WorldWideScience

Sample records for sustainable hydrogen production

  1. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  2. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  3. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  4. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  5. Is the hydrogen production from biomass technology really sustainable? Answer by Life Cycle Emergy Analysis

    DEFF Research Database (Denmark)

    Liang, Hanwei; Ren, Jingzheng; Dong, Liang

    2016-01-01

    The Sustainability performance of biomass-based hydrogen is in debate. This study aims at using Emergy Theory to investigate the sustainability hydrogen production from corn stalks by supercritical water gasification, all the inputs including renewable resources, non-renewable resources, purchased...

  6. Analysis of an Improved Solar-Powered Hydrogen Generation System for Sustained Renewable Energy Production

    Science.gov (United States)

    2017-12-01

    hydrogen gas by electrolysis. In LT Aviles’ design , distilled water was collected from the ambient air using Peltier dehumidifiers, manufactured by...Figure 13 shows the shelfing along with the entire system. Figure 13. Reconfigured Hydrogen Production Facility Because the system was designed for...POWERED HYDROGEN GENERATION SYSTEM FOR SUSTAINED RENEWABLE ENERGY PRODUCTION by Sen Feng Yu December 2017 Thesis Advisor: Garth V. Hobson Co

  7. Dark hydrogen production in nitrogen atmosphere - An approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, D.; Arun Kumar, D.; Uma, L.; Subramanian, G. [National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2010-10-15

    Biological hydrogen production is an ideal system for three main reasons i) forms a renewable energy source, ii) gives clean fuel and iii) serves as a good supplement to oil reserves. The major challenges faced in biological hydrogen production are the presence of uptake hydrogenase and lack of sustainability in the cyanobacterial hydrogen production system. Three different marine cyanobacterial species viz. Leptolyngbya valderiana BDU 20041, Dichothrix baueriana BDU 40481 and Nostoc calcicola BDU 40302 were studied for their potential use in hydrogen production. Among these, L. valderiana BDU 20041, was found to produce hydrogen even in 100% nitrogen atmosphere which was 85% of the hydrogen produced in argon atmosphere. This is the first report of such a high rate of production of hydrogen in a nitrogen atmosphere by a cyanobacterium, which makes it possible to develop sustained hydrogen production systems. L. valderiana BDU 20041, a dark hydrogen producer uses the reductant essentially supplied by the respiratory pathway for hydrogen production. Using inhibitors, this organism was found to produce hydrogen due to the activities of both nitrogenase and bidirectional hydrogenase, while it had no 'uptake' hydrogenase activity. The other two organisms though had low levels of bidirectional hydrogenase, possessed considerable 'uptake' hydrogenase activity and hence could not release much hydrogen either in argon or nitrogen atmosphere. (author)

  8. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  9. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  10. A comprehensive review of microbial electrolysis cells (MEC reactor designs and configurations for sustainable hydrogen gas production

    Directory of Open Access Journals (Sweden)

    Abudukeremu Kadier

    2016-03-01

    Full Text Available Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to up-scaling. Traditional MEC designs incorporated membranes, but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.

  11. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  12. Sustainable hydrogen - A challenge for materials science and equipment design

    International Nuclear Information System (INIS)

    Duta, Anca; Enesca, Alexandru Ioan; Perniu, Dana

    2006-01-01

    Full text: Hydrogen is the ideal fuel, considering its fully non-polluting by-products. Still, in discussions on 'sustainable hydrogen', there must be considered all the steps implied in hydrogen production, storage and use and the overall energy balance represents the real starting point of evaluating the sustainability. So far, hydrogen production is related to rather energy-consuming processes; extended research is devoted to develop high efficiency processes, but the industrial hydrogen production makes use of either large electrical or thermal energy amounts. Hydrogen production via water photolysis represents, consequently a viable alternative although many steps have to be elaborated to reached the industrial scale of these processes. Hydrogen storing represents another problem that affects its application; a safe storage way, in metal hydrides, is still under intensive research all over the world. The group of the Centre of Product Design for Sustainable Development is engaged in research for developing a laboratory photolyser, able to produce hydrogen and to offer an efficient storage alternative. The photolyser is a photo-electrochemical cell, and the efficiency of the photolysis process depends on several factors: - the photo-electrodes: thin films of wide band gap semiconductors with tailored properties; - the aqueous environment, with effect on the electrode materials properties and stability; - the external bias; - the cell design. The paper focuses mainly on the photo-electrode materials that were tested. The influence of the composition, crystalline and defect structure, of the morphology and of the interfaces on the photolysis process are reviewed. The effect of the pH in the aqueous media is discussed along with the stability of the materials and the reversibility of the adsorption/desorption processes. The design criteria that must be fulfilled in developing the photolyser are also discussed. (authors)

  13. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  15. Fuzzy Multi-actor Multi-criteria Decision Making for Sustainability Assessment of biomass-based technologies for hydrogen production

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Fedele, Andrea; Mason, Marco

    2013-01-01

    The purpose of this paper is to develop a sustainability assessment method to rank the prior sequence of biomass-based technologies for hydrogen production. A novel fuzzy Multi-actor Multi-criteria Decision Making method which allows multiple groups of decision-makers to use linguistic variables...

  16. Process for the production of hydrogen from water

    Science.gov (United States)

    Miller, William E [Naperville, IL; Maroni, Victor A [Naperville, IL; Willit, James L [Batavia, IL

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  17. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  18. Hydrogen production by nuclear heat

    International Nuclear Information System (INIS)

    Crosbie, Leanne M.; Chapin, Douglas

    2003-01-01

    A major shift in the way the world obtains energy is on the horizon. For a new energy carrier to enter the market, several objectives must be met. New energy carriers must meet increasing production needs, reduce global pollution emissions, be distributed for availability worldwide, be produced and used safely, and be economically sustainable during all phases of the carrier lifecycle. Many believe that hydrogen will overtake electricity as the preferred energy carrier. Hydrogen can be burned cleanly and may be used to produce electricity via fuel cells. Its use could drastically reduce global CO 2 emissions. However, as an energy carrier, hydrogen is produced with input energy from other sources. Conventional hydrogen production methods are costly and most produce carbon dioxide, therefore, negating many of the benefits of using hydrogen. With growing concerns about global pollution, alternatives to fossil-based hydrogen production are being developed around the world. Nuclear energy offers unique benefits for near-term and economically viable production of hydrogen. Three candidate technologies, all nuclear-based, are examined. These include: advanced electrolysis of water, steam reforming of methane, and the sulfur-iodine thermochemical water-splitting cycle. The underlying technology of each process, advantages and disadvantages, current status, and production cost estimates are given. (author)

  19. Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass

    Directory of Open Access Journals (Sweden)

    Milena Stefanova

    2014-08-01

    Full Text Available The framework for life cycle sustainability analysis (LCSA developed within the project CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability is introducing a truly integrated approach for sustainability studies. However, it needs to be further conceptually refined and to be made operational. In particular, one of the gaps still hindering the adoption of integrated analytic tools for sustainability studies is the lack of a clear link between the goal and scope definition and the modeling phase. This paper presents an approach to structure the goal and scope phase of LCSA so as to identify the relevant mechanisms to be further detailed and analyzed in the modeling phase. The approach is illustrated with an on-going study on a new technology for the production of high purity hydrogen from biomass, to be used in automotive fuel cells.

  20. Hydrogen production through nuclear energy, a sustainable scenario in Mexico; Produccion de hidrogeno mediante energia nuclear, un escenario sostenible en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega V, E.; Francois L, J.L. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: iqoren@gmail.com

    2007-07-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  1. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  2. Sustainable production of hydrogen and chemical commodities from biodiesel waste crude glycerol and cellulose by biological and catalytic processes

    OpenAIRE

    Maru, Biniam Taddele

    2013-01-01

    Hydrogen has a significant potential as clean and ‘green’ fuel of the future. Accordingly, this thesis investigated how to generate a sustainable production of hydrogen and other chemical commodities through study of: 1) Fermentative behavior of anaerobichydrogen producing microorganisms from pure glycerol and biodiesel waste crude glycerol; 2) The advantage of using a solid supportimmobilisationof microorganisms 3) The integration of the dark fermentative system with the catalytic hydrolysi...

  3. Strategy for a sustainable development in the UAE through hydrogen energy

    Energy Technology Data Exchange (ETDEWEB)

    Kazim, Ayoub [Dubai Knowledge Village, P.O. Box 73000 Dubai (United Arab Emirates)

    2010-10-15

    Recently, it has been reported that United Arab Emirates is considered one of the highest energy consumers per capita in the world. Consequently, environmental pollution and carbon emission has been a major challenge facing the country over the past several years due to unprecedented high economic growth rate and abnormal population increase. Utilization of hydrogen energy to fulfill UAE's energy needs would be one of the key measures that the country could undertake to achieve a sustainable development and without any major environmental consequences. Hydrogen energy, which is an energy carrier, is consider by many scientists and researchers a major player in fulfilling the global energy demand due to its attractive features such as being environmentally clean, storable, transportable and inexhaustible. It can be used as a fuel in the proton exchange membrane (PEM) fuel cell, which is an electrochemical device that generates electric power and it can be utilized in various applications. Production of hydrogen energy can be carried out either through utilizing conventional resources or by renewable resources. Conventional resources such as crude oil and natural gas can produce hydrogen by steam-reformation while hydrogen can be produced from coal through gasification. On the other hand, hydrogen production through renewable resources can be achieved through biomass gasification, solar-hydrogen, wind-hydrogen and hydropower electrolysis process. Other renewable resources such as geothermal, wave, tidal and ocean thermal energy conversion (OTEC) can also contribute into hydrogen production but at a marginal level. In this report, a roadmap to achieve a sustainable development in the UAE through utilization of hydrogen energy is presented. The report highlights the potentials of energy resources that the country possesses with respect to both conventional and non-conventional energy and determines major resources that could significantly contribute to production

  4. Hydrogen movement and the next action: fossil fuels industry and sustainability economics

    International Nuclear Information System (INIS)

    Nejat Veziroglu, T.

    1997-01-01

    Since the hydrogen movement started in 1974, there has been progress in research, development, demonstration and commercialization activities, covering all aspects of the hydrogen energy system. In order to solve the interrelated problems of depletion of fossil fuels and the environmental impact of the combustion products of fossil fuels, it is desirable to speed up the conversion to the hydrogen energy system. Most established industries have joined the hydrogen movement. There is one exception: the fossil fuel industry. A call is made to the fossil fuel industry to join the hydrogen movement. It is also proposed to change the present economic system with a sustainability economics in order to account for environmental damage, recyclability and decommissioning, and thus, ensure a sustainable future. (Author)

  5. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  6. Aqueous-Phase Reforming of Renewable Polyols for Production of Hydrogen using Platinum Catalysts

    NARCIS (Netherlands)

    Boga, D.A.

    2013-01-01

    Hydrogen has the potential to fuel the energy needs of a more sustainable society. As hydrogen is not found in nature in any appreciable quantities, this energy carrier needs to be produced from a primary energy source. Biomass can serve as a source for sustainable hydrogen production. In principle,

  7. The sustainability indicators of power production systems

    Energy Technology Data Exchange (ETDEWEB)

    Onat, Nevzat [Vocational School of Technical Studies, Marmara University, Istanbul 34722 (Turkey); Bayar, Haydar [Technical Education Faculty, Marmara University, Istanbul 34722 (Turkey)

    2010-12-15

    One of the most important elements of economical and social development is to provide uninterrupted electric energy to consumers. The increasing world population and technological developments rapidly increase the demand on electric energy. In order to meet the increasing demand for sustainable development, it is necessary to use the consumable resources of the world in the most productive manner and minimum level and to keep its negative effects on human health and environment in the lowest level as much as possible. In this study, alignment of hydrogen fuel cells, hydroelectric, wind, solar and geothermal sourced electric energy systems, in addition to fossil fueled coal, natural gas and nuclear power plants, in respect to sustainability parameters such as CO{sub 2} emission, land use, energy output, fresh water consumption and environmental and social effects is researched. Consequently, it has been determined that the wind and nuclear energy power plants have the highest sustainability indicators. The fuel cells that use hydrogen obtained by using coal and natural gas are determined as the most disadvantageous transformation technologies in respect to sustainability. This study contains an alignment related to today's technologies. Using of renewable energy resources especially in production of hydrogen, output increases to be ensured with nanotechnology applications in photovoltaic systems may change this alignment. (author)

  8. Annex 15 of the IEA Hydrogen Implementing Agreement : Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, P. [Uppsala Univ., Uppsala (Sweden)]|[International Energy Agency, Paris (France)

    2004-07-01

    Task 15 of the Hydrogen Implementation Agreement of the International Energy Agency is to advance the science of biophotosynthesis of hydrogen, which is the biological production of hydrogen from water and sunlight using microalgal photosynthesis. A practical process for biophotolysis would result in an innovative biological source of sustainable and environmentally benign renewable energy source. Japan, Norway, Sweden and the United States initially committed to the project. Since then Canada, the Netherlands and the United Kingdom have joined. The current task is to produce hydrogen from both green algae and cyanobacteria with focus on early-stage applied research on biophotolysis processes with intermediate carbon dioxide fixation. Significant advances have also occurred in the scientific field of cyanobacterial biohydrogen. Cyanobacteria has enzymes that metabolise hydrogen. Photosynthetic cyanobacteria have simple nutritional requirements and can grow in air, water, or mineral salts with light as the only source of energy. This research will help provide the advances needed to achieve practical efficiencies and cost objectives of biological hydrogen production. tabs., figs.

  9. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  10. Sustainability of Hydrogen Supply Chain. Part II: Prioritizing and Classifying the Sustainability of Hydrogen Supply Chains based on the Combination of Extension Theory and AHP

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara

    2013-01-01

    The purpose of this study is to develop a method for prioritizing and classifying the sustainability of hydrogen supply chains and assist decision-making for the stakeholders/decision-makers. Multiple criteria for sustainability assessment of hydrogen supply chains are considered and multiple...... decision-makers are allowed to participate in the decision-making using linguistic terms. In this study, extension theory and analytic hierarchy process are combined to rate the sustainability of hydrogen supply chains. The sustainability of hydrogen supply chains could be identified according...

  11. IEA hydrogen agreement, task 15: photobiological hydrogen production - an international collaboration

    International Nuclear Information System (INIS)

    Lindblad, P.; Asada, Y.; Benemann, J.; Hallenbeck, P.; Melis, A.; Miyake, J.; Seibert, M.; Skulberg, O.

    2000-01-01

    Biological hydrogen production, the production of H 2 by microorganisms, has been an active field of basic and applied research for many years. Realization of practical processes for photobiological hydrogen production from water using solar energy would result in a major, novel source of sustainable and renewable energy, without greenhouse gas emissions or environmental pollution. However, development of such processes requires significant scientific and technological advances, and long-term basic and applied R and D. This International Energy Agency (lEA) Task covers research areas and needs at the interface of basic and applied R and D which are of mutual interest to the countries and researchers participating in the lEA Hydrogen Agreement. The overall objective is to sufficiently advance the basic and early-stage applied science in this area of research over the next five years to allow an evaluation of the potential of such a technology to be developed as a practical renewable energy source for the 21st Century. (author)

  12. Abstracts of the 1. National congress of hydrogen and sustainable energy sources

    International Nuclear Information System (INIS)

    2005-01-01

    The First Argentine National Congress of Hydrogen and Sustainable Energy Sources was organized by the Instituto of Sustainable Energy and Development CNEA, in San Carlos de Bariloche, between the 8th and 10th of June of 2005. In this event 88 papers were presented in the following sessions, on these subjects: 1.-Hydrogen-Materials Interaction. 2.-Materials Damage. 3.-Production and Purification. 4.-Storage and Transportation. 5.-Fuel Cells. 6.-Prototypes and Demonstration Plants. 7.-Eolic Energy. 8.-Solar Energy. 9.-Biomass. 10.-Small Hydroelectric Plants. 11.-Other Activities. 12.-Hybrid Fuels. 13.- Reforming, Materials, Catalysis, Processes. 14.-Projections and Energy Prospective

  13. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  14. Renewable energy for hydrogen production and sustainable urban mobility

    International Nuclear Information System (INIS)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V.; Matteucci, F.; Breedveld, L.

    2010-01-01

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO 2 -free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  15. Renewable energy for hydrogen production and sustainable urban mobility

    Energy Technology Data Exchange (ETDEWEB)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V. [Istituto di Tecnologie avanzate per l' Energia ' ' Nicola Giordano' ' Salita S, Lucia sopra Contesse, 5, 98126 Messina (Italy); Matteucci, F. [TRE SpA Tozzi Renewable Energy, Via Zuccherificio, 10, 48100 Mezzano (RA) (Italy); Breedveld, L. [2B Via della Chiesa Campocroce, 4, 31021 Mogliano Veneto (TV) (Italy)

    2010-09-15

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO{sub 2}-free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  16. The hydrogen economy for a sustainable future and the potential contribution of nuclear power

    International Nuclear Information System (INIS)

    Hardy, C.

    2003-01-01

    The Hydrogen Economy encompasses the production of hydrogen using a wide range of energy sources, its storage and distribution as an economic and universal energy carrier, and its end use by industry and individuals with negligible emission of pollutants and greenhouse gases. Hydrogen is an energy carrier not a primary energy source, just like electricity is an energy carrier. The advantages of hydrogen as a means of storage and distribution of energy, and the methods of production of hydrogen, are reviewed. Energy sources for hydrogen production include fossil fuels, renewables, hydropower and nuclear power. Hydrogen has many applications in industry, for residential use and for transport by air, land and sea. Fuel cells are showing great promise for conversion of hydrogen into electricity and their development and current status are discussed. Non-energy uses of hydrogen and the safety aspects of hydrogen are also considered. It is concluded that the Hydrogen Economy, especially if coupled to renewable and nuclear energy sources, is a technically viable and economic way of achieving greater energy diversity and security and a sustainable future in this century

  17. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  18. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-01-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  19. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  20. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  1. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  3. Proceedings of the fourth information exchange meeting on nuclear production of hydrogen

    International Nuclear Information System (INIS)

    2010-01-01

    The use of hydrogen, both as feedstock for the industry (oil and chemical) and as an energy carrier, is expected to grow substantially during the coming decades. The current predominant method of producing hydrogen by steam-reforming methane (from natural gas) is not sustainable and has environmental drawbacks, including the emission of greenhouse gasses (GHGs). Nuclear energy offers a way to produce hydrogen from water without depleting natural gas, a valuable natural resource, and without the emission of GHGs. The OECD Nuclear Energy Agency (NEA) has conducted a number of information exchange meetings with the objective of stimulating progress in the development of nuclear production of hydrogen. These meetings, held in 2000 in Paris, France, in 2003 in Argonne, Illinois, USA, and in 2005 in Oarai, Japan, were well-attended and very successful. It is hoped that the information presented at fourth meeting and contained in these proceedings may be useful in advancing the objective of achieving economically viable, sustainable and emission-free production of hydrogen. The need for a sustainable supply of clean energy is one of the main problems facing the world. Among the various energy technologies which may be considered (including hydro, wind, solar, geo-thermal, wave and tidal), only nuclear - through the use of fast-neutron fission reactors - is capable of delivering the copious quantities of sustainable energy that will be required. In view of this, one of the means under consideration for achieving the objective of nuclear-produced hydrogen is enhanced international cooperation, including the establishment of one or more OECD/NEA joint projects. In this respect, it is worth noting that similar joint projects undertaken in the past (for example, the Dragon Project and the Halden Reactor Project) have been highly beneficial and have provided significant amounts of useful information to the sponsoring countries at shared costs. This report describes the

  4. Towards sustainable energy systems: The related role of hydrogen

    International Nuclear Information System (INIS)

    Hennicke, Peter; Fischedick, Manfred

    2006-01-01

    The role of hydrogen in long run sustainable energy scenarios for the world and for the case of Germany is analysed, based on key criteria for sustainable energy systems. The possible range of hydrogen within long-term energy scenarios is broad and uncertain depending on assumptions on used primary energy, technology mix, rate of energy efficiency increase and costs degression ('learning effects'). In any case, sustainable energy strategies must give energy efficiency highest priority combined with an accelerated market introduction of renewables ('integrated strategy'). Under these conditions hydrogen will play a major role not before 2030 using natural gas as a bridge to renewable hydrogen. Against the background of an ambitious CO 2 -reduction goal which is under discussion in Germany the potentials for efficiency increase, the necessary structural change of the power plant system (corresponding to the decision to phase out nuclear energy, the transformation of the transportation sector and the market implementation order of renewable energies ('following efficiency guidelines first for electricity generation purposes, than for heat generation and than for the transportation sector')) are analysed based on latest sustainable energy scenarios

  5. Study on hydrogen production using the fast breeder reactors (FBR)

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2003-01-01

    As the fast breeder reactor (FBR) can effectively convert uranium-238 difficult to carry out nuclear fission at thermal neutron reactors to nuclear fissionable plutonium-239 to use it remarkable upgrading of application on uranium can be performed, to be expected for sustainable energy source. And, by reuse minor actinides of long half-life nuclides in reprocessed high level wasted solutions for fuels of nuclear reactors, reduction of radioactive poison based on high level radioactive wastes was enabled. As high temperature of about 800 centigrade was required on conventional hydrogen production, by new hydrogen production technique even at operation temperature of sodium-cooled FBR it can be enabled. Here were described for new hydrogen production methods applicable to FBR on palladium membrane hydrogen separation method carrying out natural gas/steam modification at reaction temperature of about 500 centigrade, low temperature thermo-chemical method expectable simultaneous simplification of production process, and electrolysis method expected on power load balancing. (G.K.)

  6. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    International Nuclear Information System (INIS)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  7. Sustainability of hydrogen supply chain. Part I: Identification of critical criteria and cause–effect analysis for enhancing the sustainability using DEMATEL

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara

    2013-01-01

    The enhancement of sustainability of hydrogen supply chain is of vital importance for the stakeholders/decision-makers to design a sustainable hydrogen supply chain. The objective of this paper is to develop a method for prioritizing the influential factors, identifying the key driving factors...... that influence the sustainability of hydrogen supply chain and mapping the cause–effect relationships to improve the sustainability of hydrogen supply chain. In this paper, thirty seven criteria in four aspects including economic, technological, environmental and societal aspects are considered for enhancing...... the sustainability of hydrogen supply chain, and decision making trial and evaluation laboratory has been used to analyze the relationships among these criteria. The status of hydrogen supply chain in China has been studied by the proposed method, and the results are consistent with the actual conditions. It could...

  8. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  9. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  10. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  11. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  12. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  13. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  14. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  15. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  16. Sustainable fermentative hydrogen production: challenges for process optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, F.R.; Dinsdale, R. [University of Glamorgan, Pontypridd (United Kingdom). School of Applied Sciences; Hawkes, D.L.; Hussy, I. [University of Glamorgan, Pontypridd (United Kingdom). School of Technology

    2002-12-01

    This paper reviews information from continuous laboratory studies of fermentative hydrogen production useful when considering practical applications of the technology. Data from reactors operating with pure cultures and mixed microflora enriched from natural sources are considered. Inocula have been derived from heat-treated anaerobically digested sludge, activated sludge, aerobic compost and soil, and non-heat-treated aerobically composted activated sludge. Most studies are on soluble defined substrates, and there are few reports of continuous operation on complex substrates with mixed microflora to produce H{sub 2}. Methanogenesis which consumes H{sub 2} may be prevented by operation at short hydraulic retention times (around 8-12 h on simple substrates) and/or pH below 6. Although the reactor technology for anaerobic digestion and biohydrogen production from complex substrates may be similar, there are important microbiological differences, including the need to manage spore germination and oxygen toxicity on start-up and control sporulation in adverse circumstances during reactor operation. (Author)

  17. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  18. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.

    Science.gov (United States)

    Xiong, Wei; Zhao, Xiaohong; Zhu, Genxing; Shao, Changyu; Li, Yaling; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2015-10-05

    Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification-induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core-shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar-driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell-material complexes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen production by several cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhruv; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India). Dept. of Botany)

    1992-11-01

    Twenty species belonging to eleven genera of nitrogen-fixing and non-nitrogen-fixing cyanobacteria were screened for production of hydrogen. Only one species each of Nostoc and Anabaena showed light-and nitrogenase-dependent aerobic hydrogen production. The highest rate of aerobic hydrogen production was recorded in Anabaena sp. strain CA. When incubated anaerobically under 99% Ar + 1% CO[sub 2], all the tested strains produced hydrogen. Nickel supplementation completely abolished hydrogen production both under aerobic and anaerobic conditions, except in Anabaena sp. strain CA, where only the rate of production was decreased. Species of Plectonema, Oscillatoria and Spirulina showed methyl viologen-dependent (hydrogenase-dependent) hydrogen production. Other physiological activities were also studied with a view to selecting a suitable organism for large-scale production of hydrogen. (author)

  20. Analysis of Production and Delivery Center Hydrogen Applied to the Southern Patagonian Circuit

    Directory of Open Access Journals (Sweden)

    Maximiliano Fernando Medina

    2016-08-01

    Full Text Available The Desire department of the province of Santa Cruz, Argentina, presents the greatest potential electrolytic Hydrogen Production Country, From Three primary sources of sustainable energy: wind, solar, biomass. There, the Hydrogen Plant of Pico Truncado has capacity central production of hydrogen 100m3 of H2 / day, enough to supply 353 vehicles with hybrid fuel called HGNC, made by cutting 12% V / V of hydrogen in CNG (in situ at each station. Puerto Deseado, Fitz Roy, Caleta Olivia, Las Heras, Comodoro Rivadavia, Sarmiento and the Ancients: From the production cost, the cost of delivering hydrogen to the Southern Patagonian circuit comprised analyzed. Considering various local parameters are determined as a way of delivering more profitable virtual pipeline, with total cost of hydrogen estimated 6.5 USD / kg H2 and HGNC shipped in the station at 0.50 USD / Nm3.

  1. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  2. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012

    Directory of Open Access Journals (Sweden)

    Khetkorn Wanthanee

    2012-10-01

    Full Text Available Abstract Background Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase. Results An engineered strain lacking a functional uptake hydrogenase (∆hupS produced about 4-folds more hydrogen than the wild type strain. Moreover, the ∆hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ∆hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ∆hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ∆hupS strain. Conclusions Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.

  3. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  4. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2008-04-15

    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  5. Creating load for new hydrogen production

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    This presentation provides an update of the activities of the Hydrogen Village. The Hydrogen Village is a public-private partnership of approximately 40 companies with the goal of advancing awareness of the environmental, economic and social benefits of hydrogen and fuel cell technologies. The intent of the hydrogen village is to create a sustainable commercial market for these technologies within the Greater Toronto Area and to help to catalyze such markets in other areas

  6. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  7. Hydrogen production by renewable energies. Final report of the integrated research program 4.1; Production d'hydrogene par des energies renouvelables. Rapport final du programme de recherche integree 4.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this PRI is to study and to develop methods of hydrogen production based on the renewable energies, without greenhouse gases emission in order to implement clean processes in the framework of a sustainable development. Two approaches are proposed. The first one uses microorganisms in condition of hydrogen production (micro-algae). The second one is based on the bio-mimetism approaches aiming to reproduce artificially the biological mechanisms of the photosynthesis leading to water decomposition. (A.L.B.)

  8. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    NARCIS (Netherlands)

    Vrije, de G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M.

    2009-01-01

    The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Batch cultures of

  9. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  10. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Oh, Seung Jin; Ng, Kim Choon

    2018-01-01

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  11. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad

    2018-03-22

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  12. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  13. Hydrogen production by Chlamydomonas reinhardtii under light driven sulfur deprived condition

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Krishnan; Karthik, Rajendran [Biotechnology Research Division, Department of Biotechnology, Prathyusha Institute of Technology and Management, Aranvoyalkuppam, Thiruvallur District 602025, Tamil Nadu (India); Kamala Nalini, S.P. [Department of Biotechnology, Vel Group of Educational Institutions, Avadi, Alamadhi Road, Chennai 600062, Tamil Nadu (India)

    2009-10-15

    This article explores the possibility of demonstrating sustainable photohydrogen production using Chlamydomonas reinhardtii when grown in sulfur deprived photoautotrophic condition. The hydrogen evolving capability of the algal species was monitored based on alternating light and dark period. Investigation was carried out during the day time in order to exploit the solar energy for meeting the demand of the light period. The results showed that when the reactor was operated at varying photoperiod namely 2, 3 and 4 h of alternating light and dark period, the gas generation was found to be 32 {+-} 4, 63 {+-} 7 and 52 {+-} 5 mL/h, while the corresponding hydrogen content was 47, 86 and 87% respectively. Functional components of hydrogen generation reaction centers were also analyzed, which showed that the PS(I) reaction centers were involved in hydrogen production pathway, as the light absorption by PS(I) was prerequisite for hydrogen generation under sulfur deprived photoautotrophic condition. The findings showed a higher gas yield and hydrogen content under dark period, whereas under light period the gas content was below detectable level for hydrogen due to the reversible hydrogenase reaction. (author)

  14. Towards Sustainable Production of Formic Acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Ross, Julian R H

    2018-03-09

    Formic acid is a widely used commodity chemical. It can be used as a safe, easily handled, and transported source of hydrogen or carbon monoxide for different reactions, including those producing fuels. The review includes historical aspects of formic acid production. It briefly analyzes production based on traditional sources, such as carbon monoxide, methanol, and methane. However, the main emphasis is on the sustainable production of formic acid from biomass and biomass-derived products through hydrolysis and oxidation processes. New strategies of low-temperature synthesis from biomass may lead to the utilization of formic acid for the production of fuel additives, such as methanol; upgraded bio-oil; γ-valerolactone and its derivatives; and synthesis gas used for the Fischer-Tropsch synthesis of hydrocarbons. Some technological aspects are also considered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  16. Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation.

    Science.gov (United States)

    Steinbeck, Janina; Nikolova, Denitsa; Weingarten, Robert; Johnson, Xenie; Richaud, Pierre; Peltier, Gilles; Hermann, Marita; Magneschi, Leonardo; Hippler, Michael

    2015-01-01

    Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

  17. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  18. Risk and sustainability analysis of complex hydrogen infrastructures

    DEFF Research Database (Denmark)

    Markert, Frank; Marangon, A.; Carcassi, M.

    2017-01-01

    -based fuels. Therefore, future hydrogen supply and distribution chains will have to address several objectives. Such a complexity is a challenge for risk assessment and risk management of these chains because of the increasing interactions. Improved methods are needed to assess the supply chain as a whole......Building a network of hydrogen refuelling stations is essential to develop the hydrogen economy within transport. Additional, hydrogen is regarded a likely key component to store and convert back excess electrical power to secure future energy supply and to improve the quality of biomass....... The method of “Functional modelling” is discussed in this paper. It will be shown how it could be a basis for other decision support methods for comprehensive risk and sustainability assessments....

  19. Specificities of micro-reactors for hydrogen production and purification

    Energy Technology Data Exchange (ETDEWEB)

    Mirodatos, C.; Dupont, N.; Germani, G.; Veen, A. C. ven; Schuurman, Y.

    2005-07-01

    Sustainable chemistry and exploitation of energy sources for the next decades requires considerable progress in process intensification. A development of new tools and equipments meeting the objectives of high efficiency, improved safety, compactness and low implementation costs is therefore subject of intensive research effort. Among the various scenarios tested in R and D, micro-structured reactors appear as a highly promising technology 1 and perspectives of mass production are already announced by technology providers 2. These reactors are based on assembly/stacking of micro structured plates or fibres. Due to their high heat and/or mass transfer, low pressure drop and good phase contacting, they sound particularly adapted to the large domain of hydrogen production by fuel reforming and purification. This presentation aims at outlining the state of the art, the advantages and drawbacks of using micro-structured reactors to intensify hydrogen production and purification. Two case studies will illustrate this approach: i) comparison between fixed bed and micro-structured reactor for the reforming of methanol into hydrogen and carbon oxides and ii) use of those devices in kinetic studies on the WGS reaction. (Author)

  20. A grey-based group decision-making methodology for the selection of hydrogen technologiess in Life Cycle Sustainability perspective

    DEFF Research Database (Denmark)

    Manzardo, Alessandro; Ren, Jingzheng; Mazzi, Anna

    2012-01-01

    The objective of this research is to develop a grey-based group decision-making methodology for the selection of the best renewable energy technology (including hydrogen) using a life cycle sustainability perspective. The traditional grey relational analysis has been modified to better address...... the issue of uncertainty. The proposed methodology allows multi-person to participate in the decision-making process and to give linguistic evaluation on the weights of the criteria and the performance of the alternative technologies. In this paper, twelve hydrogen production technologies have been assessed...... using the proposed methodology, electrolysis of water technology by hydropower has been considered to be the best technology for hydrogen production according to the decision-making group....

  1. Energy analysis of hydrogen and electricity production from aluminum-based processes

    International Nuclear Information System (INIS)

    Wang, Huizhi; Leung, Dennis Y.C.; Leung, Michael K.H.

    2012-01-01

    The aluminum energy conversion processes have been characterized to be carbon-free and sustainable. However, their applications are restrained by aluminum production capacity as aluminum is never found as a free metal on the earth. This study gives an assessment of typical aluminum-based energy processes in terms of overall energy efficiency and cost. Moreover, characteristics associated with different processes are identified. Results in this study indicate the route from which aluminum is produced can be a key factor in determining the efficiency and costs. Besides, the aluminum–air battery provides a more energy-efficient manner for the conversion of energy stored in primary aluminum and recovered aluminum from products compared to aluminum-based hydrogen production, whereas the aluminum-based hydrogen production gives a more energy-efficient way of utilizing energy stored in secondary aluminum or even scrap aluminum.

  2. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  3. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  4. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  5. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  6. Efficient Production of Hydrogen from Decomposition of Formic Acid over Zeolite Incorporated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Mielby, Jerrik Jørgen; Kegnæs, Søren

    2016-01-01

    Formic acid has a great potential as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we report a heterogeneous gold nanoparticles catalyst for efficient production of hydrogen from vapor phase decomposition of formic acid using zeolite...... incorporated gold nanoparticles. The catalyst is prepared by pressure assisted impregnation and reduction (PAIR), which results in a uniform distribution of small gold nanoparticles that are incorporated into zeolite silicalite-1 crystals. Consequently, the incorporated nanoparticles exhibit increased...... sintering stability. Based on these results, we believe that incorporation of metal nanoparticles in zeolites may find use as highly active and selective heterogeneous catalysts for the production of hydrogen in future renewable energy applications....

  7. Study of organic waste for production of hydrogen in reactor

    International Nuclear Information System (INIS)

    Guzmán Chinea, Jesús Manuel; Guzmán Marrero, Elizabeth; Pérez Ponce, Alejandro

    2015-01-01

    Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated before final disposal. Hydrogen can be produced sustainable by anaerobic bacteria that grow in the dark with rich carbohydrate substrates giving as final products H 2 , CO 2 and volatile fatty acids. The whey byproduct from cheese production, has great potential to be used for the generation of hydrogen as it has a high carbohydrate content and a high organic load. The main advantages of using anaerobic processes in biological treatment of organic waste, are the low operating costs, low power consumption, the ability to degrade high organic loads, resistance biomass to stay long in the absence of substrate, without lose their metabolic activity, and low nutritional requirements and increase the performance of 0.9 mol H2 / mol lactose. (full text)Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated

  8. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  9. Fermentative hydrogen production by diverse microflora

    International Nuclear Information System (INIS)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.

    2009-01-01

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 o C) and thermophilic (55 o C) temperatures. The hydrogen production yields with activated sludge at 37 o C and 55 o C were 0.25 and 0.93 mol H 2 /mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  10. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  11. Comparative thermoeconomic analysis of hydrogen production by water electrolysis and by ethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Riveros-Godoy, Gustavo; Chavez-Rodriguez, Mauro; Cavaliero, Carla [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Mechanical Engineering School], Email: garg@fem.unicamp.br

    2010-07-01

    Hydrogen is the focus of this work that evaluates in comparative form through thermo economic analysis two hydrogen production processes: water electrolysis and ethanol steam reforming. Even though technical-economical barriers still exist for the development of an economy based on hydrogen, these difficulties are opportunities for the appearance of new business of goods and services, diversification of the energy mix, focus of research activities, development and support to provide sustainability to the new economy. Exergy and rational efficiency concept are used to make a comparison between both processes. (author)

  12. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia.

    Science.gov (United States)

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-20

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  13. Long term hydrogen production potential of concentrated photovoltaic (CPV) system in tropical weather of Singapore

    KAUST Repository

    Burhan, Muhammad

    2016-08-23

    Concentrated photovoltaic (CPV) system provides highest solar energy conversion efficiency among all the photovoltaic technologies and provides the most suitable option to convert solar energy into hydrogen, as future sustainable energy carrier. So far, only conventional flat plate PV systems are being used for almost all of the commercial applications. However, most of the studies have only shown the maximum efficiency of hydrogen production using CPV. In actual field conditions, the performance of CPV-Hydrogen system is affected by many parameter and it changes continuously during whole day operation. In this paper, the daily average and long term performances are proposed to analyze the real field potential of the CPV-Hydrogen system, which is of main interest for designers and consumers. An experimental setup is developed and a performance model is proposed to investigate the average and long term production potential of CPV-Hydrogen system. The study is carried out in tropical weather of Singapore. The maximum CPV efficiency of 27-28% and solar to hydrogen (STH) efficiency of 18%, were recorded. In addition, the CPV-Hydrogen system showed the long term average efficiency of 15.5%, for period of one year (12-months), with electrolyser rating of 47 kWh/kg and STH production potential of 218 kWh/kg. Based upon the DNI availability, the system showed hydrogen production potential of 0.153-0.553 kg/m/month, with average production of 0.43 kg/m/month. However, CPV-Hydrogen system has shown annual hydrogen production potential of 5.162 kg/m/year in tropical weather of Singapore.

  14. Scope and perspectives of industrial hydrogen production and infrastructure for fuel cell vehicles in North Rhine-Westphalia

    International Nuclear Information System (INIS)

    Pastowski, Andreas; Grube, Thomas

    2010-01-01

    A promising candidate that may follow conventional vehicles with internal combustion engines combines hydrogen from regenerative sources of energy, fuel cells and an electric drive train. For early fleets introduced the refuelling infrastructure needs to be in place at least to the extent of the vehicles operational reach. The question arises which strategies may help to keep initial hydrogen and infrastructure cost low? Industrial production, distribution and use of hydrogen is well-established and the volumes handled are substantial. Even though today's industrial hydrogen is not in tune with the long-term sustainable vision, hydrogen production and infrastructure already in place might serve as a nucleus for putting that vision into practice. This contribution takes stock of industrial production and use of hydrogen in North Rhine-Westphalia based on a recently finalized project. It demonstrates to which extent industrial hydrogen could be used for a growing number of vehicles and at which time additional capacity might need to be installed.

  15. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  16. A lignite-geothermal hybrid power and hydrogen production plant for green cities and sustainable buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kilkis, B. [Baskent University, Ankara (Turkey). Dept. of Mechanical Engineering

    2011-02-15

    Turkey is rich in both geothermal energy and lignite reserves, which in many cases, are co-located. This condition makes it feasible to utilize both lignite and geothermal energy in a hybrid form for combined power heat, and cold generation, which may lead to optimally energy and exergy efficient, environmentally benign, and economically sound applications. This paper presents a novel concept of hybrid lignite-geothermal plant for a district energy system and hydrogen production facility in Aydin with special emphasis on high performance, green buildings and green districts. In this concept, lignite is first introduced to a partially fluidized-bed gasifier and then to a fluidized-bed gas cleaning unit, which produces synthetic gas and finally hydrogen. The by-products, namely char and ash are used in a fluidized-bed combustor to produce power. Waste heat from all these steps are utilized in a district heating system along with heat received from geothermal production wells after power is generated there. H{sub 2}S gas obtained from the separator system is coupled with hydrogen production process at the lignite plant. Absorption cooling systems and thermal storage tanks complement the hybrid system for the tri-generation district energy system. On the demand side, the new, green OSTIM OSB administration building in Ankara is exemplified for greener, low-exergy buildings that will compound the environmental benefits.

  17. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  18. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.

    2017-10-01

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.

  19. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  20. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  1. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  2. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    Science.gov (United States)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  3. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  4. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  5. Development of sustainable CO2 conversion processes for the methanol production

    DEFF Research Database (Denmark)

    Roh, Kosan; Nguyen, Tuan B.H.; Suriyapraphadilok, Uthaiporn

    2015-01-01

    reforming process has to be integrated with the existing conventional methanol plant to obtain a reduced CO2 emission as well as lowered production costs. On the other hand, the CO2 hydrogenation based methanol plant could achieve a reduction of net CO2 emission at a reasonable production cost only......Utilization of CO2 feedstock through CO2 conversion for producing valuable chemicals as an alternative to sequestration of the captured CO2 is attracting increasing attention in recent studies. Indeed, the methanol production process via thermochemical CO2 conversion reactions is considered a prime...... candidate for commercialization. The aim of this study is to examine two different options for a sustainable methanol plant employing the combined reforming and CO2 hydrogenation reactions, respectively. In addition, process improvement strategies for the implementation of the developed processes are also...

  6. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  7. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  8. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  9. Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy - shaking and extra-light supplementation approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu; Wang, Yong-Hong; Zhang, Si-Liang; Chu, Ju; Zhang, Ming; Huang, Ming-Zhi; Zhuang, Ying-Ping [State Key Laboratory of Bioreactor Engineering, P.O. Box 329, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2009-12-15

    Biohydrogen has gained attention due to its potential as a sustainable alternative to conventional methods for hydrogen production. In this study, the effect of light intensity as well as cultivation method (standing- and shaking-culture) on the cell growth and hydrogen production of Rhodobacter sphaeroides ZX-5 were investigated in 38-ml anaerobic photobioreactor with RCVBN medium. Thus, a novel shaking and extra-light supplementation (SELS) approach was developed to enhance the phototrophic H{sub 2} production by R. sphaeroides ZX-5 using malate as the sole carbon source. The optimum illumination condition for shaking-culture by strain ZX-5 increased to 7000-8000 lux, markedly higher than that for standing-culture (4000-5000 lux). Under shaking and elevated illumination (7000-8000 lux), the culture was effective in promoting photo-H{sub 2} production, resulting in a 59% and 56% increase of the maximum and average hydrogen production rate, respectively, in comparison with the culture under standing and 4000-5000 lux conditions. The highest hydrogen-producing rate of 165.9 ml H{sub 2}/l h was observed under the application of SELS approach. To our knowledge, this record is currently the highest hydrogen production rate of non-immobilized purple non-sulphur (PNS) bacteria. This optimal performance of photo-H{sub 2} production using SELS approach is a favorable choice of sustainable and economically feasible strategy to improve phototrophic H{sub 2} production efficiency. (author)

  10. New efficient hydrogen process production from organosilane hydrogen carriers derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Jean Michel [Unite URMITE, UMR 6236 CNRS, Faculte de Medecine et de Pharmacie, Universite de la Mediterranee, 27 boulevard Jean Moulin, 13385 Marseille 05 (France)

    2010-04-15

    While the source of hydrogen constitutes a significant scientific challenge, addressing issues of hydrogen storage, transport, and delivery is equally important. None of the current hydrogen storage options, liquefied or high pressure H{sub 2} gas, metal hydrides, etc.. satisfy criteria of size, costs, kinetics, and safety for use in transportation. In this context, we have discovered a methodology for the production of hydrogen on demand, in high yield, under kinetic control, from organosilane hydrogen carriers derivatives and methanol as co-reagent under mild conditions catalyzed by a cheap ammonium fluoride salt. Finally, the silicon by-products can be efficiently recycle leading to an environmentally friendly source of energy. (author)

  11. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  12. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  13. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  14. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  15. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  16. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  17. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  18. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  19. DESIGN OF A NOVEL CONDUCTING COMPOSITE SUPPORTED BY PLATINUM NANOPARTICLES FOR HYDROGEN PRODUCTION FROM WATER

    Directory of Open Access Journals (Sweden)

    Didem BALUN KAYAN

    2016-09-01

    Full Text Available Because of the decrease in fossil fuel resources and the continuous increase in energy demands, clean energy requirements become extremely important for future energy generation systems. Hydrogen is well known as an efficient and environmentally friendly energy carrier. Highly catalytic active and low-cost electrocatalysts for hydrogen production are key issues for sustainable energy technologies. Here we report an aluminium electrode modified with polypyrrole (PPy-chitosan (Chi composite film decorated with Pt nanoparticles for hydrogen production from water. Hydrogen evolution reaction (HER is examined by cyclic voltammetry (CV, Tafel polarization curves and electrochemical impedance spectroscopy (EIS in 0.5M H2SO4. The structural properties of the modified surfaces analyses were investigated by scanning electron microscopy (SEM. The stability tests also performed for aluminium electrode coted with PPy-Chi/Pt composite film.

  20. Nuclear hydrogen - cogeneration and the transitional pathway to sustainable development

    International Nuclear Information System (INIS)

    Gurbin, G.M.; Talbot, K.H.

    1994-01-01

    The development of the next phase of the Bruce Energy Centre, in cooperation with Ontario Hydro, will see the introduction of a series of integrated energy processes whose end products will have environmental value added. Cogenerated nuclear steam and electricity were selected on the basis of economics, sustainability and carbon emissions. The introduction of hydrogen to combine with CO 2 from alcohol fermentation provided synthetic methanol as a feedstock to refine into ether for the rapidly expanding gasoline fuel additive market, large volumes of O 2 will enhance combustion processes and improve closed-looping of the systems. In the implementation of the commercial development, the first stage will require simultaneous electrolysis, methanol synthesis and additional fermentation capacity. Electricity and steam pricing will be key to viability and an 80-MV 'backup' fossil-fuelled, back pressure turbine cogeneration facility could be introduced in a compatible matter. Successful demonstration of transitional and integrating elements necessary to achieve sustainable development can serve as a model for electric utilities throughout the world. 11 ref., 1 tab., 4 figs

  1. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  2. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  3. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Williams, C R; Bees, M A

    2014-02-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  4. The hydrogen economy urgently needs environmentally sustainable hydroelectricity

    International Nuclear Information System (INIS)

    Goodland, R.

    1995-01-01

    Only two sources of energy were said to have the capacity to bridge the transition to fully sustainable and renewable energy, namely natural gas and hydro. The argument was made that because of this advantage, both forms will have to be promoted fast, since the transition to sustainable energy is urgent. In so far as natural gas supplies are concerned, it was estimated that they will last for perhaps the next 50 years, whereas hydroelectric potential is practically unlimited. Developing nations could vastly accelerate their development, reduce poverty and approach sustainability by exporting hydro to industrial countries. Similarly, industrial nations switching from fossil fuels to hydrogen could move up the environmental ranking, and significantly help alleviating global pollution and climate risks. Environmental ranking of new energy sources, world reservoirs of hydroelectric power, environmental and social ranking of hydro sites, the environmental impacts of hydro projects, and the concept of environmental sustainability in hydro reservoirs, were summarized. Greater acceptance of the need for sustainable development by the hydro industry was urged, along with more care in selecting hydro development sites with sustainability as a prime objective. 23 refs., 6 figs

  5. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  6. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  7. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  8. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  9. The hydrogen production; La production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, P.; Goldstein, St. [CEA Cadarach, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Lucchese, P. [CEA Fontenay aux Roses, Dir. des Nouvelles Technologies de l' Energie, 92 (France)

    2002-07-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  10. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  11. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U. [Instituto de Investigaciones Electricas Av. Reforma 113, col. Palmira c.p.62490 Cuernavaca Morelos (Mexico)

    2006-07-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm{sup 2} of geometrical area) with a maximum hydrogen production of 1 Nm{sup 3}/h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  12. Appraisal of bio-hydrogen production schemes

    International Nuclear Information System (INIS)

    Bent Sorensen

    2006-01-01

    Work is ongoing on several schemes of biological hydrogen production. At one end is the genetic modification of biological systems (such as algae or cyanobacteria) to produce hydrogen from photosynthesis, instead of the energy-rich compounds (such as NADPH 2 ) normally constituting the endpoint of the transformations through the photo-systems. A second route is to collect and use the biomass produced by normal plant growth processes in a separate step that produces hydrogen. This may be done similar to biogas production by fermentation, where the endpoint is methane (plus CO 2 and minor constituents). Hydrogen could be the outcome of a secondary process starting from methane, involving any of the conventional methods of hydrogen production from natural gas. An alternative to fermentation is gasification of the biomass, followed by a shift-reaction leading to hydrogen. I compare advantages and disadvantages of these three routes, notably factors such as system efficiency, cost and environmental impacts, and also compare them to liquid biofuels. (author)

  13. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  14. Economic analysis of a combined production of hydrogen-energy from empty fruit bunches

    International Nuclear Information System (INIS)

    Langè, Stefano; Pellegrini, Laura A.

    2013-01-01

    This work relates to an economic analysis and a comparison between different process solutions for the production of hydrogen and the co-production of hydrogen and energy by means of a zero emission biomass integrated supercritical water gasification (SCWG) and combined cycle power plant. The case study will be located in Malaysia. Energy will be produced in agreement with the Small Renewable Energy Power Plant (SREP) Program, promoted by the Government of Malaysia. Hydrogen is obtained by supercritical water gasification (SCWG) of empty fruit bunches (EFB), a technology of interest for the processing of biomass with high moisture content. The economic analysis has been carried out to demonstrate the feasibility of the process solutions and to compare their convenience. The feedstock is 35 Mg h −1 of empty fruit bunches (EFB), a biomass obtained in the Palm Oil Industry. The location of the site is Teluk Intak District in the State of Perak (Malaysia). The study is performed with Aspen Plus ® V7.2. The aim of this work is to investigate the economic convenience of supercritical water gasification technology applied to a potential industrial case study in order to state the possibilities and the trade-off for the production of hydrogen and the co-production of hydrogen and energy from biomass, using an innovative technology (SCWG) instead of a typical unit for syngas and energy production. The processes have been developed to reach zero emissions and zero wastes. CO 2 and solid residuals are recycled inside palm oil lifecycle. -- Highlights: • Supercritical water gasification of empty fruit bunches has been used for hydrogen production. • Malaysia Small Renewable Energy Power Plant Program is aiming to reduce by 40% its greenhouse gases emissions by 2020. • An economic analysis has been performed to assess the sustainability of hydrogen and energy production from palm oil biomass. • Carbon dioxide and solid residuals are recycled back into biomass

  15. Preliminary Cost Estimates for Nuclear Hydrogen Production: HTSE System

    International Nuclear Information System (INIS)

    Yang, K. J.; Lee, K. Y.; Lee, T. H.

    2008-01-01

    KAERI is now focusing on the research and development of the key technologies required for the design and realization of a nuclear hydrogen production system. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GTMHR and PBMR are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTSE (High Temperature Steam Electrolysis) process with VHTR (Very High Temperature nuclear Reactor) as a thermal energy source. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if CO 2 capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of CO 2 . Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed

  16. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Banan, N.; Davari, A.

    2009-01-01

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO 2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO 2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  17. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  18. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  19. Hydrogen as an energy carrier and its production by nuclear power

    International Nuclear Information System (INIS)

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world's energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat

  20. Hydrogen as an energy carrier and its production by nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world`s energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat Refs, figs, tabs

  1. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  2. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  3. Hydrogen and syngas production from sewage sludge via steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nipattummakul, Nimit [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand); Ahmed, Islam I.; Gupta, Ashwani K. [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kerdsuwan, Somrat [The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand)

    2010-11-15

    High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 C was found to be 0.076 g{sub gas} g{sub sample}{sup -1}. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes. (author)

  4. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Chang, J. H.; Park, J. K.

    2007-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production system, and the assessment of the nuclear hydrogen production economy. To estimate the attainments of the key technologies in progress with the performance goals of GIF, itemized are the attainment indices based on SRP published in VHTR R and D steering committee of Gen-IV. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items conformed to the NHDD concepts established in a preconceptual design in 2005. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  5. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  6. Microwave plasma for hydrogen production from liquids

    Directory of Open Access Journals (Sweden)

    Czylkowski Dariusz

    2016-06-01

    Full Text Available The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2/h] and the energy yield of hydrogen production [NL(H2/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2/h and the energy yield was 223 NL(H2 per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

  7. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  8. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  9. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  10. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  11. Hydrogen production by alkaline water electrolysis

    OpenAIRE

    Santos, Diogo M. F.; Sequeira, César A. C.; Figueiredo, José L.

    2013-01-01

    Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article...

  12. New concepts in hydrogen production in Iceland

    International Nuclear Information System (INIS)

    Arnason, B.; Sigfusson, T.I.; Jonsson, V.K.

    1993-01-01

    The paper presents some new concepts of hydrogen production in Iceland for domestic use and export. A brief overview of the Icelandic energy consumption and available resources is given. The cost of producing hydrogen by electrolysis is calculated for various alternatives such as plant size, load factors and electricity cost. Comparison is made between the total cost of liquid hydrogen delivered to Europe from Iceland and from Northern America, showing that liquid hydrogen delivered to Europe from Iceland would be 9% less expensive. This assumes conventional technology. New technologies are suggested in the paper and different scenarios for geothermally assisted hydrogen production and liquefaction are discussed. It is estimated that the use of geothermal steam would lead to 19% lower hydrogen gas production costs. By analysing the Icelandic fishing fleet, a very large consumer of imported fuel, it is argued that a transition of fuel technology from oil to hydrogen may be a feasible future option for Iceland and a testing ground for changing fuel technology. (Author)

  13. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  14. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-05

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m(2). With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  15. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-01

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m2. With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  16. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  17. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  18. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  19. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  20. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Development of interface technology for nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2012-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production economy. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  2. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  3. Cork for sustainable product design

    NARCIS (Netherlands)

    Mestre, A.C.; Gil, L.

    2011-01-01

    Sustainable Product Design is currently accepted as one of the most promising trends in the “Sustainable Development” movement. It is often seen as a facilitation tool to implement Sustainability in practice, by improving the life cycle and eco-efficiency of products, by promoting dematerialization

  4. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  5. The U.S. department of energy program on hydrogen production

    International Nuclear Information System (INIS)

    Henderson, David; Paster, Mark

    2003-01-01

    Clean forms of energy are needed to support sustainable global economics growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision roadmap for moving toward a hydrogen economy-a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. DOE has examined and organized its hydrogen activities in pursuit of this national vision. This includes the development of fossil and renewable sources, as well as nuclear technologies capable of economically producing large quantities of hydrogen. (author)

  6. Production of Singlet Oxygen in a Non-Self-Sustained Discharge

    International Nuclear Information System (INIS)

    Vasil'eva, A.N.; Klopovskii, K.S.; Kovalev, A.S.; Lopaev, D.V.; Mankelevich, Yu.A.; Popov, N.A.; Rakhimov, A.T.; Rakhimova, T.V.

    2005-01-01

    The production of O 2 (a 1 Δ g ) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O 2 (a 1 Δ g ) production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2-1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O 2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O 2 (a 1 Δ g ) and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O 2 (a 1 Δ g ) and the dynamics of its concentration. It is shown that, in the dynamics of O 2 (a 1 Δ g ) molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O( 3 P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar : O 2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a

  7. Research on hydrogen production system

    International Nuclear Information System (INIS)

    Nakagiri, Toshio

    2002-07-01

    Hydrogen is closely watched for environmental issues in recent years. In this research, hydrogen production systems and production techniques are widely investigated, and selected some hydrogen production process which have high validity for FBR system. Conclusions of the investigation are shown below. (1) Water-electrolysis processes and steam reform processes at low temperatures are already realized in other fields, so they well be easily adopted for FBR system. FBR system has no advantage when compared with other systems, because water-electrolysis processes can be adopted for other electricity generation system. On the other hand, FBR system has an advantage when steam reforming processes at low temperatures will be adopted, because steam reforming processes at 550-600degC can't be adopted for LWR. (2) Thermochemical processes will be able to adopted for FBR when process temperature will be lowered and material problems solved, because their efficiencies are expected high. Radiolysis processes which use ray (for example, gamma rya) emitted in reactor can be generate hydrogen easily, so they will be able to be adopted for FBR if splitting efficiency will be higher. Further investigation and R and D to realize these processes are considered necessary. (author)

  8. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  9. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy

    International Nuclear Information System (INIS)

    Solorzano S, C.; Francois L, J. L.

    2011-11-01

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  10. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  11. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  12. Design of a novel flat-plate photobioreactor system for green algal hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae have the ability to photosynthetically produce molecular hydrogen using sunlight and water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide during the algal growth phase. The main costs associated with this process result from building and operating a photobioreactor system. The challenge is to design an innovative and cost effective photobioreactor that meets the requirements of algal growth and sustainable hydrogen production. We document the details of a novel 1 litre vertical flat-plate photobioreactor that has been designed to accommodate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool white LEDs. The reactor body consists of two compartments constructed from transparent Perspex sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas flow. A secondary compartment is filled with water and used to control the temperature and wavelength of the system. The reactor is fitted with instruments that monitor the pH, pO{sub 2}, temperature and optical density of the culture. A membrane-inlet mass spectrometry system has been developed for hydrogen collection and in situ monitoring. The reactor is fully autoclaveable and the possibility of hydrogen leaks has been minimised. The modular nature of the reactor allows efficient cleaning and maintenance. (orig.)

  13. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  14. Roles Prioritization of Hydrogen Production Technologies for Promoting Hydrogen Economy in the Current State of China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Gao, Suzhao; Tan, Shiyu

    2015-01-01

    Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance...... information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen...... for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision...

  15. Hydrogen, energy vector of the future?

    International Nuclear Information System (INIS)

    Perrin, J.; Deschamps, J.F.

    2004-01-01

    In the framework of a sustainable development with a reduction of the greenhouse gases emissions, the hydrogen seems a good solution because its combustion produces only water. From the today hydrogen industrial market, the authors examine the technological challenges and stakes of the hydrogen-energy. They detail the hydrogen production, distribution and storage and compare with the petrol and the natural gas. Then they explain the fuel cells specificity and realize a classification of the energy efficiency of many associations production-storage-distribution-use. a scenario of transition is proposed. (A.L.B.)

  16. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    The rapid climate changes and the heavy reliance on imported fuel in Korea have motivated interest in the hydrogen economy. The Korean government has set up a long-term vision for transition to the hydrogen economy. To meet the expected demand of hydrogen as a fuel, hydrogen production using nuclear energy was also discussed. Recently the Korean Atomic Energy Committee has approved nuclear hydrogen production development and demonstration which will lead to commercialisation in late 2030's. An extensive research and development programme for the production of hydrogen using nuclear power has been underway since 2004 in Korea. During the first three years, a technological area was identified for the economic and efficient production of hydrogen using a VHTR. A pre-conceptual design of the commercial nuclear hydrogen production plant was also performed. As a result, the key technology area in the core design, the hydrogen production process, the coupling between reactor and chemical side, and the coated fuel were identified. During last three years, research activities have been focused on the key technology areas. A nuclear hydrogen production demonstration plant (NHDD) consisting of a 200 MWth capacity VHTR and five trains of water-splitting plants was proposed for demonstration of the performance and the economics of nuclear hydrogen. The computer tools for the VHTR and the water-splitting process were created and validated to some extent. The TRISO-coated particle fuel was fabricated and qualified. The properties of high temperature materials, including nuclear graphite, were studied. The sulphur-iodine thermochemical process was proved on a 3 litre/ hour scale. A small gas loop with practical pressure and temperature with the secondary sulphur acid loop was successfully built and commissioned. The results of the first phase research increased the confidence in the nuclear hydrogen technology. From 2009, the government decided to support further key technology

  17. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  18. Negotiating sustainable innovation? Hydrogen and fuel cell technologies in Germany

    Directory of Open Access Journals (Sweden)

    Weert Canzler

    2013-06-01

    Full Text Available Recently, the German Federal Government made the consequential decision to change its energy program. This not only as a result of the decision to shut down the existing nuclear power plants within the next few years, but also due to vital challenges like climate change and security of energy supply. The shift in the energy-technology paradigm from fossil fuel technologies to regenerative energies might appear as a merely technical process at first glance. Yet, the road to environmental sustainability is paved with economic and social stumbling blocks. The concept of sustainable development is not a blueprint for technical progress but requires deliberations on questions about innovations and governance: How do we want to live and how do we want to get there? This paper traces the negotiations of sustainable innovation on the example of hydrogen and fuel cell technologies in Germany. The institutional set up in this field is analyzed and the new organizational actors are identified. These actors attempt to inform and persuade others of the benefits of hydrogen and fuel cells in order to establish a common view that is to guide the further development. However, while they succeeded in mobilizing enough actors to launch the largest Public Private Partnership in this sector in the EU, they could not attain the leadership in the public discourse on these technologies. It seems that an attractive guiding vision of a sustainable, post-fossil energy future and a broad acceptance in daily use would have been major prerequisites for such leadership.

  19. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  20. Status of hydrogen production by nuclear power

    International Nuclear Information System (INIS)

    Chang, Jong Wa; Yoo, Kun Joong; Park, Chang Kue

    2001-07-01

    Hydrogen production methods, such as electrolysis, thermochemical method, biological method, and photochemical method, are introduced in this report. Also reviewed are current status of the development of High Temperatrue Gas Coooled Reactor, and it application for hydrogen production

  1. Evaluation of Nuclear Hydrogen Production System

    International Nuclear Information System (INIS)

    Park, Won Seok; Park, C. K.; Park, J. K. and others

    2006-04-01

    The major objective of this work is tow-fold: one is to develop a methodology to determine the best VHTR types for the nuclear hydrogen demonstration project and the other is to evaluate the various hydrogen production methods in terms of the technical feasibility and the effectiveness for the optimization of the nuclear hydrogen system. Both top-tier requirements and design requirements have been defined for the nuclear hydrogen system. For the determination of the VHTR type, a comparative study on the reference reactors, PBR and PBR, was conducted. Based on the analytic hierarchy process (AHP) method, a systematic methodology has been developed to compare the two VHTR types. Another scheme to determine the minimum reactor power was developed as well. Regarding the hydrogen production methods, comparison indices were defined and they were applied to the IS (Iodine-Sulfur) scheme, Westinghouse process, and the, high-temperature electrolysis method. For the HTE, IS, and MMI cycle, the thermal efficiency of hydrogen production were systematically evaluated. For the IS cycle, an overall process was identified and the functionality of some key components was identified. The economy of the nuclear hydrogen was evaluated, relative to various primary energy including natural gas coal, grid-electricity, and renewable. For the international collaborations, two joint research centers were established: NH-JRC between Korea and China and NH-JDC between Korea and US. Currently, several joint researches are underway through the research centers

  2. Sustainable design of fuel cell systems and components. Paper no. IGEC-1-148

    International Nuclear Information System (INIS)

    Frank, D.

    2005-01-01

    'Full text:' Fuel Cell and Hydrogen Technology are touted as the major future enabler for a renewable energy future. This is particularly true for vehicular applications were there are few competitive alternatives. However, without zero-emission production of hydrogen, this will not be a very sustainable solution. Hydrogen generation from biomass, solar, hydro or wind energy will allow this realization. In addition, we need to evaluate the whole life cycle of a fuel cell system in order to make sure that it is truly 'green'. Hydrogenics has in place corporate initiatives to ensure that sustainability is part of the corporate objectives and philosophy. A sustainable future ensures that this generation does not prevent future generations from a similar (or better) standard of living. Fuel cell recyclability and reusability will be a major factor in ensuring a renewable, sustainable future. This is accomplished using sustainable design methodology whereby fuel cell system components are analyzed for their total life cycle impact. This concept of 'cradle to grave' product design responsibility is applied to Hydrogenics fuel cell products and is discussed in this paper. (author)

  3. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  4. Influence of temperature on hydrogen production from bread mill wastewater by sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Tang, G.L.; Huang, J.; Li, Y.Y.; Sun, Z.J. [China Agricultural Univ., Beijing (China). College of Resources and Environmental Sciences; Tang, Q.Q. [Nanjing Univ., Nanjing (China). Medical School

    2008-07-01

    Hydrogen (H{sub 2}) energy has been touted as a sustainable and clean energy source that can solve environmental problems such as acid rain, greenhouse gases and transboundary pollution. While most hydrogen is currently produced from nonrenewable sources such as oil, natural gas, and coal, these processes are energy-intensive and costly. The biological production of hydrogen using fermentative bacteria is an environmentally friendly and energy-saving process which has recently attracted much attention as an effective way of converting biomass into H{sub 2}. Waste-based H{sub 2} production processes mainly include wastewater from paper mills, municipal solid waste, rice winery wastewater, and food wastewater from cafeterias. This study investigated the use of bread mill wastewater for biological production of hydrogen due to its high production potential. Annual bread production in China is estimated to be over 1.5 million tons, producing 10 m{sup 3} of wastewater per ton of bread. The wastewater has high chemical oxygen demand and carbohydrate concentrations and is therefore suitable for anaerobic treatment processes. This study evaluated the effect of temperature on H{sub 2} production from bread mill wastewater by sewage sludge in lab-scale experiments. H{sub 2} production, the distribution of volatile fatty acids and the lag-phase time were influenced by temperature. H{sub 2} production and H{sub 2} yield increased with increasing temperature. The optimal temperature for H{sub 2} production was 50 degrees C. Butyrate, acetate and alcohol were the main by-products of H{sub 2} fermentation. According to 16S rDNA analysis, the dominant microflora was Clostridium, but the microbial species varied with temperature. The activation energy for H{sub 2} production was estimated to be 92 kJ per mol for bread mill wastewater. It was concluded that bread mill wastewater could potentially serve as a substrate for H{sub 2} production. This research provides a means of

  5. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  6. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  7. Zero emission distributed hydrogen production

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, J.D.

    2004-01-01

    The need for distributed production facilities has become a critical issue in developing a hydrogen infrastructure. Hydrogen generation using processes that make effective use of what would normally be considered waste streams or process inefficiencies can have more favorable economics than stand-alone technologies. Currently, natural gas is distributed to industrial and residential customers through a network of pipelines. High pressure main lines move gas to the vicinity of consumers where the pressure is reduced for local, low pressure distribution. Often, the practice is to use an isenthalpic expansion which results in a cooling of the gas stream. Some of the natural gas is burned to preheat the fuel so that the temperature after the expansion is near ambient. This results in the destruction of exergy in the high pressure gas stream and produces CO 2 in the process. If, instead, a turbo-expander is used to reduce the stream pressure, work can be recovered using a generator and hydrogen can be produced via electrolysis. This method of hydrogen production is free of green-house gas emissions, makes use of existing gas distribution facilities, and uses exergy that would otherwise be destroyed. Pressure reduction using the work producing process (turbo-expander) is accompanied by a large drop in temperature, on the average of 70 K. The local gas distributor requires the gas temperature to be raised again to near 8 o C to prevent damage to valve assemblies. The required heating power after expansion can be on the order of megawatts (site dependent.) Supplying the heat can be seen as a cost if energy is taken from the system to reheat the fuel; however, the low temperature stream may also be considered an asset if the cooling power can be used for a local process. This analysis is the second stage of a study to examine the technical and economic feasibility of using pressure let-down sites as hydrogen production facilities. This paper describes a proposed

  8. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2006-01-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 μg bacterial biomass ml -1 ). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H 2 h -1 . For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H 2 h -1 were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  9. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Asthana, R.K.; Singh, A.P. [Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, (India)

    2006-07-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 {mu}g bacterial biomass ml{sup -1}). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H{sub 2} h{sup -1}. For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H{sub 2} h{sup -1} were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  10. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  11. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2013-01-01

    In this study, hybrid renewable energy based hydrogen and electricity production and storage systems are conceptually modeled and analyzed in detail through energy, exergy and sustainability approaches. Several subsystems, namely hybrid geothermal energy-wind turbine-solar photovoltaic (PV) panel, inverter, electrolyzer, hydrogen storage system, Proton Exchange Membrane Fuel Cell (PEMFC), battery and loading system are considered. Also, a case study, based on hybrid wind–solar renewable energy system, is conducted and its results are presented. In addition, the dead state temperatures are considered as 0 °C, 10 °C, 20 °C and 30 °C, while the environment temperature is 30 °C. The maximum efficiencies of the wind turbine, solar PV panel, electrolyzer, PEMFC are calculated as 26.15%, 9.06%, 53.55%, and 33.06% through energy analysis, and 71.70%, 9.74%, 53.60%, and 33.02% through exergy analysis, respectively. Also, the overall exergy efficiency, ranging from 5.838% to 5.865%, is directly proportional to the dead state temperature and becomes higher than the corresponding energy efficiency of 3.44% for the entire system. -- Highlights: ► Developing a three-hybrid renewable energy (geothermal–wind–solar)-based system. ► Undertaking a parametric study at various dead state temperatures. ► Investigating the effect of dead state temperatures on exergy efficiency

  12. Conceptual design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-08-01

    Since hydrogen produced by nuclear should be economically competitive compared with other methods in a hydrogen society, it is important to build hydrogen production system to be coupled with the reactor as a conventional chemical plant. Japan Atomic Energy Agency started the safety study to establish a new safety philosophy to meet safety requirements for non-nuclear grade hydrogen production system. Also, structural concepts with integrating functions for the Bunsen reactor and sulphuric acid decomposer were proposed to reduce construction cost of the IS process hydrogen production system. In addition, HI decomposer which enables the process condition to be eased consisting of conventional materials and technologies was studied. Moreover, technical feasibility of the HTTR-IS system in which the hydrogen production rate of 1,000 Nm 3 /h by using the supplied heat of 10 MW from the intermediate heat exchanger of the HTTR was confirmed. This paper describes the conceptual design of the HTTR-IS hydrogen production system. (author)

  13. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    Science.gov (United States)

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  15. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  16. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  17. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  18. British Columbia hydrogen and fuel cell strategy : an industry vision for our hydrogen future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-15

    British Columbia's strategy for global leadership in hydrogen fuel cell technology was outlined. It was suggested that hydrogen and fuel cells will power a significant portion of the province by 2020, and will be used in homes, businesses, industry and transportation. The following 3 streams of activity were identified as leading to the achievement of this vision: (1) a hydrogen highway of technology demonstrations in vehicles, refuelling facilities and stationary power systems in time for and building on the 2010 Winter Olympic and Paralympic Games, (2) the development of a globally leading sustainable energy technology cluster that delivers products and services as well as securing high-value jobs, and (3) the renewal of the province's resource heartlands to supply the fuel and knowledge base for hydrogen-based communities and industries, and clean hydrogen production and distribution. It was suggested that in order to achieve the aforementioned goals, the government should promote the hydrogen highway and obtain $135 million in funding from various sources. It was recommended that the BC government and members of industry should also work with the federal government and other provinces to make Canada an early adopter market. Creative markets for BC products and services both in Canada and abroad will be accomplished by global partnerships, collaboration with Alberta and the United States. It was suggested that in order to deploy clean energy technologies, BC must integrate their strategy into the province's long-term sustainable energy plan. It was concluded that the hydrogen and fuel cell cluster has already contributed to the economy through jobs, private sector investment and federal and provincial tax revenues. The technology cluster's revenues have been projected at $3 billion with a workforce of 10,000 people by 2010. The hydrogen economy will reduce provincial air emissions, improve public health, and support sustainable tourism

  19. How green are the hydrogen production processes?

    International Nuclear Information System (INIS)

    Miele, Ph.; Demirci, U.B.

    2010-01-01

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  20. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  1. Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    Directory of Open Access Journals (Sweden)

    Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    2016-07-01

    Full Text Available Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300 gram. The maximum hydrogen production rate is 153.3 ml/min, the efficiency of the system is 20.88% and the total amount of hydrogen produced in one day is 220.752 liter.

  2. Production of hydrogen from by-products of food industries by rhodospirillaceae

    Energy Technology Data Exchange (ETDEWEB)

    Reh, U.

    1983-11-01

    The decomposition of organic substances from food-by-products as whey, beet sugar molasses, cane-sugar-molasses and potato-water by the Rhodospirillaceae Rp. capsulata, Rp. acidophila, Rm. vannielii, Rs. rubrum, and Rs. tenue to hydrogen and carbon dioxide were tested. In a pre-cultivation Lactobacillus bulgaricus converted the sugars of the by-products into lactic acid, which is easier in handling. Rs. rubrum was superior in producing hydrogen from this nutrient. It released from whey up to 56% of the substrate hydrogen, from beet sugar molasses 42%, from cane-sugar-molasses 89% and from potato-water 19%. Out-door-researches were made to evaluate the decrease of hydrogen yield under the influence of weather as well as day and night periods compared to the homogeneous conditions of the laboratory. From 200 m/sup 3/ whey, the daily output of a dairy, 4000 m/sup 3/ hydrogen corresponding to an energy equivalent of 1000 l fuel oil could be produced. To achieve this, 130 000 m/sup 2/ have to be covered with batch fermenters. These results show, that there is nearly no hope to decompose food by-products by Rhodospirillaceae in large scale technology, unless a new processing technology using a flow-fermenter and raising the hydrogen production significantly will be found.

  3. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  4. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production.

    Science.gov (United States)

    Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick

    2016-01-01

    Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

  5. National hydrogen technology competitiveness analysis with an integrated fuzzy AHP and TOPSIS approaches: In case of hydrogen production and storage technologies

    Science.gov (United States)

    Lee, Seongkon; Mogi, Gento

    2017-02-01

    The demand of fossil fuels, including oil, gas, and coal has been increasing with the rapid development of developing countries such as China and India. U.S., Japan, EU, and Korea have been making efforts to transfer to low carbon and green growth economics for sustainable development. And they also have been measuring to cope with climate change and the depletion of conventional fuels. Advanced nations implemented strategic energy technology development plans to lead the future energy market. Strategic energy technology development is crucial alternative to address the energy issues. This paper analyze the relative competitiveness of hydrogen energy technologies in case of hydrogen production and storage technologies from 2006 to 2010. Hydrogen energy technology is environmentally clean technology comparing with the previous conventional energy technologies and will play a key role to solve the greenhouse gas effect. Leading nations have increasingly focused on hydrogen technology R&D. This research is carried out the relative competitiveness of hydrogen energy technologies employed by an integrated fuzzy analytic hierarchy process (Fuzzy AHP) and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approaches. We make four criteria, accounting for technological status, R&D budget, R&D human resource, and hydrogen infra. This research can be used as fundamental data for implementing national hydrogen energy R&D planning for energy policy-makers.

  6. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    International Nuclear Information System (INIS)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia

    2011-01-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  7. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  8. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  9. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  10. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  11. Photoelectrocatalytic Glucose Oxidation to Promote Hydrogen Production over Periodically Ordered TiO2 Nanotube Arrays Assembled of Pd Quantum Dots

    International Nuclear Information System (INIS)

    Zhang, Yajun; Zhao, Guohua; Shi, Huijie; Zhang, Ya-nan; Huang, Wenna; Huang, Xiaofeng; Wu, Zhongyi

    2015-01-01

    Highlights: • Solar-driven PEC glucose oxidation to promote hydrogen production was presented. • The excellent PEC activity of Pd QDs@TNTAs was investigated. • The rate of hydrogen production from glucose was about 15 times than water. • A low-cost and efficient method in renewables-to-hydrogen conversion was put forward. - Abstract: The development of highly efficient and low-cost approaches for catalytic hydrogen production from renewable energy is of tremendous importance for a truly sustainable hydrogen-based energy carrier in future life. Herein, the probability of utilizing solar light to product hydrogen from biomass derivative, glucose, was systematically demonstrated by using the periodically ordered TiO 2 nanotube arrays (TNTAs) assembled of Palladium quantum dots (Pd QDs), i.e. Pd QDs@ TNTAs as photoanode. The results showed that remarkably increased photocurrent density was obtained in the glucose solution compared to the pure KOH electrolyte over as-prepared photoelectrode, which indicated that the glucose could be faster oxidized than water oxidation, and thus could promote the hydrogen production on Pt cathode. The yield of hydrogen production from glucose oxidation reached as high as 164.8 μmol cm −1 over Pd QDs@TNTAs photoanode and Pt cathode system (denoted as Pd QDs@TNTAs/Pt) under the solar light irradiation for 6 h, which was about 15 times higher than that from pure water splitting. The superior hydrogen production performance could be attributed to the less endergonic process of the glucose oxidation than water, as well as the efficient synergistic photoelectrocatalytic (PEC) glucose oxidation over Pd QDs@TNTAs photoanode which possesses excellent photoelectrochemical performance and structure characteristics. Moreover, a probable mechanism for the PEC hydrogen production from biomass derivatives oxidation was proposed and discussed

  12. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  13. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  14. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  15. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  16. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  17. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.......5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis...

  18. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1984-01-01

    Hydrogen generation during a PWR LOCA has been estimated for design basis accident and for two more severe hypothetical accidents. Hydrogen production during design basis accident is a rather slow mechanism, allowing in the worst case, 15 days to connect a hydrogen recombining unit to the containment atmosphere monitoring system. Hydrogen generated by steam oxidation during more severe hypothetical accidents was found limited by steam availability and fuel melting phenomena. Uncertainty is, however, still remaining on corium-zirconium-steam interaction. In the worst case, calculations lead to the production of 500 kg of hydrogen, thus leading to a volume concentration of 15% in containment atmosphere, assuming homogeneous hydrogen distribution within the reactor building. This concentration is within flammability limits but not within detonation limits. However, hydrogen detonation due to local hydrogen accumulation cannot be discarded. A major uncertainty subsisting on hydrogen hazard is hydrogen distribution during the first hours of the accident. This point determines the effects and consequences of local detonation or deflagration which could possibly be harmful to safeguard systems, or induce missile generation in the reactor building. As electrical supply failures are identified as an important contributor to severe accident risk, corrective actions have been taken in France to improve their reliability, including the installation of a gas turbine on each site to supplement the existing sources. These actions are thus contributing to hydrogen hazard reduction

  19. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  20. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  1. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    International Nuclear Information System (INIS)

    De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.

    2013-01-01

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H 2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H 2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly

  2. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    De Gioannis, G., E-mail: degioan@unica.it [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Muntoni, A. [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Polettini, A.; Pomi, R. [Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza” (Italy)

    2013-06-15

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is

  3. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  4. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  5. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad; Wakil Shahzad, Muhammad; Ng, Kim Choon

    2017-01-01

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  6. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  7. Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development.

    Science.gov (United States)

    Ciriminna, Rosaria; Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-12-20

    The global utilization of hydrogen peroxide, a green oxidant that decomposes in water and oxygen, has gone from 0.5 million tonnes per year three decades ago to 4.5 million tonnes per year in 2014, and is still climbing. With the aim of expanding the utilization of this eminent green chemical across different industrial and civil sectors, the production and use of hydrogen peroxide as a green industrial oxidant is reviewed herein to provide an overview of the explosive growth of its industrial use over the last three decades and of the state of the art in its industrial manufacture, with important details of what determines the viability of the direct production from oxygen and hydrogen compared with the traditional auto-oxidation process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  9. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    Van Ravenswaay, J.P.; Van Niekerk, F.; Kriek, R.J.; Blom, E.; Krieg, H.M.; Van Niekerk, W.M.K.; Van der Merwe, F.; Vosloo, H.C.M.

    2010-01-01

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO 2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  10. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  11. Socio-cultural barriers to the development of a sustainable energy system - the case of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kjerulf Petersen, L.; Holst Andersen, A.

    2009-02-15

    Any transition to a more sustainable energy system, radically reducing greenhouse gas emissions, is bound to run in to a host of different barriers - technological and economic, but also socio-cultural. This will also be the case for any large-scale application of hydrogen as energy carrier, especially if the system is going to be based on renewable energy sources. The aim of these research notes is to review and discuss major socio-cultural barriers to new forms of energy supply in general and to hydrogen specifically. Reaching sufficient reductions in greenhouse gas emissions may require more than large-scale dissemination of renewable energy sources. Also reductions or moderations in energy demand may be necessary. Hence, a central point in the research note is to consider not only socio-cultural obstacles for changing technologies in energy production, distribution and consumption but also obstacles for changing the scale of energy consumption, i.e. moderating the growth in how much energy is consumed or even reducing consumption volumes. (au)

  12. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  13. CIRP Design 2012 Sustainable Product Development

    CERN Document Server

    2013-01-01

    During its life cycle, a product produces waste that is over 20 times its weight. As such it is critical to develop products that are sustainable. Currently product development processes lack high quality methods and tools that are empirically validated to support development of sustainable products. This book is a compilation of over forty cutting edge international research papers from the 22nd CIRP International Design Conference, written by eminent researchers from 15 countries, on engineering design process, methods and tools, broadly for supporting sustainable product development.   A variety of new insights into the product development process, as well as a host of methods and tools that are at the cutting edge of design research are discussed and explained covering a range of diverse topics. The areas covered include: ·Sustainable design and manufacturing, ·Design synthesis and creativity, ·Global product development and product life cycle management, ·Design for X (safety, reliability, manufactu...

  14. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  15. Hydrogen generation by nuclear power for sustainable development in the 21-st century

    International Nuclear Information System (INIS)

    Bilegan, Iosif Constantin; Pall, Stefan

    2002-01-01

    Hydrogen is the main non-polluting fuel. It is produced by natural gas steam reforming, water electrolysis and thermonuclear processes. Currently, 4% of the hydrogen world production is obtained by water electrolysis. The use of nuclear power for hydrogen production avoids the generation of greenhouse gases and the dependence of primary external energy sources. The US is currently developing a modular reactor for hydrogen production and water desalination, STAR - H 2 (Secure Transportable Autonomous Reactor for Hydrogen production) with fast neutrons, lead cooling and passive safety systems operating at a temperature of 780 deg C. Also, a Russian reactor of the same type is operated at 540 deg C. China and India joint industrial countries like France, Japan, Russia and US in recognizing that any strategies aiming at a future with clean energy implies the nuclear energy

  16. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  17. Hydrogen production from sewage sludge by steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Klinkajorn, P. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Because of the shortage of energy sources in the near future, renewable energy, such as biomass, has become an important source of energy. One of the most common approaches for producing gaseous fuels from biomass is gasification. The main product gases of gasification are hydrogen, carbon monoxide, methane and low molecular weight hydrocarbons. Because of the capability of very low emission at the point of use, the interest in using hydrogen for electrical power generation and in electric-vehicles has been increasing. Hydrogen from biomass steam gasification (SG) is a net zero green house gas emission fuel. Sewage sludge (SS) has a potential to produce hydrogen-rich gaseous fuel. Therefore, hydrogen production from sewage sludge may be a solution for cleaner fuel and the sewage sludge disposal problem. This paper presented the results of a computer model for SSSG by using Gibbs free energy minimization (GFEM) method. The computer model developed was used to determine the hydrogen production limits for various steam to biomass ratios. The paper presented an introduction to renewable energy and gasification and discussed the Gibbs free energy minimization method. The study used a RAND algorithm. It presented the computer model input parameters and discussed the results of the stoichiometric analysis and Gibbs free energy minimization. The energy requirement for hydrogen production was also presented. 17 refs., 1 tab., 6 figs.

  18. Photobiological hydrogen production : photochemical efficiency and bioreactor design

    NARCIS (Netherlands)

    Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H.

    2002-01-01

    Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few efficiencies reported on the

  19. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  20. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  1. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  2. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  3. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  4. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  5. Nuclear hydrogen: An assessment of product flexibility and market viability

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2008-01-01

    Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies

  6. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  7. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  8. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  9. The hydrogen village: building hydrogen and fuel cell opportunities

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    The presentation addressed the progress the Hydrogen Village Program has made in its first 24 months of existence and will provide an understanding of the development of new markets for emerging Hydrogen and Fuel Cell technologies based on first hand, real world experience. The Hydrogen Village (H2V) is an End User driven, Market Development Program designed to accelerate the sustainable commercialization of hydrogen and fuel cell technologies through awareness, education and early deployments throughout the greater Toronto area (GTA). The program is a collaborative public-private partnership of some 35 companies from a broad cross section of industry administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. The intent of the H2V is to develop markets for Hydrogen and Fuel Cell technologies that benefit the local and global community. The following aspects of market development are specifically targeted: 1) Deployments: of near market technologies in all aspects of community life (stationary and mobile). All applications must be placed within the community and contact peoples in their day-to-day activity. End user involvement is critical to ensure that the applications chosen have a commercial justification and contribute to the complementary growth of the market. 2) Development: of a coordinated hydrogen delivery and equipment service infrastructure. The infrastructure will develop following the principles of conservation and sustainability. 3) Human and societal factors: - Public and Corporate policy, public education, Codes/ Standards/ Regulations - Opportunity for real world implementation and feedback on developing codes and standards - Build awareness among regulatory groups, public, and the media. The GTA Hydrogen Village is already well under way with strategically located projects covering a wide range of hydrogen and fuel cell applications including: Residential heat and power generation using solid oxide

  10. Price strategies for sustainable food products

    NARCIS (Netherlands)

    Ingenbleek, P.T.M.

    2015-01-01

    Purpose – Sustainable products often suffer a competitive disadvantage compared with mainstream products because they must cover ecological and social costs that their competitors leave to future generations. The purpose of this paper is to identify price strategies for sustainable products that

  11. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  12. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  13. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  14. Hydrogen production from steam methane reforming and electrolysis as part of a near-term hydrogen infrastructure

    International Nuclear Information System (INIS)

    Roberts, K.

    2003-01-01

    Building a complete hydrogen infrastructure for a transportation system based on Fuel Cells (FC) and hydrogen is a risky and expensive ordeal, especially given that it is not known with complete certainty that Fuel Cells will indeed replace the gasoline ICE. But how can we expect the diffusion of an automotive technology if there is no infrastructure to support its fuel needs? This gives rise to a chicken and egg type problem. One way to get around this problem is to produce hydrogen when and where it is needed. This solves the problems of high costs associated with expensive pipeline distribution networks, the high energy-intensities associated with liquefaction of hydrogen and the high costs of cryogenic equipment. This paper will consider the advantages and disadvantages of two such hydrogen production mechanisms, namely, onsite production of hydrogen from Electrolysis and onsite production of hydrogen from Steam Methane Reforming (SMR). Although SMR hydrogen may be more economical due to the availability and low cost of methane, under certain market and technological conditions onsite electrolytic hydrogen can be more attractive. The paper analyses the final price of delivered hydrogen based on its sensitivity to market conditions and technology developments. (author)

  15. Hydrogen production from small hyropower sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    A synergistic relationship was not found to exist between low-head hydropower and electrolytic hydrogen production. The storageability of hydrogen was expected to mitigate problems of hydrogen generation variability associated with the use of low-head hydropower as the power source. The expense of gaseous hydrogen storage equipment effectively eliminates storage as a means to decouple hydrogen demand and power/hydrogen production. From the opposite perspective, the availability of a low and stable cost of power from low-head hydro was expected to improve the competitiveness of electrolysis. In actuality, the results indicated that hydroelectric power from small dams would be comparatively expensive by current grid power standards (mid-1979). Electrolysis, in the capacity range considered here, is less sensitive to the cost of the power than originally presumed. Other costs including depreciation and capital related charges are more significant. Due to power generation variability, sole reliance on low-head hydropower to provide electricity to the cells would reduce the utilization of the hydrogen production investment, resulting in an increase in unit production costs. These factors were paramount in the Air Products recommendation to discontinue the study before continuing to more detailed stages of analysis, including an analysis of a site specific facility and the construction of a demonstration facility. Another major factor was the unavailability of a pipeline hydrogen supply situation which, because of lower distribution and capital costs, could have been commercially viable. An unfavorable judgment on the combined facility should not be misinterpreted and extended to the component systems. Although a detailed analysis of the individual prospects for electrolysis and low-head hydropower was beyond the study scope, the reader will realize, as the study is reviewed, that each is worthy of individual consideration.

  16. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  17. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  18. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  19. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  20. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  1. Economical hydrogen production by electrolysis using nano pulsed DC

    Energy Technology Data Exchange (ETDEWEB)

    Dharmaraj, C.H. [Tangedco, Tirunelveli, ME Environmental Engineering (India); Adshkumar, S. [Department of Civil Engineering, Anna University of Technology Tirunelveli, Tirunelveli - 627007 (India)

    2012-07-01

    Hydrogen is an alternate renewable eco fuel. The environmental friendly hydrogen production method is electrolysis. The cost of electrical energy input is major role while fixing hydrogen cost in the conventional direct current Electrolysis. Using nano pulse DC input makes the input power less and economical hydrogen production can be established. In this investigation, a lab scale electrolytic cell developed and 0.58 mL/sec hydrogen/oxygen output is obtained using conventional and nano pulsed DC. The result shows that the nano pulsed DC gives 96.8 % energy saving.

  2. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  3. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  4. A statistical study on consumer's perception of sustainable products

    Science.gov (United States)

    Pater, Liana; Izvercian, Monica; Ivaşcu, Larisa

    2017-07-01

    Sustainability and sustainable concepts are quite often but not always used correctly. The statistical research on consumer's perception of sustainable products has tried to identify the level of knowledge regarding the concept of sustainability and sustainable products, the selected criteria concerning the buying decision, the intention of purchasing a sustainable product, main sustainable products preferred by consumers.

  5. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  6. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.

    2003-01-01

    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe

  7. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  8. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  9. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  10. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I_2/H_2O ternary aqueous solution

  11. Sustainable food consumption. Product choice or curtailment?

    Science.gov (United States)

    Verain, Muriel C D; Dagevos, Hans; Antonides, Gerrit

    2015-08-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors of the two types of behavior have been identified. Respondents were classified into four segments based on their sustainable food behaviors: unsustainers, curtailers, product-oriented consumers, and sustainers. Significant differences between the segments were found with regard to food choice motives, personal and social norms, food involvement, subjective knowledge on sustainable food, ability to judge how sustainably a product has been produced and socio-demographics. It is concluded that distinguishing between behavioral strategies toward sustainable food consumption is important as consumer segments can be identified that differ both in their level of sustainable food consumption and in the type of behavior they employ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Can collusion promote sustainable consumption and production?

    NARCIS (Netherlands)

    Schinkel, M.P.; Spiegel, Y.

    2016-01-01

    Several competition authorities have taken public interest considerations, such as promoting sustainable consumption and production, into account in cartel proceedings.We show that when consumers value sustainable products and firms choose investments in sustainability before choosing output,

  13. Production of Plant Phthalate and its Hydrogenated Derivative from Bio-Based Platform Chemicals.

    Science.gov (United States)

    Lu, Rui; Lu, Fang; Si, Xiaoqin; Jiang, Huifang; Huang, Qianqian; Yu, Weiqiang; Kong, Xiangtao; Xu, Jie

    2018-04-06

    Direct transformation of bio-based platform chemicals into aromatic dicarboxylic acids and their derivatives, which are widely used for the manufacture of polymers, is of significant importance for the sustainable development of the plastics industry. However, limited successful chemical processes have been reported. This study concerns a sustainable route for the production of phthalate and its hydrogenated derivative from bio-based malic acid and erythritol. The key Diels-Alder reaction is applied to build a substituted cyclohexene structure. The dehydration reaction of malic acid affords fumaric acid with 96.6 % yield, which could be used as the dienophile, and 1,3-butadiene generated in situ through erythritol deoxydehydration serves as the diene. Starting from erythritol and dibutyl fumarate, a 74.3 % yield of dibutyl trans-4-cyclohexene-1,2-dicarboxylate is obtained. The palladium-catalyzed dehydrogenation of the cycloadduct gives a 77.8 % yield of dibutyl phthalate. Dibutyl trans-cyclohexane-1,2-dicarboxylate could be formed in nearly 100 % yield under mild conditions by hydrogenation of the cycloadduct. Furthermore, fumaric acid and fumarate, with trans configurations, were found to be better dienophiles for this Diels-Alder reaction than maleic acid and maleate, with cis configuration, based on the experimental and computational results. This new route will pave the way for the production of environmental friendly plastic materials from plants. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ten questions on hydrogen Jean Dhers

    International Nuclear Information System (INIS)

    2005-01-01

    The author proposes explanations and comments on the use of hydrogen in energy production. He discusses whether hydrogen can be a new energy technology within the context of a sustainable development, whether hydrogen is actually an energy vector, what would be the benefits of using hydrogen in energy applications, why it took so much time to be interested in hydrogen, when the hydrogen vector will be needed, whether we can economically produce hydrogen to meet energy needs (particularly in transports), whether hydrogen is the best suited energy vector for ground transports in the future, how to retail hydrogen for ground transports, what are the difficulties to store hydrogen for ground transport applications, and how research programs on hydrogen are linked together

  15. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  16. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  17. Externalities of the transport sector and the role of hydrogen in a sustainable transport vision

    International Nuclear Information System (INIS)

    Doll, Claus; Wietschel, Martin

    2008-01-01

    Transport systems perform vital societal functions, but in their present state cannot be considered 'sustainable'. One of the most controversially discussed long-term solutions to climate change and air emission externalities is the introduction of hydrogen as an energy fuel and fuel cell vehicles. In this paper, we integrate the two debates on the sustainability of today's transport systems and on the opportunities, threats and possible transition paths towards a 'hydrogen economy' in road transport. We focus our analysis on developed countries as well as the specific needs of the fast growing markets for car travel in the emerging economies. We conclude that the use of hydrogen can significantly reduce CO 2 emissions of the transport sector, even if taking into account tailpipe and upstream emissions as well as alternative technology developments. Moreover, local air pollutants can be reduced up to 80%. Possible negative impacts, including accident risks, nuclear waste or increased biomass demand, need to be benchmarked against these benefits. Thus, we highlight the need for integrated energy and transport policies and argue for more reflexive and inclusive societal debate about the impacts and beneficiaries of hydrogen transport technologies

  18. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  19. Co-production of hydrogen and electricity with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, S.; Cotone, P.; Davison, J. [Foster Wheeler Italiana (Italy)

    2007-07-01

    This paper summarizes the results of a study carried out by Foster Wheeler for the IEA Greenhouse Gas R & D Programme that focused on different IGCC configurations with CO{sub 2} capture and H{sub 2} production. The three following main cases are compared: production of hydrogen, with minimum amount of electricity for a stand-alone plant production; co-production of the optimum hydrogen/electricity ratio; and co-production of hydrogen and electricity in a flexible plant that varies the hydrogen/electricity ratio. The paper reviews three available gasification technologies and presents the results of a more detailed evaluation of the selected one. The scope of this paper is to underline possible advantages of hydrogen and electricity co-production from coal, that is likely going to replace natural gas and petroleum as a source of hydrogen in the long term. Expected advantage of co-production will be the ability to vary the hydrogen/electricity ratio to meet market demands. A natural gas, diesel and gasoline demand market analysis has been performed for the Netherlands and the USA to determine the expected future hydrogen demand. Plant performance and costs are established and electric power production costs are evaluated. Electricity and hydrogen co-production plants are compared to plants that produce electricity only, with and without CO{sub 2} capture, to evaluate the costs of CO{sub 2} avoidance. 4 refs., 8 figs., 4 tabs.

  20. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.

    Science.gov (United States)

    Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor

    2018-01-24

    Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO 2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO 2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO 2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

  1. Process and reactor design for biophotolytic hydrogen production.

    Science.gov (United States)

    Tamburic, Bojan; Dechatiwongse, Pongsathorn; Zemichael, Fessehaye W; Maitland, Geoffrey C; Hellgardt, Klaus

    2013-07-14

    The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future.

  2. Towards Sustainable Consumption and Production

    DEFF Research Database (Denmark)

    Ulku, M. Ali; Hsuan, Juliana

    2017-01-01

    an environmentally conscious (green) consumer who will buy one of two available, horizontally differentiated products: a modular product (M) manufactured by Firm M or a standard product (S) manufactured by Firm S. Firm M can take advantage of its modular production technology and product return policy...... and numerical examples to render practical insights: The refund rate has a strong impact on profits; sensitivity of product greenness can be increased by conscientious advertising, and the reusability of modular parts encourages lower pricing and higher market share. We assert that modularity is a strong...... concept and practice in developing sustainable products and thereby in production, which, in turn, may enhance sustainable consumption. This study's findings have direct implications for reverse supply chain management, and firms should take these findings into account early in the product design phase....

  3. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  4. The Modular Helium Reactor for Hydrogen Production

    International Nuclear Information System (INIS)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-01-01

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR

  5. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  6. Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels

    International Nuclear Information System (INIS)

    Gnanapragasam, Nirmal V.; Reddy, Bale V.; Rosen, Marc A.

    2010-01-01

    A large-scale hydrogen production system is proposed using solid fuels and designed to increase the sustainability of alternative energy forms in Canada, and the technical and economic aspects of the system within the Canadian energy market are examined. The work investigates the feasibility and constraints in implementing such a system within the energy infrastructure of Canada. The proposed multi-conversion and single-function system produces hydrogen in large quantities using energy from solid fuels such as coal, tar sands, biomass, municipal solid waste (MSW) and agricultural/forest/industrial residue. The proposed system involves significant technology integration, with various energy conversion processes (such as gasification, chemical looping combustion, anaerobic digestion, combustion power cycles-electrolysis and solar-thermal converters) interconnected to increase the utilization of solid fuels as much as feasible within cost, environmental and other constraints. The analysis involves quantitative and qualitative assessments based on (i) energy resources availability and demand for hydrogen, (ii) commercial viability of primary energy conversion technologies, (iii) academia, industry and government participation, (iv) sustainability and (v) economics. An illustrative example provides an initial road map for implementing such a system. (author)

  7. Economically sustainable: market synergies in hydrogen systems

    International Nuclear Information System (INIS)

    Hart, D.

    2000-01-01

    As interest in the use of hydrogen as an energy carrier grows, it is important to understand the advantages and disadvantages of a market-based approach to its introduction. While there will always be niche markets in which it makes sense to employ what is currently a comparatively expensive form of energy storage and delivery, this will not enable the sort of large-scale penetration that will allow for economies of mass-manufacture to bring the cost of hydrogen down. In addition, energy markets are becoming increasingly liberalised, and because of this it is important to understand the sort of market pressures that are arising where none have existed before. These pressures may actually lead to opportunities for hydrogen in energy storage and for use in power generation and transport fuel modes, and allow market penetration to occur more rapidly than might be the case in a centralised energy structure. In the liberalised energy market within the UK, for example, there are two areas of potentially major growth in hydrogen production and consumption: energy storage for renewable generators; and backup systems at weak electricity grid links. The first of these is due, in part, to potential changes in regulation governing the way that electricity is sold into the market, while the second is dependent more on an increasingly congested electricity grid and the high costs of building supplementary infrastructure. In both cases there is potential for the early use of hydrogen energy systems in an economically competitive environment. (author)

  8. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1998-01-01

    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines...... their individual roles in a strategy for sustainable transport. Finally, the fuels are compared to the present fuels....

  9. The prisoner's dilemma in the production of nuclear hydrogen

    International Nuclear Information System (INIS)

    Mendoza, A.; Francois, J. L.; Martin del Campo, C.

    2011-11-01

    The human beings take to daily decisions, so much at individual as social level, that affect their quality of life in more or minor measure and modify the conditions of their environment. Decisions like to use the car or the public transportation or government policies to adopt and energy development plan that includes technologies like the production of nuclear hydrogen, present a grade of global influence, not only affect or benefit at the person or government that it carries out them, but also present consequences in the individuals and resources of the environment. The hydrogen production using nuclear energy as supply of thermal energy is in itself decision matter; from investing or not in their investigation until fomenting laws and policies that impel their development and incorporation to the industrial panorama. The countries and institutes that opt to impel this technology have the possibility to obtain economic and environmental benefits in contrast with those that do not make it, these last only benefited of the first ones in the environmental aspect. High cost for the technological transfer and economic sanctions sustained in environmental arguments toward those -non cooperators- would be a possible consequence of the cooperators action in the search of a Nash balance. The Prisoner's dilemma exemplifies and increases the comprehension of this type of problems to search for better conditions in the system that improve the situation of all the participants, in this case: governments and institutions. (Author)

  10. Sustainable production of wood and non-wood forest products

    Science.gov (United States)

    Ellen M. Donoghue; Gary L. Benson; James L. Chamberlain

    2003-01-01

    The International Union of Forest Research Organizations (IUFRO) All Divisions 5 Conference in Rotorua, New Zealand, March 11-15, 2003, focused on issues surrounding sustainable foest management and forest products research. As the conference title "Forest Products Research: Providing for Sustainable Choices" suggests, the purpose of the conference was to...

  11. Hydrogen production by sodium borohydride in NaOH aqueous solution

    Science.gov (United States)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  12. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  13. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  14. The sustainable wood production initiative.

    Science.gov (United States)

    Robert. Deal

    2004-01-01

    To address concerns about sustainable forestry in the region, the Focused Science Delivery Program is sponsoring a three year Sustainable Wood Production Initiative. The Pacific Northwest is one of the world's major timber producing regions, and the ability of this region to produce wood on a sustained yield basis is widely recognized. Concerns relating to the...

  15. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  16. Consumer attitudes towards sustainability aspects of food production

    DEFF Research Database (Denmark)

    Krystallis Krontalis, Athanasios; Grunert, Klaus G; de Barcellos, Marcia Dutra

    2012-01-01

    This study aims to analyse citizens' sustainability attitudes towards food production in the EU, Brazil, and China (n = 2885), using pork as an exemplary production system. The objective is to map citizens' attitudes towards sustainable characteristics of pig production systems, and investigate...... whether these attitudes coincide with people's general attitudes towards sustainability, on one hand, and their consumption of specific pork products, on the other. A conjoint experiment was designed to evaluate citizens' preferences towards pig production systems with varying sustainability levels....... Conjoint analysis results were then used for a subsequent cluster analysis in order to identify international citizen clusters across the three continents. Respondents' sociodemographic profile, attitudes towards sustainability issues, and consumption frequency of various pork products are used to profile...

  17. Consumer attitudes towards sustainability aspects of food production

    DEFF Research Database (Denmark)

    Krystallis Krontalis, Athanasios; Grunert, Klaus G; de Barcellos, Marcia D.

    2013-01-01

    This study aims to analyse citizens' sustainability attitudes towards food production in the EU, Brazil, and China (n = 2885), using pork as an exemplary production system. The objective is to map citizens' attitudes towards sustainable characteristics of pig production systems, and investigate...... whether these attitudes coincide with people's general attitudes towards sustainability, on one hand, and their consumption of specific pork products, on the other. A conjoint experiment was designed to evaluate citizens' preferences towards pig production systems with varying sustainability levels....... Conjoint analysis results were then used for a subsequent cluster analysis in order to identify international citizen clusters across the three continents. Respondents' sociodemographic profile, attitudes towards sustainability issues, and consumption frequency of various pork products are used to profile...

  18. Environmental Sustainability Analysis of Biodiesel Production

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Michael Zwicky; Birkved, Morten

    Due to their generally positive carbon dioxide balance, biofuels are seen as one of the energy carriers in a more sustainable future transportation energy system, but how good is their environmental sustainability, and where lie the main potentials for improvement of their sustainability? Questions...... like these require a life cycle perspective on the biofuel - from the cradle (production of the agricultural feedstock) to the grave (use as fuel). An environmental life cycle assessment is performed on biodiesel to compare different production schemes including chemical and enzymatic esterification...... with the use of methanol or ethanol. The life cycle assessment includes all processes needed for the production, distribution and use of the biodiesel (the product system), and it includes all relevant environmental impacts from the product system, ranging from global impacts like climate change and loss...

  19. Sustainable Multi-Product Seafood Production Planning Under Uncertainty

    International Nuclear Information System (INIS)

    Simanjuntak, Ruth; Mawengkang, Herman; Sembiring, Monalisa; Sinaga, Rani; Pakpahan, Endang J

    2013-01-01

    A multi-product fish production planning produces simultaneously multi fish products from several classes of raw resources. The goal in sustainable production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the tradeoff between economic objectives such as production cost, waste processed cost, and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the sustainable production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model.

  20. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  1. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  2. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  3. Developments and constraints in fermentative hydrogen production

    NARCIS (Netherlands)

    Bartacek, J.; Zabranska, J.; Lens, P.N.L.

    2007-01-01

    Fermentative hydrogen production is a novel aspect of anaerobic digestion. The main advantage of hydrogen is that it is a clean and renewable energy source/carrier with high specific heat of combustion and no contribution to the Greenhouse effect, and can be used in many industrial applications.

  4. Sustainability labels on food products

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Hieke, Sophie; Wills, Josephine

    2014-01-01

    of sustainability was limited, but understanding of four selected labels (Fair Trade, Rainforest Alliance, Carbon Footprint, and Animal Welfare) was better, as some of them seem to be self-explanatory. The results indicated a low level of use, no matter whether use was measured as self-reported use of different......This study investigates the relationship between consumer motivation, understanding and use of sustainability labels on food products (both environmental and ethical labels), which are increasingly appearing on food products. Data was collected by means of an online survey implemented in the UK......, France, Germany, Spain, Sweden, and Poland, with a total sample size of 4408 respondents. Respondents expressed medium high to high levels of concern with sustainability issues at the general level, but lower levels of concern in the context of concrete food product choices. Understanding of the concept...

  5. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  6. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved

  7. Composition of hydrogenation products of Borodino brown coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Gyul' malieva; A.S. Maloletnev; G.A. Kalabin; A.M. Gyul' maliev [Institute for Fossil Fuels, Moscow (Russian Federation)

    2008-02-15

    The composition of liquid products of hydrogenation of brown coal from the Borodino deposit was determined by means of {sup 13}C NMR spectroscopy and chemical thermodynamics methods. It was shown that the group composition of the liquid hydrogenation products at thermodynamic equilibrium is predictable from the elemental composition of the organic matter of parent coal. 9 refs., 5 figs., 6 tabs.

  8. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  9. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  10. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  11. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  12. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  13. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    Science.gov (United States)

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  15. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  16. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  17. High-rate fermentative hydrogen production from beverage wastewater

    International Nuclear Information System (INIS)

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2015-01-01

    Highlights: • Hybrid immobilized-bacterial cells show stable operation over 175 days. • Low HRT of 1.5 h shows peak hydrogen production rate of 55 L/L-d. • Electricity generation is 9024 kW-d from 55 L/L-d hydrogen using beverage wastewater. • Granular sludge formed only at 2–3 h HRT with presence of Selenomonas sp. - Abstract: Hydrogen production from beverage industry wastewater (20 g/L hexose equivalent ) using an immobilized cell reactor with a continuous mode of operation was studied at various hydraulic retention times (HRT, 8–1.5 h). Maximum hydrogen production rate (HPR) of 55 L/L-d was obtained at HRT 1.5 h (an organic loading of 320 g/L-d hexose equivalent ). This HPR value is much higher than those of other industrial wastewaters employed in fermentative hydrogen production. The cell biomass concentration peaked at 3 h HRT with a volatile suspended solids (VSS) concentration of 6.31 g/L (with presence of self-flocculating Selenomonas sp.), but it dropped to 3.54 gVSS/L at 1.5 h HRT. With the shortening of HRT, lactate concentration increased but the concentration of the dominant metabolite butyrate did not vary significantly. The Clostridium species dynamics was not significantly affected, but total microbial community structure changed with respect to HRT variation as evident from PCR–DGGE analyses. Analysis of energy production rate suggests that beverage wastewater is a high energy yielding feedstock, and can replace 24% of electricity consumption in a model beverage industry

  18. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  19. Study on commercial HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO 2 emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m 3 in Europe and the United States and about 13 yen/m 3 in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO 2 emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m 3 if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  20. Exploring optimal conditions for thermophilic fermentative hydrogen production from cassava stillage

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Zou, Zhonghai; Wang, Wen [Key Laboratory of Yangtze River Water Environment, Ministry(Tongji University), Siping Road no 1239, Shanghai 200092 (China); Xie, Li; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry(Tongji University), Siping Road no 1239, Shanghai 200092 (China); UNEP-Tongji University Institute of Environment for Sustainable Development, Siping Road no 1239, Shanghai 200092 (China)

    2010-06-15

    This study investigated the effects of seed sludges, alkalinity and HRT on the thermophilic fermentative hydrogen production from cassava stillage. Five different kinds of sludges were used as inocula without any pretreatment. Though batch experiments showed that mesophilic anaerobic sludge was the best inoculum, the hydrogen yields with different seed sludges were quite similar in continuous experiments in the range of 82.9-92.3 ml H{sub 2}/gVS without significant differences which could be attributed to the establishment of Uncultured Thermoanaerobacteriaceae bacterium-dominant microbial communities in all reactors. It is indicated that results obtained from batch experiments are not consistent with those from continuous experiments and all the tested seed sludges are good sources for continuous thermophilic hydrogen production from cassava stillage. The influent alkalinity of 6 g NaHCO{sub 3}/L and HRT 24 h were optimal for hydrogen production with hydrogen yield of 76 ml H{sub 2}/gVS and hydrogen production rate of 3215 ml H{sub 2}/L/d. Butyrate was the predominant metabolite in all experiments. With the increase in alkalinity of more than 6 g/L, the concentration of VFA/ethanol increased while hydrogen yield decreased due to the higher concentration of acetate and propionate. The decrease in HRT resulted in the higher hydrogen production rate but lower hydrogen yield. Variation of hydrogen yields were quite correlated with butyrate/acetate (B/A) ratio with different influent alkalinities, however, butyrate was important parameter to justify the hydrogen yields with various HRTs. (author)

  1. Potential Fusion Market for Hydrogen Production Under Environmental Constraints

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2005-01-01

    Potential future hydrogen market and possible applications of fusion were analyzed. Hydrogen is expected as a major energy and fuel mediun for the future, and various processes for hydrogen production can be considered as candidates for the use of fusion energy. In order to significantly contribute to reduction of CO 2 emission, fusion must be deployed in developing countries, and must substitute fossil based energy with synthetic fuel such as hydrogen. Hydrogen production processes will have to evaluated and compared from the aspects of energy efficiency and CO 2 emission. Fusion can provide high temperature heat that is suitable for vapor electrolysis, thermo-chemical water decomposition and steam reforming with biomass waste. That is a possible advantage of fusion over renewables and Light water power reactor. Despite of its technical difficulty, fusion is also expected to have less limitation for siting location in the developing countries. Under environmental constraints, fusion has a chance to be a major primary energy source, and production of hydrogen enhances its contribution, while in 'business as usual', fusion will not be selected in the market. Thus if fusion is to be largely used in the future, meeting socio-economic requirements would be important

  2. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11

    Energy Technology Data Exchange (ETDEWEB)

    Nath, K.; Kumar, A.; Das, D. [Indian Inst. of Technology, Kharagpur (India). Dept. of Biotechnology, Fermentation Technology Laboratory

    2006-06-15

    This study addressed the issue of using biological systems for hydrogen production as an environmentally sound alternative to conventional thermochemical and electrochemical processes. In particular, it examined the potential for anaerobic fermentation for biological hydrogen production and the possibility of coupling gaseous energy generation with simultaneous treatment of biodegradable waste materials. The study focused on hydrogen production by anaerobic fermentation using Enterobacter cloacae DM11, a Gram-negative, motile facultative anaerobe. Although hydrogen production by these bacteria depends on many environmental parameters, there is very little information on the effects of these factors in the hydrogen production potential of this organism. For that reason, this study examined the effect of initial medium pH, reaction temperature, initial glucose concentration, and iron (Fe2+) concentration on the fermentative production of hydrogen. Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. Batch cultivations were performed in a 500 ml custom-designed vertical tubular bioreactor. The maximum molar yield of hydrogen was 3.31 mol (mol glucose){sub 1}. The rate and cumulative volume of hydrogen production decreased at higher initial glucose concentration. The pH of 6.5 at a temperature of 37 degrees C was most suitable for maximum rate of production of hydrogen in batch fermentation. The addition of Fe2+ on hydrogen production had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was used to fit the cumulative hydrogen production curve and to estimate the hydrogen production potential, maximum production rate, and lag time. It was concluded that these study results could be used in the development of a high rate continuous hydrogen production process. 30 refs., 4 tabs., 3 figs.

  3. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    Science.gov (United States)

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  5. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United States...

  6. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  7. Comparative study of hydrogen and methanol as energy carriers

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna

    1998-06-01

    This report has been written with the purpose to compare hydrogen and methanol, with gasoline, as energy carriers for new energy systems in the future. This energy system must satisfy the demands for sustainable development. The report focuses on motor vehicle applications. A few different criteria has been developed to help form the characterisation method. The criteria proposed in this thesis are developed for an environmental comparison mainly based on emissions from combustion. The criteria concerns the following areas: Renewable resources, The ozone layer, The greenhouse effect, The acidification, and Toxic substances. In many ways, hydrogen may seem as a very good alternative compared with gasoline and diesel oil. Combustion of hydrogen in air results in water and small amounts of oxides of nitrogen. In this report, hydrogen produced from renewable resources is investigated. This is necessary to fulfill the demands for sustainable development. Today, however, steam reforming of fossil fuels represent 99% of the hydrogen production market. Problem areas connected with hydrogen use are for instance storage and distribution. Methanol has many advantages, while comparing methanol and gasoline, like lower emissions of nitrogen oxides and hydrocarbons, limited emissions of carbon dioxide and no sulphur content. Methanol can be produced from many different resources, for example natural gas, naphtha, oil, coal or peat, and biomass. To meet demands for sustainable production, methanol has to be produced from biomass Examination paper. 32 refs, 20 figs, 13 tabs

  8. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  9. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  10. Low-cost process for hydrogen production

    Science.gov (United States)

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  11. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    Science.gov (United States)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  12. Hydrogen production from coal using a nuclear heat source

    Science.gov (United States)

    Quade, R. N.

    1976-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.

  13. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji

    1999-01-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm 3 /h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  14. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-07-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm{sup 3}/h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  15. HYDROGEN ENERGY: TERCEIRA ISLAND DEMONSTRATION FACILITY

    Directory of Open Access Journals (Sweden)

    MARIO ALVES

    2008-07-01

    Full Text Available The present paper gives a general perspective of the efforts going on at Terceira Island in Azores, Portugal, concerning the implementation of an Hydrogen Economy demonstration campus. The major motivation for such a geographical location choice was the abundance of renewable resources like wind, sea waves and geothermal enthalpy, which are of fundamental importance for the demonstration of renewable hydrogen economy sustainability. Three main campus will be implemented: one at Cume Hill, where the majority of renewable hydrogen production will take place using the wind as the primary energy source, a second one at Angra do Heroismo Industrial park, where a cogen electrical – heat power station will be installed, mainly to feed a Municipal Solid Waste processing plant and a third one, the Praia da Vitoria Hydrogenopolis, where several final consumer demonstrators will be installed both for public awareness and intensive study of economic sustainability and optimization. Some of these units are already under construction, particularly the renewable hydrogen generation facilities.

  16. Performance requirements of an inertial-fusion-energy source for hydrogen production

    International Nuclear Information System (INIS)

    Hovingh, J.

    1983-01-01

    Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances

  17. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  18. Sustainable Product Indexing: Navigating the Challenge of Ecolabeling

    Directory of Open Access Journals (Sweden)

    Jay S. Golden

    2010-09-01

    Full Text Available There is growing scientific evidence that improving the sustainability of consumer products can lead to significant gains in global sustainability. Historically, environmental policy has been managed by bureaucracies and institutions in a mechanistic manner; this had led to many early successes. However, we believe that if policy concerning product sustainability is also managed in this way, negative unintended consequences are likely to occur. Thus, we propose a social-ecological systems approach to policy making concerning product sustainability that will lead to more rapid and meaningful progress toward improving the environmental and social impacts of consumer products.

  19. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  20. Hydrogen production system coupled with high-temperature gas-cooled reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2003-01-01

    On the HTTR program, R and D on nuclear reactor technology and R and D on thermal application technology such as hydrogen production and so on, are advanced. When carrying out power generation and thermal application such as hydrogen production and so on, it is, at first, necessary to supply nuclear heat safely, stably and in low cost, JAERI carries out some R and Ds on nuclear reactor technology using HTTR. In parallel to this, JAERI also carries out R and D for jointing nuclear reactor system with thermal application systems because of no experience in the world on high temperature heat of about 1,000 centigrade supplied by nuclear reactor except power generation, and R and D on thermochemical decomposition method IS process for producing hydrogen from water without exhaust of carbon dioxide. Here were described summaries on R and D on nuclear reactor technology, R and D on jointing technology using HTTR hydrogen production system, R and D on IS process hydrogen production, and comparison hydrogen production with other processes. (G.K.)

  1. Electrocatalysis research for fuel cells and hydrogen production

    CSIR Research Space (South Africa)

    Mathe, MK

    2012-01-01

    Full Text Available The CSIR undertakes research in the Electrocatalysis of fuel cells and for hydrogen production. The Hydrogen South Africa (HySA) strategy supports research on electrocatalysts due to their importance to the national beneficiation strategy. The work...

  2. USE OF THE MODULAR HELIUM REACTOR FOR HYDROGEN PRODUCTION

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.

    2003-01-01

    OAK-B135 A significant ''Hydrogen Economy'' is predicted that will reduce our dependence on petroleum imports and reduce pollution and greenhouse gas emissions. Hydrogen is an environmentally attractive fuel that has the potential to displace fossil fuels, but contemporary hydrogen production is primarily based on fossil fuels. The author has recently completed a three-year project for the US Department of Energy (DOE) whose objective was to ''define an economically feasible concept for production of hydrogen, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-slitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen, and to select one for further detailed consideration. They selected the Sulfur-Iodine cycle. In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this report

  3. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  4. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  5. Can Collusion Promote Sustainable Consumption and Production?

    NARCIS (Netherlands)

    Schinkel, M.P.; Spiegel, Y.

    Several competition authorities consider the exemption of horizontal agreements among firms from antitrust liability if the agreements sufficiently promote public interest objectives such as sustainable consumption and production. We show that when consumers value sustainable products and firms

  6. Safe production and application of hydrogen at Munich airport

    Energy Technology Data Exchange (ETDEWEB)

    Szamer, R.

    2005-07-01

    At Munich International Airport the world's first public filling station for liquid and gaseous hydrogen with on-site hydrogen gas production has been installed. In order to prove the safety, liability and economic feasibility of hydrogen this pilot project examined the complete sequence of hydrogen production and application: on-site production with pressurized electrolyser and steam reformer, storage and filling of gaseous and liquid hydrogen, application of hydrogen for propelling several vehicles, e.g. airport busses in day to day operation, cars, fork lifter. TUV SUD Group, one of the largest service provider for technical safety and quality, was involved in the safety evaluation of the hydrogen project from the very beginning with the following services: safety consultancy throughout all project phases, e.g. for licensing procedures, plant design and operation safety analysis of the overall plant and of subsystems (electrolyser, filling stations, storage tanks, control systems etc.) safety assessment and acceptance testing of CH2 busses, CH2 fork lifter and LH2 passenger cars inspections and tests The challenges of this complex project relating to safety will be presented in the lecture, e.g. identification of potential hazards, safety requirements for the design and operation of the hydrogen plant as wells as for the various applications. Project description The hydrogen plant (cf. Figure 1) comprises two supply paths, one for compressed gaseous hydrogen (CH2) and one for cryogenic liquid hydrogen. Gaseous hydrogen is produced via high-pressure electrolysis at an operating pressure of 3 MPa (30 bar) and/or steam reforming process. The hydrogen will be led into a compressor, compressed to 35 MPa (350 bar) and stored in high pressure cylinders with a total geometrical storage volume of 10 m. The cylinders supply the high-pressure filling stations which refuels the 3 hydrogen buses and the fork lifter. Liquid hydrogen (LH2) is delivered in tank trucks and

  7. Introduction--the Socially Sustainable Egg Production project.

    Science.gov (United States)

    Swanson, J C; Mench, J A; Thompson, P B

    2011-01-01

    The social and political pressure to change egg production from conventional cage systems to alternative systems has been largely driven by the desire to provide more behavioral freedom for egg-laying hens. However, a change of this magnitude can affect other components of the production system and may result in unintended outcomes. To understand this issue, a Socially Sustainable Egg Production project was formed to 1) conduct a holistic and integrated systematic review of the current state of knowledge about various aspects of sustainable egg production, and 2) develop a coordinated grant proposal for future extramural funding based on the research priorities identified from the review. Expert study groups were formed to write evidence-based papers in 5 critical sustainability areas: hen health and welfare, economics, food safety and quality, public attitudes, and environmental impacts. These papers were presented as the PSA Emerging Issues Symposium on Social Sustainability of Egg Production at the 2010 Poultry Science Association meeting.

  8. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  9. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha; Kiely, Patrick D.; Call, Douglas F.; Logan, Bruce. E.

    2010-01-01

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  10. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  11. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  12. Offshore wind farms for hydrogen production subject to uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Nabil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Processes

    2002-07-01

    Wind power is a source of clean, nonpolluting electricity, which is fully competitive, if installed at favorable wind sites, with fossil fuel and nuclear power generation. Major technical growth has been in Europe, where government policies and high conventional energy costs favor the use of wind power. As part of its strategy, the EU-Commission has launched a target to increase the installed capacity of Wind power from 7 GWe, in 1998 to 40 GWe by year 2012. Wind power is an intermittent electricity generator, thus it does not provide electric power on an 'as needed' basis. Off-peak power generated from offshore wind farms can be utilized for hydrogen production using water electrolysis. Like electricity, hydrogen is a second energy carrier, which will pave the way for future sustainable energy systems. It is environmentally friendly, versatile, with great potentials in stationary and mobile power applications. Water electrolysis is a well-established technology, which depends on the availability of cheap electrical power. Offshore wind farms have longer lifetime due to lower mechanical fatigue loads, yet to be economic, they have to be of sizes greater than 150 MW using large turbines (> 1.5 MW). The major challenge in wind energy assessment is how accurately the wind speed and hence the error in wind energy can be predicted. Therefore, wind power is subject to a great deal of uncertainties, which should be accounted for in order to provide meaningful and reliable estimates of performance and economic figures-of-merit. Failure to account for uncertainties would result in deterministic estimates that tend to overstate performance and underestimate costs. This study uses methods of risk analysis to evaluate the simultaneous effect of multiple input uncertainties, and provide Life Cycle Assessment (LCA) of the-economic viability of offshore wind systems for hydrogen production subject to technical and economical uncertainties (Published in summary form only)

  13. Evaluation of hydrogen production system coupling with HTTR using dynamic analysis code

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Hayashi, Koji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency (JAEA) was entrusted 'Development of Nuclear Heat Utilization Technology' by Ministry of Education, Culture, Sports, Science and Technology. In this development, the JAEA investigated the system integration technology to couple the hydrogen production system by steam reforming with the High Temperature Engineering Test Reactor (HTTR). Prior to the construction of the hydrogen production system coupling with the HTTR, a dynamic analysis code had to be developed to evaluate the system transient behaviour of the hydrogen production system because there are no examples of chemical facilities coupled with nuclear reactor in the world. This report describes the evaluation of the hydrogen production system coupling with HTTR using analysis code, N-HYPAC, which can estimate transient behaviour of the hydrogen production system by steam reforming. The results of this investigation provide that the influence of the thermal disturbance caused by the hydrogen production system on the HTTR can be estimated well. (author)

  14. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  15. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Sustainable harvest of....219 Sustainable harvest of special forest products. (a) Sustainable harvest levels. Prior to offering... product's sustainable harvest level. A special forest product's sustainable harvest level is the total...

  16. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  17. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  18. Liquid hydrogen production and economics for NASA Kennedy Space Center

    Science.gov (United States)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  19. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  20. Contribution to the study of new hydrogen production, purification and storage processes

    International Nuclear Information System (INIS)

    Manaud, Jean-Pierre

    1984-01-01

    This research thesis addresses the various aspects of hydrogen production, purification and process within the scope of hydrogen-based energy production. Hydrogen production is achieved by water decomposition through a thermo-chemical process. The author reports the thermodynamic assessment of a water decomposition thermo-chemical cycle for chlorine and sulphur-related cycles. He reports the experimental investigation of hydrogen purification by selective diffusion, the study of contamination of a CeMg12 alloy by nitrogen, oxygen and water vapour with application to hydrogen storage under the form of hydrides [fr

  1. Startech Hydrogen Production Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  2. The hydrogen resource. Productive, technical and economic analysis

    International Nuclear Information System (INIS)

    De Fronzo, G.

    2000-01-01

    Diffusion of hydrogen as an energetic vector meets with a lot of obstacles that don't depend on available raw material, but on hydrogen combination with other elements. It is necessary, therefore, to separate hydrogen picking out the available different technologies to have different pure hydrogen of variable quantities. Besides, its diffusion as fuel is limited because of the great production cost compared to fuels sprung from petroleum. Hydrogen used on a large scale could have advantages on the environment and occupation, but there are economic and politic obstacles to limit its diffusion. Future of economic system, based on hydrogen as the main energetic vector, will depend on the programme that national and international qualified governing bodies will be able to do [it

  3. STAR-H2: a battery-type lead-cooled fast reactor for hydrogen manufacture in a sustainable hierarchical hub-spoke energy infrastructure

    International Nuclear Information System (INIS)

    Wade, D.C.; Doctor, R. D.; Peddicord, K.L.

    2003-01-01

    The Secure Transportable Autonomous Reactor for Hydrogen production STAR-H2 is designed to fit into a sustainable global, mid-21st century hierarchical hub-spoke nuclear energy supply architecture based on nuclear fuel, hydrogen, and electricity energy carriers and having favorable energy security, ecological and nonproliferation features. It will produce hydrogen, oxygen and potable water to service cities and their surrounding regions under an assumed electrical generation network based on fuel cells and microturbines and an assumed transportation sector using hydrogen fueled vehicles. STAR-H2 is a long refueling interval (Battery) turnkey heat supply reactor intended for production of hydrogen by thermochemical water cracking. The reactor is a Pb-cooled, mixed U-TRU-Nitride-fueled, fast spectrum reactor delivering 400 MW th of heat at 800degC core outlet temperature. The primary coolant circulates by natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation and for rail shippability of the vessel. An intermediate low pressure He loop carries the heat to a Ca-Br thermochemical water cracking cycle for the manufacture of H 2 (and O 2 ). The water cracking cycle rejects heat at 550degC and that heat is used in a supercritical CO 2 Brayton cycle turbogenerator to provide hotel load electricity. A thermal desalinisation plant receives discharge heat at 125degC from the Brayton cycle and the brine provides for ultimate heat rejection from the cascaded thermodynamic cycles. The modified UT-3 cycle used in STAR-H2, called the Ca-Br cycle, operates at atmospheric pressure and 750-725degC, uses solid/gas separation steps and achieves about 44% efficiency. Unlike UT-3, it employs a single-stage HBr-dissociation step based on a plasma chemistry technique operating near ambient conditions. The STAR-H2 power plant will operate on a 20 year refueling interval

  4. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  5. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  6. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  7. What governs the transition to a sustainable hydrogen economy? Articulating the relationship between technologies and political institutions

    International Nuclear Information System (INIS)

    Hisschemoeller, Matthijs; Bode, Ries; Kerkhof, Marleen van de

    2006-01-01

    There is a lack of integrated knowledge on the transition to a sustainable energy system. The paper focuses on the relationship between technologies and institutions in the field of hydrogen from the perspective of political theory. The paper unfolds four paradigms of governance: 'Governance by policy networking', Governance by government', 'Governance by corporate business', and 'Governance by challenge', and looks into the major line of argument in support of these paradigms and into their possible bias with respect to hydrogen options. Each of these paradigms reveals an institutional bias in that it articulates specific opportunities for collaboration and competition in order to stimulate the transition to a sustainable hydrogen economy. The paper makes the observation that there is a compelling need to reframe fashionable discourse such as the necessary shift from government to governance or from government to market. Instead, specific questions with respect to the impact of guiding policy frameworks on innovation will highlight that neither 'neutral' nor 'optimal' frameworks for policy making exist, where competing hydrogen options are at stake. The identification of paradigms of governance maybe considered a methodological device for (participator) policy analysis

  8. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    Science.gov (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  9. Simulation of oxygen-steam gasification with CO{sub 2} adsorption for hydrogen production from empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.M.; Inayat, A.; Yusup, S.; Sabil, K.M. [Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh (Malaysia). Center of Biofuel and Biochemical, Green Technology Mission Oriented Research

    2011-07-01

    The world is facing a critical situation in which fossil fuel reservoir is depleting while the demand for energy is increasing worldwide. Scientists globally have shifted their effort towards developing alternative sustainable fuels and quite a number of technologies have been discovered. One potential alternative solution is to produce energy from hydrogen as its energy content per kilogram is three times larger than that of gasoline. The combustion of hydrogen produces water instead of greenhouse gases, along with energy, making hydrogen even more attractive as a clean fuel. Current study focuses on the process development of hydrogen production via gasification of Empty Fruit Bunch (EFB) with in-situ adsorption of CO{sub 2} based on equilibrium modeling approach. The process flowsheet simulation is performed using iCON, PETRONAS process simulation software. This work investigates the influence of the temperature within the range of 600 to 1000 C and steam/biomass ratio between 0.1 and 1.0 on the hydrogen yield and product gas composition. The importance of different reactions involved in the system is also discussed. Using the simulation, the optimal operating conditions are predicted to be at 800 C and steam/biomass ratio of 0.6. Hydrogen yield of 149g kg{sup -1} of EFB can be obtained at 1000 C. The preliminary economic potential per annum of the oxygen-steam gasification system coupled with in situ CO{sub 2} adsorption is RM 6.64 x 10{sup 6} or approximately USD 2 x 10{sup 6}.

  10. Techno-economic study of hydrogen production by high temperature electrolysis coupled with an EPR-water steam production and coupling possibilities

    International Nuclear Information System (INIS)

    Tinoco, R. R.; Bouallou, C.; Mansilla, C.; Werkoff, F.

    2007-01-01

    'Economie, des Finances et de l'Industrie, 2003. date accessed 3/11/2006. (8) Jon SIGURVINSSON. The production of hydrogen by High Temperature Electrolysis and Alkaline Electrolysis in a context of sustainable development. Universite Joseph Fourier - CEA, France. November 2005 (9) Technology Options for the Near and Long Term 2005. U.S. Climate Change Technology Program. date accessed: 9/11/2006

  11. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  12. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Directory of Open Access Journals (Sweden)

    Y.-H. Percival Zhang

    2011-01-01

    Full Text Available The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB. Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq + 7 H2O (l à 12 H2 (g + 6 CO2 (g (PLoS One 2007, 2:e456. Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  13. Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshinari [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Wood, Thomas K. [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Department of Biology, Texas A and M University, College Station, TX 77843-3258 (United States); Zachry Department of Civil and Environmental Engineering, Texas A and M University, College Station, TX 77843-3136 (United States)

    2008-05-15

    Mutagenesis of Escherichia coli for hydrogen production is difficult since there is no high-throughput screen. Here we describe a method for rapid detection of enhanced hydrogen production by engineered strains by detecting formate via potassium permanganate; in E. coli, hydrogen is synthesized from formate using the formate hydrogen lyase system. (author)

  14. Efficiency of hydrogen gas production in a stand-alone solar hydrogen system

    International Nuclear Information System (INIS)

    Singh, K.; Tamakloe, R.Y.

    2003-01-01

    Many photovoltaic systems operate in a decentralised electricity producing system, or stand-alone mode and the total energy demand is met by the output of the photovoltaic array. The output of the photovoltaic system fluctuates and is unpredictable for many applications making some forms of energy storage system necessary. The role of storage medium is to store the excess energy produced by the photovoltaic arry, to absorb momentary power peaks and to supply energy during sunless periods. One of the storage modes is the use of electrochemical techniques, with batteries and water electrolysis as the most important examples. The present study includes three main parts: the first one is the hydrogen production form the electrolysis of water depending on the DC output current of the photovoltaic (PV) energy source and the charging of the battery. The second part presents the influence of various parameters on the efficiency of hydrogen gas production. The final part includes simulation studies with focus on solar hydrogen efficiency under the influence of various physical and chemical parameters. For a 50W panel-battery-electrolyser system, the dependence of volume of hydrogen gas on voltage, current and power yielded a maximum efficiency of 13.6% (author)

  15. Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

    2011-01-01

    Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

  16. Universally applicable design concept of stably controlling an HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Shibata, Taiju; Nishihara, Tetsuo; Shiozawa, Shusaku

    1996-01-01

    An HTGR-hydrogen production system should be designed to have stable controllability because of a large difference in thermal dynamics between reactor and hydrogen production system and such a control design concept should be universally applicable to a variety of hydrogen production processes by the use of nuclear heat from HTGR. A transient response analysis of an HTGR-steam reforming hydrogen production system showed that a steam generator installed in a helium circuit for cooling the nuclear reactor provides stable controllability of the total system, resulting in avoiding a reactor scram. A survey of control design-related characteristics among several hydrogen production processes revealed the similarity of endothermic chemical reactions by the use of high temperature heat and that steam is required as a reactant of the endothermic reaction or for preheating a reactant. Based on these findings, a system design concept with stable controllability and universal applicability was proposed to install a steam generator as a downstream cooler of an endothermic reactor in the helium circuit of an HTGR-hydrogen production system. (author)

  17. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.

    Science.gov (United States)

    Pinto, T S; Malcata, F X; Arrabaça, J D; Silva, J M; Spreitzer, R J; Esquível, M G

    2013-06-01

    Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

  18. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  19. Cea assessment of the sulphur-iodine cycle for hydrogen production

    International Nuclear Information System (INIS)

    Caries, Ph.; Vitart, X.; Yvon, P.

    2010-01-01

    The sulphur-iodine cycle is a promising process for hydrogen production using nuclear heat: - it is a purely thermochemical cycle, implying that hydrogen production will scale with volume rather than surface; - it only involves fluids, thus avoiding the often difficult handling of solids; - its heat requirements are well matched to the temperatures available from a Generation IV very/high temperature reactor. These characteristics seem very attractive for high efficiency and low cost massive hydrogen production. On the other hand, the efficiency of the cycle may suffer from the large over-stoichiometries of water and iodine and the very important heat exchanges it involves; furthermore, due to lack of adequate thermodynamic models, its efficiency is difficult to assess with confidence. Besides, the large quantities of chemicals that need to be handled, and the corrosiveness of these chemicals, are factors not to be overlooked in terms of investment and operation costs. In order to assess the actual potential of the sulphur-iodine cycle for massive hydrogen production at a competitive cost, CEA has been conducting an important programme on this cycle, ranging from thermodynamic measurements to hydrogen production cost evaluation, with flow sheet optimisation, component sizing and investment cost estimation as intermediate steps. The paper will present the method used, the status of both efficiency and production cost estimations, and discuss perspectives for improvement. (authors)

  20. Design for Sustainability: Current Trends in Sustainable Product Design and Development

    Directory of Open Access Journals (Sweden)

    Marcel Crul

    2009-08-01

    Full Text Available The Design for Sustainability (D4S concept outlines methodologies for making sustainable improvements (social, economic and environmental to products by applying elements of life cycle thinking. D4S builds on the work of ecodesign to include economic and social concerns, and its methodology includes both incremental and radical innovation. The United Nations Environment Programme and the Delft University of Technology, the Netherlands, in concert with key partners, work to support, illustrate, and diffuse targeted D4S demonstration efforts, including the European Commission-funded Cleaner Production for Better Products project in Vietnam, that are needed to change unsustainable consumption and production patterns.

  1. Tetrahydroborates: Development and Potential as Hydrogen Storage Medium

    Directory of Open Access Journals (Sweden)

    Julián Puszkiel

    2017-10-01

    Full Text Available The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative, hydrogen is widely regarded as a key element for a potential energy solution. However, different from fossil fuels such as oil, gas, and coal, the production of hydrogen requires energy. Alternative and intermittent renewable sources such as solar power, wind power, etc., present multiple advantages for the production of hydrogen. On one hand, the renewable sources contribute to a remarkable reduction of pollutants released to the air. On the other hand, they significantly enhance the sustainability of energy supply. In addition, the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of the renewable energy sources. In this regard, hydrogen storage technology presents a key roadblock towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen, solid-state storage is the most attractive alternative both from the safety and the volumetric energy density points of view. Because of their appealing hydrogen content, complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review, the progresses made over the last century on the development in the synthesis and research on the decomposition reactions of homoleptic tetrahydroborates is summarized. Furthermore, theoretical and experimental investigations on the thermodynamic and kinetic tuning of tetrahydroborates for hydrogen storage purposes are herein reviewed.

  2. Cost Evaluation with G4-ECONS Program for SI based Nuclear Hydrogen Production Plant

    International Nuclear Information System (INIS)

    Kim, Jong-ho; Lee, Ki-young; Kim, Yong-wan

    2014-01-01

    Contemporary hydrogen is production is primarily based on fossil fuels, which is not considered as environments friendly and economically efficient. To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution reducing the release of carbon dioxide. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The economic assessment was performed for nuclear hydrogen production plant consisting of VHTR coupled with SI cycle. For the study, G4-ECONS developed by EMWG of GIF was appropriately modified to calculate the LUHC, assuming 36 months of plant construction time, 5 % of annual interest rate and 12.6 % of fixed charge rate. In G4-ECONS program, LUHC is calculated by the following formula; LUHC = (Annualized TCIC + Annualized O-M Cost + Annualized Fuel Cycle Cost + Annualized D-D Cost) / Annual Hydrogen Production Rate

  3. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    Science.gov (United States)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  4. Hydrogen production and purification for fuel cell applications

    Science.gov (United States)

    Chin, Soo Yin

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. Currently, production of hydrogen for fuel cells is primarily achieved via steam reforming, partial oxidation or autothermal reforming of natural gas, or steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed due to its adverse effects on the Pt-based electrocatalysts of the PEM fuel cell. Our efforts have focused on production of CO-free hydrogen via catalytic decomposition of hydrocarbons and purification of H2 via the preferential oxidation of CO. The catalytic decomposition of hydrocarbons is an attractive alternative for the production of H2. Previous studies utilizing methane have shown that this approach can indeed produce CO-free hydrogen, with filamentous carbon formed as the by-product and deposited on the catalyst. We have further extended this approach to the decomposition of ethane. In addition to hydrogen and filamentous carbon however, methane is also formed in this case as a by-product. Studies conducted at different temperatures and space velocities suggest that hydrogen is the primary product while methane is formed in a secondary step. Ni/SiO2 catalysts are active for ethane decomposition at temperatures above 500°C. Although the yield of hydrogen increases with temperature, the catalyst deactivation rate also accelerates at higher temperatures. The preferential oxidation of CO is currently used for the purification of CO-contaminated hydrogen streams due to its efficiency and simplicity. Conventional Pt catalysts used for this reaction have been shown to effectively remove CO, but have limited selectivity (i.e., substantial amounts of H 2 also react with O2). Our work focused on alternative catalytic materials, such as Ru and bimetallic Ru-based catalysts (Pt-Ru, Ru

  5. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji

    2001-03-01

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  6. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, W. J.; Lee, H. M.

    2003-01-01

    The annual production of hydrogen in the world is about 500 billion m 3 . Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  7. Hydrogen co-production from subcritical water-cooled nuclear power plants in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gnanapragasam, N.; Ryland, D.; Suppiah, S., E-mail: gnanapragasamn@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-06-15

    Subcritical water-cooled nuclear reactors (Sub-WCR) operate in several countries including Canada providing electricity to the civilian population. The high-temperature-steam-electrolysis process (HTSEP) is a feasible and laboratory-demonstrated large-scale hydrogen-production process. The thermal and electrical integration of the HTSEP with Sub-WCR-based nuclear-power plants (NPPs) is compared for best integration point, HTSEP operating condition and hydrogen production rate based on thermal energy efficiency. Analysis on integrated thermal efficiency suggests that the Sub-WCR NPP is ideal for hydrogen co-production with a combined efficiency of 36%. HTSEP operation analysis suggests that higher product hydrogen pressure reduces hydrogen and integrated efficiencies. The best integration point for the HTSEP with Sub-WCR NPP is upstream of the high-pressure turbine. (author)

  8. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  9. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  10. Accident sequences and causes analysis in a hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moo Sung; Hwang, Seok Won; Kang, Kyong Min; Ryu, Jung Hyun; Kim, Min Soo; Cho, Nam Chul; Jeon, Ho Jun; Jung, Gun Hyo; Han, Kyu Min; Lee, Seng Woo [Hanyang Univ., Seoul (Korea, Republic of)

    2006-03-15

    Since hydrogen production facility using IS process requires high temperature of nuclear power plant, safety assessment should be performed to guarantee the safety of facility. First of all, accident cases of hydrogen production and utilization has been surveyed. Based on the results, risk factors which can be derived from hydrogen production facility were identified. Besides the correlation between risk factors are schematized using influence diagram. Also initiating events of hydrogen production facility were identified and accident scenario development and quantification were performed. PSA methodology was used for identification of initiating event and master logic diagram was used for selection method of initiating event. Event tree analysis was used for quantification of accident scenario. The sum of all the leakage frequencies is 1.22x10{sup -4} which is similar value (1.0x10{sup -4}) for core damage frequency that International Nuclear Safety Advisory Group of IAEA suggested as a criteria.

  11. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  12. Sustainable food consumption. Product choice or curtailment?

    NARCIS (Netherlands)

    Verain, M.C.D.; Dagevos, H.; Antonides, G.

    2015-01-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors

  13. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  14. Construction apparatus for thermochemical hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, S.; Nakajima, H.; Higashi, S.; Onuki, K.; Akino, S.S.N. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan). Nuclear Heat Utilization Engineering Lab

    2001-06-01

    Studies have been carried out at the Japan Atomic Energy Research Institute (JAERI) on hydrogen production through thermochemical processes such as water-splitting. These studies are classified with iodine-sulphur cycle studies using heat from high temperature gas-cooled reactors. An experimental apparatus was constructed with fluorine resin, glass and quartz. It can produce hydrogen at a rate of 50 litres per hour. Electricity provides the heat required for the operation. The closed chemical process requires special control techniques. The process flow diagram for the apparatus was designed based on the results of previous studies including one where hydrogen production was successfully achieved at a rate of one liter per hour for 48 hours. Experimental operations under atmospheric pressure will be carried out for the next four years to develop the process. The data will be used in the next research and development programs aimed at designing a bench-scale apparatus. 7 refs., 1 tab., 8 figs.

  15. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    Energy Technology Data Exchange (ETDEWEB)

    Ozbilen, Ahmet, E-mail: Ahmet.Ozbilen@uoit.ca; Dincer, Ibrahim, E-mail: Ibrahim.Dincer@uoit.ca; Rosen, Marc A., E-mail: Marc.Rosen@uoit.ca

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  16. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  17. Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes

    International Nuclear Information System (INIS)

    Bargigli, Silvia; Raugei, Marco; Ulgiati, Sergio

    2004-01-01

    The thermodynamic efficiency and the environmental sustainability of selected processes that deliver gaseous energy carriers (natural gas, syngas from coal gasification, and hydrogen from steam reforming of natural gas and alkaline electrolysis) is explored by means of a multi-criteria, multi-scale approach based on four methods: material flow accounting, energy analysis, exergy analysis, and energy synthesis. The average energy and exergy conversion efficiencies of syngas (76% and 75%, respectively) are found to be higher than those for hydrogen (64% and 55%). However, coal-to-syngas conversion generates a significant amount of solid waste, which should be dealt with carefully. In addition, the material intensity is much higher for syngas (e.g. abiotic MI=768 g/g) than for natural gas and hydrogen (21 and 39 g/g, respectively), indicating a higher load on the environment. On the other hand, the energy intensity (transformity) for syngas (5.25x10 4 seJ/J) is shown to be lower than for hydrogen (9.66x10 4 seJ/J), indicating a lower demand for global environmental support. Therefore, material intensities and transformities offer two complementary pieces of information: transformities account for the 'memory' of the environmental resources that were used up in the past for the production of the inputs, whereas MIs are strictly calculated within the time frame of the life cycle of the investigated process. The higher transformity values calculated for pure hydrogen suggest careful and appropriate use of such an energy vector

  18. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    OpenAIRE

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Hydrogen is emerging beyond its conventional role as an additive component for gasoline production, chemical and fertilizer manufacture, and food production to become a promising fuel for transportation and stationary power. Hydrogen offers a potentially unmatched ability to deliver a de-carbonized energy system, thereby addressing global climate change concerns, while simultaneously improving local air quality and reducing dependence on imported fossil fuels. This "trifecta" of potential ben...

  20. Hydrogen production by methane reforming based on micro-gap discharge

    International Nuclear Information System (INIS)

    Liu, N N; Wang, M X; Liu, K Y; Bai, M D

    2013-01-01

    Based on micro-gap strong ionization discharge, this paper presents a study of hydrogen production by methane reforming at room temperature and atmospheric pressure without catalyst. Influence rules of conversion of methane and production of hydrogen were studied by changing discharge power and feed gas flow rate. Results show that when the discharge power was about 341 W, the discharge gap was 0.47 mm and the flow rate of feed gas was 100 mL min −1 , the conversion of methane and yield of hydrogen reached optimization. The conversion rate of methane and the highest yield of hydrogen were 68.14 % and 51.34 %, respectively.

  1. A method of hydrogen production

    International Nuclear Information System (INIS)

    Schulten, R.; Teggers, H.; Schulze-Bentrop, R.

    1975-01-01

    This method of producing hydrogen from water in a multistage cycle process works without anorganic salts and requires only gases and liquids. Carbon oxide is catalytically converted into carbon dioxide and water by means of water vapour. The carbon dioxide is then converted into sulphuric acid and carbon oxide using water and sulphur dioxide at high temperatures and pressures, and the sulphuric acid is separated into sulphur dioxide, oxygen and water via the intermediate SO 2 . The SO 2 and CO 2 thus obtained are led back into the appropriate reaction stages, and hydrogen and oxygen are removed from the process as end products. (A schematic flow diagram is given.) (UWI) [de

  2. A short course in sustainable product development

    DEFF Research Database (Denmark)

    McAloone, Tim C.

    2005-01-01

    This short course in sustainable product development models, methods and mindsets is designed to fit into the Unical course on Engineering Design Methods. Three modules (called “seminars”) will guide you through . The demands for sustainable development . Professional methods for analysing and ch...... and changing products’ environmental profiles . A new approach to product service system development, where the physical product becomes an incidental aspect in the final offering to the customer...

  3. Life Cycle Greenhouse Gas Emissions of By-product Hydrogen from Chlor-Alkali Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Yeon [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Elgowainy, Amgad A. [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division

    2017-12-01

    Current hydrogen production capacity in the U.S. is about 15.8 million tonne (or metric ton) per year (Brown 2016). Some of the hydrogen (2 million tonne) is combusted for its heating energy value, which makes total annual net production 13.8 million tonne (Table 1). If captive by-product hydrogen (3.3 million tonne) from catalytic reforming at oil refineries is excluded (Brown 2016; EIA 2008), approximately 11 million tonne is available from the conventional captive and merchant hydrogen market (DOE 2013). Captive hydrogen (owned by the refiner) is produced and consumed on site (e.g., process input at refineries), whereas merchant hydrogen is produced and sold as a commodity to external consumers. Whether it is merchant or captive, most hydrogen produced in the U.S. is on-purpose (not by-product)— around 10 million tonne/year.

  4. Sustainable aggregates production : green applications for aggregate by-products.

    Science.gov (United States)

    2015-06-01

    Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...

  5. Genomics and transcriptomics of the hydrogen producing extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Verhaart, M.R.A.

    2010-01-01

    As fossil fuels are depleting, there is a clear need for alternative sustainable fuel sources. One of the interesting alternatives is hydrogen, which can be produced from biomass by bacteria and archaea. To make the application feasible, organisms are needed which have high hydrogen productivities

  6. Nature tourism: a sustainable tourism product

    Directory of Open Access Journals (Sweden)

    Violante Martínez Quintana

    2017-11-01

    Full Text Available Nature tourism has emerged in the tourism field as a result of a logical evolution in line with public policies and academic research. After negative outcomes from traditional models first raised the alarm, the entire sector has tried to foster local development based on models of responsibility and sustainability. This article revises key concepts of nature – based tourism and shows new tendencies and the perception of cultural landscapes that are seen as tourism products. Finally, it concludes by analysing new tendencies to foster alternative nature – based tourism. It also presents a planning proposal based on a responsible and sustainable tourism model to guarantee a sustainable tourism product within the natural and cultural heritage context.

  7. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  8. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  9. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  10. Hydrogen production from nano-porous Si powder formed by stain etching

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, S.; Alekseev, S.; Kuznetsov, G.; Skryshevsky, V. [Institute of High Technology of National Taras Shevchenko University of Kyiv, Volodymyrs' ka 64, Kyiv 01601 (Ukraine); Lysenko, V.; Barbier, D. [Lyon Institute of Nanotechnologies (INL), CNRS UMR-5270, University of Lyon, INSA de Lyon, 7 avenue Jean Capelle, Bat. Blaise Pascal, 69621 Villeurbanne Cedex (France); Venturello, A.; Geobaldo, F.; Garrone, E. [Politecnico di Torino, Department of Materials Science and Chemical Engineering, 10129 Torino (Italy); Gulina, L.; Tolstoy, V. [St-Petersburg State University, Chemical Department (Russian Federation)

    2010-07-15

    Hydrogen reservoirs based on porous silicon (PS) nanostructures are considered. Silicon-based hydrogen tanks are believed to be applicable for portable device energy supply and compatible with micro-sources of energy of new generation. Stain etching of silicon powder to produce PS is studied as a technology alternative to conventional electrochemical etching and application of the PS powder for hydrogen production is also described. Size selection of initial Si micro-particles constituting the powders was carried out by sedimentation technique. Hydrogen content in PS was investigated by FTIR spectroscopy. Extraction of hydrogen in water environment in presence of small amount of NH{sub 3} as catalyst was shown to have advantages such as safety and tunability, additional production of hydrogen from water dissociation, and a possibility to characterize PS as a hydrogen source material in terms of hydrogen effective shell and crystalline core conception. (author)

  11. Supporting Sustainability and Personalization with Product Architecture

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Jørgensen, Kaj Asbjørn; Taps, Stig B.

    2011-01-01

    Mass Customization, Personalization and Co-creation (MCPC) are continuously being adopted as a competitive business strategy. Consumers as well as governments are at the same time applying pressure on companies to adopt a more sustainable strategy, consumers request greener products and governments...... is a driver for MCPC and earlier research within product architecture has indicated that modularization could support sustainability. In this paper, work on the drivers for modularization with focus on sustainability and MCPC, will be presented. Several modularization methods and drivers are analyzed...

  12. Safety assessment of VHTR hydrogen production system against fire, explosion and acute toxicity

    International Nuclear Information System (INIS)

    Murakami, Tomoyuki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-01-01

    The Japan Atomic Energy Agency has been developing a nuclear hydrogen production system by using heat from the Very High Temperature Reactor (VHTR). This system will handle a large amount of combustible gas and toxic gas. The risk from fire, explosion and acute toxic exposure caused by an accident involving chemical material release in a hydrogen production system is assessed. It is important to ensure the safety of the nuclear plant, and the risks for public health should be sufficiently small. This report provides the basic policy for the safety evaluation in cases of accident involving fire, explosion and toxic material release in a hydrogen production system. Preliminary safety analysis of a commercial-sized VHTR hydrogen production system, GTHTR300C, is performed. This analysis provides us with useful information on the separation distance between a nuclear plant and a hydrogen production system and a prospect that an accident in a hydrogen production system does not significantly increase the risks of the public. (author)

  13. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  14. Selecting appropriate technology for hydrogen production

    International Nuclear Information System (INIS)

    Tamhankar, S.S.

    2004-01-01

    'Full text:' Technologies for the production of synthesis gas (H2 + CO), a precursor to hydrogen, from a variety of fossil fuels are well known in industrial applications at relatively large scale. These include Steam Reforming (SR), Auto-Thermal Reforming (ATR) and Partial Oxidation (POX). A particular technology is selected based on the feed type and the desired products. Steam reforming is a mature technology, and is most prevalent for hydrogen production because of its high efficiency. However, at the smaller scale, the capital cost becomes a more significant factor, and a substantial reduction in this cost is necessary to meet the overall H2 gas cost targets, such as that stated by DOE ($1.50/kg). In developing small-scale H2 technologies, often, incremental improvements are incorporated. While useful, these are not adequate for the desired cost reduction. Also, for effective cost reduction, the whole system, including production, purification and associated equipment needs to be evaluated; cost reduction in just one of the units is not sufficient. This paper provides a critical assessment of the existing as well as novel technology options, specifically targeted at small scale H2 production. The technology options are evaluated to clearly point out which may or may not work and why. (author)

  15. Prospect of HTGRs for hydrogen production in Indonesia

    International Nuclear Information System (INIS)

    Rusli, A.; Dasuki, A.S.; Rahman, M.; Nuriman; Sudarto

    1997-01-01

    Hydrogen energy system is interesting to many people of the world that because of hydrogen promised to save our planet earth from destroying of burning of fossil fuels. The selected development of hydrogen production from water such as electrolysis and thermochemical cycles are evaluated. These processes are allowed to split the water at lower temperature, still in the range of HTGRs' working temperature. An overview of related studies in recent years enables the development of research to be followed, studied and evaluated are mentioned. The prospect of hydrogen market in Indonesia and economic consideration based on previous studied are also analyzed and evaluated. (author). 11 refs, 5 figs, 13 tabs

  16. Short lecture series in sustainable product development

    DEFF Research Database (Denmark)

    McAloone, Tim C.

    2005-01-01

    Three lectures in sustainable product development models, methods and mindsets should give insight into the way of thinking about the environment when developing products. The first two lectures will guide you through: . Environmental problems in industry & life-cycle thinking . Professional...... methods for analysing and changing products’ environmental profiles . Sustainability as a driver for innovation...

  17. Photochemical Production of Hydrogen from Water

    International Nuclear Information System (INIS)

    Broda, E.

    1978-01-01

    The energy flux in sunlight is 40 000 kW per head of the world population. Theoretically much of this energy can be used to photolyze water, in presence of a sensitizer, to H2 (and 02) for a hydrogen economy. The main difficulty in a homogeneous medium is the back-reaction of the primary products. According to the 'membrane principle', the reducing and the oxidizing primary products are released on opposite sides of asymmetric membranes, and so prevented from back-reacting. In essence, this is the mechanism of the photosynthetic machinery in plants and bacteria. This therefore serves as an example in the artificial construction of suitable asymmetric, 'vectorial', membranes. Relatively small areas of photolytic collectors, e.g. in tropical deserts, could cover the energy needs of large populations through hydrogen. (author)

  18. Study on hydrogen production by high temperature electrolysis of steam

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Iwata, Tomo-o.

    1997-09-01

    In JAERI, design and R and D works on hydrogen production process have been conducted for connecting to the HTTR under construction at the Oarai Research Establishment of JAERI as a nuclear heat utilization system. As for a hydrogen production process by high-temperature electrolysis of steam, laboratory-scale experiments were carried out with a practical electrolysis tube with 12 cells connected in series. Hydrogen was produced at a maximum density of 44 Nml/cm 2 h at 950degC, and know-how of operational procedures and operational experience were also accumulated. Thereafter, a planar electrolysis cell supported by a metallic plate was fabricated in order to improve hydrogen production performance and durability against thermal cycles. In the preliminary test with the planar cell, hydrogen has been produced continuously at a maximum density of 33.6 Nml/cm 2 h at an electrolysis temperature of 950degC. This report presents typical test results mentioned above, a review of previous studies conducted in the world and R and D items required for connecting to the HTTR. (author)

  19. Frontiers, Opportunities and Challenges for a Hydrogen Economy

    Science.gov (United States)

    Turner, John

    2015-03-01

    Energy carriers are the staple for powering the society we live in. Coal, oil, natural gas, gasoline and diesel all carry energy in chemical bonds, used in almost all areas of our civilization. But these carriers have a limited-use lifetime on this planet. They are finite, contribute to climate change and carry significant geopolitical issues. If mankind is to maintain and grow our societies, new energy carriers must be developed and deployed into our energy infrastructure. Hydrogen is the simplest of all the energy carriers and when refined from water using renewable energies like solar and wind, represents a sustainable energy carrier, viable for millennia to come. This talk with discuss the challenges for sustainable production of hydrogen, along with the promise and possible pathways for implementing hydrogen into our energy infrastructure.

  20. Sustainability Assessment Model in Product Development

    Science.gov (United States)

    Turan, Faiz Mohd; Johan, Kartina; Nor, Nik Hisyamudin Muhd; Omar, Badrul

    2017-08-01

    Faster and more efficient development of innovative and sustainable products has become the focus for manufacturing companies in order to remain competitive in today’s technologically driven world. Design concept evaluation which is the end of conceptual design is one of the most critical decision points. It relates to the final success of product development, because poor criteria assessment in design concept evaluation can rarely compensated at the later stages. Furthermore, consumers, investors, shareholders and even competitors are basing their decisions on what to buy or invest in, from whom, and also on what company report, and sustainability is one of a critical component. In this research, a new methodology of sustainability assessment in product development for Malaysian industry has been developed using integration of green project management, new scale of “Weighting criteria” and Rough-Grey Analysis. This method will help design engineers to improve the effectiveness and objectivity of the sustainable design concept evaluation, enable them to make better-informed decisions before finalising their choice and consequently create value to the company or industry. The new framework is expected to provide an alternative to existing methods.

  1. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  2. Design for Sustainability : Current Trends in Sustainable Product Design and Development

    NARCIS (Netherlands)

    Clark, G.; Kosoris, J.; Nguyen Hong, L.; Crul, M.

    2009-01-01

    The Design for Sustainability (D4S) concept outlines methodologies for making sustainable improvements (social, economic and environmental) to products by applying elements of life cycle thinking. D4S builds on the work of ecodesign to include economic and social concerns, and its methodology

  3. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    International Nuclear Information System (INIS)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-01-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  4. Processes of hydrogen production, coupled with nuclear reactors: Economic perspectives

    International Nuclear Information System (INIS)

    Werkoff, Francois; Avril, Sophie; Mansilla, Christine; Sigurvinsson, Jon

    2006-01-01

    Hydrogen production, using nuclear power is considered from a technic-economic (TE) point of view. Three different processes are examined: Alkaline electrolysis, High-temperature steam electrolysis (HTE) and the thermochemical Sulphur-Iodine (S/I) cycle. The three processes differ, in the sense that the first one is operational and both last ones are still at demonstration stages. For them, it is at present only possible to identify key points and limits of competitiveness. The cost of producing hydrogen by alkaline electrolysis is analysed. Three major contributions to the production costs are examined: the electricity consumption, the operation and maintenance expenditures and the depreciation capital expenditures. A technic-economic evaluation of hydrogen production by HTE coupled to a high-temperature reactor (HTR) is presented. Key points appear to be the electrolyser and the high temperature heat exchangers. The S/I thermochemical cycle is based on the decomposition and the re-composition of H 2 SO 4 and HI acids. The energy consumption and the recovery of iodine are key points of the S/I cycle. With the hypothesis that the hydrogen energy will progressively replace the fossil fuels, we give a first estimate of the numbers of nuclear reactors (EPR or HTR) that would be needed for a massive nuclear hydrogen production. (authors)

  5. Exergetic life cycle assessment of hydrogen production from renewables

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  6. Prospects of sugarcane milling waste utilization for hydrogen production in India

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2007-01-01

    Cane-sugar producing countries also generate sufficient waste (bagasse) that is mostly utilized ''on-site'' as a replacement to coal in specialized boilers. In addition to sugar and molasses, about 25% by-product of the cane milling is bagasse that still retains 2.5% sugar on dry wt. basis.This paper deals with the prospects of bagasse fermentation for hydrogen production. It seems relevant, as India and Brazil are the major sugarcane producers in the world. The results obtained confirm bagasse, annually generated to a tune of 40 Mt (million tons) in India, can be diverted from the conventional burning or composting to fermentative hydrogen production in a cost-effective way. The processing cost of bagasse for hydrogen production (3Nm 3 ) equivalent to 1L petrol is about half. The system optimization for accessibility of polysaccharides in bagasse and the use of genetically efficient bacterial strains for agrowaste-based hydrogen production seems the ideal option for clean energy generation

  7. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  8. Hydrogen production from coal using a nuclear heat source

    International Nuclear Information System (INIS)

    Quade, R.N.

    1977-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1990 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas - a feedstock which may not be available in large quantities in this time frame. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. Bench-scale experimental work on the hydrogasification of coal liquids is being carried out. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed and shows diminishing returns at process temperatures above about 1500 0 F. (author)

  9. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang; Werhahn, Michael; Hwang, David J.; Hotz, Nico; Greif, Ralph; Poulikakos, Dimos; Grigoropoulos, Costas P.

    2010-01-01

    of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show

  10. Towards Sustainability-driven Innovation through Product Service Systems

    OpenAIRE

    Thompson, Anthony

    2010-01-01

    Increasing awareness of anthropogenic impacts on the planet has lead to efforts to reduce negative environmental impacts in product development for several decades. Benefits to companies who focus on sustainability initiatives have been put forth more recently, leading to many efforts to incorporate sustainability considerations in their product innovation processes. The majority of current sustainability considerations in industry constrain design space by emphasizing reduced material and en...

  11. Biological fermentative hydrogen production from olive pulp at 35 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Koutrouli, E.C.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering

    2004-07-01

    In response to energy security and environmental concerns, there is renewed interest in the use of hydrogen gas as a renewable energy source. However, many processes for generating hydrogen are extremely energy intensive and costly. This study focused on biological production of hydrogen from wastewater or other biomass. Photosynthetic and fermentation processes were outlined, but the main focus of this paper was on continuous anaerobic fermentation of low cost substrates such as olive pulp at 35 degrees C. This process is linked to the acidogenic stage of anaerobic digestion where carbohydrates are the preferred carbon source. Volatile fatty acids and alcohols are produced simultaneously with the hydrogen gas. An added advantage is that the effluent from the fermentation process can be further used by methanogenesis due to its rich organic acids content. Batch experiments with olive pulp resulted in 2.5 mmole of hydrogen per gram of total carbohydrates. It was noted that more research is required to maximize hydrogen production in a continuous process. It was suggested that hydrogen production could be optimized through hydrolysis of the non-soluble carbohydrates. This could be accomplished through physicochemical or biological pretreatments. 7 refs., 3 tabs., 1 fig.

  12. Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yohei; Harada, Hideki [Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Lee, Dong-Yeol [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Chi, Yong-Zhi [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Li, Yu-You [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Department of Environmental Science, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Yu, Han-Qing [School of Chemistry, University of Science and Technology of China, Hefei 230026 (China)

    2009-06-15

    In this study, the effects of the hydraulic retention time (HRT), pH and substrate concentration on the thermophilic hydrogen production of starch with an upflow anaerobic sludge bed (UASB) reactor were investigated. Starch was used as a sole substrate. Continuous hydrogen production was stably attained with a maximum H{sub 2} yield of 1.7 mol H{sub 2}/mol glucose. A H{sub 2}-producing thermophilic granule was successfully formed with diameter in the range of 0.5-4.0 mm with thermally pretreated methanogenic granules as the nuclei. The metabolic pathway of the granules was drastically changed at each operational parameter. The production of formic or lactic acids is an indication of the deterioration of hydrogen production for H{sub 2}-producing thermophilic granular sludge. (author)

  13. EXPERIMENTAL STUDY OF THE PRODUCTION OF SOLAR HYDROGEN IN ALGERIA

    Directory of Open Access Journals (Sweden)

    W. Bendaikha

    2015-08-01

    Full Text Available Hydrogen is a sustainable fuel option and one of the potential solutions for the current energy and environmental problems. In this study hydrogen is produced using a hydrogen generator with a Proton Exchange Membrane (PEM electrolyser. An experimental study is done in the Center of Development of the Renewable Energy, Algiers, Algeria.The experimental device contains essentially a photovoltaic module, a PEM electrolyser, a gasometer and the devices of measures of characteristics of the PEM electrolyser as well as two pyranometers for the horizontal and diffuse global radiance registration. This system in pilots scale is permitted on the one hand, to measured and analyzed the characteristics: of the PEM electrolyser for two different pressures of working (Patm and P=3 bar, on the other hand, to study the volume of hydrogen produces in the time with different sources of electrical power (generator, photovoltaic module, fluorescent lamp, the efficiency for every case is calculated and compared. We present in this paper the variation of the solar hydrogen flow rate produced according to the global radiance and according to the time for a typical day’s of August.

  14. Design and construction of a photobioreactor for hydrogen production, including status in the field.

    Science.gov (United States)

    Skjånes, Kari; Andersen, Uno; Heidorn, Thorsten; Borgvang, Stig A

    Several species of microalgae and phototrophic bacteria are able to produce hydrogen under certain conditions. A range of different photobioreactor systems have been used by different research groups for lab-scale hydrogen production experiments, and some few attempts have been made to upscale the hydrogen production process. Even though a photobioreactor system for hydrogen production does require special construction properties (e.g., hydrogen tight, mixing by other means than bubbling with air), only very few attempts have been made to design photobioreactors specifically for the purpose of hydrogen production. We have constructed a flat panel photobioreactor system that can be used in two modes: either for the cultivation of phototrophic microorganisms (upright and bubbling) or for the production of hydrogen or other anaerobic products (mixing by "rocking motion"). Special emphasis has been taken to avoid any hydrogen leakages, both by means of constructional and material choices. The flat plate photobioreactor system is controlled by a custom-built control system that can log and control temperature, pH, and optical density and additionally log the amount of produced gas and dissolved oxygen concentration. This paper summarizes the status in the field of photobioreactors for hydrogen production and describes in detail the design and construction of a purpose-built flat panel photobioreactor system, optimized for hydrogen production in terms of structural functionality, durability, performance, and selection of materials. The motivations for the choices made during the design process and advantages/disadvantages of previous designs are discussed.

  15. An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Smoglie, Cecilia; Lauretta, Ricardo

    2010-09-15

    The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.

  16. Economic Analysis for Nuclear Hydrogen Production System Based on HyS Process

    International Nuclear Information System (INIS)

    Yang, Kyeong Jin; Lee, Ki Young; Lee, Tae Hoon; Chang, Jong Hwa

    2009-01-01

    The current promising base for massive hydrogen production on high temperature environment derives primarily from three sources: the commercial production of chemicals for the sulfur-iodine (SI) process, the development of solid-oxide fuel cells (SOFC), and the hybrid method of chemicals and fuel cells. The three kinds of process requires high temperature heat energy over 850∼950 .deg. C for the efficient and economic hydrogen production. One of the clean, economic, and moreover promising heat sources supplied to the process is nuclear plants. The nuclear plants producing high temperature heat energy over 950 .deg. C are well known as Very High Temperature Reactors (VHTR) which could have two types of prismatic and pebble-bed cores along reactor core shape. In this paper, we report on the Hybrid Sulfur Process (HyS), and the estimated costs for the system which composes of VHTR of prismatic core type and HyS plant. Nuclear hydrogen production system based on HyS process has been configured to optimally use the thermal energy from VHTR and electric energy to produce hydrogen and oxygen from clean water. High temperature thermal energy is transferred to the HyS process by way of intermediate heat exchanger (IHX) with associated piping. In this paper, the hydrogen production costs for a system composed of a VHTR with six 600MWth module, a power conversion unit (PCU) and a HyS plant are presented, where the thermal energy produced in two module was converted to electric energy in PCU and then transferred to the electrolysis cells for hydrogen production and circulating units on HyS plant, and the remaining thermal energy was supplied to chemical process on HyS plants. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR are estimated in the necessary input data on a Korean specific basis. G4- ECONS was appropriately modified to calculate the cost for hydrogen production

  17. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production

    KAUST Repository

    Ambler, Jack R.; Logan, Bruce E.

    2011-01-01

    Microbial electrolysis cells (MECs) are often examined for hydrogen production using non-sustainable phosphate buffered solutions (PBS), although carbonate buffers have been shown to work in other bioelectrochemical systems with a platinum (Pt) catalyst. Stainless steel (SS) has been shown to be an effective catalyst for hydrogen evolution in MECs, but it has not been tested with carbonate buffers. We evaluated the combined using of SS cathodes and a bicarbonate buffer (BBS) at the applied voltages of 0.5, 0.7 and 0.9 V using a new inexpensive method for measuring gas production called the gas bag method (GBM). This method achieved an average error of only 5.0% based on adding known volumes of gas to the bag. Using the GBM, hydrogen production with SS and a BBS was 26.6 ± 1.8 mL which compared well to 26.4 ± 2.8 mL using Pt and BBS, and 26.8 ± 2.5 mL with a Pt cathode and PBS. Electrical energy efficiency was highest with a SS cathode and BBS at 159 ± 17%, compared to 126 ± 14% for the Pt cathode and BBS, and 134 ± 17% for a Pt cathode and PBS. The main disadvantage of the SS was a lower gas production rate of 1.1 ± 0.3 m3 H2-m-3 d-1 with BBS and 1.2 ± 0.3 m3 H2-m-3 d -1 with PBS, compared to 1.7 ± 0.4 m3 H 2-m-3 d-1 with Pt and PBS. These results show that the GBM is an effective new method for measuring gas production of anaerobic gas production processes, and that SS and bicarbonate buffers can be used to effectively produce hydrogen in MECs. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  18. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  19. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    /day); Feedstock Cost (USD 0.15 - USD 0.45 per kg); Availability (85% - 95%). The return-on-investment is between USD 90 000 and USD 180 000 in 60 % of the 5 000 simulation runs, which leads to the conclusion that given these assumptions the owning and operation of such a unit can be profitable. As for the performance of the system, it is concluded to be within targets based on the different performance measures reported above. The conversion is in the expected range (80-85%), given the throughput of 16 kg of hydrogen per day. The efficiency as reported is in the acceptable range (approx65%), with some room for improvement within the given system architecture, if desired. However, there is a trade-off between throughput, efficiency and cost that will have to be considered in every redesign of the system. The PSA chosen for the task has performed well during the 200+ hours of operation and there is no doubt that it will be sufficient for the task. The same thing can be said with respect to the system performance with respect to thermo-mechanical stress; which was proven by operating the system for more than 500 hours and performing 58 start-and-stop cycles during the testing. There does not seem to be any major differences between operating on natural gas or methane, based on the testing performed. The slight decrease in hydrogen production can be due to a difference in the H{sub 2}/CO ratio between the various fuels. As expected the efficiency increases with load as well as the hydrogen production rate. Based on the results disseminated above, there is no indication why the current reactor system cannot be configured into a field deployable system. The operation of the system has given valuable experience that will be embedded into any field deployed unit

  20. Transitioning Wood Furniture Products towards Sustainability

    OpenAIRE

    Lu, Lei; Zhang, WeiGuang; Zhang, WeiQing

    2008-01-01

    Wood Furniture Products (WFPs) play a significant role in both the global economy and the transition of society towards sustainability. This paper begins with a brief description of the industry and highlights the current challenges and compelling measures of WFPs from a systems perspective through the lens of the Framework for Strategic Sustainable Development (FSSD) and by applying backcasting from sustainability principles (SPs). An examination of the challenges and opportunities of WFPs i...

  1. Nature-Inspired Design : Strategies for Sustainable Product Development

    NARCIS (Netherlands)

    De Pauw, I.C.

    2015-01-01

    Product designers can apply different strategies, methods, and tools for sustainable product development. Nature-Inspired Design Strategies (NIDS) offer designers a distinct class of strategies that use ‘nature’ as a guiding source of knowledge and inspiration for addressing sustainability.

  2. Socio-cultural barriers to the development of a sustainable energy system - the case of hydrogen

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Andersen, Anne Holst

    Any transition to a more sustainable energy system, radically reducing greenhouse gas emissions, is bound to run in to a host of different barriers - technological and economic, but also socio-cultural. This will also be the case for any large-scale application of hydrogen as energy carrier......, especially if the system is going to be based on renewable energy sources. The aim of these research notes is to review and discuss major socio-cultural barriers to new forms of energy supply in general and to hydrogen specifically. Reaching sufficient reductions in greenhouse gas emissions may require more...

  3. The value of product flexibility in nuclear hydrogen technologies: A real options analysis

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2009-01-01

    Previous economic studies of nuclear hydrogen technologies focused on levelized costs without accounting for risks and uncertainties faced by potential investors. To address some of these risks and uncertainties, we used real options theory to assess the profitability of three nuclear hydrogen production technologies in evolving electricity and hydrogen markets. Monte-Carlo simulations are used to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from the production plant. It also quantifies the value of the option to switch between hydrogen and electricity production. Under these assumptions, we conclude that investors will find significant value in the capability to switch plant output between electricity and hydrogen. (author)

  4. Availability of steam generator against thermal disturbance of hydrogen production system coupled to HTGR

    International Nuclear Information System (INIS)

    Shibata, Taiju; Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

    1996-01-01

    One of the safety issues to couple a hydrogen production system to an HTGR is how the reactor coolability can be maintained against anticipated abnormal reduction of heat removal (thermal disturbance) of the hydrogen production system. Since such a thermal disturbance is thought to frequently occur, it is desired against the thermal disturbance to keep reactor coolability by means other than reactor scram. Also, it is thought that the development of a passive cooling system for such a thermal disturbance will be necessary from a public acceptance point of view in a future HTGR-hydrogen production system. We propose a SG as the passive cooling system which can keep the reactor coolability during a thermal disturbance of a hydrogen production system. This paper describes the proposed steam generator (SG) for the HTGR-hydrogen production system and a result of transient thermal-hydraulic analysis of the total system, showing availability of the SG against a thermal disturbance of the hydrogen production system in case of the HTTR-steam reforming hydrogen production system. (author)

  5. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage....... Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase. (c) 2006 Elsevier Ltd. All rights reserved....

  6. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  7. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  8. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong-Hwan; Hyun Yoon, Jong; Eun Kyoung Ahn; Park, Tai Hyun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744 (Korea); Kim, Mi-Sun [Biomass Research Team, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Jun Sim, Sang [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea)

    2007-02-15

    A new fermentative hydrogen-producing bacterium was isolated from a domestic landfill and identified as Enterobacter asburiae using 16S rRNA gene sequencing and DNA-DNA hybridization methods. The isolated bacterium, designated as Enterobacter asburiae SNU-1, is a new species that has never been examined as a potential hydrogen-producing bacterium. This study examined the hydrogen-producing ability of Enterobacter asburiae SNU-1. During fermentation, the hydrogen was mainly produced in the stationary phase. The hydrogen yield based on the formate consumption was 0.43 mol hydrogen/mol formate. This strain was able to produce hydrogen over a wide range of pH (4-7.5), with the optimum pH being pH 7. The level of hydrogen production was also affected by the initial glucose concentration, and the optimum value was found to be 25 g glucose/l. The maximum and overall hydrogen productivities were 398 and 174 ml/l/hr, respectively, at pH 7 with an initial glucose concentration of 25 g/l. This strain could produce hydrogen from glucose and many other carbon sources such as fructose, sucrose, and sorbitol. (author)

  9. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Science.gov (United States)

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  10. Structural model for sustainable consumption and production adoption

    DEFF Research Database (Denmark)

    Luthra, Sunil; Govindan, Kannan; Mangla, Sachin Kumar

    2017-01-01

    . “Governmental policies and regulations to develop sustainable consumption and production focused system” and “Management support, dedication and involvement in sustainable consumption and production implementation” have been found as the most influencing drivers and “Gaining the market edge and improving...

  11. Modeling low-temperature serpentinization reactions to estimate molecular hydrogen production with implications for potential microbial life on Saturn's moon Enceladus.

    Science.gov (United States)

    Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn

    2017-04-01

    Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is

  12. Effects of methanogenic effluent recycle on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J.T.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    Most research on fermentative hydrogen production has focused on optimizing the process and not on the practicalities of pH control although active pH control in a hydrogen reactor is necessary for stable and efficient performance. Batch experiments have shown that hydrogen ceases to be produced when there is no pH control. This study determined if recycle effluent from the methane reactor of a two-phase hydrogen-producing system would reduce the external alkali needed for pH control in a hydrogen reactor. It also determined if recycle affected the performance of the hydrogen reactor and the overall two-phase system. This paper describes the experimental laboratory-scale, two-phase hydrogen producing system which was operated alternately with and without effluent recycle from a methane reactor to the hydrogen reactor. The two-phase hydrogen producing system yielded 5.7 times more energy recovery than that obtained by the fermentative hydrogen producing reactor alone. The use of effluent from the methane reactor can reduce the operational cost of external alkali for pH control. 6 refs., 5 figs.

  13. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied

  14. Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory

    DEFF Research Database (Denmark)

    Zhao, Guangling; Pedersen, Allan Schrøder

    2018-01-01

    cylinder by road and ferry. The hydrogen is used to provide electricity and heat through fuel cell stacks as well as hydrogen fuel for fuel cell vehicles. In order to evaluate the environmental impacts related to the hydrogen production and utilisation, this work conducts an investigation of the entire...... life cycle of the described hydrogen production, transportation, and utilisation. All the processes related to the equipment manufacture, operation, maintenance, and disposal are considered in this study....

  15. A versatile, steam reforming based small-scale hydrogen production process

    International Nuclear Information System (INIS)

    P C Hulteberg; F A Silversand; B Porter; R Woods

    2006-01-01

    In this paper, a new design methodology and process is proposed for small scale pure hydrogen production capable of serving energy markets ranging from distributed generation to vehicular refuelling. The system was designed for producing 7 Nm 3 /hr pure hydrogen (purity of ≤ 1 ppm CO dry), yielding 10 kWe net power from a fuel cell system with an overall parasitic power loss ≤ 10 %. The discussion of this process includes a detailed description of the design methodology and operational results of the catalytic converter, the hydrogen purification system and the fuel cell system. This paper will discuss the design methodology of the overall system, as well as the specific design of the catalytic converter, the catalysts used within, and the hydrogen purification system. It will also report the system performance including gas purity, recovery rate, overall hydrogen production efficiencies, and electrical efficiencies during fuel cell operation. (authors)

  16. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi

    2013-01-01

    The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... amended anazrobic seguencs batch reactor (ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH. Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs, with 65%, 63%, 54%, 56% enhancement...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  17. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  18. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  19. Efficient STEP (solar thermal electrochemical photo) production of hydrogen - an economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Licht, Stuart [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Solar Institute, George Washington University, Washington, DC 20052 (United States); Chitayat, Olivia; Bergmann, Harry; Dick, Andrew; Ayub, Hina [Solar Institute, George Washington University, Washington, DC 20052 (United States); Ghosh, Susanta [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Department of Chemistry, Visva-Bharati, Santiniketan (India)

    2010-10-15

    A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H{sub 2} at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H{sub 2} production, (3) 25% CPV driven molten electrolysis H{sub 2} production, and (4) 35% CPV driven solid oxide electrolysis H{sub 2} production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from 5.74 to 4.96 to 3.01 to 2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H{sub 2}/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi{sup 2} in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and

  20. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%

  1. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    International Nuclear Information System (INIS)

    Elam, Carolyn C.

    2001-01-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen

  2. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  3. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  4. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    Depletion of oil and gas reserves and growing global warming concerns have created a world-wide interest in new concepts for future sustainable energy supplies. The development of effective ways to produce hydrogen from biomass is expected to be one important contribution to such a goal [1]. Nowadays, three main processes are considered for future industrial application, namely: gasification of biomass [2], reforming in supercritical water [3] and aqueous phase reforming [4,5]. Other technologies such as enzymatic decomposition of sugars or steam reforming of bio-oils suffer from low hydrogen production rates and/or complex processing requirements and can probably not be considered for industrial applications in the closer future [6,7]. On the other hand, either the gasification of biomass, which is typically carried out at temperatures above 800 C using Ni or Fe catalysts [8,9,10,11], or the reforming in supercritical water, which is typically carried out in presence of Ru catalyst at pressures of 300bar and temperatures ranging from 500 to 700 C [12], suffer of poor energetic efficiency as a lot of energy is required to run the reactions. More recently, an alternative to the two aforementioned high temperature processes has been proposed as ''aqueous phase reforming'' (APR) by Dumesic and coworkers [13,14,15,16,17]. They achieved the reforming of polyols (such as ethylene glycol, glycerol and sorbitol) using heterogeneous catalysts at temperatures between 200 and 250 C and pressure typically between 15-50bar.The temperature level of the reaction allows generating hydrogen with low amounts of CO in a single reactor. The process typically forms 35 % of hydrogen, 40 % of CO2 and 25 % of combined alkanes. The high amount of formed alkanes originates eventually from CO hydrogenation and Fischer-Tropsch (F-T) reaction [18,19,20,21], those are thermodynamically favored in the above mentioned conditions. However, heterogeneously catalyzed APR

  5. GAT 4 production and storage of hydrogen. Report July 2004; GAT 4 procduction et stockage de l'hydrogene. Rapport juillet 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  6. How to Deliver Open Sustainable Innovation: An Integrated Approach for a Sustainable Marketable Product

    Directory of Open Access Journals (Sweden)

    Francesco Cappa

    2016-12-01

    Full Text Available The adoption of open innovation and peer production, powered by 3D printing technology, is transforming traditional manufacturing methods towards a “third industrial revolution”. The purpose of this research is to provide empirical evidence for an integrated approach, based on collaborative product development and peer production, combined with 3D printing, to deliver more sustainable, yet competitive, marketable products. In particular, this experimental study is conducted in the context of mobile forensics, an emerging market where limited expensive products exist and alternative solutions are needed. The technical viability and economic feasibility of the prototype developed in this research validate the proposed integrated approach, which could be a game-changer in the field of mobile forensics, as well as in other sectors. The sustainability improvements with this approach are a reduction of the total cost, thereby making it affordable for lower income users, and a decrease in energy consumption and pollutant emissions. The validated integrated approach offers start-up opportunities to develop and deliver more sustainable, marketable products, towards the paradigm of Open Sustainable Innovation. While the device developed and tested in this research has similar features to existing products, the methodology, implementation, and motivation are original.

  7. Hydrogen production from paper sludge hydrolysate

    NARCIS (Netherlands)

    Kádár, Z.; Vrije, de G.J.; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P.A.M.

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga

  8. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.

    Science.gov (United States)

    Adessi, Alessandra; Concato, Margherita; Sanchini, Andrea; Rossi, Federico; De Philippis, Roberto

    2016-03-01

    Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes.

  9. The safe production of hydrogen by nuclear power

    International Nuclear Information System (INIS)

    Verfondern, Karl

    2009-01-01

    One of the most promising 'GEN-IV' nuclear reactor concepts is the Very High Temperature Reactor (VHTR). It is characterized by a helium-cooled, graphite moderated, thermal neutron spectrum reactor core of 400-600 MW(th). Coolant outlet temperatures of 900-1000 .deg. C ideally suited for a wide spectrum of high temperature process heat or process steam applications, which allow to deliver, besides the classical electricity, also non-electrical products such as hydrogen or other fuels. In a future energy economy, hydrogen as a storable medium could adjust a variable demand for electricity by means of fuel cell power plants providing much more flexibility in optimized energy structures. The mass production of hydrogen is a major goal for Gen-IV systems. In a nuclear hydrogen production facility, the coupling between the nuclear plant and the process heat/steam application side is given by an intermediate heat exchanger (IHX), a component which provides a clear separation preventing the primary coolant from accessing the heat application plant and, vice versa, any process gases from being routed through the reactor containment. The physical separation has the advantage that the heat application facility can be conventionally designed, and repair works can be conducted under non-nuclear conditions. With regard to the safety of combined nuclear and chemical facilities, apart from their own specific categories of hazards, a qualitatively new class of events will have to be taken into account characterized by interacting influences. Arising problems to be covered by a decent overall safety concept are the questions of safety of the nuclear plant in case of fire and explosion hazards resulting from the leakage of flammable substances, the tolerable tritium contamination of the product hydrogen, or the situations of thermo-dynamic feedback in case of a loss of heat source (nuclear) or heat sink (chemical) resulting in thermal turbulences. A safety-related issue is the

  10. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development...... of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode....... At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net...

  11. Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2011-01-01

    Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm 3 H 2 /h) and 360 kW (90 Nm 3 H 2 /h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H 2 and $7.55/kg H 2 . The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H 2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H 2 at base case conditions. The life cycle CO 2 emissions is 6.35 kg CO 2 /kg H 2 including hydrogen delivery to the upgrader via compressed gas trucks. -- Highlights: ► This study involves development of a data intensive techno-economic model for estimation cost of hydrogen production from wind energy. ► Wind energy based electricity is used for electrolysis to produce hydrogen in Western Canada for bitumen upgrading for oil sands. ► Several scenarios were developed to study the electricity generation and hydrogen production from wind energy. ► The cost of production of hydrogen is significantly higher than natural based hydrogen in Western Canada.

  12. Sustainability evaluation of nanotechnology processing and production

    OpenAIRE

    Teresa M. Mata; Nídia de Sá Caetano; António A. Martins

    2015-01-01

    This article discusses the current situation and challenges posed by nanotechnology from a sustainability point of view. It presents an objective methodology to evaluate the sustainability of nanotechnology products, based on a life cycle thinking approach, a framework particularly suited to assess all current and future relevant economic, societal and environmental impacts products and processes. It is grounded on a hierarchical definition of indicators, starting from 3D indicators that take...

  13. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  14. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  15. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  16. Status and Planning of South Africa's Nuclear Hydrogen Production Program

    Energy Technology Data Exchange (ETDEWEB)

    Ravenswaay, J. P.; Niekerk, F.; Kriek, R. J.; Blom, E.; Krieg, H. M.; Niekerk, W. M. K.; Merwe, F.; Vosloo, H. C. M. [North-West University, Potchefstroom (South Africa)

    2009-05-15

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The Strategy will focus on research, development and innovation for (amongst others) by building on the existing knowledge in High Temperature Gas Cooled Reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production methods. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centers (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing Hydrogen Production, Storage, Distribution as well as Codes and Standards programs within the framework of the DST strategic objectives. A 700kW Heliostat field is to be constructed at the CSIR. It is planned that the following processes will be investigated there: Steam Methane Reforming, High Temperature Steam Electrolysis, Metal-oxide redox process. At the NWU the main focus will be on the large scale, CO{sub 2} free, hydrogen production through thermo-chemical water splitting using nuclear heat from a suitable heat source such as a HTGR. The following will be investigated: Plasma-arc reforming of methane, Investigating the integration of a HTGR with a coal-to-liquid process, steel manufacture and ammonia production, The Hybrid-Sulphur process for the production of hydrogen.

  17. Optimization of Hydrogen Production in Anaerobic Digestion Processes

    International Nuclear Information System (INIS)

    Cesar-Arturo Aceves-Lara; Eric Latrille; Thierry Conte; Nicolas Bernet; Pierre Buffiere; Jean-Philippe Steyer

    2006-01-01

    The hydrogen production using anaerobic digestion processes is strongly related to the operational conditions such as pH in the reactor, agitation of the liquid phase and hydraulic retention time (HRT). In this study, an experimental design has been carried out and the main effects and interactions between the three above mentioned factors have been evaluated. Experiments were performed in a continuous bioreactor with HRT of 6, 10 or 14 h, pH was regulated to 5.5, 5.75 or 6 and agitation speed was maintained at 150, 225 or 300 rpm. Molasses were used as substrate with a feeding concentration of 10 gCOD.L -1 . The maximum hydrogen rate production was 5.4 L.Lreactor -1 .d -1 . It was obtained for a pH of 5.5, a retention time of 6 h and an agitation speed of 300 rpm. The mathematical analysis of the experimental data revealed that two reactions could explain 89% of the total variance of the experimental data. Finally, the pseudo-stoichiometric coefficients were estimated and the effects of the operational conditions on the hydrogen production rates were calculated. (authors)

  18. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang

    2010-01-01

    In the present study a small steam-methanol reformer with a colloid nanocatalyst is utilized to produce hydrogen. Radiation from a focused continuous green light laser (514 nm wavelength) is used to provide the energy for steam-methanol reforming. Nanocatalyst particles, fabricated by using pulsed laser ablation technology, result in a highly active catalyst with high surface to volume ratio. A small novel reformer fabricated with a borosilicate capillary is employed to increase the local temperature of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show that hydrogen production by solar steam-methanol colloid nanocatalyst reforming is both feasible and promising. © 2009 Professor T. Nejat Veziroglu.

  19. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  20. Developing a Decision Model of Sustainable Product Design and Development from Product Servicizing in Taiwan

    Science.gov (United States)

    Huang, Yu-Chen; Tu, Jui-Che; Hung, So-Jeng

    2016-01-01

    In response to the global trend of low carbon and the concept of sustainable development, enterprises need to develop R&D for the manufacturing of energy-saving and sustainable products and low carbon products. Therefore, the purpose of this study was to construct a decision model for sustainable product design and development from product…

  1. How "Sustainability" is Changing How We Make and Choose Products

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl O' Brien

    2006-07-01

    What does Sustainability mean, and why should people in the thermophysical properties business care? This paper will describe sustainability in the context of product development, which is where much of the buzz is currently being generated. Once described, it will discuss how expectations for Sustainability are changing product lines, and then discuss the controversial issues now emerging from trying to measure Sustainability. One of the most organized efforts in the U.S. is the U.S. Green Building Council revolutionizing how the built environment is conceptualized, designed, built, used, and disposed of - and born again. The appeal of the US Green Building Council is that it has managed to checklist how to "do" Sustainability. By following this checklist, better described as a rating system, a more Sustainable product should be achieved. That is, a product that uses less energy, less water, is less noxious to the user, and consumes fewer resources. We care because these Sustainable products are viewed as preferable by a growing number of consumers and, consequently, are more valuable. One of the most interesting aspects of the Sustainability movement is a quantitative assessment of how sustainable a product is. Life Cycle Assessment techniques (not to be confused with life cycle economic costs) developed since the early 1990s are gaining ground as a less biased method to measure the ultimate "bad" consequences of creating a product (depletion of natural resources, nutrification, acid rain, air borne particulates, solid waste, etc.). For example, one assertion is that these studies have shown that recycling can sometimes do more environmental harm than good.

  2. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  3. Emerging technologies for sustainable individual mobility

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1996-11-01

    In the long term, sustainable transport technology must be based on renewable fuel supplies. Waste biomass and solar energy may be used for the CO{sub 2}-neutral production of gases with high calorific value (syngas, hydrogen). For power generation, low temperature polymer electrolyte fuel cells and hybrid vehicles are particularly promising as they combine an attractive cruising range with ultra-low emissions. In view of transport logistics, the production of synthetic liquid fuels, and the possibility of recovering hydrogen from these liquid by on-board fuel processing, are key issues for the successful introduction of both renewable fuels and of zero emission converters. (author) 8 figs., 1 tab., 24 refs.

  4. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    CERN Document Server

    Zurlo, N.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C.L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R.S.; Jorgensen, L.V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macri, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L.G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; der Werf, D.P.Van; Variola, A.; Venturelli, L.; Yamazaki, Y.

    2006-01-01

    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.

  6. Development program of hydrogen production by thermo-chemical water splitting is process

    International Nuclear Information System (INIS)

    Ryutaro Hino

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on the HTGR and also on thermo-chemical water splitting hydrogen production by using a iodine-sulfur cycle (IS process) in the HTTR project. The continuous hydrogen production for one week was demonstrated with a bench-scale test apparatus made of glass, and the hydrogen production rare was about 31 NL/h. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h and will be operated under the high pressure up to 2 MPa, is being designed conceptually as the next step of the IS process development aiming to realize a future nuclear hydrogen production coupled with the HTGR. In this paper, we will introduce one-week continuous hydrogen production conducted with the bench-scale test apparatus and the pilot test program including R and D and an analytical system necessary for designing the pilot test plant. MW. Figure 1 shows an overview of the HTTR-IS plant. In this paper, we will introduce latest test results obtained with the bench-scale test apparatus and concepts of key components of the IS process, a sulfuric acid (H 2 SO 4 ) and a sulfur trioxide (SO 3 ) decomposers working under high-temperature corrosive circumstance, are also introduced as well as relating R and D and an analytical system for the pilot plant design. (authors)

  7. An experimental study of the growth and hydrogen production of C. reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Burgess, S.; Nixon, P.J.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae, such as C. reinhardtii, have the ability to photosynthetically produce molecular hydrogen under anaerobic conditions. They offer a biological route to renewable, carbon-neutral hydrogen production from two of nature's most plentiful resources - sunlight and water. This process provides the additional benefit of carbon dioxide sequestration and the option of deriving valuable products from algal biomass. The growth of dense and healthy algal biomass is a prerequisite for efficient hydrogen production. This study investigates the growth of C. reinhardtii under different cyclic light regimes and at various continuous light intensities. Algal growth is characterised in terms of the cell count, chlorophyll content and optical density of the culture. The consumption of critical nutrients such as acetate and sulphate is measured by chromatography techniques. C. reinhardtii wild-type CC-124 strain is analysed in a 3 litre tubular flow photobioreactor featuring a large surface-to-volume ratio and excellent light penetration through the culture. Key parameters of the hydrogen production process are continuously monitored and controlled; these include pH, pO{sub 2}, optical density, temperature, agitation and light intensity. Gas phase hydrogen production is determined by mass spectrometry. (orig.)

  8. Production of hydrogen from fermentation of pina agroindustrial waste

    International Nuclear Information System (INIS)

    Montoya Perez, Luisa

    2012-01-01

    The performance of biohydrogen production was assesed a laboratory level, by anaerobic fermentation using agroindustrial residue of pineapple heart and employing microorganisms own of sludges from the bottom of an anaerobic digester belonging to a wastewater treatment plant from a seafood processor. Residue of pineapple heart was characterized physicochemically. The amounts were quantified: moisture, ashes, crude fiber, glucose, reducing sugars, hydrogen potential, soluble solids (Brix grades), boron, nitrogen, phosphorus, calcium, magnesium, potassium, sulfur, zinc, iron, copper and manganese. Per gram of pineapple heart is obtained 0,113 g of reducing sugars and 0,0114 g of glucose, which has made it a carbohydrate rich material that could ferment and produce hydrogen or other metabolites of commercial interest. A maximum yield was obtained of 0,0484 mol H 2 / mol of glucose consumed with a hydrogen maximum output of 1,260 mmol, at a maximum production rate of 0.070 mmol/h with a time lag in the production of hydrogen to 7,833 h under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a medium of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum, in a container 125 mL where was consumed 88,4% of the initial glucose. A maximum yield of 1,541 mol H 2 / mol of consumed glucose was obtained, in a fermentation time of 30 h, with a maximum hydrogen production of 41,227 mmol, at a maximum production rate of 6,740 mmol/h with a lag time in the production of hydrogen for 16 h, under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a middle of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum in a fermentor of 5 L where 96,39% was consumed of the initial glucose. The maximum yield from 1,541 mol H 2 / mol of glucose consumed has corresponded to 38% of the target value of the United States Department of Energy equivalent

  9. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  10. Production of hydrogen via conversion of hydrocarbons using a microwave plasma

    International Nuclear Information System (INIS)

    Jasinski, Mariusz; Dors, Miroslaw; Nowakowska, Helena; Mizeraczyk, Jerzy; Nichipor, Gerietta V

    2011-01-01

    In this paper, results of hydrogen production from hydrocarbons in an atmospheric pressure microwave plasma are presented. As sources of hydrogen, both methane CH 4 and tetrafluoroethane C 2 H 2 F 4 were tested. A new waveguide-based nozzleless cylinder-type microwave plasma source was used to convert hydrocarbons into hydrogen. The processed gaseous hydrocarbons were introduced into the plasma by four gas ducts which formed a swirl flow in the plasma reactor. The absorbed microwave power was up to 5 kW. The gas flow rate was up to 212 L min -1 . The hydrogen mass yield rate and the corresponding energetic hydrogen mass yield were up to 866 g[H 2 ] h -1 and 577 g [H 2 ] kWh -1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

  11. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  12. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  13. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states

    Energy Technology Data Exchange (ETDEWEB)

    Nakashimada, Y.; Rachman, M.A.; Kakizono, T.; Nishio, N. [Hiroshima University, Higashi-Hiroshima (Japan). Graduate School of Advanced Sciences of Matter, Department of Molecular Biotechnology

    2002-12-01

    Enterobacter aerogenes HU-101, tested for its hydrogen production in batch cultures on various substrates, produced the highest amount of hydrogen when the substrate was glycerol. The yield of hydrogen is a function of the degree to which the substrates are reduced. To examine the effect of intracellular redox state on hydrogen yield, glucose-limiting chemostat cultures were carried out at various pH using strain HU-101 and its mutant AY-2. For both strains, the molar yield and the production rate of hydrogen and the hydrogenase activity in the cell-free extract were optimal at the culture pH of 6.3. The highest NADH/NAD ratio in both strains was also observed at pH 6.3, at which the ratio in AY-2 was more than two-fold that of HU-101. Furthermore, NAD(P)H-dependent hydrogen formation was observed in the cell-free extract of AY-2, and hydrogenase activity was found not in the cytoplasmic but in the cell membrane fraction, suggesting that a high intracellular redox state, that is a high NADH/NAD ratio, would accelerate hydrogen production by driving membrane-bound NAD(P)H-dependent hydrogenase. (author)

  14. New advances in hydrogen production via the catalytic decomposition of wax by-products using nanoparticles of SBA frame-worked MoO_3

    International Nuclear Information System (INIS)

    El Naggar, Ahmed M.A.; Gobara, Heba M.; El Sayed, Hussien A.; Soliman, Fathi S.

    2015-01-01

    Graphical abstract: Feedstock-to-gases & hydrogen conversion using the Mo-SBA15 catalyst compared to commercial catalysts. - Highlights: • Synthesis of meso-porous molybdenum oxide catalyst in SBA framework. • Confirming the structural characteristics of this catalyst by different analyses. • New trend for the H_2 & CH_4, production is revealed in this work. • Nano-carbon species of well-ordered structure was produced. • In-situ non-pressurized-low temperature wax isomerization was imposed. - Abstract: The alternative energy sources in general and hydrogen based energy in particular have been currently grabbing great attention. Hydrogen is an efficient green source for power generation owing to its huge energy content. The operational costs and the hydrogen output are the key factors in the selection of a certain technique for the hydrogen production industrially. This study summarizes a new route for hydrogen production starting from a bit complicated hydrogen-containing molecules. Particular attention is given during this work towards a direct pyrrolysis catalytic conversion of long chains n-paraffin into hydrogen with in-situ production of nano-structured carbon particles. The simultaneous isomerization of the n-paraffin contented in the feedstock is also discussed during this process. This research study had provided new advances in the hydrogen production based on carrying out the production process at non-severe conditions namely; low operational temperatures and no pressure was applied. The introduction of a meso-porous molybdenum oxide catalyst for the catalytic hydrogen production is also a point of novelty for the presented work. Promising results have been disclosed at the end of this investigation; approximately 60 wt.% of the feedstock was converted to fuel gases while nearly 30 wt.% of the feed had turned as nano-carbon species. The hydrogen productivity had been detected as high as 42 wt.% of the original feedstock. This in fact might

  15. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  16. Uncertainty propagation in modeling of plasma-assisted hydrogen production from biogas

    Science.gov (United States)

    Zaherisarabi, Shadi; Venkattraman, Ayyaswamy

    2016-10-01

    With the growing concern of global warming and the resulting emphasis on decreasing greenhouse gas emissions, there is an ever-increasing need to utilize energy-production strategies that can decrease the burning of fossil fuels. In this context, hydrogen remains an attractive clean-energy fuel that can be oxidized to produce water as a by-product. In spite of being an abundant species, hydrogen is seldom found in a form that is directly usable for energy-production. While steam reforming of methane is one popular technique for hydrogen production, plasma-assisted conversion of biogas (carbon dioxide + methane) to hydrogen is an attractive alternative. Apart from producing hydrogen, the other advantage of using biogas as raw material is the fact that two potent greenhouse gases are consumed. In this regard, modeling is an important tool to understand and optimize plasma-assisted conversion of biogas. The primary goal of this work is to perform a comprehensive statistical study that quantifies the influence of uncertain rate constants thereby determining the key reaction pathways. A 0-D chemical kinetics solver in the OpenFOAM suite is used to perform a series of simulations to propagate the uncertainty in rate constants and the resulting mean and standard deviation of outcomes.

  17. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  18. Hydrogen production by radiation

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Lee, M. J.; Jin, J. H.; Park, K. B.; Cho, Y. H.; Jeong, H. S.; Chung, H. H.; Jeong, Y. S.; Ahn, S. S.

    2001-04-01

    In this work, various kinds of catalysts including a nanosize TiO2 (nTiO 2 ) were examined in respect to the efficiency of H2 production by gamma rays.The different activity of catalysts was characterized by X-ray powder diffraction (XRD) and electron paramagnetic resonance (EPR). A combination of EPR and spin-trapping method was also used to detect unstable radicals such as hydroxyl radicals and hydrogen atoms to investigate the effect of catalysts and additives on the efficiency of H2 production. A nanosize TiO 2 (nTiO 2 ) catalyst that showed an excellent activity in the production of H2 from water by gamma rays were examined in respect to the efficiency of H2 production with concomitant treatment of metal-EDTA complexes that are main wastes of chemical cleaning wastewater. As a result, among the catalysts examined in this work, a nanosize TiO2 (nTiO 2 ) showed the most efficient H2 production and the efficiency increased upon reapplication. This catalyst was also successfully used to produce H2 with concomitant treatment of metal-EDTA complexes

  19. Safety issues of nuclear production of hydrogen

    International Nuclear Information System (INIS)

    Piera, Mireia; Martinez-Val, Jose M.; Jose Montes, Ma

    2006-01-01

    Hydrogen is not an uncommon issue in Nuclear Safety analysis, particularly in relation to severe accidents. On the other hand, hydrogen is a household name in the chemical industry, particularly in oil refineries, and is also a well known chemical element currently produced by steam reforming of natural gas, and other methods (such as coal gasification). In the not-too-distant future, hydrogen will have to be produced (by chemical reduction of water) using renewable and nuclear energy sources. In particular, nuclear fission seems to offer the cheapest way to provide the primary energy in the medium-term. Safety principles are fundamental guidelines in the design, construction and operation both of hydrogen facilities and nuclear power plants. When these two technologies are integrated, a complete safety analysis must consider not only the safety practices of each industry, but any interaction that could be established between them. In particular, any accident involving a sudden energy release from one of the facilities can affect the other. Release of dangerous substances (chemicals, radiotoxic effluents) can also pose safety problems. Although nuclear-produced hydrogen facilities will need specific approaches and detailed analysis on their safety features, a preliminary approach is presented in this paper. No significant roadblocks are identified that could hamper the deployment of this new industry, but some of the hydrogen production methods will involve very demanding safety standards

  20. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate.

    Science.gov (United States)

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi

    2017-11-01

    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.