WorldWideScience

Sample records for sustainable manganese metal

  1. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  2. Manganese

    Science.gov (United States)

    Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    have the greatest potential to inhale manganese-rich dust. Without proper protective equipment, these workers may develop a permanent neurological disorder known as manganism. Each manganese mine is unique and presents its own suite of potential hazards and preventative measures. Likewise, various nations have their own sets of standards to ensure safe mining, isolation of mine waste, treatment of mine waters, and mine closure and restoration. Interest in mining trace metals contained in ferromanganese nodules and crusts on the seabed has increased rapidly in the past decade. Prime areas for future research include overcoming the technological challenges presented by mining as deep as 6,500 meters below sea level and understanding and mitigating the potential impacts of seabed mining on marine ecosystems.

  3. Manganese

    Science.gov (United States)

    ... research suggests that taking a specific product (7-Keto Naturalean) containing manganese, 7-oxo-DHEA, L-tyrosine, ... can absorb.Milk proteinAdding milk protein to the diet might increase the amount of manganese the body ...

  4. Manganese

    International Nuclear Information System (INIS)

    Fayziev, A.R.

    2002-01-01

    Present article is devoted to manganese content in fluoride. The manganese content of some geologic deposits of Tajikistan was determined by means of chemical analysis. The mono mineral samples of fluorite of 5 geologic deposits of various mineralogical and genetic type was studied. The manganese content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  5. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  6. Chelation in metal intoxication. V. Lowering of manganese content in poisoned rat organs

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S K; Mathur, A K

    1976-01-01

    Metal chelation has been considered useful in the management of manganese poisoning to a considerable extent. Our own studies in this direction have shown that some polyaminocarboxylic acids and a few amino acids are effective in not only removing manganese from the vital organs of experimentally poisoned animals but also in restoring certain metal induced biochemical and histological changes in such organs. Further, the success of p-aminosalicylic acid (PAS), a chemotherapeutic agent for tuberculosis, in manganese mobilization has led us to examine some other structurally related compounds together with a few other possible metal binding agents for their ability to remove excess metal from the organs, their sub-cellular fractions and blood cells of manganese administered rats and to investigate if there exists any relationship between the structure of such compounds and their metal mobilizing capacity. The present communication deals with the results of these investigations.

  7. Occupational neurotoxicology due to heavy metals-especially manganese poisoning

    International Nuclear Information System (INIS)

    Inoue, Naohide

    2007-01-01

    The most hazardous manganese exposures occur in mining and smelting of ore. Recently, the poisoning has been frequently reported to be associated with welding. In occupational exposure, manganese is absorbed mainly by inhalation. Manganese preferentially accumulates in tissues rich in mitochondria. It also penetrates the blood brain barrior and accumulate in the basal ganglia, especially the globus pallidus, but also the striatum. Manganese poisoning is clinically characterized by the central nervous system involvement including psychiatric symptomes, extrapyramidal signs, and less frequently other neurological manifestations. Psychiatric symptomes are well described in the manganese miners and incrude sleep disturbance, disorientation, emotional lability, compulsive acts, hallucinations, illusions, and delusions. The main characteristic manifestations usually begin shortly after the appearance of these psychiatric symptomes. The latter neurological signs are progressive bradykinesia, dystonia, and disturbance of gait. Bradykinesia is one of the most important findings. There is a remarkable slowing of both active and passive movements of the extremities. Micrographia is frequently observed and a characteristic finding. The patients may show some symmetrical tremor, which usually not so marked. The dystonic posture of the limbs is often accompanied by painfull cramps. This attitudal hypertonia has a tendency to decrease or disappear in the supine position and to increase in orthostation. Cog-wheel rigidity is also elisited on the passive movement of all extremities. Gait disturbance is also characteristic in this poisoning. In the severe cases, cook gait has been reported. The patient uses small steps, but has a tendency to elevate the heels and to rotate them outward. He progress without pressing on the flat of his feet, but only upon the metatarsophalangeal articulations, mainly of the fourth and fifth toes. Increased signal in T1-weighted image in the basal

  8. Concentrations of heavy metals (lead, manganese, cadmium) in blood and urine of former uranium workers

    International Nuclear Information System (INIS)

    Apostolova, D.; Pavlova, S.; Paskalev, Z.

    1999-01-01

    Uranium ores contain heavy metals and other stable chemical elements as oxides, hydro-carbonates, sulphates, etc. During chemical processing of ore they could be transformed into compounds soluble in biologic liquids. The purpose of this study was to determine the combined intoxication of uranium miners and millers by heavy metals and radiation. Heavy metal (lead, manganese and cadmium) concentrations in blood and urine od 149 former uranium miners and millers were determined by AAS method. Data of significantly increased lead and manganese concentration in blood (p<0.05) of two groups were established in comparison with a control group. There is no statistical significant differences in the cadmium concentrations. The lead and manganese blood levels at the uranium millers were significant higher than those of the uranium miner group (p<0.05). Tendency towards increased blood lead concentrations of uranium millers depending on the length of service was established

  9. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.; Rastogi, S.C.

    1977-08-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analyzed for cadmium, chromium, copper, manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chromium and nickel levels were significantly higher (P < 0.01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P < 0.1). Nineteen percent of autoworkers were found to have an abnormally high blood level of carboxyhemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed.

  10. Influence of metallic additives on manganese ferrites sintering

    Science.gov (United States)

    Shevelev, S. A.; Luchnikov, P. A.; Yarullina, A. R.

    2018-01-01

    Influence of cuprum nanopowder additive received by electric explosion on the process of manganese ferrites MgFe2O4 consolidating at thermal sintering was researched by dilatometry method. Cuprum nanopowder at a rate of 5 mass % was added into the original commercial-grade powder of manganese ferrite MgFe2O4. Powder mixture was numerously blended with screening for better blending before pressing. Powder compacts were formed by cold one-axle static pressing. It was proved that introduction of cuprum additive caused shrinkage increase at final heating stage. There was abnormal compact enlarging at sintering in the air at isothermal stage; the specified process was not observed in vacuum. This difference can be explained by changes in conditions of gaseous discharge from volume of pores.

  11. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    Science.gov (United States)

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  12. Method to determine the contents of economically interesting metals in manganese nodules

    International Nuclear Information System (INIS)

    Michaelis, W.; Fanger, U.; Pepelnik, R.; Mueller, A.

    1977-01-01

    Metals which are economically important (as copper, nickel) can be determined in manganese nodules by analysing the activating gamma spectra which are measured after neutron irradiation of the samples. Irradiating the samples with fast neutrons and analysing the activity thus reduced with the help of a gamma detector is expected to improve the method. This serves to obtain the ratio of the radiation intensities of two main components (Mu, Fe) and using this, the percental metal content can be determined through known geo-chemical correlation tables and curves. The method is described in detail. (RB) [de

  13. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    Science.gov (United States)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant

  14. Sustainable green catalysis by supported metal nanoparticles.

    Science.gov (United States)

    Fukuoka, Atsushi; Dhepe, Paresh L

    2009-01-01

    The recent progress of sustainable green catalysis by supported metal nanoparticles is described. The template synthesis of metal nanoparticles in ordered porous materials is studied for the rational design of heterogeneous catalysts capable of high activity and selectivity. The application of these materials in green catalytic processes results in a unique activity and selectivity arising from the concerted effect of metal nanoparticles and supports. The high catalytic performances of Pt nanoparticles in mesoporous silica is reported. Supported metal catalysts have also been applied to biomass conversion by heterogeneous catalysis. Additionally, the degradation of cellulose by supported metal catalysts, in which bifunctional catalysis of acid and metal plays the key role for the hydrolysis and reduction of cellulose, is also reported. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  15. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  16. A manganese sulfite with extended metal-oxygen-metal bonds exhibiting hydrogen uptake

    International Nuclear Information System (INIS)

    Rao, K. Prabhakara; Govindaraj, A.; Rao, C.N.R.

    2007-01-01

    A manganese sulfite of the formula Mn 5 (OH) 4 (SO 3 ) 3 .2H 2 O, I{a=7.5759(7) A, b=8.4749(8) A, c=10.852(1) A, β=100.732(2) o , Z=2, space group=P2 1 /m (no. 11), R 1 =0.0399 and wR 2 =0.1121 [for R indexes I>2σ(I)]}, comprising Mn 3 O 14 units and extended Mn-O-Mn bonds along the three dimensions has been synthesized under hydrothermal conditions. It has narrow channels along the b-axis and exhibits hydrogen storage of 2.1 wt% at 300 K and 134 bar. - Graphical abstract: A three-dimensional manganese sulfite with one-dimensional channels showing selective hydrogen absorption has been synthesized and characterized

  17. Validity of manganese as a surrogate of heavy metals removal in constructed wetlands treating acidic mine water

    International Nuclear Information System (INIS)

    Royer, E.; Unz, R.F.; Hellier, W.W.

    1998-01-01

    The evaluation of manganese as a surrogate for heavy metal behavior in two wetland treatment systems receiving acidic coal mine drainage in central Pennsylvania was investigated. The use of manganese as an indicator is based on physical/chemical treatment processes quite different from wetland treatment. The treatment systems represented one anoxic, subsurface flow system and one oxic surface flow system. Water quality parameters measured included pH, alkalinity, acidity, and a suite of metals. Correlation and linear regression analysis were used to evaluate the ability of a candidate predictor variable (indicator) to predict heavy metal concentrations and removal. The use of manganese as a predictor of effluent quality proved to be poor in both wetland treatment systems, as evidenced by low linear R 2 values and negative correlations. Zinc emerged as the best predictor of the detectable heavy metals at the anoxic wetland. Zinc exhibited positive strong linear correlations with copper, cobalt, and nickel (R 2 values of 0.843, 0.881, and 0.970, respectively). Effluent pH was a slightly better predictor of effluent copper levels in the anoxic wetland. Iron and cobalt effluent concentrations showed the only strong relationship (R 2 value = 0.778) in the oxic system. The lack of good correlations with manganese strongly challenges its appropriateness as a surrogate for heavy metals in these systems

  18. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  19. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Science.gov (United States)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2017-03-01

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram.

  20. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    OpenAIRE

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanof...

  1. Heavy metals and manganese oxides in the genesee watershed, New York state: effects of geology and land use

    Science.gov (United States)

    Whitney, P.R.

    1981-01-01

    Manganese oxide coatings on gravels from 255 sites on tributary streams in the Genesee River Watershed were analyzed for Mn, Fe, Zn, Cd, Co, Ni, Pb, and Cu. The results were compared with data on bedrock geology, surficial geology and land use, using factor analysis and stepwise multiple regression. All metals except Pb show strong positive correlation with Mn. This association results from the well-known tendency of Mn oxide precipitates to adsorb and incorporate dissolved trace metals. Pb may be present in a separate phase on the gravel surfaces; alternatively Pb abundance may be so strongly influenced by environmental factors that the effect of varying abundance of the carrier phase becomes relatively unimportant. When the effects of varying Mn abundance are allowed for, Pb and to a lesser extent Zn and Cu abundances are seen to be related to commercial, industrial and residential land use. In addition to this pollution effect, all the trace metals, Cd and Ni most strongly, tend to be more abundant in oxide coatings from streams in the forested uplands in the southern part of the area. This probably reflects increased geochemical mobility of the metals in the more acid soils and groundwater of the southern region. A strong Zn anomaly is present in streams draining areas underlain by the Lockport Formation. Oxide coatings in these streams contain up to 5% Zn, originating from disseminated sphalerite in the Lockport and secondary Zn concentrations in the overlying muck soils. The same group of metals, plus calcium and loss on ignition, were determined in the silt and clay (minus 230 mesh) fraction of stream sediments from 129 of the same sites, using a hot nitric acid leach. The amounts of manganese in the sediments are low (average 1020 ppm) and manganese oxides are, at most, of relatively minor significance in the trace-metal geochemistry of these sediments. The bulk of the trace metals in sediment appears to be associated with iron oxides, clays and organic

  2. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage

    Science.gov (United States)

    Pérez del Pino, A.; György, E.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar, J. L.; Pascual, E.; Amade, R.; Bertran-Serra, E.

    2017-09-01

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT’s long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO2-VACNT system (100 F g-1) as compared to the initial VACNT one (21 F g-1).

  3. Microstructural aspects of manganese metal during its electrodeposition from sulphate solutions in the presence of quaternary amines

    International Nuclear Information System (INIS)

    Padhy, Subrat Kumar; Patnaik, P.; Tripathy, B.C.; Bhattacharya, I.N.

    2015-01-01

    Graphical abstract: - Highlights: • Quaternary amines produced smooth and bright manganese electrodeposits. • TEABr produced smooth and bright deposits with euhedral shaped crystals. • TBABr produced dendritic deposits with elongated poly-nodular crystals. • All the quaternary amines behaved as cathode polarisers. • TEABr was found to be the most efficient organic additive. - Abstract: In the present study investigation was made on the electrodeposition of manganese from sulphate solutions in the presence of quaternary amines TEABr, TPABr and TBABr. The concentrations of these additives were varied over a relatively broad range to evaluate their effect on the deposit morphology and preferred crystal orientations of the electrodeposited metal. TEABr resulted in bright and smooth manganese electrodeposits giving euhedral shape to the crystals with distinct triple junction points. TPABr also showed similar results at lower concentrations. However, TBABr resulted in the formation of dendritic growths with elongated poly-nodular crystals similar to that of Paragorgia corals having uniform multistep growths. The presence of these quaternary amines in the electrolyte causes polarisation of the cathode. TBABr being the strongest cathode polariser adsorbs strongly on the cathode resulting in poor deposit quality. TEABr was found to be the most efficient additive producing the desired quality manganese electrodeposit

  4. A High-Pressure Study of Manganese Metal and its Reactions with CO2 at 6, 23, and 44 GPa

    Science.gov (United States)

    Sawchuk, K. L. S.; McGuire, C. P.; Greenburg, A.; Makhluf, A.; Kavner, A.

    2017-12-01

    The free energies of formation of oxides and carbonates at the extreme pressures and temperatures of Earth's interior provides some of the thermodynamic constrains for models of mantle/core formation and subsequent chemical evolution. The broad goal of our research program is to measure the pressure- and temperature-dependence of free energies of formation of transition metal oxides and carbonates. This requires measurements of the phase stability, density, and thermoelastic properties of metals, oxides, and carbonates at deep-Earth and planetary conditions. Manganese is of interest because it is one of the most abundant transition metal geochemical tracers, it readily forms a carbonate at ambient pressure, and its high-pressure carbonate and oxide densities and equation of state parameters are relatively unknown. Here we report new data on the pressure/volume equation of state and structure of manganese metal as well as its reactions with CO2. These measurements were made using a laser heated diamond anvil cell in conjunction with synchrotron-based X-ray diffraction at beamline 12.2.2 at the Advanced Light Source. Three samples of manganese metal were gas-loaded in a CO2 pressure medium and pressurized to 6, 23, and 44 GPa. Upon laser heating, the CO2 reacted with the Mn metal generating new phases. To analyze the diffraction patterns, we we use a python-based program developed in-house for extracting high resolution 2-dimensional diffraction peak position and intensity information from two-dimensional X-ray diffraction patterns. At each pressure step, the structure and density of the quenched Mn metal phase was determined. At 6 GPa, Mn metal adopts a BCC structure, and at 23 GPa a tetragonal distortion is observed in the lattice. The measured equation of state is in good agreement with an existing meaurement by Fujihisa and Takemura (1995). MnCO3 rhodochrosite is observed in the sample quenched after heating at 6 GPa. Additional high pressure phases are evident

  5. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions

    Science.gov (United States)

    Hein, James R.; Spinardi, Francesca; Okamoto, Nobuyuki; Mizell, Kira; Thorburn, Darryl; Tawake, Akuila

    2015-01-01

    The Cook Islands (CIs) Exclusive Economic Zone (EEZ) encompasses 1,977,000 km2 and includes the Penrhyn and Samoa basins abyssal plains where manganese nodules flourish due to the availability of prolific nucleus material, slow sedimentation rates, and strong bottom currents. A group of CIs nodules was analyzed for mineralogical and chemical composition, which include many critical metals not before analyzed for CIs nodules. These nodules have varying sizes and nuclei material; however all are composed predominantly of δ-MnO2 and X-ray amorphous iron oxyhydroxide. The mineralogy, Fe/Mn ratios, rare earth element contents, and slow growth rates (mean 1.9 mm/106 years) reflect formation primarily by hydrogenetic precipitation. The paucity of diagenetic input can be explained by low primary productivity at the surface and resultant low organic matter content in seafloor sediment, producing oxic seafloor and sub-seafloor environments. The nodules contain high mean contents of Co (0.41%), Ni (0.38%), Ti (1.20%), and total rare earth elements plus yttrium (REY; 0.167%), and also high contents of Mo, Nb, V, W, and Zr.

  6. Atomic contributions to the valence band photoelectron spectra of metal-free, iron and manganese phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Bidermane, I., E-mail: ieva.bidermane@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Institut des Nanosciences de Paris, UPMC Univ. Paris 06, CNRS UMR 7588, F-75005 Paris (France); Brumboiu, I.E. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Totani, R. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Grazioli, C. [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Departement of Chemical and Pharmaceutical Sciences, University of Trieste (Italy); Shariati-Nilsson, M.N.; Herper, H.C.; Eriksson, O.; Sanyal, B. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Ressel, B. [University of Nova Gorica, Vipavska Cesta 11c, 5270 Ajdovščina (Slovenia); Simone, M. de [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Lozzi, L. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Brena, B.; Puglia, C. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden)

    2015-11-15

    Highlights: • In detail comparison between the valence band structure of H{sub 2}Pc, FePc and MnPc. • Comparison between the gas phase samples and thin evaporated films on Au (1 1 1). • Detailed analysis of the atomic orbital contributions to the valence band features. • DFT/HSE06 study of the valence band electronic structure of H{sub 2}Pc, FePc and MnPc. - Abstract: The present work reports a photoelectron spectroscopy study of the low-energy region of the valence band of metal-free phthalocyanine (H{sub 2}Pc) compared with those of iron phthalocyanine (FePc) and manganese phthalocyanine (MnPc). We have analysed in detail the atomic orbital composition of the valence band both experimentally, by making use of the variation in photoionization cross-sections with photon energy, and theoretically, by means of density functional theory. The atomic character of the Highest Occupied Molecular Orbital (HOMO), reflected on the outermost valence band binding energy region, is different for MnPc as compared to the other two molecules. The peaks related to the C 2p contributions, result in the HOMO for H{sub 2}Pc and FePc and in the HOMO-1 for MnPc as described by the theoretical predictions, in very good agreement with the experimental results. The DFT simulations, discerning the atomic contribution to the density of states, indicate how the central metal atom interacts with the C and N atoms of the molecule, giving rise to different partial and total density of states for these three Pc molecules.

  7. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China)

    2017-03-15

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram. - Highlights: • The typical deposited metals is the lath martensite with the fine stripe δ-ferrite. • The impact toughness is dependent on the δ-ferrite and the high quenching martensite. • The chemical compositions influence the solidification sequence.

  8. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    Science.gov (United States)

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  9. Growth and Heavy Metal Accumulation of Koelreuteria Paniculata Seedlings and Their Potential for Restoring Manganese Mine Wastelands in Hunan, China

    Directory of Open Access Journals (Sweden)

    Zhihong Huang

    2015-02-01

    Full Text Available The planting of trees on mine wastelands is an effective, long-term technique for phytoremediation of heavy metal-contaminated wastes. In this study, a pot experiment with seedlings of Koelreuteria paniculata under six treatments of local mine wastes was designed to determine the major constraints on tree establishment and to evaluate the feasibility of planting K. paniculata on manganese mine wastelands. Results showed that K. paniculata grew well in mine tailings, and also under a regime of equal amounts of mine tailings and soil provided in adjacent halves of pots. In contrast, mine sludge did not favor survival and growth because its clay texture limited fine root development. The bio-concentration factor and the translocation factor were mostly less than 1, indicating a low phytoextraction potential for K. paniculata. K. paniculata is suited to restore manganese mine sludge by mixing the mine sludge with local mine tailings or soil.

  10. Growth and Heavy Metal Accumulation of Koelreuteria Paniculata Seedlings and Their Potential for Restoring Manganese Mine Wastelands in Hunan, China

    Science.gov (United States)

    Huang, Zhihong; Xiang, Wenhua; Ma, Yu’e; Lei, Pifeng; Tian, Dalun; Deng, Xiangwen; Yan, Wende; Fang, Xi

    2015-01-01

    The planting of trees on mine wastelands is an effective, long-term technique for phytoremediation of heavy metal-contaminated wastes. In this study, a pot experiment with seedlings of Koelreuteria paniculata under six treatments of local mine wastes was designed to determine the major constraints on tree establishment and to evaluate the feasibility of planting K. paniculata on manganese mine wastelands. Results showed that K. paniculata grew well in mine tailings, and also under a regime of equal amounts of mine tailings and soil provided in adjacent halves of pots. In contrast, mine sludge did not favor survival and growth because its clay texture limited fine root development. The bio-concentration factor and the translocation factor were mostly less than 1, indicating a low phytoextraction potential for K. paniculata. K. paniculata is suited to restore manganese mine sludge by mixing the mine sludge with local mine tailings or soil. PMID:25654773

  11. Insulin sensitivity to trace metals (Chromium, manganese) in type 2 diabetic patients and diabetic individuals

    International Nuclear Information System (INIS)

    Hajra, B.; Orakzai, S.A.; Faryal, U.; Hassan, M.

    2016-01-01

    Background: Diabetes mellitus constitutes one of the most important problems in developing and non-developing countries. The purpose of the study to estimate the concentrations of Chromium and Manganese in diabetic and non-diabetic population of Hazara division. The cross sectional comparative study was carried out on one hundred blood samples of Type 2 Diabetic patients collected non-randomly from Ayub Teaching Hospital and one hundred normal healthy controls from Women Medical College Abbottabad from September 2014 to April 2015. Methods: The study included two hundred subjects. Among them 100 were diabetic and 100 non diabetic respectively. The blood samples were collected from Ayub Medical College, Abbottabad. The serum Chromium and Manganese levels were determined by Atomic Absorption spectrophotometer. Results: Serum Chromium and Manganese levels were decreased in diabetic and increased in non-diabetic patients. Conclusion: Low serum level of Chromium and manganese were found in diabetic patients as compare to non-diabetic individuals. (author)

  12. Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block.

    Science.gov (United States)

    Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2017-07-05

    This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.

  13. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both

  14. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    Science.gov (United States)

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies.

  15. Sustainable management of heavy metals in agro-ecosystems

    NARCIS (Netherlands)

    Moolenaar, S.W.

    1998-01-01

    In 1993, the Netherlands Organization for Scientific Research (NWO) launched a priority research program on 'Sustainability and Environmental Quality'. Within this program, the METALS subprogram focusses on the accumulation of metals in economy (e.g., zinc in gutters) and the environment

  16. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination

    Czech Academy of Sciences Publication Activity Database

    Eroglu, S.; Giehl, R.F.H.; Meier, B.; Takahashi, M.; Terada, Y.; Ignatyev, K.; Andresen, Elisa; Küpper, Hendrik; Peiter, E.; von Wiren, N.

    2017-01-01

    Roč. 174, č. 3 (2017), s. 1633-1647 ISSN 0032-0889 Institutional support: RVO:60077344 Keywords : diffusion facilitator family * arabidopsis-thaliana * x-ray * vacuolar manganese Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 6.456, year: 2016

  17. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  18. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater.

    Science.gov (United States)

    Matsushita, Shuji; Komizo, Daisuke; Cao, Linh Thi Thuy; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Noriatsu; Imachi, Hiroyuki; Ohashi, Akiyoshi

    2018-03-01

    Biogenic manganese oxide (BioMnO x ) can efficiently adsorb various minor metals. The production of BioMnO x in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnO x during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnO x production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO 2 , but the maximum Mn(II) removal rate was 0.49 kg m -3  d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Metal scarcity and sustainability, analyzing the necessity to reduce the extraction of scarce metals

    NARCIS (Netherlands)

    Henckens, M. L C M; Driessen, P. P J; Worrell, E.

    2014-01-01

    There is debate whether or not further growth of metal extraction from the earth's crust will be sustainable in connection with geologic scarcity. Will future generations possibly face a depletion of specific metals? We study whether, for which metals and to what extent the extraction rate would

  20. Uranium-throium isotopes and transition metal fluxes in two oriented manganese nodules from the Central Indian Basin: implications for nodule turnover

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    turnover. Mar. Geol., 95:71-76. Transition metal fluxes to the top and bottom of two oriented manganese nodules (SS-657 and SK-176) were deter- mined by combining radiochemical and geochemical analyses. Distinct differences in transition metal fluxes, 2a... of rotation of the nodule several times over time intervals which are smaller than the time resolution involved in U-Th isotope dating techniques. Introduction orientation of a nodule, the turnover exposing the accreting surfaces to different environ...

  1. Sustainability of Metal Structures via Spray-Clad Remanufacturing

    Science.gov (United States)

    Smith, Gregory M.; Sampath, Sanjay

    2018-04-01

    Structural reclamation and remanufacturing is an important future design consideration to allow sustainable recovery of degraded structural metals. Heavy machinery and infrastructure components subjected to extended use and/or environment induced degradation require costly and time-consuming replacement. If these parts can be remanufactured to original tolerances, and returned to service with "as good or better" performance, significant reductions in materials, cost, and environmental impact can be achieved. Localized additive restoration via thermal or cold spray methods is a promising approach in recovering and restoring original design strength of degraded metals. The advent of high velocity spray deposition technologies has allowed deposition of near full density materials. In this review, the fundamental scientific and technological elements of such local additive restoration is contemplated including materials, processes, and methodologies to assess the capabilities of such remanufactured systems. This points to sustainable material reclamation, as well as a route toward resource and process sustainability.

  2. Sustainable governance of scarce metals: the case of lithium.

    Science.gov (United States)

    Prior, Timothy; Wäger, Patrick A; Stamp, Anna; Widmer, Rolf; Giurco, Damien

    2013-09-01

    Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society--they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like 'servicizing' the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Sustainable governance of scarce metals: The case of lithium

    Energy Technology Data Exchange (ETDEWEB)

    Prior, Timothy, E-mail: tim.prior@sipo.gess.ethz.ch [Center for Security Studies (CSS), ETH Zürich (Switzerland); Institute for Sustainable Futures, University of Technology, Sydney (Australia); Wäger, Patrick A. [Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen (Switzerland); Stamp, Anna [Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen (Switzerland); Institute for Environmental Decisions, ETH Zürich (Switzerland); Widmer, Rolf [Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen (Switzerland); Giurco, Damien [Institute for Sustainable Futures, University of Technology, Sydney (Australia)

    2013-09-01

    Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society—they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like ‘servicizing’ the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. - Highlights: • Lithium is a geochemically scare metal, but demand is forecast to increase in future • We explore sustainable lithium governance implications for Australia and Switzerland • One governance mechanism is the ‘servicization’ of the lithium value chain • We explore one actual, and two hypothetical lithium service business models • ‘Servicizing’ a commodity would require fundamental innovations in minerals policy.

  4. Sustainable governance of scarce metals: The case of lithium

    International Nuclear Information System (INIS)

    Prior, Timothy; Wäger, Patrick A.; Stamp, Anna; Widmer, Rolf; Giurco, Damien

    2013-01-01

    Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society—they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like ‘servicizing’ the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. - Highlights: • Lithium is a geochemically scare metal, but demand is forecast to increase in future • We explore sustainable lithium governance implications for Australia and Switzerland • One governance mechanism is the ‘servicization’ of the lithium value chain • We explore one actual, and two hypothetical lithium service business models • ‘Servicizing’ a commodity would require fundamental innovations in minerals policy

  5. Sustainability assessment of shielded metal arc welding (SMAW) process

    Science.gov (United States)

    Alkahla, Ibrahim; Pervaiz, Salman

    2017-09-01

    Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.

  6. Comparison of the adaptability to heavy metals among crop plants. I. Adaptability to manganese-studies on comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Tadano, T; Fujita, H

    1975-01-01

    An attempt is made to compare the tolerance of a variety of crop plants to the uptake of manganese. Three different concentrations of manganese were used for growing test plants, which included the following: rice, sugar beets, azuki beans, radishes, broad beans, peas, rutabaga, turnips, Arctinum tappa, Brassica japonica, green pepper, maize, spinach, cucumbers, tomatoes, mustard, and millet.

  7. A hard X-ray study of a manganese-terpyridine catalyst in a chromium-based Metal Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Alexandra V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-28

    Hydrogen produced from water splitting is a promising source of clean energy. However, a robust catalyst is necessary to carry out the water oxidation step of water splitting. In this study, the catalyst studied was [(terpy)Mn(μ-O)2Mn(terpy)]3+ (MnTD) synthesized in the Metal Organic Framework (MOF) MIL-101(Cr), and the method used for analysis was hard X-ray powder diffraction. The diffraction data was used to detect the presence of MOF in different catalytic stages, and lattice parameters were assigned to the samples containing MOF. Fourier maps were constructed with GSAS II to determine the contents of the MOF as preliminary studies suggested that MnTD may not be present. Results showed that MOF is present before catalysis occurs but disappears by the time 45 minutes of catalysis has ensued. Changes in the MOF’s lattice parameters and location of electron density in the Fourier maps suggest attractions between the MOF and catalyst that may lead to MOF degradation. Fourier maps also revealed limited, if any, amounts of MnTD, even before catalysis occurred. Molecular manganese oxide may be the source of the high rate of water oxidation catalysis in the studied system.

  8. IMMOBILIZATION OF HEAVY METALS IN SOILS AND WATER BY A MANGANESE MINERAL

    Science.gov (United States)

    A synthesized Mn mineral used in study on adsorption of heavy metals from water has shown a great adsorption capability for Pb, Cu, Cd, Co, Ni and Zn on this mineral over a pH range from 2 to 8. The retention of Pb on this mineral was as high as 10% of its weight. Application of ...

  9. Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Dennis W.; Abraham, Daniel P; Lu, Wenquan; Gallagher, Kevin G.; Bettge, Martin; Jansen, Andrew N

    2015-01-21

    The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li1.05(Ni1/3Co1/3Mn1/3)0.95O2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. In conclusion, the other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials.

  10. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun

    2016-04-01

    In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.

  11. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    Science.gov (United States)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  12. Manganese Abundances in the Stars with Metallicities -1 <[Fe/H]< +0.3

    Science.gov (United States)

    Mishenina, T.; Gorbaneva, T.; Pignatari, M.; Thielemann, F.-K.; Korotin, S.

    2018-01-01

    We estimate the Mn abundances in the atmospheres of 247 F-G-K-type dwarf stars belonging to the thin and thick disk populations in the metallicity range -1 LTE approximation; the synthetic spectrum for the Mn lines was computed accounting for the hyperfine structure. Starting from the results obtained, we discuss the evolution of the [Mn/Fe] ratio with respect to [Fe/H] in the galactic disk.

  13. A Mononuclear Non-Heme Manganese(IV)-Oxo Complex Binding Redox-Inactive Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M.; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N.; Nam, Wonwoo [Ewha; (Purdue); (Osaka)

    2013-05-29

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal–oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)–oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)–oxo complex binding scandium ions. The Mn(IV)–oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)–oxo complex are markedly influenced by binding of Sc3+ ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C–H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)–oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal–oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  14. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    Science.gov (United States)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  15. The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: Manganese(II/H+/Lewatit K2621

    Directory of Open Access Journals (Sweden)

    Francisco J. Alguacil

    2018-05-01

    Full Text Available In this sixth part of the series, Manganese(II was removed from aqueous solutions by the cationic exchange resin Lewatit K2621. The investigation was performed under various experimental conditions such as the stirring speed associated with the system, aqueous pH, temperature, resin dosage and the ionic strength of the solution. The performance of the resin against the loading of metals from metal-binary solutions as well as the removal of Manganese(II from the solutions using multiwalled carbon nanotubes and functionalized (carboxylic groups multiwalled carbon nanotubes, were also investigated. Experimental results fit well with the pseudo-first kinetic order model, whereas fit of the data show that at 20 °C the process responded well to the diffusion controlled model, and that at 60 °C, the system is controlled by the moving boundary model. Adsorption data is better related to the Freundlich isotherm. Elution of the Manganese(II loaded onto the resin was investigated using acidic (H2SO4 or HCl solutions.

  16. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  17. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries

    International Nuclear Information System (INIS)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de

    2014-01-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO 4 ) 2 .H 2 O) and lanthanum sulfate (La 2 (SO 4 ) 3 .H 2 O) as the major recovered components. Iron was recovered as Fe(OH) 3 and FeO. Manganese was obtained as Mn 3 O 4 .The recovered Ni(OH) 2 and Co(OH) 2 were subsequently used to synthesize LiCoO 2 , LiNiO 2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  18. Borreliacidal activity of Borrelia metal transporter A (BmtA binding small molecules by manganese transport inhibition

    Directory of Open Access Journals (Sweden)

    Wagh D

    2015-02-01

    Full Text Available Dhananjay Wagh,* Venkata Raveendra Pothineni,* Mohammed Inayathullah, Song Liu, Kwang-Min Kim, Jayakumar Rajadas Biomaterials and Advanced Drug Delivery Laboratory, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA *These authors contributed equally to this work  Abstract: Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA, a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 µg/mL (250 µM. Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia.  Keywords: Lyme disease, BmtA, Borrelia burgdorferi, desloratadine, Bac Titer-Glo assay

  19. Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.; Vidal-Abarca, C.

    2007-01-01

    An ethanol dehydration procedure has been used to precipitate gel-like citrate precursors containing cobalt and manganese transition metal ions. Further annealing led to the Mn x Co 3-x O 4 spinel oxide series (x: 1, 1.5, 2, 3). Annealing temperature and treatment time were also evaluated to optimize the performance of the oxides as active electrode materials in lithium cells. The manganese-cobalt mixed oxides obtained by this procedure were cubic or tetragonal phases depending on the cobalt content. SEM images showed spherical macroporous aggregates for MnCo 2 O 4 and hollow spheres for manganese oxides. The galvanostatic cycling of lithium cells assembled with these materials demonstrated a simultaneous reduction of cobalt and manganese during the first discharge and separation of cobalt- and manganese-based products on further cycling. As compared with binary manganese oxides, a notorious electrochemical improvement was observed in the mixed oxides. This behavior is a consequence of the synergistic effect of both transition metal elements, associated with the in-situ formation of a nanocomposite electrode material when cobalt is introduced in the manganese oxide composition. Values higher than 400 mAh/g were sustained after 50 cycles for MnCo 2 O 4

  20. Trace metal detection in Sibenik Bay, Croatia: Cadmium, Lead and Copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. a case study

    International Nuclear Information System (INIS)

    Omanovic, D.; Kwokal, Z.; Goodwin, A.; Lawrence, A.; Banks, C.E.; Compton, R.G.; Komersky-Lovric, S.

    2006-01-01

    The vertical profiles of the concentration of reactive Mn and total concentrations of Cd, Pb, and Cu ions in the water column of the Sibenik Bay (Krka river estuary) were determined. The measured ranges of concentrations are: 60-1300 ng 1 -1f or Mn, 5-13 ng 1 -1 for Cd, 70-230 ng 1 -1f or Pb, and 375-840 ng 1 -1f or Cu. These values are comparable with the concentrations found in the unpolluted estuaries. The Krka river estuary is highly stratified, with the measured salinity gradient of 20% within a half meter of the freshwater-seawater interface . The main changes in the vertical profiles of the measured parameters occur in the freshwater-seawater interface: the temperature increases for 1 d ig C and the pH decreases for 0.1 unit, whereas the metal concentrations show different behaviour. Generally, Mn, Pb, and Cd ions show the increase of concentrations in the freshwater-seawater interface , while copper concentration profile indicates anthropogenic pollution in the brackish layer caused by agriculture activities and by the paint with copper basis used as an antifoulant biocide for the ships. UV-digested samples show an increase in manganese concenbations for at least 3.5 times comparing to non UV-digested. This suggests that in natural water manganese exists mainly in the form of inert complexes and as associated to particulate matter (about 70-80%). UV irradiation has no influence on the concentration of cadmium, while for lead an increase of 50% in the seawater layer is observed. The twofold increase of the copper concentration in the upper freshwater layer and at least the fourfold one in the seawater layer were measured in the UV-digested samples. These results show that copper is strongly bound to inert complexes, and that UV-digestion is necessary step in determination of the total metal concentrations in natural water samples. No significant increase of the metal concentrations in the deeper seawater layer was observed, indicating the absence of the

  1. Mineral resource of the month: manganese

    Science.gov (United States)

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  2. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  3. The influence of manganese treatment on the distribution of metal elements in rats and the protection by sodium para-amino salicylic acid.

    Science.gov (United States)

    Yuan, Zong-Xiang; Chen, Hai-Bin; Li, Shao-Jun; Huang, Xiao-Wei; Mo, Yu-Huan; Luo, Yi-Ni; He, Sheng-Nan; Deng, Xiang-Fa; Lu, Guo-Dong; Jiang, Yue-Ming

    2016-07-01

    Manganese (Mn) overexposure induced neurological damages, which could be potentially protected by sodium para-aminosalicylic acid (PAS-Na). In this study, we systematically detected the changes of divalent metal elements in most of the organs and analyzed the distribution of the metals in Mn-exposed rats and the protection by PAS-Na. Sprague Dawley (SD) rats received intraperitoneal injections of 15mg/kg MnCl2·4H2O (5d/week for 3 weeks), followed by subcutaneous (back) injections of PAS-Na (100 and 200mg/kg, everyday for 5 weeks). The concentrations of Mn and other metal elements [Iron (Fe), Copper (Cu), Zinc (Zn), Magnesium (Mg), Calcium (Ca)] in major organs (liver, spleen, kidney, thighbone and iliac bone, cerebral cortex, hippocampus and testes) and blood by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Mn overexposure significantly increased Mn in most organs, Fe and Zn in liver, Fe and Mg in blood; however decreased Fe, Cu, Zn, Mg and Ca in cortex, Cu and Zn in kidney, Cu and Mg in iliac bone, and Zn in blood. In contrast, PAS-Na treatment restored most changes particularly in cortex. In conclusion, excessive Mn exposure disturbed the balance of other metal elements but PAS-Na post-treatments could restore these alterations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Neutralization study of boron and some metallic impurities (gold, titanium, manganese, chromium) by hydrogen implantation in monocrystal silicon

    International Nuclear Information System (INIS)

    Zundel, T.

    1987-02-01

    Boron doped silicon implanted with hydrogen at low energy in the temperature range 80-140 0 C shows a large decrease of the electrically active dopant concentration up to a depth which increases with the temperature, the implantation duration and the starting material resistivity. This effect is assigned to the formation of an electrically inactive BH complex. The hydrogen incorporation process shows a weakly temperature dependent enhanced diffusion step followed by a normal diffusion phase which may be described by a thermally activated diffusion coefficient. Heating at 80 0 C produces a complete dissociation of the BH complexes in the space charge region of reverse biased Schottky diodes. Consequently the released hydrogen drifts under the electric field and the neutralization becomes more pronounced in the bulk. Hydrogen neutralizes the gold, chromium, manganese related deep levels but has no effect on titanium related defect levels. Thermal annealing at 495 0 C of hydrogenated chromium or manganese doped samples produces four majority carriers levels which disappear at 700 0 C [fr

  5. Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach.

    Science.gov (United States)

    Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F

    2016-06-01

    Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Process optimization and leaching kinetics of zinc and manganese metals from zinc-carbon and alkaline spent batteries using citric acid reagent

    Science.gov (United States)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Zn-Carbon and Alkaline spent batteries contains heavy metals, such as zinc and manganese, which can causes environmental problem if not handled properly. Usually the recovery of these metals were done by leaching method using strong acid, but the use of strong acids as leaching reagents can be harmful to the environment. This paper concerns the recovery of Zn and Mn metals from Zn-C and alkaline spent batteries with leaching method using citric acid as the environmental friendly leaching reagent. The leaching conditions using citric acid were optimized and the leaching kinetics of Zn and Mn in citric acid solution was investigated. The leaching of 89.62% Zn and 63.26% Mn was achieved with 1.5 M citric acid, 90°C temperature, and 90 minutes stirring time. Kinetics data for the dissolution of Zn showed the best fit to chemical control shrinking core model, while the diffusion controlled model was suitable for the dissolution of Mn kinetics data. The activation energy of 6.12 and 1.73 kcal/mol was acquired for the leaching of Zn and Mn in the temperature range 60°C-90°C.

  7. Inorganic ion exchangers based on manganese and potassium for recovery and removal of pollutant metals of aqueous effluents

    International Nuclear Information System (INIS)

    Santos, Jacinete Lima dos

    2001-01-01

    This work presents a study on the synthesis, characterization and ion exchange properties of inorganic ion exchangers based on manganese and potassium. The ion exchangers were synthesized by calcination of the mixture of manganese(II) oxalate and potassium oxalate and were characterized by granulometer distribution analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopic. From the data obtained in characterization it was observed that exist two distinguished groups of these materials. The first group belong to ion exchangers with up to 30% w/w potassium and the second group formed by the ion exchangers with more than 30% w / w of content of potassium in their compositions. The studies of adsorption of these materials showed that the adsorption of Cd 2+ is a function of the following parameters as pH, concentration of Cd 2+ , time of contact between the ion exchangers the concentration of the Cd 2+ solution and the interference of other ions like Ni 2+ . The great pH of adsorption for these materials occur in pH 9, the study of the influence of the cadmium concentration in the adsorption showed that for a group of exchangers the adsorption decreases with the increase of cadmium concentration and for the other group the adsorption increases with the increase of cadmium concentration. The kinetics of adsorption occur in a contact time between the ion exchangers and the Cd 2+ solutions relatively short, at about 15 minutes is necessary to establish the equilibrium. The presence of Ni 2+ as interfering ion decreases the adsorption of cadmium of 99,7% to 65%. These inorganic ion exchangers showed be good exchangers for Cd 2+ . (author)

  8. Challenges to achievement of metal sustainability in our high-tech society.

    Science.gov (United States)

    Izatt, Reed M; Izatt, Steven R; Bruening, Ronald L; Izatt, Neil E; Moyer, Bruce A

    2014-04-21

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

  9. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  10. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.; Thomas, P.A.

    1981-12-01

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  11. Effect of manganese on neonatal rat: manganese concentration and enzymatic alterations in brain

    Energy Technology Data Exchange (ETDEWEB)

    Seth, P K; Husain, R; Mushtaq, M; Chandra, S V

    1977-01-01

    Suckling rats were exposed for 15 and 30 days to manganese through the milk of nursing dams receiving 15 mg MnCl/sub 2/.4H/sub 2/O/kg/day orally and after which the neurological manifestations of metal poisoning were studied. No significant differences in the growth rate, developmental landmarks and walking movements were observed between the control and manganese-exposed pups. The metal concentration was significantly increased in the brain of manganese-fed pups at 15 days and exhibited a further three-fold increase over the control, at 30 days. The accumulation of the metal in the brain of manganese-exposed nursing dams was comparatively much less. A significant decrease in succinic dehydrogenase, adenosine triphosphatase, adenosine deaminase, acetylcholine esterase and an increase in monoamine oxidase activity was observed in the brain of experimental pups and dams. The results suggest that the developing brain may also be susceptible to manganese.

  12. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  13. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    Science.gov (United States)

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  15. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of manganese on neonatal rat: manganese distribution in vital organs

    Energy Technology Data Exchange (ETDEWEB)

    Husain, R; Mushtaq, M; Seth, P K; Chandra, S V

    1976-01-01

    At present very little is known about the effect of manganese on the early stage of life, though the metal poisoning in adult humans and experimental animals has been known for quite some time. The possibility of the exposure of the general public to the deleterious effects of the metal through the environmental contamination resulting from its increasing industrial applications, and the use of Methyl Cyclopentadienyl Manganese Tricarbonyl (MMT) in gasoline and motor fuel, points to the need for such an information. Our recent studies in this direction have shown that manganese exposed nursing dams can transfer significant amounts of the metal via maternal milk of their sucklings and the brain of the latter exhibited marked enzymatic alterations. The present communication deals with the distribution of manganese in the vital organs of rat pups nursing on mothers receiving the metal orally.

  17. Cross-sectional study of expression of divalent metal transporter-1, transferrin, and hepcidin in blood of smelters who are occupationally exposed to manganese

    Directory of Open Access Journals (Sweden)

    Qiyuan Fan

    2016-09-01

    Full Text Available Background Manganese (Mn is widely used in industries including the manufacture of Mn-iron (Fe alloy. Occupational Mn overexposure causes manganism. Mn is known to affect Fe metabolism; this study was designed to test the hypothesis that workers exposed to Mn may have an altered expression of mRNAs encoding proteins in Fe metabolism. Methods Workers occupationally exposed to Mn (n = 71 from a Mn–Fe alloy factory and control workers without Mn-exposure (n = 48 from a pig-iron plant from Zunyi, China, were recruited for this study. Blood samples were collected into Trizol-containing tubes. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis. Metal concentrations were quantified by atomic absorption spectrophotometry. Results Working environment and genetic background of both groups were similar except for marked differences in airborne Mn concentrations (0.18 mg/m3 in Mn–Fe alloy factory vs. 0.0022 mg/m3 in pig-Fe plant, and in blood Mn levels (34.3 µg/L vs. 10.4 µg/L. Mn exposure caused a significant decrease in the expression of divalent metal transporter-1 (DMT1, transferrin (Tf and hepcidin by 58.2%, 68.5% and 61.5%, respectively, as compared to controls, while the expression of transferrin receptor (TfR was unaltered. Linear regression analysis revealed that expressions of DMT1, Tf and hepcidin were inversely correlated with the accumulative Mn exposure; the correlation coefficients (r are −0.47, −0.54, and −0.49, respectively (p < 0.01. Conclusion The data suggest that occupational Mn exposure causes decreased expressions of DMT1, Tf and hepcidin in blood cells; the finding will help understand the mechanism underlying Mn exposure-associated alteration in Fe homeostasis among workers.

  18. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  19. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  20. Cool metal roofing tested for energy efficiency and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.A.; Desjarlais, A. [Oak Ridge National Laboratory, Oakridge, TN (United States); Parker, D.S. [Florida Solar Energy Center, Cocoa, FL (United States); Kriner, S. [Metal Construction Association, Glenview, IL (United States)

    2004-07-01

    A 3 year field study was conducted in which temperature, heat flow, reflectance and emittance field data were calculated for 12 different painted and unpainted metal roofs exposed to weathering at an outdoor test facility at Oak Ridge National Laboratory in Oakridge, Tennessee. In addition, the Florida Solar Energy Center tested several Habitat for Humanity homes during one summer in Fort Myers, Florida. The objective was to determine how cooling and heating energy loads in a building are affected by the solar reflectance and infrared emittance of metal roofs. The Habitat for Humanities houses had different roofing systems which reduced the attic heat gain. White reflective roofs were shown to reduce cooling energy needs by 18 to 26 per cent and peak demand by 28 to 35 per cent. High solar reflectance and high infrared emittance roofs incur surface temperatures that are about 3 degrees C warmer than the ambient air temperature. A dark absorptive roof exceeds the ambient air temperature by more than 40 degrees C. It hot climates, a high solar reflectance and high infrared emittance roof can reduce the air conditioning load and reduce peak energy demands on the utility. It was concluded that an informed decision of the roof surface properties of reflectance and emittance can significantly reduce energy costs for homeowners and builders in hot climates. 7 refs., 2 tabs., 7 figs.

  1. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    Science.gov (United States)

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  2. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    Directory of Open Access Journals (Sweden)

    Despina-Maria Bordean

    Full Text Available Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  3. Manganese(II), iron(II), and mixed-metal metal-organic frameworks based on chains with mixed carboxylate and azide bridges: magnetic coupling and slow relaxation.

    Science.gov (United States)

    Wang, Yan-Qin; Yue, Qi; Qi, Yan; Wang, Kun; Sun, Qian; Gao, En-Qing

    2013-04-15

    Mn(II) and Fe(II) compounds derived from azide and the zwitterionic 1-carboxylatomethylpyridinium-4-carboxylate ligand are isomorphous three-dimensional metal-organic frameworks (MOFs) with the sra net, in which the metal ions are connected into anionic chains by mixed (μ-1,1-azide)bis(μ-carboxylate) triple bridges and the chains are cross-linked by the cationic backbones of the zwitterionic ligands. The Mn(II) MOFs display typical one-dimensional antiferromagnetic behavior. In contrast, with one more d electron per metal center, the Fe(II) counterpart shows intrachain ferromagnetic interactions and slow relaxation of magnetization attributable to the single-chain components. The activation energies for magnetization reversal in the infinite- and finite-chain regimes are Δτ1 = 154 K and Δτ2 = 124 K, respectively. Taking advantage of the isomorphism between the Mn(II) and Fe(II) MOFs, we have prepared a series of mixed-metal Mn(II)(1-x)Fe(II)(x) MOFs with x = 0.41, 0.63, and 0.76, which intrinsically feature random isotropic/anisotropic sites and competing antiferromagnetic-ferromagnetic interactions. The materials show a gradual antiferromagnetic-to-ferromagnetic evolution in overall behaviors as the Fe(II) content increases, and the Fe-rich materials show complex relaxation processes that may arise for mixed SCM and spin-glass mechanisms. A general trend is that the activation energy and the blocking temperature increase with the Fe(II) content, emphasizing the importance of anisotropy for slow relaxation of magnetization.

  4. A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import

    International Nuclear Information System (INIS)

    Rousselet, Estelle; Richaud, Pierre; Douki, Thierry; Chantegrel, Jocelyne Garcia; Favier, Alain; Bouron, Alexandre; Moulis, Jean-Marc

    2008-01-01

    A human epithelial cell line (HZR) growing with high zinc concentrations has been analyzed for its ability to sustain high cadmium concentrations. Exposure to up to 200 μM of cadmium acetate for 24 h hardly impacted viability, whereas most of parental HeLa cells were killed by less than 10 μM of cadmium. Upon challenge by 35 fold higher cadmium concentrations than HeLa cells, HZR cells did not display increased DNA damage, increased protein oxidation, or changed intracellular cadmium localization. Rather, the main cause of resistance against cadmium was by avoiding cadmium entry into cells, which differs from that against zinc as the latter accumulates inside cells. The zinc-resistant phenotype of these cells was shown to also impair extracellular manganese uptake. Manganese and cadmium competed for entry into HeLa cells. Probing formerly identified cadmium or manganese transport systems in different animal cells did not evidence any significant change between HeLa and HZR cells. These results reveal zinc adaptation influences manganese and cadmium cellular traffic and they highlight previously unknown connections among homeostasis of divalent metals

  5. A tissue dose-based comparative exposure assessment of manganese using physiologically based pharmacokinetic modeling—The importance of homeostatic control for an essential metal

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, P. Robinan, E-mail: rgentry@ramboll.com [Ramboll Environ US Corporation, 3701 Armand St., Monroe, LA 71201 (United States); Van Landingham, Cynthia; Fuller, William G. [Ramboll Environ US Corporation, 3701 Armand St., Monroe, LA 71201 (United States); Sulsky, Sandra I. [Ramboll Environ US Corporation, Amherst, MA (United States); Greene, Tracy B. [Ramboll Environ US Corporation, 3701 Armand St., Monroe, LA 71201 (United States); Clewell, Harvey J.; Andersen, Melvin E. [ScitoVation, RTP, NC (United States); Roels, Harry A. [Université Catholique de Louvain, Brussels (Belgium); Taylor, Michael D. [NIPERA, Durham, NC (United States); Keene, Athena M. [Afton Chemical Corporation, Richmond, VA (United States)

    2017-05-01

    A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposures into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. > 10 μg/m{sup 3}) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to “convert” an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls. - Highlights: • Manganese is an essential nutrient, adding complexity to its risk assessment. • Nonlinearities in biological processes are important for manganese risk assessment. • A PBPK model was used to estimate target tissue

  6. Sustainable Carbon Dioxide Photoreduction by a Cooperative Effect of Reactor Design and Titania Metal Promotion

    Directory of Open Access Journals (Sweden)

    Alberto Olivo

    2018-01-01

    Full Text Available An effective process based on the photocatalytic reduction of CO2 to face on the one hand, the crucial problem of environmental pollution, and, on the other hand, to propose an efficient way to product clean and sustainable energy sources has been developed in this work. Particular attention has been paid to the sustainability of the process by using a green reductant (water and TiO2 as a photocatalyst under very mild operative conditions (room temperature and atmospheric pressure. It was shown that the efficiency in carbon dioxide photoreduction is strictly related to the process parameters and to the catalyst features. In order to formulate a versatile and high performing catalyst, TiO2 was modified by oxide or metal species. Copper (in the oxide CuO form or gold (as nanoparticles were employed as promoting metal. Both photocatalytic activity and selectivity displayed by CuO-TiO2 and Au-TiO2 were compared, and it was found that the nature of the promoter (either Au or CuO shifts the selectivity of the process towards two strategic products: CH4 or H2. The catalytic results were discussed in depth and correlated with the physicochemical features of the photocatalysts.

  7. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  8. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  9. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V...

  10. Photogeochemical reactions of manganese under anoxic conditions

    Science.gov (United States)

    Liu, W.; Yee, N.; Piotrowiak, P.; Falkowski, P. G.

    2017-12-01

    Photogeochemistry describes reactions involving light and naturally occurring chemical species. These reactions often involve a photo-induced electron transfer that does not occur in the absence of light. Although photogeochemical reactions have been known for decades, they are often ignored in geochemical models. In particular, reactions caused by UV radiation during an ozone free early Earth could have influenced the available oxidation states of manganese. Manganese is one of the most abundant transition metals in the crust and is important in both biology and geology. For example, the presence of manganese (VI) oxides in the geologic record has been used as a proxy for oxygenic photosynthesis; however, we suggest that the high oxidation state of Mn can be produced abiotically by photochemical reactions. Aqueous solutions of manganese (II) as well as suspensions of rhodochrosite (MnCO3) were irradiated under anoxic condition using a 450 W mercury lamp and custom built quartz reaction vessels. The photoreaction of the homogeneous solution of Mn(II) produced H2 gas and akhtenskite (ɛ-MnO2) as the solid product . This product is different than the previously identified birnessite. The irradiation of rhodochrosite suspensions also produced H2 gas and resulted in both a spectral shift as well as morphology changes of the mineral particles in the SEM images. These reactions offer alternative, abiotic pathways for the formation of manganese oxides.

  11. Low copper and high manganese levels in prion protein plaques

    Science.gov (United States)

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  12. Diffusion abnormalities of the globi pallidi in manganese neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Alexander M.; Filice, Ross W.; Teksam, Mehmet; Casey, Sean; Truwit, Charles; Clark, H. Brent; Woon, Carolyn; Liu, Hai Ying [Department of Radiology, Medical School, Box 292, 420 Delaware Street S.E., 55455, Minneapolis, MN (United States)

    2004-04-01

    Manganese is an essential trace metal required for normal central nervous system function, which is toxic when in excess amounts in serum. Manganese neurotoxicity has been demonstrated in patients with chronic liver/biliary failure where an inability to excrete manganese via the biliary system causes increased serum levels, and in patients on total parenteral nutrition (TPN), occupational/inhalational exposure, or other source of excess exogenous manganese. Manganese has been well described in the literature to deposit selectively in the globi pallidi and to induce focal neurotoxicity. We present a case of a 53-year-old woman who presented for a brain MR 3 weeks after liver transplant due to progressively decreasing level of consciousness. The patient had severe liver failure by liver function tests and bilirubin levels, and had also been receiving TPN since the transplant. The MR demonstrated symmetric hyperintensity on T1-weighted images in the globi pallidi. Apparent diffusion coefficient (ADC) map indicated restricted diffusion in the globi pallidi bilaterally. The patient eventually succumbed to systemic aspergillosis 3 days after the MR. The serum manganese level was 195 mcg/l (micrograms per liter) on postmortem exam (over 20 times the upper limits of normal). The patient was presumed to have suffered from manganese neurotoxicity since elevated serum manganese levels have been shown in the literature to correlate with hyperintensity on T1-weighted images, neurotoxicity symptoms, and focal concentration of manganese in the globi pallidi. Neuropathologic sectioning of the globi pallidi at autopsy was also consistent with manganese neurotoxicity. (orig.)

  13. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  14. THE STATE OF MANGANESE IN THE PHOTOSYNTHETIC APPARATUS. I. EXAFS STUDIES ON CHLOROPLASTS AND di-u-oxo BRIDGED di-MANGANESE MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J. A.; Robertson, A. S.; Smith, J. P.; Thompson, A. C.; Thompson, A. C.; Klein, M. P.

    1980-11-01

    Extended X-ray Absorption Fine Structure (EXAFS) studies on the manganese contained in spinach chloroplasts and on certain di-u-oxo bridged manganese dimers of the form (X{sub 2}Mn)O{sub 2}(MnX{sub 2} (X=2,2'-bypyridine and 1,10-phenanthroline) are reported. From these studies, the manganese associated with photosynthetic oxygen evolution is suggested to occur as a bridged transition metal dimer with most likely another manganese. Extensive details on the analysis are included.

  15. Manganese in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Linnarsson, M.K., E-mail: marga@kth.se [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden); Hallen, A. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden)

    2012-02-15

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 Degree-Sign C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112{sup Macron }3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  16. Manganese in silicon carbide

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Hallén, A.

    2012-01-01

    Structural disorder and relocation of implanted Mn in semi-insulating 4H–SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400–2000 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112 ¯ 3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  17. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes

    Science.gov (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias

    2016-01-01

    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C–N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions. PMID:27708259

  19. Manganese dipyridoxyl diphosphate:

    DEFF Research Database (Denmark)

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson

    1999-01-01

    Manganese dipyridoxyl diphosphate (MnDPDP) is a contrast agent for magnetic resonance imaging (MRI) of the liver. Aims of the study were to examine if MnDPDP possesses superoxide dismutase (SOD) mimetic activity in vitro, and if antioxidant protection can be demonstrated in an ex vivo rat heart...

  20. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    Science.gov (United States)

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.

  1. Status and Role of Manganese in the Environment

    Directory of Open Access Journals (Sweden)

    RK Kamble

    2014-09-01

    Full Text Available Manganese is the second most abundant heavy metal, and in frequency list of elements it occupies 12th place. The Earth’s core contains about 1.5% manganese. According to Indian Standards for Drinking water (IS 10500:2012 manganese concentration in drinking water is 0.1 ppm (acceptable limit and 0.3 ppm as permissible limit. An attempt has been made to record the presence of manganese in different environmental matrices such as air, water, soil, food, its effects on plants, animals including human beings. DOI: http://dx.doi.org/10.3126/ije.v3i3.11081 International Journal of Environment Vol.3(3 2014: 222-234

  2. An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2012-01-01

    Multifaceted issues or paradigm of sustainable development should be appropriately addressed in the discipline of environmental management. Pollution of the biosphere with toxic metals has accelerated dramatically since the beginning of the Industrial Revolution. In present review, comparative assessment of traditional chemical technologies and phytoremediation has been reviewed particularly in the context of cost-effectiveness. The potential of phytoremediation and green chemicals in heavy metals management has been described critically. Further, the review explores our work on phytoremediation as green technology during the last 6 years and hand in hand addresses the various ecological issues, benefits and constraints pertaining to heavy metal pollution of aquatic ecosystems and its phytoremediation as first case study. Second case study demonstrates the possible health implications associated with use of metal contaminated wastewater for irrigation in peri-urban areas of developing world. Our researches revealed wetland plants/macrophytes as ideal bio-system for heavy metals removal in terms of both ecology and economy, when compared with chemical treatments. However, there are several constraints or limitations in the use of aquatic plants for phytoremediation in microcosm as well as mesocosm conditions. On the basis of our past researches, an eco-sustainable model has been proposed in order to resolve the certain constraints imposed in two case studies. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation is still in embryonic stage and needs more attention in gene manipulation area. Moreover, harvesting and recycling tools needs more extensive research. A multidisciplinary research effort that integrates the work of natural sciences, environmental engineers and policy makers is essential for greater success of green technologies as a potent tool of heavy metals management.

  3. Manganese, Metallogenium, and Martian Microfossils

    Science.gov (United States)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  4. Determination of heavy metal deposition in the county of Obrenovac (Serbia using mosses as bioindicators, IV: Manganese (Mn, Molybdenum (Mo, and Nickel (Ni

    Directory of Open Access Journals (Sweden)

    Vukojević V.

    2009-01-01

    Full Text Available In this study, the deposition of three heavy metals (Mn, Mo, and Ni in the county of Obrenovac (Serbia in four moss taxa (Bryum argenteum, Bryum capillare, Brachythecium sp., and Hypnum cupressiforme is presented. The distribution of average heavy metal content in all mosses in the county of Obrenovac is presented on maps, while the long-term atmospheric deposition (in the mosses Bryum argenteum and B. capillare and short term atmospheric deposition (in the mosses Brachythecium sp. and Hypnum cupressiforme are discussed and given in tabular form. Areas of the highest contaminations are highlighted.

  5. Relationship between anti-oxidant capacity and manganese accumulation in the soft tissues of two freshwater molluscs: Unio pictorum mancus (Lamellibranchia, Unionidae and Viviparus ater (Gastropoda, Prosobranchia

    Directory of Open Access Journals (Sweden)

    Oscar RAVERA

    2005-08-01

    Full Text Available Manganese is an element of great importance in the life cycle of plants and animals. For example, it plays an essential role as an activator of various enzymatic systems such as isoenzymes of superoxide dismutase. Freshwater Unionidae concentrate relatively large amounts of manganese in their tissues, but little is known about the physiological role of this metal. The aim of this research is to acquire a better knowledge of the role of manganese in molluscs which accumulate large amounts of this metal and in those with low manganese concentrations. As manganese is one of the metals present in the superoxide molecule, the possible relationship between manganese concentration in the soft tissues of molluscs and the antioxidant capacity of the metal can usefully be tested. To this end two species of molluscs were analysed: Unio pictorum mancus (Lamellibranchia, Unionidae, which is very rich in manganese, and Viviparus ater (Gastropoda, Prosobranchia which has a low manganese content. The adults of both species were analysed for manganese concentration by ICP, and for antioxidant capacity as RAC (Relative Antioxidant Capacity by a superoxide dismutase method. The results clearly demonstrate the active role played by manganese against free radicals and consequently the important role of the metal in protecting Unio against oxidative stress. The low concentration of manganese in Viviparus may be the result of the effective excretion of this metal, as was found for ruthenium.

  6. Neutron activation and atomic absorption analyses of heavy metals in corals of Malaysia: historical recorders for sustainable environmental management

    International Nuclear Information System (INIS)

    Mazlin Mokhtar; Almah Awaludin; Abdul Khalik Wood; Lim Kim Shenk; Tan Pey Fang; Yasmin Mohd Hasni

    2001-01-01

    This paper reports the determination of total chromium (Cr), manganese (Mn), and zinc (Zn) in skeletons of the corals Porites sp., sediment and sea water samples taken from various locations in waters of Kedah, Johor and Labuan. Sampling was carried out around Pulau Bunting, Pulau Bidan, Pulau Telur, Pulau Songsong, all in Kedah, Pulau Burung in Labuan, and Pulau Lima in Johor. The concentrations of metals were determined using neutron activation analysis (NAA) and atomic absorption spectrophotometry (AAS). The range of concentrations of Cr, Mn and Zn in coral samples of this study were <0.2 - 1.60, 1.20 - 11.10 and 3.55 - 15.08 μg/g, respectively. Concentrations in sediment samples were Cr 0.62 - 5.19 μg/g, Mn 71.0 - 162 μg/g and Zn 28.2 - 57.8 μg/g. The levels in seawater samples were Cr 0.004 - 0.28 mg/l, Mn 0.26 - 0.33 mg/l, and Zn 0.92 - 1.56 mg/l. (Author)

  7. Manganese Fractionation Using a Sequential Extraction Method to Evaluate Welders' Shielded Metal Arc Welding Exposures During Construction Projects in Oil Refineries.

    Science.gov (United States)

    Hanley, Kevin W; Andrews, Ronnee; Bertke, Steven; Ashley, Kevin

    2015-01-01

    The National Institute for Occupational Safety and Health has conducted an occupational exposure assessment study of manganese (Mn) in welding fume of construction workers rebuilding tanks, piping, and process equipment at two oil refineries. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. Seventy-two worker-days were monitored for either total or respirable Mn during stick welding and associated activities both within and outside of confined spaces. The samples were analyzed using an experimental method to separate different Mn fractions by valence states based on selective chemical solubility. The full-shift total particulate Mn time-weighted average (TWA) breathing zone concentrations ranged from 0.013-29 for soluble Mn in a mild ammonium acetate solution; from 0.26-250 for Mn(0,2+) in acetic acid; from non-detectable (ND) - 350 for Mn(3+,4+) in hydroxylamine-hydrochloride; and from ND - 39 micrograms per cubic meter (μg/m(3)) for insoluble Mn fractions in hydrochloric and nitric acid. The summation of all Mn fractions in total particulate TWA ranged from 0.52-470 μg/m(3). The range of respirable particulate Mn TWA concentrations were from 0.20-28 for soluble Mn; from 1.4-270 for Mn(0,2+); from 0.49-150 for Mn(3+,4+); from ND - 100 for insoluble Mn; and from 2.0-490 μg/m(3) for Mn (sum of fractions). For all jobs combined, total particulate TWA GM concentrations of the Mn(sum) were 99 (GSD = 3.35) and 8.7 (GSD = 3.54) μg/m(3) for workers inside and outside of confined spaces; respirable Mn also showed much higher levels for welders within confined spaces. Regardless of particle size and confined space work status, Mn(0,2+) fraction was the most abundant followed by Mn(3+,4+) fraction, typically >50% and ∼30-40% of Mn(sum), respectively. Eighteen welders' exposures exceeded the ACGIH Threshold Limit Values for total Mn (100 μg/m(3)) and 25 exceeded the recently adopted respirable

  8. Benchmarking Anthropogenic Heavy Metals Emissions: Australian and Global Urban Environmental Health Risk Based Indicators of Sustainability

    Science.gov (United States)

    Dejkovski, Nick

    2016-01-01

    In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a…

  9. Toward a sustainable energy supply with reduced environmental burden. Development of metal fuel fast reactor cycle

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Kobayashi, Hiroaki; Kinoshita, Kensuke

    2009-01-01

    CRIEPI has been studying the metal fuel fast reactor cycle as an outstanding alternative for the future energy sources. In this paper, development of the metal fuel cycle is reviewed in the view point of technological feasibility and material balance. Preliminary estimation of reduction of the waste burden due to introduction of the metal fuel cycle technology is also reported. (author)

  10. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity.

    Science.gov (United States)

    Fu, Xing-Zheng; Tong, Ya-Hua; Zhou, Xue; Ling, Li-Li; Chun, Chang-Pin; Cao, Li; Zeng, Ming; Peng, Liang-Zhi

    2017-09-20

    Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange, which we have named as CitMTP1 and CitMTP3 to CitMTP12 based on their sequence similarity to Arabidopsis thaliana MTPs. The CitMTPs were predicted to encode proteins of 864 to 2556 amino acids in length that included 4 to 6 putative transmembrane domains (TMDs). Furthermore, all the CitMTPs contained a highly conserved signature sequence encompassing the TMD-II and the start of the TMD-III. Phylogenetic analysis further classified the CitMTPs into Fe/Zn-MTP, Mn-MTP, and Zn-MTP subgroups, which coincided with the MTPs of A. thaliana and rice. The closely clustered CitMTPs shared a similar gene structure. Expression analysis indicated that most CitMTP transcripts were upregulated to various extents under heavy metal stress. Among these, CitMTP5 in the roots and CitMTP11 in the leaves during Zn stress, CitMTP8 in the roots and CitMTP8.1 in the leaves during Mn stress, CitMTP12 in the roots and CitMTP1 in the leaves during Cu stress, and CitMTP11 in the roots and CitMTP1 in the leaves during Cd stress showed the highest extent of upregulation. These findings are suggestive of their individual roles in heavy metal detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Metal Recovery from Industrial Solid Waste — Contribution to Resource Sustainability

    Science.gov (United States)

    Yang, Yongxiang

    Increased demand of metals has driven the accelerated mining and metallurgical production in recent years, causing fast depletion of primary metals resources. On the contrary, the mining and metallurgical industry generates large amount of solid residues and waste such as tailings, slags, flue dust and leach residues, with relative low valuable metal contents. On the other hand, end-of-life (EoL) consumer products form another significant resources. The current technology and processes for primary metals production are not readily applicable for direct metals extraction from these waste materials, and special adaptation and tailor-made processes are required. In the present paper, various solid waste resources are reviewed, and current technologies and R&D trends are discussed. The recent research at author's group is illustrated for providing potential solutions to future resource problems, including metal recovery from MSW incinerator bottom ashes, zinc recovery from industrial ashes and residues, and rare earth metals recovery from EoL permanent magnets.

  12. Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Wang, Zhicheng; Nong, Jia; Nix, Camilla A; Zhong, Yinghui; Ji, Hai-Feng

    2015-01-01

    This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders due to its anti-microbial, anti-inflammatory, and cytoprotective properties. However, the inability to translate the high doses used in experimental animals to tolerable doses in human patients limits its clinical application. Localized delivery can potentially expose the diseased tissue to high concentrations of MH that systemic delivery cannot achieve, while minimizing the side effects from systemic exposure. The strong metal ion binding-assisted interaction enabled high drug entrapment and loading efficiency, and stable long term release for more than 71 d. Released MH demonstrated potent anti-biofilm, anti-inflammatory, and neuroprotective activities. Furthermore, MH release from the complexes is pH-sensitive as the chelation between minocycline and metal ions decreases with pH, allowing ‘smart’ drug release in response to the severity of pathology-induced tissue acidosis. This novel metal ion binding-mediated drug delivery mechanism can potentially be applied to other drugs that have high binding affinity for metal ions and may lead to the development of new delivery systems for a variety of drugs. (paper)

  13. Battery recycling: recovery of manganese in the form of electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Roriz, Elizabeth Rodrigues Rangel; Von Krüge, Paulo; Espinosa, Denise Crocce Romano; Tenorio, Jorge Alberto Soares

    2010-01-01

    This work seeks to verify the possibility of using depleted batteries as a source of manganese applying the electrolytic process, considering the growing demand for products containing manganese in their composition. It was used an electrolyte solution containing the metal ions: Ca (270mg / L), Ni (3000 mg / L), Co (630 mg / L), Mn (115.300 mg / L) , Ti (400 mg / L) and Pb (20 mg / L) in concentrated sulfuric acid. The production of electrolytic manganese dioxide (EMD) was performed through galvanization using a stabilized source that monitored the potential of the working electrode. It was used an electrode of lead and two counter electrodes of graphite at a temperature of 98 deg C (± 2 deg C) and current density of 1.69A.dm"-"2. The material obtained was analyzed through the process of X-ray fluorescence spectrometry and X-ray diffraction. The results indicated that it is possible to obtain electrolytic manganese dioxide with a purity of about 94% and that the main allotropic variety obtained under the conditions of the experiment was the ε-MnO_2. (author)

  14. Manganese-enhanced magnetic resonance imaging (MEMRI).

    Science.gov (United States)

    Koretsky, Alan P; Silva, Afonso C

    2004-12-01

    Manganese ion (Mn2+) is an essential metal that participates as a cofactor in a number of critical biological functions, such as electron transport, detoxification of free radicals and synthesis of neurotransmitters. Mn2+ can enter excitable cells using some of the same transport systems as Ca2+ and it can bind to a number of intracellular sites because it has high affinity for Ca2+ and Mg2+ binding sites on proteins and nucleic acids. Paramagnetic forms of manganese ions are potent MRI relaxation agents. Indeed, Mn2+ was the first contrast agent proposed for use in MRI. Recently, there has been renewed interest in combining the strong MRI relaxation effects of Mn2+ with its unique biology, in order to further expand the already broad assortment of useful information that can be measured by MRI. Such an approach has been continuously developed in the past several years to provide unique tissue contrast, to assess tissue viability, to act as a surrogate marker of calcium influx into cells and to trace neuronal connections. This special issue of NMR in Biomedicine on manganese-enhanced MRI (MEMRI) is aimed at providing the readers of this journal with an extensive review of some of the most prominent applications of MEMRI in biological systems. Written by several of the leaders in the field, the reviews and original research articles featured in this special issue are likely to offer an exciting and inspiring view of the broad range of applications of MEMRI. Copyright 2004 John Wiley & Sons, Ltd.

  15. Bioleaching of copper, aluminum, magnesium and manganese from ...

    African Journals Online (AJOL)

    The present study was done to check the bioleaching feasibility of brown shale for the recovery of copper (Cu), aluminum (Al), magnesium (Mg) and manganese (Mn) ions using Ganoderma lucidum. Different experimental parameters were optimized for the enhanced recovery of metals ions. Effect of different substrates like ...

  16. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  17. Sustainable preparation of supported metal nanoparticles and their applications in catalysis.

    Science.gov (United States)

    Campelo, Juan M; Luna, Diego; Luque, Rafael; Marinas, José M; Romero, Antonio A

    2009-01-01

    Metal nanoparticles have attracted much attention over the last decade owing to their unique properties as compared to their bulk metal equivalents, including a large surface-to-volume ratio and tunable shapes. To control the properties of nanoparticles with particular respect to shape, size and dispersity is imperative, as these will determine the activity in the desired application. Supported metal nanoparticles are widely employed in catalysis. Recent advances in controlling the shape and size of nanoparticles have opened the possibility to optimise the particle geometry for enhanced catalytic activity, providing the optimum size and surface properties for specific applications. This Review describes the state of the art with respect to the preparation and use of supported metal nanoparticles in catalysis. The main groups of such nanoparticles (noble and transition metal nanoparticles) are highlighted and future prospects are discussed.

  18. Adsorption Study of Electric Arc Furnace Slag for the Removal of Manganese from Solution

    OpenAIRE

    C. L. Beh; Luqman Chuah; Thomas S.Y. Choong; Mohd. Z.B. Kamarudzaman; Khalina Abdan

    2010-01-01

    Problem statement: Steel making slag from Electric Arc Furnace (EAF) is an abundant by-product in Malaysia steel making industry. It has potential to be used for heavy metal removal from contaminated water or waste water. Approach: The aim of this study was to investigate the characteristic and behavior of manganese removal by using EAF slag for efficient metal removal. The removal characteristics of manganese were investigated in term of sorption kinetics and isotherm. The batch adsorption k...

  19. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co-limitation

    NARCIS (Netherlands)

    Middag, R.; de Baar, H.J.W.; Klunder, M.B.; Laan, P.

    2013-01-01

    The trace metals aluminum (Al) and manganese (Mn) were studied in the Weddell Sea in March 2008. Concentrations of dissolved Al ([Al]) were slightly elevated (0.23-0.35 nmol L-1) in the surface layer compared to the subsurface minimum (0.07-0.21 nmol L-1) observed in the winter water. Atmospheric

  20. Rapid manganese removal from mine waters using an aerated packed-bed bioreactor.

    Science.gov (United States)

    Johnson, Karen L; Younger, Paul L

    2005-01-01

    In the UK, the Environmental Quality Standard for manganese has recently been lowered to 30 microg/L (annual average), which is less than the UK Drinking Water Inspectorate's Maximum Permitted Concentration Value (50 microg/L). Current passive treatment systems for manganese removal operate as open-air gravel-bed filters, designed to maximize either influent light and/or dissolved oxygen. This requires large areas of land. A novel enhanced bioremediation treatment system for manganese removal has been developed that consists of a passively aerated subsurface gravel bed. The provision of air at depth and the use of catalytic substrates help overcome the slow kinetics usually associated with manganese oxidation. With a residence time of only 8 h and an influent manganese concentration of approximately 20 mg/L, >95% of the manganese was removed. The treatment system also operates successfully at temperatures as low as 4 degrees C and in total darkness. These observations have positive implications for manganese treatment using this technique in both colder climates and where large areas of land are unavailable. Furthermore, as the operation of this passive treatment system continually generates fresh manganese oxyhydroxide, which is a powerful sorbent for most pollutant metals, it potentially has major ancillary benefits as a removal process for other metals, such as zinc.

  1. Metal doped green zeolites for water treatment a sustainable remediation model

    International Nuclear Information System (INIS)

    Tabassum, N.; Rafique, U.

    2016-01-01

    The synthesis of zeolites from refused materials presents a greener model for environmental remediation. The present study offers a novel procedure to synthesize not only the basic framework but also Vanadium modified polymeric zeolites. The spent polythene bags, lunch boxes, and packaging are used as raw material for synthesis of zeolites. Characterization through EDX showed incorporation of vanadium is more than 35%, exhibiting FTIR frequencies in the range 601-995cm-1. Thermogravimetric (TG) analysis revealed a stabilizing effect of zeolites on addition of dopant upto 320 degree C as determined by higher residue percentage (> 98%). Vanadium doped synthesized zeolites (MP1, MP2, MP3) were applied in batch adsorption experiments for in-situ (synthetic metal salt solution) and ex-situ (industrial effluents) removal of metals (Pb, Cr, and Cd). Adsorption results indicated the successful metal removal of more than 90% in the sequence Pb > Cd > Cr. The sequence follows, higher is the ionic radius of the metal cation, more is the adsorption on zeolites. Application of adsorption isotherms demonstrated fitness of Freundlich and Temkin models, whereas pseudo first order kinetics depicts metal removal. The study concludes that synthesized zeolites are suitable candidates with improvised green economy for industrial sector to treat effectively industrial discharges. (author)

  2. Effect of transition metal composition on electrochemical performance of nickel-manganese-based lithium-rich layer-structured cathode materials in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Hiroaki, E-mail: hiroaki.konishi.yj@hitachi.com; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho

    2017-05-15

    To evaluate the effect of transition metal composition on the electrochemical properties of Li-rich layer-structured cathode materials, Li{sub 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2, 0.25, 0.3, and 0.4) were synthesized, and their electrochemical properties were investigated. As nickel content x increased in Li{sub 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2, 0.25, 0.3, and 0.4), charge-discharge capacities at a low C-rate (0.05 C) decreased. The results obtained by dQ/dV curves indicate that, as the nickel content increased, the discharge capacity below 3.6 V greatly decreased, but that above 3.6 V increased. As the C-rate of the discharge process increased, the discharge reaction of Li{sub 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2) below 3.6 V greatly decreased. In contrast, that above 3.6 V slightly decreased. This indicates that the discharge reaction above 3.6 V exhibits higher rate performance than that below 3.6 V. For the high-nickel-content cathodes, the ratio of the discharge capacity above 3.6 V to the total discharge capacity was high. Therefore, they exhibited high rate performance. - Graphical abstract: Figure shows the discharge curves of Li{sub 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2 and 0.3) within potential range of 2.5−4.6 V (vs. Li/Li{sup +}) at 0.05 and 3 C. At low C-rate (0.05 C), the discharge capacity of high-nickel-content cathode (Li{sub 1.2}Ni{sub 0.3}Mn{sub 0.5}O{sub 2}) was less than that of low-nickel-content cathode (Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.6}O{sub 2}); however, the discharge potential and capacity of Li{sub 1.2}Ni{sub 0.3}Mn{sub 0.5}O{sub 2} was higher than those of Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.6}O{sub 2} at high C-rate (3 C). This means that the increase in Ni/Mn ratio was effective in improving rate-performance.

  3. Manganese and Iron Catalysts in Alkyd Paints and Coatings

    Directory of Open Access Journals (Sweden)

    Ronald Hage

    2016-04-01

    Full Text Available Many paint, ink and coating formulations contain alkyd-based resins which cure via autoxidation mechanisms. Whilst cobalt-soaps have been used for many decades, there is a continuing and accelerating desire by paint companies to develop alternatives for the cobalt soaps, due to likely classification as carcinogens under the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals legislation. Alternative driers, for example manganese and iron soaps, have been applied for this purpose. However, relatively poor curing capabilities make it necessary to increase the level of metal salts to such a level that often coloring of the paint formulation occurs. More recent developments include the application of manganese and iron complexes with a variety of organic ligands. This review will discuss the chemistry of alkyd resin curing, the applications and reactions of cobalt-soaps as curing agents, and, subsequently, the paint drying aspects and mechanisms of (model alkyd curing using manganese and iron catalysts.

  4. ECLSS Sustaining Metal Materials Compatibility Final Report, Electrochemical and Crevice Corrosion Test Results

    Science.gov (United States)

    Lee, R. E.

    2015-01-01

    Electrochemical test results are presented for six noble metals evaluated in two acidic test solutions which are representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The two test solutions consisted of fresh waste liquid which had been modified with a proposed or alternate pretreatment formulation and its associated brine concentrate. The six test metals included three titanium grades, (Commercially Pure, 6Al-4V alloy and 6Al-4V Low Interstitial alloy), two nickel-chromium alloys (Inconel® 625 and Hastelloy® C276), and one high tier stainless steel (Cronidur® 30).

  5. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Microwave Production of Manganese from Manganese (IV) Oxide ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... energy consumption occurs in the upper part of the ferromanganese furnace ... The pre-reduction of manganese ores by carbon has been investigated by Abdel ..... Awaso Bauxite Ore using Waste Pure Water. Sachets as ...

  7. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  8. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils.

    NARCIS (Netherlands)

    Grispen, V.M.J.; Nelissen, H.J.M.; Verkleij, J.A.C.

    2006-01-01

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were

  9. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  10. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  11. Manganese Research Health Project (MHRP)

    Science.gov (United States)

    2009-02-01

    green nucleic acid staining further confirmed the neurotoxic effect of cadmium in this cell model (Fig 10C). Next, we examined the enzymatic activity...Quantification of Nissl bodies revealed a widespread reduction in SNpc cell numbers. Other areas of the basal ganglia were also altered by manganese as...the substantia nigra pars compacta (SNpc) following manganese treatment. Quantification of Nissl bodies revealed a widespread reduction in SNpc

  12. Manganese-bearing deposits near Lake Crescent and Humptulips, Washington: Chapter A in Contributions to economic geology (short papers and preliminary reports), 1927: Part I - Metals and nonmetals except fuels

    Science.gov (United States)

    Pardee, J.T.

    1927-01-01

    The Crescent mine, situated a short distance west of Lake Crescent, in the Olympic Mountains of Washington, yields an unusually high grade of manganese ore, which is suitable for making steel. Several manganiferous lodes of promising appearance have been found in the same area, and some near Humptulips, on the south side of the mountains. These and deposits on Skokomish River and at other places in the Olympic region are distributed around three sides of the mountains through a distance of 110 miles.The characteristic and generally the most abundant manganese mineral in this belt is bementite, a silicate of manganese that is rare elsewhere. Hausmannite, a suboxide of manganese (Mn3O4) that is also rather uncommon, occurs in several of the deposits and is locally abundant in the Crescent mine, where it forms the most valuable constituent of the ore. In addition more or less of a manganiferous carbonate is present, and bodies composed of fine-grained quartz and iron oxides form a large but separate part of the lodes.The deposits are associated with an impure red limestone of marine origin, which is probably to be correlated with the Franciscan formation of California. The limestone is overlain by a thick series of basaltic flows and tuff of Tertiary age that are partly altered to greenstone. The manganese is thought to have been deposited originally with the limestone as a carbonate. The concentration and change of much of it from the carbonate into bementite and hausmannite are believed to have been caused by warm solutions charged with silica that were expressed from the lavas or their magma. Afterward mountain-building movements and erosion elevated and exposed the manganiferous beds.The beds at the horizon of the manganiferous deposits are very incompletely explored and are to be regarded as the possible source of large quantities of ore.

  13. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    Science.gov (United States)

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  14. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils

    International Nuclear Information System (INIS)

    Grispen, Veerle M.J.; Nelissen, Hans J.M.; Verkleij, Jos A.C.

    2006-01-01

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were exposed to 0.2 μM CdSO 4 for an additional 10 days. The effects of Cd on several parameters were quantified i.e.; shoot Cd concentration ([Cd] shoot ), total amount of Cd in shoots (Total Cd) and the shoot to root Cd concentration ratio (S/R ratio). Though generally natural variation was low for [Cd] shoot , Total Cd and S/R ratio, a number of accessions could be selected. Our results indicated that Total Cd and S/R ratio are independent parameters for Cd accumulation and translocation. The selected varieties were then tested in field experiments on two locations nearby metal smelters. The two locations differed in extractable soil Cd, Zn, Ca concentration and pH levels. On both locations B. napus L. accessions showed significant differences in [Cd] shoot and Total Cd. Furthermore we found significant correlations between Cd and Zn accumulation in shoots. There were site-specific effects with respect to Cd accumulation in the B. napus L. accessions, however, two accessions seem to perform equally well on both sites. The results of the field experiment suggest that certain B. napus L. accessions are suitable for phytoextraction of moderately heavy metal contaminated soils. - A screening for natural variation in Cd accumulated by 77 Brassica napus L. yielded candidate phytoextraction accessions for agricultural practice

  15. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Grispen, Veerle M.J. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Nelissen, Hans J.M. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Verkleij, Jos A.C. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands)]. E-mail: jos.verkleij@falw.vu.nl

    2006-11-15

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were exposed to 0.2 {mu}M CdSO{sub 4} for an additional 10 days. The effects of Cd on several parameters were quantified i.e.; shoot Cd concentration ([Cd]{sub shoot}), total amount of Cd in shoots (Total Cd) and the shoot to root Cd concentration ratio (S/R ratio). Though generally natural variation was low for [Cd]{sub shoot}, Total Cd and S/R ratio, a number of accessions could be selected. Our results indicated that Total Cd and S/R ratio are independent parameters for Cd accumulation and translocation. The selected varieties were then tested in field experiments on two locations nearby metal smelters. The two locations differed in extractable soil Cd, Zn, Ca concentration and pH levels. On both locations B. napus L. accessions showed significant differences in [Cd]{sub shoot} and Total Cd. Furthermore we found significant correlations between Cd and Zn accumulation in shoots. There were site-specific effects with respect to Cd accumulation in the B. napus L. accessions, however, two accessions seem to perform equally well on both sites. The results of the field experiment suggest that certain B. napus L. accessions are suitable for phytoextraction of moderately heavy metal contaminated soils. - A screening for natural variation in Cd accumulated by 77 Brassica napus L. yielded candidate phytoextraction accessions for agricultural practice.

  16. Extraction of manganese from electrolytic manganese residue by bioleaching.

    Science.gov (United States)

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  18. Sustainable Zero-Valent Metal (ZVM Water Treatment Associated with Diffusion, Infiltration, Abstraction, and Recirculation

    Directory of Open Access Journals (Sweden)

    David D.J. Antia

    2010-09-01

    Full Text Available Socio-economic, climate and agricultural stress on water resources have resulted in increased global demand for water while at the same time the proportion of potential water resources which are adversely affected by sodification/salinisation, metals, nitrates, and organic chemicals has increased. Nano-zero-valent metal (n-ZVM injection or placement in aquifers offers a potential partial solution. However, n-ZVM application results in a substantial reduction in aquifer permeability, which in turn can reduce the amount of water that can be abstracted from the aquifer. This study using static diffusion and continuous flow reactors containing n-ZVM and m-ZVM (ZVM filaments, filings and punchings has established that the use of m-ZVM does not result in a reduction in aquifer permeability. The experimental results are used to design and model m-ZVM treatment programs for an aquifer (using recirculation or static diffusion. They also provide a predictive model for water quality associated with specific abstraction rates and infiltration/injection into an aquifer. The study demonstrates that m-ZVM treatment requires 1% of the weight required for n-ZVM treatment for a specific flow rate. It is observed that 1 t Fe0 will process 23,500 m3 of abstracted or infiltrating water. m-ZVM is able to remove >80% of nitrates from flowing water and adjust the water composition (by reduction in an aquifer to optimize removal of nitrates, metals and organic compounds. The experiments demonstrate that ZVM treatment of an aquifer can be used to reduce groundwater salinity by 20 –> 45% and that an aquifer remediation program can be designed to desalinate an aquifer. Modeling indicates that widespread application of m-ZVM water treatment may reduce global socio-economic, climate and agricultural stress on water resources. The rate of oxygen formation during water reduction [by ZVM (Fe0, Al0 and Cu0] controls aquifer permeability, the associated aquifer pH, aquifer Eh

  19. A predictive regression model for the geochemical variability of iron and manganese in a coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Kumar, N.C.; Jayalakshmy, K.V.; Padmalal, D.; Nair, S.M.

    This article focuses on the influence of nutrient forms (nitrogen/phosphorous forms) and parameters like pH and organic carbon in the distributional characteristics of two important trace metals, viz. iron and manganese, in different sedimentary...

  20. Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage.

    Science.gov (United States)

    Mukhopadhyay, Alolika; Jiao, Yucong; Katahira, Rui; Ciesielski, Peter N; Himmel, Michael; Zhu, Hongli

    2017-12-13

    A novel renewable cathode made from earth abundant, low-cost materials can contribute to the intermittent storage needs of renewable energy-based society. In this work, we report for the first-time tannin from Nature as a cathode material. Our approach exploits the charge storage mechanism of the redox active quinone moiety. Tannins extracted from tree bark using environmental friendly aqueous solvents have the highest phenol content (5.56 mol g -1 ) among all the natural phenolic biopolymers, 5000 times higher than lignin. Tannins coupled with a conductive polymer polypyrrole acquire high specific capacitance values of 370 F g -1 at 0.5 A g -1 as well as excellent rate performance of 196 F g -1 at 25 A g -1 . Additionally, we employed carbonized wood as an electrode substrate to produce a sustainable electrochemical device with dramatically improved performance compared to conventional devices. The high surface area provided by the well-aligned, cellular porosity of wood-derived substrate combined with the high mobility of ions and electrons in the carbonized cell walls and deposited tannin can achieve an areal capacitance of 4.6 F cm -2 at 1 mA cm -2 , which is 1.5 times higher than activated wood carbon.

  1. Theoretical and practical investigation into sustainable metal joining process for the automotive industry

    International Nuclear Information System (INIS)

    Al-Jader, M A; Cullen, J D; Shaw, Andy; Al-Shamma'a, A I

    2011-01-01

    Currently there are about 4300 weld points on the average steel vehicle. Errors and problems due to tip damage and wear can cause great losses due to production line downtime. Current industrial monitoring systems check the quality of the nugget after processing 15 cars average once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. In this paper a simulation results using software package, SORPAS, will be presented to determined the sustainability factors in spot welding process including Voltage, Current, Force, Water cooling rates, Material thicknesses and usage. The experimental results of various spot welding processes will be investigated and reported. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. This paper also provides an overview of electrode current selection and its variance over the lifetime of the electrode tip, and describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.

  2. Vermiremediation of metal(loid)s via Eichornia crassipes phytomass extraction: A sustainable technique for plant amelioration.

    Science.gov (United States)

    Majumdar, Arnab; Barla, Anil; Upadhyay, Munish Kumar; Ghosh, Dibyarpita; Chaudhuri, Punarbasu; Srivastava, Sudhakar; Bose, Sutapa

    2018-08-15

    Eichhornia crassipes (water hyacinth), imparts deficiency of soluble arsenic and other toxic metal (loid)s through rhizofiltration and phytoaccumulation. Without proper management strategy, this phytoremediation of metal (loid)s might fail and get reverted back to the environment, contaminating the nearby water bodies. This study, focused on bio-conversion of phytoremediating hyacinths, spiked with 100 times and greater arsenic, lead and cadmium concentrations than the average water contamination, ranging in 58.81 ± 0.394, 16.74 ± 0.367, 12.18 ± 0.153 mg Kg -1 arsenic, 18.95 ± 0.212, 9.53 ± 0.054, 6.83 ± 0.306 mg kg -1 lead and 2.79 ± 0.033, 1.39 ± 0.025, 0.92 ± 0.045 mg kg -1 cadmium, respectively in root, shoot and leaves, proving it's phytoaccumulation capacity. Next, these hyacinths has been used as a source of organic supplement for preparing vermicompost using Eisenia fetida following analysis of total metal content and sequential extraction. Control soil was having 134.69 ± 2.47 mg kg -1 arsenic in compare to 44.6 ± 0.91 mg kg -1 at premature stage of compost to 23.9 ± 1.55 mg kg -1 at mature compost indicating sustainable fate of phytoremediated vermicompost. This vermiremediation of arsenic and other toxic elements, restricted the bioavailability of soil pollutants. Furthermore, processed compost amended as organic fertilizer, growing chickpea, coriander, tomato and chilli plant, resulted in negligible metal(loid)s in treated samples, enhancing also plant's growth and production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China

    Directory of Open Access Journals (Sweden)

    Fei Li

    2018-01-01

    Full Text Available The contents of seven toxic metals (Cu, Cr, Cd, Zn, Pb, Hg and As in soils from Central China, including Henan Province, Hubei Province and Hunan Province, were collected from published papers from 2007 to 2017. The geoaccumulation index, health risk assessment model and statistics were adopted to study the spatial contamination pattern, to assess the human health risks and to identify the priority control pollutants. The concentrations of soil metals in Central China, especially Cd (1.31 mg/kg, Pb (44.43 mg/kg and Hg (0.19 mg/kg, surpassed their corresponding background values, and the Igeo values of Cd and Hg varied the most, ranging from the unpolluted level to the extremely polluted level. The concentrations of toxic metals were higher in the southern and northern parts of Central China, contrasting to the lowest contents in the middle parts. For non-carcinogenic risk, the hazard index (HI values for the children in Hubei Province (1.10 and Hunan Province (1.41 exceeded the safe level of one, with higher health risks to children than adults, and the hazard quotient (HQ values of the three exposure pathways for both children and adults in Central China decreased in the following order: ingestion > dermal contact > inhalation. For carcinogenic risk (CR, the CR values for children in Hubei Province (2.55 × 10−4, Hunan Province (3.44 × 10−4 and Henan Province (1.69 × 10−4, and the CR for adults in Hubei Province (3.67 × 10−5, Hunan Province (4.92 × 10−5 and Henan Province (2.45 × 10−5 exceeded the unacceptable level (10−4 and acceptable level (10−6, respectively. Arsenic (As appeared to be the main metalloid for both children and adults causing the high carcinogenic risk. For sustainable development in Central China, special attention should be paid to Cd, Hg, Cr, Pb and As, identified as the priority control soil metals. Importance should also be attached to public education, source control, and the remediation of the

  4. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.

    Science.gov (United States)

    Hallberg, Kevin B; Johnson, D Barrie

    2005-02-01

    Mine drainage waters vary considerably in the range and concentration of heavy metals they contain. Besides iron, manganese is frequently present at elevated concentrations in waters draining both coal and metal mines. Passive treatment systems (aerobic wetlands and compost bioreactors) are designed to remove iron by biologically induced oxidation/precipitation. Manganese, however, is problematic as it does not readily form sulfidic minerals and requires elevated pH (>8) for abiotic oxidation of Mn (II) to insoluble Mn (IV). As a result, manganese removal in passive remediation systems is often less effective than removal of iron. This was found to be the case at the pilot passive treatment plant (PPTP) constructed to treat water draining the former Wheal Jane tin mine in Cornwall, UK, where effective removal of manganese occurred only in one of the three rock filter components of the composite systems over a 1-year period of monitoring. Water in the two rock filter systems where manganese removal was relatively poor was generally system. These differences in water chemistry and manganese removal were due to variable performances in the compost bioreactors that feed the rock filter units in the composite passive systems at Wheal Jane. An alternative approach for removing soluble manganese from mine waters, using fixed bed bioreactors, was developed. Ferromanganese nodules (about 2 cm diameter), collected from an abandoned mine adit in north Wales, were used to inoculate the bioreactors (working volume ca. 700 ml). Following colonization by manganese-oxidizing microbes, the aerated bioreactor catalysed the removal of soluble manganese, via oxidation of Mn (II) and precipitation of the resultant Mn (IV) in the bioreactor, in synthetic media and mine water from the Wheal Jane PPTP. Such an approach has potential application for removing soluble Mn from mine streams and other Mn-contaminated water courses.

  5. Determination of manganese content in aqueous solutions

    International Nuclear Information System (INIS)

    Reeder, S.D.; Smith, J.R.

    1977-01-01

    The three analytical methods used in the hydrogen-to-manganese cross-section ratio measurement were: volumetric determination of manganese, gravimetric analysis of manganous sulfate; and densimetric determination of manganous sulfate

  6. Manganese activated phosphate glass for dosimetry

    International Nuclear Information System (INIS)

    Regulla, D.

    1975-01-01

    A measuring element comprises a metaphosphate glass doped with manganese as an activator. The manganese activated metaphosphate glass can detect and determine radiation doses in the range between milliroentgens and more than 10 megaroentgens. (auth)

  7. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  8. 21 CFR 184.1446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  9. 21 CFR 582.5446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  10. Effect of the size of nanoparticles on their dissolution within metal-glass nanocomposites under sustained irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vu, T. H. Y., E-mail: thi-hai-yen.vu@polytechnique.edu; Ramjauny, Y.; Rizza, G.; Hayoun, M. [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA, Université Paris-Saclay, F-91128 Palaiseau (France)

    2016-01-21

    We investigate the dissolution law of metallic nanoparticles (NPs) under sustained irradiation. The system is composed of isolated spherical gold NPs (4–100 nm) embedded in an amorphous silica host matrix. Samples are irradiated at room temperature in the nuclear stopping power regime with 4 MeV Au ions for fluences up to 8 × 10{sup 16 }cm{sup −2}. Experimentally, the dependence of the dissolution kinetics on the irradiation fluence is linear for large NPs (45–100 nm) and exponential for small NPs (4–25 nm). A lattice-based kinetic Monte Carlo (KMC) code, which includes atomic diffusion and ballistic displacement events, is used to simulate the dynamical competition between irradiation effects and thermal healing. The KMC simulations allow for a qualitative description of the NP dissolution in two main stages, in good agreement with the experiment. Moreover, the perfect correlation obtained between the evolution of the simulated flux of ejected atoms and the dissolution rate in two stages implies that there exists an effect of the size of NPs on their dissolution and a critical size for the transition between the two stages. The Frost-Russell model providing an analytical solution for the dissolution rate, accounts well for the first dissolution stage but fails in reproducing the data for the second stage. An improved model obtained by including a size-dependent recoil generation rate permits fully describing the dissolution for any NP size. This proves, in particular, that the size effect on the generation rate is the principal reason for the existence of two regimes. Finally, our results also demonstrate that it is justified to use a unidirectional approximation to describe the dissolution of the NP under irradiation, because the solute concentration is particularly low in metal-glass nanocomposites.

  11. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries; Metodo hidrometalurgico para reciclagem de metais terras raras, cobalto, niquel, ferro e manganes de eletrodos negativos de baterias exauridas de Ni-MH de telefone celular

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de, E-mail: viniciusemmanuel@hotmail.com [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Quimica; Celante, Vinicius Guilherme [Instituto Federal do Espirito Santo (IFES), Aracruz, ES (Brazil)

    2014-07-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO{sub 4}){sub 2}.H{sub 2}O) and lanthanum sulfate (La{sub 2}(SO{sub 4}){sub 3}.H{sub 2}O) as the major recovered components. Iron was recovered as Fe(OH){sub 3} and FeO. Manganese was obtained as Mn{sub 3}O{sub 4}.The recovered Ni(OH){sub 2} and Co(OH){sub 2} were subsequently used to synthesize LiCoO{sub 2}, LiNiO{sub 2} and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  12. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.

    Science.gov (United States)

    Liang, Huixin; Yao, Aonan; Jiao, Xiuling; Li, Cheng; Chen, Dairong

    2018-06-20

    Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH 2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

  13. Dietary manganese in the Glasgow area

    International Nuclear Information System (INIS)

    Cross, J.D.; Dale, I.M.; Raie, R.M.

    1979-01-01

    The manganese content of the diet and human tissue (adult and infant) in the Glasgow area is established. The total manganese intake by a breast fed infant (6 μg/day) is very much lower than that of an adult (5 mg/day). This does not appear to cause any upset in the infant's metabolism and the tissue levels of both groups are similar. This indicates that the human system can obtain its required manganese from both levels of intake. Tea is the major source of manganese in the diet: tobacco, which is rich in manganese, does not contribute a significant amount when smoked. (author)

  14. Noncollinear magnetism in manganese nanostructures

    Czech Academy of Sciences Publication Activity Database

    Zelený, Martin; Šob, Mojmír; Hafner, J.

    2009-01-01

    Roč. 80, č. 14 (2009), 144414/1-144414/19 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100920; GA MŠk OC09011 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnetism of nanostructures * nanowires * noncollinear magnetism * manganese Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  15. A new manganese-based oral contrast agent (CMC-001) for liver MRI. Pharmacological and pharmaceutical aspects

    International Nuclear Information System (INIS)

    Joergensen, Jan Troest; Rief, Matthias; Wagner, Moritz; Brismar, Torkel B.; Albiin, Nils

    2012-01-01

    Manganese is one of the most abundant metals on earth and is found as a component of more than 100 different minerals. Besides being an essential trace element in relation to the metabolic processes in the body, manganese is also a paramagnetic metal that possesses similar characteristics to gadolinium with regards to T1-weighted (T1-w) magnetic resonance imaging (MRI). Manganese, in the form of manganese (II) chloride tetrahydrate, is the active substance in a new targeted oral contrast agent, currently known as CMC-001, indicated for hepatobiliary MRI. Under physiological circumstances manganese is poorly absorbed from the intestine after oral intake, but by the use of specific absorption promoters, L-alanine and vitamin D3, it is possible to obtain a sufficiently high concentration in the liver in order to achieve a significant signal enhancing effect. In the liver manganese is exposed to a very high first-pass effect, up to 98 %, which prevents the metal from reaching the systemic circulation, thereby reducing the number of systemic side-effects. Manganese is one of the least toxic trace elements, and due to its favorable safety profile it may be an attractive alternative to gadolinium-based contrast agents for patients undergoing an MRI evaluation for liver metastases in the future. In this review the basic pharmacological and pharmaceutical aspects of this new targeted oral hepatobiliary specific contrast agent will be discussed

  16. Organometallic complexes of thiocarbanilides and substituted thiocarbanilides using manganese (II) chloride

    International Nuclear Information System (INIS)

    Babiker, Musa Elaballa Mohamed

    2000-01-01

    Organo-metallic complexes of substituted thiocarbanilide using manganese (II) chloride were prepared, these are: (VIII) 3:3'-Dichloro thiocarbanilide. Manganese (II) chloride. (IX) 3:3'-Dimethyl thiocarbanilide. Manganese (II) chloride. (X) 2:2'-dimethyl thiocarbanilide. Manganese (II) chloride. These compounds are coloured, soluble in most organic solvents, insoluble in water, decomposed by hot solvents. The physical properties of compounds (IX) and (X) were studied by UV and IR spectra, and the physical properties of compound (VIII) were studied by UV, IR, mass spectra and NMR. The molecular weight of the compound (VIII) was determined by three different methods; Rast's camphor method, mass spectra and the nitrogen contents. The stoichiometry of the reaction was found to be 2:1, and the coordination is from sulphur atom more than nitrogen.(Author)

  17. Manganese: it turns iron into steel (and does so much more)

    Science.gov (United States)

    Cannon, William F.

    2014-01-01

    Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.

  18. Preparation of MnO nanofibers by novel hydrothermal treatment of manganese acetate/PVA electrospun nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Barakat, Nasser A.M. [Chemical Engineering Department, Faculty of Engineering, El-Minia University, El-Minia (Egypt); Center for Healthcare Technology Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)], E-mail: nasbarakat@yahoo.com; Park, Soo Jin [Center for Healthcare Technology Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Khil, Myung Seob [Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Hak Yong [Center for Healthcare Technology Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)], E-mail: khy@chonbuk.ac.kr

    2009-06-15

    In the present study, manganese monoxide (MnO) which is hard to prepare because of the chemical activity of the manganese metal has been synthesized in nanofibrous form. An electrospun manganese acetate/poly(vinyl alcohol) nanofiber mats have been hydrothermally treated by novel strategy. The treatment process was based on producing of water gas (Co and H{sub 2}) to eliminate the polymer and reduced the manganese acetate to manganese monoxide. The process was carried out by heating the dried nanofiber mates at 400 deg. C for 3 h in an especial designed reactor in which a stream of water vapor was passing through a bed of an activated carbon. The obtained physiochemical characterization results indicated that the proposed hydrothermal treatment process does have the ability to produce pure MnO nanofibers with good crystallinity.

  19. Preparation of MnO nanofibers by novel hydrothermal treatment of manganese acetate/PVA electrospun nanofiber mats

    International Nuclear Information System (INIS)

    Barakat, Nasser A.M.; Park, Soo Jin; Khil, Myung Seob; Kim, Hak Yong

    2009-01-01

    In the present study, manganese monoxide (MnO) which is hard to prepare because of the chemical activity of the manganese metal has been synthesized in nanofibrous form. An electrospun manganese acetate/poly(vinyl alcohol) nanofiber mats have been hydrothermally treated by novel strategy. The treatment process was based on producing of water gas (Co and H 2 ) to eliminate the polymer and reduced the manganese acetate to manganese monoxide. The process was carried out by heating the dried nanofiber mates at 400 deg. C for 3 h in an especial designed reactor in which a stream of water vapor was passing through a bed of an activated carbon. The obtained physiochemical characterization results indicated that the proposed hydrothermal treatment process does have the ability to produce pure MnO nanofibers with good crystallinity.

  20. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  1. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  2. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    International Nuclear Information System (INIS)

    Migliaccio, Oriana; Castellano, Immacolata; Romano, Giovanna; Palumbo, Anna

    2014-01-01

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos

  4. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Migliaccio, Oriana; Castellano, Immacolata [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Romano, Giovanna [Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy); Palumbo, Anna, E-mail: anna.palumbo@szn.it [Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples (Italy)

    2014-11-15

    Highlights: • NO is produced in sea urchin embryos in response to cadmium and manganese. • Cadmium and manganese affect the expression of specific genes. • NO levels regulate directly or indirectly the expression of some metal-induced genes. • NO is proposed as a sensor of different stress agents in sea urchin embryos. - Abstract: Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by L-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.

  5. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Arvind [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India); Singh, Vidya Nand; Mehta, Bodh Raj [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016 (India); Khare, Sunil Kumar, E-mail: skhare@rocketmail.com [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

    2011-08-30

    Highlights: {yields} An efficient process wherein remediated manganese is synthesized into nanoparticles. {yields} A microbial process for manganese nanoparticle synthesis from metal waste streams. {yields} Nanoparticles characterized as monodispersed, spherical and 4.62 {+-} 0.14 nm sized MnO{sub 2}. -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 {+-} 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  6. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    International Nuclear Information System (INIS)

    Sinha, Arvind; Singh, Vidya Nand; Mehta, Bodh Raj; Khare, Sunil Kumar

    2011-01-01

    Highlights: → An efficient process wherein remediated manganese is synthesized into nanoparticles. → A microbial process for manganese nanoparticle synthesis from metal waste streams. → Nanoparticles characterized as monodispersed, spherical and 4.62 ± 0.14 nm sized MnO 2 . -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 ± 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  7. Inorganic ion exchangers based on manganese and potassium for recovery and removal of pollutant metals of aqueous effluents; Trocadores ionicos inorganicos a base de manganes e potassio para recuperacao e remocao de metais poluentes de efluentes aquosos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jacinete Lima dos

    2001-07-01

    This work presents a study on the synthesis, characterization and ion exchange properties of inorganic ion exchangers based on manganese and potassium. The ion exchangers were synthesized by calcination of the mixture of manganese(II) oxalate and potassium oxalate and were characterized by granulometer distribution analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopic. From the data obtained in characterization it was observed that exist two distinguished groups of these materials. The first group belong to ion exchangers with up to 30% w/w potassium and the second group formed by the ion exchangers with more than 30% w / w of content of potassium in their compositions. The studies of adsorption of these materials showed that the adsorption of Cd{sup 2+} is a function of the following parameters as pH, concentration of Cd{sup 2+}, time of contact between the ion exchangers the concentration of the Cd{sup 2+} solution and the interference of other ions like Ni{sup 2+}. The great pH of adsorption for these materials occur in pH 9, the study of the influence of the cadmium concentration in the adsorption showed that for a group of exchangers the adsorption decreases with the increase of cadmium concentration and for the other group the adsorption increases with the increase of cadmium concentration. The kinetics of adsorption occur in a contact time between the ion exchangers and the Cd{sup 2+} solutions relatively short, at about 15 minutes is necessary to establish the equilibrium. The presence of Ni{sup 2+} as interfering ion decreases the adsorption of cadmium of 99,7% to 65%. These inorganic ion exchangers showed be good exchangers for Cd{sup 2+}. (author)

  8. Reductive Leaching Kinetics of Low Grade Manganese Deposits in H2SO4 Solution Using Malonic Acid as Reducing Agent

    OpenAIRE

    Taysser Lasheen; S. A. Abu Elenein; W. A. Saleh; A. H Orabi; D. A Ismaiel

    2014-01-01

    A leaching process was developed to extract manganese and metal values from Alloga manganese concentrate. The preferential leaching process was achieved through reductive leaching in dilute sulfuric acid medium with malonic acid as the reducing agent. Leaching parameters were optimized as 1.0 M H2SO4, 10% malonic acid in solid/liquid ratio 1:10 for 90 min at 80 C and using ore ground to – 74 µm. Under these conditions, the leaching efficiency of manganese reaches 97%, whilst iron dissolution ...

  9. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    Science.gov (United States)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  10. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth......, and eventually substantial yield losses. It is well known, that genotypes within plant species differ considerably in tolerance to growth under Mn limiting conditions, a phenomenon designated as Mn efficiency. However, the physiological responses reflecting the underlying mechanisms of Mn efficiency are still...... not fully understood. In this PhD study, a new method for determination and characterization of metal binding in size-fractionated photosynthetic protein complexes from barley thylakoids was established. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two...

  11. Metal accumulation in plants with added economical value grown on metal contaminated soils: sustainable use of these soils for bio-energy production and possibilities for phyto extraction

    International Nuclear Information System (INIS)

    Vangronsveld, J.; Boulet, J.; Weyens, N.; Meers, E.; Meiresonne, L.; Colpaert, J.; Thewys, T.; Lelie, D. van der; Carleer, R.; Ruttens, A.

    2009-01-01

    Phyto remediation has been proposed as an economic alternative for remediation of metal contaminated soils. It can be applied over extended surface areas and targets the bioavailable soil fraction of heavy metals, which is the most relevant fraction from an environmental risk assessment perspective. The most important drawback is the long remediation period required (years to decades). (Author)

  12. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection

    OpenAIRE

    Yang, Hui-Jie; Zhang, Jin-Yong; Wei, Chao; Yang, Liu-Yang; Zuo, Qian-Fei; Zhuang, Yuan; Feng, You-Jun; Srinivas, Swaminath; Zeng, Hao; Zou, Quan-Ming

    2016-01-01

    Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detail...

  13. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  14. ТHE RADICAL POLYMERIZATION OF METHYL METHACRYLATE IN THE PRESENCE OF MANGANESE (II 5-METHYL-5-HEXEN-2,4-DIONATE

    Directory of Open Access Journals (Sweden)

    O. V. Shevchenko

    2017-09-01

    function makes it possible to regulate the molecular masses of the products. The resulting metal polymers based on MMA and manganese (II vinyl-b-diketonate may be of potential interest as catalysts or initiators of various reactions.

  15. Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (Eisenia Fetida) Benchmark Values

    National Research Council Canada - National Science Library

    Simini, Michael

    2002-01-01

    ... soil that supports relatively high bioavailability of barium (Ba), beryllium (Be), manganese (Mn), and antimony (Sb). For the metals tested, cocoon production was a more sensitive endpoint than was survival...

  16. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis.

    Science.gov (United States)

    Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke

    2017-01-05

    Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dimensional crossover in manganese based analogues of iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zingl, Manuel; Assmann, Elias; Aichhorn, Markus [University of Technology, Institute of Theoretical Physics and Computational Physics, Graz (Austria)

    2016-07-01

    The manganese pnicitides BaMn{sub 2}As{sub 2} and LaOMnAs crystallize in the same structure as the extensively studied iron pnictide high-temperature superconductors BaFe{sub 2}As{sub 2} and LaOFeAs. In contrast to the d{sup 6} configuration of the iron systems, the manganese d-shell is only half-filled (d{sup 5}). As a consequence, electronic correlations are much stronger, placing these compounds at the verge of the Mott metal-insulator transition. In this region of the phase diagram materials are prone to enhanced magnetism, apparent in the remarkably high Neel temperature of 625 K for BaMn{sub 2}As{sub 2}. We demonstrate that the experimentally observed differences in the Neel temperatures, the band gap, and the optical properties of the manganese compounds under consideration can be traced back to their effective dimensionality. Our fully charge self-consistent DFT+DMFT calculations show excellent agreement with experiments, especially measured optical spectra.

  18. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    International Nuclear Information System (INIS)

    Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2011-01-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 deg. C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  19. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Science.gov (United States)

    Aras, Neny Rasnyanti M.; Arcana, I. Made

    2015-09-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate

  20. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Neny Rasnyanti M., E-mail: neny.rasnyanti@gmail.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  1. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    International Nuclear Information System (INIS)

    Aras, Neny Rasnyanti M.; Arcana, I Made

    2015-01-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm −1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  2. Speciation of iron and manganese in the sediments of Mandovi Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, D.A.; Rajendran, A.

    Several attempts have been made to study the distribution of iron and manganese in Mandovi Estuary, Goa, India. But this is the first report of its kind on the speciation of these metals in sediments from Indian waters. This study would be useful...

  3. An Innovative Carbonate Coprecipitation Process For The Removal Of Zinc And Manganese From Mining Impacted Waters

    Science.gov (United States)

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters ...

  4. Environmental Exposure to Manganese in Air: Associations ...

    Science.gov (United States)

    Manganese (Mn), an essential element, can be neurotoxic in high doses. This cross-sectional study explored the oognitive function of adults residing in two towns (Marietta and East Liverpool, Ohio, USA) identified as having high levels of environmental airborne Mn from industrial sources. Air-Mn site surface emissions method modeling for total suspended particulate (TSP) ranged from 0.03 to 1.61 µg/m(3) in Marietta and 0.01-6.32 µg/m(3) in East Liverpool. A comprehensive screening test battery of cognitive function, including the domains of abstract thinking, attention/concentration, executive function and memory was administered. The mean age of the participants was 56 years (±10.8 years). Participants were mostly female (59.1) and primarily white (94.6%). Significant relationships (pworking and visuospatial memory (e.g., Rey-0 Immediate B3=0.19, Rey-0 Delayed B3=0.16) and verbal skills (e.g., Similarities B3=0.19). Using extensive cognitive testing and computer modeling of 10-plus years of measured air monitoring data, this study suggests that long-term environmental exposure to high levels of air-Mn, the exposure metric of this paper, may result in mild deficits of cognitive function in adult populations. This study addresses research questions under Sustainable and Healthy Communities (2.2.1.6 lessons learned, best practices and stakeholder feedback from community and tribal participa

  5. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  6. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  7. 10Be in manganese nodules

    International Nuclear Information System (INIS)

    Thomas, J.; Parker, P.; Mangini, A.; Cochran, K.; Turekian, K.; Krishnaswami, S.; Sharma, P.

    1981-01-01

    10 Be (t/sub 1/2) = 1.5 MY) is(formed in the upper atmosphere by cosmic ray spallation on nitrogen and oxygen. It is transported to the earth's surface via precipitation. In the oceans it is eventually associated with solid phases depositing on the ocean floor such as manganese nodules and deep-sea sediments. One of the assumptions that is normally made in analysis of such processes is that 10 Be has been produced at a relatively uniform rate over the pat several million years. If we assume, in addition, that the initial specific concentration of 10 Be as it precipitates with a solid phase is invariant with time, then we would expect that the decrease of the 10 Be concentration as a function of depth in a deep-sea core or in a manganese nodule would provide a record of sediment accumulation rate in the former and of growth rate in the latter. The possibility of using cosmic-ray produced 10 Be for the dating of marine deposits had been proposed 25 years ago by Arnold and Goel et al. The method of analysis used by these investigators, and those subsequently pursuing the problem, was low-level β counting. Though the potential of using 10 Be for dating manganese nodules was explored more than a decade ago, only a few measurements of 10 Be in nodules exist in date. This is largely because of the 10 Be measurements in environmental samples have gained considerable momentum during the past 3 to 4 years, after the development of accelerator mass spectrometry for its determination

  8. A Sustainable and Selective Roasting and Water-Leaching Process to Simultaneously Extract Valuable Metals from Low-Grade Ni-Cu Matte

    Science.gov (United States)

    Cui, Fuhui; Mu, Wenning; Wang, Shuai; Xin, Haixia; Xu, Qian; Zhai, Yuchun

    2018-03-01

    Due to stringent environmental requirements and the complex occurrence of valuable metals, traditional pyrometallurgical methods are unsuitable for treating low-grade nickel-copper matte. A clean and sustainable two-stage sulfating roasting and water-leaching process was used to simultaneously extract valuable metals from low-grade nickel-copper matte. Ammonium and sodium sulfate were used as sulfating agents. The first roasting temperature, mass ratio of ammonium sulfate to matte, roasting time, dosage of sodium sulfate, second roasting temperature and leaching temperature were studied. Under optimal conditions, 98.89% of Ni, 97.48% of Cu and 95.82% of Co, but only 1.34% of Fe, were extracted. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to reveal the sulfating mechanism during the roasting process.

  9. MATERIALS FOR PRODUCTION OF METAL MOLDS

    Directory of Open Access Journals (Sweden)

    A. Ju. Jakovlev

    2007-01-01

    Full Text Available The influence of alloying with manganese, chromium, nickel, copper and molybdenum on mechanical characteristics and thermocyclic endurance of grayed steel and possibility of its application for metal casting molds is investigated.

  10. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  11. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  12. Concentrations of chromium, manganese, and lead in air and in avian eggs

    International Nuclear Information System (INIS)

    Hui, C.A.

    2002-01-01

    Embryo exposure was not directly related to tropospheric levels of chromium, manganese or lead. - The expansion of urbanization introduces air pollution to wildlife areas. Some metal contaminants occurring in concentrations too small to have any measurable impact on adult birds may seriously affect embryos that are more sensitive to contaminants than the adult. Chromium, manganese, and lead are toxic and can be passed from the hen to the egg. This study relates the concentrations of these metals in eggs to their concentrations in air in three cities. Rock dove eggs were sampled and air pollution records were examined in the California cities of Riverside, Los Angeles, and San Francisco. The eggs from San Francisco did not differ from those of Los Angeles in lead concentration but the air did differ. The eggs collected in Los Angeles in 1998 had concentrations of chromium greater than in those from Riverside and from Los Angeles 1999 but the air had concentrations of chromium that did not differ among those three collections. Concentrations of manganese did not differ among the eggs but did differ among the air samples of the three cities. Exposures of embryos to chromium and manganese in this study were not at levels warranting concern. Although the concentration at which lead in eggs impairs avian health is not established, the highest concentrations found in this study exceed estimated safe concentrations. There is no indication that embryo exposure is directly related to atmospheric levels of these metals in the cities of this study

  13. Recovery of manganese from manganese oxide ores in the EDTA solution

    Science.gov (United States)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  14. Manganese oxide nanoparticles, methods and applications

    Science.gov (United States)

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  15. Assessment of exposure to manganese in welding operations during the assembly of heavy excavation machinery accessories.

    Science.gov (United States)

    Smargiassi, A; Baldwin, M; Savard, S; Kennedy, G; Mergler, D; Zayed, J

    2000-10-01

    Welder exposure to metals in various industrial sectors is poorly characterized. We had the opportunity to carry out an exploratory study to characterize manganese exposure in welding operations in a recently established Quebec factory that assembled accessories for heavy excavation machinery. Ten workers were sampled for total manganese for at least two consecutive days out of three followed by two consecutive days for respirable manganese (with a size selective sampler with a median cut-off of 4 microns), during a typical week in the summer of 1998. Parts being welded were characterized as large or small. Small parts were those being welded on tables during subassembly. Workers were divided into two groups according to the parts they were welding. Seventy-eight percent of the total manganese exposure levels of welding operations during the assembly of large accessories of heavy excavation machinery exceeded the manganese American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 0.20 mg/m3 (GM 0.24 mg/m3, n = 14) while none exceeded the TLV during the assembly of small pieces (GM 0.06 mg/m3, n = 8). Welding operations during the assembly of large heavy excavation machinery accessories may pose a significant health hazard. Considering the importance of task-related variables affecting exposure among workers, further studies are needed to better characterize exposure determinants of welding operations during the assembly of heavy excavation machinery accessories.

  16. Monte Carlo study of double exchange interaction in manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Naa, Christian Fredy, E-mail: chris@cphys.fi.itb.ac.id [Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung (Indonesia); Unité de Dynamique et Structure des Matérioux Moléculaires, Université Littoral Côte d’Opale, Maison de la Reserche Blaise Pascal 50, rue Ferdinand Buisson, Calais, France email (France); Suprijadi,, E-mail: supri@fi.itb.ac.id; Viridi, Sparisoma, E-mail: dudung@fi.itb.ac.id; Djamal, Mitra, E-mail: mitra@fi.itb.ac.id [Physics Department, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung (Indonesia); Fasquelle, Didier, E-mail: didier.fasquelle@univ-littoral.fr [Unité de Dynamique et Structure des Matérioux Moléculaires, Université Littoral Côte d’Opale, Maison de la Reserche Blaise Pascal 50, rue Ferdinand Buisson, Calais, France email (France)

    2015-09-30

    In this paper we study the magnetoresistance properties attributed by double exchange (DE) interaction in manganese oxide by Monte Carlo simulation. We construct a model based on mixed-valence Mn{sup 3+} and Mn{sup 4+} on the general system of Re{sub 2/3}Ae{sub 1/3}MnO{sub 3} in two dimensional system. The conduction mechanism is based on probability of e{sub g} electrons hopping from Mn{sup 3+} to Mn{sup 4+}. The resistivity dependence on temperature and the external magnetic field are presented and the validity with related experimental results are discussed. We use the resistivity power law to fit our data on metallic region and basic activated behavior on insulator region. On metallic region, we found our result agree well with the quantum theory of DE interaction. From general arguments, we found our simulation agree qualitatively with experimental results.

  17. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    OpenAIRE

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the p...

  18. Manganese(II) chelate contrast media

    International Nuclear Information System (INIS)

    Rocklage, S.M.; Quay, S.C.

    1994-01-01

    New chelate forming compounds for use as contrast media in NMR imaging are described. Especially mentioned are manganese(II) ion chelates of N,N' dipyridoxaldiamine, N,N' diacetic acid, and salts and esters thereof. 1 fig

  19. 21 CFR 73.2775 - Manganese violet.

    Science.gov (United States)

    2010-04-01

    .... Mercury (as Hg), not more than 1 part per million. Total color, based on Mn content in “as is” sample, not less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics...

  20. Personality traits in persons with manganese poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, A A

    1976-10-01

    Results of studies with the Minnesota Multiphasic Personality Inventory (MMPI) in 3 groups of arc welders with various degrees of manganese poisoning (22 symptom-free, 23 with functional disturbances, 55 with organic symptoms) and 50 controls were discussed. There was a close relation between the severity of the poisoning and quantitative and qualitative personality changes. Personality tests are considered a useful addition to the clinical diagnosis of chronic manganese poisoning.

  1. Final Technical Report: Role of Methanotrophs in Metal Mobilization, Metal Immobilization and Mineral Weathering: Effects on the In Situ Microbial Community and the Sustainability of Subsurface Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Semrau, Jeremy D. [Univ. of Michigan, Ann Arbor, MI (United States); DiSpirito, Alan A. [Iowa State Univ., Ames, IA (United States)

    2016-11-06

    Activities from this DOE sponsored project can be divided into four broad areas: (1) investigations into the potential of methanobactin, a biogenic metal-binding agent produced by methanotrophs, in mitigating mercury toxicity; (2) elucidation of the genetic basis for methanobactin synthesis from methanotrophs; (3) examination of differential gene expression of M. trichosporium OB3b when grown in the presence of varying amounts of copper and/or cerium, and (4) collection and characterization of soil cores from Savannah River Test Site to determine the ubiquity of methanobactin producing methanotrophs. From these efforts, we have conclusively shown that methanobactin can strongly bind mercury as Hg[II], and in so doing significantly reduce the toxicity of this metal to microbes. Further, we have deduced the genetic basis of methanobactin production in methanotrophs, enabling us to construct mutants such that we can now ascribe function to different genes as well as propose a pathway for methanobactin biosynthesis. We have also clear evidence that copper and cerium (as an example of a rare earth element) dramatically affect gene expression in methanotrophs, and thus have an important impact on the activity and application of these microbes to a variety of environmental and industrial issues. Finally, we successfully isolated one methanotroph from the deep subsurface of the Savannah River Test Site and characterized the ability of different forms of methanobactin to mobilize copper and mercury from these soils.

  2. Autonomic function in manganese alloy workers

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  3. Magnesium and manganese content of halophilic bacteria

    International Nuclear Information System (INIS)

    de Medicis, E.; Paquette, J.; Gauthier, J.J.; Shapcott, D.

    1986-01-01

    Magnesium and manganese contents were measured by atomic absorption spectrophotometry in bacteria of several halophilic levels, in Vibrio costicola, a moderately halophilic eubacterium growing in 1 M NaCl, Halobacterium volcanii, a halophilic archaebacterium growing in 2.5 NaCl, Halobacterium cutirubrum, an extremely halophilic archaebacterium growing in 4 M NaCl, and Escherichia coli, a nonhalophilic eubacterium growing in 0.17 M NaCl. Magnesium and manganese contents varied with the growth phase, being maximal at the early log phase. Magnesium and manganese molalities in cell water were shown to increase with the halophilic character of the logarithmically growing bacteria, from 30 mmol of Mg per kg of cell water and 0.37 mmol of Mn per kg of cell water for E. coli to 102 mmol of Mg per kg of cell water and 1.6 mmol of Mn per kg of cell water for H cutirubrum. The intracellular concentrations of manganese were determined independently by a radioactive tracer technique in V. costicola and H. volcanii. The values obtained by 54 Mn loading represented about 70% of the values obtained by atomic absorption. The increase of magnesium and manganese contents associated with the halophilic character of the bacteria suggests that manganese and magnesium play a role in haloadaptation

  4. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population.

    Science.gov (United States)

    Rubio, Carmen; Gutiérrez, Angel José; Revert, Consuelo; Reguera, Juan Ignacio; Burgos, Antonio; Hardisson, Arturo

    2009-11-01

    To evaluate the daily dietary intake of essential metals in the Canary Islands, the iron, copper, zinc and manganese contents in 420 food and drink samples collected in local markets were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The estimated daily dietary intakes of iron, copper, zinc and manganese are 13.161 mg/day, 2.098 mg/day, 8.954 mg/day and 2.372 mg/day, respectively. The iron dietary intake was found to be below the recommendations fixed for adult women, while the copper and manganese dietary intakes fulfilled the Recommended Dietary Allowances. The mean daily intake of zinc was below the Recommended Dietary Allowance. Cereals were found to be the food group that contributed most to the intake of these metals. While the island of El-Hierro presented iron, copper, zinc and manganese mean intakes over the estimated intakes for the whole archipelago, Fuerteventura island showed the lowest intakes. Tenerife and Fuerteventura showed the lowest iron intakes, being below the recommendations.

  5. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Moradi-Haghighi, M.; Zarrini, G.

    2012-01-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO 2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  6. Compositional changes of surface sediments and variability of manganese nodules in the Peru Basin

    Science.gov (United States)

    Marchig, Vesna; von Stackelberg, Ulrich; Hufnagel, Heinz; Durn, Goran

    Two types of manganese nodules were observed in the Peru Basin: large botryoidal nodules in basins and small ellipsoidal nodules on slope positions. The sediment in areas with large botryoidal nodules contains a thinner and weaker oxidation zone than the sediment under small ellipsoidal nodules, indicating that diagenetic processes in the sediment, which supply manganese nodules with metals for their growth, are stronger in sediments on which large botryoidal nodules grow. Organic matter, which activates remobilization of metals, occurs mostly in the form of refractory lipidic compounds in the inner capsule of radiolaria. This material needs bacterial degradation to act as a reducing agent. Easily oxidizable organic components could not be found in the sediments. Other changes in sediment composition do not have a link to manganese nodule growth. Biogenous components (radiolarians, organogenic barite and apatite) increase towards the equatorial high-productivity zone. Authigenous clay minerals (nontronite as well as montmorillonite with high Fe +3 incorporation on positions of ochtaedral Al) increase with distance from the continent. The assessment of environmental impacts will have to take into account the regional differences in sediment composition and the small-scale variability of manganese nodules.

  7. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Ashassi-Sorkhabi, H., E-mail: habib_ashassi@yahoo.com [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Moradi-Haghighi, M. [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Zarrini, G. [Microbiology laboratory, Biology Department, Science Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-02-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO{sub 2} deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: Black-Right-Pointing-Pointer A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. Black-Right-Pointing-Pointer This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. Black-Right-Pointing-Pointer In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  8. Absorption of manganese and iron in a mouse model of hemochromatosis.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1 and Fpn (ferroportin, transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe (-/- knockout mice after intravenous, intragastric, and intranasal administration of (54Mn. These values were compared to intravenous and intragastric administration of (59Fe. Intestinal absorption of (59Fe was increased and clearance of injected (59Fe was also increased in Hfe(-/- mice compared to controls. Hfe (-/- mice displayed greater intestinal absorption of (54Mn compared to wild-type Hfe(+/+ control mice. After intravenous injection, the distribution of (59Fe to heart and liver was greater in Hfe (-/- mice but no remarkable differences were observed for (54Mn. Although olfactory absorption of (54Mn into blood was unchanged in Hfe (-/- mice, higher levels of intranasally-instilled (54Mn were associated with Hfe(-/- brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency.

  9. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    Science.gov (United States)

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  10. Effect of manganese and zinc on the growth of Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.H.; Lustigman, B.; Dandorf, D. (Montclair State College, Upper Montclair, NJ (United States))

    1994-07-01

    Anacystis nidulans is a unicellular member of the cyanobacteria, one of the largest groups of the Kingdom Monera. It is similar to other bacteria in the structure and chemistry of the cell wall, and its cell division and genetic recombination. Photoautotrophy is the main mode of nutrition and the photosynthetic apparatus is similar to that of other cyanobacteria. Cyanobacteria are excellent organisms to serve as environmental pollution indicators for the investigation of a wide variety of biological problems. There have been several studies on the effects of heavy metals on A. nidulans. Some of these elements, such as manganese, are known to be essential nutrients for cyanobacteria. Others, such as cadmium, are not known to be necessary for normal growth and metabolism. Large amounts of either essential or non-essential elements can be toxic. Manganese and zinc are essential elements for all living organisms. Manganese is a cofactor for a number of different enzymatic reactions particularly those involved in phosphorylation. Iron deficiency induced by a number of metals, cobalt and manganese in particular, inhibit chlorophyll biosynthesis. Zinc deficiency affects early mitotic events and the cells are large and aberrant in appearance. Light is essential for cells to take in zinc. As an industrial contaminant, zinc has been found to block photosynthesis by causing structural damage to the photosynthetic apparatus. In the presence of various pH ranges, high zinc concentrations can be associated with low pH. It has been indicated that pH value and EDTA (Ethylene Diamine Tetraacetic Acid) have an influence on the effect of some metals. The purpose of this study was to determine the effect of manganese and zinc on the growth of Anacystis nidulans, with and without EDTA.

  11. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    International Nuclear Information System (INIS)

    Jia, C.Q.; Pickles, C.A.; Brienne, S.; Rao, S.R.

    2008-01-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jia, C.Q. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry; Pickles, C.A. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mining Engineering; Brienne, S. [Teck Cominco Metals Ltd., Trail, BC (Canada). Applied Research and Engineering; Rao, S.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Mining and Materials Engineering] (eds.)

    2008-07-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  13. Application of siliceous metal product for preliminary deoxidizing of metal in open-hearth furnaces

    International Nuclear Information System (INIS)

    Luk'yanenko, A.A.; Evdokimov, A.V.; Kornilov, V.N.; Il'in, V.I.; Kuleshov, Yu.V.

    1995-01-01

    Metal wastes of abrasive processes-concomitant product of synthetic corundum production containing approximately 10 % Si - were tested for preliminary deoxidizing of metal in furnace to reduce manganese loss in burning and to increase the steel deoxidizing. The technology of preliminary deoxidizing of metal by siliceous metal product was mastered in the course of low carbon steel melting (st3sp, st4sp). The results of the study has shown that the use of siliceous metal product permits reducing the consumption of manganese-containing ferroalloys. 1 tab

  14. Nanostructured manganese oxides in supercapacitors

    CSIR Research Space (South Africa)

    Makgopa, K

    2016-07-01

    Full Text Available of environmental pollution. Hence there is an urgent need for clean, cheap, efficient and sustainable sources of energy, as well as new technologies associated with energy storage and conversion. The electrochemical capacitor (EC), also known as ultracapacitor...

  15. Mining and Metal Pollution: Assessment of Water Quality in the ...

    African Journals Online (AJOL)

    The quality of water in mining communities is uncertain since metals associated with acid mine drainage are known to saturate these waters. Previous studies in Tarkwa, an area noted for gold and manganese extraction, have reported large concentrations of aluminium, arsenic, cadmium, copper, lead, manganese and ...

  16. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    Science.gov (United States)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  17. A microbial-mineralization-inspired approach for synthesis of manganese oxide nanostructures with controlled oxidation states and morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Manabu; Oaki, Yuya; Imai, Hiroaki [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-12-21

    Manganese oxide nanostructures are synthesized by a route inspired by microbial mineralization in nature. The combination of organic molecules, which include antioxidizing and chelating agents, facilitates the parallel control of oxidation states and morphologies in an aqueous solution at room temperature. Divalent manganese hydroxide (Mn(OH){sub 2}) is selectively obtained as a stable dried powder by using a combination of ascorbic acid as an antioxidizing agent and other organic molecules with the ability to chelate to manganese ions. The topotactic oxidation of the resultant Mn(OH){sub 2} leads to the selective formation of trivalent manganese oxyhydroxide ({beta}-MnOOH) and trivalent/tetravalent sodium manganese oxide (birnessite, Na{sub 0.55}Mn{sub 2}O{sub 4}.1.5H{sub 2}O). For microbial mineralization in nature, similar synthetic routes via intermediates have been proposed in earlier works. Therefore, these synthetic routes, which include in the present study the parallel control over oxidation states and morphologies of manganese oxides, can be regarded as new biomimetic routes for synthesis of transition metal oxide nanostructures. As a potential application, it is demonstrated that the resultant {beta}-MnOOH nanostructures perform as a cathode material for lithium ion batteries. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    Science.gov (United States)

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  19. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Guo, Chunxiu; Ma, Hongrui; Li, Jiazhu; Zhou, Tao; Cao, Ling; Kang, Duozhi

    2018-05-01

    It is significant to recover metal values from spent lithium ion batteries (LIBs) for the alleviation or prevention of potential risks towards environmental pollution and public health, as well as for the conservation of valuable metals. Herein a hydrometallurgical process was proposed to explore the possibility for the leaching of different metals from waste cathodic materials (LiCoO 2 ) of spent LIBs using organics as reductant in sulfuric acid medium. According to the leaching results, about 98% Co and 96% Li can be leached under the optimal experimental conditions of reaction temperature - 95 °C, reaction time - 120 min, reductive agent dosage - 0.4 g/g, slurry density - 25 g/L, concentration of sulfuric acid-3 mol/L in H 2 SO 4  + glucose leaching system. Similar results (96% Co and 100% Li) can be obtained in H 2 SO 4  + sucrose leaching system under optimized leaching conditions. Despite a complete leaching of Li (∼100%), only 54% Co can be dissolved in the H 2 SO 4  + cellulose leaching system under optimized leaching conditions. Finally, different characterization methods, including UV-Vis, FT-IR, SEM and XRD, were employed for the tentative exploration of reductive leaching reactions using organic as reductant in sulfuric acid medium. All the leaching and characterization results confirm that both glucose and sucrose are effective reductants during leaching, while cellulose should be further degraded to organics with low molecular weights to achieve a satisfactory leaching performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Book review: Economic geology: Principles and practice: Metals, minerals, coal and hydrocarbons—Introduction to formation and sustainable exploitation of mineral deposits

    Science.gov (United States)

    Anderson, Eric

    2013-01-01

    This volume, available in both hardcover and paperback, is an English translation of the fifth edition of the German language text Mineralische und Energie-Rohstoffe. The book provides an extensive overview of natural resources and societal issues associated with extracting raw materials. The comprehensive list of raw materials discussed includes metals, industrial minerals, coal, and hydrocarbons. The book is divided into four parts: (1) “Metalliferous ore deposits,” (2) “Nonmetallic minerals and rocks,” (3) “Practice of economic geology,” and (4) “Fossil energy raw materials—coal, oil, and gas.” These sections are bound by a brief introduction and an extensive list of up-to-date references as well as an index. Each chapter begins with a concise synopsis and concludes with a summary that contains useful suggestions for additional reading. All figures are grayscale images and line drawings; however, several have been grouped together and reproduced as color plates. Also included is a companion website (www.wiley.com/go/pohl/geology) that contains additional resources, such as digital copies of figures, tables, and an expanded index, all available for download in easy-to-use formats.Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits. Walter l. Pohl. 2011. Wiley-Blackwell. Pp. 663. ISBN 978-1-4443-3663-4 (paperback).

  1. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  2. Old age and gender influence the pharmacokinetics of inhaled manganese sulfate and manganese phosphate in rats

    International Nuclear Information System (INIS)

    Dorman, David C.; McManus, Brian E.; Marshall, Marianne W.; James, R. Arden; Struve, Melanie F.

    2004-01-01

    In this study, we examined whether gender or age influences the pharmacokinetics of manganese sulfate (MnSO 4 ) or manganese phosphate (as the mineral form hureaulite). Young male and female rats and aged male rats (16 months old) were exposed 6 h day -1 for 5 days week -1 to air, MnSO 4 (at 0.01, 0.1, or 0.5 mg Mn m -3 ), or hureaulite (0.1 mg Mn m -3 ). Tissue manganese concentrations were determined in all groups at the end of the 90-day exposure and 45 days later. Tissue manganese concentrations were also determined in young male rats following 32 exposure days and 91 days after the 90-day exposure. Intravenous 54 Mn tracer studies were also performed in all groups immediately after the 90-day inhalation to assess whole-body manganese clearance rates. Gender and age did not affect manganese delivery to the striatum, a known target site for neurotoxicity in humans, but did influence manganese concentrations in other tissues. End-of-exposure olfactory bulb, lung, and blood manganese concentrations were higher in young male rats than in female or aged male rats and may reflect a portal-of-entry effect. Old male rats had higher testis but lower pancreas manganese concentrations when compared with young males. Young male and female rats exposed to MnSO 4 at 0.5 mg Mn m -3 had increased 54 Mn clearance rates when compared with air-exposed controls, while senescent males did not develop higher 54 Mn clearance rates. Data from this study should prove useful in developing dosimetry models for manganese that consider age or gender as potential sensitivity factors

  3. INFLUENCE OF BIOLOGICAL AND THERMAL TRANSFORMED SEWAGE SLUDGE APPLICATION ON MANGANESE CONTENT IN PLANTS AND SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Koncewicz-Baran

    2014-10-01

    Full Text Available A great variety of sewage sludge treatment methods, due to the agent (chemical, biological, thermal leads to the formation of varying ‘products’ properties, including the content of heavy metals forms. The aim of the study was to determine the effects of biologically and thermally transformed sewage sludge on the manganese content in plants and form of this element in the soil. The study was based on a two-year pot experiment. In this study was used stabilized sewage sludge collected from Wastewater Treatment Plant Krakow – ”Płaszów” and its mixtures with wheat straw in the gravimetric ratio 1:1 in conversion to material dry matter, transformed biologically (composting by 117 days in a bioreactor and thermally (in the furnace chamber with no air access by the following procedure exposed to temperatures of 130 °C for 40 min → 200 °C for 30 min. In both years of the study biologically and thermally transformed mixtures of sewage sludge with wheat straw demonstrated similar impact on the amount of biomass plants to the pig manure. Bigger amounts of manganese were assessed in oat biomass than in spring rape biomass. The applied sewage sludge and its biologically and thermally converted mixtures did not significantly affect manganese content in plant biomass in comparison with the farmyard manure. The applied fertilization did not modify the values of translocation and bioaccumulation ratios of manganese in the above-ground parts and roots of spring rape and oat. No increase in the content of the available to plants forms of manganese in the soil after applying biologically and thermally transformed sewage sludge mixtures with straw was detected. In the second year, lower contents of these manganese forms were noted in the soil of all objects compared with the first year of the experiment.

  4. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol.

    Science.gov (United States)

    Wu, Zhao-Jin; Huang, Wei; Cui, Ke-Ke; Gao, Zhi-Fang; Wang, Ping

    2014-08-15

    A novel strategy of waste-cleaning-waste is proposed in the present work. A metals-doped ZnO (M-ZnO, M = Fe, Mg, Ca and Al) nanomaterial has been prepared from a metallurgical zinc-containing solid waste "fabric filter dust" by combining sulfolysis and co-precipitation processes, and is found to be a favorable photocatalyst for photodegradation of organic substances in wastewater under visible light irradiation. All the zinc and dopants (Fe, Mg, Ca and Al) for preparing M-ZnO are recovered from the fabric filter dust, without any addition of chemical as elemental source. The dust-derived M-ZnO samples deliver single phase indexed as the hexagonal ZnO crystal, with controllable dopants species. The photocatalytic activity of the dust-derived M-ZnO samples is characterized by photodegradation of phenol aqueous solution under visible light irradiation, giving more prominent photocatalytic behaviors than undoped ZnO. Such enhancements may be attributed to incorporation of the dust-derived metal elements (Fe, Mg, Ca and Al) into ZnO structure, which lead to the modification of band gap and refinement of grain size. The results show a feasibility to utilize the industrial waste as a resource of photodegradating organic substances in wastewater treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Photoluminescent properties of nanoporous anodic alumina doped with manganese ions

    Energy Technology Data Exchange (ETDEWEB)

    Gasenkova, I.V. [State Research and Production Association ' Optic, Optoelectronic and Laser techniques”, 68 Nezavisimosti Ave., Minsk 220072 (Belarus); Mukhurov, N.I., E-mail: n.mukhurov@ifanbel.bas-net.by [State Research and Production Association ' Optic, Optoelectronic and Laser techniques”, 68 Nezavisimosti Ave., Minsk 220072 (Belarus); Zhvavyi, S.P.; Kolesnik, E.E. [State Research and Production Association ' Optic, Optoelectronic and Laser techniques”, 68 Nezavisimosti Ave., Minsk 220072 (Belarus); Stupak, A.P. [B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 68 Nezavisimosti Ave., Minsk 220072 (Belarus)

    2017-05-15

    The results are presented of a comparative study of photoluminescent (PL) properties of unalloyed and Mn-alloyed porous anodic alumina (PAA) subjected to annealing at temperatures in the range of ГђВў{sub a}=200–1300 °ГђВЎ. The possibility of alloying of PAA with metal atoms is illustrated through an example of Mn atoms, and the effect of this impurity on the optical properties of aluminum oxide is examined. Alloying of PAA with Mn ions leads to the formation of complex defects including manganese ions and oxygen vacancies. The difference observed in the spectral dependences of the PL intensity of alloyed and unalloyed specimens is explained by the change in the valence of manganese ions in the complex defects. A decrease has been discovered in the PL intensity of the PL bands and R-lines of Mn and Cr ions in the α-phase under prolonged UV-exposure of the alloyed samples.

  6. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Natália R. Barboza

    2017-10-01

    Full Text Available Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn, is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil. Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II, up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations.

  7. Simultaneous removal of iron and manganese of aqueous solutions using as adsorbent a Mexican natural zeolite

    International Nuclear Information System (INIS)

    Garcia M, A.; Solache R, M. J.; Olguin G, M. T.

    2009-01-01

    In this work was evaluated the removal capacity of iron and manganese of aqueous solutions using a Mexican natural zeolite. It was observed that the Freundlich pattern describes the adsorption process appropriately and that a competitive effect exists between both metals by the exchange places of the zeolite, when it is starting of solutions that contain to both metals, impacting mainly in the manganese removal. A natural zeolite coming from the Puebla State, Mexico was used. The material was milled and sieved to a mesh size 30 and was conditioned with a solution 0.5 N of sodium chloride. Later on was characterized by means of scanning electron microscopy and X-ray diffraction.

  8. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    Science.gov (United States)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  9. Bio-inspired iron and manganese complexes derived from mixed N,O ligands for the oxidation of olefins

    NARCIS (Netherlands)

    Moelands, M.A.H.

    2014-01-01

    This Thesis describes the synthesis and structural analysis of bio-inspired iron and manganese complexes used for the catalytic oxidation of olefin substrates. The development of catalytic systems for oxidation chemistry that are based on first row transition metals and that apply a green oxidant

  10. Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis

    NARCIS (Netherlands)

    Groot, M.N.; Klaassens, E.S.; Vos, de W.M.; Delcour, J.; Hols, P.; Kleerebezem, M.

    2005-01-01

    Manganese serves an important function in Lactobacillus plantarum in protection against oxidative stress and this bacterium can accumulate Mn2+ up to millimolar levels intracellularly. Although the physiological role of Mn2+ and the uptake of this metal ion have been well documented, the only uptake

  11. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol

    International Nuclear Information System (INIS)

    Wu, Zhao-Jin; Huang, Wei; Cui, Ke-Ke; Gao, Zhi-Fang; Wang, Ping

    2014-01-01

    Highlights: • Multi-doped ZnO (M-ZnO) was prepared from Zn-bearing dust for waste-cleaning-waste. • All the dopants M (Fe, Mg, Ca and Al) and Zn are recovered from the dust. • Doping by the dust-derived M expands excitability of ZnO to visible light region. • M-ZnO has good catalytic activity in the degradation of phenol under visible light. - Abstract: A novel strategy of waste-cleaning-waste is proposed in the present work. A metals-doped ZnO (M-ZnO, M = Fe, Mg, Ca and Al) nanomaterial has been prepared from a metallurgical zinc-containing solid waste “fabric filter dust” by combining sulfolysis and co-precipitation processes, and is found to be a favorable photocatalyst for photodegradation of organic substances in wastewater under visible light irradiation. All the zinc and dopants (Fe, Mg, Ca and Al) for preparing M-ZnO are recovered from the fabric filter dust, without any addition of chemical as elemental source. The dust-derived M-ZnO samples deliver single phase indexed as the hexagonal ZnO crystal, with controllable dopants species. The photocatalytic activity of the dust-derived M-ZnO samples is characterized by photodegradation of phenol aqueous solution under visible light irradiation, giving more prominent photocatalytic behaviors than undoped ZnO. Such enhancements may be attributed to incorporation of the dust-derived metal elements (Fe, Mg, Ca and Al) into ZnO structure, which lead to the modification of band gap and refinement of grain size. The results show a feasibility to utilize the industrial waste as a resource of photodegradating organic substances in wastewater treatments

  12. Manganese and acute paranoid psychosis: a case report

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Kuijpers, H.J.H.

    2011-01-01

    Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later,

  13. Manganese and acute paranoid psychosis: A case report

    NARCIS (Netherlands)

    W.M.A. Verhoeven (Wim); J.I.M. Egger (Jos); H.J. Kuijpers (Harold)

    2011-01-01

    textabstractIntroduction: Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional

  14. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline.

    Science.gov (United States)

    Taherzade, Seyed Dariush; Soleimannejad, Janet; Tarlani, Aliakbar

    2017-08-06

    Nanostructures of MIL-100 were synthesized and used as a drug delivery platform for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR, XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100. The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated, and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented amount in comparison with other methods.

  15. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  16. Gold-manganese nanoparticles for targeted diagnostic and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-10

    Imagine the possibility of non-invasive, non-radiation based Magnetic resonance imaging (MRI) in combating cardiac disease. Researchers at the Savannah River National Laboratory (SRNL) are developing a process that would use nanotechnology in a novel, targeted approach that would allow MRIs to be more descriptive and brighter, and to target specific organs. Researchers at SRNL have discovered a way to use multifunctional metallic gold-manganese nanoparticles to create a unique, targeted positive contrast agent. SRNL Senior Scientist Dr. Simona Hunyadi Murph says she first thought of using the nanoparticles for cardiac disease applications after learning that people who survive an infarct exhibit up to 15 times higher rate of developing chronic heart failure, arrhythmias and/or sudden death compared to the general population. Without question, nanotechnology will revolutionize the future of technology. The development of functional nanomaterials with multi-detection modalities opens up new avenues for creating multi-purpose technologies for biomedical applications.

  17. Manganese exposure in foundry furnacemen and scrap recycling workers

    DEFF Research Database (Denmark)

    Lander, F; Kristiansen, J; Lauritsen, Jens

    1999-01-01

    Cast iron products are alloyed with small quantities of manganese, and foundry furnacemen are potentially exposed to manganese during tapping and handling of smelts. Manganese is a neurotoxic substance that accumulates in the central nervous system, where it may cause a neurological disorder...

  18. Removal of Iron and Manganese Using Cascade Aerator and Limestone Roughing Filter

    Directory of Open Access Journals (Sweden)

    Mohd Sanusi Azrin

    2016-01-01

    Full Text Available Combination between oxidation and filtration can be used for removing iron and manganese from groundwater especially when the concentrations of these metals were high. This study focused on the effectiveness of the cascade aerator and the size of the limestone filter media to remove iron and manganese from groundwater. Water samples used for this study were collected from orphanage home, Rumah Nur Kasih, Taiping. Universiti Sains Malaysia (USM has provided a tube well of 15 m depth and 150 mm diameter for the orphanage home. However, the water cannot be used for domestic consumption due to high amount of iron and manganese at 6.48 and 1.9 mg/L which exceeded the drinking water standard of 0.3 and 0.1 mg/L respectively. Using laboratory physical model, the study has shown that the removals of iron and manganese have reduce the concentration until 0.17 and 0.2 mg/L respectively. Thus, the results from this study which utilize cascade aerator and limestone roughing filter could be implemented on site for the community to use the ground water for domestic purposes.

  19. Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Lee, Sungsik; Brown, Dennis E.; Zhao, Hairui; Li, Xinsong; Jiang, Daqiang; Hao, Shijie; Zhao, Yongxiang; Cong, Daoyong; Zhang, Xin; Ren, Yang

    2016-09-01

    Ultrafine manganese oxide-decorated carbon nanofibers (MnOn-CNF) as a new type of electrode materials are facilely fabricated by direct conversion of Mn, Zn-trimesic acid (H3BTC) metal organic framework fibers (Mn-ZnBTC). The construction and evolution of Mn-ZnBTC precursors are investigated by SEM and in situ high-energy XRD. The manganese oxides are highly dispersed onto the porous carbon nanofibers formed simultaneously, verified by TEM, X-ray absorption fine structure (XAFS), Raman, ICP-AES and N2 adsorption techniques. As expected, the resulting MnOn-CNF composites are highly stable, and can be cycled up to 5000 times with a high capacitance retention ratio of 98% in electrochemical capacitor measurements. They show a high capacitance of up to 179 F g–1 per mass of the composite electrode, and a remarkable capacitance of up to 18290 F g–1 per active mass of the manganese(IV) oxide, significantly exceeding the theoretical specific capacitance of manganese(IV) oxide (1370 F g–1). The maximum energy density is up to 19.7 Wh kg–1 at the current density of 0.25 A g–1, even orders higher than those of reported electric double-layer capacitors and pseudocapacitors. The excellent capacitive performance can be ascribed to the joint effect of easy accessibility, high porosity, tight contact and superior conductivity integrated in final MnOn-CNF composites.

  20. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  1. Manganese and Gd-DTPA stearyl liposomes as reticuloendothelial-system-specific MR imaging contrast agents

    International Nuclear Information System (INIS)

    Wuthrich, R.; Schwendener, R.; Duewell, S.; VonSchulthess, G.K.; Fuchs, W.A.

    1988-01-01

    Liposomes can be used to target metal ions as MR contrast agents to liver and spleen. It was the aim of this work to examine unilamellar liposomes containing manganese and gadolinium ions with respect to their targetting ability, contrast enhancement, and in vivo kinetics in rats and dogs. Unilamellar liposomes containing DTPA stearate were complexed with Mn/sup 2+/ and Gd/sup 3+/ resulting in vesicles of 30-40 nm. Injected into rats, approximately 35% of manganese liposomes were present in the liver after 30-60 minutes, and after 24 hours more than 80% had been eliminated. The pharmacokinetics of gadolinium were more protracted. In MR imaging, a reduction in the T1 of the liver parenchyma from 450 to 170 and 280 msec was observed for manganese and gadolinium liposomes (0.03 mmol/kg body weight), respectively, with the liver appearing as bright as fat. Manganese (and Gd-DTPA) stearyl liposomes are potential organ-selective contrast agents for liver and spleen and are eliminated through a hepatobiliary route

  2. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  3. Assessment of heavy metals concentrations in coastal sediments in ...

    African Journals Online (AJOL)

    EJIRO

    Three kinds of analytical method were used for metals determination and quantification: ... such as copper, zinc, manganese, iron and chromium in Nosy Be sediments, were twice as .... Mean sewage of Mahajanga from Vallon de Meitzinger.

  4. Heavy Metal Contents in Some Commonly Consumed Vegetables

    African Journals Online (AJOL)

    dell

    This work reports on the levels of cadmium, lead, copper, manganese and ... source of both heavy metals and essential trace elements due to their ... content, clay mineral and other soil chemical ... addition, the interactions of soil-plant root-.

  5. Seasonal variation in heavy metal concentration in mangrove foliage

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Bhosle, N.B.

    Seasonal variation in the concentration of some heavy metals in the leaves of seven species of mangrove vegetation from Goa, revealed that maximum concentration of iron and manganese occurs during the monsoon season without any significant toxic...

  6. Evaluation of pollution status of heavy metals in the groundwater ...

    African Journals Online (AJOL)

    Evaluation of pollution status of heavy metals in the groundwater system around ... cadmium (Cd), mercury (Hg), manganese (Mn), lead (pb) and arsenic (As) as ... Water samples (from bore holes, hand-dug wells, ponds and streams) were ...

  7. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.

    Science.gov (United States)

    Sun, Conghao; Xu, Liping; Chen, Xiangping; Qiu, Tianyun; Zhou, Tao

    2018-02-01

    An eco-friendly and benign process has been investigated for the dissolution of Li, Co, Ni, and Mn from the cathode materials of spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 batteries, using DL-malic acid as the leaching agent in this study. The leaching efficiencies of Li, Co, Ni, and Mn can reach about 98.9%, 94.3%, 95.1%, and 96.4%, respectively, under the leaching conditions of DL-malic acid concentration of 1.2 M, hydrogen peroxide content of 1.5 vol.%, solid-to-liquid ratio of 40 g l -1 , leaching temperature of 80°C, and leaching time of 30 min. In addition, the leaching kinetic was investigated based on the shrinking model and the results reveal that the leaching reaction is controlled by chemical reactions within 10 min with activation energies (Ea) of 21.3 kJ·mol -1 , 30.4 kJ·mol -1 , 27.9 kJ·mol -1 , and 26.2 kJ·mol -1 for Li, Co, Ni, and Mn, respectively. Diffusion process becomes the controlled step with a prolonged leaching time from 15 to 30 min, and the activation energies (Ea) are 20.2 kJ·mol -1 , 28.9 kJ·mol -1 , 26.3 kJ·mol -1 , and 25.0 kJ·mol -1 for Li, Co, Ni, and Mn, respectively. This hydrometallurgical route was found to be effective and environmentally friendly for leaching metals from spent lithium batteries.

  8. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    Science.gov (United States)

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  9. Thermodynamic Properties of Manganese and Molybdenum

    International Nuclear Information System (INIS)

    Desai, P.D.

    1987-01-01

    This work reviews and discusses the data on the various thermodynamic properties of manganese and molybdenum available through March 1985. These include heat capacity, enthalpy, enthalpy of transitions and melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed. The recommended values for the heat capacity, enthalpy, entropy, and Gibbs energy function from 0.5 to 2400 K for manganese and from 0.4 to 5000 K for molybdenum have been generated, as have heat capacity values for supercooled β-Mn and for γ-Mn below 298.15 K. The recommended values for vapor pressure cover the temperature range from 298.15 to 2400 K for manganese and from 298.15 to 5000 K for molybdenum. These values are referred to temperatures based on IPTS-1968. The uncertainties in the recommended values of the heat capacity range from +-3% to +-5% for manganese and from +-1.5% to +-3% for molybdenum

  10. Iron and manganese deposits in Uruguay

    International Nuclear Information System (INIS)

    Alvarado, B.

    1959-01-01

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  11. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Administrator

    ... and its esters are important intermediates in syntheses of vitamins B1 and B6, barbitu- ... been a subject of interest because of the importance of such interactions in a ... The d-values of the Bragg peaks in the XRD. Figure 1. (a) Manganese ...

  12. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changbo; Wang, Jiwei [Chinese Research Academy of Environmental Sciences, Beijing (China); Wang, Nanfang [Hunan Institute of Engineering, Xiangtan (China)

    2013-11-15

    Electrolytic manganese residue (EMR) from the electrolytic manganese industry is a solid waste containing mainly calcium sulfate dihydrate and quartzite. It is impossible to directly use the EMR as a building material due to some contaminants such as soluble manganese, ammonia nitrogen and other toxic substances. To immobilize the contaminants and reduce their release into the environment, treating EMR using alkaline additives for stabilizing manganese and removing ammonia was investigated. The physical and chemical characteristics of the original EMR were characterized by XRFS, XRD, and SEM. Leaching test of the original EMR shows that the risks to the environment are the high content of soluble manganese and ammonia nitrogen. The influence of various alkaline additives, solidifying reaction time, and other solidifying reaction conditions such as outdoor ventilation and sunlight, and rain flow on the efficiencies of Mn{sup 2+} solidification and ammonia nitrogen removal was investigated. The results show that with mass ratio of CaO to residue 1 : 8, when the solidifying reaction was carried out indoors for 4 h with no rain flow, the highest efficiencies of Mn{sup 2+} solidification and ammonia nitrogen removal (99.98% and 99.21%) are obtained. Leaching test shows that the concentration and emission of manganese and ammonia nitrogen of the treated EMR meets the requirements of the Chinese government legislation (GB8978-1996)

  13. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia

    International Nuclear Information System (INIS)

    Zhou, Changbo; Wang, Jiwei; Wang, Nanfang

    2013-01-01

    Electrolytic manganese residue (EMR) from the electrolytic manganese industry is a solid waste containing mainly calcium sulfate dihydrate and quartzite. It is impossible to directly use the EMR as a building material due to some contaminants such as soluble manganese, ammonia nitrogen and other toxic substances. To immobilize the contaminants and reduce their release into the environment, treating EMR using alkaline additives for stabilizing manganese and removing ammonia was investigated. The physical and chemical characteristics of the original EMR were characterized by XRFS, XRD, and SEM. Leaching test of the original EMR shows that the risks to the environment are the high content of soluble manganese and ammonia nitrogen. The influence of various alkaline additives, solidifying reaction time, and other solidifying reaction conditions such as outdoor ventilation and sunlight, and rain flow on the efficiencies of Mn"2"+ solidification and ammonia nitrogen removal was investigated. The results show that with mass ratio of CaO to residue 1 : 8, when the solidifying reaction was carried out indoors for 4 h with no rain flow, the highest efficiencies of Mn"2"+ solidification and ammonia nitrogen removal (99.98% and 99.21%) are obtained. Leaching test shows that the concentration and emission of manganese and ammonia nitrogen of the treated EMR meets the requirements of the Chinese government legislation (GB8978-1996)

  14. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  15. Influence of iron supply on toxic effects of manganese, molybdenum and vanadium on soybean, peas, and flax

    Energy Technology Data Exchange (ETDEWEB)

    Warington, K

    1954-01-01

    The investigations were carried out in nutrient solution with iron as ferric citrate and nitrogen in the form of nitrate. The addition of 2.5 ppm vanadium to plants in which iron chlorosis was already established, either by a lack of iron or by excess manganese, failed to counteract the condition, and caused toxic symptoms. The reduction of the standard iron supply to 1/2 or 1/3 accentuated the toxicity of 2.5 or 5 ppm V to soybean and flax, but a similar reduction in phosphorus had no influence. The toxicity to peas, however, was increased when the phosphorus was reduced to 1/10, provided the iron level was high (20 ppm Fe). Raising the iron supply to 20 or 30 ppm counteracted the toxicity of manganese (10 ppm), molybdenum (40 ppm) and vanadium (2.5 ppm), but the result was less marked when these three elements were combined. Iron supplied in successive, small doses proved less efficient in overcoming molybdenum or vanadium, but not manganese excess, than the same amount of iron supplied in fewer and larger quantities. Varying the iron supply had little effect when the concentration of the three elements was low. When increased iron supply had reduced the chlorosis caused by high manganese or vanadium, it also reduced the manganese and vanadium contents of the shoot (ppm/dm), but the molybdenum content was only lowered by high iron when given in non-toxic concentrations (0.1 ppm Mo) combined with excess manganese. Yield data for soybean and flax indicated an interaction between manganese with both molybdenum and vanadium if the iron supply was low, but none between molybdenum and vanadium. The effect of all three metals was additive in respect to iron.

  16. Beryllium(II), manganese(II) and uranyl(VI)-salicylamide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, P L; Agarwala, B V; Dey, A K [Allahabad Univ. (India)

    1977-01-01

    The preparation, composition, general properties and i.r. absorption spectra of the solid chelates formed by salicylamide with beryllium(II), manganese(II) and uranyl(VI) are described. The complexes have been synthesized by refluxing a mixture of ethanolic solutions of the reactants (metal:ligand :: 1:2) for several hours in the presence of alkali. Attempts to isolate the complexes by the interaction of ethanolic solutions of the metal salts and the ligand in the absence of alkali did not succeed.

  17. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  18. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-01-01

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC 2 O 4 ⋅2H 2 O and Li 2 CO 3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor

  19. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    Science.gov (United States)

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The

  20. Decline of General Intelligence in Children Exposed to Manganese from Mining Contamination in Puyango River Basin, Southern Ecuador.

    Science.gov (United States)

    Betancourt, Óscar; Tapia, Marlene; Méndez, Ignacio

    2015-09-01

    Based on ecosystem approaches to health (Ecohealth), this study sought to identify neurobehavioral disorders in children exposed to several levels of toxic metal pollution from gold mining in the Puyango River Basin, Southern Ecuador. Ninety-three children born or living in the study area participated in the study. A neurobehavioral test battery consisting of 12 tests assessing various functions of the nervous system was applied as well as a questionnaire regarding events of exposure of children's mothers to contaminants during perinatal period. Hair samples were taken from children to determine manganese concentrations. Descriptive and inferential statistics were applied in order to examine possible relationships between exposure events, hair manganese, and neurobehavioral disorders. Having controlled co-variables such as age and educational level, it was found that children with elevated levels of hair manganese (over 2 μg/g) had poor performance in the test of general intelligence (Raven's Progressive Color Matrices Scale PCM). The Ecohealth approach helped to identify that children in the lower Puyango Basin with very elevated levels of manganese in the river water (970 µg/L) are the ones who have the highest levels of hair manganese and the worst performance in the intelligence test.

  1. Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Francesco Ferella

    2010-01-01

    Full Text Available The paper is focused on the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Metals are extracted by sulphuric acid leaching in the presence of citric acid as reducing agent. Leaching tests are carried out according to a 24 full factorial design, and empirical equations for Mn and Zn extraction yields are determined from experimental data as a function of pulp density, sulphuric acid concentration, temperature, and citric acid concentration. The highest values experimentally observed for extraction yields were 97% of manganese and 100% of zinc, under the following operating conditions: temperature 40∘C, pulp density 20%, sulphuric acid concentration 1.8 M, and citric acid 40 g L-1. A second series of leaching tests is also performed to derive other empirical models to predict zinc and manganese extraction. Precipitation tests, aimed both at investigating precipitation of zinc during leaching and at evaluating recovery options of zinc and manganese, show that a quantitative precipitation of zinc can be reached but a coprecipitation of nearly 30% of manganese also takes place. The achieved results allow to propose a battery recycling process based on a countercurrent reducing leaching by citric acid in sulphuric solution.

  2. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  3. The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758).

    Science.gov (United States)

    Budis, Halina; Kalisinska, Elzbieta; Lanocha, Natalia; Kosik-Bogacka, Danuta I

    2013-12-01

    The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r > 0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.

  4. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  5. Reuse of worn-out medicaments with adsorbent properties for the removal of manganese

    International Nuclear Information System (INIS)

    Millan C, E.

    2005-01-01

    The current investigations on the treatment of worn-out medicaments in Mexico, reveal that most of these treatments are carried out with the purpose to reduce the packing and diminish the toxic level that presents each one of those medicaments. That it reach to reuse of them is their packing material and/or their cover. Once treated, the worn-out medicaments move to a sanitary filler. With relationship to the investigation works that have been carried out for the manganese removal in solution, they show a great number of materials that they are used for this end, as well as the parameters that influence in the process, such as the concentration of the element, the solution type in that is content and the pH. However, it is not mentioned in none of them the reuse of the worn-out medicaments (Talcid and Melox), as adsorbent materials for the removal of metals from the water. To carry out the present investigation they were selected therefore, to the one Talcid and the Melox because its present adsorbent properties, with the purpose to remove the manganese like water pollutant. Once that the worn-out medicaments were obtained, they put on in contact with different organic solvents, to obtain the active principle, due to the pharmaceutical presentation of the two medicaments that was obtained was in suspension. The active principles of the two medicaments were characterized by means of high vacuum scanning electron microscopy (SEM), elementary microanalysis (EDS) and X-ray diffraction (XRD). The experimental part consisted in putting in contact manganese solutions with the active principles of the worn-out medicaments, varying the time of contact and the concentration. The manganese quantification in the liquid phase carried out by means of atomic absorption spectroscopy (AAS). It was found that the kinetic model that better describes the sorption process of manganese in both worn-out medicaments (Talcid and Melox) it is that of pseudo second order. Those results of

  6. Economical characteristics of base types of minerals. 1. Metallic minerals

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1990-01-01

    Metallic minerals is raw materials base of black and colour metallurgy. In this article of book author describes the group of black metals (iron, manganese, chromium), group of tempers (titanium, vanadium, nickel, cobalt, molybdenum, tungsten), colour metals (copper, lead, zinc, aluminium, tin, mercury, antimony, bismuth) and etc.

  7. A simple route to synthesize manganese germanate nanorods

    International Nuclear Information System (INIS)

    Pei, L.Z.; Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-01-01

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: → Manganese germanate nanorods have been synthesized by simple hydrothermal process. → The formation of manganese germanate nanorods can be controlled by growth conditions. → Manganese germanate nanorods exhibit good PL emission ability for optical device.

  8. Manganese binding proteins in human and cow's milk

    International Nuclear Information System (INIS)

    Loennerdal, B.; Keen, C.L.; Hurley, L.S.

    1985-01-01

    Manganese nutrition in the neonatal period is poorly understood, due in part to a lack of information on the amount of manganese in infant foods and its bioavailability. Since the molecular localization of an element in foods is one determinant of its subsequent bioavailability, a study was made of the binding of manganese in human and cow's milk. An extrinsic label of 54 Mn was shown to equilibrate isotopically with native manganese in milks and formulas. Milk samples were separated into fat, casein and whey by ultracentrifugation. In human milk, the major part (71%) of manganese was found in whey, 11% in casein and 18% in the lipid fraction. In contrast, in cow's milk, 32% of total manganese was in whey, 67% in casein and 1% in lipid. Within the human whey fraction, most of the manganese was bound to lactoferrin, while in cow's whey, manganese was mostly complexed to ligands with molecular weights less than 200. The distribution of manganese in formulas was closer to that of human milk than of cow's milk. The bioavailability of manganese associated with lactoferrin, casein and low molecular weight complexes needs to be assessed

  9. Moving to Sustainable Metals. Multifunctional Ligands in Catalytic, Outer Sphere C-H, N-H and O-H Activation

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, Robert [Yale Univ., New Haven, CT (United States)

    2015-03-03

    Much of our work during this grant period has emphasized green chemistry and sustainability. For example, we were able to convert glycerine, a waste byproduct of biodiesel production, into lactic acid, a compound with numerous applications, notably in the food and cosmetics industry, as well as being a source material for a biodegradable plastic. This work required a catalyst, that ceases to work after a certain lapse of time. We were able to identify the way in which this deactivation occurs by identifying some of the metal catalyst deactivation products. These proved to be multimetallic clusters containing up to six metals and up to 14 hydrogen atoms. Both the catalytic reaction itself and the deactivation structures are novel and unexpected. We have previously proposed that nitrogen heterocycles could be good energy carriers in a low CO2 future world. In another part of our study, we found catalysts for introduction of hydrogen, an energy carrier that is hard to store, into nitrogen heterocycles. The mechanism of this process proved to be unusual in that the catalyst transfers the H2 to the heterocycle in the form of H+ and H-, first transferring the H+ and only then the H-. In a third area of study, some of our compounds, originally prepared for DOE catalysis purposes, also proved useful in hydrocarbon oxidation and in water oxidation. The latter is important in solar-to-fuel work, because, by analogy with natural photosynthesis, the goal of the Yale Solar Group of four PIs is to convert sunlight to hydrogen and oxygen, which requires water splitting catalysts. The catalysts that proved useful mediate the latter reaction: water oxidation to oxygen. In a more technical study, we developed methods for distinguishing the case where catalysis is mediated by a soluble catalyst from cases where catalysis arises from a deposit of finely divided solid. One particular application involved electrocatalysis

  10. Manganese nodules as a possible source of precious metals

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.

    CURRENT SCIE NCE, VOL. 87, NO. 3, 10 AUGUST 2004 are needed. This loss of land would be compensated b y rise in productivity in yet under - utilized areas owing to inad e quate availability of water. The projected cost of the scheme would... of kilometres in length and reaping the benefits of such endea v ours since time immemorial. Using f a vourable topography and availability of water, many rivers have been stretched through canals over the length and breadth of the nation. But for this...

  11. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    Science.gov (United States)

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-04-26

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  12. What do we know about metal recycling rates?

    Science.gov (United States)

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  13. Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products

    Science.gov (United States)

    Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul

    2018-05-01

    The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.

  14. Hydrometallurgical Process and Kinetics of Leaching Manganese from Semi-Oxidized Manganese Ores with Sucrose

    Directory of Open Access Journals (Sweden)

    Yuhong Wang

    2017-02-01

    Full Text Available The extraction of manganese from a semi-oxidized manganese ore was investigated with sucrose as the reducing agent in dilute sulfuric acid medium. The kinetics of leaching manganese from the complex ore containing MnCO3 and MnO2 was also investigated. The effects of sucrose and sulfuric acid concentrations, leaching temperature and reaction time on the total Mn (TMn, MnO2 and MnCO3 leaching were investigated. Results showed that MnCO3 could more easily react with hydrogen ions than MnO2 in ores, and MnO2 decomposition could be advantageous for MnCO3 leaching. The leaching efficiencies of 91.8% for total Mn, 91.4% for MnO2 and 96.9% for MnCO3 were obtained under the following optimized conditions: 0.035 mol/L sucrose concentration, 5 mol/L sulfuric acid concentration, 60 min of reaction time and 363.2 K of leaching temperature. In addition, it was found that the leaching process of semi-oxidized manganese ore follows the shrinking core model and the leaching rate was controlled by chemical reaction and diffusion. The apparent activation energy of the total manganese, MnO2, and MnCO3 leaching were 40.83, 40.59, and 53.33 kJ·mol−1, respectively.

  15. Bioleaching of a manganese and silver Ore

    International Nuclear Information System (INIS)

    Porro, S.; Tedesco, P.H.; La Plata

    1990-01-01

    The bioleaching with a strain of Thiobacillus thiooxidans of the ore of Farallon Negro (Catamarca, Argentina) was studied in order to estimate its application to the solution and recovery of the manganese, and to improve the silver extraction. The State company which works the mine has not yet found an economical process to extract the manganese and has only reached a 30% efficiency in the recovery of silver by cianuration. The effects of pulp density variations and the addition of different quantities of FeS were analysed looking for the best working conditions. 74 μm (mesh Tyler 200) of ore particles were used because that is the size used in this plant for the cianuration process. (Author)

  16. Arsenic removal by manganese greensand filters

    Energy Technology Data Exchange (ETDEWEB)

    Phommavong, T. [Saskatchewan Environment, Regina (Canada); Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1994-12-31

    Some of the small communities in Saskatchewan are expected to have difficulty complying with the new maximum acceptable concentration (MAC) of 25 {micro}g/L for arsenic. A test column was set up in the laboratory to study the removal of arsenic from the potable water using oxidation with KMnO{sub 4}, followed by manganese greensand filtration. Tests were run using water from the tap having a background arsenic concentration of <0.5 {micro}g/L and iron concentration in the range of 0.02 to 0.77 mg/L. The test water was spiked with arsenic and iron. Results showed that 61 % to 98% of arsenic can be removed from the potable water by oxidation with KMnO{sub 4} followed by manganese greensand filtration.

  17. Probing anisotropic magnetotransport in manganese perovskites using Raman spectroscopy

    International Nuclear Information System (INIS)

    Liu, H.L.; Yoon, S.; Cooper, S.L.; Cheong, S.; Han, P.D.; Payne, D.A.

    1998-01-01

    We report an electronic Raman scattering study of the colossal magnetoresistance (CMR) manganese perovskites as a function of temperature, magnetic field, symmetry, and doping. The low-frequency electronic Raman spectrum in the paramagnetic-insulating phase of these materials is characterized by a diffusive Raman-scattering response, while a nearly flat continuum response is observed in the ferromagnetic-metallic state. We found that the B 1g -symmetry electronic scattering intensity is significantly reduced with applied magnetic field near T C , in a manner reminiscent of the dc magnetoresistivity. The strongly field-dependent scattering rate in the B 1g channel appears to reflect the highly field-dependent mobility along the Mn-O bond direction expected in the double exchange mechanism. In addition, we observe a persistent field dependence in the B 1g electronic scattering response for T C , suggesting that the ferromagnetic phase is inhomogeneous, perhaps consisting of both metallic and insulating components. copyright 1998 The American Physical Society

  18. Magnetostructural, mechanical and electronic properties of manganese tetraboride

    Directory of Open Access Journals (Sweden)

    Yongcheng Liang

    2015-11-01

    Full Text Available Magnetostructural stabilities, mechanical behaviors and electronic structures of various phases of manganese tetraboride (MnB4 have been investigated systematically by density functional theory (DFT based first-principles methods. It is found that MnB4 undergoes temperature-induced phase transitions from the nonmagnetic (NM monoclinic mP20 structure to the ferromagnetic (FM orthorhombic oP10 structure at 438 K, then to the antiferromagnetic (AFM orthorhombic oP10 structure at 824 K. We reveal that the NM insulating mP20 phase stabilizes by the Peierls distortion breaking the structural degeneracy, while the FM and AFM metallic oP10 phases stabilize by the Stoner magnetism lifting the spin degeneracy. Furthermore, the calculated mechanical properties show that the NM mP20, FM oP10, and AFM oP10 phases exhibit low compressibility and high hardness, which originate from their three-dimensional covalent boron networks. Therefore, this unique temperature-assisted insulator-metal transition, strong stiffness and high hardness suggest that MnB4 may find promising technological applications as thermoelectric switches and field effect transistors at the extreme conditions.

  19. Manganese concentration in human saliva using NAA

    Energy Technology Data Exchange (ETDEWEB)

    Lewgoy, Hugo R., E-mail: hugorl@usp.br [Universidade Bandeirante Anhanguera (UNIBAN), Sao Paulo, SP (Brazil); Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  20. Manganese concentration in human saliva using NAA

    International Nuclear Information System (INIS)

    Lewgoy, Hugo R.; Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de

    2013-01-01

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  1. Manganese contents of soils as determined by activation analysis

    International Nuclear Information System (INIS)

    El-Kholi, A.F.; Hamdy, A.A.; Al Metwally, A.I.; El-Damaty, A.H.

    1976-01-01

    The object of this investigation is to determine total manganese by means of neutron activation analysis and evaluate this technique in comparison with the corresponding data obtained by conventional chemical analysis. Data obtained revealed that the values of total manganese in calcareous soils obtained by both chemical analysis and that by neutron activation analysis were similar. Therefore, activation analysis could be recommended as a quick laboratory, less tedious, and time consuming method for the determination of Mn content in both soils and plants than the conventional chemical techniques due to its great specificity, sensitivity and simplicity. Statistical analysis showed that there is a significant correlation at 5% probability level between manganese content in Soybean plant and total manganese determined by activation and chemical analysis giving the evidence that in the case of those highly calcareous soils of low total manganese content this fraction has to be considered as far as available soil manganese is concerned

  2. Manganese and the II system in photosynthesis

    International Nuclear Information System (INIS)

    Joyard, Jacques

    1971-01-01

    The evolution during greening of some components of system II of photosynthesis has been followed in plastids extracted from Zea mays grown in the dark. Manganese studies were done by means of neutron activation, electron spin resonance (ESR) was also used in some experiments. Oxygen evolution of isolated plastids was followed by polarography (with a membrane electrode). The evolution of manganese/carotenoids ratio can be divided in three parts. During the first hour of greening, the increase shows an input of Mn in the plastids; then, whereas carotenoids content of those plastids presents no changes, Mn is released in the medium; at last, carotenoids synthesis is parallel to Mn fixation in the plastids, the ratio being constant after 24 hours of greening. From various measurements on chloroplastic manganese, it is shown that the development of system II can be divided in two main phases: during the first one (that is during the first day of light) the components are not yet bound together but the relations become more and more strong. Then, during the last period of the development, the organisation of system II is complete and the transformations of the plastids are parallel to the raise of their activity. (author) [fr

  3. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  4. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-04-01

    Full Text Available Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction, SEM (scanning electron microscope, BET test and transient test. The experiments show that: ① The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. ② The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. ③ The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  5. A photoemission study of evaporated manganese on gallium arsenide at elevated temperatures

    International Nuclear Information System (INIS)

    James, D.; Tadich, A.; Riley, J.; Leckey, R.; Emtsev, K.; Seyller, T.; Ley, L.

    2004-01-01

    Full text: The interaction between metals and semiconductors has been extensively researched to achieve an understanding of the formation of Schottky barriers and conditions for low resistance electrical connections to devices. The possibility of the use of magnetic materials to generate spin polarised currents, so called spintronics, and has extended this interest to metals that have not traditionally been used for such contacts. Manganese has recently been used as one element in GaAs and ZnSe based devices so its interaction with such surfaces is of interest. An interest that motivates this study is the possibility of lattice-matched growth of transition metal layers on semiconductors. Lattice mismatch initially appeared to inhibit single crystal transition metal growth, but it has been reported that lattice matched growth can occur in some cases. It is thought that reactions at the interface form a buffer layer, which allows for epitaxial growth via a more comparable lattice constant. We report studies of the growth of manganese films on GaAs(100) at several substrate temperatures using angle resolved photoemission, the diffusion of the Mn in the GaAs substrates using SIMS and the morphology of the layers using AFM images

  6. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  8. Modeling Manganese Sorption and Surface Oxidation During Filtration

    OpenAIRE

    Bierlein, Kevin Andrew

    2012-01-01

    Soluble manganese (Mn) is a common contaminant in drinking water sources. High levels of Mn can lead to aesthetic water quality problems, necessitating removal of Mn during treatment to minimize consumer complaints. Mn may be removed during granular media filtration by the â natural greensand effect,â in which soluble Mn adsorbs to manganese oxide-coated (MnOx(s)) media and is then oxidized by chlorine, forming more manganese oxide. This research builds on a previous model developed by Mer...

  9. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sony Co., Ltd.: An outlook is made for merchandising of the manganese acid lithium ion battery; Mangansan richiumuion denchi no shohinka ni medo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Sony Co., Ltd. sells the manganese acid lithium ion battery that a battery is 1 by 2 as to the next generation lithium ion during 99 years. It is characteristics that a price is restrained because manganese is used for the proper pole material instead of cobalt of the rare metal. It becomes mass production by Koriyama factory where a lithium ion battery is being manufactured improving an existent production line. It is seen when some percents of manufacture cost goes down more than cobalt acid battery of news file before. A manganese acid lithium ion battery uses manganese acid lithium for the proper pole of the battery. The efficiency of the charge of the usual lithium ion battery is good, and composition is easy, and uses cobalt acid lithium, which is easy to produce. One side where a material fee is cheap, the stability at the high temperature of manganese acid is low, and composition is difficult. Only NEC Moli Energy corporation who is the subsidiary company of NEC succeeds in the mass production. NEC Moli Energy corporation is extending market share by the price competition power. It seems to have the possibility that manganese acid becomes the main force with a battery by two by new entering of Sony Co., Ltd. of the lithium ion battery extreme big enterprises. (translated by NEDO)

  11. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    Science.gov (United States)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  12. ADSORPTION OF MANGANESE FROM ACID MINE DRAINAGE EFFLUENTS USING BONE CHAR: CONTINUOUS FIXED BED COLUMN AND BATCH DESORPTION STUDIES

    Directory of Open Access Journals (Sweden)

    D. C. Sicupira

    2015-06-01

    Full Text Available AbstractIn the present study, continuous fixed bed column runs were carried out in an attempt to evaluate the feasibility of using bone char for the removal of manganese from acid mine drainage (AMD. Tests using a laboratory solution of pure manganese at typical concentration levels were also performed for comparison purposes. The following operating variables were evaluated: column height, flow rate, and initial pH. Significant variations in resistance to the mass transfer of manganese into the bone char were identified using the Thomas model. A significant effect of the bed height could only be observed in tests using the laboratory solution. No significant change in the breakthrough volume could be observed with different flow rates. By increasing the initial pH from 2.96 to 5.50, the breakthrough volume was also increased. The maximum manganese loading capacity in continuous tests using bone char for AMD effluents was 6.03 mg g-1, as compared to 26.74 mg g-1 when using the laboratory solution. The present study also performed desorption tests, using solutions of HCl, H2SO4, and water, aimed at the reuse of the adsorbent; however, no promising results were obtained due to low desorption levels associated with a relatively high mass loss. Despite the desorption results, the removal of manganese from AMD effluents using bone char as an adsorbent is technically feasible and attends to environmental legislation. It is interesting to note that the use of bone char for manganese removal may avoid the need for pH corrections of effluents after treatment. Moreover, bone char can also serve to remove fluoride ions and other metals, thus representing an interesting alternative material for the treatment of AMD effluents.

  13. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    Science.gov (United States)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two

  14. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland.

    Science.gov (United States)

    Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin

    2018-04-01

    A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this

  15. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Joanne L., E-mail: jlbanks@student.unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Ross, D. Jeff, E-mail: Jeff.Ross@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia); Keough, Michael J., E-mail: mjkeough@unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Eyre, Bradley D., E-mail: bradley.eyre@scu.edu.au [Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, PO Box 157, Lismore, NSW, 2480 Australia (Australia); Macleod, Catriona K., E-mail: Catriona.Macleod@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia)

    2012-03-15

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O{sub 2} levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O{sub 2} depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: Black-Right-Pointing-Pointer Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. Black-Right-Pointing-Pointer As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. Black

  16. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    International Nuclear Information System (INIS)

    Banks, Joanne L.; Ross, D. Jeff; Keough, Michael J.; Eyre, Bradley D.; Macleod, Catriona K.

    2012-01-01

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O 2 levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O 2 depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment–water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: ► Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. ► As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. ► Flux of these metals from 3 sites was not related to total sediment metal

  17. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    Science.gov (United States)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  18. Mesoporous Transition Metal Oxides for Supercapacitors

    OpenAIRE

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are result...

  19. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Oriana Migliaccio

    Full Text Available Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6 and 3.6 x 10(-5 M, respectively on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals.

  20. Manganese induced immune suppression of the lobster, Nephrops norvegicus

    International Nuclear Information System (INIS)

    Hernroth, Bodil; Baden, Susanne P.; Holm, Kristina; Andre, Tove; Soederhaell, Irene

    2004-01-01

    Manganese (Mn) is one of the most abundant elements on earth, particularly in the soft bottom sediments of the oceans. As a micronutrient Mn is essential in the metabolic processes of organisms. However, at high concentrations the metal becomes a neurotoxin with well-documented effects. As a consequence of euthrophication, manganese is released from bottom sediments of coastal areas and the Norway lobsters, Nephrops norvegicus, can experience high levels of bioavailable Mn 2+ . Here, we present the first report showing that Mn also affects several fundamental processes in the mobilisation and activation of immunoactive haemocytes. When N. norvegicus was exposed to a realistic [Mn 2+ ] of 20 mg l -1 for 10 days 24.1 μg ml -1 was recorded in the haemolymph. At this concentration the total haemocyte count was reduced by ca. 60%. By using BrdU as a tracer for cell division, it was shown that the proliferation rate in the haematopoietic tissue did not increase, despite the haemocytepenia. A gene coding for a Runt-domain protein, known to be involved in maturation of immune active haemocytes in a variety of organisms, was identified also in haemocytes of N. norvegicus. The expression of this gene was >40% lower in the Mn-exposed lobsters as judged by using a cDNA probe and the in situ hybridisation technique. In response to non-self molecules, like lipopolysaccharide (LPS), the granular haemocytes of arthropods are known to degranulate and thereby release and activate the prophenoloxidase system, necessary for their immune defence. A degranulation assay, tested on isolated granular haemocytes, showed about 75% lower activity in the Mn-exposed lobsters than that for the unexposed. Furthermore, using an enzymatic assay, the activation per se of prophenoloxidase by LPS was found blocked in the Mn-exposed lobsters. Taken together, these results show that Mn exposure suppressed fundamental immune mechanisms of Norway lobsters. This identifies a potential harm that also

  1. Manganese induced immune suppression of the lobster, Nephrops norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Hernroth, Bodil [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden)]. E-mail: bodil.hernroth@kmf.gu.se; Baden, Susanne P. [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden); Holm, Kristina [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden); Andre, Tove [Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden); Soederhaell, Irene [Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden)

    2004-12-10

    Manganese (Mn) is one of the most abundant elements on earth, particularly in the soft bottom sediments of the oceans. As a micronutrient Mn is essential in the metabolic processes of organisms. However, at high concentrations the metal becomes a neurotoxin with well-documented effects. As a consequence of euthrophication, manganese is released from bottom sediments of coastal areas and the Norway lobsters, Nephrops norvegicus, can experience high levels of bioavailable Mn{sup 2+}. Here, we present the first report showing that Mn also affects several fundamental processes in the mobilisation and activation of immunoactive haemocytes. When N. norvegicus was exposed to a realistic [Mn{sup 2+}] of 20 mg l{sup -1} for 10 days 24.1 {mu}g ml{sup -1} was recorded in the haemolymph. At this concentration the total haemocyte count was reduced by ca. 60%. By using BrdU as a tracer for cell division, it was shown that the proliferation rate in the haematopoietic tissue did not increase, despite the haemocytepenia. A gene coding for a Runt-domain protein, known to be involved in maturation of immune active haemocytes in a variety of organisms, was identified also in haemocytes of N. norvegicus. The expression of this gene was >40% lower in the Mn-exposed lobsters as judged by using a cDNA probe and the in situ hybridisation technique. In response to non-self molecules, like lipopolysaccharide (LPS), the granular haemocytes of arthropods are known to degranulate and thereby release and activate the prophenoloxidase system, necessary for their immune defence. A degranulation assay, tested on isolated granular haemocytes, showed about 75% lower activity in the Mn-exposed lobsters than that for the unexposed. Furthermore, using an enzymatic assay, the activation per se of prophenoloxidase by LPS was found blocked in the Mn-exposed lobsters. Taken together, these results show that Mn exposure suppressed fundamental immune mechanisms of Norway lobsters. This identifies a potential

  2. Spectroscopic Characteristics of Highly Selective Manganese Catalysis in Acqueous Polyurethane Systems

    Directory of Open Access Journals (Sweden)

    Miroljub Barac

    2006-11-01

    Full Text Available The latest investigations on producing more efficient catalytic aqueouspolyurethane systems are in the domain of metal complexes with mixed ligands. In ourprevious research works, the high selectivity for the isocyanate-hydroxyl reaction inaqueous polyurethane systems has been shown by the manganese(III mixed-ligandcomplexes. The two new complexes have been prepared with two acetylacetonate (acacligands and one maleate ligand and its hydroxylamine derivative of the general formula[Mn(C5H7O22L]. Their structures have been established by using the fundamental analyses,the FTIR and UV/VIS spectroscopic methods, as well as the magnetic measurements. Inorder to explain the different selectivity of the manganese(III mixed-ligand complexes, theUV and ESR spectroscopy have been employed to determine the kinetics of the complexes’decomposition. The thermal stability of the complexes has been determined by way of thedynamic TG method at the heating rate of 5°C⋅min-1 and at the temperature ranged 20-550°C. It suggests the decomposition of the complexes by loss of acid ligand. The main factor in the selective catalysis control in theaqueous polyurethane systems is the nature of the acid ligands and their impact on themanganese(II/manganese(III equilibrium.

  3. The distribution of uranium in some Pacific manganese nodules and crusts

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Glasby, G.P.; Plueger, W.L.; Friedrich, G.H.

    1982-01-01

    A total of 1386 bulk samples of manganese nodules from several areas of the North and South Pacific were analysed for uranium; variations in the U contents of nodules within individual nodules and crusts have been documented on a local scale and on a regional scale. Uranium appears to be one of those elements not associated with the biogenic cycling of elements into nodules in the equatorial high-productivity zone. The principal factor controlling these variations appears to be the clear association of U with Fe in the nodules. Uranium is therefore most probably coprecipitated with Fe from seawater in an iron-rich ferromanganese oxide phase. This explains the higher U contents of nodules containing MnO 2 compared to 10A manganite as the principal manganese oxide phase. Data for a manganese crust from the equatorial North Pacific nodule belt suggest normal seawater deposition for uranium and other metals (Mn, Fe, Ni and Cu) superimposed on possibly basalt alteration as the principal growth mechanisms for the crust. (Auth.)

  4. Indirect Manganese Removal by Stenotrophomonas sp. and Lysinibacillus sp. Isolated from Brazilian Mine Water

    Directory of Open Access Journals (Sweden)

    Natália Rocha Barboza

    2015-01-01

    Full Text Available Manganese is a contaminant in the wastewaters produced by Brazilian mining operations, and the removal of the metal is notoriously difficult because of the high stability of the Mn(II ion in aqueous solutions. To explore a biological approach for removing excessive amounts of aqueous Mn(II, we investigated the potential of Mn(II oxidation by both consortium and bacterial isolates from a Brazilian manganese mine. A bacterial consortium was able to remove 99.7% of the Mn(II. A phylogenetic analysis of isolates demonstrated that the predominant microorganisms were members of Stenotrophomonas, Bacillus, and Lysinibacillus genera. Mn(II removal rates between 58.5% and 70.9% were observed for Bacillus sp. and Stenotrophomonas sp. while the Lysinibacillus isolate 13P removes 82.7%. The catalytic oxidation of Mn(II mediated by multicopper oxidase was not properly detected; however, in all of the experiments, a significant increase in the pH of the culture medium was detected. No aggregates inside the cells grown for a week were found by electronic microscopy. Nevertheless, an energy-dispersive X-ray spectroscopy of the isolates revealed the presence of manganese in Stenotrophomonas sp. and Lysinibacillus sp. grown in K medium. These results suggest that members of Stenotrophomonas and Lysinibacillus genera were able to remove Mn(II by a nonenzymatic pathway.

  5. Synthesis of Manganese Tetroxide Nanoparticles Using Precipitation and Study of Its Structure and Optical Characteristics

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2016-12-01

    Full Text Available Considering extensive applications of manganese tetroxide nanoparticles in various industries due to its special properties, conducting studies on how to achieve more suitable ways to produce smaller nanoparticles is of great importance. In this study, nanoparticles of manganese tetroxide (Mn3O4 were synthesized by a co-precipitation method. In order to determine the characteristics of the structure, size, and specific surface of the resulting nanoparticles, techniques such as XRD, BET, BJH, FESEM, and FTIR were employed. Also, the nanoparticles were quantified with EDS and their colony size was examined using DLS experiments. The findings revealed a production of crystalline manganese tetroxide nanoparticles with a space group of 141/amd (S.G. (141 and a molecular weight of 228.81 with the international code of ICSD Card # 89 - 4837. The specific surface area was 32.147 m2/g with a pore volume of 0.1041 cm3/g. The XRD and EDX analyses verify the production of the Mn3O4 nanoparticles. The size of the nanostructures is approximately 19 nm. The method used in this study could produce the Mn3O4 nanoparticles in a much easier way without the need for surfactants. Compared to the nanoparticles produced in other studies, the size of the nanoparticles produced in the present study is remarkably smaller. Moreover, less amount of the metal salt was used.

  6. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  7. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  8. Concentration of cadmium, zinc and manganese in root, stalk and leaf of spinach and tomato in Hamedan

    Directory of Open Access Journals (Sweden)

    A. Ghobadi

    2016-11-01

    Full Text Available Heavy metals are considers as significant environment pollutants. Their entrance into food chain is a serious health hazard to humans. This study was conducted to determine the concentrations of Cadmium, Zinc and Manganese in root, stalk and leaf portions of spinach and tomato. For this reason, during 2014 in Hamedan city, 3 farms with 5 repetitions from each farm were sampled. Samples were subjected to acid-digestion and the concentrations of the elements were assayed by inductively coupled plasma (ICP. According to the results, the average concentrations of heavy metals in root, stalk and leaf of spinach was estimated at: cadmium, 0.14, 0.24, 0.34 mg/kg, zinc, 15.53, 24.82, 35 mg/kg and manganese, 26.59, 24.42, 45.38 mg/kg, respectively. The data for the tomato samples were: cadmium, 16.20, 24.42, 33.81 mg/kg, Zinc, 21.48, 39.74, 52.92 mg/kg and manganese, 26.60, 42.41, 61.90 mg/kg, respectively. The mean concentration of cadmium and manganese in spinach and tomato showed a significant difference with the WHO/FAO standard limit. However, in the case of zinc the difference was insignificant. It was concluded that in this experiment the spinach and tomato samples were polluted with higher concentration of cadmium and manganese than the approved limit of WHO/FAO and therefore was found risky for the consumers.

  9. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: Implications for an algal BLM

    International Nuclear Information System (INIS)

    Francois, Laura; Fortin, Claude; Campbell, Peter G.C.

    2007-01-01

    The influence of pH on short-term uptake of manganese and cadmium by the green alga Chlamydomonas reinhardtii was studied to better understand the nature of proton interactions with metal membrane transporters. Manganese and cadmium internalization fluxes (J int ) were measured over a wide range of free metal ion concentrations from 1 x 10 -10 to 4 x 10 -4 M at several pH values (Mn: 5.0, 6.5 and 8.0; Cd: 5.0 and 6.5). For both metals, first-order biological internalization kinetics were observed but the maximum transport flux (J max ) decreased when pH decreased, in contradiction with the Biotic Ligand Model (BLM). This result suggested a non-competitive inhibition of metal uptake by the H + -ion. A Michaelis-Menten type inhibition model considering proton and calcium competition was tested. The metal biotic ligand stability constants and the stability constants for competitive binding of Ca 2+ and H + with the metal transporters were calculated: for manganese, K Mn = 10 4.20 and K Ca = 10 3.71 ; for cadmium, K Cd = 10 4.19 and K Ca = 10 4.76 ; for both metal transport systems, K H was not a significant parameter. Furthermore, metal uptake was not significantly influenced by the pH of the antecedent growth medium, suggesting that increases in metal fluxes as the pH is raised are caused by conformational changes of the surface transport proteins rather than by the synthesis of additional transport sites. Our results demonstrate that the BLM in its present state does not properly describe the true influence of pH on manganese and cadmium uptake by algae and that a non-competitive inhibition component must be integrated

  10. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    OpenAIRE

    Cyrus S.H. Ho; Roger C.M. Ho; Amy M.L. Quek

    2018-01-01

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic ence...

  11. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida, E-mail: ralph@em.ufop.br, E-mail: rairanebarreto@hotmail.com [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Fernandes, Gilberto, E-mail: gilberto@unicerp.edu.br [Centro Universitário do Cerrado Patrocínio (UNICERP), Patrocínio, MG (Brazil); Sousa, Fabiano Carvalho, E-mail: fabiano.carvalho.sousa@vale.com [Vale, Belo Horizonte, MG (Brazil)

    2017-10-15

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  12. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    International Nuclear Information System (INIS)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida; Fernandes, Gilberto; Sousa, Fabiano Carvalho

    2017-01-01

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  13. Studies on Manganese (II), Cobalt (II) and Cadmium (II) complexes with L-Cystine

    International Nuclear Information System (INIS)

    Hossain, M. Alamgir; Ahmed, A.H. Moinuddin; Iqbal, M. Monocheher

    1995-01-01

    A study has been carried out to prepare the manganese, cobalt and cadmium complexes of L-cystine using the metal salts and lithium cystinate. The crystalline 1:1 stoichiometric complexes with the empirical formulae of [Mn(SCH 2 CHNH 2 COO) 2 ], [Co(SCH 2 CHNH 2 COO) 2 ] and [Cd(SCH 2 CHNH 2 COO) 2 ] are obtained from the reaction of equimolar amount of the corresponding metal ions and ligand in aqueous solution. The complexes have been characterized by chemical analyses, infrared and ultraviolet spectra, magnetic measurements, optical and thermal decomposition methods. Studies show that L-cystine behaves as tetradentate ligand forming chelates with metal ions where the bonding sites of the ligand are the carboxylate O and the amino N atoms. 15 refs., 2 tables, 3 figs (author)

  14. Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.

    Science.gov (United States)

    Platero, Raúl A; Jaureguy, Melina; Battistoni, Federico J; Fabiano, Elena R

    2003-01-21

    Two transposon-induced mutants of Sinorhizobium meliloti 242 were isolated based on their inability to grow on rich medium supplemented with the metal chelator ethylenediamine di-o-hydroxyphenylacetic acid (EDDHA) and either heme-compounds or siderophores as iron sources. Tagged loci of these mutants were identified as sit B and sit D genes. These genes encode components of an ABC (ATP-binding cassette) metal-type permease in several Gram-negative bacteria. In this work, the phenotypes of these two mutants were compared with those of two siderophore-mediated iron transport mutants. The results strongly implicate a role of the sit genes in manganese acquisition when this metal is limiting in S. meliloti.

  15. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  16. Sorption behaviour of uranium and thorium on cryptomelane-type hydrous manganese dioxide from aqueous solution

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Abdel-Hamid, M.M.; Aly, H.F.

    1993-01-01

    The kinetics of sorption of uranium and thorium from aqueous nitrate solutions on cryptomelane-type hydrous manganese dioxide (CRYMO) was studied. The exchange of uranium is particle diffusion controlled while that of thorium is chemical reaction at the exchange sites. Sorption of uranium and thorium by CRYMO has been also studied as a function of metal concentrations and temperature. The sorption of both cations is found to be an endothermic process and increases markedly with temperature between 30 and 60 degree C. The sorption results have been analysed by the langmuir adsorption isotherm over the entire range of uranium and thorium concentrations investigated. 35 refs., 8 figs., 5 tabs

  17. Synthesis and characterization of monomeric manganese(II) and ...

    African Journals Online (AJOL)

    The geometry at the manganese center is seven-coordinate, and is best described as a capped trigonal pyramid with the water molecule forming the cap and the six nitrogen atoms of the tpen ligand occupying the pyramidal sites. The manganese atom and the water molecule lie on a crystallographic twofold axis.

  18. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been

  19. Gastroprotective Properties of Manganese Chloride on Acetic Acid

    African Journals Online (AJOL)

    Dr Olaleye

    Drugs with multiple mechanisms of protective action may be effective in minimizing ... that Manganese had dose and treatment duration dependent effect on healing of ulcerated stomach. .... The stomach was bathed with normal saline ..... Arnaud, J., and Favier, A. (1995): "Copper, iron, manganese ... Experimental Toxic.

  20. Behavior of manganese ion in basic medium: consequence for the ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2006-01-25

    Jan 25, 2006 ... adding manganese chloride or manganese sulfate to sodium hydroxyde or sodium carbonate in aqueous ... carbonate (1 M). The release of p- nitrophenoxide anion (pNP) was quantified at. 420 nm using a spectrophotometer (Spectronic. Genesis 5). .... These curves were bell-type with an ascending.

  1. Bioconcentration of manganese and iron in Panaeoloideae Sing

    NARCIS (Netherlands)

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae,

  2. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  3. Characterization and concentration of manganese ore waste

    International Nuclear Information System (INIS)

    Lima, Rosa Malena Fernandes; Pereira, Eder Esper; Reis, Erica Linhares; Silva, Glaucia Regina da

    2010-01-01

    In this work is presented the tests results of characterization and concentration by gravity and flotation methods carried out with a manganese sample waste. By optical microscopy, SEM/EDS and X-ray diffractometry were identified the Mn minerals spessartite (20%), tephroite (15%), rhodonite (5%), rhodochrosite and carbonates minerals (29%), opaque minerals and others (16%), micaceus minerals (6%) and quartz (4%). It was obtained Mn metallurgical recovery of 58% with Mn concentrate contents varying from 30 to 32.5%. The concentrates SiO_2 contents of flotation were until 1.5% smaller than those contents of gravity method concentrates. (author)

  4. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  5. The levels of certain heavy metals in marine organisms from Aguada Bay (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; George, M.D.; Topgi, R.S.; Noronha, R.J.

    The levels of manganese, iron, cobalt, nickel, copper, zinc and mercury have been measured in marine organisms from Aguada Bay which is one of the major fishing zones in Goa, India. The concentration of metals varied from species to species...

  6. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    Science.gov (United States)

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  7. 48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.

    Science.gov (United States)

    2010-10-01

    ... CLAUSES Text of Provisions And Clauses 252.225-7008 Restriction on Acquisition of Specialty Metals. As... more of the following limits: Manganese, 1.65 percent; silicon, 0.60 percent; or copper, 0.60 percent...

  8. Alternative irradiation system for efficiency manganese bath determination

    Energy Technology Data Exchange (ETDEWEB)

    Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil); Xavier da Silva, Ademir, E-mail: ademir@con.ufrj.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil)

    2010-12-15

    An alternative irradiation system, which works with a radionuclide neutron source and manganese sulphate solution volume have been proposed for efficiency determination of a Manganese Bath System (MBS). This irradiation system was designed by simulation with MCNP5 code, considering a californium neutron source in several manganese sulphate volumes and different neutron reflectors. Although its solution specific activity are less than those in nuclear reactors, the simulation results have showed that the irradiation system proposed takes a manganese neutron capture increase up to 200 times when it compared to manganese neutron capture from a MBS whose diameter is about 100 cm. That becomes possible to use those samples for some of the absolute specific activity measuring methods.

  9. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    Science.gov (United States)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  10. Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-04-01

    The role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography-mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.

  11. Combined action of heavy metals in soils sustaining corn and sorghum: assessment methods, phyto remediation as an option and education strategies

    International Nuclear Information System (INIS)

    Hernandez, A. J.; Alexis, S.; Pastor, J.

    2009-01-01

    Heavy metals generated through geochemical processes in some tropical ecosystems, besides affecting the productivity of the systems, could also affect human health. Based on this hypothesis, we set out to assess the bioavailability of heavy metals to these crops used as a main food source or component of fodder. (Author)

  12. Synthesis and characterization of cobalt-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, J. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis 55455-0153 (United States); Arias, N.P. [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Departamento de Ingenieria Electrica, Electronica y Computacion, Facultad de Ingenieria y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Giraldo, O. [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Rosales-Rivera, A., E-mail: arosalesr@unal.edu.co [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia)

    2012-08-15

    Cobalt doped/un-doped manganese oxides materials were synthesized at various doping rates by soft chemical reactions, oxidation-reduction method, which allows generating a metal-mixed oxide. The synthesized materials were characterized using several techniques including chemical analysis, X-rays diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The chemical analysis confirmed the presence of cobalt in the samples. XRD patterns reveal mainly a spinel-like structure and SEM micrographs exhibited morphology with fine aggregate of particles. TGA profiles showed weight loss due to loss of water in a first step, followed by a loss of oxygen from the lattice associated with partial reduction of Mn{sup 4+} to Mn{sup 3+}. VSM was used to measure the magnetization as a function of the applied magnetic field at temperatures T=50 and 300 K. Different magnetic behaviors were observed when cobalt percentage changed in the samples. These behaviors are considered to be related to the size of the particles and composition of the materials. Higher coercive field and lesser magnetization were observed for the sample with higher cobalt content.

  13. Synthesis and characterization of cobalt-manganese oxides

    International Nuclear Information System (INIS)

    Valencia, J.; Arias, N.P.; Giraldo, O.; Rosales-Rivera, A.

    2012-01-01

    Cobalt doped/un-doped manganese oxides materials were synthesized at various doping rates by soft chemical reactions, oxidation-reduction method, which allows generating a metal-mixed oxide. The synthesized materials were characterized using several techniques including chemical analysis, X-rays diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The chemical analysis confirmed the presence of cobalt in the samples. XRD patterns reveal mainly a spinel-like structure and SEM micrographs exhibited morphology with fine aggregate of particles. TGA profiles showed weight loss due to loss of water in a first step, followed by a loss of oxygen from the lattice associated with partial reduction of Mn 4+ to Mn 3+ . VSM was used to measure the magnetization as a function of the applied magnetic field at temperatures T=50 and 300 K. Different magnetic behaviors were observed when cobalt percentage changed in the samples. These behaviors are considered to be related to the size of the particles and composition of the materials. Higher coercive field and lesser magnetization were observed for the sample with higher cobalt content.

  14. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    NARCIS (Netherlands)

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full

  15. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  16. Creating value with sustainability : a design to support metal façade builders in determining how the sustainability performance of their products and services may contribute to the economic performance of their company

    NARCIS (Netherlands)

    Cleton, I.M.

    2015-01-01

    The continuous attention by the media, politicians and the public on issues such as climate change, resource efficiency and energy efficiency show that sustainability has become a broad societal con-cern. Nowadays, anyone involved with the construction industry will have been confronted in one way

  17. Sustainable Food & Sustainable Economics

    OpenAIRE

    Alvarez, Mavis Dora

    2012-01-01

    Cuba today is immersed in a very intense process of perfecting its agricultural production structures with the goal of making them more efficient and sustainable in their economic administration and in their social and environmental management. Agricultural cooperatives in Cuba have the responsibility of producing on 73% of the country's farmland. Their contributions are decisive to developing agricultural production and to ensuring more and better food for the population, in addition to redu...

  18. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  19. Oxidation of bisphenol F (BPF) by manganese dioxide

    International Nuclear Information System (INIS)

    Lu Zhijiang; Lin Kunde; Gan, Jay

    2011-01-01

    Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO 2 . At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 μM MnO 2 and 4.4 μM BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn 2+ > Ca 2+ > Mg 2+ > Na + and HPO 4 2- > Cl - > NO 3 - ∼ SO 4 2- , respectively. A total of 5 products were identified, from which a tentative pathway was proposed. - Highlights: → Manganese dioxide oxidizes bisphenol F rapidly at ambient temperature. → pH and co-solutes such as humic acids, metal ions and anions affect the reaction. → Identification of 5 reaction intermediates points to a tentative pathway involving free radicals. → The commonly occurring MnO 2 may be important in the natural attenuation of bisphenol F or used for its decontamination. - The commonly occurring MnO 2 shows a high reactivity toward bisphenol F, which may account for its natural attenuation and suggest a beneficial use of MnO 2 for managed removal of bisphenol F.

  20. Fast-neutron activation analysis of manganese nodules

    International Nuclear Information System (INIS)

    Michaelis, W.; Fanger, H.U.; Mueller, A.; Pepelnik, R.

    1976-01-01

    The present paper describes the development of a new nuclear method that allows rapid determinations of the most relevant metals Ni and Cu without sample treatment, thus being particularly suited for quasi-continuous elemental analyses in mining and processing. The measurement is based on fast-neutron activation using Cockcroft-Walton generators, sealed neutron tubes or, possibly, (α,n)-type natural sources. Fast-neutron activation of manganese nodules is dominated by the (n,p)-reactions on Si, Al, Fe; the (n,α)-reaction on Mn and the (n,2n)-reaction on Cu. By choosing appropriate irradiation and cooling periods gamma-ray activities with comparatively simple spectral distributions are induced. From these spectra the Mn/Fe ratio in the nodules can be determined without the elaborate procedures usually required in absolute methods for eliminating systematic errors from fluctuations in sample and/or irradiation parameters. It is connected with the absolute Ni and Cu contents via well-known geochemical correlations which according to a lot of statistical data apply to quite different deposits and nodule types in the Pacific. Using these correlations the determination of the most important metals reduces to the evaluation of a peak area ratio. Measurements of the neutron flux distribution and the apparent sample density are unnecessary. The simple structure of the spectra allows the application of detectors with modest energy resolution, e.g. scintillation counters which can be manufactured as ruggedized crystal assemblies with great resistance to thermal and mechanical shock. The method is described in detail and possible interference, in particular from thermal and epithermal neutrons, are discussed. (orig.) [de

  1. Oxidation of bisphenol F (BPF) by manganese dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhijiang [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Lin Kunde [College of Biological and Environmental Engineering Zhejiang University of Technology, Hangzhou 310032 (China); Gan, Jay, E-mail: jgan@ucr.edu [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)

    2011-10-15

    Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO{sub 2}. At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 {mu}M MnO{sub 2} and 4.4 {mu}M BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low ({<=}pH 5.5) and high pH ({>=}pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn{sup 2+} > Ca{sup 2+} > Mg{sup 2+} > Na{sup +} and HPO{sub 4}{sup 2-} > Cl{sup -} > NO{sub 3}{sup -} {approx} SO{sub 4}{sup 2-}, respectively. A total of 5 products were identified, from which a tentative pathway was proposed. - Highlights: > Manganese dioxide oxidizes bisphenol F rapidly at ambient temperature. > pH and co-solutes such as humic acids, metal ions and anions affect the reaction. > Identification of 5 reaction intermediates points to a tentative pathway involving free radicals. > The commonly occurring MnO{sub 2} may be important in the natural attenuation of bisphenol F or used for its decontamination. - The commonly occurring MnO{sub 2} shows a high reactivity toward bisphenol F, which may account for its natural attenuation and suggest a beneficial use of MnO{sub 2} for managed removal of bisphenol F.

  2. Natural microbial system for heavy metals cleanup application

    African Journals Online (AJOL)

    compq

    2012-05-24

    May 24, 2012 ... metallurgy and other chemical industries lead to the discharge of ... the direct metal-microbe interaction become less effective .... bio-essential micronutrients as zinc, manganese, iron, cobalt ... 0.9 to 1.1), variable capabilities of cadmium precipitation .... Metals, minerals and microbes: Geomicrobiology and.

  3. Determination of semi-empirical relationship between the manganese and hydrogen atoms ratio, physical density and concentration in an aqueous solution of manganese sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Bittencourt, Guilherme, E-mail: bittencourt@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    The Manganese sulphate solution has been used for neutron metrology through the method of Manganese Bath. This method uses physical parameters of manganese sulphate solution to obtain its corrections. This work established a functional relationship, using the gravimetric method, between those physical parameters: density, concentration and hydrogen to manganese ratio. Comparisons were done between manganese sulphate solution concentration from the Manganese Bath system of Laboratory of Metrology of Ionising Radiation and estimated values from the functional relationship obtained, showing percentage difference of less than 0.1%. This result demonstrates the usefulness in the correlation of the physical values of the solution to the MB.

  4. Microbial virulence and interactions with metals

    DEFF Research Database (Denmark)

    German, N.; Lüthje, Freja Lea; Hao, X.

    2016-01-01

    Transition metals, such as iron, copper, zinc, and manganese play an important role in many bacterial biological processes that add to an overall evolutional fitness of bacteria. They are often involved in regulation of bacterial virulence as a mechanism of host invasion. However, the same transi...

  5. Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008

    International Nuclear Information System (INIS)

    Lee, Byung-Kook; Kim, Yangho

    2011-01-01

    Introduction: We present data on the association of manganese (Mn) level with hypertension in a representative sample of the adult Korean population who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) 2008. Methods: This study was based on the data obtained by KNHANES 2008, which was conducted for three years (2007-2009) using a rolling sampling design involving a complex, stratified, multistage, probability-cluster survey of a representative sample of the noninstitutionalized civilian population of South Korea. Results: Multiple regression analysis after controlling for covariates, including gender, age, regional area, education level, smoking, drinking status, hemoglobin, and serum creatinine, showed that the beta coefficients of log blood Mn were 3.514, 1.878, and 2.517 for diastolic blood pressure, and 3.593, 2.449, and 2.440 for systolic blood pressure in female, male, and all participants, respectively. Multiple regression analysis including three other blood metals, lead, mercury, and cadmium, revealed no significant effects of the three metals on blood pressure and showed no effect on the association between blood Mn and blood pressure. In addition, doubling the blood Mn increased the risk of hypertension 1.828, 1.573, and 1.567 fold in women, men, and all participants, respectively, after adjustment for covariates. The addition of blood lead, mercury, and cadmium as covariates did not affect the association between blood Mn and the prevalence of hypertension. Conclusion: Blood Mn level was associated with an increased risk of hypertension in a representative sample of the Korean adult population. - Highlights: → We showed the association of manganese with hypertension in Korean population. → This study was based on the data obtained by KNHANES 2008. → Blood manganese level was associated with an increased risk of hypertension.

  6. Effect of Manganese on the Mechanical Properties of Welded As-Cast Aluminium Joint

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2013-11-01

    Full Text Available The effects of manganese on the mechanical properties of welded and un-weld as-cast 6063 aluminium alloy has been studied. Alloys of varying percentage of manganese from 0.019 to 0.24 were sand cast. A wooden pattern of dimensions 200×100×100mm was used, the aluminium (500g was charged into an induction furnace and heated to 750°C for 15 minutes, this was followed by the addition of weighed powdered manganese, stirred and heated at the same temperature for another 5 minutes and thereafter poured into the already prepared sand mould at a temperature of 690°C. The as-cast aluminium samples, were sectioned into two equal parts of 45mm each using power hack saw; a weld groove was created between the sides of the samples using an electric hand grinding machine, the groove served as the path along which the filler metal was deposited on the aluminium, a single v butt joint was produced from each sample and Metal Inert Gas Welding process was carried out to produce the required joint design. The different cast samples were machined to the different test pieces after which they were assessed to determine their mechanical properties (impact, hardness (welded joint and heat affected zone and tensile tests. The microstructures of the welded samples were also studied. From the results, it was observed that Sample F, which has 0.172% Mn, has the best hardness and impact strength while sample C with 0.160% Mn has the highest ultimate tensile strength.

  7. Removal of Iron and Manganese in Groundwater using Natural Biosorbent

    Science.gov (United States)

    Baharudin, F.; Tadza, M. Y. Mohd; Imran, S. N. Mohd; Jani, J.

    2018-04-01

    This study was conducted to measure and compare the concentration of iron, manganese and hardness of the river and groundwater and to determine the effectiveness of iron and manganese removal by using natural biosorbent which is banana peels. The samples of river and groundwater were collected at riverbank filtration site at Jenderam Hilir, Dengkil. Based on the water quality investigation, the concentration of iron and manganese in the samples of groundwater have exceeded the drinking water quality standard which are 0.3 mg/L for iron and 0.1 mg/L for manganese. The removal process of the iron and manganese in the groundwater was done by using 2, 4 and 8 grams of banana peels activated carbon. It is found that with higher amount of activated banana peels, the removal of iron and manganese is more effective. The ranges of percentage of iron and manganese removal are between 82.25% to 90.84% and 98.79% to 99.43% respectively. From the result, banana peels activated carbon can be concluded as a one of the most effective low-cost adsorbent for groundwater treatment.

  8. Facile N...N coupling of manganese(V) imido species.

    Science.gov (United States)

    Yiu, Shek-Man; Lam, William W Y; Ho, Chi-Ming; Lau, Tai-Chu

    2007-01-31

    (Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).

  9. Brain manganese, catecholamine turnover, and the development of startle in rats prenatally exposed to manganese

    International Nuclear Information System (INIS)

    Kontur, P.J.; Fechter, L.D.

    1985-01-01

    Manganese (Mn) can be neurotoxic when present in high concentrations. Neonatal animals show differential absorption, accumulation, and excretion of Mn relative to adults. If similar kinetic differences exist during gestation, then fetal animals may be susceptible to Mn neurotoxicity. The objective of this study was to examine maternal-fetal Mn transfer and the susceptibility of prenatal animals to Mn neurotoxicity. This was approached by studying the ability of Mn to cross the placenta and reach the fetal central nervous system using radiotracer and atomic absorption spectroscopy techniques. Manganese is thought to disrupt catecholamine neurotransmission in the central nervous system. This was examined in newborn rats by alpha-methyl-para-tyrosine induced catecholamine turnover and the development of the acoustic startle response. The results suggest that there are limits on fetal Mn accumulation under conditions of both normal and excessive dietary Mn levels. Manganese accumulation in the fetal brain after exposure to increased dietary Mn does not alter either dopamine or norepinephrine turnover or the development of the acoustic startle response. Excess Mn does not appear to be neurotoxic to fetal rats in spite of its limited accumulation in nervous tissue after gestational exposure

  10. Manganese in exhaled breath condensate: a new marker of exposure to welding fumes.

    Science.gov (United States)

    Hulo, Sébastien; Chérot-Kornobis, Nathalie; Howsam, Mike; Crucq, Sébastien; de Broucker, Virginie; Sobaszek, Annie; Edme, Jean-Louis

    2014-04-07

    To evaluate manganese in exhaled breath condensate (Mn-EBC) as an indicator of exposure to fumes from metal inert gas welding process. We collected EBC and urine from 17 welders and 16 unexposed control subjects after 5 days exposure. Concentrations of manganese (Mn), nickel (Ni), iron (Fe) and chromium (Cr) were measured in EBC and urine samples and correlated with cumulative exposure indices for the working week (CIW) and for the total welding years (WY), based on duration of welding activity and atmospheric metal measurements. Concentrations of Mn and Ni in EBC were significantly higher among welders than controls whereas this difference was not significant for Mn in urine. Levels of Mn and Ni in EBC were not correlated with their respective levels in urine. The linear regressions found significant positive coefficients between Mn-EBC, Ni-EBC, Ni-U and Cr-U concentrations and the cumulative exposure indices. Taking into account tobacco use, statistical analysis showed the same trends except for the relationship between Mn-U and CIW. This pilot study showed that Mn-EBC, as well as Ni-EBC, can serve as reliable indices of occupational exposure to welding fumes and provide complimentary toxicokinetic information to that provided by urine analyses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Chromium, Nickel and Manganese in the Groundwater Resources of Asadabad Plain, Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Ghobadi

    2017-01-01

    Full Text Available Background & Aims of the Study: Heavy metals are one of the most important environmental pollutants which agricultural and industrial activities and urban development increased their entry rate to the underground resources. This study aimed to investigate the concentration of chromium, nickel and manganese in groundwater resources in Asadabad plain. Materials & Methods: Sampling of groundwater done in 2015 autumn. In this study, according to the Cochran’s sample size formula, tote formula, totally 60 samples of groundwater of Asadabad plain were collected from 20 wells and after preparation stage with atomic device, elements concentration of samples is read. To analysis of data SPSS 19 with significant level of 0.50 is used. Results: The concentration average of Chromium, Nickel and Manganese equal to 0.044¬ ±0.016, 70.42±10.83 and 2.64±0.83 ppb. The comparison results of the concentration average of elements based on WHO and ISIRI standard shows the concentration average of elements is lower than standard level. Conclusions: Currently the groundwater resources of Asadabad plain are not polluted with heavy metals, but long-term excessive use of agricultural inputs and construction of polluting industries can cause a threat to groundwater resources in this area.

  12. Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Melville, Felicity [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)], E-mail: f.melville@cqu.edu.au; Pulkownik, Alex [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2007-11-15

    This study examined the potential use of macroalgae epiphytic on mangrove aerial roots as biomonitors of estuarine contamination. The metal concentrations of macroalgae were investigated in four estuaries in the vicinity of Sydney, Australia, and compared to water and sediment metal concentrations over three seasonal surveys. Macroalgal metal concentrations (copper, zinc, cadmium, chromium, lead, nickel, manganese and iron) appeared to be more associated with sediment metal concentrations than water concentrations, suggesting they may be useful biomonitors of estuarine sediment contamination. Algae in the more contaminated estuaries generally contained higher metal concentrations. However, concentrations of iron, nickel and manganese appeared to be similar in the algae despite the varying sediment concentrations, while accumulation of copper, zinc, lead and chromium appeared to be associated with ambient environmental concentrations. The uptake of metals also varied among the different species, suggesting that algal parameters, such as morphology, may also influence metal uptake and accumulation.

  13. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...... cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non...

  14. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    Directory of Open Access Journals (Sweden)

    Tušek, Janez

    2001-06-01

    Full Text Available The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and highalloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-off depends mainly on the type of shielding gas used and the arc length, i.e., from the arc voltage. The manganese burn-off increases with an increase of the content of active gases, i.e., CO2 and O2, in the neutral gas, i.e., argon. It also increases with an increase in arc voltage. The longer the welding arc, the longer exposition of the filler material to the welding arc and the wider the penetration, which allows manganese vapours to evaporate from the weld pool. The most important finding is that manganese burn-off from the 18/8/6 wire during welding of austenitic stainless steel with low-alloy ferritic steel is considerably strong, i.e., from 20% to 30%; nevertheless the wire concerned is perfectly suitable for welding of different types of steel.

    El artículo describe el estudio de un acero ferrítico poco aleado con un acero austenítico altamente aleado con el alambre 18/8/6 mediante el procedimiento MAG/MIG. Se ha investigado el consumo del manganeso del alambre durante la soldadura a tope con la preparación en V. Con los análisis se ha comprobado que el manganeso se consume en el arco desde la formación de la gota en la punta del alambre hasta la solidificación del metal aportado fundido. La cantidad perdida del manganeso depende, sobre todo, del tipo del gas de protección y de la longitud del arco, esto es, de la tensión convencional en el arco. Con el aumento de los gases activos (CO2 y O2 respecto al gas neutro argon, el consumo del manganeso va aumentando. También se observó que el consumo del manganeso va

  15. Determinants of manganese levels in house dust samples from the CHAMACOS cohort

    Energy Technology Data Exchange (ETDEWEB)

    Gunier, R.B., E-mail: gunier@berkeley.edu [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States); Jerrett, M. [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States); Smith, D.R.; Jursa, T. [Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA (United States); Yousefi, P.; Camacho, J.; Hubbard, A.; Eskenazi, B.; Bradman, A. [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States)

    2014-11-01

    Introduction: Manganese (Mn) is an essential nutrient, but at high exposure levels Mn is a neurotoxicant. The fungicides maneb and mancozeb are approximately 21% Mn by weight and more than 150,000 kg are applied each year to crops in the Salinas Valley, California. It is not clear, however, whether agricultural use of these fungicides increases Mn levels in homes. Materials and methods: We collected house dust samples from 378 residences enrolled in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study with a second sample collected approximately nine months later from 90 of the residences. House dust samples were analyzed for Mn using inductively coupled plasma optical emission spectroscopy. Information from interviews, home inspections, and pesticide use reports was used to identify potential predictors of Mn dust concentrations and loadings. Results: Mn was detectable in all dust samples. The median Mn concentration was 171 μg/g and median Mn loading was 1,910 μg/m{sup 2} at first visit. In multivariable models, Mn dust concentrations and loadings increased with the number of farmworkers in the home and the amount of agricultural Mn fungicides applied within three kilometers of the residence during the month prior to dust sample collection. Dust concentrations of Mn and other metals (lead, cadmium and chromium) were higher in residences located in the southern Salinas Valley compared those located in other areas of the Salinas Valley. Dust loadings of Mn and other metals were also higher in residences located on Antioch Loam soil than other soil types, and in homes with poor or average housekeeping practices. Conclusions: Agricultural use of Mn containing fungicides was associated with Mn dust concentrations and loadings in nearby residences and farmworker homes. Housekeeping practices and soil type at residence were also important factors related to dust metal concentrations and loadings. - Highlights: • Manganese dust

  16. Phase transformations in Higher Manganese Silicides

    Energy Technology Data Exchange (ETDEWEB)

    Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.

  17. Concentrations of manganese and iron in some woody and herbs plants

    Directory of Open Access Journals (Sweden)

    Stanković Dragica M.

    2011-01-01

    Full Text Available Heavy metals are the substances that indicate environmental pollution. The plants polluted with heavy metals may endanger natural environment and cause health problems in humans. In our multidisciplinary research of the concentrations of pollutants in forest ecosystems and natural environment in Belgrade, we examined the contents of heavy metals essential for plants but harmful in greater concentrations on a long-term basis. The fact that heavy metals manganese and iron are accumulated in plants to the greatest extent focused our work on determination of the level of concentrations of Mn and Fe in the vegetative parts of 8 plant types on three locations on the Avala Mountain and one location in the centre of the city of Belgrade. The analyses of heavy metals contents in plants were performed by the method of flame atomic absorption spectrophotometry. The examination of the existence of important differences between the average values was performed by implementation of Duncan’s test for the level of significance of 95%. The current contents of heavy metals in plants in the area of the protected natural resource Avala do not represent danger that would presently cause notable damage to forests but show the tendency of the increase of concentrations. Therefore, this issue should be constantly monitored.

  18. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  19. Correlation between airborne manganese concentration at the workstations in the iron foundry and manganese concentration in workers’ blood

    Directory of Open Access Journals (Sweden)

    Seyedtaghi Mirmohammadi

    2017-08-01

    Full Text Available Background: Manganese (Mn used as raw material for melting process in the ferrous foundry is considered as hazardous neurotoxic substance because it accumulates in the central nervous system and may cause neurological disorders. The furnace-men and melting department workers are potentially exposed to manganese particles or fume in the workplace. The objective of the research has been to investigate the sources and levels of manganese exposure in the foundry by correlation of blood-manganese (B-Mn and air-manganese (air-Mn measurement. Material and Methods: Air-Mn and Mn of blood serum were measured involving workers who worked in a big-sized foundry during 1 year. The standard method of the Occupational Safety and Health Administration (OSHA ID-121 was used for air and blood assessment and atomic absorption spectroscopy (AAS was carried out for air and blood sample analysis. Results: The air sampling results have revealed that there is a high exposure to manganese (4.5 mg/m3 in the workplace as compared to the National Institute for Occupational Safety and Health’s (NIOSH time weighted average (the reference time-weighted average (TWA = 1 mg/m3. The average blood serum Mn concentration was 2.745 μg/l for subjects working for shorter than 3 months and 274.85 μg/l for subjects working 3–12 months. Conclusions: Against the research hypothesis there was no correlation between the air-Mn concentration and the B-Mn (serum level of manganese in the serum of the exposed subjects. It may be due to short time of air sampling of manganese airborne particles, and a real-time monitoring of airborne manganese particles is suggested for any future study. Med Pr 2017;68(4:449–458

  20. Introducing Environmental and Sustainable Chemistry Topics Using a Nanotechnology Approach: Removing Hazardous Metal Ions by Means of Humic-Acid-Modified Superparamagnetic Nanoparticles

    Science.gov (United States)

    Gomes da Silva, Delmarcio; Menegatti de Melo, Fernando; Silveira, Alceu Totti, Jr.; Constancio da Cruz, Bruno; Prado, Caio Cesar Pestana; Pereira de Vasconcelos, Luana Cristina; Lucas, Vitor Amaral Sanches; Toma, Henrique Eisi

    2016-01-01

    A laboratory experiment has been developed to illustrate environmental and sustainability aspects, focusing on the wastewater treatment by means of superparamagnetic nanoparticles functionalized with humic acid. The experiment, conducted by a group of high school students, involves nanoparticle synthesis and minor characterization, followed by…

  1. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  2. Manganese-catalyzed Dehydrogenative Alkylation or α-Olefination of Alkyl-N-Heteroaromatics by Alcohols.

    Science.gov (United States)

    Kempe, Rhett; Zhang, Guoying; Irrgang, Torsten; Dietel, Thomas; Kallmeier, Fabian

    2018-05-02

    Catalysis involving earth-abundant transition metals is an option to help save our rare noble metal resources and is especially interesting if novel reactivity or selectivity patterns are observed. We report here on a novel reaction: the dehydrogenative alkylation or α-olefination of alkyl-N-heteroaromatics by alcohols. Manganese complexes developed in our laboratory catalyze the reaction efficiently. Fe and Co complexes stabilized by such ligands are essentially inactive. Hydrogen is liberated during the reaction and bromo or iodo functional groups and olefins can be tolerated. A variety of alkyl-N-heteroaromatics can be functionalized, and benzyl and aliphatic alcohols undergo the reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biomonitoring for iron, manganese, chromium, aluminum, nickel and cadmium in workers exposed to welding fume: a preliminary study

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-05-01

    Full Text Available The control of exposure to welding fumes is increasing importance in promoting a healthy, safe and productive work environment. This study is a case-control design, random study was conducted among welder (56 subjects and non welder (39 subjects with more than 1 years experience in the same job task in an automotive parts manufactory within the industrial area at Cikarang in 2013. All subjects were completed physical examination, informed consent and questionnaire. Blood heavy metals were determined by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS. Whole blood iron, manganese, chromium and lead in welder were higher than non-welder, but not different for aluminum, nickel and cadmium. In welder, chromium and manganese correlated with smoking status, cadmium correlated with age and smoking status. In multivariate analysis, wholeblood cadmium correlates with age and smoking status.

  4. Manganese Exposure in the General Population in a Mining District ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Manganese Exposure in the General Population in a Mining District (Mexico) ... in a population living close to a mine and mineral processing plant in Mexico ... Call for proposals: Innovations for the economic inclusion of marginalized youth.

  5. Beneficiation studies of Bajaur manganese ore by different processing techniques

    International Nuclear Information System (INIS)

    Riaz, M.; Khan, F.U.; Yamin, A.; Bilquees, R.; Muhammad, N.

    2010-01-01

    The manganese ore of Bajaur Agency of Pakistan was subjected to flotation, heavy medium separation, gravity concentration and magnetic separation techniques for beneficiation. The original composition of the manganese ore was 45.56% Mn , 4% Fe/sub 2/O/sub 3/, 40% SiO/sub 2/. The Mn content was raised to a maximum 48.76 % in the concentrate with the recovery of 67.78 % through flotation technique. Other techniques rendered marginal increase in Mn concentration against the theoretical possibility of substantial enrichment by rejecting the 20 % gangue minerals. The separation of manganese minerals from associated gangue was difficult, due to mineralogical complexity of the ore, extreme fineness of the particle size, texture and minerals intergrowth. High Mn/Fe ratio, phosphorus, and silica contents were within tolerable limits for utilisation of the ore in ferro-manganese production. (author)

  6. By lithology Zbruch deposits (Lower Sarmatian Nikopol manganese ore Basin

    Directory of Open Access Journals (Sweden)

    Bogdanovich V.V.

    2010-06-01

    Full Text Available Based on lithologic-paleogeographic study Zbruch layers of Nikopol manganese ore Basin sediments described lithological and genetic types of rocks and facies conditions of formation of deposits.

  7. Manganese nodules in the Exclusive Economic Zone of Mauritius

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; ShyamPrasad, M.

    The distribution of manganese nodules in the Exclusive Economic Zone of the island nation Mauritius was delineated during cruise SK-35 of ORV Sagar Kanya in 1987. The areas surveyed included Saya de Malha and Nazareth Banks, the Cargados Carajos...

  8. Manganese oxidation by bacterial isolates from the Indian Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Krishnan, K.P.; Khedekar, V.D.; LokaBharathi, P.A.

    The abundance and activity of culturable manganese-oxidizing bacteria were assessed from near-bottom water samples of the tectonically active Carlsberg Ridge. Retrievable counts as colony forming units (CFU) on dilute nutrient agar medium (dilNA = 2...

  9. Investigation of Wear Coefficient of Manganese Phosphate Coated Tool Steel

    Directory of Open Access Journals (Sweden)

    S. Ilaiyavel

    2013-03-01

    Full Text Available In recent years the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, Wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat treated Manganese Phosphate coated with oil lubricant on AISI D2 steels was investigated using Archard’s equation. The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The volumetric wear loss and wear coefficient were evaluated through pin on disc test using a sliding velocity of 3.0 m/s under normal load of 40 N and controlled condition of temperature and humidity. Based on the results of the wear test, the Heat treated Manganese Phosphate with oil lubricant exhibited the lowest average wear coefficient and the lowest wear loss under 40 N load.

  10. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    The shapes of spectra are also changed with varying alkaline earth ions content. ... of manganese ion and electrical properties of glass contain- ing mobile ions like .... octahedral crystal field are located above the ground 6S state. Figure 2.

  11. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  12. Production of manganese peroxidase by white rot fungi from potato ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-18

    Jan 18, 2010 ... production rate of the MnP using the potato-processing wastewater-based medium were higher (ca. 2.5- ... Ligninolytic enzymes, such as manganese peroxidase ... not currently reached industrial levels except for the laccase.

  13. Relation between grade and abundance of manganese nodules

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, M.

    Data from more than 1000 locations in the Central Indian Ocean Basin (CIOB) where both bulk nodule chemistry and abundance were determined and utilized to study the relationship between grade and abundance of manganese nodule deposits. Grade...

  14. India's manganese nodule mine site in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    This commentary highlights the activities of massive exploration programme for manganese nodule deposits in the Central Indian Basin located 5 km below the ocean surface and India's claim for mine site development and registration with UNCLOS...

  15. Preparation of manganese-based perovskite nanoparticles using a ...

    Indian Academy of Sciences (India)

    Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: ... ted much attention in various fields of medicine and pharma- cology such as .... In addition, the SAR value of sample was calculated through ...

  16. Anodically generated manganese(III) sulphate for the oxidation of ...

    Indian Academy of Sciences (India)

    Unknown

    oxidation of dipeptides in aqueous sulphuric acid medium: A kinetic study ... acetic acid (TFA) and N-methylmorpholine (NMM) were purchased ... and chloroform–methanol– acetic acid .... tion), manganese(II) sulphate and water (to keep the.

  17. Investigation of manganese homeostasis in dogs with anaemia and ...

    African Journals Online (AJOL)

    Investigation of manganese homeostasis in dogs with anaemia and chronic enteropathy. Marisa da Fonseca Ferreira, Arielle Elizabeth Ann Aylor, Richard John Mellanby, Susan Mary Campbell, Adam George Gow ...

  18. Acute Toxicity and Accumulation of Iron, Manganese and, Aluminum in Caspian Kutum Fish (Rutilus kutum

    Directory of Open Access Journals (Sweden)

    Saeed Zahedi

    2014-03-01

    Full Text Available Background: Iron, manganese, and aluminum are three abundant metals on earth and their concentrations have increased in aquatic environments as a result of natural and industrial activities. This study was undertaken to report the median acute toxicity (LC50 and accumulation of the sub-lethal concentration (10% 96-h LC50 of iron (Fe, manganese (Mn and aluminum (Al in kutum (Rutilus kutum fingerlings. Methods: For the 96-h LC50, the fish were exposed to concentrations of 105, 111, 117, 123, 129 and 135 mg/l of Fe and 40, 45, 50, 55, 60, and 65 mg/l of Mn and 18, 22, 26, 30, 34 and 38 mg/l of aluminum for 4 days. For sublethal exposure, they were exposed to mediums with concentrations of 12.3, 5.4 and 2.9 for Fe, Mn, and aluminum, respectively. Metal concentrations were determined by atomic absorption spectrophotometry in the gill tissues. Results: Probit analysis showed the 96-h LC50 values of 122.98, 54.39, and 28.89 mg/l for Fe, Mn, and aluminum, respectively. Sub-lethal tests were conducted with nominal concentrations of 12.3, 5.4, and 2.9 mg/l of Fe, Mn, and aluminum for four days, respectively. Significant accumulations were observed in gills for all tested metals as compared to the control groups in short-term exposure (P<0.05. Conclusion: Obtained results clearly show that aluminum is the most toxic metal among tested ones for kutum fingerlings and it has the highest branchial AF value during sub-lethal exposure.

  19. Studies on the fate of poisonous metals in experimental animal, (7)

    International Nuclear Information System (INIS)

    Onoda, Kin-ichi; Hasegawa, Akira; Sunouchi, Momoko; Tanaka, Satoru; Takanaka, Akira

    1978-01-01

    Solutions of 54 MnCl 2 (0.5 mg manganese chloride/kg, low dose; 10 mg manganese chloride/kg, high dose) were intravenously injected to groups of pregnant rats on the 10th, 13th, 17th and 19th days of gestation, and the manganese distribution in maternal and fetal tissues were examined 3 hours after each injection and on the 20th day of gestation. Three hours after the injection, placental distribution of the metal was predominantly higher in the 19th and the 17th days treated groups than in the 13th and the 10th days groups. However, the difference related to the stage of gestation was not evident concerning the manganese distribution in other maternal organs. The stage-linked difference of manganese distribution was also not recognized in fetal whole body. The distribution pattern of the metal in the whole body of pregnant rats at the 20th day of gestation showed rather rapid decrease in the high dose group than in the low dose group. In maternal brain, bone and ovary of both dose groups, accumulation and/or slow elimination of manganese was observed. In all of the fetal organs of both dose groups, the earlier the stage of administration, the lower the distribution of manganese was observed, and, as compared with the maternal organs, remarkably higher concentrations of the metal were detected in fetal brain, heart, lung, liver and bone in the groups treated after the 13th day of gestation. (auth.)

  20. Survey of electrochemical metal winning processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vaaler, L.E.

    1979-03-01

    The subject program was undertaken to find electrometallurgical technology that could be developed into energy saving commercial metal winning processes. Metals whose current production processes consume significant energy (excepting copper and aluminum) are magnesium, zinc, lead, chromium, manganese, sodium, and titanium. The technology of these metals, with the exception of titanium, was reviewed. Growth of titanium demand has been too small to justify the installation of an electrolyte process that has been developed. This fact and the uncertainty of estimates of future demand dissuaded us from reviewing titanium technology. Opportunities for developing energy saving processes were found for magnesium, zinc, lead, and sodium. Costs for R and D and demonstration plants have been estimated. It appeared that electrolytic methods for chromium and manganese cannot compete energywise or economically with the pyrometallurgical methods of producing the ferroalloys, which are satisfactory for most uses of chromium and manganese.

  1. Aquatic environmental risk assessment of manganese processing industries.

    Science.gov (United States)

    Marks, Becky; Peters, Adam; McGough, Doreen

    2017-01-01

    An environmental risk assessment (ERA) has been conducted for sites producing and processing manganese and its inorganic compounds, focussing on potential risks to freshwater. A site specific questionnaire was used to collect information. Sites fall into three broad categories: mining sites, refining sites, and sites producing chemicals and pigments. Waste disposal is principally carried out by the treatment of liquid wastes to separate solids for disposal off-site with a consented wastewater discharge, or disposal on-site using evaporation or settlement ponds in order to maintain the waste materials in a suitable manner following site closure. The main source of emissions from refining and alloying sites is from the treatment of emissions to air using wet scrubber air filters. There is also the potential for fugitive environmental emissions of manganese from stockpiles of raw material held on-site. Data provided from the questionnaires were both site-specific and also commercially sensitive. Therefore, this paper has undertaken the manganese exposure assessment, using a probabilistic approach to reflect the distribution of emissions of manganese and also to maintain the confidentiality of site specific data. An inverse correlation was observed between the total annual tonnage of manganese processed at the site and the emission factor, such that sites processing larger quantities resulted in lower emissions of manganese per tonne processed. The hazard assessment determined a Predicted No Effect Concentration (PNEC) for freshwater using a species sensitivity distribution approach, resulting in a freshwater PNEC of 0.075mgL -1 for soluble manganese. Based on the exposure data and the freshwater PNEC derived for this study, the distributions of risk characterisation ratios using the probabilistic approach indicates that two thirds of manganese processing sites would not be expected to pose a potential risk to the local aquatic environment due to wastewater emissions

  2. Iron and manganese oxide mineralization in the Pacific

    Science.gov (United States)

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  3. Bioconcentration of manganese and iron in Panaeoloideae Sing

    OpenAIRE

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae, as demonstrated by the analysis of 44 collections representing 15 taxons. Carpophores generally contain between 250 and 2500 mg/kg on dry weight, and, with the notable exception of Panaeolus semiova...

  4. Sustainable Marketing

    NARCIS (Netherlands)

    Dam, van Y.K.

    2017-01-01

    In this article, three different conceptions of sustainable marketing are discussed and compared. These different conceptions are referred to as social, green, and critical sustainable marketing. Social sustainable marketing follows the logic of demand-driven marketing management and places the

  5. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice.

    Science.gov (United States)

    Alsulimani, Helal Hussain; Ye, Qi; Kim, Jonghan

    2015-12-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and

  6. Chemical effects of nuclear transformations in metal permanganates

    International Nuclear Information System (INIS)

    Lee, Byung Hun; Kim, Bong Whan

    1986-01-01

    The chemical effects resulting from the capture of the thermal neutrons by manganese in different crystalline permanganates, that is, potassium permanganate,sodium permanganate, silver permanganate, barium permanganate and ammonium permanganate, have been investigated. The distribution of radioactive manganese formed has been determined by using different absorbents and ion-exchangers, that is,manganese dioxide, alumina, Zeolite A-3, Kaolinite and Dowex-50. The distribution of radioactive manganese in various adsorbents and ion-exchangers has almost similar result for each permanganate. The affinity for radioactive manganous ion is greatest for Dewex-50. A significant increase of retention is shown through the thermal annealing and the retention depends on the first ionization potential of metal ion in permanganates. (Author)

  7. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    Science.gov (United States)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  8. Spatial and temporal variations of manganese concentrations in drinking water.

    Science.gov (United States)

    Barbeau, Benoit; Carrière, Annie; Bouchard, Maryse F

    2011-01-01

    The objective of this study was to assess the variability of manganese concentrations in drinking water (daily, seasonal, spatial) for eight communities who participated in an epidemiological study on neurotoxic effects associated with exposure to manganese in drinking water. We also assessed the performance of residential point-of-use and point-of-entry devices (POE) for reducing manganese concentrations in water. While the total Mn concentrations measured during this study were highly variable depending on the location (manganese concentration for 4 out of 5 sampling locations. The efficiency of reverse osmosis and ion exchange for total Mn removal was consistently high while activated carbon provided variable results. The four POE greensand filters investigated all increased (29 to 199%) manganese concentration, indicating deficient operation and/or maintenance practices. Manganese concentrations in the distribution system were equal or lower than at the inlet, indicating that sampling at the inlet of the distribution system is conservative. The decline in total Mn concentration was linked to higher water residence time in the distribution system.

  9. Failure of manganese to protect from Shiga toxin.

    Directory of Open Access Journals (Sweden)

    Marsha A Gaston

    Full Text Available Shiga toxin (Stx, the main virulence factor of Shiga toxin producing Escherichia coli, is a major public health threat, causing hemorrhagic colitis and hemolytic uremic syndrome. Currently, there are no approved therapeutics for these infections; however manganese has been reported to provide protection from the Stx1 variant isolated from Shigella dysenteriae (Stx1-S both in vitro and in vivo. We investigated the efficacy of manganese protection from Stx1-S and the more potent Stx2a isoform, using experimental systems well-established for studying Stx: in vitro responses of Vero monkey kidney cells, and in vivo toxicity to CD-1 outbred mice. Manganese treatment at the reported therapeutic concentration was toxic to Vero cells in culture and to CD-1 mice. At lower manganese concentrations that were better tolerated, we observed no protection from Stx1-S or Stx2a toxicity. The ability of manganese to prevent the effects of Stx may be particular to certain cell lines, mouse strains, or may only be manifested at high, potentially toxic manganese concentrations.

  10. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination

    Directory of Open Access Journals (Sweden)

    JEROME A ROTH

    2006-01-01

    Full Text Available This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn. The studies describe the interrelationship of the different systems in the body that regulate Mn homeostasis by characterizing specific, biological components involved in its systemic and cellular uptake and its elimination from the body. A syndrome known as manganism occurs when individuals are exposed chronically to high levels of Mn, consisting of reduced response speed, intellectual deficits, mood changes, and compulsive behaviors in the initial stages of the disorder to more prominent and irreversible extrapyramidal dysfunction resembling Parkinson's disease upon protracted exposure. Mn intoxication is most often associated with occupations in which abnormally high atmospheric concentrations prevail, such as in welding and mining. There are three potentially important routes by which Mn in inspired air can gain access the body to: 1 direct uptake into the CNS via uptake into the olfactory or trigeminal presynaptic nerve endings located in the nasal mucosa and the subsequent retrograde axonal transport directly into the CNS; 2 transport across the pulmonary epithelial lining and its subsequent deposition into lymph or blood; and/or 3 mucocilliary elevator clearance from the lung and the subsequent ingestion of the metal in the gastrointestinal tract. Each of these processes and their overall contribution to the uptake of Mn in the body is discussed in this review as well as a description of the various mechanisms that have been proposed for the transport of Mn across the blood-brain barrier which include both a transferrin-dependent and a transferrin-independent process that may involve store-operated Ca channels.

  11. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  12. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Science.gov (United States)

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  13. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Directory of Open Access Journals (Sweden)

    Baishan Fang

    Full Text Available Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  14. Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode

    International Nuclear Information System (INIS)

    Mashazi, Philani N.; Westbroek, Philippe; Ozoemena, Kenneth I.; Nyokong, Tebello

    2007-01-01

    Surface chemistry and electrocatalytic properties of self-assembled monolayers of metal tetra-carboxylic acid phthalocyanine complexes with cobalt (Co), iron (Fe) and manganese (Mn) as central metal ions have been studied. These phthalocyanine molecules are immobilized on gold electrode via the coupling reaction between the ring substituents and pre-formed mercaptoethanol self-assembled monolayer (Au-ME SAM). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed chemisorption of mercaptoethanol via sulfur group on gold electrode and also coupling reaction between phthalocyanines and Au-ME SAM. Electrochemical parameters of the immobilized molecules show that these molecules are densely packed with a perpendicular orientation. The potential applications of the gold modified electrodes were investigated towards L-cysteine detection and the analysis at phthalocyanine SAMs. Cobalt and iron tetra-carboxylic acid phthalocyanine monolayers showed good oxidation peak for L-cysteine at potentials where metal oxidation (M III /M II ) takes place and this metal oxidation mediates the catalytic oxidation of L-cysteine. Manganese tetra-carboxylic acid phthalocyanine monolayer also exhibited a good catalytic oxidation peak towards L-cysteine at potentials where Mn IV /Mn III redox peak occurs and this redox peak mediates L-cysteine oxidation. The analysis of cysteine at phthalocyanine monolayers displayed good analytical parameters with good detection limits of the orders of 10 -7 mol L -1 and good linearity for a studied concentration range up to 60 μmol L -1

  15. Role of manganese oxides in peptide synthesis: implication in chemical evolution

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-10-01

    During the course of chemical evolution the role of metal oxides may have been very significant in catalysing the polymerization of biomonomers. The peptide bond formation of alanine (ala) and glycine (gly) in the presence of various oxides of manganese were performed for a period of 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The reaction was monitored every week. The products formed were characterized by high-performance liquid chromatography and electrospray ionization-mass spectrometry techniques. Trace amount of oligomers was observed at 50°C. Maximum yield of peptides was found after 35 days at 90°C. It is important to note that very high temperatures of 120°C favoured the formation of diketopiperazine derivatives. Different types of manganese oxides [manganosite (MnO), bixbyite (Mn2O3), hausmannite (Mn3O4) and pyrolusite (MnO2)] were used as catalyst. The MnO catalysed glycine to cyclic (Gly)2, (Gly)2 and (Gly)3, and alanine, to cyclic (Ala)2 and (Ala)2. Mn3O4 also produced the same products but in lesser yield, while Mn2O3 and MnO2 produced cyclic anhydride of glycine and alanine with a trace amount of dimers and trimmers. Manganese of lower oxidation state is much more efficient in propagating the reaction than higher oxidation states. The possible mechanism of these reactions and the relevance of the results for the prebiotic chemistry are discussed.

  16. Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems

    International Nuclear Information System (INIS)

    Tan Hui; Zhang Gengxin; Heaney, Peter J.; Webb, Samuel M.; Burgos, William D.

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO x ). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction (±inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 deg. C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO x precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnO x precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO x precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnO x mineral assemblages in CMD treatment systems.

  17. Improvement in grade of minerals using simultaneous Bio-oxidation of invisible gold concentrate and deep-sea manganese crust

    Science.gov (United States)

    Myung, EunJi; Cho, Kang Hee; Kim, Hyun Soo; Park, Cheon Young

    2016-04-01

    Many sulfides of metal such as galena, sphalerite, chalcopyrite, and pyrite, are semiconductors. When two kinds of such minerals contact each other in an electrolyte, a galvanic couple, where the mineral of lower rest potential as anode, and that of higher rest potential as cathode forms. Manganese dioxide is also a semiconductor with much higher rest potential than all sulfides mentioned above, so that a galvanic couple in which both the minerals would dissolve simultaneously can form, when it contacts with any of the sulfides. The aim of this study was to investigate the improvement in grade of minerals using the simultaneous bio-oxidation of deep-sea manganese crust and invisible gold concentrate. The samples(deep-sea manganese crust and invisible gold concentrate) were characterized by chemical and XRD analysis. The primary components of the invisible gold concentrate was pyrite and quartz and the deep-sea manganese crust was amorphous material, as detected using XRD. The result of chemical analysis showed that Au, Ag, Te contents in the invisible gold concentrate 130.2, 954.1 and 1,043.6 mg/kg, respectively. and that Mn, Ni, Co contents in the deep-sea manganese crust 19,501.5, 151.9, 400.4 mg/kg, respectively. In order to increase the bacteria's tolerance of heavy metals, the bacteria using bio-oxidation experiments were repeatedly subcultured in an Cu adaptation-medium containing of 382.98 mg/l for 20 periods of 21 days. The improvement in grade of samples of in present adapted bacteria condition was greater than another conditions(control and in present non-adapted bacteria). The Au-Ag-Te contents in the invisible gold concentrate was enhanced in the order of physical oxidation, simultaneous/non-adaptive bio-oxidation, adaptive/bio-oxidation, simultaneous/adaptive bio-oxidation. If the bacteria is adapted to heavy metal ions and an optimization of conditions is found in future bio-oxidation-leaching processes. Acknowledgment : "This research was supported

  18. Manganese pyridinedicarboxylates: New anode materials for lithium-ion batteries with good cycling performance

    International Nuclear Information System (INIS)

    Fei, Hailong; Li, Zhiwei; Liu, Xin

    2015-01-01

    Highlights: • Manganese 2,3-pyridinedicarboxylate and 2,5-pyridinedicarboxylate. • Firstly tested as anode materials. • High capacity and good cycle stability. - Abstract: It is significant to discover new environmental friendly, sustainable and renewable electrode materials for lithium-ion batteries. Manganese dicarboxylate [Mn 2 (pdc) 2 (H 2 O) 3 ] n ⋅2nH 2 O (pdc = pyridine-2,3-dicarboxylate) is firstly found to be a high-energy anode material for lithium-ion batteries. It shows a high discharge capacity of 573.7 mA h g −1 for the second cycle between a 0.05 and 3.0 V voltage limit at a discharge current density of 500 mA g −1 . The reversible capacity of 457.2 mA h g −1 is remained after 100 cycles with a capacity retention being 79.6%. In addition, it is found that Mn 2,5-pyridinedicarboxyle was also stable anode materials with high capacity

  19. Manganese pyridinedicarboxylates: New anode materials for lithium-ion batteries with good cycling performance

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Hailong, E-mail: feilin09053@gmail.com [College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town Fuzhou, Fujian 350116 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Li, Zhiwei; Liu, Xin [College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town Fuzhou, Fujian 350116 (China)

    2015-08-15

    Highlights: • Manganese 2,3-pyridinedicarboxylate and 2,5-pyridinedicarboxylate. • Firstly tested as anode materials. • High capacity and good cycle stability. - Abstract: It is significant to discover new environmental friendly, sustainable and renewable electrode materials for lithium-ion batteries. Manganese dicarboxylate [Mn{sub 2}(pdc){sub 2}(H{sub 2}O){sub 3}]{sub n}⋅2nH{sub 2}O (pdc = pyridine-2,3-dicarboxylate) is firstly found to be a high-energy anode material for lithium-ion batteries. It shows a high discharge capacity of 573.7 mA h g{sup −1} for the second cycle between a 0.05 and 3.0 V voltage limit at a discharge current density of 500 mA g{sup −1}. The reversible capacity of 457.2 mA h g{sup −1} is remained after 100 cycles with a capacity retention being 79.6%. In addition, it is found that Mn 2,5-pyridinedicarboxyle was also stable anode materials with high capacity.

  20. Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice

    OpenAIRE

    Rochat, Tatiana; Berm?dez-Humar?n, Luis; Gratadoux, Jean-Jacques; Fourage, Christel; Hoebler, Christine; Corthier, G?rard; Langella, Philippe

    2007-01-01

    Abstract Background Human immune cells generate large amounts of reactive oxygen species (ROS) throughout the respiratory burst that occurs during inflammation. In inflammatory bowel diseases, a sustained and abnormal activation of the immune system results in oxidative stress in the digestive tract and in a loss of intestinal homeostasis. We previously showed that the heterologous production of the Lactobacillus plantarum ATCC14431 manganese-dependant catalase (MnKat) in Lb. casei BL23 succe...

  1. Manganese, nickel and strontium bioaccumulation in the tissues of the African sharptooth catfish, Clarias gariepinus from the Olifants River, Kruger National Park

    Directory of Open Access Journals (Sweden)

    Annemarie Avenant-Oldewage

    2000-07-01

    Full Text Available The gills, liver, muscle and skin were collected from Clarias gariepinus, during four surveys (February, May, June and November in 1994 from two sites on the Olifants River in the Kruger National Park. With the use of atomic absorption spectrophotometry, metal concentrations of manganese, nickel and strontium bioaccumulated in these tissues were determined. This information was then used to differentiate between the concentrations found at the two locations and between the four survey periods. The con- centration of the metals were found to be highest in the gills, followed by the liver. This suggests the gills to be the primary uptake tissue for these metals following their intimate blood-water contact. The concentration of manganese and strontium, with particular reference to the gills, showed highest bioaccumulation at Mamba. Very little differences in the nickel concentrations were found at both Mamba and Balule. Water bioconcentration factors for manganese and nickel were much higher than that noted for sediment, suggesting a much lower bioavailability of these metals from the sediment. On the other hand, sediment bioconcentration factors for strontium were generally higher than that for water, which could imply higher bioavailability and concentration from the sediment.

  2. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems

    DEFF Research Database (Denmark)

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan

    2016-01-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese-uptake ......The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron...

  3. Nano-metal Oxides: Exposure and Engineering Control Assessment

    OpenAIRE

    Garcia, Alberto; Sparks, Christopher; Martinez, Kenneth; Topmiller, Jennifer L.; Eastlake, Adrienne; Geraci, Charles L.

    2017-01-01

    This paper discusses the evaluation of a facility that produces high quality engineered nanomaterials. These ENMs consist of various metals including iron, nickel, silver, manganese, and palladium. Although occupational exposure levels are not available for these metals, studies have indicated that it may be prudent to keep exposures to the nano-scale metal as low as possible. Previous In vitro studies indicated that in comparison with a material’s larger (parent) counterpart, nanomaterials c...

  4. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  5. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  6. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Directory of Open Access Journals (Sweden)

    Daret K. St. Clair

    2011-10-01

    Full Text Available The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.

  7. Uptake and transport of manganese in primary and secondary olfactory neurones in pike.

    Science.gov (United States)

    Tjälve, H; Mejàre, C; Borg-Neczak, K

    1995-07-01

    gamma-spectrometry and autoradiography were used to examine the axoplasmic flow of manganese in the olfactory nerves and to study the uptake of the metal in the brain after application of 54Mn2+ in the olfactory chambers of pikes. The results show that the 54Mn2+ is taken up in the olfactory receptor cells and is transported at a constant rate along the primary olfactory neurones into the brain. The maximal velocity for the transported 54Mn2+ was 2.90 +/- 0.21 mm/hr (mean +/- S.E.) at 10 degrees, which was the temperature used in the experiments. The 54Mn2+ accumulated in the entire olfactory bulbs, although most marked in central and caudal parts. The metal was also seen to migrate into large areas of the telencephalon, apparently mainly via the secondary olfactory axons present in the medial olfactory tract. A transfer along fibres of the medial olfactory tract probably also explains the labelling which was seen in the diencephalon down to the hypothalamus. The results also showed that there is a pathway connecting the two olfactory bulbs of the pike and that this can carry the metal. Our data further showed a marked accumulation of 54Mn2+ in the meningeal epithelium and in the contents of the meningeal sacs surrounding the olfactory bulbs. It appears from our study that manganese has the ability to pass the synaptic junctions between the primary and the secondary olfactory neurones in the olfactory bulbs and to migrate along secondary olfactory pathways into the telencephalon and the diencephalon.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Sustainable Disruptions

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Kjær, Lykke Bloch

    2016-01-01

    Since 2012 the Sustainable Disruptions (SD) project at the Laboratory for Sustainability at Design School Kolding (DK) has developed and tested a set of design thinking tools, specifically targeting the barriers to economically, socially, and environmentally sustainable business development....... The tools have been applied in practice in collaboration with 11 small and medium sized companies (SMEs). The study investigates these approaches to further understand how design thinking can contribute to sustainable transition in a business context. The study and the findings are relevant to organizations...... invested in the issue of sustainable business development, in particular the leaders and employees of SMEs, but also to design education seeking new ways to consciously handle and teach the complexity inherent in sustainable transformation. Findings indicate that the SD design thinking approach contributes...

  9. Computational sustainability

    CERN Document Server

    Kersting, Kristian; Morik, Katharina

    2016-01-01

    The book at hand gives an overview of the state of the art research in Computational Sustainability as well as case studies of different application scenarios. This covers topics such as renewable energy supply, energy storage and e-mobility, efficiency in data centers and networks, sustainable food and water supply, sustainable health, industrial production and quality, etc. The book describes computational methods and possible application scenarios.

  10. Redox dynamics of manganese as a mitochondrial life-death switch

    International Nuclear Information System (INIS)

    Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi; Jones, Dean P.

    2017-01-01

    Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca +2 -dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80 th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H 2 O 2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. - Highlights: • Either insufficient or excess manganese activates mitochondria-mediated cell death. • The optimal healthy Mn exposure window is very narrow. • Mitochondrial H 2 O 2 production depends on Mn across physiologic to toxicologic range. • Integrative omics needed to understand

  11. Efficiency of manganese dioxide for the removal of antimony from aqueous solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Najamuddin; Ikram, M.

    1993-01-01

    The sorption of antimony onto manganese dioxide from aqueous solution has been investigated as a function of shaking time, composition of electrolyte, concentration of sorbent and sorbate, Maximum sorption of antimony has been achieved from deionized water after 15 minutes shaking at 45 cm/sup 3/g/sup -1/ V/W ratio. The influence of different anions and cations on the sorption has also been examined. EDTA, tartrate, citrate and Fe(II) decreased the sorption significantly. Among the metal ions tested only Se (IV) has shown strong sorption than antimony whereas Co(II), Hf (IV) and Te(IV) indicated low sorption affinity under similar experimental conditions. The sorption of antimony was also tested by different isotherms. The data fitted only to Freyndlich and D-R models. The sorption capacity of 7.71 m mole g/sup -1/, mean energy of sorption of 8.9 kJ mole/sup -1/ and of B = 0.00632 mole/sup 2/kJ/sup -2/ have been system. It is concluded that manganese dioxide can be used for the removal of antimony from industrial effluents and for its recovery from very dilute solutions. The oxide can also be applied for the separation of antimony, selenium and arsenic from Te(IV). (author)

  12. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Science.gov (United States)

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Dickerson, Aisha S.; Hessabi, Manouchehr; Bressler, Jan; Coore Desai, Charlene; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A.; Grove, Megan L.; Boerwinkle, Eric

    2015-01-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL), 4.4 (2.4 μg/L), 10.9 (9.2 μg/L), and 43.7 (17.7 μg/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  13. A manganese-hydrogen battery with potential for grid-scale energy storage

    Science.gov (United States)

    Chen, Wei; Li, Guodong; Pei, Allen; Li, Yuzhang; Liao, Lei; Wang, Hongxia; Wan, Jiayu; Liang, Zheng; Chen, Guangxu; Zhang, Hao; Wang, Jiangyan; Cui, Yi

    2018-05-01

    Batteries including lithium-ion, lead-acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese-hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of 1.3 V, a rate capability of 100 mA cm-2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of 139 Wh kg-1 (volumetric energy density of 210 Wh l-1), with the theoretical gravimetric energy density of 174 Wh kg-1 (volumetric energy density of 263 Wh l-1) in a 4 M MnSO4 electrolyte. The manganese-hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.

  14. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2015-04-01

    Full Text Available The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL, 4.4 (2.4 μg/L, 10.9 (9.2 μg/L, and 43.7 (17.7 μg/L, respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01. After controlling for maternal education level and socio-economic status (through ownership of a family car, the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01. Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations.

  15. BATTERY RECYCLING: EFFECT OF CURRENT DENSITY ON MANGANESE RECOVERY THROUGH ELECTROLYTIC PROCESS

    Directory of Open Access Journals (Sweden)

    E. R. R. Roriz

    Full Text Available Abstract This work aims to verify the possibility of using depleted batteries as a source of manganese dioxide applying the electrolytic process. An electrolyte solution containing the following metal ions was used: Ca (270 mgL-1, Ni (3.000 mgL-1, Co (630 mgL-1, Mn (115.3 mgL-1, Ti (400 mgL-1 and Pb (20 mgL-1. The production of electrolytic manganese dioxide (EMD was performed through electrolysis at 98 °C (± 2 °C applying different current densities (ranging from 0.61 A.dm-2 to 2.51 A.dm-2. The materials obtained were analyzed through X-ray fluorescence spectrometry, X-ray diffraction, specific surface area (BET and scanning electron microscopy (SEM. The best results regarding the current efficiency, purity grade and specific surface area were obtained with a current density ranging between 1.02 A.dm-2 and 1.39 A.dm-2. The allotropic εMnO2 variety was found in all tests.

  16. Evaluation of chromium, nickel, iron and manganese content in wheat, flour, bran and selected baked products

    Directory of Open Access Journals (Sweden)

    Bawiec Piotr

    2014-06-01

    Full Text Available Considering the nutritional values, breadstuff plays a big part in covering human nourishment needs and constitutes a base of all day diet. Moreover, bread is an excellent source of numerous vitamins and minerals the abundance of which depends on the degree of grinding. Thus, it seems to be very important to know the composition and level of bio-elements. That is why the main target of this study was to evaluate the concentration of selected trace elements: chromium (Cr, nickel (Ni, iron (Fe and manganese (Mn in wheat grain, wheat bran, different wheat and rye flour types and variety of breadstuff also with addition of grains and seeds from different bakeries and mills. Another task was to analyze if the technological process has an influence on secondary despoil of bread goods with heavy metal elements. The analyzed trace elements were measured with a precise and accurate atomic absorption spectrophotometric method (AAS and the results were expressed in mg/kg of selected sample. Obtained results show that bread and grain products are a good source of trace elements like chromium, nickel, iron and manganese. However, the higher levels of chromium and nickel in bread goods could rather be an effect of impurity caused by a technological process in mill and bakeries.

  17. Sustainable Universities

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2011-01-01

    Declarations on Sustainability in Higher Education (SHE) can be viewed as a piece of international regulation. Over the past 30 years research at universities has produced convincing data to warn about deterioration of the environment, resource scarcity and the need for sustainability. This in turn....... Declarations tend to have impact on three trends. Firstly, there is emerging international consensus on the university’s role and function in relation to sustainable development; secondly, the emergence of national legislation, and thirdly, an emerging international competition to be leader in sustainable...

  18. The metal-binding function of metallothioneins and the state of antioxidant defense of carp gills under water pollution by heavy metals

    International Nuclear Information System (INIS)

    Stolyar, O.B.; Fal'fushins'ka, G.Yi.; Arsan, V.O.

    2005-01-01

    To investigate the influence of waterborne heavy metal ions on the metal-binding function of metallothioneins and the antioxidant defence in gills, carp (Cyprinus carpio L.) was exposed to copper, zinc, manganese, and lead ions in environmentally realistic concentrations (0.01, 0.1, 0.12, and 0.01 mg/l, respectively) or their mix for 14 days. The results indicate that the metal poisoning provokes the changes in the copper, manganese, and zinc contents in gills and their distribution among the molecular forms of metallothioneins and another tissue targets

  19. Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yung-Jin; Schwaiger, Luna Kestrel; Booth, Corwin H.; Kukkadapu, Ravi K.; Cristiano, Elena; Kaplan, Daniel; Nitsche, Heino

    2010-03-09

    Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite minerals (Fe1-xMnxOOH) was studied using X-ray absorption spectroscopy. We chose to study the influence of manganese as a minor component in goethite, because goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge structure measurements indicated that essentially all the Mn in the goethite existed as Mn(III), even though Mn was added during mineral synthesis as Mn(II). Importantly, energy dispersive X-ray analysis demonstrated that Mn did not exist as discrete phases and that it was homogeneously mixed into the goethite to within the limit of detection of the method. Furthermore, Mössbauer spectra demonstrated that all Fe existed as Fe(III), with no Fe(II) present. Plutonium(VI) sorption experiments were conducted open to air and no attempt was made to exclude carbonate. The use of X-ray absorption spectroscopy allows us to directly and unambiguously measure the oxidation state of plutonium in situ at the mineral surface. Plutonium X-ray absorption near-edge structure measurements carried out on these samples showed that Pu(VI) was reduced to Pu(IV) upon contact with the mineral. This reduction appears to be strongly correlated with mineral solution pH, coinciding with pH transitions across the point of zero charge of the mineral. Furthermore, extended X-ray absorption fine structure measurements show evidence of direct plutonium binding to the metal surface as an inner-sphere complex. This combination of extensive mineral characterization and advanced spectroscopy suggests that sorption of the plutonium onto the surface of the mineral was followed by reduction of the plutonium at the surface of the mineral to form an inner-sphere complex. Because manganese is often found in the environment as a minor component associated with major mineral components, such as goethite, understanding the molecular-level interactions of plutonium with

  20. Mercury distribution characteristics in primary manganese smelting plants

    International Nuclear Information System (INIS)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-01-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1–99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. - Graphical abstract: 1. Lack of data on mercury (Hg) distribution in manganese smelters. 2. Mass distribution of Hg released from 3 plants (as normalized values) were made as follows by measurements. 3. Information of distribution of Hg in Manganese smelters would be used for emission in to air and releases to other streams for the nation and globe in UNEP mercury report. - Highlights: • The mass balance study by on-site measurement from primary manganese smelting plants was made at first time in the world. • Hg distribution and main input and release pathways of Hg from primary manganese smelting plants could be found as the first time. • Gas temperature in bag filter affects Hg behavior and speciation changes in APCDs. • National inventory of Hg emssion has been updated with new data. - Mercury distribution in manganese smelting plant was investigated as the first measurements at commercial plants in the world. National Hg release

  1. Quantification of manganese in human hand bones: a feasibility study

    International Nuclear Information System (INIS)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E

    2008-01-01

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4π geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The 26 Mg(n,γ) 27 Mg reaction produces γ-rays of 0.843 MeV from the decay of 27 Mg, which interfere with the 0.847 MeV γ-rays from the decay of 56 Mn, produced by the 55 Mn(n,γ) 56 Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection limit in the hand of human subjects of 1.6

  2. Quantification of manganese in human hand bones: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada)], E-mail: aslamib@mcmaster.ca

    2008-08-07

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4{pi} geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The {sup 26}Mg(n,{gamma}){sup 27}Mg reaction produces {gamma}-rays of 0.843 MeV from the decay of {sup 27}Mg, which interfere with the 0.847 MeV {gamma}-rays from the decay of {sup 56}Mn, produced by the {sup 55}Mn(n,{gamma}){sup 56}Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection

  3. Manganese and acute paranoid psychosis: a case report

    Directory of Open Access Journals (Sweden)

    Egger Jos I

    2011-04-01

    Full Text Available Abstract Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later, several organ systems may be affected and, due to neurotoxicity, an atypical parkinsonian syndrome may emerge. With regard to neuropsychiatry, an array of symptoms may develop up to 30 years after intoxication, of which gait and speech abnormalities, cognitive and motor slowing, mood changes and hallucinations are the most common. Psychotic phenomena are rarely reported. Case presentation We describe the case of a 49-year-old Caucasian man working as a welder who was referred to our facility for evaluation of acute paranoid psychotic behavior. Our patient's medical history made no mention of any somatic complaints or psychiatric symptoms, and he had been involved in a professional career as a metalworker. On magnetic resonance imaging scanning of his brain, a bilateral hyperdensity of the globus pallidus, suggestive for manganese intoxication, was found. His manganese serum level was 52 to 97 nmol/L (range: 7 to 20 nmol/L. A diagnosis of organic psychotic disorder due to manganese overexposure was made. His psychotic symptoms disappeared within two weeks of treatment with low-dose risperidone. At three months later, serum manganese was decreased to slightly elevated levels and the magnetic resonance imaging T1 signal intensity was reduced. No signs of Parkinsonism were found and a definite diagnosis of manganese-induced apathy syndrome was made. Conclusion Although neuropsychiatric and neurological symptoms caused by (chronic manganese exposure have been reported frequently in the past, in the present day the disorder is rarely diagnosed. In this report we stress that manganese intoxication can still occur, in our case in a confined

  4. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis.

    Science.gov (United States)

    Crump, Katie E; Bainbridge, Brian; Brusko, Sarah; Turner, Lauren S; Ge, Xiuchun; Stone, Victoria; Xu, Ping; Kitten, Todd

    2014-06-01

    Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O(2). SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn(2+) or removal of O(2). Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant's growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms. © 2014 John Wiley & Sons Ltd.

  5. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  6. [Factors affecting biological removal of iron and manganese in groundwater].

    Science.gov (United States)

    Xue, Gang; He, Sheng-Bing; Wang, Xin-Ze

    2006-01-01

    Factors affecting biological process for removing iron and manganese in groundwater were analyzed. When DO and pH in groundwater after aeration were 7.0 - 7.5 mg/L and 6.8 - 7.0 respectively, not only can the activation of Mn2+ oxidizing bacteria be maintained, but also the demand of iron and manganese removal can be satisfied. A novel inoculating approach of grafting mature filter material into filter bed, which is easier to handle than selective culture media, was employed in this research. However, this approach was only suitable to the filter material of high-quality manganese sand with strong Mn2+ adsorption capacity. For the filter material of quartz sand with weak adsorption capacity, only culturing and domesticating Mn2+ oxidizing bacteria by selective culture media can be adopted as inoculation in filter bed. The optimal backwashing rate of biological filter bed filled with manganese sand and quartz sand should be kept at a relatively low level of 6 - 9 L/(m2 x s) and 7 -11 L/( m2 x s), respectively. Then the stability of microbial phase in filter bed was not disturbed, and iron and manganese removal efficiency recovered in less than 5h. Moreover, by using filter material with uniform particle size of 1.0 - 1.2 mm in filter bed, the filtration cycle reached as long as 35 - 38h.

  7. The sorption of silver by poorly crystallized manganese oxides

    Science.gov (United States)

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  8. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  9. Sustainable Utilization of Bio waste towards the Green Synthesis of Nanoparticles and its Utility in the Naked Eye Detection of Metals Coupled with its Larvicidal and Antimicrobial Properties

    Science.gov (United States)

    Nikhila, P. S.; Satheesh, Namitha; Sreejitha, V. S.; Pillai, Anandu R.; Saritha, A.; Smitha Chandran, S.

    2018-02-01

    Green synthesis of nanoparticles has become a prominent zone of attention in the field of nanotechnology, as it is a nontoxic, economically feasible and green approach. In the present work we have developed an eco-friendly and zero cost method for the synthesis of silver nanoparticles using common a bio waste banana blossom peel. The well-known characteristic phenomenon of surface Plasmon resonance (SPR) has been exploited towards the characterization of the green synthesized nanoparticles. The aforementioned nanoparticles were characterized by UV spectroscopy and the behaviour of these particles towards naked eye detection of metal ions were observed. The sensitivity of the nanoparticles towards the detection of metal ions was carefully monitored by the shift in the SPR band. Moreover the larvicidal potential of these green synthesized silver nanoparticles were evaluated as per WHO standards. The synthesized silver nanoparticles were found to be an effective antibacterial agent against Gram negative bacteria-E.coli. The method we followed for the synthesis of silver nanoparticles is economically feasible as well as environment friendly and also capable of rapid synthesis of nanoparticles at ambient conditions.

  10. Solvent extractions applications to hydrometallurgy. Pt.III: Nickel, cobalt, manganese and ocean nodules

    International Nuclear Information System (INIS)

    Amer, S.

    1981-01-01

    The main applications of solvent extraction to the hydrometallurgy of nickel, cobalt, manganese and manganese rich ocean nodules, which also contain nickel, cooper and cobalt, are exposed. A short description of the processes with commercial applications is made. (author)

  11. Effects of dietary manganese contents on 54Mn metabolism in mice

    International Nuclear Information System (INIS)

    Sato, I.; Matsusaka, N.; Kobayashi, H.; Nishimura, Y.

    1996-01-01

    Several parameters of 54 Mn metabolism were noted in mice maintained on diets with manganese contents of 80 to 8000 mg/kg. Excretion of 54 Mn was promoted as the dietary manganese contents increased. Clearance of 54 Mn from the liver, kidneys, pancreas, and spleen was markedly accelerated by feeding mice a high-manganese diet, but clearance from the muscles, femurs, and brain was relatively insensitive to the dietary manganese. Manganese concentrations in the tissue were regulated homoestatically upto the dietary manganese content of 2400 mg/kg, but marked accumulations of manganese occurred when mice were given 8000 mg/kg diet. No toxic symptoms were found up to the 2400 mg/kg diet, but consumption of the 8000 mg/kg diet was less than for other diets. These results suggest that an oral intake of excess manganese is effective for promoting the excretion of 54 Mn from a body contaminated with this isotope. (author)

  12. The complex compounds of manganese (II) with poly dental ligands and polyhedron borane anions

    International Nuclear Information System (INIS)

    Buranova, S.A.

    1996-01-01

    The purpose of the present work is synthesis of complex compounds of manganese with organic ligands. Their studying by spectroscopic methods purposely to determinate the influence of borane anions on composition and structure of coordinating sphere of manganese

  13. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  14. Sustainable Transition

    DEFF Research Database (Denmark)

    Hansen, Ole Erik; Søndergård, Bent

    2014-01-01

    of agendas/vision, technologies, actors and institutions in the emergent design of an urban mobility system based on an electric car sharing system. Why. Designing for sustainability is a fundamental challenge for future design practices; designers have to obtain an ability to contribute to sustainable...

  15. Sustainable transformation

    DEFF Research Database (Denmark)

    Andersen, Nicolai Bo

    This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuil...

  16. Sustainability Labeling

    NARCIS (Netherlands)

    Dam, van Y.K.

    2017-01-01

    Sustainability labeling originated from a need to protect the identity of alternative systems of food production and to increase market transparency. From the 1980s onwards sustainability labeling has changed into a policy instrument replacing direct government regulation of the food market, and a

  17. Determination of Manganese, Copper, Cadmium and Lead by FAAS after Solid-Phase Extraction of Their Phenylpiperazine Dithiocarbamate Complexes on Activated Carbon

    OpenAIRE

    CESUR, Hasan

    2014-01-01

    A solid-phase extraction method was developed for the pre-concentration of manganese, copper, cadmium and lead in water samples prior to their determination by flame atomic absorption spectrometry using phenylpiperazine dithiocarbamate as a new reagent. The optimum pre-concentration conditions have been investigated such as pH, volume of sample solution and the effects of some matrix elements. The obtained recovery was nearly 90 to 100, while the enrichment factor was 400 for metal s...

  18. Afterschool Sustainability

    Directory of Open Access Journals (Sweden)

    Hilary D. Joyce

    2014-12-01

    Full Text Available Youth participation in quality extended learning opportunities (ELOs results in positive academic, physical, mental health, and social/emotional outcomes. Funding is essential to implementing and sustaining quality ELOs; however multiple funding barriers and challenges exist. Understanding the types of funds available for ELOs and the factors that influence sustainability is critical. Through surveys and telephone interviews of ELO providers, this descriptive study identified and examined ELO funding streams, the ways ELO providers use these funding streams, and the barriers and challenges to sustainability. ELO programs often relied on one major funding stream coupled with nutrition supports as well as in-kind resources. Barriers to sustainability included year-to-year funding, transportation costs, reducing community partnerships, and difficulty in diversifying funds. Recommendations to enhance ELO sustainability are offered, particularly in relation to overcoming the challenges to diversification of funding resources and establishing mutually supportive partnerships and collaboration.

  19. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H

    Directory of Open Access Journals (Sweden)

    Mohamed E. Goher

    2015-01-01

    Full Text Available The removal of aluminum, iron and manganese from some pollution sources that drain into Ismailia Canal has been investigated using two different sorbents; granular activated carbon (GAC and Amberlite IR-120H (AIR-120H. Batch equilibrium experiments showed that the two sorbents have maximum removal efficiency for aluminum and iron pH 5 and 10 min contact time in ambient room temperature, while pH 7 and 30 min were the most appropriate for manganese removal. Dosage of 2 g/l for both GAC and AIR-120H was established to give the maximum removal capacity. At optimum conditions, the removal trend was in order of Al+3 > Fe+2 > Mn+2 with 99.2, 99.02 and 79.05 and 99.55, 99.42 and 96.65% of metal removal with GAC and AIR-120H, respectively. For the three metals, Langmuir and Freundlich isotherms showed higher R2 values, with a slightly better fitting for the Langmuir model. In addition, separation factors (RL and exponent (n values indicated favorable Langmuir (0 < RL < 1 and Freundlich (1 < n < 10 approach. GAC and AIR-120H can be used as excellent alternative, effective and inexpensive materials to remove high amounts of heavy metals from waste water.

  20. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip; Tan, Hua; Polshettiwar, Vivek

    2012-01-01

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  1. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip

    2012-11-06

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  2. Efficacies of manganese chloride and Ca-DTPA for the elimination of incorporated manganese-54 in mice

    International Nuclear Information System (INIS)

    Sato, Itaru; Matsusaka, Naonori; Shinagawa, Kunihiro; Kobayashi, Haruo; Nishimura, Yoshikazu.

    1993-01-01

    Efficacies of manganese chloride and Ca-DTPA (calcium diethylenetriaminepentaacetic acid) for the elimination of incorporated 54 Mn were investigated in mice. Each mouse was given an intraperitoneal injection of 54 Mn and initial whole-body radioactivity was measured immediately. Manganese chloride (10 mg-Mn/kg) or Ca-DTPA (10 or 100 mg/kg) was injected intraperitoneally once or repeatedly at various times after 54 Mn injection. Efficacies for elimination were estimated by measuring the whole body retention of 54 Mn for 14 or 21 days. A single injection of manganese chloride eliminated more than 80% of the incorporated 54 Mn when it was injected within 24 h after the injection of 54 Mn. Although the efficacy was decreased with the passage of time after the injection of 54 Mn, about 50% was still eliminated after 14 days. Repeated injection of this agent raised the efficacy, but the second or later injection was less effective than the first injection. Ca-DTPA eliminated the incorporated 54 Mn by 57% for 100 mg/kg and by 19% for 10 mg/kg when it was injected after 3 h. But after 6 h or later, Ca-DTPA had little efficacy. These results indicate that manganese chloride is very effective to eliminate the 54 Mn from accidentally contaminated persons and the efficacy of Ca-DTPA is less than that of manganese chloride. (author)

  3. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals.

    Science.gov (United States)

    Francis, C A; Tebo, B M

    1999-08-01

    The oxidation of soluble manganese(II) to insoluble Mn(III,IV) oxide precipitates plays an important role in the environment. These Mn oxides are known to oxidize numerous organic and inorganic compounds, scavenge a variety of other metals on their highly charged surfaces, and serve as electron acceptors for anaerobic respiration. Although the oxidation of Mn(II) in most environments is believed to be bacterially-mediated, the underlying mechanisms of catalysis are not well understood. In recent years, however, the application of molecular biological approaches has provided new insights into these mechanisms. Genes involved in Mn oxidation were first identified in our model organism, the marine Bacillus sp. strain SG-1, and subsequently have been identified in two other phylogenetically distinct organisms, Leptothrix discophora and Pseudomonas putida. In all three cases, enzymes related to multicopper oxidases appear to be involved, suggesting that copper may play a universal role in Mn(II) oxidation. In addition to catalyzing an environmentally important process, organisms capable of Mn(II) oxidation are potential candidates for the removal, detoxification, and recovery of metals from the environment. The Mn(II)-oxidizing spores of the marine Bacillus sp. strain SG-1 show particular promise, due to their inherent physically tough nature and unique capacity to bind and oxidatively precipitate metals without having to sustain growth.

  4. Green Approach in the Bio-removal of Heavy Metals from wastewaters

    Directory of Open Access Journals (Sweden)

    Gani Paran

    2017-01-01

    Full Text Available Cultivation of microalgae has been suggested as a green approach for a sustainable wastewater treatment especially heavy metal bioremediation. This study investigated the bio-removal of zinc (Zn, iron (Fe, cadmium (Cd and manganese (Mn from domestic wastewater (DW and food processing wastewater (FW using green microalgae, Botryococcus sp.. The total of five treatments represented by five different cell concentrations (1×103, 1×104, 1×105, 1×106 and 1×107 cells/mL of Botryococcus sp. in the wastewaters medium. The results revealed high removal efficiency of Zn, Fe, Cd and Mn after 18 days of the culture compared to control (wastewaters without algae. In DW , Zn, Fe, Cd and Mn were successfully removed at the highest efficiencies up to 71.5%, 51.2%, 83.5% and 97.2%, respectively while in FW, the same metal concentrations were reduced by up to 64.4%, 53.3%, 52.9% and 26.7%, respectively. Overall, most of the algae cell concentrations tested were successfully reducing the metals contaminant presence in both wastewaters and provides a baseline for further phycoremediation coupled with biomass production.

  5. Lithium ion adsorptive properties of spinel-type manganese oxide obtained from MnOOH and Li2CO3

    International Nuclear Information System (INIS)

    Ooi, Kenta; Miyai, Yoshitaka; Katoh, Shunsaku; Abe, Mitsuo.

    1991-01-01

    Spinel-type manganese oxides were prepared by heating a mixture of MnOOH and Li 2 CO 3 (Li/Mn = 0.5) at different temperatures followed by an acid treatment with a HCl solution. Their adsorptive properties for alkali metal ions were investigated by measurement of distribution coefficient (Kd) and by pH titration. The adsorptive properties varied depending on the heating temperature. The sample obtained at 400degC showed the highest Li + adsorptivity from seawater. (author)

  6. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Rodríguez-Barranco, Miguel; Lacasaña, Marina; Aguilar-Garduño, Clemente; Alguacil, Juan; Gil, Fernando; González-Alzaga, Beatriz; Rojas-García, Antonio

    2013-01-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  7. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Barranco, Miguel [Andalusian School of Public Health (EASP), Granada (Spain); Lacasaña, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.es [Andalusian School of Public Health (EASP), Granada (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Aguilar-Garduño, Clemente [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Centre Superior d' Investigació en Salut Pública, Conselleria de Sanitat, Valencia (Spain); Alguacil, Juan [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Biology and Public Health, University of Huelva, Huelva (Spain); Gil, Fernando [Department of Legal Medicine and Toxicology, University of Granada, Granada (Spain); González-Alzaga, Beatriz [Andalusian School of Public Health (EASP), Granada (Spain); Rojas-García, Antonio [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2013-06-01

    The aim of this study was to analyse the scientific evidence published to date on the potential effects on neurodevelopment and behavioural disorders in children exposed to arsenic, cadmium and manganese and to quantify the magnitude of the effect on neurodevelopment by pooling the results of the different studies. We conducted a systematic review of original articles from January 2000 until March 2012, that evaluate the effects on neurodevelopment and behavioural disorders due to pre or post natal exposure to arsenic, cadmium and manganese in children up to 16 years of age. We also conducted a meta-analysis assessing the effects of exposure to arsenic and manganese on neurodevelopment. Forty-one articles that evaluated the effects of metallic elements on neurodevelopment and behavioural disorders met the inclusion criteria: 18 examined arsenic, 6 cadmium and 17 manganese. Most studies evaluating exposure to arsenic (13 of 18) and manganese (14 of 17) reported a significant negative effect on neurodevelopment and behavioural disorders. Only two studies that evaluated exposure to cadmium found an association with neurodevelopmental or behavioural disorders. The results of our meta-analysis suggest that a 50% increase of arsenic levels in urine would be associated with a 0.4 decrease in the intelligence quotient (IQ) of children aged 5–15 years. Moreover a 50% increase of manganese levels in hair would be associated with a decrease of 0.7 points in the IQ of children aged 6–13 years. There is evidence that relates arsenic and manganese exposure with neurodevelopmental problems in children, but there is little information on cadmium exposure. Few studies have evaluated behavioural disorders due to exposure to these compounds, and manganese is the only one for which there is more evidence of the existence of association with attention deficit disorder with hyperactivity. - Highlights: • We evaluated the association between As, Cd and Mn with neurodevelopment in

  8. Contribution of arginase to manganese metabolism of Aspergillus niger.

    Science.gov (United States)

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.

  9. Factors affecting radium removal using mixed iron-manganese oxides

    International Nuclear Information System (INIS)

    Mott, H.V. Singh, S.; Kondapally, V.R.

    1993-01-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment

  10. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  11. Factors affecting radium removal using mixed iron-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mott, H.V. Singh, S.; Kondapally, V.R. (South Dakota School of Mines and Technology, Rapid City, SD (United States))

    1993-10-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment.

  12. Preparation of the electrochemically formed spinel-lithium manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Katsumi; Wada, Kohei; Kajiki, Yoshiyuki; Yamamoto, Akiko [Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamotokoriyama, Nara 639-1080 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2009-04-01

    Electrochemically formed spinel-lithium manganese oxides were synthesized from manganese hydroxides prepared by a cathodic electrochemical precipitation from various concentrations of manganese nitrate solutions. Two types of manganese hydroxides were formed from diluted and concentrated Mn(NO{sub 3}){sub 2} aqueous solutions. Uniform and equi-sized disk shaped Mn(OH){sub 2} crystals of 0.2-5 {mu}m in diameter were obtained on a Pt substrate after the electrochemical precipitation from lower concentration of ranging from 2 mmol dm{sup -3} to 2 mol dm{sup -3} Mn(NO{sub 3}){sub 2} aq., while the grass blade-like precipitate which is ascribed to manganese hydroxide with 20-80 {mu}m long and 1-5 {mu}m wide were formed from concentrated Mn(NO{sub 3}){sub 2} aq. Both manganese hydroxides gave the electrochemically formed spinel-LiMn{sub 2}O{sub 4} onto a Pt sheet, which is ready for electrochemical measurement, after calcination of the Li incorporated precipitate at 750 C without any additives. While the shape and size of the secondary particle frameworks (aggregates) of the electrochemically formed spinel-LiMn{sub 2}O{sub 4} can be controlled by the electrolysis conditions, the nanostructured primary crystals of 200 nm in diameter were obtained in all cases except that the fiber-like nanostructured spinel-LiMn{sub 2}O{sub 4} crystals with 200 nm in diameter were obtained from concentrated Mn(NO{sub 3}){sub 2} aq. Though these two types of electrochemically formed spinel-LiMn{sub 2}O{sub 4} showed well-shaped CVs even in higher scan rates, it would be suitable for high power density battery applications. These behaviors are assumed to be ascribed to the crystal size and shape of the processed spinel-LiMn{sub 2}O{sub 4}. (author)

  13. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  14. Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals.

    Science.gov (United States)

    Azadmanesh, Jahaun; Trickel, Scott R; Weiss, Kevin L; Coates, Leighton; Borgstahl, Gloria E O

    2017-04-01

    Superoxide dismutases (SODs) are enzymes that protect against oxidative stress by dismutation of superoxide into oxygen and hydrogen peroxide through cyclic reduction and oxidation of the active-site metal. The complete enzymatic mechanisms of SODs are unknown since data on the positions of hydrogen are limited. Here, methods are presented for large crystal growth and neutron data collection of human manganese SOD (MnSOD) using perdeuteration and the MaNDi beamline at Oak Ridge National Laboratory. The crystal from which the human MnSOD data set was obtained is the crystal with the largest unit-cell edge (240 Å) from which data have been collected via neutron diffraction to sufficient resolution (2.30 Å) where hydrogen positions can be observed.

  15. Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces

    Directory of Open Access Journals (Sweden)

    Florian Rückerl

    2017-08-01

    Full Text Available Manganese phthalocyanine (MnPc is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity. These can be exploited to prepare particular compounds and interfaces with appropriate partners, which are characterized by a charge transfer from or to MnPc. We summarize recent spectroscopic and theoretical results that have been achieved in this regard.

  16. Mineral deposits of Central America, with a section on manganese deposits of Panama

    Science.gov (United States)

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  17. Hydrous manganese oxide-polyacrylonitrile (HMO-PAN) composite for the treatment of radioactive laundry wastewater

    International Nuclear Information System (INIS)

    Sanghwa Oh; Won Sik Shin; Sang-June Choi

    2015-01-01

    Hydrous manganese oxide-polyacrylonitrile (HMO-PAN) composite was applied for the removal of Co 2+ , Sr 2+ and Cs + from radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto HMO-PAN were investigated. The maximum sorption capacity was in the order of Co 2+ (0.573) > Cs + (0.551) > Sr 2+ (0.310 mmol g -1 ). Sorption of the metals occurred via physical adsorption due to weak van der Waals force and ion exchange with Mn 2+ in HMO-PAN. Sorption behaviors were not related to the types of the surfactants. Among the tested surfactants, SDBS and SOBS remarkably increased the distribution coefficient of Co 2+ and Sr 2+ , respectively. (author)

  18. Statistical Optimization of Synthesis of Manganese Carbonates Nanoparticles by Precipitation Methods

    International Nuclear Information System (INIS)

    Javidan, A.; Rahimi-Nasrabadi, M.; Davoudi, A.A.

    2011-01-01

    In this study, an orthogonal array design (OAD), OA9, was employed as a statistical experimental method for the controllable, simple and fast synthesis of manganese carbonate nanoparticle. Ultrafine manganese carbonate nanoparticles were synthesized by a precipitation method involving the addition of manganese ion solution to the carbonate reagent. The effects of reaction conditions, for example, manganese and carbonate concentrations, flow rate of reagent addition and temperature, on the diameter of the synthesized manganese carbonate nanoparticle were investigated. The effects of these factors on the width of the manganese carbonate nanoparticle were quantitatively evaluated by the analysis of variance (ANOVA). The results showed that manganese carbonate nanoparticle can be synthesized by controlling the manganese concentration, flow rate and temperature. Finally, the optimum conditions for the synthesis of manganese carbonate nanoparticle by this simple and fast method were proposed. The results of ANOVA showed that 0.001 mol/ L manganese ion and carbonate reagents concentrations, 2.5 mL/ min flow rate for the addition of the manganese reagent to the carbonate solution and 0 degree Celsius temperature are the optimum conditions for producing manganese carbonate nanoparticle with 75 ± 25 nm width. (author)

  19. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  20. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  1. Metal acquisition and virulence in Brucella

    Science.gov (United States)

    Roop, R. Martin

    2013-01-01

    Similar to other bacteria, Brucella strains require several biologically essential metals for their survival in vitro and in vivo. Acquiring sufficient levels of some of these metals, particularly iron, manganese and zinc, is especially challenging in the mammalian host, where sequestration of these micronutrients is a well-documented component of both the innate and acquired immune responses. This review describes the Brucella metal transporters that have been shown to play critical roles in the virulence of these bacteria in experimental and natural hosts. PMID:22632611

  2. Determination of the oxidizing capacity of manganese ores.

    Science.gov (United States)

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  3. Biostimulation strategies to enhance manganese removal in drinking water biofilters

    DEFF Research Database (Denmark)

    Breda, Inês Lousinha Ribeiro; Ramsay, Loren; Søborg, Ditte

    to national drinking water criteria. The period during which virgin filter media matures into a fully functional biofilter is designated as the start-up period. The duration of a start-up for efficient manganese removal varies from weeks to more than a year. The aim of this study was to investigate...... growth and activity of specific bacteria. Biostimulation of virgin media to enhance initial manganese removal using different amendments strategies is possible especially in the early stages of filter development whereas autocatalytic processes appear to become dominant with time. The complex...

  4. Manganese removal from mine waters - investigating the occurrence and importance of manganese carbonates

    International Nuclear Information System (INIS)

    Bamforth, Selina M.; Manning, David A.C.; Singleton, Ian; Younger, Paul L.; Johnson, Karen L.

    2006-01-01

    Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate

  5. Environmental contamination and human exposure to manganese--contribution of methylcyclopentadienyl manganese tricarbonyl in unleaded gasoline.

    Science.gov (United States)

    Zayed, J; Vyskocil, A; Kennedy, G

    1999-01-01

    The organomanganese compound MMT (methylcyclopentadienyl manganese tricarbonyl), an antiknock additive in unleaded gasoline, has been used in Canada since 1976. Indeed, Canada is the only country where MMT is almost exclusively used. In October 1995, by court decision the Environmental protection Agency (EPA) granted Ethyl's waiver for the use of MMT in the United States. Paradoxically, in 1997 the federal government of Canada adopted a law (C-29) that banned both the interprovincial trade and the importation for commercial purposes of manganese-based substances, including MMT. However, MMT is currently widely used in Canada because of substantial stockpiling, and six Canadian provinces are challenging the law in the courts. Moreover, MMT has been approved for use in Argentina, Australia, Bulgaria, Russia, and conditionally, in New Zealand. It has been suggested by some scientists that combustion of MMT may be a significant source of exposure to inorganic Mn in urban areas. The crucial question is whether Mn contamination from industrial sources combined with the additional contamination that would result from the widespread use of MMT would lead to toxic effects. Our research efforts have attempted to assess the environmental/ecosystem Mn contamination arising from the combustion of MMT in abiotic and biotic systems as well as human exposure. The experimental evidence acquired so far provides useful information on certain environmental consequences of the use of MMT as well as raising a number of questions. Our results gave evidence indicating that roadside air, soils, plants, and animals may be contaminated by Mn. As well, some specific groups of the population could have a higher level of exposure to Mn. Nevertheless, the levels of exposure remain below international guide values. Further studies and further characterization of dose-response relationships are thus needed to provide successful implementation of evidence-based risk-assessment approaches.

  6. Development of novel nonvolatile memory devices using the colossal magnetoresistive oxide praseodymium-calcium-manganese trioxide

    Science.gov (United States)

    Papagianni, Christina

    Pr0.7Ca0.3MnO3 (PCMO) manganese oxide belongs in the family of materials known as transition metal oxides. These compounds have received increased attention due to their perplexing properties such as Colossal Magnetoresistance effect, Charge-Ordered phase, existence of phase-separated states etc. In addition, it was recently discovered that short electrical pulses in amplitude and duration are sufficient to induce reversible and non-volatile resistance changes in manganese perovskite oxide thin films at room temperature, known as the EPIR effect. The existence of the EPIR effect in PCMO thin films at room temperature opens a viable way for the realization of fast, high-density, low power non-volatile memory devices in the near future. The purpose of this study is to investigate, optimize and understand the properties of Pr0.7Ca0.3MnO 3 (PCMO) thin film devices and to identify how these properties affect the EPIR effect. PCMO thin films were deposited on various substrates, such as metals, and conducting and insulating oxides, by pulsed laser and radio frequency sputtering methods. Our objective was to understand and compare the induced resistive states. We attempted to identify the induced resistance changes by considering two resistive models to be equivalent to our devices. Impedance spectroscopy was also utilized in a wide temperature range that was extended down to 70K. Fitted results of the temperature dependence of the resistance states were also included in this study. In the same temperature range, we probed the resistance changes in PCMO thin films and we examined whether the phase transitions affect the EPIR effect. In addition, we included a comparison of devices with electrodes consisting of different size and different materials. We demonstrated a direct relation between the EPIR effect and the phase diagram of bulk PCMO samples. A model that could account for the observed EPIR effect is presented.

  7. Hydrothermal synthesis of silico-manganese nanohybrid for Cu(II) adsorption from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qiufeng, E-mail: zhuqiufeng@th.btbu.edu.cn; Wang, Liting; An, Zehuan; Ye, Hong; Feng, Xudong

    2016-05-15

    Highlights: • A novel silico-manganese nanohybrid adsorbent (SMNA) was synthesized by a hydrothermal method. • The adsorption capacities of the SMNA for Cu(II) are lower pH dependency. • As-adsorbents are very efficient at low metal concentration and substantial amounts of Cu(II) can be removed from aqueous solution. - Abstract: A novel silico-manganese nanohybrid adsorbent (SMNA) was synthesized by a facile hydrothermal method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR) and zeta potential measurement. The adsorption of Cu(II) ions from aqueous solution on the SMNA was investigated with variations in contact time, pH and initial Cu(II) concentration. The results showed that hydrothermal method would generate nanowire/nanorod incomplete crystallite (δ-MnO{sub 2}) adsorbent. The adsorption of Cu(II) onto SMNA increased sharply within 25 min and reached equilibrium gradually. The maximum adsorption capacities of SMNA for Cu(II) were ∼40–88 mg g{sup −1}, which was lower than δ-MnO{sub 2} (92.42 mg g{sup −1}) but had a lower pH dependency. As compared with δ-MnO{sub 2}, higher adsorption capacities of SMNA (7.5–15 wt% of silica doping amount) for Cu(II) could be observed when pH of the aqueous solution was low (<4). The pseudo-second-order model was the best choice to describe the adsorption behavior of Cu(II) onto SMNA, suggesting that the removal of Cu(II) by the as-prepared adsorbents was dominated by migration of Cu(II). The possibility of Cu(II) recovery was also investigated and it revealed that SMNA was a promising recyclable adsorbent for removal of heavy metal ions in water and wastewater treatment.

  8. Sustainable Cities

    DEFF Research Database (Denmark)

    Georg, Susse; Garza de Linde, Gabriela Lucía

    Judging from the number of communities and cities striving or claiming to be sustainable and how often eco-development is invoked as the means for urban regeneration, it appears that sustainable and eco-development have become “the leading paradigm within urban development” (Whitehead 2003....../assessment tool. The context for our study is urban regeneration in one Danish city, which had been suffering from industrial decline and which is currently investing in establishing a “sustainable city”. Based on this case study we explore how the insights and inspiration evoked in working with the tool...

  9. Lysosome-related organelles as mediators of metal homeostasis.

    Science.gov (United States)

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2014-10-10

    Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Pathophysiology of Manganese-Associated Neurotoxicity

    Science.gov (United States)

    Racette, Brad A.; Aschner, Michael; Guilarte, Tomas R.; Dydak, Ulrike; Criswell, Susan R.; Zheng, Wei

    2012-01-01

    Conference Summary Manganese (Mn) is a well established neurotoxin associated with specific damage to the basal ganglia in humans. The phenotype associated with Mn neurotoxicity was first described in two workers with occupational exposure to Mn oxide.(Couper, 1837) Although the description did not use modern clinical terminology, a parkinsonian illness characterized by slowness of movement (bradykinesia), masked facies, and gait impairment (postural instability) appears to have predominated. Nearly 100 years later an outbreak of an atypical parkinsonian illness in a Chilean Mn mine provided a phenotypic description of a fulminant neurologic disorder with parkinsonism, dystonia, and neuropsychiatric symptoms.(Rodier J, 1955) Exposures associated with this syndrome were massive and an order of magnitude greater than modern exposures.(Rodier J, 1955; Hobson et al., 2011) The clinical syndrome associated with Mn neurotoxicity has been called manganism. Modern exposures to Mn occur primarily through occupations in the steel industry and welding. These exposures are often chronic and varied, occurring over decades in the healthy workforce. Although the severe neurologic disorder described by Rodier and Couper are no longer seen, several reports have suggested a possible increased risk of neurotoxicity in these workers.(Racette et al., 2005b; Bowler et al., 2007; Harris et al., 2011) Based upon limited prior imaging and pathologic investigations into the pathophysiology of neurotoxicity in Mn exposed workers,(Huang et al., 2003) many investigators have concluded that the syndrome spares the dopamine system distinguishing manganism from Parkinson disease (PD), the most common cause of parkinsonism in the general population, and a disease with characteristic degenerative changes in the dopaminergic system.(Jankovic, 2005) The purpose of this symposium was to highlight recent advances in the understanding of the pathophysiology of Mn associated neurotoxicity from C. elegans

  11. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  13. Agriculture: Sustainability

    Science.gov (United States)

    Sustainability creates and maintains the conditions under which humans and nature can exist in productive harmony, that permit fulfilling the food, feed, and fiber needs of our country and the social, economic and other requirements.

  14. Sustainable consumption

    DEFF Research Database (Denmark)

    Prothero, Andrea; Dobscha, Susan; Freund, Jim

    2011-01-01

    This essay explores sustainable consumption and considers possible roles for marketing and consumer researchers and public policy makers in addressing the many sustainability challenges that pervade our planet. Future research approaches to this interdisciplinary topic need to be comprehensive...... and systematic and will benefit from a variety of different perspectives. There are a number of opportunities for future research, and three areas are explored in detail. First, the essay considers the inconsistency between the attitudes and behaviors of consumers with respect to sustainability; next, the agenda...... is broadened to explore the role of individual citizens in society; and finally, a macro institutional approach to fostering sustainability is explored. Each of these areas is examined in detail and possible research avenues and public policy initiatives are considered within each of these separate...

  15. Sustainable Futures

    Science.gov (United States)

    Sustainable Futures is a voluntary program that encourages industry to use predictive models to screen new chemicals early in the development process and offers incentives to companies subject to TSCA section 5.

  16. Sustainability reporting

    NARCIS (Netherlands)

    Kolk, A.

    2005-01-01

    This article gives an overview of developments in sustainability (also sometimes labelled corporate social responsibility) reporting. The article will first briefly indicate how accountability on social and environmental issues started, already in the 1970s when social reports were published.

  17. Sustainable transformation

    DEFF Research Database (Denmark)

    Andersen, Nicolai Bo

    This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuilt......, that it can be adapted to changing functional needs, and that it has an architectural and cultural value. A specific proposal for a transformation that enhances the architectural qualities and building heritage values of an existing building forms the empirical material, which is discussed using different...... theoretical lenses. It is proposed that three parameters concerning the ꞌtransformabilityꞌ of the building can contribute to a more nuanced understanding of sustainable transformation: technical aspects, programmatic requirements and narrative value. It is proposed that the concept of ꞌsustainable...

  18. Sustainable Consumption

    DEFF Research Database (Denmark)

    Røpke, Inge

    2015-01-01

    The intention of this chapter is to explore the role of consumption and consumers in relation to sustainability transition processes and wider systemic transformations. In contrast to the individualistic focus in much research on sustainable consumption, the embeddedness of consumption activities...... in wider social, economic and technological frameworks is emphasised. In particular, the chapter is inspired by practice theory and transition theory. First, various trends in consumption are outlined to highlight some of the challenges for sustainability transitions. Then, it is discussed how consumption...... patterns are shaped over time and what should be considered in sustainability strategies. While discussions on consumption often take their point of departure in the perspective of the individual and then zoom to the wider context, the present approach is the opposite. The outline starts with the basic...

  19. Stabilizing Sustainability

    DEFF Research Database (Denmark)

    Reitan Andersen, Kirsti

    The publication of the Brundtland Report in 1987 put the topic of sustainable development on the political and corporate agenda. Defining sustainable development as “a development that meets the needs of the future without compromising the ability of future generations to meet their own needs......” (WCED, 1987, p. 43), the Report also put a positive spin on the issue of sustainability by upholding capitalist beliefs in the possibility of infinite growth in a world of finite resources. While growth has delivered benefits, however, it has done so unequally and unsustainably. This thesis focuses...... on the textile and fashion industry, one of the world’s most polluting industries and an industry to some degree notorious for leading the ‘race to the bottom’ in global labour standards. Despite being faced with increasing demands to practise sustainability, most textile and fashion companies continue to fail...

  20. Survey of heavy metals in the sediments of the Swartkops River ...

    African Journals Online (AJOL)

    Survey of heavy metals in the sediments of the Swartkops River Estuary, Port Elizabeth South Africa. Karen Binning, Dan Baird. Abstract. Elevated levels of heavy metals in the sediment can be a good indication of man-induced pollution. Concentrations of chrome, lead, zinc, titanium, manganese, strontium, copper and tin ...

  1. Seeking Sustainability

    OpenAIRE

    Clive L. Spash

    2014-01-01

    What does sustainability research do to help the environment? One might well wonder when observing the annual conference season with various academics and professors in sustainability science, ecological economics or environmental ethics driving to the airport to fly off to international meetings to discuss how bad things are getting, what should been done about it, and how time is running out for action. In fact, singling out a few academic groups is highly unfair because the link between pr...

  2. Chemical Speciation and Mobility of Some Heavy Metals in Soils ...

    African Journals Online (AJOL)

    The mobility of some heavy metals (Fe, Co, Ni and Mn) in soils around automobile waste dumpsites in Northern part of Niger Delta was assessed using Tessier et al. five syteps sequential chemical extraction procedure. The results showed that majority of iron and manganese were associated with the residual fraction with ...

  3. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Janos, P.; Skoumal, M.

    2016-01-01

    Roč. 236, č. 2016 (2016), s. 239-258 ISSN 0179-5953 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : chemical warfare agent * metal nanoparticle * unique surface- chemistry * mesoporous manganese oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 3.930, year: 2016

  4. Concentration of Trace Metals in Boreholes in the Ankobra Basin ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Most of the boreholes with high trace metal concentrations were located in and around the Bawdie-Bogoso-Prestea area. Introduction. Ankobra basin is one of the main mining areas in Ghana. The major minerals mined in this area include gold, manganese, bauxite and diamond. Gold mining in this basin dates about 500 ...

  5. Heavy metal pollution assessment in the sediments of lake Chad ...

    African Journals Online (AJOL)

    Sediments were collected from Dumba and KwataYobe of Lake Chad, Nigerian Sector.The aim was to assess the pollution statusof the sediments of the lake. The concentration of heavy metals, Cadmium (Cd), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), lead (Pb), Z (Zn) and Arsenic (As) were ...

  6. Heavy metal contamination of Clarias gariepinus from a lake and ...

    African Journals Online (AJOL)

    Adult Clarias gariepinus (African Catfish) were purchased from Eleiyele Lake and Zartech fish farm in Ibadan. Water samples were also collected in February (dry season) and June (rainy season), 2002. Gill, bone, intestine, muscle and water samples were analyzed for five metals: manganese, copper, zinc, iron, and ...

  7. Problem of landfilling environments pollution by heavy metals

    Science.gov (United States)

    Zilenina, V. G.; Ulanova, O. V.; Begunova, L. A.

    2017-10-01

    The article discusses the problems of snow and soil pollution by heavy metals. The results of physical and chemical special features of the deposit environment are given. Also, the results of snow mantle research in Irkutsk are described. The problem of manganese degradation from electrochemical cells disposed in the SMW areas is being discussed.

  8. Seasonal study on Bothriocephalus as indicator of metal pollution in ...

    African Journals Online (AJOL)

    ... vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, tellurium, barium, mercury, thallium, lead and uranium) were determined with an ICP-MS. Bioconcentration of metals (selenium, mercury, and lead during autumn; copper, zinc, selenium, cadmium, ...

  9. Determination of Some Heavy Metals in Selected Poultry Feeds ...

    African Journals Online (AJOL)

    MBI

    2014-04-22

    Apr 22, 2014 ... Copper, Iron, Manganese, Nickel, Lead, Chromium and Zinc detected in all samples. ... on human health (SCAN, 2003). The risk of heavy metals contamination in meat is of great concern for both food safety and human health because of the toxic nature of ..... assessment of zinc, cadmium, lead and copper.

  10. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    Science.gov (United States)

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  11. Metal Distribution and Bioaccumulation in Water and Fish of a ...

    African Journals Online (AJOL)

    A study was conducted to investigate the metal (copper, zinc and manganese) concentrations in the surface water and fish of a man-made lake receiving agricultural and domestic effluents in Ibadan, Nigeria. The lake (Main Lake, IITA) is a site of drinking water abstraction and the major water source for the surrounding ...

  12. Mining and Metal Pollution: Assessment of Water Quality in the ...

    African Journals Online (AJOL)

    Michael

    2017-12-02

    Dec 2, 2017 ... arsenides and metallic sulphides of As, Au, Cu, Fe,. Zn, Pb and Sb. In gold .... hydroxides of aluminium, iron, manganese and lead. Reactive minerals such ..... seen to form the complex Fe(OH)3, representing 83. % of the total ...

  13. Heavy metals burden of Keenjhar Lake, District Thatta, Sindh, Pakistan

    African Journals Online (AJOL)

    Detection of heavy metals (HMs) content from Keenjhar Lake water was carried out monthly from January to December, 2003. Zinc, chromium, copper, iron, manganese, nickel and cadmium were analyzed by dual mode of analytical methods flame atomic absorption spectrometry and electrothermal atomic absorption ...

  14. Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There is an abundance of field data for levels of metals from a range of places, but relatively few from the North Pacific Ocean and Bering Sea. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from common eiders (Somateria mollissima), glaucous-winged gulls (Larus glaucescens), pigeon guillemots (Cepphus columba), tufted puffins (Fratercula cirrhata) and bald eagles (Haliaeetus leucocephalus) from the Aleutian Chain of Alaska. Our primary objective was to test the hypothesis that there are no trophic levels relationships for arsenic, cadmium, chromium, lead, manganese, mercury and selenium among these five species of birds breeding in the marine environment of the Aleutians. There were significant interspecific differences in all metal levels. As predicted bald eagles had the highest levels of arsenic, chromium, lead, and manganese, but puffins had the highest levels of selenium, and pigeon guillemot had higher levels of mercury than eagles (although the differences were not significant). Common eiders, at the lowest trophic level had the lowest levels of some metals (chromium, mercury and selenium). However, eiders had higher levels than all other species (except eagles) for arsenic, cadmium, lead, and manganese. Levels of lead were higher in breast than in wing feathers of bald eagles. Except for lead, there were no significant differences in metal levels in feathers of bald eagles nesting on Adak and Amchitka Island; lead was higher on Adak than Amchitka. Eagle chicks tended to have lower levels of manganese than older eagles. PMID:18521716

  15. Local Sustainability

    International Nuclear Information System (INIS)

    Carrizosa Umana, Julio

    1998-01-01

    The current polemic about the possibilities of sustainable development has led to a renovated interest for the topic of the sustainability of the communities and the local sustainability. In front of the global sustainability whose conditions have been exposed by systemic ecologists and for macro economists, the sustainability of specific places arises in the planet whose conditions are object of study of the ecology of landscapes, of the ecological economy, of the cultural anthropology, of the environmental sociology and naturally, of the integral environmentalism. In this discussion the Colombian case charges unusual interest to be one of the few countries of Latin America, where a very dense net of municipalities exists, each one with its urban helmet and with a position and some functions defined by the political constitution of the nation. This net of municipalities and of urban helmets it also constitutes net of alternative to the current macro-cephalic situation. As well as Bogota grew, in a hundred years, of less than a hundred thousand inhabitants to six million inhabitants, each one of these municipalities contains a potential of growth that depends on the characteristics of its ecological, social, economic and politic sustainability

  16. Sustainable markets for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  17. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    Science.gov (United States)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  18. A mineralogical investigation of the reduction of Mamatwan manganese ore with carbon

    International Nuclear Information System (INIS)

    Koursaris, A.; Kleyenstueber, A.S.E.; Finn, C.W.P.

    1983-01-01

    The paper describes two research programmes: small-scale experiments in which cubes (with sides of 20 mm) were heated with coke, coal, or graphite to temperatures of between 1 200 and 1 500 degrees Celsius for 1, 2 or 3 hours in an argon atmosphere; and large-scale experiments in which 4 kg charges of ore and coal, or of ore and coke, in stoichiometric proportions, were heated to temperatures between 1 300 and 1 600 degrees Celsius for up to four hours. The reacted charges were examined by microscopy, by X-ray diffraction analysis, and by X-ray microanalysis using an energy-dispersive system on a scanning electron microscope. It was found that the early stages of reduction involve complex mineralogical changes including the breakdown of braunite and gangue minerals, the reduction of the higher manganese oxides to manganous oxide and of hematite to metallic iron, and the formation of slag as a result of reaction between gangue and manganous oxides. Further reduction of the ore involves the carburisation of the metallic phase and the reduction of solid manganous oxide, or of manganous oxide dissolved in the slag, by solid carbon or carbon dissolved in the metal

  19. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  20. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.