the flux at Mars can be estimated from the Earth flux. The smaller Martian gravitational enhancement as well as the decrease in the spatial density of interplanetary dust with increasing heliocentric distance should reduce the flux of small particles at Mars to about 0.33 times the flux at Earth. Because of the smaller planetary cross-section the total infalling mass at Mars is then estimated to be 0.09 time the infalling mass in the micrometeorite size range at Earth.

  10. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  11. The geology of Mars

    Science.gov (United States)

    Mutch, T. A.; Arvidson, R. E.; Head, J. W., III; Jones, K. L.; Saunders, R. S.

    1976-01-01

    The book constitutes a topographic/geologic atlas of Mars compiled on the basis of data from the various Mariner missions. A large number of maps has been included which systematically describe the character and distribution of the principal landforms: craters, channels, volcanoes, and faults; also related properties such as albedo, elevation, and wind streaks. Pictures of all the important topographic features have been included. The discussion of the material is carried out with a minimum of technical detail, and Mars is examined within a context of interplanetary comparisons.

  12. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  13. Hematite on Mars!

    Science.gov (United States)

    2004-01-01

    This spectrum captured by the Mars Exploration Rover Opportunity's mini-thermal emission spectrometer shows the presence of grey hematite in the martian soil at Meridiani Planum, Mars. On Earth, hematite forms in the presence of water, at the bottom of lakes, springs and other bodies of standing water. But it can also arise without water in volcanic regions. Scientists hope to discover the origins of martian hematite with the help of Opportunity's robotic set of geological tools. The yellow line represents the spectrum, or light signature, of the martian soil, while the red line shows the spectrum of pure hematite.

  14. Mars Observer Camera

    OpenAIRE

    Malin, M. C.; Danielson, G. E.; Ingersoll, A. P.; Masursky, H.; J. Veverka(Massachusetts Institute of Technology, Cambridge, U.S.A.); Ravine, M. A.; Soulanille, T.A.

    1992-01-01

    The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the “push broom” technique; that is, they do not take “frames” but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope f...

  15. EquiMar

    DEFF Research Database (Denmark)

    Johnstone, C. M.; McCombes, T.; Bahaj, A. S.

    2011-01-01

    / financiers etc when attempting to quantify the performance of a device since it makes it very difficult to reference and benchmark the performance of a marine energy converter. The EC Framework Programme VII EquiMar project has set out to develop a suite of Best Practices to be adopted when undertaking...... the performance evaluation of such systems in order to address this deficiency. This paper reports the development of a set of ‘Best Practices’ within the ECFPVII EquiMar project to be adopted for the performance quantification of wave and tidal energy converters as they evolve from an engineering concept...

  16. Mars Obliquity Cycle Illustration

    Science.gov (United States)

    2008-01-01

    The tilt of Mars' spin axis (obliquity) varies cyclically over hundreds of thousands of years, and affects the sunlight falling on the poles. Because the landing site of NASA's Phoenix Mars Lander is so near the north pole, higher sun and warmer temperatures during high obliquity lead to warmer, more humid surface environments, and perhaps thicker, more liquid-like films of water in soil. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. NASA Mars 2020 Rover Mission: New Frontiers in Science

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  18. Advanced Communication and Networking Technologies for Mars Exploration

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  19. Sustainable agriculture

    National Research Council Canada - National Science Library

    Lichtfouse, Eric

    2009-01-01

    ... : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 Part I CLIMATE CHANGE Soils and Sustainable Agriculture: A Review : : : : : : : : : : : : : : : : : : : : : : : : : : Rattan Lal 15 Soils and Food Sufficiency...

  20. Mars in the late Noachian: Evolution of a habitable surface environment

    Science.gov (United States)

    Johnson, Sarah Stewart

    2008-10-01

    This dissertation addresses whether simple life forms might have existed on Mars during the late Noachian epoch, and whether those life forms, or their traces, can be detected today. It begins by analyzing the ancient Martian climate in light of new evidence that sulfur chemistry played a prominent role in the planet's early evolution. It finds that sulfur-induced greenhouse warming could have periodically heated the planet enough to support liquid water, thereby creating warm, wet, clement conditions. Moreover, it finds that those warming pulses, while short-lived over geologic time, may have persisted for hundreds of years. If sulfur helped create environmental conditions capable of hosting life, however, it also created conditions that were adverse to sustaining it. In particular, dissipation of sulfur volatiles cooled the climate, and sulfur rainout contributed to the acidity of Martian surface waters. The dissertation therefore proceeds to analyze the potential for persistence and detection of life in terrestrial environments with Mars-like characteristics. It first investigates the potential for detecting ancient life by searching for lipid biomarkers in sulfur-rich acid salt lakes, concluding that a variety of biomarkers may be more resistant to decay than previously believed. It then analyzes soil samples from permafrost, discovering the oldest independently authenticated viable organisms ever found, and positing low-level metabolic activity and DNA repair as a survival mechanism in ancient cells. Finally, the dissertation uses deep sequencing to examine prokaryotic diversity in a terrestrial Mars-like river characterized by low pH and high concentrations of iron and sulfur, with results considered in light of the implications for life detection approaches incorporating new, in situ "PCR in a chip" technology. The dissertation concludes by proposing future work, including the ultimate goal of developing a life detection instrument for Mars. (Copies

  1. Sustainable Marketing

    NARCIS (Netherlands)

    Dam, van Y.K.

    2017-01-01

    In this article, three different conceptions of sustainable marketing are discussed and compared. These different conceptions are referred to as social, green, and critical sustainable marketing. Social sustainable marketing follows the logic of demand-driven marketing management and places the

  2. Vulkanisme en water op Mars?

    NARCIS (Netherlands)

    Van Loef, J.; Schmets, A.J.M.

    2005-01-01

    In januari 2004 werd Mars bezocht door de tweeling robotverkenners Spirit en Opportunity. Zij werden erop uitgestuurd om eindelijk het definitieve antwoord te geven op de vraag of er leven op Mars is geweest. Alles wijst er inmiddels op dat er op Mars ooit vloeibaar water stroomde. Of daarmee een

  3. Mars exploration: follow the water

    Science.gov (United States)

    Park, Young Ho

    2004-01-01

    Over the centuries, the red planet Mars has been a subject of imagination as well as intense scientific interest. As the overwhelming success of two Mars Exploration Rovers unfolds before us, this article provides an overview of and rationale for NASA's Mars exploration program.

  4. Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life

    Science.gov (United States)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2005-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.

  5. Searching for Life on Mars Before It Is Too Late.

    Science.gov (United States)

    Fairén, Alberto G; Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle

    2017-10-01

    Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.

  6. Mars double-aeroflyby free returns

    Science.gov (United States)

    Jesick, Mark

    2017-09-01

    Mars double-flyby free-return trajectories that pass twice through the Martian atmosphere are documented. This class of trajectories is advantageous for potential Mars atmospheric sample return missions because of its low geocentric energy at departure and arrival, because it would enable two sample collections at unique locations during different Martian seasons, and because of its lack of deterministic maneuvers. Free return opportunities are documented over Earth departure dates ranging from 2015 through 2100, with viable missions available every Earth-Mars synodic period. After constraining the maximum lift-to-drag ratio to be less than one, the minimum observed Earth departure hyperbolic excess speed is 3.23 km/s, the minimum Earth atmospheric entry speed is 11.42 km/s, and the minimum round-trip flight time is 805 days. An algorithm using simplified dynamics is developed along with a method to derive an initial estimate for trajectories in a more realistic dynamic model. Multiple examples are presented, including free returns that pass outside and inside of Mars's appreciable atmosphere.

  7. Mission from Mars

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  8. Ancient aliens on mars

    CERN Document Server

    Bara, Mike

    2013-01-01

    Best-selling author and Secret Space Program researcher Bara brings us this lavishly illustrated volume on alien structures on Mars. Was there once a vast, technologically advanced civilization on Mars, and did it leave evidence of its existence behind for humans to find eons later? Did these advanced extraterrestrial visitors vanish in a solar system wide cataclysm of their own making, only to make their way to Earth and start anew? Was Mars once as lush and green as the Earth, and teeming with life? Did Mars once orbit a missing member of the solar system, a "Super Earth” that vanished in a disaster that devastated life on Earth and Venus and left us only the asteroid belt as evidence of its once grand existence? Did the survivors of this catastrophe leave monuments and temples behind, arranged in a mathematical precision designed to teach us the Secret of a new physics that could lift us back to the stars? Does the planet have an automated defense shield that swallows up robotic probes if they wander int...

  9. Watersporen op Mars

    NARCIS (Netherlands)

    Seijmonsbergen, A.C.; Cammeraat, L.H.; Jansen, B.

    2005-01-01

    SAMENVATTING De discussie over het voorkomen van water op Mars, in vaste of vloeibare vorm, nu en in het verleden, is nog steeds in volle gang. Dat geldt ook voor het effect van mogelijk aanwezig water op de landschapsontwikkeling van de Rode Planeet. Met het vrijkomen van steeds meer nieuwe

  10. Mars Observer Orbit Insertion Briefing

    Science.gov (United States)

    1993-01-01

    Steve Wall is the host of this video entitled, "Return to the Red Planet". Live animation of the Mars Observer orbiting Mars is presented. Steve Wall explains the spacecraft insertion maneuver and also explains the purpose for the Mars Observer launch. Live coverage of the Cape Canaveral launch of the Mars Observer is also presented. Suzanne Dodd, Chief of the Mission Planning team describes the burn start and how the spacecraft will be captured by Mars' gravity. Glenn Cunningham, Mars Observer Project Manager, gives background information on the Mars Observer and describes the organizations behind the Mars Observer Spacecraft, such as the Deep Space Network, the Mission Operation Support Office, Science Investigators, the Flight Engineering Office, Operations Office, and the Ground Data System Office. Dr. William Piotrowski, Acting Director, Solar System Exploration Division, NASA, talks about the purpose of the Mars Pathfinder which is to develop the technology and systems for landing small science packages on Mars. Mr. Roger Gibbs, Former Mars Observer Spacecraft Systems Engineer, tells us how the Mars Observer was built and describes the structural elements on the Mars Observer. The 11-month cruise period for the spacecraft is given by Joseph Beerer, Manager of the Engineering office. The thrust for the Mars Orbit Insertion is described by Ronald Klemetson, Technical Manager, Propulsion Subsystem Jet Propulsion Laboratory (JPL). George Chen, Lead Engineer Attitude and Articulation Subsystem Spacecraft Team, explains the importance of the attitude control engines on the Spacecraft. Marvin Traxler, Manager of Tracking and Data Acquisition, describes how searching for a signal from the Mars Observer works. See NONP-NASA-VT-2000081555 for a continuation of this discussion with Marvin Traxler.

  11. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  12. The Small Mars System

    Science.gov (United States)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.

    2017-08-01

    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  13. MAR characteristic motifs mediate episomal vector in CHO cells.

    Science.gov (United States)

    Lin, Yan; Li, Zhaoxi; Wang, Tianyun; Wang, Xiaoyin; Wang, Li; Dong, Weihua; Jing, Changqin; Yang, Xianjun

    2015-04-01

    An ideal gene therapy vector should enable persistent transgene expression without limitations in safety and reproducibility. Recent researches' insight into the ability of chromosomal matrix attachment regions (MARs) to mediate episomal maintenance of genetic elements allowed the development of a circular episomal vector. Although a MAR-mediated engineered vector has been developed, little is known on which motifs of MAR confer this function during interaction with the host genome. Here, we report an artificially synthesized DNA fragment containing only characteristic motif sequences that served as an alternative to human beta-interferon matrix attachment region sequence. The potential of the vector to mediate gene transfer in CHO cells was investigated. The short synthetic MAR motifs were found to mediate episomal vector at a low copy number for many generations without integration into the host genome. Higher transgene expression was maintained for at least 4 months. In addition, MAR was maintained episomally and conferred sustained EGFP expression even in nonselective CHO cells. All the results demonstrated that MAR characteristic sequence-based vector can function as stable episomes in CHO cells, supporting long-term and effective transgene expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Radar Sounding Investigations of the Martian Subsurface by the 2018 ExoMars-C Rover

    OpenAIRE

    Ciarletti, Valérie; Plettemeier, Dirk; Cais, Ph.; Clifford, Stephen

    2011-01-01

    International audience; The WISDOM (Water Ice Subsurface Deposit Observation on Mars) Ground Penetrating Radar will fly on the ESA-NASA 2018 ExoMars-C mission, which combines the science payload of the original ESA ExoMars Rover with the robotic arm and sample cache of NASA's Max-C Rover into a single rover, whose samples will ult imately be retrieved by a future Mars Sample Return mission. WISDOM was designed to investigate the nearsubsurface down to a depth of ~2-3 m, commensurate with the ...

  15. The Search for Life from Antarctica to Mars

    Science.gov (United States)

    McKay, Christopher P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet win require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be t he most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate.

  16. Huave de San Mateo del Mar, Oaxaca (Huave of San Mateo del Mar, Oaxaca).

    Science.gov (United States)

    Mexico Coll. (Mexico City)

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Huave, an indigenous language of Mexico spoken in San Mateo del Mar, in the state of Oaxaca. The objective of collecting such a representative sampling of…

  17. Mars Ascent Vehicle-Propellant Aging

    Science.gov (United States)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  18. Measurements of Oxychlorine species on Mars

    Science.gov (United States)

    Sutter, B.; Quinn, R. C.; Archer, P. D.; Glavin, D. P.; Glotch, T. D.; Kounaves, S. P.; Osterloo, M. M.; Rampe, E. B.; Ming, D. W.

    2017-07-01

    Mars landed and orbiter missions have instrumentation capable of detecting oxychlorine phases (e.g. perchlorate, chlorate) on the surface. Perchlorate (~0.6 wt%) was first detected by the Wet Chemistry Laboratory in the surface material at the Phoenix Mars Landing site. Subsequent analyses by the Thermal Evolved Gas Analyser aboard the same lander detected an oxygen release (~465°C) consistent with the thermal decomposition of perchlorate. Recent thermal analysis by the Mars Science Laboratory's Sample Analysis at Mars instrument has also indicated the presence of oxychlorine phases (up to 1.2 wt%) in Gale Crater materials. Despite being at detectable concentrations, the Chemistry and Mineralogy (CheMin) X-ray diffractometer has not detected oxychlorine phases. This suggests that Gale Crater oxychlorine may exist as poorly crystalline phases or that perchlorate/chlorate mixtures exist, so that individual oxychlorine concentrations are below CheMin detection limits (~1 wt%). Although not initially designed to detect oxychlorine phases, reinterpretation of Viking Gas Chromatography/Mass Spectrometer data also suggest that oxychlorine phases are present in the Viking surface materials. Remote near-infrared spectral analyses by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument indicate that at least some martian recurring slope lineae (RSL) have spectral signatures consistent with the presence of hydrated perchlorates or chlorates during the seasons when RSL are most extensive. Despite the thermal emission spectrometer, Thermal Emission Imaging System, Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité and CRISM detection of hundreds of anhydrous chloride (~10-25 vol%) deposits, expected associated oxychlorine phases (>5-10 vol%) have not been detected. Total Cl and oxychlorine data sets from the Phoenix Lander and the Mars Science Laboratory missions could be used to develop oxychlorine versus total Cl correlations, which

  19. The baltic environmental information dissemination system: using environmental informatics as a tool for sustainable development in the Baltic Sea region O sistema báltico de disseminação de informação ambiental: o uso de informática ambiental como uma ferramenta para o desenvolvimento sustentável na região do Mar Báltico

    Directory of Open Access Journals (Sweden)

    Walter Leal Filho

    2002-09-01

    environment, but also emphasising related areas such as transport and sustainable development issues, among a sample of six BSR countries: Denmark, Finland, Germany, Sweden (EU and Lithuania and Poland (non-EU, contributing to networking and know-how exchange, complementing efforts towards transregional cooperation in sustainable spatial planning on the basis of Baltic 21. The results reached to date include: increased awareness of matters related to sustainable development in the six participant countries; enhanced communication exchange and networking among the sample nations; improved information flow and increased participation in events, activities and programmes across the Baltic Sea Region. BEIDS is a prime example of the feasibility of using environmental informatics as a tool for sustainable development.O atual desenvolvimento econômico da Comunidade Européia, bem como a região C&E Européia, tem levado a um uso intenso de muitos recursos naturais e a um reconhecimento de problemas ambientais. A falta de uma ampla consciência por parte daqueles que atuam em vários setores (indústria, administração pública, usuários as vezes inibe a implementação de legislação já disponível, como também a implementação de novas tecnologias provenientes, por exemplo, da pesquisa marinha. Um exemplo deste estado de fato ser visto em relação a implementação das recomendações saídas do "Baltic 21" e VASAB 2010, que ilustram as vantagens de um mecanismo aberto, trans-setorial para a disseminação de informação ambiental na região. Hoje estão presentes várias organizações que atuam como fornecedoras de informação ambiental na região do Mar Báltico. Entretanto, apenas algumas, ou nenhuma são provedoras conscientes com os vários modos em que a informação a respeito de desenvolvimento sustentável está sendo utilizada pelos vários grupos e audiências. O estado atual da questão torna necessário impulsionar os mecanismos existentes em seu lugar, de

  20. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small

  1. Sustainable Disruptions

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Kjær, Lykke Bloch

    2016-01-01

    Since 2012 the Sustainable Disruptions (SD) project at the Laboratory for Sustainability at Design School Kolding (DK) has developed and tested a set of design thinking tools, specifically targeting the barriers to economically, socially, and environmentally sustainable business development....... The tools have been applied in practice in collaboration with 11 small and medium sized companies (SMEs). The study investigates these approaches to further understand how design thinking can contribute to sustainable transition in a business context. The study and the findings are relevant to organizations...... invested in the issue of sustainable business development, in particular the leaders and employees of SMEs, but also to design education seeking new ways to consciously handle and teach the complexity inherent in sustainable transformation. Findings indicate that the SD design thinking approach contributes...

  2. First MARS Outpost: Development Considerations and Concepts

    Science.gov (United States)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research and design study that is exploring near and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. This presentation highlights planning considerations and design concepts for establishing a first settlement on Mars. The outpost would support surface missions lasting up to about 500 days and would serve as the initial stage of a larger and continuously operational development which would utilize Mars resources to be less reliant on materials from Earth. Key elements of this first stage mission development sequence include a new heavy-lift Earth-to-orbit launch vehicle; a plasma- drive Mars transit vehicle; habitat modules for crews in transit to and from Mars; "hard" and "inflatable" surface habitats and laboratories; a mobile power unit; a spacecraft to assist orbital assembly; and vehicles to lift crews off the Mars surface and land them safely back on Earth from LEO. SICSA's space development approach differs in fundamental ways from conventional NASA-sponsored initiatives. First, virtually all baseline planning assumptions are influenced by the private sector-driven nature of an approach that aims to avoid all possible reliance upon government financing, agendas and schedules. In this regard, any involvements with NASA or the space agencies of other countries would be premised upon mutual public-corporate partnership benefits rather than upon federal contract awards, management and control. Another potential difference relates to program philosophy. Unlike Apollo Program "sprint" missions which culminated with footprints and flagpoles on the Moon, the aim is to realize sustainable and continuing planetary exploration and development progress. This goal can be advanced through approaches that

  3. A Dual Source Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer of ExoMars 2018

    Science.gov (United States)

    Brickerhoff, William B.; vanAmerom, F. H. W.; Danell, R. M.; Arevalo, R.; Atanassova, M.; Hovmand, L.; Mahaffy, P. R.; Cotter, R. J.

    2011-01-01

    We present details on the objectives, requirements, design and operational approach of the core mass spectrometer of the Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars mission. The MOMA mass spectrometer enables the investigation to fulfill its objective of analyzing the chemical composition of organic compounds in solid samples obtained from the near surface of Mars. Two methods of ionization are realized, associated with different modes of MOMA operation, in a single compact ion trap mass spectrometer. The stringent mass and power constraints of the mission have led to features such as low voltage and low frequency RF operation [1] and pulse counting detection.

  4. Computational sustainability

    CERN Document Server

    Kersting, Kristian; Morik, Katharina

    2016-01-01

    The book at hand gives an overview of the state of the art research in Computational Sustainability as well as case studies of different application scenarios. This covers topics such as renewable energy supply, energy storage and e-mobility, efficiency in data centers and networks, sustainable food and water supply, sustainable health, industrial production and quality, etc. The book describes computational methods and possible application scenarios.

  5. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  6. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Science.gov (United States)

    Vago, Jorge L.; Westall, Frances; Pasteur Instrument Team; Pasteur Landing Team; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Rull, Fernando; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Vago, Jorge L.; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe; ExoMars Project Team

    2017-07-01

    The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information.

  7. Sustainable transformation

    DEFF Research Database (Denmark)

    Andersen, Nicolai Bo

    This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuilt...... theoretical lenses. It is proposed that three parameters concerning the ꞌtransformabilityꞌ of the building can contribute to a more nuanced understanding of sustainable transformation: technical aspects, programmatic requirements and narrative value. It is proposed that the concept of ꞌsustainable...

  8. Happy Mars Solstice!

    Science.gov (United States)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) in the late afternoon of the 30th Martian day of the mission, or Sol 30 (June 25, 2008). This is hours after the beginning of Martian northern summer. SSI used its natural-color filters, therefore the color is the color you would see on Mars. The image shows shadows from the SSI (left) and from the meteorological station mast (right) stretching toward the east as the sun dropped low in the west. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver

  9. Seismology on Mars

    Science.gov (United States)

    Anderson, D. L.; Miller, W. F.; Latham, G. V.; Nakamura, Y.; Toksoz, M. N.; Dainty, A. M.; Duennebier, F. K.; Lazarewicz, A. R.; Kovach, R. L.; Knight, T. C. D.

    1977-01-01

    High-quality data (uncontaminated by lander or wind noise) obtained with a three-axis short-period seismometer operating on Mars in the Utopia Planitia region are analyzed. No large events have been detected during the first five months of operation covered in the present paper. This indicates that Mars is less seismically active than the earth. Winds, and therefore a seismic background, began to intrude into the nighttime hours, starting with sol 119 (sol is a Martian day). The seismic background correlates well with wind velocity, and is proportional to the square of the wind velocity, as is appropriate for turbulent flow. A local seismic event of a magnitude of 3 and a distance of 110 km was detected on sol 80. It is interpreted as a natural seismic event.

  10. The politics of Mars

    Science.gov (United States)

    Schmitt, Harrison H.

    1986-01-01

    A discussion is presented comparing past and present major accomplishments of the U.S. and the Soviet Union in space. It concludes that the Soviets are presently well ahead of the U.S. in several specific aspects of space accomplishment and speculates that the Soviet strategy is directed towards sending a man to the vicinity of Mars by the end of this century. A major successful multinational space endeavor, INTELSAT, is reviewed and it is suggested that the manned exploration of Mars offers a unique opportunity for another such major international cooperative effort. The current attitude of U.S. leadership and the general public is assessed as uniformed or ambivalent about the perceived threat of Soviet dominance in space.

  11. Polygonal terrains on Mars

    Directory of Open Access Journals (Sweden)

    Pedro Pina

    2009-06-01

    Full Text Available The presence of water ice on Mars is well established. Some featureson the planet point to the occurrence of processes similar to those that take place in periglacial areas of Earth. One of the clues for this is the existence of small-scale polygonal terrains. In this paper, we present a methodology that aims at the automated identification of polygonal patterns on high-spatial resolution images of the surface of Mars. In the context of the research project TERPOLI, this step will be complemented with a full characterization, in both geometric and topological terms, of thenetworks detected. In this manner, we hope to collect data that will lead to a better understanding of the conditions of formation of the polygons, and of their temporal evolution; namely, we intend to identify different groups of polygons and to compare them with terrestrial examples.

  12. Fossil life on Mars

    Science.gov (United States)

    Walter, M. R.

    1989-01-01

    Three major problems beset paleontologists searching for morphological evidence of life on early Earth: selecting a prospective site; finding biogenic structures; and distinguishing biogenic from abiogenic structures. The same problems arise on Mars. Terrestrial experience suggests that, with the techniques that can be employed remotely, ancient springs, including hot springs, are more prospective than lake deposits. If, on the other hand, the search is for chemical evidence, the strategy can be very different, and lake deposits are attractive targets. Lakes and springs frequenly occur in close proximity, and therefore a strategy that combines the two would seem to maximize the chance of success. The strategy for a search for stromatolite on Mars is discussed.

  13. Chemical composition of Mars

    Science.gov (United States)

    Morgan, J. W.; Anders, E.

    1979-01-01

    The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.

  14. Mars Ascent Vehicle Test Requirements and Terrestrial Validation

    Science.gov (United States)

    Dankanich, John W.; Cathey, Henry M.; Smith, David A.

    2011-01-01

    The Mars robotic sample return mission has been a potential flagship mission for NASA s science mission directorate for decades. The Mars Exploration Program and the planetary science decadal survey have highlighted both the science return of the Mars Sample Return mission, but also the need for risk reduction through technology development. One of the critical elements of the MSR mission is the Mars Ascent Vehicle, which must launch the sample from the surface of Mars and place it into low Mars orbit. The MAV has significant challenges to overcome due to the Martian environments and the Entry Descent and Landing system constraints. Launch vehicles typically have a relatively low success probability for early flights, and a thorough system level validation is warranted. The MAV flight environments are challenging and in some cases impossible to replicate terrestrially. The expected MAV environments have been evaluated and a first look of potential system test options has been explored. The terrestrial flight requirements and potential validation options are presented herein.

  15. In-Space Transportation for NASA's Evolvable Mars Campaign

    Science.gov (United States)

    Percy, Thomas K.; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    . The goal is that, by building an architecture intelligently with all aspects considered, the sustainable Mars program wisely invests limited resources enabling a long-term human Mars exploration program.

  16. Robotic Exploration of Moon and Mars: Thematic Education Approach

    Science.gov (United States)

    Allen, J S.; Tobola, K. W.; Lowes, L. L.; Betrue, R.

    2008-01-01

    Safe, sustained, affordable human and robotic exploration of the Moon, Mars, and beyond is a major NASA goal. Robotic exploration of the Moon and Mars will help pave the way for an expanded human presence in our solar system. To help share the robotic exploration role in the Vision for Space Exploration with classrooms, informal education groups, and the public, our team researched and consolidated the thematic story components and associated education activities into a useful education materials set for educators. We developed the set of materials for a workshop combining NASA Science Mission Directorate and Exploration Systems Mission Directorate engineering, science, and technology to train informal educators on education activities that support the robotic exploration themes. A major focus is on the use of robotic spacecraft and instruments to explore and prepare for the human exploration of the Moon and Mars.

  17. NASA's Space Launch System (SLS) Program: Mars Program Utilization

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  18. ExoMars: Mars analogue rocks in the European lithotheque at Orleans

    Science.gov (United States)

    Bost, Nicolas; Westall, Frances; Ramboz, Claire; Foucher, Frédéric; Pullan, Derek; Vago, Jorge; Zegers, Tanja

    ExoMars has joined up with the American Max-C rover in a joint, two rover mission to Mars in 2018. The science objectives of ExoMars are to search for traces of past or present life and to document the water/geochemical environment as a function of depth in the shallow subsurface. Max-C seeks to determine the habitability of the surface of Mars with the aim of selecting and caching rocks potentially containing traces of life for the future Mars Sample Return mission. The ExoMars rover will embark a number of scientific instruments to investi-gate rock outcrops and subsurface materials: for observation a variety of cameras and a close up imager, for mineralogy Raman and IR spectrometry as well as an XRD, and GCMS and LDMS for chemical characterisation of the organics. A drill will provide subsurface access to hopefully preserved organics. Max-C will be distinguished by a suite of arm-based tools for observation and mineralogical/elemental mapping. These instruments provide good compara-tive information. In order to optimize the science return of the various instrument suites, it will be useful to test flight instrumentation with the same suite of Mars-analogue rocks. With this objective in mind, a rock library or lithoth`que of rocks that have been fully characterised by standard laboratory instrumentation is being prepared by the Observatoire de l'Univers de la region Centre (OSUC) at Orléans. The ultimate goal is to offer the scientific community a lithoth`que coupled to a database comprising the maximum information on rocks that are analogues of Mars and other planetary bodies. The data base will contain both reference (lab) data and results from experiments using the planetary instruments or models. Here we present a preliminary selection of ten samples for testing the ExoMars instruments. Other samples will become ready as our lithotheque expands. The samples chosen cover a range of lithologies found on Mars -a variety of basalts (plus cumulates), a Late

  19. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    Science.gov (United States)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  20. Searching for Life on Mars Before It Is Too Late

    Science.gov (United States)

    Fairén, Alberto G.; Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle

    2017-10-01

    Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions.

  1. In Situ Strategy of the 2011 Mars Science Laboratory to Investigate the Habitability of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.

    2011-01-01

    The ten science investigations of the 2011 Mars Science Laboratory (MSL) Rover named "Curiosity" seek to provide a quantitative assessment of habitability through chemical and geological measurements from a highly capable robotic' platform. This mission seeks to understand if the conditions for life on ancient Mars are preserved in the near-surface geochemical record. These substantial payload resources enabled by MSL's new entry descent and landing (EDL) system have allowed the inclusion of instrument types nevv to the Mars surface including those that can accept delivered sample from rocks and soils and perform a wide range of chemical, isotopic, and mineralogical analyses. The Chemistry and Mineralogy (CheMin) experiment that is located in the interior of the rover is a powder x-ray Diffraction (XRD) and X-ray Fluorescence (XRF) instrument that provides elemental and mineralogical information. The Sample Analysis at Mars (SAM) suite of instruments complements this experiment by analyzing the volatile component of identically processed samples and by analyzing atmospheric composition. Other MSL payload tools such as the Mast Camera (Mastcam) and the Chemistry & Camera (ChemCam) instruments are utilized to identify targets for interrogation first by the arm tools and subsequent ingestion into SAM and CheMin using the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. The arm tools include the Mars Hand Lens Imager (MAHLI) and the Chemistry and Alpha Particle X-ray Spectrometer (APXX). The Dynamic Albedo of Neutrons (DAN) instrument provides subsurface identification of hydrogen such as that contained in hydrated minerals

  2. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...

  3. Sustaining dairy

    NARCIS (Netherlands)

    Villarreal Herrera, Georgina

    2017-01-01

    Dairy in Europe has undergone many changes in the last few years—the abolition of milk production quotas being a fundamental one. This study explores these changes in relation to the sustained social and environmental viability of the sector and how dairy processors' sustainability

  4. Sustainable Universities

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2011-01-01

    . Declarations tend to have impact on three trends. Firstly, there is emerging international consensus on the university’s role and function in relation to sustainable development; secondly, the emergence of national legislation, and thirdly, an emerging international competition to be leader in sustainable...... campus performance....

  5. Sustainable Transition

    DEFF Research Database (Denmark)

    Hansen, Ole Erik; Søndergård, Bent

    2014-01-01

    of agendas/vision, technologies, actors and institutions in the emergent design of an urban mobility system based on an electric car sharing system. Why. Designing for sustainability is a fundamental challenge for future design practices; designers have to obtain an ability to contribute to sustainable...

  6. Sustainable Learning

    Science.gov (United States)

    Cadwell, Louise; Dillon, Robert

    2011-01-01

    Green schools have moved into a new era that focuses on building a culture of sustainability in every aspect of learning in schools. In the early stages of sustainability education, the focus was on recycling and turning off the lights. Now, students and adults together are moving into the areas of advocacy and action that are based on a deep…

  7. Guidelines for 2007 MARS exercise

    CERN Multimedia

    HR Department

    2007-01-01

    Following the introduction of the new Merit Appraisal and Recognition Scheme (MARS), full details of the scheme are now available via the HR Department's homepage or directly on the Department's MARS web page: in English: http://humanresources.web.cern.ch/HumanResources/internal/personnel/pmd/cr/MARS.asp or French: http://humanresources.web.cern.ch/humanresources/internal/personnel/pmd/cr/mars_fr.asp You will find on this page: 'Introduction to MARS' with detailed information presented in Frequently Asked Questions; these include the MARS timetable for proposals and decisions; 'Regulations' with links to the scheme's statutory documents; 'Procedures and Forms' and 'Useful Information' with links to all the relevant documentation; these include the mandates of the Senior Staff Advisory Committee (SSAC) and the Technical Engineers and Administrative Careers Committee (TEACC). HR Department Tel. 73566

  8. Methane Propulsion Elements for Mars

    Science.gov (United States)

    Percy, Tom; Polsgrove, Tara; Thomas, Dan

    2017-01-01

    Human exploration beyond LEO relies on a suite of propulsive elements to: (1) Launch elements into space, (2) Transport crew and cargo to and from various destinations, (3) Provide access to the surface of Mars, (4) Launch crew from the surface of Mars. Oxygen/Methane propulsion systems meet the unique requirements of Mars surface access. A common Oxygen/Methane propulsion system is being considered to reduce development costs and support a wide range of primary & alternative applications.

  9. Winter Storm Zones on Mars

    Science.gov (United States)

    Hollingsworth, J. L.; Haberle, R. M.; Barnes, J. R.; Bridger, A. F. C.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Preferred regions of weather activity in Mars' winter middle latitudes-so called 'storm zones' are found in a general circulation model of Mars' atmospheric circulation. During northern winter, these storm zones occur in middle latitudes in the major planitia (low-relief regions) of the western and eastern hemisphere. In contrast, the highlands of the eastern hemisphere are mostly quiescent. Compared to Earth's storm zones where diabatic heating associated with land-sea thermal contrasts is crucial, orography on Mars is fundamental to the regionalization of weather activity. Future spacecraft missions aimed at assessing Mars' climate and its variability need to include such regions in observation strategies.

  10. Design of a Mars atmosphere simulation chamber and testing a Raman Laser Spectrometer (RLS) under conditions pertinent to Mars rover missions

    NARCIS (Netherlands)

    Motamedi Mohammadabadi, K.; Colin, A.P.M.C.A.M.G.; Hooijschuur, J.H.; Postma, O.; Lootens, R.N.; Pruijser, D.; Stoevelaar, R.; Ariese, F.; Hutchinson, I.B.; Ingley, R.; Davies, G.R.

    2015-01-01

    Raman spectrometry is a powerful technique for the rapid identification of most minerals and organic chemicals without sample preparation. In this context, the European Space Agency (ESA) and NASA selected a Raman spectrometer in the payload of the future ExoMars and Mars 2020 missions to identify

  11. A sustainable on-line CapLC method for quantifying antifouling agents like irgarol-1051 and diuron in water samples: Estimation of the carbon footprint.

    Science.gov (United States)

    Pla-Tolós, J; Serra-Mora, P; Hakobyan, L; Molins-Legua, C; Moliner-Martinez, Y; Campins-Falcó, P

    2016-11-01

    In this work, in-tube solid phase microextraction (in-tube SPME) coupled to capillary LC (CapLC) with diode array detection has been reported, for on-line extraction and enrichment of booster biocides (irgarol-1051 and diuron) included in Water Frame Directive 2013/39/UE (WFD). The analytical performance has been successfully demonstrated. Furthermore, in the present work, the environmental friendliness of the procedure has been quantified by means of the implementation of the carbon footprint calculation of the analytical procedure and the comparison with other methodologies previously reported. Under the optimum conditions, the method presents good linearity over the range assayed, 0.05-10μg/L for irgarol-1051 and 0.7-10μg/L for diuron. The LODs were 0.015μg/L and 0.2μg/L for irgarol-1051 and diuron, respectively. Precision was also satisfactory (relative standard deviation, RSDcarbon footprint values for the proposed procedure consolidate the operational efficiency (analytical and environmental performance) of in-tube SPME-CapLC-DAD, in general, and in particular for determining irgarol-1051 and diuron in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. NASA's New Mars Exploration Program: The Trajectory of Knowledge

    Science.gov (United States)

    Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  13. NASA's new Mars Exploration Program: the trajectory of knowledge.

    Science.gov (United States)

    Garvin, J B; Figueroa, O; Naderi, F M

    2001-01-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  14. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    Science.gov (United States)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  15. Rotary Percussive Sample Acquisition Tool

    Science.gov (United States)

    Klein, K.; Badescu, M.; Haddad, N.; Shiraishi, L.; Walkemeyer, P.

    2012-01-01

    As part of a potential Mars Sample Return campaign NASA is studying a sample caching mission to Mars, with a possible 2018 launch opportunity. As such, a Sample Acquisition Tool (SAT) has been developed in support of the Integrated Mars Sample Acquisition and Handling (IMSAH) architecture as it relates to the proposed Mars Sample Return (MSR) campaign. The tool allows for core generation and capture directly into a sample tube. In doing so, the sample tube becomes the fundamental handling element within the IMSAH sample chain reducing the risk associated with sample contamination as well as the need to handle a sample of unknown geometry. The tool's functionality was verified utilizing a proposed rock test suite that encompasses a series of rock types that have been utilized in the past to qualify Martian surface sampling hardware. The corresponding results have shown the tool can effectively generate, fracture, and capture rock cores while maintaining torque margins of no less than 50% with an average power consumption of no greater than 90W and a tool mass of less than 6kg.

  16. Diagenetic Mineralogy at Gale Crater, Mars

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Thomas F.; Chipera, Steve; Gellert, Ralf; Ming, Douglas; Morris, Richard; Rampe, E. B.; Rapin, William

    2015-01-01

    Three years into exploration of sediments in Gale crater on Mars, the Mars Science Laboratory rover Curiosity has provided data on several modes and episodes of diagenetic mineral formation. Curiosity determines mineralogy principally by X-ray diffraction (XRD), but with supporting data from thermal-release profiles of volatiles, bulk chemistry, passive spectroscopy, and laser-induced breakdown spectra of targeted spots. Mudstones at Yellowknife Bay, within the landing ellipse, contain approximately 20% phyllosilicate that we interpret as authigenic smectite formed by basalt weathering in relatively dilute water, with associated formation of authigenic magnetite as in experiments by Tosca and Hurowitz [Goldschmidt 2014]. Varied interlayer spacing of the smectite, collapsed at approximately 10 A or expanded at approximately 13.2 A, is evidence of localized diagenesis that may include partial intercalation of metal-hydroxyl groups in the approximately 13.2 A material. Subsequent sampling of stratigraphically higher Windjana sandstone revealed sediment with multiple sources, possible concentration of detrital magnetite, and minimal abundance of diagenetic minerals. Most recent sampling has been of lower strata at Mount Sharp, where diagenesis is widespread and varied. Here XRD shows that hematite first becomes abundant and products of diagenesis include jarosite and cristobalite. In addition, bulk chemistry identifies Mg-sulfate concretions that may be amorphous or crystalline. Throughout Curiosity's traverse, later diagenetic fractures (and rarer nodules) of mm to dm scale are common and surprisingly constant and simple in Ca-sulfate composition. Other sulfates (Mg,Fe) appear to be absent in this later diagenetic cycle, and circumneutral solutions are indicated. Equally surprising is the rarity of gypsum and common occurrence of bassanite and anhydrite. Bassanite, rare on Earth, plays a major role at this location on Mars. Dehydration of gypsum to bassanite in the

  17. Pump Fed Propulsion for Mars Ascent and Other Challenging Maneuvers

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    2007-05-09

    Returning Mars geology samples to Earth within science mission budgets requires a miniature launch vehicle (100-200 kg) for ascending from Mars to an orbital rendezvous. A Mars Ascent Vehicle must deliver a velocity change exceeding 4 km/s within minutes, entirely outside the capabilities of satellite propulsion. A possible solution is to scale down liquid launch vehicle principles to achieve stage propellant mass fractions near 90 percent. Feeding a high-pressure engine from thin-walled low pressure tanks permits stage hardware to be sufficiently lightweight and compact, if very high performance pumps can be made available. NASA's Mars Technology Program has funded refinement and testing of a miniature piston pump, powered by reacted propellant. A pump-fed bipropellant rocket stage remains to be developed. The technology could also benefit other future lunar and planetary science programs.

  18. Task Adaptive Walking Robots for Mars Surface Exploration

    Science.gov (United States)

    Huntsberger, Terry; Hickey, Gregory; Kennedy, Brett; Aghazarian, Hrand

    2000-01-01

    There are exciting opportunities for robot science that lie beyond the reach of current manipulators, rovers, balloons, penetrators, etc. Examples include mobile explorations of the densely cratered Mars highlands, of asteroids, and of moons. These sites are believed to be rich in geologic history and mineralogical detail, but are difficult to robotically access and sample. The surface terrains are rough and changeable, with variable porosity and dust layering; and the small bodies present further challenges of low-temperature, micro-gravity environments. Even the more benign areas of Mars are highly variegated in character (>VL2 rock densities), presenting significant risk to conventional rovers. The development of compact walking robots would have applications to the current mission set for Mars surface exploration, as well as enabling future Mars Outpost missions, asteroid rendezvous missions for the Solar System Exploration Program (SSE) and the mechanical assembly/inspection of large space platforms for the Human Exploration and Development of Spaces (HEDS).

  19. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    Science.gov (United States)

    Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team

    2017-07-01

    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working

  20. Pioneering Objectives and Activities on the Surface of Mars

    Science.gov (United States)

    Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    Human Mars missions have been a topic of sustained interest within NASA, which continues to use its resources to examine many different mission objectives, trajectories, vehicles, and technologies, the combinations of which are often referred to as reference missions or architectures. The current investigative effort, known as the Evolvable Mars Campaign (EMC), is examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. These alternatives involve combinations of all the factors just mentioned. This paper is focused on the subset of these factors involved with objectives and activities that take place on the surface of Mars. "Pioneering" is a useful phrase to encapsulate the current approach being used to address this situation - one of its primary definitions is "a person or group that originates or helps open up a new line of thought or activity or a new method or technical development". Thus, in this scenario, NASA would be embarking on a path to "pioneer" a suite of technologies and operations that will result in an Earth independent, extended stay capability for humans on Mars. This paper will describe (a) the concept of operation determined to be best suited for the initial emplacement, (b) the functional capabilities determined to be necessary for this emplacement, with representative examples of systems that could carry out these functional capabilities and one implementation example (i.e., delivery sequence) at a representative landing site, and will (c) discuss possible capabilities and operations during subsequent surface missions.

  1. Dust Eruptions on Mars by Temperature Gradient Induced Forces

    Science.gov (United States)

    Kelling, Thorben; Wurm, G.; Reiss, D.; Kocifaj, M.; Klacka, J.; Teiser, J.

    2009-09-01

    Dust lifting processes on Mars are an active field of investigation. Explanations for dust phenomena even on high elevations on Mars have to be found. In general, wind stress is supposed to be the main lifting process but on average wind velocities are too low. We found, that temperature induced forces are capable of procuring dust ejections and even massive dust eruptions from a dust bed. A Mars soil simulant (JSC Mars 1A) was placed within a vacuum chamber which was evacuated to typical martian pressures of some mbar and particle ejections and eruptions were observed. Several different temperature gradient dependend lifting processes are at work. While e.g. photophoretic and thermophoretic forces only result in minor particle ejections, Knudsen Compressor effects cause continuous and major eruptions. These eruptions are even enhanced if a transition from illumination to no illumination occurs. We argue that the massive transition eruptions may be the dominant dust lifting process for e.g. dust devils. Moving dust devils, which are optically thick, induce a fast transition from light to shadow for the underlying dust bed. Even for lower initial radiation intensities, this will result in particle eruptions. As long as the wind eddy exists, dust devils on Mars may be self sustained even at low pressures or high altitudes. This work recieved support by the DFG and DAAD.

  2. Calidad microbiológica del agua utilizada en establecimientos lecheros de la zona de Villa María (Córdoba Microbiological quality of the water used in a random sample from dairy farms in Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    Susana G. Bettera

    2011-06-01

    Full Text Available Se evaluó la calidad bacteriológica del agua de pozo y del agua de lavado en una muestra aleatoria de 50 tambos distribuidos en la cuenca lechera de Villa María (Córdoba, Argentina. La visita a los tambos se realizó en 2007. Un 46 % y un 24 % de los tambos presentaron recuentos de aerobios mesófilos superiores a 500 UFC/ml en el agua de lavado y en el agua de pozo, respectivamente. En un 20 % de los establecimientos se aisló Escherichia coli de ambas fuentes de agua. Pseudomonas aeruginosa registró una alta frecuencia de aislamiento en el agua de pozo (36 % y en la de lavado (42 %. Un 80 % y un 88 % de los establecimientos contaban con agua de pozo y de lavado no aptas, respectivamente. Los niveles de mesófilos aerobios y de coliformes totales presentes en el agua de pozo mostraron una concordancia moderada con los detectados en el agua destinada al lavado. En virtud de estos resultados, puede afirmarse que un elevado porcentaje de los tambos ubicados en la cuenca lechera de Villa María emplean agua de calidad bacteriológica deficiente, no apta para el ordeño ni el lavado de las instalaciones.Bacteriological contamination of well water and wash water in a random sample obtained from 50 farms from Villa María (Córdoba dairy area, Argentina, was evaluated during a visit in 2007. Forty six percent and 24 % of farms showed an aerobic mesophilic bacteria count higher than 500 CFU/ml in wash water and well water, respectively. Escherichia coli was isolated in 20 % of samples from both sources. Pseudomonas aeruginosa showed high frequency of isolation in well water (36 % and wash water (42 %. Eighty and eighty-eight percent of dairy farms have contaminated well water and wash water, respectively. The findings show moderate concordance between contamination of well water and wash water for mesophilic aerobics and total coliforms. The results reveal that a high percentage of dairy farms in the basin under study have poor bacteriological

  3. Mars At Opposition

    Science.gov (United States)

    1995-01-01

    These NASA Hubble Space Telescope views provide the most detailed complete global coverage of the red planet Mars ever seen from Earth. The pictures were taken on February 25, 1995, when Mars was at a distance of 65 million miles (103 million km).To the surprise of researchers, Mars is cloudier than seen in previous years. This means the planet is cooler and drier, because water vapor in the atmosphere freezes out to form ice-crystal clouds. Hubble resolves Martian surface features with a level of detail only exceeded by planetary probes, such as impact craters and other features as small as 30 miles (50 kilometers) across.[Tharsis region] - A crescent-shaped cloud just right of center identifies the immense shield volcano Olympus Mons, which is 340 miles (550 km) across at its base. Warm afternoon air pushed up over the summit forms ice-crystal clouds downwind from the volcano. Farther to the east (right) a line of clouds forms over a row of three extinct volcanoes which are from north to south: Ascraeus Mons, Pavonis Mons, Arsia Mons. It's part of an unusual, recurring 'W'-shaped cloud formation that once mystified earlier ground-based observers.[Valles Marineris region] - The 16 mile-high volcano Ascraeus Mons pokes through the cloud deck along the western (left) limb of the planet. Other interesting geologic features include (lower left) Valles Marineris, an immense rift valley the length of the continental United States. Near the image center lies the Chryse basin made up of cratered and chaotic terrain. The oval-looking Argyre impact basin (bottom) appears white due to clouds or frost.[Syrtis Major region] - The dark 'shark fin' feature left of center is Syrtis Major. Below it the giant impact basin Hellas. Clouds cover several great volcanos in the Elysium region near the eastern (right) limb. As clearly seen in the Hubble images, past dust storms in Mars' southern hemisphere have scoured the plains of fine light dust and transported the dust northward. This

  4. Astrolabe observations of Mars

    Science.gov (United States)

    Standish, E. M.; Debarbat, S.; Sanchez, M.

    1981-01-01

    A previously reported bias in the right ascension residuals of astrolabe observations of Mars is removed by correcting for equinox motion and relating the observations to the Jet Propulsion Laboratory's planetary ephemeris, DE111. The remaining residuals show a 'phase effect', the magnitude of which is solved for and compared with that previously found for meridian transit observations. The final residuals reveal no significant offset in either right ascension or declination. In modifying the residuals, use is also made of Fricke's (1980) correction for the motion of the FK 4 equinox.

  5. Mars Observer spacecraft

    Science.gov (United States)

    Potts, Dennis L.

    1989-01-01

    The technical aspects of the spacecraft for the Mars Observer mission are discussed. The spacecraft development focuses on using existing flight subsystem designs and production techniques to offer a low-cost, reliable, production-type spacecraft. The scientific objectives of the mission and the scientific payloads of the spacecraft are considered. The spacecraft system and its performance are discussed. The subsystems are described in detail, including attitude and articulation control, electrical power supply, propulsion, structure, thermal control, command and data handling, telecommunications, mechanics, and flight software.

  6. The Phoenix Mars Lander Robotic Arm

    Science.gov (United States)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  7. Geology of Potential Landing Sites for Martian Sample Returns

    Science.gov (United States)

    Greeley, Ronald

    2003-01-01

    This project involved the analysis of potential landing sites on Mars. As originally proposed, the project focused on landing sites from which samples might be returned to Earth. However, as the project proceeded, the emphasis shifted to missions that would not include sample return, because the Mars Exploration Program had deferred sample returns to the next decade. Subsequently, this project focused on the study of potential landing sites for the Mars Exploration Rovers.

  8. The Affording Mars Workshop: Background and Recommendations

    Science.gov (United States)

    Thronson, Harley A.; Carberry, Christopher

    2014-01-01

    . The workshop was organized around three topical breakout sessions: 1. The ISS and the path to Mars: The critical coming decade 2. Affordability and sustainability: what does it mean and what are its implications within guidelines established at the start of the workshop? 3. Notional sequence(s) of cost-achievable missions for the 2020s to 2030s, including capability objectives at each stage and opportunities for coordinated robotic partnerships.

  9. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; Rice, M.; Achilles, C.N.; Grotzinger, J.P.; McLennan, S.M.; Williams, J.; Bell III, J.F.; Newsom, H.E.; Downs, R.T.; Maurice, S.; Sarrazin, P.; Yen, A.S.; Morookian, J.M.; Farmer, J.D.; Stack, K.; Milliken, R.E.; Ehlmann, B.L.; Sumner, D.Y.; Berger, G.; Crisp, J.A.; Hurowitz, J.A.; Anderson, R.; Des Marais, D.J.; Stolper, E.M.; Edgett, K.S.; Gupta, S.; Spanovich, N.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John

  10. Challenges to Life on Mars --- Ecological Perspective

    Science.gov (United States)

    Sun, H.; McKay, C.; Friedmann, I.; McDonald, G.

    2003-12-01

    This talk will address the habitability of Mars by considering major environmental challenges against the tolerance limits of microorganisms from extreme terrestrial environments including the Antarctic desert and permafrost. At the planet surface, the combination of low atmospheric pressure (below the triple point of water), high fluxes of ultraviolet radiation, and one or more powerful oxidants are likely to create sterilizing conditions that will be a barrier to the colonization and dispersal of microorganisms. In the subsurface below, long-term survival is dependent upon the frequency and duration of warm, metabolically active periods that are needed to repair cellular damages. Low temperature itself does little harm to microorganisms, but a long dormant period will accrue lethal dosages of ionizing radiation and amino acid racemization. It is probable that within the depth range of current sampling technologies, there are no conditions for extant life, leaving organic or inorganic fossils as the only legitimate target in the search for life on Mars.

  11. SEP Mission Design Space for Mars Orbiters

    Science.gov (United States)

    Woolley, Ryan C.; Nicholas, Austin K.

    2015-01-01

    The advancement of solar-electric propulsion (SEP) technologies and larger, light-weight solar arrays offer a tremendous advantage to Mars orbiters in terms of both mass and timeline flexibility. These advantages are multiplied for round-trip orbiters (e.g. potential Mars sample return) where a large total Delta V would be required. In this paper we investigate the mission design characteristics of mission concepts utilizing various combinations and types of SEP thrusters, solar arrays, launch vehicles, launch dates, arrival dates, etc. SEP allows for greater than 50% more mass delivered and launch windows of months to years. We also present the SEP analog to the ballistic Porkchop plot - the "Bacon" plot.

  12. Sustainable consumption

    DEFF Research Database (Denmark)

    Prothero, Andrea; Dobscha, Susan; Freund, Jim

    2011-01-01

    This essay explores sustainable consumption and considers possible roles for marketing and consumer researchers and public policy makers in addressing the many sustainability challenges that pervade our planet. Future research approaches to this interdisciplinary topic need to be comprehensive...... and systematic and will benefit from a variety of different perspectives. There are a number of opportunities for future research, and three areas are explored in detail. First, the essay considers the inconsistency between the attitudes and behaviors of consumers with respect to sustainability; next, the agenda...... is broadened to explore the role of individual citizens in society; and finally, a macro institutional approach to fostering sustainability is explored. Each of these areas is examined in detail and possible research avenues and public policy initiatives are considered within each of these separate...

  13. Stabilizing Sustainability

    DEFF Research Database (Denmark)

    Reitan Andersen, Kirsti

    The publication of the Brundtland Report in 1987 put the topic of sustainable development on the political and corporate agenda. Defining sustainable development as “a development that meets the needs of the future without compromising the ability of future generations to meet their own needs......” (WCED, 1987, p. 43), the Report also put a positive spin on the issue of sustainability by upholding capitalist beliefs in the possibility of infinite growth in a world of finite resources. While growth has delivered benefits, however, it has done so unequally and unsustainably. This thesis focuses...... on the textile and fashion industry, one of the world’s most polluting industries and an industry to some degree notorious for leading the ‘race to the bottom’ in global labour standards. Despite being faced with increasing demands to practise sustainability, most textile and fashion companies continue to fail...

  14. Sustainability reporting

    NARCIS (Netherlands)

    Kolk, A.

    2005-01-01

    This article gives an overview of developments in sustainability (also sometimes labelled corporate social responsibility) reporting. The article will first briefly indicate how accountability on social and environmental issues started, already in the 1970s when social reports were published.

  15. Sustainable Cities

    DEFF Research Database (Denmark)

    Georg, Susse; Garza de Linde, Gabriela Lucía

    Judging from the number of communities and cities striving or claiming to be sustainable and how often eco-development is invoked as the means for urban regeneration, it appears that sustainable and eco-development have become “the leading paradigm within urban development” (Whitehead 2003......), urban design competitions are understudied mechanisms for bringing about field level changes. Drawing on actor network theory, this paper examines how urban design competitions may bring about changes within the professional field through the use of intermediaries such as a sustainable planning....../assessment tool. The context for our study is urban regeneration in one Danish city, which had been suffering from industrial decline and which is currently investing in establishing a “sustainable city”. Based on this case study we explore how the insights and inspiration evoked in working with the tool...

  16. Sustainable responsibilities?

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    2015-01-01

    This working paper analyzes the conceptions of corporate responsibility for sustainable development in EU policies on CSR. The notion of corporate responsibility has until recently been limited to economical and legal responsibilities. Based on this narrow conception of corporate responsibility.......e. a combination of destruction and construction, this chapter will deconstruct conceptions of responsibility for sustainable development in these EU documents on CSR. A deconstructive conceptual analysis involves destructing dominant interpretations of a text and allowing for constructions of alternative...... such as sustainability actually means, but on what the concept says and does not say. A deconstructive analysis of EU policies on CSR, then, pinpoints that such policies are sites of conceptual struggles. This kind of analysis is suitable for studying conceptions of corporate responsibility for sustainable development...

  17. Agriculture: Sustainability

    Science.gov (United States)

    Sustainability creates and maintains the conditions under which humans and nature can exist in productive harmony, that permit fulfilling the food, feed, and fiber needs of our country and the social, economic and other requirements.

  18. Sustainable finance

    OpenAIRE

    Boersma-de Jong, Margreet F.

    2012-01-01

    Presentation for Springschool of Strategy, University of Groningen, 10 October 2012. The role of CSR is to stimulate ethical behaviour, and as a result, mutual trust in society. Advantage of CSR for the company and the evolution of CSR. From CSR to Sustainable Finance: how does CSR influence Sustainable Business Administration & Management Accounting, Financial Leadership and what is the importance of CSR in the financial sector

  19. SUSTAINABLE TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    Linda STEG

    2007-01-01

    Full Text Available This paper discusses possible contributions of psychologists to sustainable transportation. It is argued that in order to reach sustainable transportation, among others, behaviour changes of individual car users are needed. As transport policies will be more effective if they target important antecedents of travel behaviour, first, factors influencing such behaviour are discussed. It is argued that car use is very attractive and sometimes even necessary for many different reasons. This implies that a combination of policies is called for, each targeting different factors that support car use and hinder the use of more sustainable modes of transport. Next, the paper elaborates on policy strategies that may be employed to achieve sustainable transportation by changing car use. Increasing the attractiveness of sustainable transport modes by means of pull measures seems not sufficient to reduce the level of car use. Besides, car use should be made less attractive by means of push measures to force drivers to reconsider their travel behaviour. The acceptability of such policies may be increased by clearly communicating the aim of these policies, and the expected positive consequences (e.g., less congestion, improved environmental quality. Moreover, possible negative effects for individual freedom may be compensated by implementing additional policies aimed at facilitating the use of sustainable transport modes.

  20. Water and Life on Mars

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils.

  1. 'Endurance' Courtesy of Mars Express

    Science.gov (United States)

    2004-01-01

    NASA's Mars Exploration Rover Opportunity used its panoramic camera to capture this false-color image of the interior of 'Endurance Crater' on the rover's 188th martian day (Aug. 4, 2004). The image data were relayed to Earth by the European Space Agency's Mars Express orbiter. The image was generated from separate frames using the cameras 750-, 530- and 480-nanometer filters.

  2. Safety during MARS exercise

    CERN Multimedia

    2015-01-01

    It is MARS(1) time again! All employed members of the CERN personnel are currently undergoing the annual MARS evaluations.   This is also a good occasion for supervisors and their supervisees to fill in or update the OHS-0-0-3 form(2) “Identification of occupational hazards”. Filling in the OHS-0-0-3 form is an opportunity to assess any safety issues related to the supervisee's activities.  Each of us should, together with our supervisor, regularly identify and assess the hazards we may be exposed to in the course of our professional activities and reflect on how to control and mitigate them. When filling in the OHS form for the first time, it is important to determine any potential hazards as well as the corresponding preventive measures, in particular training and protective equipment. When updating the form, please review the available information to ensure that it still corresponds to the current activities. The form should be updated w...

  3. Sustainable markets for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  4. A concept for NASA's Mars 2016 astrobiology field laboratory.

    Science.gov (United States)

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  5. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    Science.gov (United States)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  6. Mineralogical Results from the Mars Science Laboratory Rover Curiosity

    Science.gov (United States)

    Blake, David Frederick.

    2017-01-01

    NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.

  7. Searching for brine on Mars using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    2016-07-01

    In the last few years, water ice and perchlorate salts capable of melting this ice and producing liquid solutions have been discovered at the surface and shallow subsurface of Mars. In addition to via melting of ice, perchlorate salts may also form liquid solutions by absorbing water vapor when the relative humidity is above a certain threshold in a process known as deliquescence. Formed either by melting or deliquescence, liquid solutions (brine) are the most likely way of liquid water activity on the Martian surface and in the shallow subsurface and are therefore important to understand the habitability of Mars. Using Raman spectroscopy, we provide reference spectra of various mixing states of liquid water, water ice and calcium perchlorate, all of which can occur during brine formation. We focus on the perchlorate symmetric stretching band and the O-H stretching vibrational band to distinguish brine from crystalline salt and water ice. We show that perchlorate brines can be identified by analyzing the peaks and their widths in the decomposed Raman spectra of the investigated samples. This serves as an important reference for future in-situ Raman spectrometers on Mars, such as those on the ExoMars and Mars 2020 rovers and can aid in the detection of brine formation on Mars. (Author)

  8. Dark Dune Spots: possible biomarkers on Mars?

    Science.gov (United States)

    Gánti, Tibor; Horváth, András; Bérczi, Szaniszló; Gesztesi, Albert; Szathmáry, Eörs

    2003-10-01

    Dark Dune Spots (DDSs) are transitional geomorphologic formations in the frost-covered polar regions of Mars. Our analysis of the transformations and arrangements of subsequent stages of DDSs into time sequence revealed their: (i) hole-like characteristics, (ii) development and formation from the bottom of the frosted layer till the disapperance of the latter, (iii) repeated (seasonal and annual) appearance in a pattern of multiple DDSs on the surface, and (iv) probable origin. We focused our studies on a model in which DDSs were interpreted as objects triggered by biological activity involved in the frosting and melting processes. We discuss two competing interpretations of DDSs: development by defrosting alone, and by defrosting and melting enhanced by the activity of Martian Surface Organisms (MSOs). MSOs are hypothetical Martian photosynthetic surface organisms thought to absorb sunlight. As a result they warm up by late winter and melt the ice around them, whereby their growth and reproduction become possible. The ice cover above the liquid water lens harbouring the MSOs provides excellent heat and UV insulation, prevents fast evaporation, and sustains basic living conditions until the ice cover exists. When the frost cover disappears MSOs go to a dormant, desiccated state. We propose further studies to be carried out by orbiters and landers travelling to Mars and by analysis of partial analogues on earth.

  9. Aeolian saltation on Mars at low wind speeds

    Science.gov (United States)

    Sullivan, R.; Kok, J. F.

    2017-10-01

    Laboratory experiments indicate that the fluid threshold friction speed, u*tf, required to initiate fully developed aeolian saltation is much higher on Mars than on Earth. A discrepancy exists between Mars climate models that do not predict winds this strong and observations that sand-sized particles are indeed moving. This paper describes how wind friction speeds well below u*tf, but above the impact threshold, u*ti, required to sustain saltation, can initiate sustained saltation on Mars, but at relatively low flux. Numerical experiments indicate that a sand grain on Mars mobilized sporadically between u*ti and u*tf will develop, over fetch lengths longer than generally available within low-pressure wind tunnels, trajectories capable of splashing grains that propagate saltation and collectively form a cluster of saltating grains that migrate downwind together. The passage of a saltation cluster should leave behind a narrow zone of affected surface grains. The cumulative effect of many clusters represents a low-flux phenomenon that should produce slow changes to aeolian bedforms over periods in which winds remain close to u*ti and never or rarely reach u*tf. Field evidence from small impact ripples along rover traverses is consistent with effects of saltation at these low friction speeds, without obvious evidence for events ≥u*tf. The potential utility of this grain mobility process is that it can operate entirely at more common winds well below u*tf and so help explain widespread sand movements observed on Mars wherever evidence might be mostly absent for u*tf being exceeded.

  10. Geologic map of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  11. Mars Under the Microscope

    Science.gov (United States)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured by the rover's microscopic imager on the 10th day, or sol, of its mission. Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

  12. Polygon on Mars

    Science.gov (United States)

    2008-01-01

    This image shows a small-scale polygonal pattern in the ground near NASA's Phoenix Mars Lander. This pattern is similar in appearance to polygonal structures in icy ground in the arctic regions of Earth. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude. This image was acquired by the Surface Stereo Imager shortly after landing. On the Phoenix mission calendar, landing day is known as Sol 0, the first Martian day of the mission. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. The Mars water cycle

    Science.gov (United States)

    Davies, D. W.

    1981-01-01

    A model has been developed to test the hypothesis that the observed seasonal and latitudinal distribution of water on Mars is controlled by the sublimation and condensation of surface ice deposits in the Arctic and Antarctic, and the meridional transport of water vapor. Besides reproducing the observed water vapor distribution, the model correctly reproduces the presence of a large permanent ice cap in the Arctic and not in the Antarctic. No permanent ice reservoirs are predicted in the temperate or equatorial zones. Wintertime ice deposits in the Arctic are shown to be the source of the large water vapor abundances observed in the Arctic summertime, and the moderate water vapor abundances in the northern temperate region. Model calculations suggest that a year without dust storms results in very little change in the water vapor distribution. The current water distribution appears to be the equilibrium distribution for present atmospheric conditions.

  14. Belly Dancing on Mars

    Science.gov (United States)

    2004-01-01

    This image shows a screenshot from the software used by engineers to drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course for the rover. The virtual 3-D world around the rover is built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige. The red dart to the left shows a target destination for the rover. Red lines indicate the path the rover's wheels will follow to reach the target, and the blue line denotes the path of the rover's 'belly button,' as engineers like to call it.

  15. Erodibility and loss of marly drived soils

    Directory of Open Access Journals (Sweden)

    Reza Sokouti

    2015-10-01

    Full Text Available Considering to high distribution of the marly lands in west Azerbaijan province and high sediment yield of such lands, in this research, the relation among the form and the rate of erosion on marls with their erodibility properties were studied. Therefore, marly regions of province with the special properties were recognized and the soils samples were taken from 15 points of the topsoil of this area. Soil erodibility indices were determined and analyzed by statistical methods considering the form and rate of erosion. Also portable rain simulator were used to study of the runoff and sediment yield potential of such soils. Finally the factors affected the soil erodibility were determined by variance analysis. Results showed erosion rate could be classified as moderate. Gully erosion had highest number in Gare-Agaj and Gare-tappe areas whereas rill erosion had high number in all area of marly lands. Surface runoff volume ranged between 255 to 577 cm3 in Shabanlu region and surface runoff coefficient varied from 0.23 to 0.53 in Gare-tappe. Maximum turbidity yield was determined 180 gr/lit in Gare-Agaj area. It was found that the clay ratio played the important role (P≤0.05 in creating the gully erosion and the volume of runoff in the surface and rill erosion.

  16. Roundtabling Sustainability

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2014-01-01

    The willingness of public authority to delegate social and environmental regulation to the private sector has varied from sector to sector, but has often led to the establishment of ‘voluntary’ standards and certifications on sustainability. Many of these have taken the form of ‘stewardship...... councils’ and ‘sustainability roundtables’ and have been designed around a set of institutional features seeking to establish legitimacy, fend off possible criticism, and ‘sell’ certifications to potential users. The concept of ‘roundtabling’ emphasizes the fitting a variety of commodity......-specific sustainability situations into a form that not only ‘hears more voices’ (as in ‘multi-stakeholder’), but also portrays to give them equal standing at the table of negotiations (roundtable), thus raising higher expectations on accountability, transparency and inclusiveness. In this article, I examine to what...

  17. Mars: a small terrestrial planet

    Science.gov (United States)

    Mangold, N.; Baratoux, D.; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-11-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for remote-sensing data and have opened a new era in the study of Mars geology. While large sections of Mars science have made progress and new topics have emerged, a major question in Mars exploration—the possibility of past or present life—is still unsolved. Without entering into the debate around the presence of life traces, our review develops various topics of Mars science to help the search of life on Mars, building on the most recent discoveries, going from the exosphere to the interior structure, from the magmatic evolution to the currently active processes, including the fate of volatiles and especially liquid water.

  18. Sustainability Evaluation.

    Science.gov (United States)

    Stichnothe, Heinz

    2017-03-17

    The long-term substitution of fossil resources can only be achieved through a bio-based economy, with biorefineries and bio-based products playing a major role. However, it is important to assess the implications of the transition to a bio-based economy. Life cycle-based sustainability assessment is probably the most suitable approach to quantify impacts and to identify trade-offs at multiple levels. The extended utilisation of biomass can cause land use change and affect food security of the most vulnerable people throughout the world. Although this is mainly a political issue and governments should be responsible, the responsibility is shifted to companies producing biofuels and other bio-based products. Organic wastes and lignocellulosic biomass are considered to be the preferred feedstock for the production of bio-based products. However, it is unlikely that a bio-based economy can rely only on organic wastes and lignocellulosic biomass.It is crucial to identify potential problems related to socio-economic and environmental issues. Currently there are many approaches to the sustainability of bio-based products, both quantitative and qualitative. However, results of different calculation methods are not necessarily comparable and can cause confusion among decision-makers, stakeholders and the public.Hence, a harmonised, globally agreed approach would be the best solution to secure sustainable biomass/biofuels/bio-based chemicals production and trade, and to avoid indirect effects (e.g. indirect land use change). However, there is still a long way to go.Generally, the selection of suitable indicators that serve the purpose of sustainability assessment is very context-specific. Therefore, it is recommended to use a flexible and modular approach that can be adapted to various purposes. A conceptual model for the selection of sustainability indicators is provided that facilitates identifying suitable sustainability indicators based on relevance and significance in a

  19. Mars' gravity field and upper atmosphere with MGS, Mars Odyssey, and MRO radio science data

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander J.; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-04-01

    region of the Martian upper atmosphere, CO2, O, and He represent the dominant species. MRO data primarily determine the annual and semi-annual variability of CO2 and O since these two elements are the major constituents along its orbit. MGS and ODY sample altitudes where He is the most abundant species and thus they help constrain the long-term variations of O. We will present an update on the DTM-Mars model using MGS, ODY, and MRO radio science data. The improved atmospheric model provides a better prediction of the long-term variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars using MGS, ODY, and MRO radio tracking data. The solution will be especially based on 8 years of MRO data from August 2006 to June 2014.

  20. Mars geologic mapping program: Review and highlights

    Science.gov (United States)

    Scott, David H.

    1991-06-01

    The Mars Geologic Mapping (MGM) Program was introduced by NASA in 1987 as a new initiative in the Planetary Geology and Geophysics (PGG) Program. The overall purpose of the program is to support research on topical science problems that address specific questions. Among the objectives of the project are: (1) to produce highly detailed geologic maps that will greatly increase the knowledge of the materials and processes that have contributed to the evolutionary history of Mars; (2) to define areas of special interest for possible future investigation by planned missions (Mars Observer, Mars Sample Return); and (3) to maintain the interest of the planetary community in the development of new concepts and the re-evaluation of Martian geology as new data in usable form become available. Some interesting highlights of the geologic mapping indicate that multiple flood episodes occurred at different times during the Hesperian Period in both Kasei and Maja Valles. Studies of small channels in the Memnonia, Mangala, and Tharsis regions show that fluvial events appear to have occurred during the Amazonian Period at equatorial latitudes. Flood waters occurred during the Amazonian Period at equatorial latitudes. Flood waters from Mangala Valles may have seeped into surficial materials with the subsequent development of numerous sapping channels and debris flows; this suggests that the ancient highland terrain consists of relatively unconsolidated materials. Multiple layers were observed for the first time in the ridged plains lava flows covering large areas of Lunae Planum; some wrinkle ridges in this area are associated with grabens and collapse volcanic units at Hadriaca and Tyrrhena Paterae indicates that the units may have been emplaced by gravity-driven pyroclastic flows. Unlike the north polar layered deposits, those in the south polar region show no angular unconformities or evidence of faulting and folding. Water ice in the south polar layered deposits may be protected

  1. Evaluation of NASA's Mars Public Engagement Program

    Science.gov (United States)

    Viotti, M.; Bowman, C.

    2014-12-01

    From 2009-2014, NASA's Mars Public Engagement (MPE) Program developed and implemented project-level logic models and associated impacts and indicators tables using the NSF's "Framework for Evaluating Impacts of Informal Science Education Projects" (Friedman, 2008) as a key guiding document. This Framework was selected given the national-expert-level evaluation committee who synthesized evaluation in a way that allows project-to-project comparisons in key areas of measurable change, while also allowing variation for appropriate project-specific measures and outcomes. These logic models, revisited and refined annually, provide guidance for all measures developed, tested, and implemented with MPE projects, including the Mars Student Imaging Project (MSIP), the Imagine Mars Project, and Mars Educator Professional Development. Project questionnaires were developed, tested, refined, retested, and finalized following standard procedures outlined in Converse & Presser (1986), Dillman, Smyth, & Christian (2009), Krosnick & Presser (2010), and Presser, et al. (2004). Interview questions were drafted, reviewed by project staff, and revised following established interview question development guidelines (e.g., Kvale, 1996; Maxwell, 2005; Maykut & Morehouse, 1994; Strauss & Corbin, 1998). For MSIP final projects, a rubric guided by Lantz (2004) was developed to evaluate systematically the quality and completeness of the final projects. We will discuss our instruments as well as the important issue of nonresponse error, which is relevant to a wide range of NASA programs because most data is collected from customers who are voluntary participants, as opposed to grantees who must report as a condition of their grant. NASA programs that consider data and report results from voluntary samples must be cautious about claims or decisions based on those data. We will discuss the ways in which we consider and address this challenge.

  2. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power (~5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both science and future manned exploration and utilization.

  3. Astrobiological aspects of Mars and human presence: pros and cons.

    Science.gov (United States)

    Horneck, G

    2008-08-01

    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with

  4. NASA Mars Science Laboratory Rover

    Science.gov (United States)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  5. Approach to Mars Field Geology

    Science.gov (United States)

    Muehlberger, William; Rice, James W.; Parker, Timothy; Lipps, Jere H.; Hoffman, Paul; Burchfiel, Clark; Brasier, Martin

    1998-01-01

    The goals of field study on Mars are nothing less than to understand the processes and history of the planet at whatever level of detail is necessary. A manned mission gives us an unprecedented opportunity to use the immense power of the human mind to comprehend Mars in extraordinary detail. To take advantage of this opportunity, it is important to examine how we should approach the field study of Mars. In this effort, we are guided by over 200 years of field exploration experience on Earth as well as six manned missions exploring the Moon.

  6. Ten Blue Links on Mars

    OpenAIRE

    Clarke, Charles L. A.; Cormack, Gordon V.; Lin, Jimmy; Roegiest, Adam

    2016-01-01

    This paper explores a simple question: How would we provide a high-quality search experience on Mars, where the fundamental physical limit is speed-of-light propagation delays on the order of tens of minutes? On Earth, users are accustomed to nearly instantaneous response times from search engines. Is it possible to overcome orders-of-magnitude longer latency to provide a tolerable user experience on Mars? In this paper, we formulate the searching from Mars problem as a tradeoff between "effo...

  7. Mars Express wins unanimous support

    Science.gov (United States)

    1998-11-01

    "The green light for Mars Express shows that Europe is perfectly capable of seizing special chances in exploring space," said Roger Bonnet, ESA's director of science. "At a cost to ESA of 150 million ECU, Mars Express is the cheapest Mars mission ever, yet its importance and originality are far greater than the price tag suggests." Bonnet continued: "Mars Express has been advertised by the Science Programme Committee as a test case for new approaches in procuring and managing future science projects, with a view to achieving major savings. In the international arena, Mars Express will confirm Europe's interest in a major target for space research in the new century, when we make our forceful debut at the Red Planet. In fact, Mars Express is designed to be a pivotal element of an international multi-mission, global effort for the exploration of Mars." Development of the spacecraft will now proceed swiftly, to meet the deadline of an exceptionally favourable launch window early in June 2003. Mars Express will go into orbit around Mars at Christmas 2003. Seven scientific instruments on board will include a high-resolution camera, a range of spectrometers, and a radar to penetrate below the surface. For the first time in the history of the exploration of the Red Planet, scientists can hope to detect sub-surface water, whether it exists in the form of undergound rivers, pools, glaciers or permafrost. Signs of life on Mars, whether extinct or continuing today, may reveal themselves to a lander carried by Mars Express. This is Beagle 2, a project led by the Open University in the United Kingdom, with contributions from many other European countries. The lander also promises invaluable information about the chemistry of the Martian surface and atmosphere. Beagle 2 is to be independently funded. Some of the necessary funds have already been raised and ESA has agreed with the principal investigator to keep a place for Beagle 2 aboard Mars Express. The financial situation

  8. Boots on Mars: Earth Independent Human Exploration of Mars

    Science.gov (United States)

    Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina

    2017-01-01

    This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.

  9. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.

    2012-01-01

    We use the extensive database of magnetic observations from the Mars Global Surveyor to investigate magnetic disturbances in the Martian space environment statistically, both close to and far from crustal anomalies. We discuss the results in terms of possible ionospheric and magnetospheric currents...... a magnetic experiment at the martian surface, the Mars Surface Magnetic Observatory (MSMO) including the science objectives, science experiment requirements, instrument and basic operations. We find the experiment to be feasible within the constraints of proposed stationary landing platforms....

  10. Propulsion engineering study for small-scale Mars missions

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.

    1995-09-12

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  11. Sustainable Soesterkwartier

    NARCIS (Netherlands)

    Abrahams, H.; Goosen, H.; Jong, de F.; Sickmann, J.; Prins, D.

    2010-01-01

    The municipality of Amersfoort wants to construct an endurable and sustainable eco-town in the Soesterkwartier neighbourhood, by taking future climate change into account. The impact of climate change at the location of the proposed eco-town was studied by a literature review.

  12. Sustainable agriculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    New farming techniques, better food security. Since 1970, IDRC-supported research has introduced sustainable agricultural practices to farmers and communities across the devel- oping world. The result: higher productivity, less poverty, greater food security, and a healthier environment. Opportunities grow on trees in ...

  13. Sustainable Development

    African Journals Online (AJOL)

    Tsegai Berhane Ghebretekle

    Abstract. This article examines the concept of sustainable development after the Post-. 2015 Paris Climate Change Agreement with particular emphasis on Ethiopia. Various African countries are vulnerable to climate change, as is evidenced by recent droughts. Ethiopia is selected as a case study in light of its pace in.

  14. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  15. Architecture Sustainability

    NARCIS (Netherlands)

    Avgeriou, Paris; Stal, Michael; Hilliard, Rich

    2013-01-01

    Software architecture is the foundation of software system development, encompassing a system's architects' and stakeholders' strategic decisions. A special issue of IEEE Software is intended to raise awareness of architecture sustainability issues and increase interest and work in the area. The

  16. Sustainability reporting

    NARCIS (Netherlands)

    Kolk, A.

    2005-01-01

    This article gives an overview of developments in sustainability (also sometimes labelled corporate social responsibility) reporting. It The article will first briefly indicate how accountability on social and environmental issues started, already in the 1970s when social reports were published.

  17. Exergy sustainability.

    Energy Technology Data Exchange (ETDEWEB)

    Robinett, Rush D. III (.; ); Wilson, David Gerald; Reed, Alfred W.

    2006-05-01

    Exergy is the elixir of life. Exergy is that portion of energy available to do work. Elixir is defined as a substance held capable of prolonging life indefinitely, which implies sustainability of life. In terms of mathematics and engineering, exergy sustainability is defined as the continuous compensation of irreversible entropy production in an open system with an impedance and capacity-matched persistent exergy source. Irreversible and nonequilibrium thermodynamic concepts are combined with self-organizing systems theories as well as nonlinear control and stability analyses to explain this definition. In particular, this paper provides a missing link in the analysis of self-organizing systems: a tie between irreversible thermodynamics and Hamiltonian systems. As a result of this work, the concept of ''on the edge of chaos'' is formulated as a set of necessary and sufficient conditions for stability and performance of sustainable systems. This interplay between exergy rate and irreversible entropy production rate can be described as Yin and Yang control: the dialectic synthesis of opposing power flows. In addition, exergy is shown to be a fundamental driver and necessary input for sustainable systems, since exergy input in the form of power is a single point of failure for self-organizing, adaptable systems.

  18. Sustainable processing

    DEFF Research Database (Denmark)

    Kristensen, Niels Heine

    2004-01-01

    Kristensen_NH and_Beck A: Sustainable processing. In Otto Schmid, Alexander Beck and Ursula Kretzschmar (Editors) (2004): Underlying Principles in Organic and "Low-Input Food" Processing - Literature Survey. Research Institute of Organic Agriculture FiBL, CH-5070 Frick, Switzerland. ISBN 3-906081-58-3...

  19. Sustainable finance

    NARCIS (Netherlands)

    dr. Margreet F. Boersma-de Jong

    2012-01-01

    Presentation for Springschool of Strategy, University of Groningen, 10 October 2012. The role of CSR is to stimulate ethical behaviour, and as a result, mutual trust in society. Advantage of CSR for the company and the evolution of CSR. From CSR to Sustainable Finance: how does CSR influence

  20. Green economic growth premise for sustainable development

    OpenAIRE

    Carmen Lenuţa TRICĂ; Marilena PAPUC

    2013-01-01

    Accelerating the global issues such as natural resource depletion, damage to the natural environment, economic and financial crises and consumption growth led to the shift of the development paradigm from consumption to sustainable development and recognition of the new path, namely green economy. At the European level a number of international organizations discussed issues of transition to green economy (EC, UNEP, OECD). In 2008, UNEP launched “Green Economy Initiative to Get the Global Mar...

  1. Control Systems for the Mars Pathfinder Mission

    OpenAIRE

    Liu, Dankai; Franklin, Steve

    1995-01-01

    The Mars Pathfinder Project began in October 1993, along with the Near Earth Asteroid Rendezvous Program, as one of the first Discovery Program missions funded by NASA. The Mars Pathfinder Project is planned, designed, launched and operated by JPL Mars Pathfinder Project Team under the management of JPL Mars Exploration Project Office. The project is intended to be JPL's most visible demonstration of a successful better, faster, cheaper mission in accordance with NASA's new direction. Mars...

  2. Characterization of MarR Superrepressor Mutants

    OpenAIRE

    Alekshun, Michael N.; Levy, Stuart B.

    1999-01-01

    MarR negatively regulates expression of the multiple antibiotic resistance (mar) locus in Escherichia coli. Superrepressor mutants, generated in order to study regions of MarR required for function, exhibited altered inducer recognition properties in whole cells and increased DNA binding to marO in vitro. Mutations occurred in three areas of the relatively small MarR protein (144 amino acids). It is surmised that superrepression results from increased DNA binding activities of these mutant pr...

  3. Tafoni - A Llink Between Mars and Earth

    Science.gov (United States)

    Iacob, R. H.; Iacob, C. E.

    2013-12-01

    that no longer exist. NASA's current Mars Science Laboratory mission offers exceptional opportunities to perform a comparative study between tafoni formations on Mars and those on Earth. The present mission of Curiosity at Gale Crater, benefiting not only from the most advanced technology for in-situ investigations but also from a terrain rich in rock breakdown features, was able to reveal new tafoni formations. Gale Crater's landscape presents a variety of surface erosion elements, witnesses of major planetary transformations suffered by Mars during the past 3 billion years. While the wind and sand-blasting erosion are the most recent causes of the surface erosion at Gale Crater, leading to the smoothing, thinning, exfoliation and piercing of various rock layers, other geological formations such as alluvial fans, moat areas, gravel sediments, round shaped mounds and toadstool formations demonstrate that liquid water was vigorously shaping the surface of Mars billions of years ago. In such a context, the study of tafoni formations revealed during Curiosity's trek from Bradbury Landing through the Glenelg area of Gale Crater, will help advance the understanding of the Martian past and present environment, providing scenarios for the evolution of the Red Planet. The presentation contains various images of tafoni samples from Mars and Earth, explaining by similitude presumptive weathering mechanisms on Mars.

  4. MARVY: Mars Velocity Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The successful landing of the large Mars rover Curiosity on August 5, 2012 outlined the increasing complexity of safely landing large rovers on the planet. A precise...

  5. Properties of cryobrines on Mars

    DEFF Research Database (Denmark)

    Möhlmann, D.; Thomsen, Kaj

    2011-01-01

    Brines, i.e. aqueous salty solutions, increasingly play a role in a better understanding of physics and chemistry (and eventually also putative biology) of the upper surface of Mars. Results of physico-chemical modeling and experimentally determined data to characterize properties of cryobrines...... of potential interest with respect to Mars are described. Eutectic diagrams, the related numerical eutectic values of composition and temperature, the water activity of Mars-relevant brines of sulfates, chlorides, perchlorides and carbonates, including related deliquescence relative humidity, are parameters...... and properties, which are described here in some detail. The results characterize conditions for liquid low-temperature brines ("cryobrines") to evolve and to exist, at least temporarily, on present Mars. (C) 2010 Elsevier Inc. All rights reserved....

  6. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  7. Mars Solar Balloon Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  8. Is There Life on Mars?

    Science.gov (United States)

    Allen, Bruce C.; Herreid, Clyde Freeman

    1998-01-01

    Presents a conflict scenario for a case study on whether there is evidence of past life on Mars. Includes details about the use of this case study in developing an interdisciplinary approach to scientific ethics. (DDR)

  9. Mars Regolith Water Extractor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Regolith Water Extractor (MRWE) is a system for acquiring water from the Martian soil. In the MRWE, a stream of CO2 is heated by solar energy or waste heat...

  10. Aeroshell for Mars Science Laboratory

    Science.gov (United States)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver. This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested. The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent. The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet. In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell. The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in this image does not have the

  11. Mars Exploration Using Biomorphic Flyers

    Science.gov (United States)

    Thakoor, S.; Chahl, J.; Srinivasan, M.; Cabrol, N.; Young, L.; Hine, B.; Zornetzer, S.

    Mars imagery obtained by the Mariner, Viking, Pathfinder, Mars Global Surveyor and Mars Odyssey Missions suggests the previous existence of abundant liquid water (considered essential for life as we know it). It is not clear what transpired on the Martian climate to have turned the planet in to the desert that it is today. Developing a comprehensive understanding of the past and present climatic events for our sister planet Mars may provide important information relevant to the future health and well being of our own planet. Following and exploring water flow features is a valuable strategy in the search for extant or extinct life, it satisfies our fundamental scientific curiosity, and could provide answers to the fundamental questions surrounding the question of the origins of life in our solar system. Low altitude air-borne exploration of Mars offers a means for covering large areas, perhaps up to several hundred kilometers, quickly and efficiently. Aerial exploration should provide a close-up birds eye view of the planetary terrain. Exploration that can only be imagined today could become a reality if we develop methods to fly on Mars and navigate through its difficult terrain to image/study sites of interest. Mars offers a substantial challenge to conventional flight due to its thin atmosphere (about a hundredth that on Earth); lack of magnetic compassing for navigation, and the limited telecommunications or navigational infrastructure. To meet and overcome these challenges, we are adapting for Mars exploration principles proven successful in nature to achieve stable flight control and navigation. By incorporating engineering solutions modeled on successful biological solutions we will provide novel and highly effective micro flyer capabilities suitable for aerial surveillance of Mars. We will describe a few example sites on Mars whose exploration absolutely requires the ability to cover several hundred kilometers. We will illustrate how autonomous biomorphic

  12. Reaching 1 m deep on Mars: the Icebreaker drill.

    Science.gov (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  13. Mars Polar Lander: The Search Continues

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] (A) Polar Lander landing site ellipses. [figure removed for brevity, see original site] (B) MOC coverage (orange) to 17 Jan. 2000. [figure removed for brevity, see original site] (C) MOC image mosaic to 17 Jan. 2000. [figure removed for brevity, see original site] (D) Sample high resolution views from MOC mosaic. Since mid-December 1999, the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft has been taking pictures of Mars Polar Lander's landing zone near 76oS, 195oW, in hopes of finding some evidence as to the fate of the spacecraft that went missing during its December 3, 1999, landing attempt. To take these pictures, the MGS spacecraft is pointed a few degrees off its normal, nadir-looking (straight down) path. The first phase of imaging was completed December 24, 1999, but nothing was found. A second, expanded search was requested by the Mars Surveyor Operations Project and was begun in early January 2000.The MOC operations team at Malin Space Science Systems has been busy with the Mars Polar Lander search since December 3rd--initial efforts focused on the use of MOC as a buffer or 'storage space' for data relayed through the MGS Mars Relay (MR) system. It had been hoped that the Polar Lander would try to communicate to Earth using its UHF antenna to relay data through the MGS relay system. Data from the relay come through the MOC and are received at Malin Space Science Systems much in the same way that pictures from MOC are obtained. The relay effort was concluded on January 17, 2000, with no word from the Polar Lander. Meanwhile, the MOC operations team began to plan, command, retrieve, and analyze images designed to look for the Polar Lander. These pictures are taken at the highest spatial resolution possible for MOC, 1.5 meters (5 ft.) per pixel. At this resolution, the fuselage and wings of a jumbo jet can be distinguished, but a Polar Lander would only be a few pixels, at most, in

  14. Mars : a small terrestrial planet

    OpenAIRE

    Mangold, N.; Baratoux, David; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-01-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for rem...

  15. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  16. SUSTAINABLE CORPORATE AND SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    DORU CÎRNU

    2017-06-01

    Full Text Available In recent decades, the image of the international business environment has changed significantly. Studies conducted by UNCTAD shows that corporate phenomenon developments in the world economy is growing. Without claiming to present an exhaustive topic so vast we tried to capture some "facets" of sustainable development from the perspective of multinational corporations, given the expansion of these economic entities and strengthening their power in the global economy. We present more negative aspects of the actions of multinational corporations in terms of sustainable development, it is very important to know both sides of the coin, which will not only help transnational giants including release. Based on issues such as corporate social responsibility, environmental pollution and workers' rights, we sought to counter official statements. The conclusion is that these economic entities are real forces that can not be ignored in today's world and the obvious problem of sustainable development can not be addressed independently of the phenomenon, context we also identified some possible solutions to conflict of corporations and essence of the concept of sustainable development.

  17. Molecular adsorbent recirculating system (MARS) in acute liver injury and graft dysfunction: Results from a case-control study.

    Science.gov (United States)

    Gerth, Hans U; Pohlen, Michele; Thölking, Gerold; Pavenstädt, Hermann; Brand, Marcus; Wilms, Christian; Hüsing-Kabar, Anna; Görlich, Dennis; Kabar, Iyad; Schmidt, Hartmut H J

    2017-01-01

    The primary therapeutic goals in the treatment of liver injury are to support liver regeneration or bridge the gap to liver transplantation (LT). Molecular adsorbent recirculating system (MARS) therapy has shown beneficial effects for specific symptoms of liver failure; however, general survival advantages have not yet been demonstrated. We studied the effects of MARS therapy compared to standard medical treatment (SMT) in two patient cohorts: in patients with an acute liver injury and in those with graft dysfunction (GD). We report on our experience over a 6.5-year period with 73 patients treated with SMT or with SMT and MARS (MARS group). In total, 53 patients suffered from acute liver injury in their native liver without a preexisting liver disease (SMT: n = 31, MARS: n = 22), and 20 patients showed a severe GD after LT (SMT: n = 10, MARS: n = 10). The entire cohort was predominantly characterized by hemodynamically and respiratorily stable patients with a low hepatic encephalopathy (HE) grade and a model of end-stage liver disease (MELD) score of 20.57 (MARS) or 22.51 (SMT, p = 0.555). Within the MARS group, the median number of extracorporeal therapy sessions was four (range = 3-5 sessions). Independent of the underlying etiology, MARS improved the patients' bilirubin values in the short term compared to SMT alone. In patients with acute liver injury, this response was sustained even after the end of MARS therapy. By contrast, the majority of patients with GD and an initial response to MARS therapy experienced worsened hyperbilirubinemia. No differences in 28-day mortality were observed with respect to acute liver injury (MARS 5.3% (95% CI: 0-15.3); SMT 3.3% (95% CI: 0-9.8), p = 0.754) or GD (MARS 20.0% (95% CI: 0-44.7), SMT 11.1% (95% CI: 0-31.7), p = 0.478). Although it did not improve 28-day mortality, MARS therapy improved the short-term response in patients with acute liver injury as well as in those with GD. In cases of acute hepatic injury, the use of

  18. Molecular adsorbent recirculating system (MARS) in acute liver injury and graft dysfunction: Results from a case-control study

    Science.gov (United States)

    Thölking, Gerold; Pavenstädt, Hermann; Brand, Marcus; Wilms, Christian; Hüsing-Kabar, Anna; Görlich, Dennis; Kabar, Iyad; Schmidt, Hartmut H. J.

    2017-01-01

    Background The primary therapeutic goals in the treatment of liver injury are to support liver regeneration or bridge the gap to liver transplantation (LT). Molecular adsorbent recirculating system (MARS) therapy has shown beneficial effects for specific symptoms of liver failure; however, general survival advantages have not yet been demonstrated. Aim We studied the effects of MARS therapy compared to standard medical treatment (SMT) in two patient cohorts: in patients with an acute liver injury and in those with graft dysfunction (GD). Methods We report on our experience over a 6.5-year period with 73 patients treated with SMT or with SMT and MARS (MARS group). In total, 53 patients suffered from acute liver injury in their native liver without a preexisting liver disease (SMT: n = 31, MARS: n = 22), and 20 patients showed a severe GD after LT (SMT: n = 10, MARS: n = 10). Results The entire cohort was predominantly characterized by hemodynamically and respiratorily stable patients with a low hepatic encephalopathy (HE) grade and a model of end-stage liver disease (MELD) score of 20.57 (MARS) or 22.51 (SMT, p = 0.555). Within the MARS group, the median number of extracorporeal therapy sessions was four (range = 3–5 sessions). Independent of the underlying etiology, MARS improved the patients’ bilirubin values in the short term compared to SMT alone. In patients with acute liver injury, this response was sustained even after the end of MARS therapy. By contrast, the majority of patients with GD and an initial response to MARS therapy experienced worsened hyperbilirubinemia. No differences in 28-day mortality were observed with respect to acute liver injury (MARS 5.3% (95% CI: 0–15.3); SMT 3.3% (95% CI: 0–9.8), p = 0.754) or GD (MARS 20.0% (95% CI: 0–44.7), SMT 11.1% (95% CI: 0–31.7), p = 0.478). Conclusions Although it did not improve 28-day mortality, MARS therapy improved the short-term response in patients with acute liver injury as well as in those

  19. Mars manned fusion spaceship

    Science.gov (United States)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  20. Modeling Mars' Hydrogen Exosphere

    Science.gov (United States)

    Holmstrom, M.

    2006-12-01

    Traditionally, exospheric densities and velocity distributions are modelled by spherical symmetric analytical Chamberlain functions, assuming gravity is the only force acting on the neutrals. Planetary exospheres are however not spherical symmetric to any good approximation, as evident from observations, due to non- uniformexobase conditions and effects such as photoionization, radiation pressure, charge exchange, recombination and planetary rotation. To account for these effects numerical simulations are needed. Using Monte Carlo test particle simulations it is possible to account for the above effects (if ion distributions are assumed). Even though neutrals in the exospheres by definition do not collide often, collisions occur. Especially near the exobase the transition is gradual from collision dominated regions at lower heights (with Maxwellian velocity distributions) to essentially collisionless regions at greater heights. We present exospheric simulations that include collisions self consistently using the direct simulation Monte Carlo (DSMC) approach. The code is three dimensional, parallel and uses an adaptive grid, allowing many particles to be included in the simulations, leading to accurate results. In particular, we here study Mars' hydrogen exosphere and the effects of the above processes, including thermal escape rates.

  1. [Dentists on Mars

    Science.gov (United States)

    Duke, P. J.

    2004-01-01

    The oral health of astronauts, last studied in the mid- 1970s on Skylab, has not been a priority area of study for NASA due to the short length of shuttle stays. But with longer stays on the International Space Station, and planning for a trip to Mars, investigations into how spaceflight affects oral health are needed. The objective of this symposium is to introduce the dental research community to changes occurring in humans who go into space, and how these changes might impact oral health. Dr. Millie Hughes-Fulford, an astronaut-scientist, will review what happens to humans who go into space, and the difficulties of living, and carrying out experiments in space. She will then discuss her research on cell cultures of osteoblasts in space, and in hypergravity Dr. Gerald Sonnenfeld will review immunological changes that occur in spaceflight, and relate the observed decreases in various types of immunological responses to possible effects on oral immunological factors. Dr. Marian Lewis will discuss the effects of spaceflight on gene expression using results from her spaceflight experiments on various cell types. Dr. Jack van Loon, fiom the Dutch Experiment Support Center, will review what is known about bone loss in humans and rats and metatarsal cultures which go into space, and review ground based models (head down bedrest, and tail suspension) that simulate the unloading of spaceflight. Attendees will gain a knowledge of spaceflight research, and information on getting their own experiments in space. The symposium is supported by the NASA Office of Bioastronautics

  2. Sustainable Consumption

    DEFF Research Database (Denmark)

    Røpke, Inge

    2015-01-01

    in wider social, economic and technological frameworks is emphasised. In particular, the chapter is inspired by practice theory and transition theory. First, various trends in consumption are outlined to highlight some of the challenges for sustainability transitions. Then, it is discussed how consumption...... patterns are shaped over time and what should be considered in sustainability strategies. While discussions on consumption often take their point of departure in the perspective of the individual and then zoom to the wider context, the present approach is the opposite. The outline starts with the basic...... biophysical, distributional and economic conditions for high consumption in rich countries and then zooms in on the coevolution of provision systems and consumption, and how consumption is shaped by practices and projects in everyday life. Furthermore, the paper discusses whether and how transition...

  3. Sustainable Buildings

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Elle, Morten

    The scientific community agrees that: all countries must drastically and rapidly reduce their CO2 emissions and that energy efficient houses play a decisive role in this. The general attitude at the workshop on Sustainable Buildings was that we face large and serious climate change problems that ...... that need urgent action. The built environment is an obvious area to put effort into because of the large and cost-effective energy saving potential and potential for Renewable Energy-based supply systems for buildings.......The scientific community agrees that: all countries must drastically and rapidly reduce their CO2 emissions and that energy efficient houses play a decisive role in this. The general attitude at the workshop on Sustainable Buildings was that we face large and serious climate change problems...

  4. Test and Validation of the Mars Science Laboratory Robotic Arm

    Science.gov (United States)

    Robinson, M.; Collins, C.; Leger, P.; Kim, W.; Carsten, J.; Tompkins, V.; Trebi-Ollennu, A.; Florow, B.

    2013-01-01

    The Mars Science Laboratory Robotic Arm (RA) is a key component for achieving the primary scientific goals of the mission. The RA supports sample acquisition by precisely positioning a scoop above loose regolith or accurately preloading a percussive drill on Martian rocks or rover-mounted organic check materials. It assists sample processing by orienting a sample processing unit called CHIMRA through a series of gravity-relative orientations and sample delivery by positioning the sample portion door above an instrument inlet or the observation tray. In addition the RA facilitates contact science by accurately positioning the dust removal tool, Alpha Particle X-Ray Spectrometer (APXS) and the Mars Hand Lens Imager (MAHLI) relative to surface targets. In order to fulfill these seemingly disparate science objectives the RA must satisfy a variety of accuracy and performance requirements. This paper describes the necessary arm requirement specification and the test campaign to demonstrate these requirements were satisfied.

  5. Solar Flight on Mars and Venus

    Science.gov (United States)

    Landis, Geoffrey A.; LaMarre, Christopher; Colozza, Anthony

    2002-10-01

    Solar powered aircraft are of interest for exploring both Mars and Venus. The thin atmosphere of Mars presents a difficult environment for flying. It is clear that a new approach is needed. By making a totally solar airplane, we can eliminate many of the heavy components, and make an airplane that can fly without fuel. Using high efficiency solar cells, we can succeed with an airplane design that can fly for up to 6 hours in near-equatorial regions of Mars (4 hours of level flight, plus two hours of slow descent), and potentially fly for many days in the polar regions. By designing an airplane for a single day flight. In particular, this change means that we no longer have to cope with the weight of the energy storage system that made previous solar powered airplanes for Mars impractical). The new airplane concept is designed to fly only under the optimal conditions: near equatorial flight, at the subsolar point, near noon. We baseline an 8 kg airplane, with 2 kg margin. Science instruments will be selected with the primary criterion of low mass. Solar-powered aircraft are also quite interesting for the exploration of Venus. Venus provides several advantages for flying a solar-powered aircraft. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The atmospheric pressure makes flight much easier than on planets such as Mars. The atmospheric pressure on Venus is presented. From an altitude of approximately 45 km (pressure = 2 bar), to approximately 60 km (pressure = 0.2 bar), terrestrial airplane experience can be easily applied to a Venus airplane design. At these flight altitudes, the temperature varies from 80 C at 45 km, decreasing to -35 C at 60 km. Also, the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. These factors make Venus a prime choice for a long-duration solar-powered aircraft

  6. Oxychlorine Species on Mars: The Gale Crater Story

    Science.gov (United States)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Morris, R. V.; Clark, B. C.; Mahaffy, P. H.; Wray, J. J.; Fairen, A. G.; Gellert, R.; Yen, A. S.; hide

    2015-01-01

    Comparing data from the Alpha- Particle X-Ray Spectrometer (APXS) and the Sample Analysis at Mars (SAM) instruments on MSL reveals a strong linear correlation between chlorine and oxygen, further demonstrating the presence of oxychlorine species in Gale Crater and, very likely, globally on Mars. Perchlorate was first discovered on Mars by the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on the Phoenix lander in 2008. Current hypotheses suggest that the formation of oxychlorine species such as perchlorate or chlorate is a global process and that these species should be globally distributed on Mars [e.g. 2-4]. To date, the SAM and Chemistry and Mineralogy (CheMin) instruments on MSL have analyzed one scooped sample of aeolian material (Rocknest [RN]), and four drilled samples (John Klein [JK], Cumberland [CB], Windjana [WJ], and Confidence Hills [CH]). The APXS instrument has also investigated the same or very similar samples. Although not definitively identified, oxychlorine species have been proposed to explain releases of O2, HCl, and chlorinated hydrocarbon species detected by evolved gas analysis (EGA) with the SAM instrument. We report a strong linear correlation between wt. % Cl detected by APXS and moles O2 detected by SAM during pyrolysis, indicating the presence of oxychlorine species in Gale Crater.

  7. Survivability of Microbes in Mars Wind Blown Dust Environment

    Science.gov (United States)

    Mancinelli, Rocco L.; Klovstad, Melisa R.; Fonda, Mark L.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Although the probability of Earth microbes growing (dividing) in the Martian environment is extremely low, the probability of their survival on the Martian surface is unknown. During the course of landed missions to Mars terrestrial microbes may reach the surface of Mars via inadequately sterilized spacecraft landers, rovers, or through accidental impact of orbiters. This investigation studied the potential for Earth microbes to survive in the windblown dust on the surface of Mars. The rationale for the study comes from the fact that Mars regularly has huge dust storms that engulf the planet, shading the surface from solar UV radiation. These storms serve as a mechanism for global transfer of dust particles. If live organisms were to be transported to the surface of Mars they could be picked up with the dust during a dust storm and transported across the planet. Washed, dried spores of Bacillus subtilis strain HA 101 were aseptically mixed with sterile sieved (size range of 1-5microns) Mars soil standard (obtained from NASA Johnson Space Center, Houston, Texas, USA), or Fe-montmorillonite such that the number of microbes equals 5 x 10(exp 6)/g dry wt soil. The microbe soil mixture was placed in a spherical 8 L Mars simulation chamber equipped with a variable speed rotor, gas ports and an Oriel deuterium UV lamp emitting light of wave lengths 180-400 nm. The chamber was sealed, flushed with a simulated Martian atmosphere (96.9% CO2, 3% O2, 0.1% H2O), and the pressure brought to 10 torr. The lamp and rotor were switched on to begin the experiment. Periodically samples were collected from the chamber, and the numbers of microbial survivors g soil was determined using plate counts and the most probable number method (MPN). The data indicate that Bacillus subtilis spores dispersed with Mars analog soil in a Mars atmosphere (wind blown dust) survive exposure to 5.13 KJ m-2 UV radiation, suggesting that Mars wind blown dust has potential to the protect microbes from solar

  8. Development and Validation of the User Version of the Mobile Application Rating Scale (uMARS).

    Science.gov (United States)

    Stoyanov, Stoyan R; Hides, Leanne; Kavanagh, David J; Wilson, Hollie

    2016-06-10

    The Mobile Application Rating Scale (MARS) provides a reliable method to assess the quality of mobile health (mHealth) apps. However, training and expertise in mHealth and the relevant health field is required to administer it. This study describes the development and reliability testing of an end-user version of the MARS (uMARS). The MARS was simplified and piloted with 13 young people to create the uMARS. The internal consistency and test-retest reliability of the uMARS was then examined in a second sample of 164 young people participating in a randomized controlled trial of a mHealth app. App ratings were collected using the uMARS at 1-, 3,- and 6-month follow up. The uMARS had excellent internal consistency (alpha = .90), with high individual alphas for all subscales. The total score and subscales had good test-retest reliability over both 1-2 months and 3 months. The uMARS is a simple tool that can be reliably used by end-users to assess the quality of mHealth apps.

  9. Mars Immunoassay Life Detection Instrument (MILDI)

    Science.gov (United States)

    McKay, David; Steele, Andrew; Allen, Carlton; Thomas-Kepta, Kathie; Schweitzer, Mary; Priscu, John; Sears, Joe; Avci, Recep; Firman, Keith

    2000-01-01

    The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. We have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to small numbered spots on a small (two to three centimeters) test plate where they become firmly attached after drying. On Mars, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent that is then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. A small ultraviolet light source will illuminate the test plate, which is observed with a small CCD camera. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. The entire instrument can be quite small and light, on the order of ten cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Up to 1000 different sample spots can be placed on a plate 3 cm on a side, but a more practical number might be 100. Each antibody can have a redundant position for independent verification of reaction. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. These the stains in these spots may be directly activated; no antibodies are necessary.

  10. We can all go to Mars-The Mars outpost proposal

    National Research Council Canada - National Science Library

    Louis D Friedman; Bruce C Murray

    2003-01-01

      Friedman and Murray of the Planetary Society propose Mars Outposts, which would consist of specially designated research sites on Mars, equipped with permanent communications, navigational systems...

  11. Emirates Mars Infrared Spectrometer (EMIRS) Overview from the Emirates Mars Mission

    Science.gov (United States)

    Altunaiji, Eman; Edwards, Christopher; Smith, Michael; Christensen, Philip; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    Emirates Mars Infrared Spectrometer (EMIRS) instrument is one of three scientific instruments aboard the Emirate Mars Mission (EMM), with the name of "Hope". EMM is United Arab Emirates' (UAE) mission to be launched in 2020, with the aim of exploring the dynamics of the atmosphere of Mars on a global scale with sampling on a diurnal and sub-seasonal time-scales. EMM has three scientific instruments selected to provide an improved understanding of circulation and weather in the Martian lower atmosphere as well as the thermosphere and exosphere. The EMIRS instrument is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ μm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beam splitter and state of the art electronics. This instrument utilizes a 3×3 line array detector and a scan mirror to make high-precision infrared radiance measurements over most of the Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere, using a scan-mirror to make 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel while requiring no special spacecraft maneuvers.

  12. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  13. Volcanism and soil mercury on Mars - Consequences for terrestrial microorganisms

    Science.gov (United States)

    Siegel, B. Z.; Siegel, S. M.

    1978-01-01

    An earth-Mars depletion formula proposed by Anders and Owen for volatiles is used to calculate a range of putative Hg levels for Martian volcanic soils based upon analyzed samples from Hawaii. The range is about 50-150 microgram per kg. When applied either in conventional or special media (e.g., basalt powder), these levels of Hg are effective inhibitors of the growth of earth microorganisms. Taken together with other hostile chemical and physical factors, volcanic toxicants would appear to provide a further deterrent to the accidental establishment of terrestrial microbiota on Mars.

  14. Profiling Sustainability Curriculum in AACSB Schools

    Directory of Open Access Journals (Sweden)

    Mukesh Srivastava

    2014-04-01

    Full Text Available This article describes the landscape of Sustainability Curriculum being used across the Association of Advance Collegiate Schools of Business (AACSB–accredited schools in the United States on the basis of a non-probabilistic sample (n = 119. Using hierarchical cluster analysis, four clusters were obtained based on sustainability-related courses in management, marketing, entrepreneurship, finance, accounting, information systems/information technology, strategy, globalization, communication, and miscellaneous. Cluster 1 had uniform dispersion on sustainability courses in all business courses except marketing. Clusters 2 and 4 were the largest ones with most sustainability courses in the management area, whereas, Cluster 3 had weak, but uniform, dispersion of sustainability courses in most business disciplines. Based on their characteristics and strength of dispersion among 10 business subject areas, these were labeled as Sustainability Prominent, Sustainability Moderate, Sustainability Meek, and Sustainability Quiescent.

  15. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    Science.gov (United States)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for

  16. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    Science.gov (United States)

    Stoker, Carol R.; Davila, A.; Sanders, G.; Glass, Brian; Gonzales, A.; Heldmann, Jennifer; Karcz, J.; Lemke, L.; Sanders, G.

    2012-01-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  17. Communication strategies for colonization mission to Mars

    OpenAIRE

    Machuca Varela, Pablo Antonio

    2015-01-01

    Earth-Mars cycler trajectories could be used as a periodic and cost-efficient human transportation system from Earth to Mars in a future mission to colonize Mars. Continuous and reliable communication between Mars and the Earth will be required in such a mission. In a circular-coplanar model, the existance of a particularly interesting cycler trajectory (ballistic outbound Earth-Mars S1L1 cycler trajectory) is proven, which has relatively short Earth-Mars transfer times, low relative velociti...

  18. Guidelines for the 2011 MARS exercise

    CERN Document Server

    HR Department

    2011-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://admin-eguide.web.cern.ch/admin-eguide/mars/mars.asp You will find on these pages: MARS procedures, including the MARS timetable for proposals and decisions; regulations with links to the scheme’s statutory basis; a list of frequently asked questions; useful documents with links to relevant documentation, e.g. mandate of the Senior Staff Advisory Committee (SSAC); and related links and contacts. Tel. 70674 / 72728  

  19. China's first-phase Mars Exploration Program: Yinghuo-1 orbiter

    Science.gov (United States)

    Zheng, Wei; Hsu, Houtse; Zhong, Min; Yun, Meijuan

    2013-09-01

    China's first Mars orbiter Yinghuo-1 associated with Russia's unmanned sample return spacecraft Phobos-Grunt will be jointly launched in October 2011. Yinghuo-1 orbiter will principally aim to detect Martian space magnetosphere, ionosphere, plasma distribution, ions escape mechanism, surface topography and sandstorms, and gravity field near equator by four pivotal payloads including fluxgate magnetometer, plasma package, occultation receiver and optical imager based on four key technologies including deep-space monitoring and communications, automation, thermal control and degaussing. Yinghuo-1 Mars Exploration Program is a new milestone that will take the country one big step further in the Chinese deep-space exploration perspective plan. China will hopefully become the fourth country to successfully develop Mars exploration mission after the U.S., Russia and Europe.

  20. SUSTAINABLE CHEMISTRY FOR SUSTAINABLE INDUSTRY

    Directory of Open Access Journals (Sweden)

    G. Rizzuto

    2015-01-01

    Full Text Available Foundry Alfe Chem is an industrial reality working in the field of lubrication and chemical auxiliaries for industrial processes, which falls within the framework of the emerging and increasingly important «green chemistry». The goal of the company is to develop products that are more environmentally friendly by using raw materials from renewable sources; specifically, Foundry Alfe Chem has a program of self-sustainability that contemplates, for the foreseeable future, the direct production of renewable raw materials. The company has developed a new dedicated product line, Olitema, whose purpose is to offer highly technological solutions with complete environmental sustainability. In this context, Foundry Alfe CHEM has created a new product which represents a breakthrough in the class of HFC hydraulic fluids: Ecosafe Plus is a biodegradable fire-resistant hydraulic fluid with high engineering and technological performances, high environmental sustainability and the best security guarantees in workplaces. Its formulation is glycols-free, and it allows for easier disposal of the exhausted fluid, compared to a traditional water/ glycol-based HFC hydraulic fluid. For what concern the technological properties, Ecosafe Plus has been tested by accredited laboratories with tribological trials (4 Ball wear test ASTM D 4172, Ball on disc test ASTM 6425, Brugger test DIN 51347, Vickers test ASTM D 2882, with elastomer compatibility test (ASTM D 471 and biodegradability test (OECD 310 F.

  1. Biosignature Preservation and Detection in Mars Analog Environments.

    Science.gov (United States)

    Hays, Lindsay E; Graham, Heather V; Des Marais, David J; Hausrath, Elisabeth M; Horgan, Briony; McCollom, Thomas M; Parenteau, M Niki; Potter-McIntyre, Sally L; Williams, Amy J; Lynch, Kennda L

    2017-04-01

    This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.

  2. The Mars Surveyor '01 Rover and Robotic Arm

    Science.gov (United States)

    Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.

    1999-01-01

    The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment

  3. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    The Agency's Science Programme Committee (SPC) approved Mars Express after ESA's Council, meeting at ministerial level in Brussels on 11 and 12 May, had agreed the level of the science budget for the next 4 years, just enough to make the mission affordable. "Mars Express is a mission of opportunity and we felt we just had to jump in and do it. We are convinced it will produce first-rate science", says Hans Balsiger, SPC chairman. As well as being a first for Europe in Mars exploration, Mars Express will pioneer new, cheaper ways of doing space science missions. "With a total cost of just 150 million euros, Mars Express will be the cheapest Mars mission ever undertaken", says Roger Bonnet, ESA's Director of Science. Mars Express will be launched in June 2003. When it arrives at the red planet six months later, it will begin to search for water and life. Seven instruments, provided by space research institutes throughout Europe, will make observations from the main spacecraft as it orbits the planet. Just before the spacecraft arrives, it will release a small lander, provided by research institutes in the UK, that will journey on to the surface to look for signs of life. The lander is called Beagle 2 after the ship in which Charles Darwin sailed round the world in search of evidence supporting his theory of evolution. But just as Darwin had to raise the money for his trip, so the search is on for public and private finance for Beagle 2. "Beagle 2 is an extremely important element of the mission", says Bonnet. Europe's space scientists have envisaged a mission to Mars for over fifteen years. But limited funding has prevented previous proposals from going ahead. The positioning of the planets in 2003, however, offers a particularly favourable passage to the red planet - an opportunity not to be missed. Mars Express will be joined by an international flotilla of spacecraft that will also be using this opportunity to work together on scientific questions and pave the way

  4. Role of cooperative companies in sustainable rice production and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... reduction and sustainable food production, a comprehensive schedule was developed and field-tested before data collection. Personal interview, direct observation and group discussions were the methods used for data collection. The main tool for collection of data and information related to the variables ...

  5. Integrated Nutrient and Water Management for Sustainable Food ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrated Nutrient and Water Management for Sustainable Food Production in the Sahel (CIFSRF). In the Sahel, agricultural production is strictly limited by drought and low soil fertility. In 2005 and 2010, these two factors led to food scarcity in Niger. However, innovative technologies such as ... Date de début. 1 mars 2011 ...

  6. Space radiation protection: Destination Mars

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  7. Sustainable Procurement

    DEFF Research Database (Denmark)

    Telles, Pedro; Ølykke, Grith Skovgaard

    2017-01-01

    and within it how sustainable requirements have increased the level of compliance required, particularly regulatory compliance. Compliance was already present in previous EU public procurement frameworks, but its extent on Directive 2014/24/EU leads the authors to consider the current legal framework...... as subject to substantial regulatory compliance obligations external to the process of procurement. In short, procurement has been transformed in a way to enforce regulatory obligations that are not intrinsic to the process of buying. This leads to the conclusion that questions such as the cost and trade...

  8. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  9. Sustainable consumption and marketing

    NARCIS (Netherlands)

    Dam, van Y.K.

    2016-01-01

    Sustainable development in global food markets is hindered by the discrepancy between positive consumer attitudes towards sustainable development or sustainability and the lack of corresponding sustainable consumption by a majority of consumers. Apparently for many (light user) consumers the

  10. Thermodynamic model of Mars Oxygen ISRU Experiment (MOXIE)

    Science.gov (United States)

    Meyen, Forrest E.; Hecht, Michael H.; Hoffman, Jeffrey A.; MOXIE Team

    2016-12-01

    As humankind expands its footprint in the solar system, it is increasingly important to make use of the resources already in our solar system to make these missions economically feasible and sustainable. In-Situ Resource Utilization (ISRU), the science of using resources at a destination to support exploration missions, unlocks potential destinations by significantly reducing the amount of resources that need to be launched from Earth. Carbon dioxide is an example of an in-situ resource that comprises 96% of the Martian atmosphere and can be used as a source of oxygen for propellant and life support systems. The Mars Oxygen ISRU Experiment (MOXIE) is a payload being developed for NASA's upcoming Mars 2020 rover. MOXIE will produce oxygen from the Martian atmosphere using solid oxide electrolysis (SOXE). MOXIE is on the order of magnitude of a 1% scale model of an oxygen processing plant that might enable a human expedition to Mars in the 2030s through the production of the oxygen needed for the propellant of a Mars ascent vehicle. MOXIE is essentially an energy conversion system that draws energy from the Mars 2020 rover's radioisotope thermoelectric generator and ultimately converts it to stored energy in oxygen and carbon monoxide molecules. A thermodynamic model of this novel system is used to understand this process in order to derive operating parameters for the experiment. This paper specifically describes the model of the SOXE component. Assumptions and idealizations are addressed, including 1D and 2D simplifications. Operating points are discussed as well as impacts of flow rates and production.

  11. Mars Express en route for the Red Planet

    Science.gov (United States)

    2003-06-01

    trajectory with Mars, on 20 December. It will enter the Martian atmosphere on Christmas day, after five days’ ballistic flight. As it descends, the lander will be protected in the first instance by a heat-shield; two parachutes will then open to provide further deceleration. With its weight down to 30 kg at most, it will land in an equatorial region known as Isidis Planitia. Three airbags will soften the final impact. This crucial phase in the mission will last just ten minutes, from entry into the atmosphere to landing. Meanwhile, the Mars Express probe proper will have performed a series of manœuvres through to a capture orbit. At this point its main motor will fire, providing the deceleration needed to acquire a highly elliptical transition orbit. Attaining the final operational orbit will call for four more firings. This 7.5 hour quasi-polar orbit will take the probe to within 250 km of the planet. Getting to know Mars - inside and out Having landed on Mars, Beagle 2 - named after HMS Beagle, on which Charles Darwin voyaged round the world, developing his evolutionary theory - will deploy its solar panels and the payload adjustable workbench, a set of instruments (two cameras, a microscope and two spectrometers) mounted on the end of a robot arm. It will proceed to explore its new environment, gathering geological and mineralogical data that should, for the first time, allow rock samples to be dated with absolute accuracy. Using a grinder and corer, and the “mole”, a wire-guided mini-robot able to borrow its way under rocks and dig the ground to a depth of 2 m, samples will be collected and then examined in the GAP automated mini-laboratory, equipped with 12 furnaces and a mass spectrometer. The spectrometer will have the job of detecting possible signs of life and dating rock samples. The Mars Express orbiter will carry out a detailed investigation of the planet, pointing its instruments at Mars for between half-an-hour and an hour per orbit and then, for the

  12. Mars Geochemical Instrument (MarGI): An instrument for the analysis of the Martian surface and the search for evidence of life

    Science.gov (United States)

    Kojiro, Daniel R.; Mancinelli, Rocco; Martin, Joe; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.

    2005-01-01

    The Mars Geochemical Instrument, MarGI, was developed to provide a comprehensive analysis of the rocks and surface material on Mars. The instrument combines Differential Thermal Analysis (DTA) with miniature Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) to identify minerals, the presence and state of water, and organic compounds. Miniature pyrolysis ovens are used to both, conduct DTA analysis of soil or crushed rocks samples, and pyrolyze the samples at temperatures up to 1000 degrees C for GC-IMS analysis of the released gases. This combination of analytical processes and techniques, which can characterize the mineralogy of the rocks and soil, and identify and quantify volatiles released during pyrolysis, has applications across a wide range of target sites including comets, planets, asteroids, and moons such as Titan and Europa. The MarGI analytical approach evolved from the Cometary Ice and Dust Experiment (CIDEX) selected to fly on the Comet Rendezvous Asteroid Flyby Mission (CRAF).

  13. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

    Science.gov (United States)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.

  14. 2001 Mars Odyssey Project Report

    Science.gov (United States)

    Spencer, David A.; Gibbs, Roger G.; Mase, Robert A.

    2002-01-01

    The Mars Odyssey Project is the latest in an ongoing series of robotic missions to Mars within NASA's Mars Exploration Program. The Program goals include the global observation of Mars, to enable understanding of the Mars climatic and geologic history, including the search for liquid water and the evidence of prior or extant life. The Odyssey orbiter carries scientific payloads that will determine surface elemental composition, mineralogy and morphology, and measure the Mars radiation environment from orbit. In addition, the orbiter will serve as a data relay for future landers. Odyssey was designed and developed through a partnership between the Jet Propulsion Laboratory in Pasadena, California, and Lockheed Martin Astronautics in Denver, Colorado. Odyssey was launched atop a Boeing 7925 launch vehicle on April 7, 2001, from Kennedy Space Center. The 200-day journey to Mars was marked by four trajectory correction maneuvers, and numerous spacecraft and payload calibration activities. The final maneuver was performed 12 days prior to encounter, and successfully targeted the spacecraft to the desired arrival conditions 300 km above the North Pole of Mars. The 20-minute orbit insertion burn was the only use of the bipropellant propulsion system on the spacecraft. The burn executed as planned on October 24, 2001, capturing the spacecraft into an 18.6-hour orbit around Mars. The subsequent aerobraking phase was designed to gradually reduce the orbit period by flying through the upper atmosphere of Mars on each orbit, allowing atmospheric drag to remove energy from the orbit. Aerobraking was the most demanding operational phase of the mission, requiring continuous monitoring and control of the spacecraft to ensure health and safety. The aerobraking phase was successfully completed on January 11, 2002 after 76 days and 332 drag passes through the Martian atmosphere. Following completion of the aerobraking phase, a series of five propulsive maneuvers were performed to

  15. Board diversity and sustainability performance

    African Journals Online (AJOL)

    kirstam

    quantitative comparative analysis, and a longitudinal design in the form of a trend analysis to compare the differences in board composition between a sample of sustainability performing companies and a sample of other companies listed on the FTSE/JSE All Share Index between 2004 and 2010. Inclusion on the Social ...

  16. In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols

    Science.gov (United States)

    Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.

    2013-01-01

    The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.

  17. Cultivando el mar

    Directory of Open Access Journals (Sweden)

    Ricardo Radulovich

    2006-01-01

    Full Text Available Las conocidas y crecientes limitaciones a la agricultura, pesca y disponibilidad de agua para riego tienen pocas soluciones viables y muy probablemente se acrecentarán con el cambio climático. Para contrarrestar estos y otros problemas, estamos desarrollando con y para pobladores costeros empobrecidos, unos sistemas productivos flotantes altamente innovativos, a mar abierto, en aguas protegidas de alto oleaje -comenzando en el Golfo de Nicoya, Costa Rica, que es un sitio representativo que cubre miles de km2-. Estos sistemas de propósito múltiple, y de multi-estratos, que hemos probado por 3 años y que describimos aquí, consisten de: hortalizas orgánicas u otros cultivos de alto valor, en macetas sobre isletas o jardineras flotantes, construidas con botellas plásticas recicladas y otros materiales de bajo costo; maricultura de poco insumo bajo el agua (peces, crustáceos, otros con cultivo de algas flotando en la superficie; producción de agua dulce para riego y otros usos por destilación solar pasiva y cosecha de agua de lluvia; pesca desde las estructuras flotantes; facilidades para recreación; y, todavía por explorar, producción alternativa de energía. Se considera aquí también una variedad de aspectos relacionados con el ambiente y la biodiversidad. Estos sistemas compuestos, únicos en el mundo a la fecha, tienen una productividad general alta al sumar la productividad de todo el año de cada uno de varios componentes eco-amigables y de bajo insumo, lo cual permite optimizar la rentabilidad en función ambiental. Esperamos que, una vez que estén validados, la implementación equitativa a escala de estos nuevos sistemas proveerá a los pobladores costeros, alrededor del mundo tropical y subtropical, oportunidades para derivar su ingreso a partir de esta generación de nueva riqueza, incrementándose así y ganando en seguridad la capacidad mundial de producción de alimentos y agua, practicándose a la vez un uso de los

  18. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  19. Mars Methane highs unrelated to comets

    Science.gov (United States)

    Roos-Serote, Maarten; Atreya, Sushil K.; Webster, Chris; Mahaffy, Paul

    2016-10-01

    Until the Curiosity Rover arrived at Mars, all measurements of methane were done by remote sensing, either from Earth or from orbiting spacecraft, using a variety of different instruments and under different observing conditions. The Curiosity Rover's Sample Analysis at Mars (SAM) / Tunable Laser Spectrometer (TLS) has carried out systematic measurements of martian methane from Gale crater for two consecutive martian years (31 - 33, starting in October 2012). Meteoric material interacts with the martian atmosphere when Mars passes through a meteoroid stream left behind by cometary bodies orbiting the Sun. Predictions show that 33 such events are likely to occur during the martian year. It has been suggested that the organics present in this material trigger the formation of methane in the atmosphere, and thus these events could possibly be an explanation for the observed variations in the methane abundance. In a recent paper, Fries et al. [2016] argued that all measurements of high methane concentrations are within 16 days of a predicted meteor shower event, and that as such there is a correlation. We present a new analysis including seven new data points that were not available previously. All these new measurements show low methane values. Some of the new measurements were deliberately taken at the same Ls when high values of methane were measured in the previous martian year, showing that the high methane measurements are likely not seasonal, as would be expected if they were connected to meteor shower events. In our analysis we take into account all the predicted meteor events and search for any correlation drawn between these events and the level of methane in the atmosphere. We conclude that whether we consider individual data points, apply statistical analysis, or consider different time spans between measurements and the occurrence of meteor events, or possible supply of organic material from comets, there is no evidence for such a correlation in the

  20. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    Science.gov (United States)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; hide

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  1. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Howe; Robert C. O' Brien; William Taitano; Doug Crawford; Nathan Jerred; Spencer Cooley; John Crapeau; Steve Hansen; Andrew Klein; James Werner

    2011-02-01

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.

  2. Cell survival in a simulated Mars environment

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  3. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  4. Physisorbed Water on Silica at Mars Temperatures

    Science.gov (United States)

    Sutter, B.; Sriwatanapongse, W.; Quinn, R.; Klug, C.; Zent, A.

    2002-01-01

    The usefulness of nuclear magnetic resonance spectroscopy in probing water interactions on silica at Mars temperatures is discussed. Results indicate that two types of water occur with silica at Mars temperatures. Additional information is contained in the original extended abstract.

  5. Mars Integrated Propellant Production System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Mars In-Situ Propellant Production System (IMISPPS) is an end-to-end system that will produce rocket propellant on Mars from CO2 in the Martian...

  6. Warming Ancient Mars with Water Clouds

    Science.gov (United States)

    Hartwick, V. L.; Toon, O. B.

    2017-10-01

    High altitude clouds in the present day Mars atmosphere may form on interplanetary dust particles (IDPs). Paleo fluences of IDPs were likely higher, and similar clouds are expected to influence the Mars paleo-climate.

  7. The Soil of Mars - Planetary Geology

    Science.gov (United States)

    Bullock, Mark A.

    1994-09-01

    What would it be like to walk on Mars, to let martian dirt run through your fingers? Planetary geologists, aided by amateur astronomers, are slowly figuring out what Mars is like. With a sidebar by Jack D. Farmer.

  8. Global color views of Mars

    Science.gov (United States)

    McEwen, A. S.; Soderblom, L. A.; Becker, T. L.; Lee, E. M.; Batson, R. M.

    About 1000 Viking Orbiter red and violet filter images have been processed to provide global color coverage of Mars at a scale of 1 km/pixel. Individual image frames acquired during a single spacecraft revolution ('rev') were first processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking. A total of 57 'single-rev' mosaics have been produced. Phase angles range from 13 to 85 degrees. All the mosaics are geometrically tied to the Mars digital image mosaic (MDIM), a black-and-white base map with a scale of 231 m/pixel.

  9. Planetary protection and the search for life beneath the surface of Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (/~3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken

  10. The Mars Environmental Compatibility Assessment (MECA)

    Science.gov (United States)

    Meloy, Thomas P.; Marshall, John; Hecht, Michael

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite

  11. Mirror Advanced Reactor Study (MARS) final report summary

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Perkins, L.J.; Werner, R.W.; Gordon, J.D.; Parmer, J.F.; Bilton, J.R.; Glancy, J.E.; Kulcinski, G.L.

    1983-12-08

    The Mirror Advanced Reactor Study (MARS) has resulted in an overview of a first-generation tandem mirror reactor. The central cell fusion plasma is self-sustained by alpha heating (ignition), while electron-cyclotron resonance heating and negative ion beams maintain the electrostatic confining potentials in the end plugs. Plug injection power is reduced by the use of high-field choke coils and thermal barriers, concepts to be tested in the Tandem Mirror Experiment-Upgrade (TMX-U) and Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory.

  12. Virtual Sustainability

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2010-09-01

    Full Text Available In four ways, massively multiplayer online role-playing games may serve as tools for advancing sustainability goals, and as laboratories for developing alternatives to current social arrangements that have implications for the natural environment. First, by moving conspicuous consumption and other usually costly status competitions into virtual environments, these virtual worlds might reduce the need for physical resources. Second, they provide training that could prepare individuals to be teleworkers, and develop or demonstrate methods for using information technology to replace much transportation technology, notably in commuting. Third, virtual worlds and online games build international cooperation, even blending national cultures, thereby inching us toward not only the world consciousness needed for international agreements about the environment, but also toward non-spatial government that cuts across archaic nationalisms. Finally, realizing the potential social benefits of this new technology may urge us to reconsider a number of traditional societal institutions.

  13. Sustainability; Sustentabilidade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This chapter analyses the production chain of ethanol, considering the impacts on the quality of the air, water supplies, soil occupation and biodiversity, and the efforts for the soil preservation. It is pointed out the activities of the production cycle and use of bio ethanol due to great uncertainties as far the environmental impacts is concerning and that will deserve more attention in future evaluations. At same time, the chapter highlights another activities where the present acknowledge is sufficient to assure the control and/or prediction of consequences of the desired intervention on the environment media to accommodate the sugar and ethanol production expansion. The consideration is not conservative but to promote the sustainable development.

  14. Advanced Stellar Compass - Alenia Mars Express

    DEFF Research Database (Denmark)

    Kilsgaard, Søren; Betto, Maurizio; Jørgensen, John Leif

    1998-01-01

    This document, submitted in reply to an Alenia R.f.P., is a proposal to implement the Advanced Stellar Compass (ASC) in the Mars Express mission.The Mars Express is an ESA dedicated mission to Mars scientific investigation.The ASC is a very advanced instrument designed by the Space Instrumentation...

  15. The MAR databases: development and implementation of databases specific for marine metagenomics.

    Science.gov (United States)

    Klemetsen, Terje; Raknes, Inge A; Fu, Juan; Agafonov, Alexander; Balasundaram, Sudhagar V; Tartari, Giacomo; Robertsen, Espen; Willassen, Nils P

    2018-01-04

    We introduce the marine databases; MarRef, MarDB and MarCat (https://mmp.sfb.uit.no/databases/), which are publicly available resources that promote marine research and innovation. These data resources, which have been implemented in the Marine Metagenomics Portal (MMP) (https://mmp.sfb.uit.no/), are collections of richly annotated and manually curated contextual (metadata) and sequence databases representing three tiers of accuracy. While MarRef is a database for completely sequenced marine prokaryotic genomes, which represent a marine prokaryote reference genome database, MarDB includes all incomplete sequenced prokaryotic genomes regardless level of completeness. The last database, MarCat, represents a gene (protein) catalog of uncultivable (and cultivable) marine genes and proteins derived from marine metagenomics samples. The first versions of MarRef and MarDB contain 612 and 3726 records, respectively. Each record is built up of 106 metadata fields including attributes for sampling, sequencing, assembly and annotation in addition to the organism and taxonomic information. Currently, MarCat contains 1227 records with 55 metadata fields. Ontologies and controlled vocabularies are used in the contextual databases to enhance consistency. The user-friendly web interface lets the visitors browse, filter and search in the contextual databases and perform BLAST searches against the corresponding sequence databases. All contextual and sequence databases are freely accessible and downloadable from https://s1.sfb.uit.no/public/mar/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Sustainability Science Needs Sustainable Data!

    Science.gov (United States)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Sustainability science (SS) is an 'emerging field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life support systems' (Kates, 2011; Clark, 2007). Bettencourt & Kaur (2011) identified more than 20,000 scientific papers published on SS topics since the 1980s with more than 35,000 distinct authors. They estimated that the field is currently growing exponentially, with the number of authors doubling approximately every 8 years. These scholars are undoubtedly using and generating a vast quantity and variety of data and information for both SS research and applications. Unfortunately we know little about what data the SS community is actually using, and whether or not the data that SS scholars generate are being preserved for future use. Moreover, since much SS research is conducted by cross-disciplinary, multi-institutional teams, often scattered around the world, there could well be increased risks of data loss, reduced data quality, inadequate documentation, and poor long-term access and usability. Capabilities and processes therefore need to be established today to support continual, reliable, and efficient preservation of and access to SS data in the future, especially so that they can be reused in conjunction with future data and for new studies not conceived in the original data collection activities. Today's long-term data stewardship challenges include establishing sustainable data governance to facilitate continuing management, selecting data to ensure that limited resources are focused on high priority SS data holdings, securing sufficient rights to allow unforeseen uses, and preparing data to enable use by future communities whose specific research and information needs are not yet known. Adopting sustainable models for archival

  17. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  18. Atmospheric Processing Module for Mars Propellant Production

    Science.gov (United States)

    Muscatello, A.; Devor, R.; Captain, J.

    2014-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx. 8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed.

  19. Mars Field Geology, Biology, and Paleontology Workshop: Summary and Recommendations

    Science.gov (United States)

    Budden, Nancy Ann (Editor)

    1999-01-01

    Current NASA planning envisions human missions to Mars as early as 2013, on a mission that would send six crew members for a 500-day stay on the surface of Mars. While our understanding of how we would get there and back is fairly mature, the planning for what the crew would do to explore while on the surface for 500 days is less detailed. Mission objectives are to understand the composition and geo- morphology of the martian surface, and to continue to investigate and sample the geologic history of Mars. Special emphasis will focus on exploring for possible biogenic signatures, past or present, and on analyzing pre-biotic chemistry. The purpose of this workshop was to explore the strategies, desired capabilities, skills, and operational realities required to lend success to the first human missions to Mars. Current mission planning dictates that there will be considerable mobility, sampling and analytical capability available to human crews, at a site warranting long-term geologic and possibly biological interest. However, the details of specific capabilities are not yet clearly defined.

  20. Strategy for selecting Mars Pathfinder landing sites

    Science.gov (United States)

    Greeley, Ronald; Kuzmin, Ruslin O.

    1994-01-01

    A strategy for Pathfinder site selection must be developed that is fundamentally different from most previous considerations. At least two approaches can be identified. In one approach, the objective is to select a site representing a key geologic unit on Mars, i.e., a unit that is widespread, easily recognized, and used frequently as a datum in various investigations. The second approach is to select a site that potentially affords access to a wide variety of rock types. Because rover range is limited, rocks from a variety of sources must be assembled in a small area for sampling. Regardless of the approach taken in site selection, the Pathfinder site should include eolian deposits and provisions should be made to obtain measurements on soils. A recommended approach for selecting the Mars Pathfinder landing site is to identify a deltaic deposit, composed of sediments derived from sources of various ages and geologic units that shows evidence of eolian activity. The site should be located as close as possible to the part of the outwash where rapid deposition occurred because the likelihood of 'sorting' by size and composition increases with distance, decreasing the probability of heterogeneity. In addition, it is recommended that field operation tests be conducted to gain experience and insight into conducting science with Pathfinder.

  1. Mars, accessing the third dimension: a software tool to exploit Mars ground penetrating radars data.

    Science.gov (United States)

    Cantini, Federico; Ivanov, Anton B.

    2016-04-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the ESA's Mars Express and the SHAllow RADar (SHARAD), on board the NASA's Mars Reconnaissance Orbiter are two ground penetrating radars (GPRs) aimed to probe the crust of Mars to explore the subsurface structure of the planet. By now they are collecting data since about 10 years covering a large fraction of the Mars surface. On the Earth GPRs collect data by sending electromagnetic (EM) pulses toward the surface and listening to the return echoes occurring at the dielectric discontinuities on the planet's surface and subsurface. The wavelengths used allow MARSIS EM pulses to penetrate the crust for several kilometers. The data products (Radargrams) are matrices where the x-axis spans different sampling points on the planet surface and the y-axis is the power of the echoes over time in the listening window. No standard way to manage this kind of data is established in the planetary science community and data analysis and interpretation require very often some knowledge of radar signal processing. Our software tool is aimed to ease the access to this data in particular to scientists without a specific background in signal processing. MARSIS and SHARAD geometrical data such as probing point latitude and longitude and spacecraft altitude, are stored, together with relevant acquisition metadata, in a geo-enabled relational database implemented using PostgreSQL and PostGIS. Data are extracted from official ESA and NASA released data using self-developed python classes and scripts and inserted in the database using OGR utilities. This software is also aimed to be the core of a collection of classes and script to implement more complex GPR data analysis. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data, such as imaging, spectroscopy and topography. Radar geometry data will be available as a part of the iMars Web

  2. NASA Facts, Mars and Earth.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the sun's planetary system with note made that there is no one theory for the origin and subsequent evolution of the Solar System that is generally accepted. Ideas from many scientists…

  3. Light-Weight Injector Technology for Cryogenic Mars Ascent Engines

    Science.gov (United States)

    Trihn, Huu Phuoc; Cramer, John M.

    1998-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale

  4. Mars Ascent Vehicle-First Stage Motor

    Science.gov (United States)

    Dankanich, John; Doudrick, Scott; Williams, Jacob

    2015-01-01

    This project is development effort of a first stage solid motor based on a two-stage solid motor Mars Ascent Vehicle (MAV) design for the robotic Mars Sample Return (MSR) mission (fig. 1). The MSR MAV has been studied for decades and multiple concepts have been shown to meet the mission objectives as posed.1 However, there remains significant uncertainty with the MAV requirements. The sample container and sample cache itself is immature. Additionally, MAV-specific requirements ranging from full three-axis controlled and strict communication requirements to minimal capability concepts are still under consideration. Given the maturity of the overall mission requirements, the MAV has been limited to a large number of parametric analyses and paper studies. Recently, a Jet Propulsion Laboratory study highlighted the flexibility of a two-stage solid motor concept. The MAV itself is driven by the constraints of the Entry, Decent, and Landing (EDL) system. Within the EDL constraints, there is a range of MAV options ranging in complexity from simple spun upper stage options to higher capability three-axis controlled solutions. There are also options to trade the ratio of mission (Delta)V between the first and second stage. Finally, sensitivity studies also indicated that solid motors with a high percentage of off-load flexability only had minor impact on the total system mass over a single point design optimized motor. This flexibility in the first stage motor has allowed NASA to mature the design of the motor beyond parametric analyses and start to address known design challenges of the motor.

  5. In-situ Geochronology on the Mars 2020 Rover with KArLE (The Potassium-Argon Laser Experiment)

    Science.gov (United States)

    Cohen, Barbara A.; Li, Z. -H.; Miller, J. S.; Devismes, D.; Swindle, T. D.; Schwenzer, S. P.; Kelley, S. P.; Zacny, K. A.; Roark, S. E.; Hardaway, L. R.; hide

    2014-01-01

    A successful Mars exploration program has revealed chapters of Mars history, but in this book, the pages are ripped out of the binding and scattered across the surface. An examination of each page reveals interesting information, but there is no way to read the book in a logical order. Geochronology is the tool that puts page number onto the individual pages, and allows the book of Martian history to be read in its proper order. The KArLE experiment performs the first dedicated in situ geochronology investigation on Mars, bringing clarity to Mars 2020 samples and context to its landing site.

  6. Sustainability and Risk Disclosure: An Exploratory Study on Sustainability Reports

    Directory of Open Access Journals (Sweden)

    Elisa Truant

    2017-04-01

    Full Text Available Recent policy changes in sustainability reporting, such as the ones related to the new European Directive on non-financial disclosure (2014/95/EU, the standards issued by the American Sustainability Accounting Standard Board (SASB, the G4 guidelines issued by the Global Sustainability Standard Board (GSSB, and the framework of the International Integrated Reporting Council (IIRC stress the importance of extending the disclosure of ethical, social, and environmental risks within financial and social-environmental reporting. Institutional pressure has notably increased among organizations, in setting up risk management tools to understand sustainability risks within managerial and reporting practices. Given such institutional pressure, the corporate reaction in providing additional sustainability risk disclosure calls for attention and scrutiny. Therefore, this study aims at addressing such issues from an exploratory perspective. We based our analysis on a sample of large Italian organizations that issued sustainability disclosure in accordance with the Global Reporting Initiative (GRI, G4 guidelines, and we tested the relationship between their level of risk disclosure and other relevant variables. Consistently with the literature, we found that “experienced” sustainable reporters provide a significant volume of disclosure, and that disclosure quality on risk is positively influenced by their international presence and reporting experience. However, when accounting for specific risk-related areas of disclosure, only a few of them seem to adopt a managerial perspective linking strategy, risk metrics, and disclosure.

  7. Modeling Shoreline Evolution on Mars

    Science.gov (United States)

    Kraal, E. R.; Ashpaug, E. I.; Lorenz, R. D.

    2003-05-01

    Geomorphic evidence of surface water on Mars has important implications for planetary surface evolution, as well as for the continuing exploration of the planet as future landing sites are selected. Here we present the initial results from forward models of crater lake basin evolution motivated by the identification of intracrater landforms on Mars which exhibit possible evidence for a history of surface water. Proposed lacustrine Martian landforms include shorelines, terraces, and wave cut benches - features that have received considerable attention in terrestrial lacustrine geomorphology but which have never been quantitatively addressed with sufficient rigor on Mars. In particular, the existing body of terrestrial research has yet to be applied adequately to planets of different gravity, temperature (or working fluid) and atmospheric pressure, such as Mars and Titan. The 2-D model includes wave generation, shore erosion, and other factors. Wave generation depends primarily on wind speed and basin size. The erosive power of the generated waves along the shoreline depends on wave size and period, initial topography, rock hardness, and the effects of crater impact formation on the bedrock. Other factors include water loss to evaporation and infiltration, sediment transport within the basin, wind transported sediment, and ice cover. Waves are generated using terrestrial empirical equations that have been modified for the lower gravity on Mars. Erosion is based on equations for terrestrial rocky coastline evolution models that have been modified for Martian conditions. Results presented here will focus on the first two aspects, wave generation and shoreline erosion. Additional research will include exploring the effect of different air pressures on the system as well as modifying the model for application to possible crater lakes of liquid hydrocarbons on Titan.

  8. The Spread of Economic Ideas among Romanian People. Case Study: Dionisie Pop Marţian

    Directory of Open Access Journals (Sweden)

    Angela ROGOJANU

    2010-12-01

    Full Text Available In the nineteenth century, the accelerating globalizationstarted to show demands that the majority of the Romanians could notunderstand. The delay in the economic development, the political-stateestablishment, the scarcity of instruction and education, the historical andgeographical context marked by hostility, all these formed the gap betweenthe "West" and "East". The renewing economic ideas penetrated hard,often deformed ... The relentless intelligence of some young peopleeducated outside the Romanian land, as Dionisie Pop Marţian (1829-1865, has started the struggle for "the economic emancipation of thenation" by promoting the ideas, the principles and the institutions on whichwas build the prosperity of the West. Seen as a "reactionary" or as a "manof progress", Marţian has delivered a heterogeneous economic outlook, amixture of liberal principles and protectionist principles. The mostsignificant "protection" supported by Marţian was the one againstignorance. The compilation made by Marţian using the works of variousauthors sustaining the "social economy" shows the dimensions of economicbackwardness - the absence of current economic terms from the lexicon.Marţian invents some economic terms, which are understandable, such as:„comerciu”(trade, „manufaptură” (manufacture, „product”, „const”,„fair price”, „banc-rupt” etc. Marţian's mission was clear: "the spreadingof economics through speaking and writing.".

  9. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    Science.gov (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  10. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  11. Sustainable Scientists

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2008-12-31

    Scientists are front and center in quantifying and solving environmental problems. Yet, as a spate of recent news articles in scientific journals point out, much can be done to enhance sustainability within the scientific enterprise itself, particularly by trimming the energy use associated with research facilities and the equipment therein (i,ii,iii, iv). Sponsors of research unwittingly spend on the order of $10 billion each year on energy in the U.S. alone, and the underlying inefficiencies drain funds from the research enterprise while causing 80 MT CO2-equivalent greenhouse-gas emissions (see Box). These are significant sums considering the opportunity costs in terms of the amount of additional research that could be funded and emissions that could be reduced if the underlying energy was used more efficiently. By following commercially proven best practices in facility design and operation, scientists--and the sponsors of science--can cost-effectively halve these costs, while doing their part to put society on alow-carbon diet.

  12. Sustainable agriculture - selected papers

    OpenAIRE

    Krasowicz, Stanisław; Wrzaszcz, Wioletta; Zegar, Jozef St.

    2007-01-01

    The concept of research on socially sustainable agriculture. Features of sustainable agriculture. Sustainability of private farms in the light of selected criteria. Subsistence agricultural holdings and the sustainable development of agriculture. Sustainable farms in the light of the FADN data. Description of organic holdings in Poland.

  13. Were lakes on early Mars perennially were ice-covered?

    Science.gov (United States)

    Sumner, D. Y.; Rivera-Hernandez, F.; Mackey, T. J.

    2016-12-01

    Paleo-lake deposits indicate that Mars once sustained liquid water, supporting the idea of an early "wet and warm" Mars. However, liquid water can be sustained under ice in cold conditions as demonstrated by perennially ice-covered lakes (PICLs) in Antarctica. If martian lakes were ice-covered, the global climate on early Mars could have been much colder and dryer than if the atmosphere was in equilibrium with long-lived open water lakes. Modern PICLs on Earth have diagnostic sedimentary features. Unlike open water lakes that are dominated by mud, and drop stones or tills if icebergs are present, previous studies determined that deposits in PICLs can include coarser grains that are transported onto the ice cover, where they absorb solar radiation, melt through the ice and are deposited with lacustrine muds. In Lake Hoare, Antarctica, these coarse grains form conical sand mounds and ridges. Our observations of ice-covered lakes Joyce, Fryxell, Vanda and Hoare, Antarctica suggest that the distributions of grains depend significantly on ice characteristics. Deposits in these lakes contain moderately well to moderately sorted medium to very coarse sand grains, which preferentially melt through the ice whereas granules and larger grains remain on the ice surface. Similarly, high albedo grains are concentrated on the ice surface, whereas low albedo grains melt deeper into the ice, demonstrating a segregation of grains due to ice-sediment interactions. In addition, ice cover thickness may determine the spatial distribution of sand deposited in PICLs. Localized sand mounds and ridges composed of moderately sorted sand are common in PICLs with rough ice covers greater than 3 m thick. In contrast, lakes with smooth and thinner ice have disseminated sand grains and laterally extensive sand layers but may not have sand mounds. At Gale Crater, Mars, the Murray formation consists of sandy lacustrine mudstones, but the depositional process for the sand is unknown. The presence of

  14. Emotions and Habitability study in Moon Mars Analogue.

    Science.gov (United States)

    Mertens, Alexandre; Lia Schlacht, Irene

    Euro Moon Mars mission have been conducted by students and field researchers in the Mars Desert Research Station (MDRS) a habitat installed by the Mars Society (MS) in the Utah desert. The campaign was supported by ILEWG International Lunar Exploration Working Group, ESTEC, NASA Ames, and partners. It investigated human aspects of isolation in a Mars analogue base. The project is in line with the ILEWG which coordinates several MDRS missions, and contributes to the preparation of future Mars sample return missions. The objective is to study and improve the habitat dynamics in a closed and small environment. Investigation cover different fields as emotional, sociological and psychological aspects and a food study but also habitability aspects. The study has been conducted by asking to the crew members to perform task and fill in questionnaires before, during and after the simulation. Video recovering, pictures and heart rate counting will also be used. One of the main study subject, conducted by Bernard Rimé, concerns the sharing of emotions in an isolated environ-e ment. Another is "Mars Habitability Experiment", which responsible is Irene Schlacht, will try to determine whether humans need variability of stimuli such as it happens in the natural environment -e.g. seasonal changing -to gain efficiency, reliability and well-being. This study have been conducted from February 19 to April 19 on two crews presenting different aspects that could lead to various behaviours. The first crew is made of people from different countries that don't know each other very well. On the opposite, the second crew members have the same cultural background -they come from the same country, university -and they know each other for at least six months. This allow studying how the extreme conditions of the isolation affect the crew efficiency, creativity and sanity according to its homogeneity. Report on the science and technical results, and implications for Earth-Mars comparative stud

  15. Sustainability labels on food products

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Hieke, Sophie; Wills, Josephine

    2014-01-01

    This study investigates the relationship between consumer motivation, understanding and use of sustainability labels on food products (both environmental and ethical labels), which are increasingly appearing on food products. Data was collected by means of an online survey implemented in the UK......, France, Germany, Spain, Sweden, and Poland, with a total sample size of 4408 respondents. Respondents expressed medium high to high levels of concern with sustainability issues at the general level, but lower levels of concern in the context of concrete food product choices. Understanding of the concept......, human values as measured by the Schwartz value domains, and country differences. The results imply that sustainability labels currently do not play a major role in consumers’ food choices, and future use of these labels will depend on the extent to which consumers’ general concern about sustainability...

  16. Emirates Mars Mission (EMM) Overview

    Science.gov (United States)

    Sharaf, Omran; Amiri, Sarah; AlMheiri, Suhail; Alrais, Adnan; Wali, Mohammad; AlShamsi, Zakareyya; AlQasim, Ibrahim; AlHarmoodi, Khuloud; AlTeneiji, Nour; Almatroushi, Hessa; AlShamsi, Maryam; AlA