WorldWideScience

Sample records for sustainable fuel technologies

  1. Negotiating sustainable innovation? Hydrogen and fuel cell technologies in Germany

    Directory of Open Access Journals (Sweden)

    Weert Canzler

    2013-06-01

    Full Text Available Recently, the German Federal Government made the consequential decision to change its energy program. This not only as a result of the decision to shut down the existing nuclear power plants within the next few years, but also due to vital challenges like climate change and security of energy supply. The shift in the energy-technology paradigm from fossil fuel technologies to regenerative energies might appear as a merely technical process at first glance. Yet, the road to environmental sustainability is paved with economic and social stumbling blocks. The concept of sustainable development is not a blueprint for technical progress but requires deliberations on questions about innovations and governance: How do we want to live and how do we want to get there? This paper traces the negotiations of sustainable innovation on the example of hydrogen and fuel cell technologies in Germany. The institutional set up in this field is analyzed and the new organizational actors are identified. These actors attempt to inform and persuade others of the benefits of hydrogen and fuel cells in order to establish a common view that is to guide the further development. However, while they succeeded in mobilizing enough actors to launch the largest Public Private Partnership in this sector in the EU, they could not attain the leadership in the public discourse on these technologies. It seems that an attractive guiding vision of a sustainable, post-fossil energy future and a broad acceptance in daily use would have been major prerequisites for such leadership.

  2. Self-sustained cabinet based on fuel cell technology and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Rafael Augusto de Oliveira; Valentim, Rafael Bertier; Glir, Joao Raphael Zanlorensi; Stall, Alexandre; Sommer, Elise Meister; Sanches, Luciana Schimidilin; Dias, Fernando Gallego; Korndorfer, Heitor Medeiros de Albuquerque; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], Email: rafaelcorrea123@hotmail.com; Ordonez, Juan Carlos [Florida State University, Tallahasse, Florida (United States). Dept. of Mechanical Engineering. Center for Advanced Power Systems

    2010-07-01

    Along the past few years, there has been intensive research on clean and renewable energy production. Two main reasons have been pointed out: pollution caused by oil based fuels consumption and their availability diminution, which increases their production costs. Fuel Cells have shown to be a clean and renewable energy source, which reveals them as a promising solution, although their technology needs further development. Fuel Cells produce electricity, water and heat consuming hydrogen and oxygen, this provided pure or from a natural air source. Present research has combined different equipment to compose a self-sustaining fuel cells technology based cabinet for energy production, which is a Regenerative Fuel Cell System (RFC). This system contains: fuel cells stack, electrolyzer, photovoltaic panel, batteries, current inverter and a charge controller. Photovoltaic panel charges the batteries, while charge controller controls the batteries loading. Batteries are connected to an inverter which converts direct current into alternating current. Inverter is connected to an electrolyzer (Hogen GC 600) which splits the water molecule into hydrogen and oxygen molecules. Produced hydrogen supplies the fuel cell stack and the oxygen is released directly to the atmosphere. Fuel cell stacks power production is transformed into mechanical energy by a fan. Electrical power generated by Ballard stack is 5.124 W, with a voltage of 36.6 V and current of 0.14 A. The system proved to have a great efficiency and to be capable to assemble two renewable energy sources (solar and fuel cell technology) in a self-sustainable cabinet. It has also been shown that equipment such as Electrolyzer, Fuel Cell Stack and Photovoltaic panel can be fit together in the order to produce energy. Therefore, research on Fuel Cells Regenerative System reveals great importance for developing a new, clean, renewable and regenerative energy production system. (author)

  3. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  4. Sustainable vehicle fuels - Do they exist?

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal; Ericsson, Karin; Di Lucia, Lorenzo; Nilsson, Lars J.; Aahman, Max

    2009-03-15

    Our aim with this report is to discuss vehicle fuels from a wide perspective of sustainability. Biofuels and electricity are analyzed and compared to fossil vehicle fuels. Our goal is to try to point out the circumstances under which vehicle fuels can be reasonably perceived as sustainable, and which systems we should develop and which we should avoid. The all-embracing conclusion of this study is that one can not establish how sustainable fuels will develop in the future without simultaneously taking into consideration both scale and pace of growth. Today's biofuels produced in Sweden are sustainable, given the present production volume, and promote further development of new fuel systems. However, in the case of increased production volumes, exact requirements should be established for the energy- and climate efficiency of the entire fuel chain (from cultivation to tank). High priority should be given to the development of fuel-efficient cars. In this field hybrid electric technology and electric cars will grow in importance. Any long-term strategy for biofuels should include investments in technology for both thermal gasification and biological conversion methods of lignocellulose, since these are complementing as much as competing technologies, both increasing the flexibility as well as decreasing the risk of conflicts. Biogas from waste products has great environmental advantages and the sector can be expanded with only small risks of conflicts. Certification (if correctly formulated) is an important and necessary tool on the way towards more sustainable vehicle fuels and increased production volumes, but certification systems should not be overrated since they can not cover all sustainability aspects. Socio-economic aspects such as working conditions, local rural development etc. must be dealt with through general measures such as national laws, distribution policies, programs and plans, all of which should be supported by international agreements and

  5. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  6. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-01-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future, are technological sustainability, economic sustainability, and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and long term. (author)

  7. Sustainable Mobility, Future Fuels, and the Periodic Table

    Science.gov (United States)

    Wallington, Timothy J.; Anderson, James E.; Siegel, Donald J.; Tamor, Michael A.; Mueller, Sherry A.; Winkler, Sandra L.; Nielsen, Ole J.

    2013-01-01

    Providing sustainable mobility is a major challenge that will require new vehicle and fuel technologies. Alternative and future fuels are the subject of considerable research and public interest. A simple approach is presented that can be used in science education lectures at the high school or undergraduate level to provide students with an…

  8. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13). Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The conference, which was held from 4 to 7 of March 2013 in Paris, provided a forum to exchange information on national and international programmes, and more generally new developments and experience, in the field of fast reactors and related fuel cycle technologies. A first goal was to identify and discuss strategic and technical options that have been proposed by individual countries or companies. Another goal was to promote the development of fast reactors and related fuel cycle technologies in a safe, proliferation resistant and economic way. A third goal was to identify gaps and key issues that need to be addressed in relation to the industrial deployment of fast reactors with a closed fuel cycle. A fourth goal was to engage young scientists and engineers in this field, in particular with sustainability, innovation, simulation, safety, economics and public acceptance

  9. Clear road for sustainable fuels? Study on the willingness of consumers to switch to sustainable fuels

    International Nuclear Information System (INIS)

    Van Amelsfoort, A.; Zwier, R.

    2007-01-01

    In the Netherlands, there are currently hardly any filling stations where various types of sustainable fuels are available next to the regular fuels. Green Planet wants to start a filling station in the province of Drenthe. However, first Green Planet want to examine if consumers are prepared to switch to sustainable fuels. In addition, they want to know how these fuels should be properly introduced. The authors have sent questionnaires to more than 300 car drivers in the provinces of Groningen en Drenthe. Based on the results of the questionnaire a marketing strategy was developed recommending to start offering sustainable fuels, and especially B10/E10 and CNG. The consumer must be informed about the composition of sustainable fuels and possible consequences that driving on sustainable fuels may have for cars and the environment. [mk] [nl

  10. Evaluation Indicators for Analysis of Nuclear Fuel Cycle Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Ko, Won Il; Chang, Hong Lae

    2008-01-15

    In this report, an attempt was made to derive indicators for the evaluation of the sustainability of the nuclear fuel cycle, using the methodologies developed by the INPRO, OECD/NEA and Gen-IV. In deriving the indicators, the three main elements of the sustainability, i.e., economics, environmental impact, and social aspect, as well as the technological aspect of the nuclear fuel cycle, considering the importance of the safety, were selected as the main criteria. An evaluation indicator for each criterion was determined, and the contents and evaluation method of each indicator were proposed. In addition, a questionnaire survey was carried out for the objectivity of the selection of the indicators in which participated some experts of the Korea Energy Technology and Emergency Management Institute (KETEMI) . Although the proposed indicators do not satisfy the characteristics and requirements of general indicators, it is presumed that they can be used in the analysis of the sustainability of the nuclear fuel cycle because those indicators incorporate various expert judgment and public opinions. On the other hand, the weighting factor of each indicator should be complemented in the future, using the AHP method and expert advice/consultations.

  11. Emerging technologies for sustainable individual mobility

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1996-11-01

    In the long term, sustainable transport technology must be based on renewable fuel supplies. Waste biomass and solar energy may be used for the CO{sub 2}-neutral production of gases with high calorific value (syngas, hydrogen). For power generation, low temperature polymer electrolyte fuel cells and hybrid vehicles are particularly promising as they combine an attractive cruising range with ultra-low emissions. In view of transport logistics, the production of synthetic liquid fuels, and the possibility of recovering hydrogen from these liquid by on-board fuel processing, are key issues for the successful introduction of both renewable fuels and of zero emission converters. (author) 8 figs., 1 tab., 24 refs.

  12. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  13. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  14. Status and promise of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [National Energy Technology Lab., Pittsburgh, PA (United States). Dept. of Energy

    2001-09-01

    The niche or early entry market penetration by ONSI and its phosphoric acid fuel cell technology has proven that fuel cells are reliable and suitable for premium power and other opportunity fuel niche market applications. Now, new fuel cell technologies - solid oxide fuel cells, molten carbonate fuel cells, and polymer electrolyte fuel cells - are being developed for near-term distributed generation shortly after 2003. Some of the evolving fuel cell systems are incorporating gas turbines in hybrid configurations. The combination of the gas turbine with the fuel cell promises to lower system costs and increase efficiency to enhance market penetration. Market estimates indicate that significant early entry markets exist to sustain the initially high cost of some distributed generation technologies. However, distributed generation technologies must have low introductory first cost, low installation cost, and high system reliability to be viable options in competitive commercial and industrial markets. In the long-term, solid state fuel cell technology with stack costs under $100/kilowatt (kW) promises deeper and wider market penetration in a range of applications including a residential, auxillary power, and the mature distributed generation markets. The solid state energy conversion alliance (SECA) with its vision for fuel cells in 2010 was recently formed to commercialize solid state fuel cells and realize the full potential of the fuel cell technology. Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 fuel cell turbine hybrid energy plants in 2015. (orig.)

  15. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  16. Opening Session [International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, March 4-7, 2013

    International Nuclear Information System (INIS)

    Bigot, Bernard

    2013-01-01

    In Europe today, the energy supply relies on fossil fuels at over 75% of its primary energy consumption. Worldwide, it is over 82%. Such a massive use of fossil fuels is thus both a threat for the environment, climate and health, and also for our economies. In 2012, for France, fossil fuel imports represent an expense 3 times larger than in 2005, and over 90% of France’s trade deficit. If keeping this current energy mix, we will strongly contribute to a large increase of the risk of climate change, environmental and human health impacts, and their damaging effects. Tackling climate change, environmental and health issues will require the priority use of CO 2 emission free energy sources. Despite Kyoto protocol and many political international statements, the amount of CO 2 emission per year has known a +40% growth from 1990 to 2009, with the correlated increase of temperatures. To ensure a sustainable development, the world needs a sustainable energy supply, which makes a sufficient amount available for everybody at an acceptable price. For all these reasons, the substitution of fossil fuel consumption as soon as possible and as large as possible with CO 2 free energy sources must be our top priority. The corner stone of any sustainable European energy is the reduction of our consumption of fossil fuels with three axes of action relative to the technologies using these fuels: energy savings, improved efficiency, substitution by other technologies which do not use such fuels, as renewable and nuclear energies

  17. Sustainable design of fuel cell systems and components. Paper no. IGEC-1-148

    International Nuclear Information System (INIS)

    Frank, D.

    2005-01-01

    'Full text:' Fuel Cell and Hydrogen Technology are touted as the major future enabler for a renewable energy future. This is particularly true for vehicular applications were there are few competitive alternatives. However, without zero-emission production of hydrogen, this will not be a very sustainable solution. Hydrogen generation from biomass, solar, hydro or wind energy will allow this realization. In addition, we need to evaluate the whole life cycle of a fuel cell system in order to make sure that it is truly 'green'. Hydrogenics has in place corporate initiatives to ensure that sustainability is part of the corporate objectives and philosophy. A sustainable future ensures that this generation does not prevent future generations from a similar (or better) standard of living. Fuel cell recyclability and reusability will be a major factor in ensuring a renewable, sustainable future. This is accomplished using sustainable design methodology whereby fuel cell system components are analyzed for their total life cycle impact. This concept of 'cradle to grave' product design responsibility is applied to Hydrogenics fuel cell products and is discussed in this paper. (author)

  18. Review of Biojet Fuel Conversion Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei-Cheng [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Yanan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Batan, Liaw [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.

  19. Some strategic considerations on the development of advance nuclear fuel cycle technologies in China

    International Nuclear Information System (INIS)

    Gu Zhongmao

    2006-01-01

    The characteristics of the different fuel cycle options are analyzed from the view point of sustainable development of nuclear fission energy. It is pointed out that the 'once-through' option of fuel cycle does not comply with the sustainability of the nuclear energy development. For the sake of full utilization of uranium resources and the minimization of nuclear waste, the closed fuel cycle of fast breeder reactor is the fundamental way out for the sustainable development of nuclear fission energy. Based on the wide investigations on the present status and R and D trends of the key technologies of fuel cycle both at home and abroad, the strategy for developing China's fuel cycle technologies is explored, some important measures to be taken for achieving the above strategic goal are suggested. (authors)

  20. The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Price, Robert R.; Singh, Bhupinder P.; MacKinnon, Robert J.; David Sevougian, S.

    2013-01-01

    We investigate the implementation of the principles of systems engineering in the U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program to provide a framework for achieving its long-term mission of demonstrating and deploying sustainable nuclear fuel cycle options. A fuel cycle “screening” methodology is introduced that provides a systematic, objective, and traceable method for evaluating and categorizing nuclear fuel cycles according to their performance in meeting sustainability objectives. The goal of the systems engineering approach is to transparently define and justify the research and development (R and D) necessary to deploy sustainable fuel cycle technologies for a given set of national policy objectives. The approach provides a path for more efficient use of limited R and D resources and facilitates dialog among a variety of stakeholder groups interested in U.S. energy policy. Furthermore, the use of systems engineering principles will allow the FCT Program to more rapidly adapt to future policy changes, including any decisions based on recommendations of the Blue Ribbon Commission on America’s Nuclear Future. Specifically, if the relative importance of policy objectives changes, the FCT Program will have a structured process to rapidly determine how this impacts potential fuel cycle performance and the prioritization of needed R and D for associated technologies. - Highlights: ► Systems engineering principles applied in U.S. DOE-NE Fuel Cycle Technology Program. ► Use of decision analysis methods for determining promising nuclear fuel cycles. ► A new screening methodology to help communicate and prioritize U.S. DOE R and D needs. ► Fuel cycles categorized by performance/risk in meeting FCT Program objectives. ► Systems engineering allows DOE-NE to more rapidly adapt to future policy changes

  1. Degree of Sustainability of Various Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Brogli, R.; Krakowski, R.A.

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a similar evaluation

  2. Degree of Sustainability of Various Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A. [Los Alamos National Laboratory, New Mexico (United States)

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a

  3. Technological development and prospect of alkaline fuel cells

    International Nuclear Information System (INIS)

    Meng Ni; Michael KH Leung; Dennis YC Leung

    2006-01-01

    This paper reviewed the technological development of alkaline fuel cell (AFC). Although the technology was popular in 1970's and 1980's, there has been a decline in AFC research over the past decade, mainly due to the poisoning of CO 2 . Continuous efforts have demonstrated that CO 2 concentration could be reduced to an acceptable level by a number of viable methods such as absorption, adsorption, electrochemical process, electrolyte circulation, use of liquid hydrogen, and use of solid anionic exchange membranes. Literature survey showed that AFC lifetime could achieve up to 5000 hours. In addition, the use of ammonia as a fuel for AFC was identified as a promising technology. Comparison between AFC and proton exchange membrane fuel cell (PEMFC) was presented to evaluate the AFC technology and its economics. The present review and assessment showed the promise of AFC for the coming hydrogen economy and sustainable development. (authors)

  4. Business Models for Sustainable Technologies: Exploring Business Model Evolution in the Case of Electric Vehicles

    NARCIS (Netherlands)

    Bohnsack, R.; Pinkse, J.; Kolk, A.

    2014-01-01

    Sustainable technologies challenge prevailing business practices, especially in industries that depend heavily on the use of fossil fuels. Firms are therefore in need of business models that transform the specific characteristics of sustainable technologies into new ways to create economic value and

  5. Technology and sustainability

    NARCIS (Netherlands)

    Kroeze, C.; Boersema, J.J.; Tellegen, E.; Cremers, A.

    2011-01-01

    In ten essays, this book addresses a broad range of issues related to the interplay of sustainability and technology. How do population growth and technology relate to sustainable development? Can globalization be reconciled with sustainable development? Is sustainability a subjective or an

  6. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  7. Diversifying bio-petro fuel sources for future energy sustainability and its challenges

    Science.gov (United States)

    Othman, M. R.; Helwani, Z.; Idris, I.

    2018-04-01

    Petroleum has been important in the energy industry since 19th century when the refining of paraffin from crude oil began. The industry recently appears to be in a downtown and fragile moment despite the price of oil is slowly rising. Renewable alternatives such as biofuels have gained increasing traction while petroleum fuel seemingly concedes to bio-fuels due to the rising public concern on the environment and stricter emission regulations. To be a strategic fuel in the energy security matrix, both fossil and bio-fuels options should be considered. However, the use of bio-fuels to achieve a degree of carbon neutrality is not without challenges. Among the challenges are land development and socio-political issue, carbon neutrality due to ILUC, high 2G bio-fuel feedstock and production cost, competing technology from electric vehicles and the impending fourth industrial revolution, NOx emissions and variation in biodiesel quality. This paper briefly reviews the potential of fuels source diversification and the challenges and how they can raise up to the challenges in order to be sustainable and attractive. In order to achieve this objective, first carbon credit through carbon trading needs to continue to stabilize the energy price. Second, 1G bio-fuel needs to forgo the use of natural, peat forest, rubber estate since these are an effective carbon sink and oxygen source. Third, advanced bio-fuels with high yield, process economics and sustainability need to be innovated. Fourth, the quality and standard bio-fuel that reduces NOx emission need to be improved. Finally and most importantly, carbon capture technology needs to be deployed immediately in fossil fuel power plants.

  8. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  9. Sustainable Development Technology Canada : partnering for real results

    International Nuclear Information System (INIS)

    Sharpe, V.

    2002-01-01

    The mission of Sustainable Development Technology Canada (SDTC) is to act as the primary catalyst in building a sustainable development technology infrastructure in Canada. Their mandate is to develop new technologies that focus on climate change and clean air, and to foster new partnership throughout Canada. This Power Point presentation identified the combustion research at SDTC with particular reference to the technologies that deal with: (1) the reduction of energy intensity, emissions and waste, (2) the efficient conversion of fuel to electricity, and (3) the capture, treatment and storage of carbon dioxide at large facilities. Graphs and charts depicting the impact of GHG emissions and climate change were also included. The presentation made reference to energy efficiency efforts at the DuPont Adipic Pipe Plant, the Allentown Pennsylvania wastewater treatment plant, and the pulp and paper dryer at Clean Energy Technologies. It was noted that each of the technologies mentioned have commercial value and SDTC helps in funding projects related to energy efficiency in the transportation sector, energy production, and enabling technologies. 2 figs

  10. Understanding the Sustainability of Fuel from the Viewpoint of Exergy

    Directory of Open Access Journals (Sweden)

    Yaning Zhang

    2018-01-01

    Full Text Available At the same time of providing a huge amount of energy to the world population (social sustainability and global economy (economic sustainability, the fuel itself also releases a great amount of emissions to the environment the world people live in in the forms of gaseous pollutants (SOx, NOx, CO, CO2, CH4, etc. and ash compositions (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SO3, SiO2, TiO2, etc., seriously impacting the environment (environmental sustainability for the world population and global economy. Sustainability generally encompasses economic sustainability, environmental sustainability, and social sustainability, and all of these are significantly related to the energy/resource sustainability. This study addresses the sustainability of fuel from the viewpoint of exergy. It is demonstrated that the energy of a fuel is best evaluated by its chemical exergy, and the environmental impact of a fuel can be assessed through the chemical exergy of its emissions (the specific impacts such as toxicity or greenhouse effect are not detailed. Then, the sustainability of fuel can be understood from the viewpoint of exergy through three ways: (a high chemical exergy of the fuel, (b high exergy efficiency of the fuel conversion process, and (c low chemical exergy of the emissions.

  11. Proceedings of the 2008 transportation technologies and fuels forum

    International Nuclear Information System (INIS)

    2008-01-01

    As a large emitter of pollutants, the transportation industry is now seeking to develop a sustainable transportation plan for the future by developing methods of reducing emissions and improving the fuel efficiency of vehicles. This forum discussed recent innovations in vehicle transportation technologies. Industry leaders, government representatives, and researchers discussed methods of reducing greenhouse gases (GHGs) and air pollution in the transportation sector. Advanced combustion technologies were outlined, and recent developments in hybrid electric-powered vehicles were discussed. Research related to fuel cells, hydrogen fuels and biofuels was presented. The impacts of polluting vehicles on public health were also discussed. The forum was divided into the following 5 sessions: (1) setting the scene, (2) future fuels, (3) emissions, (4) EVs now, and (5) the road to the future. The sessions were followed by a panel on technology roadmaps. The forum featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs.

  12. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  13. Sustainable electricity supply in the world by 2050 for economic growth and automotive fuel

    International Nuclear Information System (INIS)

    Kruger, P.

    2010-01-01

    Over the next 40 years, the combustion of fossil fuels for generation of electricity and vehicle transportation will be significantly reduced. In addition to the business-as-usual growth in electric energy demand for the growing world population, new electricity-intensive industries, such as battery electric vehicles and hydrogen fuel-cell vehicles will result in further growth in world consumption of electric energy. Planning for a sustainable supply of electric energy in the diverse economies of the world should be carried out with appropriate technology for selecting the appropriate large-scale energy resources based on their specific energy. Analysis of appropriate technology for the available large-scale energy resources with diminished use of fossil fuel combustion shows that sustainable electricity supply can be achieved with equal contributions of renewable energy resources for large numbers of small-scale distributed applications and nuclear energy resources for the smaller number of large-scale centralised applications. (author)

  14. Textiles and clothing sustainability sustainable technologies

    CERN Document Server

    2017-01-01

    This is the first book to deal with the innovative technologies in the field of textiles and clothing sustainability. It details a number of sustainable and innovative technologies and highlights their implications in the clothing sector. There are currently various measures to achieve sustainability in the textiles and the clothing industry, including innovations in the manufacturing stage, which is the crux of this book.

  15. 5th International Conference on Sustainable Automotive Technologies

    CERN Document Server

    Subic, Aleksandar; Trufin, Ramona

    2014-01-01

    This book captures selected peer reviewed papers presented at the 5th International Conference on Sustainable Automotive Technologies, ICSAT 2013, held in Ingolstadt, Germany. ICSAT is the state-of-the-art conference in the field of new technologies for transportation. The book brings together the work of international researchers and practitioners under the following interrelated headings: fuel transportation and storage, material recycling, manufacturing and management costs, engines and emission reduction. The book provides a very good overview of research and development activities focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. About the Editors: Prof. Dr. Jörg Wellnitz is the Dean of the Faculty of Mechanical Engineering, Technische Hochschule Ingolstadt, Germany. Prof. Dr. Aleksandar Subic is the Head of the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia. Ramona Trufin, M.A. is the coordinator of the Facul...

  16. Contribution of Heavy Water Board in nuclear fuel cycle technologies. Contributed Paper IT-03

    International Nuclear Information System (INIS)

    Mohanty, P.R.

    2014-01-01

    The three stage Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilization as its mainstay for long term energy security on sustainable basis. India is committed to realize this objective through the development and deployment of frontier technologies pertaining to all aspects of a closed nuclear fuel cycle. Comprehensive indigenous capabilities have been developed in all aspects of nuclear power and associated fuel cycles. Heavy Water Board (HWB), with its abiding objective of fulfilling demand of heavy water for India's flourishing nuclear power program, is one of the frontrunner in Nuclear Fuel Cycle Technology. HWB is now engaged in wide spectrum of activities in various facets of fuel cycle covering all the three stages of Indian Nuclear Power Programme. HWB is contributing to Nuclear Fuel Cycle through large scale production and sustained supply of key input materials including heavy water, solvents for nuclear hydrometallurgy, 10 B enriched boron etc

  17. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris – March 4-7, 2013: Closing Session. Summary of Sustainability of Advanced Fuel Cycles Panel Session II

    International Nuclear Information System (INIS)

    Cameron, R.

    2013-01-01

    Sustainability was discussed in terms of the social, environment and economic perspectives, which arise from the original Brundtland definition of sustainability. The panel presented their perspectives of the need to move towards a sustainable future, involving better use of uranium, reductions in high-level radioactive waste, safe, secure and economic operation of nuclear reactors and the fuel cycle. In all cases, it was considered that sustainability in the long-term must involve fast reactors and a closed nuclear fuel cycle, although both Korea and the IAEA pointed out that these are clearly national decisions and there will not be a single solution for all countries

  18. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.

    Science.gov (United States)

    van Zyl, W H; Chimphango, A F A; den Haan, R; Görgens, J F; Chirwa, P W C

    2011-04-06

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation.

  19. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  20. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  1. New, innovative and sustainable transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lassi, U. (Univ. of Oulu, Dept. of Chemistry (Finland)). email: ulla.lassi@oulu.fi; Keiski, R. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)); Kordas, K. (Univ. of Oulu, Microelectronics and Materials Physics Laboratories (Finland)); Mikkola, J.-P. (Aabo Akademi Univ., Lab. of Industrial Chemistry and Reaction Engineering, Turku (Finland))

    2009-07-01

    Secondary products from the industry - e.g. by-products of food and paper/pulp industry - can be used to manufacture new liquid biofuels or fuel components. A particularly interesting alternative is provided by butanol, which can be produced from biomass, since it seems to be most suitable for replacing petrol as fuel in gasoline engines. Besides, it is very energy efficient and also suitable to be produced on an industrial scale. Production of biobutanol and other higher alcohols is studied in the research project 'New, innovative sustainable transportation fuels for mobile applications; from biocomponents to flexible liquid fuels (SusFuFlex)'. The project is carried out as a joint project between the University of Oulu and Aabo Akademi University. It is financied by the Academy of Finland in 2008-2011, within the research programme for Sustainable Energy. Research focuses on the production of higher bioalcohols and other compounds suitable as oxygenates (e.g. butanol, pentanol, mixed alcohols; e.g. glycerine ethers, glycerol carbonate). The objectives of the research are (1) to evaluate the old and novel procedures for microbiological production of butanol, higher alcohols and oxygenates as fossil fuel substitutes, (2) to develop and optimize catalytic materials and chemical reaction routes for the production of higher alcohols and other bio-derived compounds applicable as gasoline fuel and its additives, (3) to conduct a sustainability analysis of the processes to be developed, to analyze the atom economy of the new processes and to make a preliminary economical analysis, and (4) to integrate the processes and know-how developed by the research groups

  2. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  3. An overview to development of fuel cell technology in Iran

    International Nuclear Information System (INIS)

    Amirinejad, M.; Rowshanzamir, S.; Eikani, M.H.

    2005-01-01

    The fuel cell has been known as a modern technology for conversion of chemical energy into electrical energy in the worldwide. Some factors of adaptation to environment targets and high efficiency production of energy are two main reasons that motivated several governments to be active in supporting developments of the fuel cells sector through integrated strategies. The rapid population growth in Iran in recent years is a significant agent of consuming more energy that is satisfied with the fossil resources resulting in environmental problems. The demand for environmental quality and balance in fuel consumption are two main drivers behind the development of fuel cell vehicle in Iran. In order to have sustainable economy and independent on the oil revenue, it is required to make use of oil and natural gas resources in a better manner. Fuel cells are the best candidates to fulfill this requirement. Iran's potential application for this technology in different sectors, design and construction it and fuel system based on natural gas is high. In this paper, current status, potential application, and future research and development of this technology in Iran are investigated

  4. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  5. Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis

    International Nuclear Information System (INIS)

    Liu, Jin’e; Lin, Bin-Le; Sagisaka, Masayuki

    2012-01-01

    To promote the reduction of greenhouse gas emissions, research and development of bioethanol technologies are encouraged in Japan and a plan to utilize untilled fields to develop rice for bioethanol production as a substitute for petroleum fuel is being devised. This study applies emergy methods to compare the sustainability of petroleum fuel production and two Japanese rice-to-ethanol production scenarios: (a) ethanol from rice grain, while straw and chaff are burned as energy and (b) ethanol from rice+straw+chaff. The major emergy indices, Emergy Yield Ratio (EYR), Environmental Loading Ratio (ELR), Emergy Investment Ratio (EIR), Emergy Sustainability Index (ESI), Environmental Impacts Ratio (EVR) and system transformity (Tr), are analyzed to assess the production processes. The results show that (1) petroleum fuel production presents higher ELR, EIR, EVR and lower EYR, ESI, Tr than rice-to-ethanol production, indicating rice-to-ethanol production makes sense for reduction of greenhouse gases (GHG); (2) scenario (a) performs similarly on major indicators (EYR, ESI, ELR, EIR and EVR) to scenario (b), yet the system efficiency indicator (Tr) of scenario (a, 7.572×10 5 semj/J) is much higher than (b, 4.573×10 5 semj/J), and therefore (b) is a better alternative for policy decisions; (3) both petroleum fuel production and rice-to-ethanol processes are mainly driven by purchased resources and are unsustainable and nonrenewable in the long run. - Highlights: ► We compare petrol fuel and rice-to-ethanol production using emergy indices. ► Rice-to-ethanol reduces green house gas emissions as a substitute for petrol fuel. ► Rice-to-ethanol production has better sustainability than that of petrol fuel. ► Neither petrol fuel nor biofuel production are sustainable in the long term. ► Bioethanol is not a renewable fuel.

  6. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  7. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  8. Household cooking fuels and technologies in developing economies

    International Nuclear Information System (INIS)

    Foell, Wesley; Pachauri, Shonali; Spreng, Daniel; Zerriffi, Hisham

    2011-01-01

    A major energy challenge of the 21st century is the health and welfare of 2.7 billion people worldwide, who currently rely on burning biomass in traditional household cooking systems. This Special Issue on Clean Cooking Fuels and Technologies in Developing Economies builds upon an IAEE workshop on this subject, held in Istanbul in 2008. It includes several papers from that workshop plus papers commissioned afterwards. The major themes of that workshop and this Special Issue are: •Analytical and decision frameworks for analysis and policy development for clean cooking fuels. •Making energy provisioning a central component of development strategies. •Strategies/business models of suppliers of modern fuels and technologies. •Analysis of successes/failures of past policies and programs to improve access to clean cooking. This introductory paper serves as a preamble to the 11 papers in this Special Issue. It provides a brief background on household cooking fuels and technologies, including: (1) their implications for sustainable development, health and welfare, gender impacts, and environment/climate issues; (2) options and scenarios for improved household cooling systems; and (3) discussions of institutions, programs and markets. It closes with “Research and Action Agendas”, initially developed during the 2008 workshop.

  9. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  10. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  11. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  12. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  13. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  14. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  15. Sustainable ground transportation – review of technologies, challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    Currently there are nearly 750 million ground vehicles in service worldwide. They are responsible for 50% of petroleum (oil) consumption and 60% of all greenhouse gas (GHG) emissions worldwide. The number of vehicles is forecasted to double by 2050. Therefore the environmental issues such as noise, emissions and fuel burn have become important for energy and environmental sustainability. This paper provides an overview of specific energy and environmental issues related to ground transportation. The technologies related to reduction in energy requirements such as reducing the vehicle mass by using the high strength low weight materials and reducing the viscous drag by active flow control and smoothing the operational profile, and reducing the contact friction by special tire materials are discussed along with the portable energy sources for reducing the GHG emissions such as low carbon fuels (biofuels), Lithium-ion batteries with high energy density and stability, and fuel cells. The technological challenges and opportunities for innovations are discussed.

  16. GREEN TECHNOLOGY COMPLIANCE IN MALAYSIA FOR SUSTAINABLE BUSINESS DEVELOPMENT

    OpenAIRE

    Kamarudin Abu Bakar; Mohd Fazli Mohd Sam; Md Nor Hayati Tahir; Ismi Rajiani; Norhana Muslan

    2011-01-01

    Economic growth, industrialization and growing population in developing countries such as Malaysia, demands a huge growth for renewable energy as global environmental problem call for drastic cuts on fossil fuel consumption. It has resulted in the promotion of green technology that presents the most viable way of meeting with the new green-related activities for environmental conservation. The Malaysian government has played a strong role in ensuring environmental sustainability by way of int...

  17. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  18. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  19. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  20. Advanced and sustainable fuel cycles for innovative reactor systems

    International Nuclear Information System (INIS)

    Glatz, J. P.; Malmbeck, R.; Purroy, D. S.; Soucek, P.; Inoue, T.; Uozumi, K.

    2007-01-01

    The key objective of nuclear energy systems of the future as defined by the Generation IV road map is to provide a sustainable energy generation for the future. It includes the requirement to minimize the nuclear waste produced and thereby notably reduce the long term stewardship burden in the future. It is therefore evident that the corresponding fuel cycles will play a central role in trying to achieve these goals by creating clean waste streams which contain almost exclusively the fission products. A new concept based on a grouped separation of actinides is widely discussed in this context, but it is of course a real challenge to achieve this type of separation since technologies available today have been developed to separate actinides from each other. In France, the CEA has launched extensive research programs in the ATALANTE facility in Marcoule to develop the advanced fuel cycles for new generation reactor systems. In this so called global actinide management (GAM) concept, the actinides are extracted in a sequence of chemical reactions (grouped actinide extraction (GANEX)) and immediately reintroduced in the fuel fabrication process is to use all actinides in the energy production process. The new group separation processes can be derived as in this case from aqueous techniques but also from so-called pyrochemical partitioning processes. Significant progress was made in recent years for both routes in the frame of the European research projects PARTNEW, PYROREP and EUROPART, mainly devoted to the separation of minor actinides in the frame of partitioning and transmutation (P and T) studies. The fuels used in the new generation reactors will be significantly different from the commercial fuels of today. Because of the fuel type and the very high burn-ups reached, pyrometallurgical reprocessing could be the preferred method. The limited solubility of some of the fuel materials in acidic aqueous solutions, the possibility to have an integrated irradiation and

  1. Sustainability of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Abe, Tomoyuki

    2013-01-01

    Effect of FR Deployment for New Scenarios with Decreased Nuclear Contribution after 3.11: • Uranium utilization in constant contribution scenario: - Many countries maintain their nuclear energy program after 3.11. - Uranium shortage is still fatal issue of this century. - FR system has significant contribution to enhanse sustainability in uranium utilization. • Spent Fuel (SF) management in constant contribution scenario: - Reprocessing of spent fuels will be essential to remain the SF stockpile within the storage capacity. • Pu/waste management in all scenarios: - FR systems can provide flexibility to Pu/waste management

  2. A Patent Analysis for Sustainable Technology Management

    Directory of Open Access Journals (Sweden)

    Junhyeog Choi

    2016-07-01

    Full Text Available Technology analysis (TA is an important issue in the management of technology. Most R&D (Research & Development policies have depended on diverse TA results. Traditional TA results have been obtained through qualitative approaches such as the Delphi expert survey, scenario analysis, or technology road mapping. Although they are representative methods for TA, they are not stable because their results are dependent on the experts’ knowledge and subjective experience. To solve this problem, recently many studies on TA have been focused on quantitative approaches, such as patent analysis. A patent document has diverse information of developed technologies, and thus, patent is one form of objective data for TA. In addition, sustainable technology has been a big issue in the TA fields, because most companies have their technological competitiveness through the sustainable technology. Sustainable technology is a technology keeping the technological superiority of a company. So a country as well as a company should consider sustainable technology for technological competition and continuous economic growth. Also it is important to manage sustainable technology in a given technology domain. In this paper, we propose a new patent analysis approach based on statistical analysis for the management of sustainable technology (MOST. Our proposed methodology for the MOST is to extract a technological structure and relationship for knowing the sustainable technology. To do this, we develop a hierarchical diagram of technology for finding the causal relationships among technological keywords of a given domain. The aim of the paper is to select the sustainable technology and to create the hierarchical technology paths to sustainable technology for the MOST. This contributes to planning R&D strategy for the sustainability of a company. To show how the methodology can be applied to real problem, we perform a case study using retrieved patent documents related to

  3. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  4. New Technologies for a sustainable nuclear energy and your effect in the management of radioactive waste

    International Nuclear Information System (INIS)

    Gonzalez Romero, E. M.

    2009-01-01

    The probable worldwide increase and distribution of nuclear energy for electricity generation, replacing partially fossil fuels, is promoting the development of technologies that foster its long-term sustain ability. Fast neutron system, combined with closed fuel cycles, are the key elements for the sustain ability. When combined, they can provide a significant reduction on the final high level wastes of the nuclear generation. In particular, Partitioning and Transmutation of actinides would allow the reduction of the nuclear wastes radiotoxicity, their content in fissile material and the heat load to the repository. (Author) 8 refs

  5. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  6. Characteristics of sustainable bio-solid fuel produced from sewage sludge as a conventional fuel substitute

    International Nuclear Information System (INIS)

    Jung, Bongjin; Nam, Wonjun; Lee, Na-Yeon; Kim, Kyung-Hoon

    2010-01-01

    Safely final disposal of sewage sludge which is being increased every year has already become serious problems. As one of the promising technologies to solve this problem, thermal drying method has been attracting wide attention due to energy recovery from sewage sludge. This paper describes several characteristics of sustainable bio-solid fuel, as a conventional fuel substitute, produced from sewage sludge drying and granulation plant having the treatment capacity of 10 ton/ day. This plant has been successfully operated many times and is now designing for scale-up. Average moisture content of twelve kinds of bio-solid fuels produced from the plant normally less than 10 wt% and average shape of them is mainly composed of granular type having a diameter of 2-8 mm for easy handling and transportation to the final market destinations. Average higher heating value, which is one of the important properties to estimate the possibility of available energy, of bio-solid fuels is about 3800 kcal/ kg as dry basis. So they can be utilized to supply energy in the coal power plant and cement kiln etc. as a conventional fuel substitute for a beneficial reuse. Characteristics including proximate analysis, ultimate analysis, contents of heavy metals, wettability etc. of bio-solid fuels have been also analyzed for the environmentally safe re utilization. (author)

  7. Review of Jet Fuel Life Cycle Assessment Methods and Sustainability Metrics

    Science.gov (United States)

    2015-12-01

    The primary aim of this study is to help aviation jet fuel purchasers (primarily commercial airlines and the U.S. military) to understand the sustainability implications of their jet fuel purchases and provide guidelines for procuring sustainable fue...

  8. Challenges of Implementing New Technologies for Sustainable Energy. Opening address at the Sixth Grove Fuel Cell Symposium, London, 13-16 September 1999

    Science.gov (United States)

    Jørgen Koch, Hans

    To meet the commitments made in Kyoto, energy-related CO 2 emissions would have to fall to almost 30% below the level projected for a "Business-As-Usual" scenario. Meeting this goal will require a large-scale shift toward climate-friendly technologies such as fuel cells, which have a large long-term potential for both stationary generation and transportation. The deployment of a technology is the last major stage in the process of technological shift. Climate-friendly technologies are not being deployed at a sufficient rate or in sufficient amount to allow IEA countries to meet their targets. Hence, if technology is to play an important roll in reducing emissions within the Kyoto time frame (2008-2012) and beyond, immediate and sustained action to accelerate technology deployment will be required. Obstacles in the way of the deployment of technologies that are ready or near-ready for normal use have come to be referred to as market barriers. The simplest yet most significant form of market barrier to a new technology is the out-of-pocket cost to the user relative to the cost of technologies currently in use. Some market barriers also involve market failure, where the market fails to take account of all the costs and benefits involved, such as omitting external environmental costs, and therefore retard the deployment of more environmentally sustainable technologies. Other barriers include poor information dissemination, excessive and costly regulations, slow capital turnover rates, and inadequate financing. Efforts by governments to alleviate market barriers play an important role to complement private-sector activities, and there are many policies and measures each government could take. In addition, international technology collaboration can help promote the best use of available R&D resources and can contribute to more effective deployment of the result of research and development by sharing costs, pooling information and avoiding duplication of efforts.

  9. Stepwise evolution of fuel assembly design toward a sustainable fuel cycle with hard neutron spectrum light water reactors

    International Nuclear Information System (INIS)

    Uchikawa, Sadao; Okubo, Tsutomu; Nakano, Yoshihiro

    2011-01-01

    An advanced LWR with hard neutron spectrum, FLWR, aims at efficient and flexible utilization of nuclear resources by evolving its fuel assembly design keeping the same core configuration. A proposed evolution process of the design toward a sustainable fuel cycle is composed of three stages, the first one based on the LWR fuel cycle infrastructures, the second one for transitioning from the LWR fuel cycle to the FR fuel cycle, and the third one based on the FR fuel cycle infrastructures. For the first stage, a fuel assembly design concept named FLWR/MIX has been developed in which enriched UO 2 fuel rods are arranged in the peripheral region of the assembly, surrounding the MOX fuel rods in the central region. The FLWR/MIX design realizes a breeder type operation under the framework of the LWR-MOX technologies and there experience. A modified FLWR/MIX design with low Pu inventory for the second stage has a potential of high Puf conversion ratio of 1.1 and can contribute to smooth and speedy transition from the LWR fuel cycle to the FR fuel cycle. For the third stage, the FLWR/MIX design is extended into a design with natural UO 2 fuel rods to realize multiple Pu recycling keeping a Puf conversion ratio of around 1.0. (author)

  10. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    International Nuclear Information System (INIS)

    Brown, N.R.; Powers, J.J.; Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G.; Todosow, M.; Worrall, A.; Gehin, J.C.; Kim, T.K.; Taiwo, T.A.

    2015-01-01

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems

  11. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.R., E-mail: nbrown@bnl.gov [Brookhaven National Laboratory, Upton, NY (United States); Powers, J.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G. [Argonne National Laboratory, Argonne, IL (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States); Worrall, A.; Gehin, J.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States)

    2015-08-15

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10{sup 5} eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  12. Advanced fuel technology and performance

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Advisory Group Meeting on Advanced Fuel Technology and Performance was to review the experience of advanced fuel fabrication technology, its performance, peculiarities of the back-end of the nuclear fuel cycle with regard to all types of reactors and to outline the future trends. As a result of the meeting recommendations were made for the future conduct of work on advanced fuel technology and performance. A separate abstract was prepared for each of the 20 papers in this issue

  13. Toward commercialization of FBR cycle (1). Promotion of R and D on technologies maintaining sustainable society

    International Nuclear Information System (INIS)

    Nagaoki, Yoshihiro; Nagura, Fuminori; Sakaguchi, Tomoyoshi; Kawasaki, Hirotsugu; Kikuchi, Shin

    2008-01-01

    The FBR cycle is a key technology maintaining a sustainable society through efficient utilization of limited uranium resources and conformance to global environmental protection. The domestic and overseas R and D of the FBR cycle entered on a new phase aiming at its commercialization and JAEA started the Fast Reactor Cycle Technology Development (FaCT) project. The FaCT project targeted at international standardization of the FBR fuel cycle and promoting the advanced R and D on the innovative technologies to increase cost-efficiency and reliability for the commercialization under international competition and cooperation. The combination of a sodium cooled FBR and advanced fuel cycle system with advanced aqueous reprocessing and simplified pelletizing fuel fabrication was selected a major concept. (T. Tanaka)

  14. Advanced spent fuel processing technologies for the United States GNEP programme

    International Nuclear Information System (INIS)

    Laidler, J.J.

    2007-01-01

    Spent fuel processing technologies for future advanced nuclear fuel cycles are being developed under the scope of the Global Nuclear Energy Partnership (GNEP). This effort seeks to make available for future deployment a fissile material recycling system that does not involve the separation of pure plutonium from spent fuel. In the nuclear system proposed by the United States under the GNEP initiative, light water reactor spent fuel is treated by means of a solvent extraction process that involves a group extraction of transuranic elements. The recovered transuranics are recycled as fuel material for advanced burner reactors, which can lead in the long term to fast reactors with conversion ratios greater than unity, helping to assure the sustainability of nuclear power systems. Both aqueous and pyrochemical methods are being considered for fast reactor spent fuel processing in the current US development programme. (author)

  15. Impact of fuel fabrication and fuel management technologies on uranium management

    International Nuclear Information System (INIS)

    Arnsberger, P.L.; Stucker, D.L.

    1994-01-01

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modern pressurized water reactors. 10 refs., 3 tabs., 10 figs

  16. Ceramic Technologies for Sustainability: Perspectives from Siemens Corporate Technology

    Energy Technology Data Exchange (ETDEWEB)

    Rossner, W, E-mail: wolfgang.rossner@siemens.com [Ceramic Materials and Devices, Siemens AG, Corporate Technology, 81739 Munich (Germany)

    2011-05-15

    Climate change, environmental care, energy efficiency, scarcity of resources, population growth, demographic change, urbanization and globalization are the most pressing questions in the coming century. They will have an effect on all regions and groups of global society. Effective solutions will require immediate, efficient and concerted activities in all areas at the social, economic and environmental level. Since the 1980s it has been understood that developments should examine their sustainability more seriously to ensure that they do not compromise the ability of future generations to meet their own needs. This has also attributes to the sustainability demand of ceramic technologies. In the last decades a wide variety of ceramics developments have been brought to the markets, ranging from human implants to thermal barrier coatings in fossil power plants. There are innovative developments which should enter the market within the next years like solid oxide fuel cells or separation membranes for gas and liquids. Further ahead there will be ceramics with self-adapting, self-healing and multifunctional features to generate novel applications to save energy and to reduce carbon footprints across the entire value creation process of energy, industry, transportation and manufacturing.

  17. Ceramic Technologies for Sustainability: Perspectives from Siemens Corporate Technology

    Science.gov (United States)

    Rossner, W.

    2011-05-01

    Climate change, environmental care, energy efficiency, scarcity of resources, population growth, demographic change, urbanization and globalization are the most pressing questions in the coming century. They will have an effect on all regions and groups of global society. Effective solutions will require immediate, efficient and concerted activities in all areas at the social, economic and environmental level. Since the 1980s it has been understood that developments should examine their sustainability more seriously to ensure that they do not compromise the ability of future generations to meet their own needs. This has also attributes to the sustainability demand of ceramic technologies. In the last decades a wide variety of ceramics developments have been brought to the markets, ranging from human implants to thermal barrier coatings in fossil power plants. There are innovative developments which should enter the market within the next years like solid oxide fuel cells or separation membranes for gas and liquids. Further ahead there will be ceramics with self-adapting, self-healing and multifunctional features to generate novel applications to save energy and to reduce carbon footprints across the entire value creation process of energy, industry, transportation and manufacturing.

  18. Ceramic Technologies for Sustainability: Perspectives from Siemens Corporate Technology

    International Nuclear Information System (INIS)

    Rossner, W

    2011-01-01

    Climate change, environmental care, energy efficiency, scarcity of resources, population growth, demographic change, urbanization and globalization are the most pressing questions in the coming century. They will have an effect on all regions and groups of global society. Effective solutions will require immediate, efficient and concerted activities in all areas at the social, economic and environmental level. Since the 1980s it has been understood that developments should examine their sustainability more seriously to ensure that they do not compromise the ability of future generations to meet their own needs. This has also attributes to the sustainability demand of ceramic technologies. In the last decades a wide variety of ceramics developments have been brought to the markets, ranging from human implants to thermal barrier coatings in fossil power plants. There are innovative developments which should enter the market within the next years like solid oxide fuel cells or separation membranes for gas and liquids. Further ahead there will be ceramics with self-adapting, self-healing and multifunctional features to generate novel applications to save energy and to reduce carbon footprints across the entire value creation process of energy, industry, transportation and manufacturing.

  19. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  20. Evaluation Framework for Alternative Fuel Vehicles: Sustainable Development Perspective

    Directory of Open Access Journals (Sweden)

    Dong-Shang Chang

    2015-08-01

    Full Text Available Road transport accounts for 72.06% of total transport CO2, which is considered a cause of climate change. At present, the use of alternative fuels has become a pressing issue and a significant number of automakers and scholars have devoted themselves to the study and subsequent development of alternative fuel vehicles (AFVs. The evaluation of AFVs should consider not only air pollution reduction and fuel efficiency but also AFV sustainability. In general, the field of sustainable development is subdivided into three areas: economic, environmental, and social. On the basis of the sustainable development perspective, this study presents an evaluation framework for AFVs by using the DEMATEL-based analytical network process. The results reveal that the five most important criteria are price, added value, user acceptance, reduction of hazardous substances, and dematerialization. Price is the most important criterion because it can improve the popularity of AFVs and affect other criteria, including user acceptance. Additional, the energy usage criterion is expected to significantly affect the sustainable development of AFVs. These results should be seriously considered by automakers and governments in developing AFVs.

  1. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  2. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  3. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  4. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative

  5. Development of FR fuel cycle in japan (1) development scope of fuel cycle technology

    International Nuclear Information System (INIS)

    Nakamura, H.; Funasaka, H.; Namekawa, T.

    2008-01-01

    A fast reactor (FR) cycle has a potential to realize a sustainable energy supply system that is harmonized with environment by fully recycling both uranium (U) and transuranium (TRU) elements. In Japan, a Feasibility Study on Commercialized FR Cycle Systems (FS) was launched in July 1999, and through two different study phases, a final report was presented in 2006. As a result of FS, a combined system of sodium-cooled FR with mixed-oxide (MOX) fuel, advanced aqueous reprocessing and simplified pelletizing fuel fabrication was considered to be most promising for commercialization. The advanced aqueous reprocessing system, which is called the New Extraction system for TRU recovery (NEXT), consists of a U crystallization process for the bulk of U recovery, a simplified solvent extraction process for residual U, plutonium (Pu) and neptunium (Np) without Pu partitioning and purification, and a process for recovering americium (Am) and curium (Cm) from the raffinate. The ratio of Pu/U concentration in the mother solution after crystallization is adequate for MOX fuel fabrication, and thus complicated powder mixing processes for adjusting Pu content in MOX fuel can be eliminated in the subsequent simplified fuel fabrication system. In this system, lubricant-mixing process can also be eliminated by adopting the advanced technology in which lubricant is coated on the inner surface of a die before fuel powder supply. Such a simplification could help us overcoming the difficulty to treat MA bearing fuel powders in a hot cell. Ministry of Education, Culture, Sports, Science and Technology (MEXT) reviewed these results of FS in 2006 and identified the most promising FR cycle concept proposed in the FS phase II study as a mainline choice for commercialization. According to such a governmental assessment, R and D activities of FR cycle systems were decided to be concentrated mainly to the innovative technology development for the mainline concept. The stage of R and D project was

  6. Alternative aviation jet fuel sustainability evaluation report - task 3 : sustainability criteria and rating systems for the use in aircraft alternative fuel supply chain

    Science.gov (United States)

    2013-03-31

    This report identifies criteria that can be used to evaluate the sustainability of biofuels introduced into the aviation fuel supply chain. It describes the inputs, criteria and outputs that can be used in a sustainability rating system. It identifie...

  7. Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project

    Science.gov (United States)

    Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane

    2017-06-01

    This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise

  8. Oxygenic photosynthesis: translation to solar fuel technologies

    Directory of Open Access Journals (Sweden)

    Julian David Janna Olmos

    2014-12-01

    Full Text Available Mitigation of man-made climate change, rapid depletion of readily available fossil fuel reserves and facing the growing energy demand that faces mankind in the near future drive the rapid development of economically viable, renewable energy production technologies. It is very likely that greenhouse gas emissions will lead to the significant climate change over the next fifty years. World energy consumption has doubled over the last twenty-five years, and is expected to double again in the next quarter of the 21st century. Our biosphere is at the verge of a severe energy crisis that can no longer be overlooked. Solar radiation represents the most abundant source of clean, renewable energy that is readily available for conversion to solar fuels. Developing clean technologies that utilize practically inexhaustible solar energy that reaches our planet and convert it into the high energy density solar fuels provides an attractive solution to resolving the global energy crisis that mankind faces in the not too distant future. Nature’s oxygenic photosynthesis is the most fundamental process that has sustained life on Earth for more than 3.5 billion years through conversion of solar energy into energy of chemical bonds captured in biomass, food and fossil fuels. It is this process that has led to evolution of various forms of life as we know them today. Recent advances in imitating the natural process of photosynthesis by developing biohybrid and synthetic “artificial leaves” capable of solar energy conversion into clean fuels and other high value products, as well as advances in the mechanistic and structural aspects of the natural solar energy converters, photosystem I and photosystem II, allow to address the main challenges: how to maximize solar-to-fuel conversion efficiency, and most importantly: how to store the energy efficiently and use it without significant losses. Last but not least, the question of how to make the process of solar

  9. Assessment of technologies to meet a low carbon fuel standard.

    Science.gov (United States)

    Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C

    2009-09-15

    California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.

  10. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  11. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    Science.gov (United States)

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  13. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  14. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  15. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  16. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    International Nuclear Information System (INIS)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-01-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted 'traditional' fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET

  17. Towards sustainable urban transportation: Test, demonstration and development of fuel cell and hybrid-electric buses

    International Nuclear Information System (INIS)

    Folkesson, Anders

    2008-05-01

    bus showed the long-term potential of fuel cells, advanced auxiliaries and hybrid-electric powertrains, but technologies applied in that bus are not yet viable in terms of cost or robustness over the service life of a bus. Results from the EU-project CUTE show that hydrogen fuelled fuel cell buses are viable for real-life operation. Successful operation and public acceptance show that focus on robustness and cost in vehicle design were key success factors, despite the resulting poor fuel economy. Hybrid-electric powertrains are feasible in stop-and-go city operation. Fuel consumption can be reduced, comfort improved, noise lowered and the main power source downsized and operated less dynamically. The potential for design improvements due to flexible component packaging is implemented in the Scania hybrid concept bus. This bus and the framework for its hybrid management system are discussed in this thesis. The development of buses for a more sustainable urban transport should be made in small steps to secure technical and economical realism, which both are needed to guarantee commercialisation and volume of production. This is needed for alternative products to have a significant influence. Hybrid buses with internal combustion engines running on renewable fuel is tomorrow's technology, which paves the way for plug-in hybrid, battery electric and fuel cell hybrid vehicles the day after tomorrow

  18. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  19. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    International Nuclear Information System (INIS)

    2009-06-01

    GLOBAL 2009 is the ninth bi-annual scientific world meeting on the Nuclear Fuel Cycle (NFC) that started in 1993 in Seattle. This meeting has established itself as a dedicated international forum for experts, to provide an overall review of the status and new trends of research applications and policies related to the fuel cycle. The international nuclear community is actively developing advanced processes and innovative technologies that enhance economic competitiveness of nuclear energy and ensure its sustainability, through optimized utilization of natural resources, minimization of nuclear wastes, resistance to proliferation and compliance with safety requirements. In this context, and under the profound evolutions concerning energy supply, GLOBAL 2009 is a great opportunity for sharing ideas and visions on the NFC. Special emphasis are placed on the results of the international studies for developing next generation systems. GLOBAL 2009 highlights the technical challenges and successes involved in closing the NFC and recycling long lived nuclear waste. It is also an excellent occasion to review and discuss social and regulatory aspects as well as national plans and international policies and decision affecting the future of nuclear energy. This meeting provides a forum for the exchange of the newest ideas and developments related to the initiatives at of establishing an acceptable, reliable and universal international non proliferation regime. The congress, organized by the French Nuclear Energy Society (SFEN), under the aegis of the IAEA, NEA of the OECD and the UE Commission with the basic sponsorships of ANS, ENS and AESJ, combines plenary sessions, general panel sessions, parallel sessions and technical visits. The program has full length technical papers, which are peer reviewed and published in conference proceedings. A large industrial exhibition takes place to complement the congress. The GLOBAL 2009 congress is organized in coordination with the 2009

  20. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    GLOBAL 2009 is the ninth bi-annual scientific world meeting on the Nuclear Fuel Cycle (NFC) that started in 1993 in Seattle. This meeting has established itself as a dedicated international forum for experts, to provide an overall review of the status and new trends of research applications and policies related to the fuel cycle. The international nuclear community is actively developing advanced processes and innovative technologies that enhance economic competitiveness of nuclear energy and ensure its sustainability, through optimized utilization of natural resources, minimization of nuclear wastes, resistance to proliferation and compliance with safety requirements. In this context, and under the profound evolutions concerning energy supply, GLOBAL 2009 is a great opportunity for sharing ideas and visions on the NFC. Special emphasis are placed on the results of the international studies for developing next generation systems. GLOBAL 2009 highlights the technical challenges and successes involved in closing the NFC and recycling long lived nuclear waste. It is also an excellent occasion to review and discuss social and regulatory aspects as well as national plans and international policies and decision affecting the future of nuclear energy. This meeting provides a forum for the exchange of the newest ideas and developments related to the initiatives at of establishing an acceptable, reliable and universal international non proliferation regime. The congress, organized by the French Nuclear Energy Society (SFEN), under the aegis of the IAEA, NEA of the OECD and the UE Commission with the basic sponsorships of ANS, ENS and AESJ, combines plenary sessions, general panel sessions, parallel sessions and technical visits. The program has full length technical papers, which are peer reviewed and published in conference proceedings. A large industrial exhibition takes place to complement the congress. The GLOBAL 2009 congress is organized in coordination with the 2009

  1. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  2. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  3. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  4. Environmental and Sustainable Technology Evaluations (ESTE): Verification of Fuel Characteristics and Emissions from Biomass-fired Boilers 09/2008

    Science.gov (United States)

    This is an ESTE project summary brief. With increasing concern about climate change and fossil fuel energy supplies, there continues to be an interest in biomass as a renewable and sustainable energy source. EPA’s Office of Air Quality Planning and Standards has expressed an int...

  5. Limitations of Commercializing Fuel Cell Technologies

    Science.gov (United States)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  6. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Banan, N.; Davari, A.

    2009-01-01

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO 2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO 2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  7. Development of Nuclear Fuel Remote Fabrication Technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Kim, S. S. and others

    2005-04-01

    The aim of this study is to develop the essential technology of dry refabrication using spent fuel materials in a laboratory scale on the basis of proliferation resistance policy. The emphasis is placed on the assessment and the development of the essential technology of dry refabrication using spent fuel materials. In this study, the remote fuel fabrication technology to make a dry refabricated fuel with an enhanced quality was established. And the instrumented fuel pellets and mini-elements were manufactured for the irradiation testing in HANARO. The design and development technology of the remote fabrication equipment and the remote operating and maintenance technology of the equipment in hot cell were also achieved. These achievements will be used in and applied to the future back-end fuel cycle and GEN-IV fuel cycle and be a milestone for Korea to be an advanced nuclear country in the world

  8. Sustainability of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Kuznetsov, Vladimir

    2013-01-01

    ⇒ The IAEA’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000. ⇒ INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21st century. ⇒ INPRO is part of the integrated services of the IAEA provided to Member States considering initial development or expansion of nuclear energy programmes. ⇒ INPRO Methodology for nuclear energy system assessment - a comprehensive set of internationally agreed basic principles, requirements and criteria in the important areas of economics, safety, waste management, proliferation resistance, physical protection, environment and infrastructure. ⇒ Meeting the INPRO criteria in all of the areas ensures sustainability of nuclear energy system and its high potential to meet growing energy demand throughout the present century

  9. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  10. Sustainability of University Technology Transfer: Mediating Effect of Inventor’s Technology Service

    Directory of Open Access Journals (Sweden)

    Fang Li

    2018-06-01

    Full Text Available Based on the perspective of knowledge transfer and the technology acceptance model (TAM, this paper constructs a university technology transfer sustainable development model that considers the inventor’s technology service from the perspective of the long-term cooperation of enterprise, and analyzes the mediating effect of the inventor’s technology service on university technology transfer sustainability. By using 270 questionnaires as survey data, it is found that the availability of an inventor’s technology service has a significant positive impact on the attitude tendency and practice tendency of enterprise long-term technological cooperation; enterprise technology absorption capacity and trust between a university and an enterprise also have significant influence on an inventor’s technical service availability. Therefore, the inventor’s technology service acts as a mediator in the relationship between university technology transfer sustainability and influence factors. Universities ought to establish the technology transfer model, which focuses on the inventor’s tacit knowledge transfer service, and promotes the sustainable development of the university.

  11. Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2009-01-01

    Technological, economic and sustainability evaluation of power plants by use of the analytic hierarchy process and nine end node criteria for a reference scenario based on subjective criteria weighting has been presented in a previous paper by authors. However, criteria weight variations may substantially modify overall evaluations and rankings of power plants. The current paper presents a sensitivity analysis with four alternative scenarios (sets of criteria weights) compared with the reference scenario. The results show that priority to 'technology and sustainability' favors renewable energy power plants, while priority to 'economic' criteria favors mainly nuclear power plants and less the four types of fossil fuel power plant

  12. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  13. Remote technology applications in spent fuel management

    International Nuclear Information System (INIS)

    2005-03-01

    Spent fuel management has become a prospective area for application of remote technology in recent years with a steadily growing inventory of spent fuel arising from nuclear power production. A remark that could be made from the review of technical information collected from the IAEA meetings was that remote technology in spent fuel management has matured well through the past decades of industrial experiences. Various remote technologies have been developed and applied in the past for facility operation and maintenance work in spent fuel examination, storage, transportation, reprocessing and radioactive waste treatment, among others, with significant accomplishments in dose reduction to workers, enhancement of reliability, etc. While some developmental activities are continuing for more advanced applications, industrial practices have made use of simple and robust designs for most of the remote systems technology applications to spent fuel management. In the current state of affairs, equipment and services in remote technology are available in the market for applications to most of the projects in spent fuel management. It can be concluded that the issue of critical importance in remote systems engineering is to make an optimal selection of technology and equipment that would best satisfy the as low as reasonably achievable (ALARA) requirements in terms of relevant criteria like dose reduction, reliability, costs, etc. In fact, good selection methodology is the key to efficient implementation of remote systems applications in the modern globalized market. This TECDOC gives a review of the current status of remote technology applications for spent fuel management, based on country reports from some Member States presented at the consultancy meetings, of which updated reports are attached in the annex. The scope of the review covers the series of spent fuel handling operations involved in spent fuel management, from discharge from reactor to reprocessing or

  14. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  15. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  16. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  17. The road to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, John L [Los Alamos National Laboratory; Crabtree, George [ANL

    2009-01-01

    Sustainability is the hottest topic in energy research today, but what does it actually mean? George Crabtree and John Sarrao describe what makes a technology sustainable, and outline the materials-science challenges standing between us and clean, long-lasting energy. Although most people agree that more-sustainable energy technologies are desirable, they often find it harder to agree on exactly how sustainable these technologies need to be, and even precisely what is meant by sustainability. To clarify the debate, we suggest three criteria for sustainability, each of which captures a different feature of the problem. While we do not have the lUxury of achieving full sustainability for all of our next-generation energy technologies, we can use these definitions to select our strategic sustainability targets and track our progress toward achieving them. As will become clear, the most sustainable energy technologies require the most challenging fundamental science breakthroughs. The first criterion for sustainability is 'lasts a long time'. This quality has been a feature of many energy sources we have used historically, including wood in ancient times and oil throughout most of the 20th century. The definition of 'long time' is, of course, relative: the world's demand for energy long ago outpaced the ability of wood to supply it, and the production of oil is likely to peak sometime within the next few decades. Substantial reductions in the rate of oil consumption through higher-efficiency processes can significantly impact on how long non-renewable resources last. In applying the 'long time' criterion, we need to distinguish between energy sources that are effectively limitless and those that are finite but, for the moment, adequate. The second criterion for sustainability is 'does no harm'. Burning fossil fuels releases pollutants such as sulphur and mercury that endanger human health, as well as greenhouse gases like

  18. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  19. Technologies for a sustainable development; Technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The European Event on Technology (EET), a recurrent annual event since 1992, is a major meeting opportunity for researchers and engineers as well as private and public decision-makers, on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview of recently acquired or upcoming technologies developed by sector: energy, transports, new information technologies, new industrial manufacturing technologies (materials, products, services), waste management, global environment monitoring, water management, bio-technologies, and innovation management. This document brings together the different talks given by the participants. Among these, the following ones fall into the energy and environment scope: energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy systems; modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; global change: causes, modeling and economic issues; the GMES

  20. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  1. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  2. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    Science.gov (United States)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  3. Sustainable Solutions for Nuclear used Fuels Interim Storage

    International Nuclear Information System (INIS)

    Arslan, Marc; Favet, Dominique; Issard, Herve; Le Jemtel, Amaury; Drevon, Caroline

    2014-01-01

    AREVA has a unique experience in providing sustainable solutions for used fuel management, fitted with the needs of different customers in the world and with regulation in different countries. These solutions entail both recycling and interim storage technologies. In a first part, we will describe the various types of solutions for Interim Storage of UNF that have been implemented around the world for interim storage at reactor or centralized Pad solution in canisters dry storage, vault type storages for dry storage, dry storage of transportation casks (dual purpose) pools for wet storage, The experience for all these different families of interim storages in which AREVA is involved is extensive and will be discussed with respect to the new challenges: increase of the duration of the interim storage (long term interim storage) increase of burn up of the fuels In a second part of the presentation, special recycling features will be presented. In that case, interim storage of the used fuels is ensured in pools. This provides in the long term good conditions for the behaviour of the fuel and its retrievability. With recycling, the final waste (Universal Canister of vitrified fission products and compacted hulls and end pieces): is stable and licensed in many countries for the final disposal (France, UK, Belgium, NL, Switzerland, Germany, Japan, upcoming: Spain, Australia, Italy). Presents neither safety criticality risks nor proliferation risks (AREVA conditioned HLW and LL-ILW are free of IAEA safeguard constraints thanks to AREVA process high recovery and purification yields). It can therefore be safely stored in interim storage for more than 100 years before final disposal. Some economic considerations will also be discussed. In particular, in the case of long term interim storage of used fuels, there are growing uncertainties regarding the future needs of repackaging and transportation, which can result in future cost overruns. Meanwhile, in the recycling policy

  4. 4th International Conference on Sustainable Automotive Technologies

    CERN Document Server

    Wellnitz, Jörg; Leary, Martin; Koopmans, Lucien

    2012-01-01

    The book on Sustainable Automotive Technologies aims to draw special attention to the research and practice focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. In particular, the book features incremental and radical technical advancements that are able to meet social, economic and environmental targets in both local and global contexts. These include original solutions to the problems of pollution and congestion, vehicle and public safety, sustainable vehicle design and manufacture, new structures and materials, new power-train technologies and vehicle concepts. In addition to vehicle technologies, the book is also concerned with the broader systemic issues such as sustainable supply chain systems, integrated logistics and telematics, and end-of-life vehicle management. It captures selected peer reviewed papers accepted for presentation at the 4th International Conference on Sustainable Automotive Technologies, ICSAT2012, held at the RMIT, Melbourne, Australi...

  5. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  6. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  7. Information technology in fuel manufacturing

    International Nuclear Information System (INIS)

    Seshagiri Rao, G.R.; Arora, U.K.; Mohanty, Deepak; Siva Kumar, G.V.S.M.; Banerjee, P.K.

    2012-01-01

    NFC, Hyderabad is engaged in manufacturing of fuel assemblies required for Indian Nuclear Power Programme. During the manufacturing process, the basic Uranium Fuel and Zirconium alloy cladding tubes travels through several work centers, machines and exposes to various process parameters. For analyzing the fuel performance these parameters are indicators and is a requirement to record such history by both manufacturer and customer. NFC has planned to deploy Information Technology (IT) Systems from MDU/UOC Dissolution to Finished Fuel Assembly dispatch stage by using Radio Frequency IDentification (RFID)/Barcode Technologies. IT Systems are connected to electronic weigh balances to acquire material weight data automatically. The IT Systems are also designed to receive data from small Island Systems like Helium leak testing equipments. As a pilot project the system is initially implemented from empty tube Tray preparation stage to Fuel Assembly Packing and dispatch stage, containing about more than 14 processes. The system was built using open source technology platform and was deployed on a cost effective Hardware environment. The present paper describes the development process of the system, Implementation challenges faced and change management. The paper also discusses about fruits of implementation and productivity improvements. (author)

  8. Sustainable Harvest for Food and Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, Raymond R.; Kostelnik, Kevin, M.; Jacobson, Jacob J.

    2007-04-01

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30 X 30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30 X 30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics’ growing interest in sustainable agriculture and in the mitigation of predicted global climate change. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating “sustainable harvest indicators” in a computer modeling strategy.

  9. Sustainability, energy technologies, and ethics

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.J. [National Renewable Energy Lab., Golden, CO (United States); Carasso, M.

    1999-01-01

    A study of the economic, social-political, and environmental consequences of using renewable energy technologies (RETs, e.g., photovoltaics, wind, solar thermal, biofuels) as compared to those of conventional energy technologies (CETs e.g., oil, coal, gas) would show that RETs are singularly consistent with a whole ethic that is implicit in the concept of sustainability. This paper argues for sustainability as an ethical, as well as a pragmatic, imperative and for RETs as an integral part of this imperative. It brings to the fore some of the specific current economic, political, and environmental assumptions and practices that are inconsistent with both sustainability and with a rapid deployment of RETs. Reflecting an emerging planetary awareness and a pressing need to come to terms with intra- and intergenerational equity, the concept of sustainability explicitly entails the right of future generations to the same opportunity of access to a healthy ecological future and the finite endowment of the Earth`s resources as that of the present generation. (Author)

  10. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    Science.gov (United States)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  11. Alternative Fuels and Sustainable Development

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars Henrik

    1996-01-01

    The main report of the project on Transportation Fuels based on Renewable Energy. The report contains a review of potential technologies for electric, hybrid and hydrogen propulsion in the Danish transport sector, including an assessment of their development status. In addition, the energy...

  12. Hydrogen movement and the next action: fossil fuels industry and sustainability economics

    International Nuclear Information System (INIS)

    Nejat Veziroglu, T.

    1997-01-01

    Since the hydrogen movement started in 1974, there has been progress in research, development, demonstration and commercialization activities, covering all aspects of the hydrogen energy system. In order to solve the interrelated problems of depletion of fossil fuels and the environmental impact of the combustion products of fossil fuels, it is desirable to speed up the conversion to the hydrogen energy system. Most established industries have joined the hydrogen movement. There is one exception: the fossil fuel industry. A call is made to the fossil fuel industry to join the hydrogen movement. It is also proposed to change the present economic system with a sustainability economics in order to account for environmental damage, recyclability and decommissioning, and thus, ensure a sustainable future. (Author)

  13. Opening Address [International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, March 4-7, 2013

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2013-01-01

    Public confidence in nuclear power was greatly shaken by the Fukushima Daiichi accident. It will take time to rebuild that confidence. This will only be possible if everyone involved in nuclear power has a total commitment to safety and if the sector is open and transparent. The public need to be reassured that nuclear energy is efficient and safe, can mitigate the effects of climate change and can play a key role in meeting the growing global demand for energy. Fast reactors and related fuel cycles will be important for the long-term sustainability of nuclear power. This innovative technology has the potential to ensure that energy resources which would run out in a few hundred years, using today’s technology, will actually last several thousand years. Fast reactors also reduce the volume and toxicity of the final waste. China’s Experimental Fast Reactor has been connected to the grid. Work is at an advanced stage on construction of India’s 500 MW(e) Prototype Fast Breeder Reactor and of the large BN-800 reactor in the Russian Federation. Interest in fast reactors with closed fuel cycles is increasing steadily. A number of emerging economies are joining the existing fast reactor technology-holders. Considerable R & D work is being done on advanced designs with enhanced safety characteristics. It is important to gather the operational experience of countries with operating fast reactors and related fuel cycle facilities. This can help to achieve higher levels of safety. Events such as the Joint GIF-IAEA Workshop on the safety of sodium-cooled fast reactors last week are a useful way of doing this. They also help to ensure that relevant lessons from the Fukushima Daiichi accident are learned. The IAEA remains the unique collaboration forum for ensuring continued progress in fast reactor technology. We provide an umbrella for knowledge preservation, information exchange and collaborative R&D in which resources and expertise are pooled

  14. Clear road for sustainable fuels? Study on the willingness of consumers to switch to sustainable fuels; Weg vrij voor duurzame brandstoffen? Onderzoek naar bereidheid consument om over te schakelen op duurzame brandstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Van Amelsfoort, A.; Zwier, R.

    2007-07-01

    In the Netherlands, there are currently hardly any filling stations where various types of sustainable fuels are available next to the regular fuels. Green Planet wants to start a filling station in the province of Drenthe. However, first Green Planet want to examine if consumers are prepared to switch to sustainable fuels. In addition, they want to know how these fuels should be properly introduced. The authors have sent questionnaires to more than 300 car drivers in the provinces of Groningen en Drenthe. Based on the results of the questionnaire a marketing strategy was developed recommending to start offering sustainable fuels, and especially B10/E10 and CNG. The consumer must be informed about the composition of sustainable fuels and possible consequences that driving on sustainable fuels may have for cars and the environment. [mk]. [Dutch] In Nederland zijn op dit moment praktisch geen tankstations waar, naast reguliere brandstoffen, verschillende soorten duurzame brandstoffen worden aangeboden. Green Planet wil hiervoor een tankstation beginnen in de provincie Drenthe. Green Planet wil echter eerst laten onderzoeken of consumenten bereid zijn om op duurzame brandstoffen te gaan rijden. Daarnaast wil zij graag weten op welke wijze deze brandstoffen moeten worden geintroduceerd. De auteurs hebben een enquete uitgezet onder ruim 300 autorijders in Groningen en Drenthe. Op basis van de enqueteresultaten is een marketingstrategie opgesteld waarin wordt aanbevolen om duurzame brandstoffen te gaan aanbieden, met nadruk op B10/E10 en CNG. Hierbij moet de consument vooral ingelicht worden over de samenstelling van duurzame brandstoffen en over eventuele consequenties van het rijden op duurzame brandstoffen voor auto en milieu.

  15. Practice and prospect of advanced fuel management and fuel technology application in PWR in China

    International Nuclear Information System (INIS)

    Xiao Min; Zhang Hong; Ma Cang; Bai Chengfei; Zhou Zhou; Wang Lei; Xiao Xiaojun

    2015-01-01

    Since Daya Bay nuclear power plant implemented 18-month refueling strategy in 2001, China has completed a series of innovative fuel management and fuel technology projects, including the Ling Ao Advanced Fuel Management (AFM) project (high-burnup quarter core refueling) and the Ningde 18-month refueling project with gadolinium-bearing fuel in initial core. First, this paper gives brief introduction to China's advanced fuel management and fuel technology experience. Second, it introduces practices of the advanced fuel management in China in detail, which mainly focuses on the implementation and progress of the Ningde 18-month refueling project with gadolinium-bearing fuel in initial core. Finally, the paper introduces the practices of advanced fuel technology in China and gives the outlook of the future advanced fuel management and fuel technology in this field. (author)

  16. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  17. Challenges and opportunities of microbial fuel cells (MFCs technology development in Indonesia

    Directory of Open Access Journals (Sweden)

    Surya Ramadan Bimastyaji

    2017-01-01

    Full Text Available Indonesian government has committed to realize the goals of sustainable development in the field of energy as stipulated in Government Regulation Number 79/2014 on national energy policy. A feasibility study of the utilization of alternative energy is important for developing countries like Indonesia. It is expected to reduce dependence on fossil fuel use and meet the energy needs on rural areas in Indonesia. Microbial fuel cells (MFCs is a potential source of electrical energy from waste that is rich in organic matter. Trends in research and development of Microbial Fuel Cells (MFCs technology are increasing every year due to great opportunity to address a wide range of issues related to renewable energy needs, restoration of contaminated environment, water treatment electricity generators in remote areas and many more. MFCs can be used to treat domestic waste, biomass, algae, landfill leachate, agricultural runoff, and industrial waste. MFCs technology is a technology solution for cheap, fast, simple. MFCs use of technical challenges including low electricity production, current instability, and high internal resistance. Many challenges must be address, including a more detailed analysis in energy production, consumption, and application, understanding the relationship between the amount of electricity and contaminant removal, promoting the elimination of nutrients and optimizing system configuration and operations.

  18. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  19. Dry refabrication technology development of spent nuclear fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, J. W.; Song, K. C.

    2012-04-01

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed

  20. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.

  1. Clean fuels for resource-poor settings: A systematic review of barriers and enablers to adoption and sustained use.

    Science.gov (United States)

    Puzzolo, Elisa; Pope, Daniel; Stanistreet, Debbi; Rehfuess, Eva A; Bruce, Nigel G

    2016-04-01

    Access to, and sustained adoption of, clean household fuels at scale remains an aspirational goal to achieve sufficient reductions in household air pollution (HAP) in order to impact on the substantial global health burden caused by reliance on solid fuels. To systematically appraise the current evidence base to identify: (i) which factors enable or limit adoption and sustained use of clean fuels (namely liquefied petroleum gas (LPG), biogas, solar cooking and alcohol fuels) in low- and middle-income countries; (ii) lessons learnt concerning equitable scaling-up of programmes of cleaner cooking fuels in relation to poverty, urban-rural settings and gender. A mixed-methods systematic review was conducted using established review methodology and extensive searches of published and grey literature sources. Data extraction and quality appraisal of quantitative, qualitative and case studies meeting inclusion criteria were conducted using standardised methods with reliability checking. Forty-four studies from Africa, Asia and Latin America met the inclusion criteria (17 on biogas, 12 on LPG, 9 on solar, 6 on alcohol fuels). A broad range of inter-related enabling and limiting factors were identified for all four types of intervention, operating across seven pre-specified domains (i.e. fuel and technology characteristics, household and setting characteristics, knowledge and perceptions, financial, tax and subsidy aspects, market development, regulation, legislation and standards, and programme and policy mechanisms) and multiple levels (i.e. household, community, national). All domains matter and the majority of factors are common to all clean fuels interventions reviewed although some are fuel and technology-specific. All factors should therefore be taken into account and carefully assessed during planning and implementation of any small- and large-scale initiative aiming at promoting clean fuels for household cooking. Despite limitations in quantity and quality of the

  2. Demonstration and evaluation of dual-fuel technology; Demonstration och utvaerdering av dual-fuel-tekniken

    Energy Technology Data Exchange (ETDEWEB)

    Staalhammar, Per; Erlandsson, Lennart; Willner, Kristina (AVL MTC Motortestcenter AB (Sweden)); Johannesson, Staffan (Ecoplan AB (Sweden))

    2011-06-15

    There is an increased interest for Dual Fuel (methane-Diesel) applications in Sweden since this technology is seen as one of the more interesting options for a fast and cost effective introduction of biomethane as fuel for HD engines. The Dual Fuel technology has been used for many years, mainly for stationary purpose (generators, pumps and ships) while the Spark Ignited (SI) 'Otto' technology has been used for trucks and busses. One obstacle for introducing Dual Fuel technology for busses and trucks is the EU legislation that don't allow for HD on road certification of Dual Fuel applications. Challenges with the Dual Fuel technology is to develop cost effective applications that is capable of reaching low emissions (especially CH{sub 4} and NO{sub x}) in combination with high Diesel replacement in the test cycles used for on road applications. AVL MTC Motortestcenter AB (hereinafter called AVL) has on commission by SGC (Swedish Gas technical Centre) carried out this project with the objectives to analyze the Dual Fuel (Diesel-methane) technology with focus on emissions, fuel consumption and technical challenges. One important part of this project was to carry out emission tests on selected Dual Fuel applications in Sweden and to compile experiences from existing Dual Fuel technology. This report also summarizes other commonly used technologies for methane engines and compares the Dual Fuel with conventional Diesel and Otto technologies. The major challenges with Dual Fuel applications for on road vehicles will be to develop robust and cost effective solutions that meet the emission legislations (with aged catalysts) and to increase the Diesel replacement to achieve reasonable reduction of green house gases (GHG). This is especially important when biomethane is available as fuel but not Bio-Diesel. It will probably be possible to reach EURO V emission limits with advanced Dual Fuel systems but none of the tested systems reached EURO V emission levels

  3. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  4. ECOLOGY SAFETY TECHNOLOGIES OF UNCONVENTIONAL OIL RESERVES RECOVERY FOR SUSTAINABLE OIL AND GAS INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viacheslav Zyrin

    2016-09-01

    Full Text Available The problem of effective technology for heavy oil recovery nowadays has a great importance, because of worsening geological conditions of the developed deposits, decreasing recovery factor, increasing the part of heavy oil. For the future sustainable development of oil producing industry the involved technologies must require energy effectiveness and ecological safety. The paper proves the enhanced oil recovery methods necessity for heavy oil deposits, highlighted thermal technologies as the most effective. But traditional thermal treatment technologies is a source of air pollutant emission, such as CO, NO etc. The calculation of emissions for traditional steam generator is provided. Besides, the paper shows the effectiveness of electrical enhanced oil recovery methods. The advantages of associated gas as a fuel for cogeneration plants is shown. The main approaches to implementation of carbon dioxide sequestration technologies in the oil and gas industry of Russia are defined. Conceptual view of СО2-EOR technologies potential within the context of sustainable development of oil and gas industry are presented. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are revealed.

  5. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  6. Alkaline fuel cell technology in the lead

    International Nuclear Information System (INIS)

    Nor, J.K.

    2004-01-01

    The Alkaline Fuel Cell (AFC) was the first fuel cell successfully put into practice, a century after William Grove patented his 'hydrogen battery' in 1839. The space program provided the necessary momentum, and alkaline fuel cells became the power source for both the U.S. and Russian manned space flight. Astris Energi's mission has been to bring this technology down to earth as inexpensive, rugged fuel cells for everyday applications. The early cells, LABCELL 50 and LABCELL 200 were aimed at deployment in research labs, colleges and universities. They served well in technology demonstration projects such as the 1998 Mini Jeep, 2001 Golf Car and a series of portable and stationary fuel cell generators. The present third generation POWERSTACK MC250 poised for commercialization is being offered to AFC system integrators as a building block of fuel cell systems in numerous portable, stationary and transportation applications. It is also used in Astris' own E7 and E8 alkaline fuel cell generators. Astris alkaline technology leads the way toward economical, plentiful fuel cells. The paper highlights the progress achieved at Astris, improvements of performance, durability and simplicity of use, as well as the current and future thrust in technology development and commercialization. (author)

  7. Advanced Technology and Alternative Fuel Vehicles

    International Nuclear Information System (INIS)

    Tuttle, J.

    2001-01-01

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains

  8. Technology learning for fuel cells. An assessment of past and potential cost reductions

    International Nuclear Information System (INIS)

    Schoots, K.; Van der Zwaan, B.C.C.; Kramer, G.J.

    2010-01-01

    Fuel cells have gained considerable interest as a means to efficiently convert the energy stored in gases like hydrogen and methane into electricity. Further developing fuel cells in order to reach cost, safety and reliability levels at which their widespread use becomes feasible is an essential prerequisite for the potential establishment of a 'hydrogen economy'. A major factor currently obviating the extensive use of fuel cells is their relatively high costs. At present we estimate these at about 1100 EUR(2005)W for an 80 kW fuel cell system but notice that specific costs vary markedly with fuel cell system power capacity. We analyze past fuel cell cost reductions for both individual manufacturers and the global market. We determine learning curves, with fairly high uncertainty ranges, for three different types of fuel cell technology - AFC, PAFC and PEMFC - each manufactured by a different producer. For PEMFC technology we also calculate a global learning curve, characterised by a learning rate of 21% with an error margin of 4%. Given their respective uncertainties, this global learning rate value is in agreement with those we find for different manufacturers. In contrast to some other new energy technologies, R and D still plays a major role in today's fuel cell improvement process and hence probably explains a substantial part of our observed cost reductions. The remaining share of these cost reductions derives from learning-by-doing proper. Since learning-by-doing usually involves a learning rate of typically 20%, the residual value for pure learning we find for fuel cells is relatively low. In an ideal scenario for fuel cell technology we estimate a bottom-line for specific (80 kW system) manufacturing costs of 95 EUR(2005)W. Although learning curves observed in the past constitute no guarantee for sustained cost reductions in the future, when we assume global total learning at the pace calculated here as the only cost reduction mechanism, this ultimate cost

  9. Sustainable energy supply - a key to global growth

    International Nuclear Information System (INIS)

    Wright, J.K.

    2002-01-01

    From this overall concept of what constitutes sustainability, a range of considerations on equity of energy supply across regions, time scales over which fuel and energy source mixes and technology changes and the like, can be developed. Within the spatial dimension, considerations of sustainability that operate at the global scale need to be translated to the operations of large and small companies, national and local governments down to individual households. It is a complex mix in an increasingly complex world. But one thing is certain, the world's energy demand is going to continue to increase. This demand will be largely satisfied by fossil fuels and this use is not sustainable using current technology in the long term. Massive changes are required to turn the world around onto a more sustainable pathway that will probably take many decades even to make a significant start. The aim of this paper is to briefly explore some of the possible technological options that will guide us on the road to a more sustainable energy future. A genuinely sustainable energy system that also promotes sustainable growth with an improving standard of living for all is obviously a major challenge. At the same time the global demand for energy will continue to increase. On the global scale, the prospect of climate change imposes a major long-term constraint on the use of GHG emitting fuels and generating technologies. The long-term development of a sustainable energy system will require multiple interventions and a pluralistic approach to energy management. Ingredients within the mix are likely to require: 1. innovation in the way we currently generate and supply power 2. continued integration and greater penetration of renewables 3. greater use of embedded and distributed energy generation 4. aggressive end-use efficiency 5. development of technologies to enable continued use of fossil fuels until the transition to sustainability is completed. A combination of market and regulatory

  10. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  11. A Network Analysis Model for Selecting Sustainable Technology

    Directory of Open Access Journals (Sweden)

    Sangsung Park

    2015-09-01

    Full Text Available Most companies develop technologies to improve their competitiveness in the marketplace. Typically, they then patent these technologies around the world in order to protect their intellectual property. Other companies may use patented technologies to develop new products, but must pay royalties to the patent holders or owners. Should they fail to do so, this can result in legal disputes in the form of patent infringement actions between companies. To avoid such situations, companies attempt to research and develop necessary technologies before their competitors do so. An important part of this process is analyzing existing patent documents in order to identify emerging technologies. In such analyses, extracting sustainable technology from patent data is important, because sustainable technology drives technological competition among companies and, thus, the development of new technologies. In addition, selecting sustainable technologies makes it possible to plan their R&D (research and development efficiently. In this study, we propose a network model that can be used to select the sustainable technology from patent documents, based on the centrality and degree of a social network analysis. To verify the performance of the proposed model, we carry out a case study using actual patent data from patent databases.

  12. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  13. Steady equilibrium of a cylindrically symmetric plasma sustained by fueling

    International Nuclear Information System (INIS)

    Tomita, Yukihiro; Momota, Hiromu

    1993-01-01

    By introducing a novel and natural method to obtain a steady equilibrium, it is shown that a pressure gradient produced by the particle injection or resultant diamagnetic current can sustain only an equilibrium of a diffused linear pinch. For an extremely elongated FRC where magnetic field vanishes at a certain point, a seed current is needed to sustain configuration in a steady state equilibrium. A directed flow of fusion produced protons forms a seed current and consequently it sustains a steady FRC equilibrium by fueling only once D- 3 He burning takes place. Effects of anomalous transports on the sustainment are discussed. (author)

  14. Back end of an enduring fuel cycle

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1998-03-01

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world's riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future

  15. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    International Nuclear Information System (INIS)

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  16. Fuel cells: new technology of natural gas for energetical building; Pilas de combustible: nueva tecnologia de gas natural para edificios energeticamente autoabastecidos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A. M.

    2000-07-01

    Fuel Cells have emerged in the last decade as one of the most promising new and sustainable natural gas technologies for meeting the energy needs of all the economy sectors into the 21st century. Fuel Cells are an environmentally clean, quiet, and highly efficient method for generating electricity and heat from natural gas. A fuel cell is an electrochemical device that converts the chemical energy of a fuel directly to usable energy (electricity and heat) without combustion. For this reason, the application and use of the fuel cell technology may be the most important technological advancement of the next century. At the beginning of the 2000 year Sociedad de Gas de Euskadi, s. a. started a demonstration project in favour of the high-temperature planar solid oxide fuel cell (SOFC) for domestic micro-CHP utilization. This type is certainly most exacting from the materials standpoint, and it offers the advantage of uncomplicated fuel pretreatment. (Author)

  17. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  18. Field to fuel: developing sustainable biorefineries.

    Science.gov (United States)

    Jenkins, Robin; Alles, Carina

    2011-06-01

    Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.

  19. Exploring nuclear energy scenarios - implications of technology and fuel cycle choices

    International Nuclear Information System (INIS)

    Rayment, Fiona; Mathers, Dan; Gregg, Robert

    2014-01-01

    Nuclear Energy is recognised globally as a mature, reliable low carbon technology with a secure and abundant fuel source. Within the UK, Nuclear Energy is an essential contributor to the energy mix and as such a decision has been made to refresh the current nuclear energy plants to at least replacement of the existing nuclear fleet. This will mean the building of new nuclear power plant to ensure energy production of 16 GWe per annum. However it is also recognised that this may not be enough and as such expansion scenarios ranging from replacement of the existing fleet to 75 GWe nuclear energy capacity are being considered (see appendix). Within these energy scenarios, a variety of options are being evaluated including electricity generation only, electricity generation plus heat, open versus closed fuel cycles, Generation III versus Generation IV systems and combinations of the above. What is clear is that the deciding factor on the type and mix of any energy programme will not be on technology choice alone. Instead a complex mix of Government policy, relative cost of nuclear power, market decisions and public opinion will influence the rate and direction of growth of any future energy programme. The UK National Nuclear Laboratory has supported this work through the use and development of a variety of assessment and modelling techniques. When assessing nuclear energy scenarios, the technology chosen will impact on a number of parameters within each scenario which includes but is not limited to: - Economics, - Nuclear energy demand, - Fuel Supply, - Spent fuel storage / recycle, - Geological repository volumetric and radiological capacity, - Sustainability - effective resource utilisation, - Technology viability and readiness level. A number of assessment and modelling techniques have been developed and are described further. In particular, they examine fuel cycle options for a number of nuclear energy scenarios, whilst exploring key implications for a particular

  20. Definition of Technology Readiness Levels for Transmutation Fuel Development

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    To quantitatively assess the maturity of a given technology, the Technology Readiness Level (TRL) process is used. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Transmutation fuel development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the transmutation fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Transuranic Fuel Development Campaign

  1. Technology acceptance perception for promotion of sustainable consumption.

    Science.gov (United States)

    Biswas, Aindrila; Roy, Mousumi

    2018-03-01

    Economic growth in the past decades has resulted in change in consumption pattern and emergence of tech-savvy generation with unprecedented increase in the usage of social network technology. In this paper, the technology acceptance value gap adapted from the technology acceptance model has been applied as a tool supporting social network technology usage and subsequent promotion of sustainable consumption. The data generated through the use of structured questionnaires have been analyzed using structural equation modeling. The validity of the model and path estimates signifies the robustness of Technology Acceptance value gap in adjudicating the efficiency of social network technology usage in augmentation of sustainable consumption and awareness. The results indicate that subjective norm gap, ease-of-operation gap, and quality of green information gap have the most adversarial impact on social network technology usage. Eventually social networking technology usage has been identified as a significant antecedent of sustainable consumption.

  2. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P [Finnish Forest Research Institute, Vantaa (Finland)

    1998-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  3. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P. [Finnish Forest Research Institute, Vantaa (Finland)

    1997-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  4. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  5. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  6. Siemens technology transfer and cooperation in the nuclear fuel area

    International Nuclear Information System (INIS)

    Holley, H.-P.; Fuchs, J. H.; Rothenbuecher, R. A.

    1997-01-01

    Siemens is a full-range supplier in the area of nuclear power generation with broad experience and activities in the field of nuclear fuel. Siemens has developed advanced fuel technology for all types fuel assemblies used throughout the world and has significant experience worldwide in technology transfer in the field of nuclear fuel. Technology transfer and cooperation has ranged between the provision of mechanical design advice for a specific fuel design and the erection of complete fabrication plants for commercial operation in 3 countries. In the following the wide range of Siemens' technology transfer activities for both fuel design and fuel fabrication technologies are shown

  7. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  8. Establishing and sustaining a technical program to achieve zero fuel failures

    International Nuclear Information System (INIS)

    Deshon, J.; Whiteside, K.; Burnham, R.

    2015-01-01

    In 2006, Chief Nuclear Officers (CNOs) of electric utilities operating 103 commercial reactors in the United States (U.S.) formally endorsed an initiative to achieve failure-free fuel performance by the end of 2010. This became known as the Zero-by- Ten Fuel Failure Initiative. The endorsement manifested during a meeting at the Institute of Nuclear Power Operations (INPO) while nuclear fuel performance trends were being reviewed. Declining fuel performance generated backing for the Initiative. This paper provides a brief review of some of the drivers that caused those trends, the Initiative elements designed to address them, and a review of the technical program that helped achieve, and thus far sustain, improved fuel performance. (author) Key Words: Nuclear Fuel, Fuel, Fuel Failures, Fuel Failure Initiative, Zero by Ten Initiative

  9. An Overview of Stationary Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  10. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  11. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  12. Sustainable technology and the limits of ecological modernization

    NARCIS (Netherlands)

    Brey, Philip A.E.

    1997-01-01

    This essay addresses the question of how sustainable development is possible, giving special reference to the role of technology. It argues that the dominant strategy for sustainable development that is now operative, ecological modernization, is insufficient, and that the reform of technology and

  13. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2009-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is strengthening the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies (Articles III-A.1 and III-A.3). The major challenges facing the long term development of nuclear energy as a part of the world's energy mix are improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptability. The concern linked to the long life of many of the radioisotopes generated from fission has led to increased R and D efforts to develop a technology aimed at reducing the amount of long lived radioactive waste through transmutation in fission reactors or accelerator driven hybrids. In recent years, in various countries and at an international level, more and more studies have been carried out on advanced and innovative waste management strategies (i.e. actinide separation and elimination). Within the framework of the Project on Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long lived radioactive waste, accelerator driven systems, thorium fuel options, innovative nuclear reactors and fuel cycles, non-conventional nuclear energy systems, and fusion/fission hybrids. These activities are implemented under the guidance and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR). This publication compiles the analyses and findings of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste (2002

  14. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  15. Proceedings -- US Russian workshop on fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    Baker, B.; Sylwester, A. [comps.

    1996-04-01

    On September 26--28, 1995, Sandia National Laboratories sponsored the first Joint US/Russian Workshop on Fuel Cell Technology at the Marriott Hotel in Albuquerque, New Mexico. This workshop brought together the US and Russian fuel cell communities as represented by users, producers, R and D establishments and government agencies. Customer needs and potential markets in both countries were discussed to establish a customer focus for the workshop. Parallel technical sessions defined research needs and opportunities for collaboration to advance fuel cell technology. A desired outcome of the workshop was the formation of a Russian/American Fuel Cell Consortium to advance fuel cell technology for application in emerging markets in both countries. This consortium is envisioned to involve industry and national labs in both countries. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  17. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  18. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  19. The sustainability indicators of power production systems

    Energy Technology Data Exchange (ETDEWEB)

    Onat, Nevzat [Vocational School of Technical Studies, Marmara University, Istanbul 34722 (Turkey); Bayar, Haydar [Technical Education Faculty, Marmara University, Istanbul 34722 (Turkey)

    2010-12-15

    One of the most important elements of economical and social development is to provide uninterrupted electric energy to consumers. The increasing world population and technological developments rapidly increase the demand on electric energy. In order to meet the increasing demand for sustainable development, it is necessary to use the consumable resources of the world in the most productive manner and minimum level and to keep its negative effects on human health and environment in the lowest level as much as possible. In this study, alignment of hydrogen fuel cells, hydroelectric, wind, solar and geothermal sourced electric energy systems, in addition to fossil fueled coal, natural gas and nuclear power plants, in respect to sustainability parameters such as CO{sub 2} emission, land use, energy output, fresh water consumption and environmental and social effects is researched. Consequently, it has been determined that the wind and nuclear energy power plants have the highest sustainability indicators. The fuel cells that use hydrogen obtained by using coal and natural gas are determined as the most disadvantageous transformation technologies in respect to sustainability. This study contains an alignment related to today's technologies. Using of renewable energy resources especially in production of hydrogen, output increases to be ensured with nanotechnology applications in photovoltaic systems may change this alignment. (author)

  20. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  1. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    International Nuclear Information System (INIS)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song

    2008-01-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  2. Dry Refabrication Technology Development of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Park, G. I.; Park, C. J.

    2010-04-01

    Key technical data on advanced nuclear fuel cycle technology development for the spent fuel recycling have been produced in this study. In the frame work of DUPIC, dry process oxide products fabrication, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remote modulated welding equipment has been designed and fabricated. In the area of advanced pre-treatment process development, a rotary-type oxidizer and spherical particle fabrication process were developed by using SIMFUEL and off-gas treatment technology and zircalloy tube treatment technology were studied. In the area of the property characteristics of dry process products, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data

  3. Canadian fusion fuels technology project

    International Nuclear Information System (INIS)

    1986-01-01

    The Canadian Fusion Fuels Technology Project was launched in 1982 to coordinate Canada's provision of fusion fuels technology to international fusion power development programs. The project has a mandate to extend and adapt existing Canadian tritium technologies for use in international fusion power development programs. 1985-86 represents the fourth year of the first five-year term of the Canadian Fusion Fuels Technology Project (CFFTP). This reporting period coincides with an increasing trend in global fusion R and D to direct more effort towards the management of tritium. This has resulted in an increased linking of CFFTP activities and objectives with those of facilities abroad. In this way there has been a continuing achievement resulting from CFFTP efforts to have cooperative R and D and service activities with organizations abroad. All of this is aided by the cooperative international atmosphere within the fusion community. This report summarizes our past year and provides some highlights of the upcoming year 1986/87, which is the final year of the first five-year phase of the program. AECL (representing the Federal Government), the Ministry of Energy (representing Ontario) and Ontario Hydro, have given formal indication of their intent to continue with a second five-year program. Plans for the second phase will continue to emphasize tritium technology and remote handling

  4. History and current status of nuclear fuel reprocessing technology

    International Nuclear Information System (INIS)

    Funasaka, Hideyuki; Nagai, Toshihisa; Washiya, Tadahiro

    2008-01-01

    History and present state of fast breeder reactor was reviewed in series. As a history and current status of nuclear fuel reprocessing technology, this ninth lecture presented the progress of the FBR fuel reprocessing technology and advanced reprocessing processes. FBR fuel reprocessing technology had been developed to construct the reprocessing equipment test facilities (RETF) based on PUREX process technologies. With economics, reduction of environmental burdens and proliferation resistance taken into consideration, advanced aqueous method for nuclear fuel cycle activities has been promoted as the government's basic policy. Innovative technologies on mechanical disassembly, continuous rotary dissolver, crystallizer, solvent extraction and actinides recovery have been mainly studied. (T. Tanaka)

  5. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  6. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  7. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  8. Human Resources Capacity Building as a Strategy in Strengthening Nuclear Knowledge Sustainability in the Experimental Fuel Element Installation of BATAN-Indonesia

    International Nuclear Information System (INIS)

    Ratih Langenati; Bambang, Herutomo; Arief Sasongko Adhi

    2014-01-01

    Strategy in Strengthening Nuclear Knowledge Sustainability: • In order to maintain human resources capacity related to nuclear fuel production technology, a nuclear knowledge preservation program is implemented in the EFEI. • The program includes coaching/training, mentoring and documenting important knowledge. • The program activities are monitored and evaluated quarterly for its improvement in the following year

  9. Advanced fuel technology and performance: Current status and trends

    International Nuclear Information System (INIS)

    1990-11-01

    During the last years the Nuclear Fuel Cycle and Waste Management Division of the IAEA has been giving great attention to the collection, analysis and exchange of information in the field of reactor fuel technology. Most of these activities are being conducted in the framework of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT). The purpose of this Advisory Group Meeting on Advanced Fuel Technology and Performance was to update and to continue the previous work, and to review the experience of advanced fuel technology, its performance with regard to all types of reactors and to outline the future trends on the basis of national experience and discussions during the meeting. As a result of the meeting a Summary Report was prepared which reflected the status of the advanced nuclear fuel technology up to 1990. The 10 papers presented by participants of this meeting are also published here. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  10. Making technological innovation work for sustainable development

    Science.gov (United States)

    Anadon, Laura Diaz; Harley, Alicia G.; Matus, Kira; Moon, Suerie; Murthy, Sharmila L.

    2016-01-01

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset. PMID:27519800

  11. Making technological innovation work for sustainable development.

    Science.gov (United States)

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C

    2016-08-30

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset.

  12. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  13. Backcasting sustainable freight transport systems for Europe in 2050

    International Nuclear Information System (INIS)

    Mattila, Tuomas; Antikainen, Riina

    2011-01-01

    European freight transport emissions and fuel consumption are projected to increase. This study focuses on long distance freight transport (LDFT) and explores possible sustainable futures through quantitative modeling. The evaluation was part of European foresight process between researchers, policy makers and freight companies (FREIGHTVISION). Greenhouse gas (GHG) emissions and energy demand of road, rail and inland waterways were estimated for an EU-27 in 2005. Development was extrapolated to 2050 based on technology and freight performance forecasts. Stakeholders found the forecasted GHG emissions and fossil fuel share unsustainable, so alternative futures were developed with backcasting. The developed emission model was run with random parameter combinations to screen a set of sustainable futures, with an 80% reduction of GHG emissions and fossil fuel share. Freight transport performance was not controlled in the backcasts, but several sustainable futures were found if significant changes in transport efficiency and energy mix are implemented. In spite of agreeing on the importance of reducing emissions, stakeholders had difficulties in choosing a preferred technological future. Simple models were found to be an effective tool for communicating the influence of various measures. Further research is recommended to screen preferable technological roadmaps from the broad range of available futures. - Research highlights: → Sustainable transport systems were explored with modeling and stakeholder workshops. → Backcasting identified technological options for reducing greenhouse gas emissions by 80%. → Improving road vehicle efficiency, engine efficiency and fuel mix showed the greatest potential.

  14. Optimization of the fuel cycle

    International Nuclear Information System (INIS)

    Kidd, S.W.; Balu, K.; Boczar, P.G.; Krebs, W.D.

    1999-01-01

    The nuclear fuel cycle can be optimized subject to a wide range of criteria. Prime amongst these are economics, sustainability of resources, environmental aspects, and proliferation-resistance of the fuel cycle. Other specific national objectives will also be important. These criteria, and their relative importance, will vary from country to country, and with time. There is no single fuel cycle strategy that is optimal for all countries. Within the short term, the industry is attached to dominant thermal reactor technologies, which themselves have two main variants, a cycle closed by reprocessing of spent fuel and subsequent recycling and a once through one where spent fuel is stored in advance of geological disposal. However, even with current technologies, much can be done to optimize the fuel cycles to meet the relevant criteria. In the long term, resource sustainability can be assured for centuries through the use of fast breeder reactors, supporting high-conversion thermal reactors, possibly also utilizing the thorium cycle. These must, however, meet the other key criteria by being both economic and safe. (author)

  15. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  16. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  17. Technology assessment HTR. Part 8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Turkenburg, W.C.

    1996-06-01

    The small social acceptance of nuclear power for power generation suggests that in the present situation nuclear technology does not meet certain sustainable criteria. First, the concept of sustainable development is explained and which dimensions can be distinguished. Next, the sustainable development with regard to the development of the energy supply is outlined and the energy policy to obtain this situation is discussed. Subsequently, the impact of the sustainable development and the policy used to realize this on the nuclear technology are dealt with. As a result, criteria are formulated that can be used to verify how nuclear technology will meet this criteria and which demands should be used to fit this technology so it can be used in a sustainable development of the society. 55 refs

  18. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  19. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  20. Fuel Cycle Technologies 2014 Achievement Report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bonnie C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  1. U.S. report on fuel performance and technology

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T [Department of Energy, Washington, DC (United States). Office of Engineering and Technology Development

    1997-12-01

    The report reviews the following aspects of fuel performance and technology: increased demand on fuel performance;improved fuel failure rate; operating fuel cycles; capacity factor for US nuclear electric generating plants; potential reduction of SNF due to improved fuel burnup.

  2. Considerations for a sustainable nuclear fission energy in Europe

    International Nuclear Information System (INIS)

    Cognet, G.; Ledermann, P.; Cacuci, D.

    2005-01-01

    Presented is the global energy perspectives and and sustainable development fission vision scenario. Described are the innovative concepts with technological breakthroughs concerning the fuel cycle and evolution of the spent fuel radiotoxic contents

  3. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  4. Coal technology in a sustainable society

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Coal is a major world energy resource. For many countries it is the primary fuel in electricity generation. As world energy demand increases so also will the demand for coal. Steel and aluminium-essential elements in the fabric of modern society -also rely heavily on coal. This article points out that the Australian coal industry is responding to the challenges facing coal by investigating a sustainable development strategy and examining the full life cycle outcomes of coal as fuel and reductant. The challenge is to deliver much more efficient ways of extracting energy from coal. The most effective strategies are seen to be: ash displacement credits, synergies with renewables and integration with other industries

  5. Technology management for environmentally sound and sustainable development

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    1992-01-01

    With the evolutionary change in the production activities of human societies, the concept of development has also been changing. In the recent years the emphasis has been on the environmentally sound and sustainable development. The environmentally sound and sustainable development can be obtained through judicious use of technology. Technology as a resource transformer has emerged as the most important factor which can constitute to economic growth. But technology is not an independent and autonomous force, it is only an instrument which needs to be used carefully, properly and appropriately which necessitates technology management. (author)

  6. Decentralized peri-urban wastewater treatment technologies assessment integrating sustainability indicators.

    Science.gov (United States)

    Mena-Ulecia, Karel; Hernández, Heykel Hernández

    2015-01-01

    Selection of treatment technologies without considering the environmental, economic and social factors associated with each geographical context risks the occurrence of negative impacts that were not properly foreseen, working against the sustainable performance of the technology. The principal aim of this study was to evaluate 12 technologies for decentralized treatment of domestic wastewater applicable to peri-urban communities using sustainability approaches and, at the same time, continuing a discussion about how to address a more integrated assessment of overall sustainability. For this, a set of 13 indicators that embody the environmental, economic and social approach for the overall sustainability assessment were used by means of a target plot diagram as a tool for integrating indicators that represent a holistic analysis of the technologies. The obtained results put forward different degrees of sustainability, which led to the selection of: septic tank+land infiltration; up-flow anaerobic reactor+high rate trickling filter and septic tank+anaerobic filter as the most sustainable and attractive technologies to be applied in peri-urban communities, according to the employed indicators.

  7. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, B. G.; Kim, S. H.

    2007-06-01

    Uranium kernel fabrication technology using a wet chemical so-gel method, a key technology in the coated particle fuel area, is established up to the calcination step and the first sintering of UO2 kernel was attempted. Experiments on the parametric study of the coating process using the surrogate ZrO2 kernel give the optimum conditions for the PyC and SiC coating layer and ZrC coating conditions were obtained for the vaporization of the ZrCl4 precursor and coating condition from ZrC coating experiments using plate-type graphite substrate. In addition, by development of fuel performance analysis code a part of the code system is completed which enables the participation to the benchmark calculation and comparison in the IAEA collaborated research program. The technologies for irradiation and post irradiation examination, which are important in developing the HTGR fuel technology of its first kind in Korea was started to develop and, through a feasibility study and preliminary analysis, the technologies required to be developed are identified for further development as well as the QC-related basic technologies are reviewed, analyzed and identified for the own technology development. Development of kernel fabrication technology can be enhanced for the remaining sintering technology and completed based on the technologies developed in this phase. In the coating technology, the optimum conditions obtained using a surrogate ZrO2 kernel material can be applied for the uranium kernel coating process development. Also, after completion of the code development in the next phase, more extended participation to the international collaboration for benchmark calculation can be anticipated which will enable an improvement of the whole code system. Technology development started in this phase will be more extended and further focused on the detailed technology development to be required for the related technology establishment

  8. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  9. Chemistry of sustainable energy

    CERN Document Server

    Carpenter, Nancy E

    2014-01-01

    Energy BasicsWhat Is Energy?Energy, Technology, and SustainabilityEnergy Units, Terms, and AbbreviationsElectricity Generation and StorageOther ResourcesReferencesFossil FuelsFormation of Oil and GasExtraction of Fossil FuelsRefiningCarbon Capture and StorageSummaryOther ResourcesOnline Resources Related to Carbon Capture andSequestrationReferencesThermodynamicsIntroductionThe First Law of ThermodynamicsThe Second Law and Thermodynamic Cycles: the Carnot EfficiencyExerg

  10. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  11. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  12. Technology watch of fuel cells for vehicles in 2012; Teknikbevakning av braensleceller foer fordon 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Hans

    2013-03-15

    The report presents results from an international survey covering the status and development of tractionary fuel cells. Interviews, study visits, reports, journals, media coverage and participation in IEA Advanced Fuel Cells Annex 26 have served as main sources of information. The development in Korea has been devoted particular attention this period. The report covers the development during the second part of 2011 and the whole 2012. The transport sector must change to provide mobility for people and goods in a long-term sustainable way. Fuel cell technology offers an important opportunity for the vehicle manufacturer and the vehicle user to maintain the same level of performance, comfort and versatility without compromising the sustainability requirements. Fuel cell vehicles typically use polymer electrolyte fuel cells (PEFC) and pressurized hydrogen. They also use tractionary batteries for about the same reasons as other hybrid electric vehicles. For commercial vehicles fuel cells are developed for the production of auxiliary power, to be used when the vehicles are parked, for example. Until 2015, Hyundai aims at making up to 1,000 fuel cell vehicles. After 2015 the plan is for several thousand every year. Until 2025, Hyundai aims at a total delivery of more than 100,000 fuel cell vehicles and the technology is then expected to be fully competitive. A roadmap shows that Korea until 2015 has established 43 and until 2030, a total of 500 hydrogen refuelling stations are indicated. The Skaane Region has carried out the first Swedish procurement of fuel cell vehicles. Two Hyundai iX35 FCEV were purchased for delivery 2013. In addition, the city of Copenhagen has purchased 15 such vehicles. During the next few years three hydrogen refuelling stations will be established in the Copenhagen area. January 2012, the California Air Resources Board decided the new set of regulations Advanced Clean Cars. It comprises three parts; tailpipe emissions and greenhouse gases, Zero

  13. Biodiesel from Mustard oil: a Sustainable Engine Fuel Substitute for Bangladesh

    Directory of Open Access Journals (Sweden)

    M.M. Alam

    2013-10-01

    Full Text Available Various attractive features of mustard oil based biodiesel as a potential substitute for engine fuel are investigated in this paper for use in Bangladesh. Although the use of mustard oil as edible oil has been reduced, Bangladesh still produces 0.22 million metric tons of mustard oil per year. This surplus mustard oil would satisfactorily be used as an alternative to diesel fuel, and thus could contribute in reducing the expenses for importing fuel from foreign countries. Moreover, the rural people of Bangladesh are capable of producing mustard oil themselves using indigenous machines. Fuel properties of biodiesel obtained from mustard oil were determined in the laboratory using standard procedure and an experimental setup was constructed to study the performance of a small diesel engine. It is observed that with biodiesel, the engine is capable of running without difficulty. Initially different lower blends of biodiesel (e.g., B20, B30 etc. have been used to avoid complicated modification of the engine and the fuel supply system. It is also found in some condition that mustard oil based biodiesel have better properties than those made from other vegetable oils. These properties of mustard oil based biodiesel were evaluated to validate its sustainability in Bangladesh. Keywords: biodiesel, indigenous machines, mustard oil, renewable energy policy, sustainability

  14. Multi-Criteria Sustainability Assessment of Urban Sludge Treatment Technologies

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Ren, Jingzheng

    2017-01-01

    to determine the weights of the criteria for sustainability assessment, and extension theory was used to prioritize the alternative technologies for the treatment of urban sewage sludge and grade their sustainability performances. An illustrative case including three technologies (compositing, incineration...

  15. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  16. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  17. State-of-the-art report of spent fuel management technology

    International Nuclear Information System (INIS)

    Ro, S. G.; Park, S. W.; Shin, Y. J. and others

    1998-06-01

    Essential technologies for a long-term management of domestic nuclear fuel have been described in this report. The technologies of interest are advanced processes for spent fuel management, spent fuel examination technology, evaluation of radiation effect on equipment, chemical characterization of spent fuel, and hot cell-related technology state of the art for the above-mentioned technologies has been reviewed and analyzed in detail. As a result, a future R and D direction that seems to be appropriate for us is drawn up in due consideration of in- and out-circumstances encountered with. (author). 304 refs., 28 tabs., 43 figs

  18. Sustainability constraints on UK bioenergy development

    International Nuclear Information System (INIS)

    Thornley, Patricia; Upham, Paul; Tomei, Julia

    2009-01-01

    Use of bioenergy as a renewable resource is increasing in many parts of the world and can generate significant environmental, economic and social benefits if managed with due regard to sustainability constraints. This work reviews the environmental, social and economic constraints on key feedstocks for UK heat, power and transport fuel. Key sustainability constraints include greenhouse gas savings achieved for different fuels, land availability, air quality impacts and facility siting. Applying those constraints, we estimate that existing technologies would facilitate a sustainability constrained level of medium-term bioenergy/biofuel supply to the UK of 4.9% of total energy demand, broken down into 4.3% of heat demands, 4.3% of electricity, and 5.8% of transport fuel. This suggests that attempts to increase the supply above these levels could have counterproductive sustainability impacts in the absence of compensating technology developments or identification of additional resources. The barriers that currently prevent this level of supply being achieved have been analysed and classified. This suggests that the biggest policy impacts would be in stimulating the market for heat demand in rural areas, supporting feedstock prices in a manner that incentivised efficient use/maximum greenhouse gas savings and targeting investment capital that improves yield and reduces land-take.

  19. Biomethane storage: Evaluation of technologies, end uses, business models, and sustainability

    International Nuclear Information System (INIS)

    Budzianowski, Wojciech M.; Brodacka, Marlena

    2017-01-01

    Highlights: • Biomethane storage integrates the different energy subsystems. • It facilitates adoption of solar and wind energy sources. • It is essential to adequately match storages with their end uses and business models. • Business models must propose, create, and capture value linked with gas storage. • Sustainable is economically viable, environmentally benign, and socially beneficial. - Abstract: Biomethane is a renewable gas that can be turned into dispatchable resource through applying storage techniques. The storage enables the discharge of stored biomethane at any time and place it is required as gas turbine power, heat or transport fuel. Thus the stored biomethane could more efficiently serve various energy applications in the power, transport, heat, and gas systems as well as in industry. Biomethane storage may therefore integrate the different energy subsystems making the whole energy system more efficient. This work provides an overview and evaluation of biomethane storage technologies, end uses, business models and sustainability. It is shown that storage technologies are versatile, have different costs and efficiencies and may serve different end uses. Business models may be created or selected to fit regional spatial contexts, realistic demands for gas storage related services, and the level of available subsidies. By applying storage the sustainability of biomethane is greatly improved in terms of economic viability, reduced environmental impacts and greater social benefits. Stored biomethane may greatly facilitate adoption of intermittent renewable energy sources such as solar and wind. Other findings show that biomethane storage needs to be combined with grid services and other similar services to reduce overall storage costs.

  20. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  1. Sustainable fuel, food, fertilizer and ecosystems through a global artificial photosynthetic system: overcoming anticompetitive barriers

    Science.gov (United States)

    Bruce, Alex; Faunce, Thomas

    2015-01-01

    This article discusses challenges that artificial photosynthetic (AP) systems will face when entering and competing in a global market characterized by established fossil fuel technology. It provides a perspective on the neoliberal principles underpinning much policy entrenching such environmentally destructive technology and outlines how competition law could aid overcoming these hurdles for AP development. In particular, it critiques the potential for competition law to promote a global AP initiative with greater emphasis on atmospheric carbon dioxide and nitrogen fixation (as well as solar-driven water splitting) to produce an equitable, globally distributed source of human food, fertilizer and biosphere sustainability, as well as hydrogen-based fuel. Some relevant strategies of competition law evaluated in this context include greater citizen–consumer involvement in shaping market values, legal requirements to factor services from the natural environment (i.e. provision of clean air, water, soil pollution degradation) into corporate costs, reform of corporate taxation and requirements to balance maximization of shareholder profit with contribution to a nominated public good, a global financial transactions tax, as well as prohibiting horizontal cartels, vertical agreements and unilateral misuse of market power. PMID:26052427

  2. Sustainable fuel, food, fertilizer and ecosystems through a global artificial photosynthetic system: overcoming anticompetitive barriers.

    Science.gov (United States)

    Bruce, Alex; Faunce, Thomas

    2015-06-06

    This article discusses challenges that artificial photosynthetic (AP) systems will face when entering and competing in a global market characterized by established fossil fuel technology. It provides a perspective on the neoliberal principles underpinning much policy entrenching such environmentally destructive technology and outlines how competition law could aid overcoming these hurdles for AP development. In particular, it critiques the potential for competition law to promote a global AP initiative with greater emphasis on atmospheric carbon dioxide and nitrogen fixation (as well as solar-driven water splitting) to produce an equitable, globally distributed source of human food, fertilizer and biosphere sustainability, as well as hydrogen-based fuel. Some relevant strategies of competition law evaluated in this context include greater citizen-consumer involvement in shaping market values, legal requirements to factor services from the natural environment (i.e. provision of clean air, water, soil pollution degradation) into corporate costs, reform of corporate taxation and requirements to balance maximization of shareholder profit with contribution to a nominated public good, a global financial transactions tax, as well as prohibiting horizontal cartels, vertical agreements and unilateral misuse of market power.

  3. The choice of the fuel assembly for VVER-1000 in a closed fuel cycle based on REMIX-technology

    International Nuclear Information System (INIS)

    Bobrov, E.; Alekseev, P.; Chibinyaev, A.; Teplov, P.; Dudnikov, A.

    2016-01-01

    REMIX (Regenerated Mixture) fuel is produced directly from a non-separated mix of recycled uranium and plutonium from reprocessed used fuel and the fabrication technology of such fuel is called REMIX-technology. This paper shows basic features of different fuel assembly (FA) application for VVER-1000 in a closed fuel cycle based on REMIX-technology. This investigation shows how the change in the water-fuel ratio in the VVER FA affects the fuel characteristics produced by REMIX technology during multiple recycling. It is shown that for for the traditional REMIX-fuel it does not make sense to change anything in the design of VVER FA, because there are no advantages in the fuel feed consumption. The natural uranium economy by the fifth cycle reached about 29%. In the case of the REMIX fuel based on uranium-plutonium from SNF MOX fuel, it would be appropriate to use fuel assemblies with a water-fuel ratio of 1.5

  4. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  5. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  6. Overview of remote technologies applied to research reactor fuel

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Takats, F.

    1999-01-01

    This paper gives a brief overview of the remote technologies applied to research reactor fuels. Due to many reasons, the remote technology utilization to research reactor fuel is not so widespread as it is for power reactor fuels, however, the advantages of the application of such techniques are obvious. (author)

  7. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  8. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  9. KNF's fuel service technologies and experiences

    International Nuclear Information System (INIS)

    Shin, Jung Cheol; Kwon, Jung Tack; Kim, Jaeik; Park, Jong Youl; Kim, Yong Chan

    2009-01-01

    In Korea, since 1978, the commercial nuclear power plant was operated. After 10 years, from 1988, the nuclear fuel was produced by KNF (Korea Nuclear Fuel). The Fuel Service Team was established at KNF in 1995. Through the technical self reliance periods in cooperate with advanced foreign companies for 5 years, KNF has started to carry out fuel service activities onsite in domestic nuclear power plants. By ceaseless improving and advancing our own methodologies, after that, KNF is able to provide the most safe and reliable fuel repair services and poolside examinations including the root cause analysis of failed fuels. Recently, KNF developed the fuel cleaning system using ultrasonic technique for crud removal, and the CANDU fuel sipping system to detect a failed fuel bundle in PHWR. In this paper, all of KNF's fuel service technologies are briefly described, and the gained experience in shown

  10. Technology status: Batteries and fuel cells

    Science.gov (United States)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  11. The Business Case for Fuel Cells: Delivering Sustainable Value

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cell and Hydrogen Energy Association (FCHEA), Washington, DC (United States); Gangi, Jennifer [Fuel Cell and Hydrogen Energy Association (FCHEA), Washington, DC (United States)

    2017-09-11

    This report, written and compiled by Argonne National Laboratory and the Fuel Cell and Hydrogen Energy Association with support from the Fuel Cell Technologies Office, provides an overview of private sector fuel cell installations at U.S. businesses as of December 31, 2016. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses, and remote, off-grid sites.

  12. Proceedings of GLOBAL 2007 conference on advanced nuclear fuel cycles and systems

    International Nuclear Information System (INIS)

    2007-01-01

    In keeping with the 12-year history of this conference, GLOBAL 2007 focuses on future nuclear energy systems and fuel cycles. With the increasing public acceptance and political endorsement of nuclear energy, it is a pivotal time for nuclear energy research. Significant advances have been made in development of advanced nuclear fuels and materials, reactor designs, partitioning, transmutation and reprocessing technologies, and waste management strategies. In concert with the technological advances, it is more important than ever to develop sensible nuclear proliferation policies, to promote sustainability, and to continue to increase international collaboration. To further these aims, GLOBAL 2007 highlights recent developments in the following areas: advanced integrated fuel cycle concepts, spent nuclear fuel reprocessing, advanced reprocessing technology, advanced fuels and materials, advanced waste management technology, novel concepts for waste disposal and repository development, advanced reactors, partitioning and transmutation, developments in nuclear non-proliferation technology, policy, and implementation, sustainability and expanded global utilization of nuclear energy, and international collaboration on nuclear energy

  13. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Unedited proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear power is a significant contributor to the global supply of electricity, and continues to be the major source that can provide electricity on a large scale with a comparatively minimal impact on the environment. But it is evident that, despite decades of experience with this technology, nuclear power today remains mainly in a holding position, with its future somewhat uncertain primarily due to concerns related to waste, safety and security. One of the most important factors that would influence future nuclear growth is the innovation in reactor and fuel cycle technologies to successfully maximize the benefits of nuclear power while minimizing the associated concerns. The main objectives of the Conference were to facilitate exchange of information between senior experts and policy makers from Member States and international organizations on important aspects of the development of innovative technologies for future generations of nuclear power reactors and fuel cycles; to create an understanding of the social, environmental and economic conditions that would facilitate innovative and sustainable nuclear technologies; and to identify opportunities for collaborative work between Member States and international organizations and programmes. All relevant aspects of innovative technologies for nuclear fuel cycles and nuclear power were discussed in an open, frank and objective manner. These proceedings contain a summary of the results of the conference, invited and contributed papers, and summaries of panel discussions. No large increase in the use of nuclear energy is foreseen in the near and medium term, but is likely in the long term if developing country per-capita electricity consumption reaches that of the developed world. The nuclear sector including regulators view an increased use of nuclear energy as the solution for global sustainable energy needs considering that significant reductions in CO 2 emissions would be required. Although the current nuclear

  14. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required...

  15. Development of Micro-sized Microbial Fuel Cells as Ultra-Low Power Generators Using Nano-engineered Materials and Sustainable Designs

    KAUST Repository

    Mink, Justine E.

    2013-12-01

    Many of the most pressing global challenges today and in the future center around the scarcity of sustainable energy and water sources. The innovative microbial fuel cell (MFC) technology addresses both as it utilizes bacteria to convert wastewaters into electricity. Advancing this technology requires a better understanding of the optimal materials, designs and conditions involved. The micro-sized MFC was recently developed to serve this need by providing a rapid testing device requiring only a fraction of the materials. Further, development of micro-liter scale MFCs has expanded into potential applications such as remote and self-sustained power sources as well as on-chip energy generators. By using microfabrication, the fabrication and assembly of microsized MFCs is potentially inexpensive and mass produced. The objective of the work within this dissertation was to explore and optimize the micro-sized MFC to maximize power and current generation towards the goal of a usable and application-oriented device. Micro-sized MFCs were examined and developed using four parameters/themes considered most important in producing a high power generating, yet usable device: Anode- The use of nano-engineered carbon nanomaterials, carbon nanotubes and graphene, as anode as well as testing semiconductor industry standard anode contact area materials for enhanced current production. 5 Cathode- The introduction of a membrane-less air cathode to eliminate the need for continuous chemical refills and making the entire device mobile. Reactor design- The testing of four different reactor designs (1-75 μLs) with various features intended to increase sustainability, cost-effectiveness, and usability of the microsized MFC. Fuels- The utilization of real-world fuels, such as industrial wastewaters and saliva, to power micro-sized MFCs. The micro-sized MFC can be tailored to fit a variety of applications by varying these parameters. The device with the highest power production here was

  16. Progress in researches on MOX fuel pellet producing technology in China

    International Nuclear Information System (INIS)

    Hu Xiaodan

    2010-01-01

    Being the key section of nuclear-fuel cycle, the producing technology of MOX(UO 2 -PuO 2 ) fuel had driven to maturity in France, England, Russia, Belgium, etc. MOX fuel had been applied in FBR and LWR successfully in those countries. With the rapidly developing of nuclear-generated power, the MOX fuel for FBR and LWR was active demanded in China. However, the producing technology of MOX fuel developed slowly. During the period of 'the seventh five year's project', MOX fuel pellet was produced by mechanically mixed method and oxalate deposited method, respectively. Parts of cool performance of MOX fuel pellet produced by oxalate deposited method reached the qualification of fuel for FBR. During the period of 'the ninth five year's project' and 'the tenth five year's project', the technical route of producing MOX fuel was determined, and the test line of producing MOX fuel was built preliminarily. In the same time, the producing technology and analyzing technology of MOX fuel pellet by mechanically mixed was studied roundly, and the representative analogue pellet(UO 2 -CeO 2 ) was produced. That settled the supporting technology for the commercial process and research of MOX fuel rod and MOX fuel module. (authors)

  17. The role of technological innovation in sustainable economic development

    OpenAIRE

    Andreea Constantinescu; Simona Frone

    2014-01-01

    As in science an accurate picture of present is highlighted from a future outlook, we should recognize the crucial role of new technologies and innovation to improve knowledge in this field. They may give guarantee of sustainable economic development, provided prioritization of research in some fields such as: information technology and communication, resource depletion and climate change. Technological innovation becomes support of all strategies and policies aimed at ensuring sustainable ec...

  18. Nuclear technology for a sustainable future

    International Nuclear Information System (INIS)

    2012-06-01

    The IAEA helps its Member States to use nuclear technology for a broad range of applications, from generating electricity to increasing food production, from fighting cancer to managing fresh water resources and protecting the world's seas and oceans. Despite the Fukushima Daiichi accident in March 2011, nuclear power will remain an important option for many countries. Use of nuclear power will continue to grow in the next few decades, although growth will be slower than was anticipated before the accident. The factors contributing to the continuing interest in nuclear power include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. It is up to each country to choose its optimal energy mix. The IAEA helps countries which opt for nuclear power to use it safely and securely. Every day, millions of people throughout the world benefit from the use of nuclear technology. The IAEA helps to make these benefits available to developing countries through its extensive Technical Cooperation programme. For instance, we provide assistance in areas such as human health (through our Programme of Action for Cancer Therapy), animal health (we were active partners in the successful global campaign to eradicate the deadly cattle disease rinderpest), food, water and the environment. The IAEA contributes to the development of global policies to address the energy, food, water and environmental challenges the world faces. We look forward to helping to make Rio+20 a success. This brochure provides an overview of the many ways in which nuclear technology is contributing to building the future we want.

  19. Novel naval technologies: Sustaining or disrupting naval doctrine

    NARCIS (Netherlands)

    te Kulve, Haico; Smit, Willem A.

    2010-01-01

    The defense sector is generally known to be simultaneously conservative and enthusiastic about novel technologies. Uptake of new technologies by the military may differ depending on the perceived impact of new technologies. Introduction of technological changes can sustain or disrupt doctrine and

  20. Sustainable Technology Entrepreneurship and Development – the Case of Serbia

    Directory of Open Access Journals (Sweden)

    Maja Levi Jakšić

    2014-06-01

    Full Text Available Technology entrepreneurship is oriented towards competitiveness based on strong relationships between science, new technology, learning and creating new value for the customer in the form of advanced goods and services leading to their commercialization. In this paper special focus is on two crucial issues of sustainable technology entrepreneurship: definition of the cocept of techology entrepreneurship based on sustainable innovation and technology, and specific technology entrepreneurship indicators for Serbia related to vertical and horizontal technology transfer.

  1. Remote technology in the spent fuel route in the UK

    International Nuclear Information System (INIS)

    Webster, A.W.

    1999-01-01

    Remote technologies employed in front end (commercial) reprocessing operations of metallic and oxide fuel at Sellafield in the UK are described. An overview of the transportation, fuel receiving and preparation facilities are given together with the remote technology developments employed to improve operations. It is concluded that the facilities and remote technology used within them are mature and based upon simple and robust principles. Remote operations and maintenance in these facilities is often easier than in many facilities downstream of the dissolution stage. Fuel design considerations for shearing and handling are described and it is concluded that advanced and higher burnup fuel can be accommodated by existing reprocessing and interim storage routes with current remote technologies. Two different storage systems are available from UK companies which use existing spent fuel handling technology/equipment. The pace of remote technology development is currently being set by the demands of other nuclear process areas such as decommissioning and plant clean out; these will spin-off into front end processes. (author)

  2. Fuel cells science and engineering. Materials, processes, systems and technology. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Stolten, Detlef; Emonts, Bernd (eds.) [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF), Brennstoffzellen (IEF-3)

    2012-07-01

    The second volume is divided in four parts and 19 chapters. It is structured as follows: PART V: Modeling and Simulation. Chapter 23: Messages from Analytical Modeling of Fuel Cells (Andrei Kulikovsky); 24: Stochastic Modeling of Fuel-Cell Components (Ralf Thiedmann, Gerd Gaiselmann, Werner Lehnert and Volker Schmidt); 25: Computational Fluid Dynamic Simulation Using Supercomputer Calculation Capacity (Ralf Peters and Florian Scharf); 26 Modeling Solid Oxide Fuel Cells from the Macroscale to the Nanoscale (Emily M. Ryan and Mohammad A. Khaleel); 27: Numerical Modeling of the Thermomechanically Induced Stress in Solid Oxide Fuel Cells (Murat Peksen); 28: Modeling of Molten Carbonate Fuel Cells (Peter Heidebrecht, Silvia Piewek and Kai Sundmacher); Chapter 29: High-Temperature Polymer Electrolyte Fuel-Cell Modeling (Uwe Reimer); Chapter 30: Modeling of Polymer Electrolyte Membrane Fuel-Cell Components (Yun Wang and Ken S. Chen); 31: Modeling of Polymer Electrolyte Membrane Fuel Cells and Stacks (Yun Wang and Ken S. Chen). PART VI: Balance of Plant Design and Components. Chapter 32: Principles of Systems Engineering (Ludger Blum, Ralf Peters and Remzi Can Samsun); 33: System Technology for Solid Oxide Fuel Cells (Nguyen Q. Minh); 34: Desulfurization for Fuel-Cell Systems (Joachim Pasel and Ralf Peters); 35: Design Criteria and Components for Fuel Cell Powertrains (Lutz Eckstein and Bruno Gnoerich); 36: Hybridization for Fuel Cells (Joerg Wilhelm). PART VII: Systems Verification and Market Introduction. Chapter 37: Off-Grid Power Supply and Premium Power Generation (Kerry-Ann Adamson); 38: Demonstration Projects and Market Introduction (Kristin Deason). PART VIII: Knowledge Distribution and Public Awareness. Chapter 39: A Sustainable Framework for International Collaboration: the IEA HIA and Its Strategic Plan for 2009-2015 (Mary-Rose de Valladares); 40: Overview of Fuel Cell and Hydrogen Organizations and Initiatives Worldwide (Bernd Emonts) 41: Contributions for

  3. Expected role of nuclear science and technology to support the sustainable supply of energy in Indonesia

    International Nuclear Information System (INIS)

    Soentono, Soedyartomo; Aziz, Ferhat

    2008-01-01

    Energy resources are available in Indonesia but small per capita. The increase of oil price and its reserve depletion rate dictates to decrease the oil consumption. Therefore, it is imperative to increase the shares of other fossils as well as the new and renewable sources of energy in various energy sectors substituting the oil. The introduction of nuclear power plant becomes more indispensable, although the share is to be small but significantly important for electric generation in Java-Madura-Bali grid. Nuclear technology can have also important role enabling the increase of the shares of renewable, e.g. geothermal, hydro and bio-fuels as well as fossil energies to meet more sustainable energy mix sufficing the energy demand to attain intended economic and population growths while maintaining the environment. The first introduced nuclear power plant is to be the proven ones, but the innovative nuclear energy systems being developed by various countries will eventually also be partially employed to further improve the sustainability. The nuclear science and technology are to be symbiotic and synergistic to other sources of energy to enhance the sustainable supply of energy. (author)

  4. Establishment of quality control technology for HTR fuel in Korea

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Kim, Woong Ki; Kim, Yeon Ku; Cho, Moon Sung

    2009-01-01

    Korea is currently developing the HTR coated particle fuel technology in view of its long-term Nuclear Hydrogen Production Technology Development and Demonstration (NHDD) Project, which was launched in 2004, of an extensive R and D program on technology development for a hydrogen production by a VHTR. The current NHDD Project essentially covers the R and D works on the core and reactor system analysis, thermo-hydraulics and safety, coated particle fuel technology, material and component aspects and the hydrogen production technology by using the so-called Sulfur-Iodine Process (S-I Process). As a part of the NHDD Project, the fundamental technology for the coated particle fuel has been being developed, which consist of UO 2 kernel fabrication, pyrolytic carbon (PyC) and silicon carbide (SiC) coating technology, an in-reactor performance model development of a coated particle fuel and a preliminary preparative study for the irradiation tests of the coated particle fuel specimens in the HANARO reactor. In parallel with the development of fabrication process technology of the coated particle fuel, namely, kernel fabrication and coating processes, the characterization techniques for the important characteristics and quality control (QC) methods of the products after each process step were established. This paper deals with the works carried out for the development of the characterization technologies and establishment of the QC techniques for the coated fuel particles. Emphasis is given to the selection and development of the laboratory equipment and apparatus for the development of the methods of the characterizations and relevant QC methods

  5. Technology developments for Japanese BWR MOX fuel utilization

    International Nuclear Information System (INIS)

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  6. Sustainable thermal technologies and care homes: Productive alignment or risky investment?

    International Nuclear Information System (INIS)

    Neven, Louis; Walker, Gordon; Brown, Sam

    2015-01-01

    The use of more sustainable thermal technologies is a policy imperative across the UK building stock. However, not all building uses provide the same opportunities for technology uptake as others. Care homes for older people have characteristics which in technical and economic terms suggest that they might be particularly appropriate for the implementation of more sustainable thermal technologies. They have comparatively high demands for space heating and hot water often sustained on a 24/7 basis. However there are many considerations, both generic and contextual, that will typically play into processes of technology uptake. Through qualitative research in six case study homes, focused on management and staff perspectives and experiences, we explore the degree to which there might be a productive alignment between care home operation and the use of sustainable thermal technologies. Two key themes emerge focused on business considerations and the importance of avoiding risk and damage to reputation; and the ways in which different thermal technologies are relevant to and can potentially impact on care practices. We conclude that despite potential benefits the sector could remain rather resistant to sustainability innovations. We suggest therefore areas in which productive action and further research could be undertaken. -- Highlights: •Care homes for older people might be particularly appropriate for the use of sustainable thermal technologies. •We examine if a productive alignment between care homes and the use of sustainable thermal technologies does exist in practice. •Two key themes are risks to business reputation; and relevance and potential benefits to care practices. •We conclude that the sector could remain rather reluctant to embrace sustainability innovation

  7. Proceedings of the fuels technology contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.D. [ed.

    1993-11-01

    The Fuels Technology Contractors Review Meeting was held November 16-18, 1993, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. This meeting was sponsored and hosted by METC, the Office of Fossil Energy, U.S. Department of Energy (DOE). METC periodically provides an opportunity to bring together all of the R&D participants in a DOE-sponsored contractors review meeting to present key results of their research and to provide technology transfer to the active research community and to the interested public. This meeting was previously called the Natural Gas Technology Contractors Review Meeting. This year it was expanded to include DOE-sponsored research on oil shale and tar sands and so was retitled the Fuels Technology Contractors Review Meeting. Current research activities include efforts in both natural gas and liquid fuels. The natural gas portion of the meeting included discussions of results summarizing work being conducted in fracture systems, both natural and induced; drilling, completion, and stimulation research; resource characterization; delivery and storage; gas to liquids research; and environmental issues. The meeting also included project and technology summaries on research in oil shale, tar sands, and mild coal gasification, and summaries of work in natural-gas fuel cells and natural-gas turbines. The format included oral and poster session presentations. Individual papers have been processed separately for inclusion in the Energy Science and Technology database.

  8. Environmental aspects of battery and fuel cell technologies

    International Nuclear Information System (INIS)

    1992-10-01

    This report was commissioned by the UK Department of Trade and Industry in order to understand the policy, infrastructural and standards implications of increased use of batteries and fuel cells. In order to meet these requirements, the following areas have been examined: environmental initiatives related to power generation and transport in a pan-European context; the status of alternative technologies, specifically batteries and fuel cells; the market potential of battery and fuel cell based technologies in transport and power generation; environmental life cycle and cost benefit analyses of these technologies; the implications of the use of alternative technologies on the UK infrastructure. Each of these areas is covered briefly in the main body of the report and discussed in greater detail in six appendices. Overall there are 51 figures, 38 tables and 20 references. (UK)

  9. Nature's powerhouse. Innovative technologies for a more sustainable future; Kraftwerk Natur. Innovative Technologien fuer mehr Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-09-01

    Across the globe, our hunger for energy continues to grow. Yet climate change and dwindling fossil fuel supplies are forcing us to rethink our energy policy and turn increasingly to renewable resources. Achieving a sustainable energy mix and eco-friendly mobility options demands innovative technologies. And that is where Linde's gas and plant engineering specialists come in, developing efficient processes and providing crucial momentum for a greener future. (orig.)

  10. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  11. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  12. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth While Limiting the Spread of Sensitive Nuclear Technology

    International Nuclear Information System (INIS)

    Shropshire, David

    2009-01-01

    Global growth of nuclear energy in the 21. century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Recipient states are slow to accept any concessions to their rights under the Non Proliferation Treaty. To date, decisions to not develop indigenous fuel enrichment capabilities have been driven by economics. However, additional incentives may be required in the future to offset the user state's perceived loss of energy independence. In order for a country to forgo development of sensitive nuclear capabilities, the basis for an equitable economic tradeoff must be established. This paper proposes that the nuclear trade-off can be made through a combination of fuel supply assurances, leveraging work by the United Nations and International Atomic Energy Agency on sustainable nuclear development, and use of 'nuclear symbiosis'. The primary focus of this paper is on how nuclear symbiosis could be used to achieve a user-state's desired economic, energy, and infrastructure development end states. The desired result from this 'symbiosis' is a nuclear-centered industrial complex that creates new economic opportunities through infrastructure improvements, human resource skills development and the development of new sustainable industries. This paper also describes the Nuclear Materials Exchange (NME) as a practical tool for performing nuclear symbiosis. The NME can be used to define existing and new international nuclear resources and

  13. An engineering dilemma: sustainability in the eyes of future technology professionals.

    Science.gov (United States)

    Haase, S

    2013-09-01

    The ability to design technological solutions that address sustainability is considered pivotal to the future of the planet and its people. As technology professionals engineers are expected to play an important role in sustaining society. The present article aims at exploring sustainability concepts of newly enrolled engineering students in Denmark. Their understandings of sustainability and the role they ascribe to sustainability in their future professional practice is investigated by means of a critical discourse analysis including metaphor analysis and semiotic analysis. The sustainability construal is considered to delimit possible ways of dealing with the concept in practice along the engineering education pathway and in professional problem solving. Five different metaphors used by the engineering students to illustrate sustainability are identified, and their different connotative and interpretive implications are discussed. It is found that sustainability represents a dilemma to the engineering students that situates them in a tension between their technology fascination and the blame they find that technological progress bears. Their sustainability descriptions are collected as part of a survey containing among other questions one open-ended, qualitative question on sustainability. The survey covers an entire year group of Danish engineering students in the first month of their degree study.

  14. Canadian Fusion Fuels Technology Project annual report 93/94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today`s advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report.

  15. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  16. Analysis of Advanced Fuel Kernel Technology

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Jeong, Kyung Chai; Kim, Yeon Ku; Kim, Young Min; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung

    2010-03-01

    The reference fuel for prismatic reactor concepts is based on use of an LEU UCO TRISO fissile particle. This fuel form was selected in the early 1980s for large high-temperature gas-cooled reactor (HTGR) concepts using LEU, and the selection was reconfirmed for modular designs in the mid-1980s. Limited existing irradiation data on LEU UCO TRISO fuel indicate the need for a substantial improvement in performance with regard to in-pile gaseous fission product release. Existing accident testing data on LEU UCO TRISO fuel are extremely limited, but it is generally expected that performance would be similar to that of LEU UO 2 TRISO fuel if performance under irradiation were successfully improved. Initial HTGR fuel technology was based on carbide fuel forms. In the early 1980s, as HTGR technology was transitioning from high-enriched uranium (HEU) fuel to LEU fuel. An initial effort focused on LEU prismatic design for large HTGRs resulted in the selection of UCO kernels for the fissile particles and thorium oxide (ThO 2 ) for the fertile particles. The primary reason for selection of the UCO kernel over UO 2 was reduced CO pressure, allowing higher burnup for equivalent coating thicknesses and reduced potential for kernel migration, an important failure mechanism in earlier fuels. A subsequent assessment in the mid-1980s considering modular HTGR concepts again reached agreement on UCO for the fissile particle for a prismatic design. In the early 1990s, plant cost-reduction studies led to a decision to change the fertile material from thorium to natural uranium, primarily because of a lower long-term decay heat level for the natural uranium fissile particles. Ongoing economic optimization in combination with anticipated capabilities of the UCO particles resulted in peak fissile particle burnup projection of 26% FIMA in steam cycle and gas turbine concepts

  17. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  18. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  19. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the...

  20. Technological Innovation – A Route Towards Sustainability

    Directory of Open Access Journals (Sweden)

    Gráinne Kavanagh

    2012-06-01

    Full Text Available The sustainability of small and medium-sized enterprises (SMEs  is constantly challenged on today’s dynamic operating environment. Evolving regulatory trends, difficult economic conditions, and diminishing natural resources, pose serious questions for all players across the food system. Technological innovation, as a means of ensuring future sustainability in the same in the face of such challenges, has been the focus of significant government investment in Ireland. This paper, aims to facilitate a greater understanding of the motivations and barriers influencing the decision by food SMEs to invest in technological innovation emanating from research conducted in publicly‐funded research institutes.

  1. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  2. Extension technology of store ability of spent fuel

    International Nuclear Information System (INIS)

    1991-05-01

    It is the introduction of the extension technology of store ability of spent fuel including metal store cask, transport and store cask, concrete cask, NUHOMS and MVDS. It explains of technology of recombination of spent fuel including the purpose and real application, demonstration, presumption of expense, major interesting issue and the present condition of relevant licences permit and approvals.

  3. Evaluation of sustainability by a population living near fossil fuel resources in Northwestern Greece.

    Science.gov (United States)

    Vatalis, Konstantinos I

    2010-12-01

    The emergence of sustainability as a goal in the management of fossil fuel resources is a result of the growing global environmental concern, and highlights some of the issues expected to be significant in coming years. In order to secure social acceptance, the mining industry has to face these challenges by engaging its many different stakeholders and examining their sustainability concerns. For this reason a questionnaire was conducted involving a simple random sampling of inhabitants near an area rich in fossil fuel resources, in order to gather respondents' views on social, economic and environmental benefits. The study discusses new subnational findings on public attitudes to regional sustainability, based on a quantitative research design. The site of the study was the energy-rich Greek region of Kozani, Western Macedonia, one of the country's energy hubs. The paper examines the future perspectives of the area. The conclusions can form a useful framework for energy policy in the wider Balkan area, which contains important fossil fuel resources. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  5. A review on the development of the advanced fuel fabrication technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author)

  6. A review on the development of the advanced fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author).

  7. Transition Towards a Sustainable Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    McCarthy, K.; Romanello, V.; Schwenk-Ferrero, A.; Vezzoni, B.; Gabrielli, F.; Maschek, W.; Rineiski, A.; Salvatores, M.

    2013-01-01

    To support the evaluation of R and D needs and relevant technology requirements for future nuclear fuel cycles, the OECD/NEA WPFC Expert Group on Advanced Fuel Cycle Scenarios was created in 2010, replacing the WPFC Expert Group on Fuel Cycle Transition Scenario Studies (1) to assemble, organise and understand the scientific issues of advanced fuel cycles and (2) to provide a framework for assessing specific national needs related to the implementation of advanced fuel cycles. In this framework, a simulation of world transition scenarios towards possible future fuel cycles with fast reactors has been performed, using both a homogeneous and a heterogeneous approach involving different world regions. In fact, it has been found that a crucial feature of any world scenario study is to provide not only trends for an idealised 'homogeneous' description of the world, but also trends for different regions in the world, selected with simple criteria (mostly of geographical type), in order to apply different hypotheses to energy demand growth, different fuel cycle strategies and different reactor types implementation in the different regions. This approach was an attempt to avoid focusing on selected countries, in particular on those where no new spectacular energy demand growth is expected, but to provide trends and conclusions that account for the features of countries that will be major future players in the world's energy development. The heterogeneous approach considered a subdivision of the world in four main macro-regions (where countries have been grouped together according to their economic development dynamics). An original global electricity production envelope was used in simulations and a specific regional energy share was defined. In the regional approach two different fuel cycles were analysed: a once-through LWR cycle was used as the reference and a transition to fast reactor closed cycle to enable a better management of resources and minimisation of waste

  8. Development of coated particle fuel technology

    International Nuclear Information System (INIS)

    Cho, Moonsung; Kim, B. G.; Kim, D. J.

    2011-06-01

    Ammonia contacting method for prehardenning the surfaces of ADU liquid droplets and the ageing/washing/drying method and equipment for spherical dried-ADU particles were improved and tested with laboratory sacle. After the improvement of fabrication process, the sphericity of UO 2 kernel obtained to 1.1, and the sintered density and O/U ratio of final UO 2 kernel were above 10.60g/cm 3 . 2.01 respectively. Defects of SiC coating layer could be minimized by optimization of gas flow rate. The fracture strength of SiC layer increased from 450 MPa to 530 MPa by controlling the coating defects. An effort was made to develop the fundamental technology for the fuel element compact for use in High Temperature Gas-cooled Reactor(HTGR) through an establishment of fabrication process, required materials and process equipment as well as performing experiments to identify the basic process conditions and optimize them. Thermal load simulation and verification experiments were carried out for an assesment of the design feasibility of the irradiation rod. Out-of-pile testing of irradiation device such as measurement of pressure drop and vibration, endurance test was performed and the validity of its design was confirmed. A fuel performance analysis code, COPA has been developed to calculate the fuel temperature, the failure fractions of coated fuel particles, the release of fission products. The COPA code can be used to evaluate the performance of the high temperature reactor fuel under the reactor operation, irradiation, heating conditions. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. QC technology was established for TRISO-coated fuel particle. A method for accurate measurement of the optical anisotropy factor for PyC layers of coated particles was developed. Technology and inspection procedures for density

  9. Technological, economic and sustainability evaluation of power plants using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2009-01-01

    Complexity of power plant evaluation is steadily rising, as more criteria are involved in the overall assessment while evaluation data change rapidly. Apart from evaluating several aspects of power plants separately, a multicriteria analysis based on hierarchically structured criteria is necessary, so as to address the overall assessment of power plants according to the technological, economic and sustainability aspects. For this reason, in this paper, ten types of power plant are evaluated using nine end node criteria properly structured under the Analytical Hierarchy Process. Moreover, pairwise comparisons allow for accurate subjective criteria weighting. According to the scenario based on the subjective criteria weighting, emphasis is laid on sustainability driving renewable energy power plants at the top of the overall ranking, while nuclear and fossil fuel power plants rank in the last five positions. End node criteria contribution to each power plant and power plant performance per end node criterion is presented for all types of power plant and end node criteria. (author)

  10. Sustainable Technology and Business Innovation Framework – A Comprehensive Approach

    Directory of Open Access Journals (Sweden)

    Maja Levi Jakšić

    2018-05-01

    Full Text Available Despite of the rising awareness of the urgency in finding more efficient and effective ways to achieve sustainable development, comprehensive and consistent meaning is still elusive both in theory and practice. The aim of this paper is to create a more structured theoretical framework related to macro and micro perspectives of sustainable development, relevant also to enhancing sustainable practices. We here propose a comprehensive framework model for structuring multiple sustainability principles and practices, detected in the literature as different sustainability categories related to both macro and micro perspectives of sustainability in the economy and society. The focus is on relevant sustainability principles of technology and business innovation in relation to basic technology and business innovation models as a contribution to less investigated theoretical aspects of sustainable business development. We developed a set of related matrices indicating the relevant roles and relationships between these principles in achieving sustainable business goals related to sustainable economy dimensions. Finally, the paper shows that the proposed Related Matrices Framework fulfils the main objective set in the initial research stages, i.e. to be of both theoretical and practical relevance. As a contribution to the theory it meets the need of building a structured, integrated, comprehensive model that serves the needs of better understanding different sustainability of macro and micro categories, indicating mutual relations and influences. In a practical sense, it can be used as a tool to support the management of change in companies oriented at achieving sustainable business goals based on sustainable technology and business innovation.

  11. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  12. Economics of Sustainable Technologies : Private and Public Costs and Benefits

    NARCIS (Netherlands)

    Krozer, Yoram; Abraham, Martin

    2017-01-01

    This article is focused on the economics of sustainable technologies from the mainstream and heterodox perspectives. The aim is to present major concepts, methodologies, and debates for public use. The paper is focused on decision making aiming at the development and use of sustainable technologies.

  13. Fossil Fuels, Backstop Technologies, and Imperfect Substitution

    NARCIS (Netherlands)

    van der Meijden, G.C.; Pittel, Karen; van der Ploeg, Frederick; Withagen, Cees

    2014-01-01

    This chapter studies the transition from fossil fuels to backstop technologies in a general equilibrium model in which growth is driven by research and development. The analysis generalizes the existing literature by allowing for imperfect substitution between fossil fuels and the new energy

  14. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  15. Business strategies in sustainable energy

    NARCIS (Netherlands)

    van den Buuse, D.J.H.M.

    2018-01-01

    Moving towards a more sustainable energy future is widely regarded as one the key challenges for the decades to come, related to the negative economic, political, environmental, and social externalities associated with fossil fuel dependence. The international diffusion of technologies which enable

  16. Opening Session [International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, March 4-7, 2013

    International Nuclear Information System (INIS)

    Laurent Michel

    2013-01-01

    For this opening address, I would like to share with you some thoughts about the evolution of the key drivers during the last decades for the development of fast reactors from the very pioneering age till now, taking into account new concerns and major events occurred since the last international conference on fast reactors and related fuel cycles held in Kyoto, Japan (FR 2009). There are three major periods: • The pioneering age (1945-1980) with breeding as a main driver followed by a kind of “winter season“ (1980-2000) for the development of fast reactors worldwide; • The so-called “brainstorming” phase (2000-2010), back to physics and nuclear chemistry, with international rebirth of the research on fast reactors and advanced fuel cycle owing to the GENERATION IV initiative, revisiting various reactor concepts along with 4 main drivers: sustainability, safety, proliferation resistance and costcompetitiveness. • A new era now (started in 2010) with very promising technological options and projects of prototypes with two main key drivers: → Innovation towards enhanced safety which is a major concern for public acceptance of nuclear power, especially after the FUKUSHIMA accident. → Higher flexibility in the management of fissile materials and nuclear waste in order to take into account various possible options for the contribution of nuclear power in the energy mix

  17. Technology Foresight: A Tool for sustainability

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2011-09-01

    Full Text Available Our age is one of very rapid progress in the sciences and technologies, together with Globalization. Thus, interrelationships between science, technology and society are becoming more complex. This makes economic and social trends more difficult to predict and hence, more sophisticated approaches are needed to predict new challenges in science and technology. Technology foresight is the most attractive approach. In fact, technology foresight is a “… a systematic means of assessing those scientific and technological developments which could have a strong impact on industrial competitiveness, wealth creation and quality of life. This book presents a brief review or foresighting theory and methods. The book provides a series of key methodologies along with a discussion of how technology foresight relates to sustainability.

  18. News technology utilization fossil fuel

    Directory of Open Access Journals (Sweden)

    Blišanová Monika

    2004-09-01

    Full Text Available Fossil fuel – “alternative energy“ is coal, petroleum, natural gas. Petroleum and natural gas are scarce resources, but they are delimited. Reserves petroleum will be depleted after 39 years and reserves natural gas after 60 years.World reserves coal are good for another 240 years. Coal is the most abundant fossil fuel. It is the least expensive energy source for generating electricity. Many environmental problems associated with use of coal:in coal production, mining creates environmental problems.On Slovakia representative coal only important internal fuel – power of source and coal is produced in 5 locality. Nowadays, oneself invest to new technology on utilization coal. Perspective solution onself shows UCG, IGCC.

  19. Status and future perspectives of PWR and comparing views on WWER fuel technology

    International Nuclear Information System (INIS)

    Weidinger, H.

    2003-01-01

    The main purpose of this paper is to give an overview on status and future perspectives of the Western PWR fuel technology. For easer understanding and correlating, some comparing views to the WWER fuel technology are provided. This overview of the PWR fuel technology of course can not go into the details of the today used designs of fuel, fuel rods and fuel assemblies. However, it tries to describe the today achieved capability of PWR fuel technology with regard to reliability, efficiency and safety

  20. Romanian concern for advanced fuels development

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2001-01-01

    The Institute for Nuclear Research (ICN), a subsidiary of Romanian Authority for Nuclear Activities, at Pitesti - Romania, has developed a preliminary design of a fuel bundle with 43 elements named SEU 43 for high burnup in CANDU Reactor. A very high experience in nuclear fuels manufacturing and control has also been accumulated. Additionally, on the nuclear site Pitesti there is the Nuclear Fuel Plant (NFP) qualified to manufacturing CANDU 6 type fuel, the main fuel supplier for NPP Cernavoda. A very good collaboration of ICN with NFP can lead to a low cost upgrading the facilities which ensure at present the CANDU standard fuel fabrication to be able of manufacturing also SEU 43 fuel for extended burnup. The financial founds are allocated by Romanian Authority for Nuclear Activities of the Ministry of Industry and Resources to sustain the departmental R and D program 'Nuclear Fuel'. This Program has the main objective to establish a technology for manufacturing a new CANDU fuel type destined for extended burnup. It is studied the possibility to use the Recovered Uranium (RU) resulted from LWR spent fuel reprocessing facility existing in stockpiles. The International Agency for Atomic Energy (IAEA) sustains also this program. By ROM/4/025/ Model Project, IAEA helps ICN to solve the problems regarding materials (RU, Zircaloy 4 tubes) purchasing, devices' upgrading and personnel training. The paper presents the main actions needing to be create the technical base for SEU 43 fuel bundle manufacturing. First step, the technological experiments and experimental fuel element manufacturing, will be accomplished in ICN installations. Second step, the industrial scale, need thorough studies for each installation from NFP to determine tools and technology modification imposed by the new CANDU fuel bundle manufacturing. All modifications must be done such as to the NFP, standard CANDU and SEU fuel bundles to be manufactured alternatively. (author)

  1. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  2. Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles

    International Nuclear Information System (INIS)

    Huo Hong; He Kebin; Wang, Michael; Yao Zhiliang

    2012-01-01

    One of the principal ways to reduce transport-related energy use is to reduce fuel-consumption rates of motor vehicles (usually measured in liters of fuel per 100 km). Since 2004, China has implemented policies to improve vehicle technologies and lower the fuel-consumption rates of individual vehicles. Policy evaluation requires accurate and adequate information on vehicle fuel-consumption rates. However, such information, especially for Chinese vehicles under real-world operating conditions, is rarely available from official sources in China. For each vehicle type we first review the vehicle technologies and fuel-economy policies currently in place in China and their impacts. We then derive real-world (or on-road) fuel-consumption rates on the basis of information collected from various sources. We estimate that the real-world fuel-consumption rates of vehicles in China sold in 2009 are 9 L/100 km for light-duty passenger vehicles, 11.4 L/100 km for light-duty trucks, 22 L/100 km for inter-city transport buses, 40 L/100 km for urban transit buses, and 24.9 L/100 km for heavy-duty trucks. These results aid in understanding the levels of fuel consumption of existing Chinese vehicle fleets and the effectiveness of policies in reducing on-road fuel consumption, which can help in designing and evaluating future vehicle energy-efficiency policies. - Highlights: ► Vehicle fuel-consumption rate (VFCR) data are rarely available in China. ► We review the fuel-economy policies currently in place in China and their impacts. ► We derive real-world VFCRs on the basis of information collected from various sources. ► Results aid in understanding the fuel consumption levels of Chinese vehicle fleets. ► Results help in designing and evaluating future vehicle energy-efficiency policies.

  3. The guide to sustainable energy technologies for schools; Un guide pour les technologies energetiques durables dans les ecoles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    There are significant attractions for municipalities to opt for sustainable solutions which involve energy efficient technologies and measures. This is the challenging background which led to the production the Guide to Sustainable Energy Technologies for Schools. This guide is a decision-making tool intended for European municipalities and school managers. Its aim is to: assist them in choosing between the energy technologies that will be used in school building or retrofitting projects and provide them with a framework for measuring and comparing different aspects of energy performance that can be used to convince decision-makers to select sustainable energy technologies and measures. The guide is composed of three parts: an illustrative list of sustainable energy technologies, an introduction to energy performance indicators and fifteen case studies describing practical sustainable energy solutions applied to schools in seven European countries. (A.L.B.)

  4. User requirements for innovative nuclear reactors and fuel cycle technologies in the area of economics, environment, safety, waste management, proliferation resistance and cross cutting issues, and methodology for innovative technologies assessment

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Depisch, Frank; Allan, Colin

    2003-01-01

    The IAEA General Conference in 2000 has invited ''all interested Member States to combine their efforts under the aegis of the Agency in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology''. In response to this invitation, the IAEA initiated an ''International Project on Innovative Nuclear Reactors and Fuel Cycles'', INPRO. The overall objectives of INPRO is to help to ensure that nuclear energy is available to contribute in fulfilling in a sustainable manner energy needs in the 21st century, and to bring together all interested Member States, both technology holders and technology users, to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles that use sound and economically competitive technology. Phase-I of INPRO was initiated in May 2001. During Phase-I, work was subdivided in two sub phase: Phase 1A (finished in June 2003) and Phase 1B (started in June 2003). Phase 1A dealt with the definition of Basic Principles, User Requirements and Criteria, and the development of a methodology for the evaluation of innovative nuclear technologies. In Phase 1A, task groups for several areas were established: (a) Prospects and Potentials of Nuclear Power, (b) Economics; (c) Sustainability and Environment, (d) Safety of Nuclear Installations, (e) Waste Management, (f) Proliferation Resistance, (g) Crosscutting issues and (h) for the Methodology for Assessment. In Phase-IB evaluations of innovative nuclear energy technologies will be performed by Member States against the INPRO Basic Principles, User Requirements and Criteria. This paper summarizes the results achieved in the Phase 1A of INPRO and is a cooperative effort of the INPRO team, consisting of all INPRO cost free experts and task managers. (author)

  5. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2015-01-01

    Full Text Available The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. The INPRO task titled “Global scenarios” is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21st century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries’ different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies.

  6. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  7. Multi-purpose container technologies for spent fuel management

    International Nuclear Information System (INIS)

    2000-12-01

    The management of spent nuclear fuel is an integral part of the nuclear fuel cycle. Spent fuel management resides in the back end of the fuel cycle, and is not revenue producing as electric power generation is. It instead results in a cost associated power generation. It is a major consideration in the nuclear power industry today. Because technologies, needs and circumstances vary from country to country, there is no single, standardized approach to spent fuel management. The projected cumulative amount of spent fuel generated worldwide by 2010 will be 330 000 t HM. When reprocessing is accounted for, that amount is likely to be reduced to 215 000 t HM, which is still more than twice as much as the amount now in storage. Considering the limited capacity of at-reactor (AR) storage, various technologies are being developed for increasing storage capacities. At present, many countries are developing away-from-reactor (AFR) storage in the form of pool storage or as dry storage. Further these AFR storage systems may be at-reactor sites or away-from-reactor sites (e.g. centrally located interim storage facilities, serving several reactors). The dry storage technologies being developed are varied and include vaults, horizontal concrete modules, concrete casks, and metal casks. The review of the interim storage plans of several countries indicates that the newest approaches being pursued for spent fuel management use dual-purpose and multi-purpose containers. These containers are envisaged to hold several spent fuel assemblies, and be part of the transport, storage, and possibly geological disposal systems of an integrated spent fuel management system

  8. Science and Technology Research for Sustainable Development in ...

    African Journals Online (AJOL)

    Science and Technology Research for Sustainable Development in Africa: The Imperative ... This has placed African countries at a disadvantage. ... In this paper, effort is made to establish the imperative of education to science and technology.

  9. Reprocessing technology for present water reactor fuels

    International Nuclear Information System (INIS)

    McMurray, P.R.

    1977-01-01

    The basic Purex solvent extraction technology developed and applied in the U.S. in the 1950's provides a well-demonstrated and efficient process for recovering uranium and plutonium for fuel recycle and separating the wastes for further treatment and packaging. The technologies for confinement of radioactive effluents have been developed but have had limited utilization in the processing of commercial light water reactor fuels. Technologies for solidification and packaging of radioactive wastes have not yet been demonstrated but significant experience has been gained in laboratory and engineering scale experiments with simulated commercial reprocessing wastes and intermediate level wastes. Commercial scale experience with combined operations of all the required processes and equipment are needed to demonstrate reliable reprocessing centers

  10. Industrial Maturity of FR Fuel Cycle Processes and Technologies

    International Nuclear Information System (INIS)

    Bruezière, Jérôme

    2013-01-01

    FR fuel cycle processes and technologies have already been proven industrially for Oxide Fuel, and to a lesser extent for metal fuel. In addition, both used oxide fuel reprocessing and fresh oxide fuel manufacturing benefit from similar industrial experience currently deployed for LWR. Alternative fuel type will have to generate very significant benefit in reactor ( safety, cost, … ) to justify corresponding development and industrialization costs

  11. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, Y. H.

    2001-03-01

    Since the amount of the spent fuel rapidly increases, the current R and D activities are focused on the technology development related with the storage and utilization of the spent fuel. In this research, to provide such a technology, the mechanical head-end process has been developed. In detail, the swing and shock-free crane and the RCGLUD(Remote Cask Grappling and Lid Unbolting Device) were developed for the safe transportation of the spent fuel assembly, the LLW drum and the transportation cask. Also, the disassembly devices required for the head-end process were developed. This process consists of an assembly downender, a rod extractor, a rod cutter, a fuel decladding device, a skeleton compactor, a force-rectifiable manipulator for the abnormal spent fuel disassembly, and the gantry type telescopic transporter, etc. To provide reliability and safety of these devices, the 3 dimensional graphic design system is developed. In this system, the mechanical devices are modelled and their operation is simulated in the virtual environment using the graphic simulation tools. So that the performance and the operational mal-function can be investigated prior to the fabrication of the devices. All the devices are tested and verified by using the fuel prototype at the mockup facility

  12. Sustainable city policy. Economic, environmental, technological

    Energy Technology Data Exchange (ETDEWEB)

    Camagni, R.; Capello, R. [Politecnico di Milano, Milan (Italy). Economics Dept.; Nijkamp, P. [Dept. of Spatial Economics. Fac. of Economics and Econometrics. Vrije Univ., Amsterdam (Netherlands)

    1995-12-31

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a `sustainable city`; it is an ambitious aim, since a unique and operationally defined `recipe` is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs.

  13. Sustainable city policy. Economic, environmental, technological

    International Nuclear Information System (INIS)

    Camagni, R.; Capello, R.

    1995-01-01

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a 'sustainable city'; it is an ambitious aim, since a unique and operationally defined 'recipe' is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs

  14. Structure, conduct, and sustainability of the international low-enriched fuel fabrication industry

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2008-01-01

    This paper examines the cost structures of fabricating Low-Enriched Uranium fuel (LEU, enriched to 5% enrichment) light water reactor fuels. The LEU industry is decades old, and (except for high entry cost, i.e., the cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added by industry incumbents at Nth-of-a-Kind cost to the maximum capacity allowed by the license. On the other hand, new entrants face higher First-of-a-Kind costs and high new-facility licensing costs, increasing the scale required for entry thus discouraging small scale entry by countries with only a few nuclear power plants. Therefore, the industry appears to be competitive with sustainable investment in fuel-cycle states, and structural barriers-to-entry increase its proliferation resistance. (author)

  15. Analysis and study of spent fuel reprocessing technology from birth to present

    International Nuclear Information System (INIS)

    Takahashi, Keizo

    2006-01-01

    As for the nuclear fuel reprocessing of the spent fuel, although there was argument of pros and cons, it was decided to start Rokkasho reprocessing project further at the Japan Atomic Energy Commission of ''Long-Term Program for Research, Development and Utilization of Nuclear Energy'' in year 2004. The operation of Tokai Reprocessing is going steadily to reprocess spent fuel more than 1,100 tons. In this paper, history, present status and future of reprocessing technology is discussed focusing from military Pu production, Magnox fuel reprocessing to oxide fuel reprocessing. Amount of reprocessed fuel are estimated based on fuel type. Then, history of reprocessing, US, UK, France, Germany, Russian, Belgian and Japan is presented and compared on technology, national character, development organization, environmental protection, and high active waste vitrification. Technical requirements are increased from Pu production fuel, Magnox fuel and oxide fuel mainly because of higher burnup. Reprocessing technology is synthetic of engineering and accumulation of operational experience. The lessons learned from the operational experience of the world will be helpful for establishment of nuclear fuel reprocessing technology in Japan. (author)

  16. Application of nuclear technology for sustainable development, and IAEA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    1998-01-01

    The role of radiation and isotopes for sustainable development in improving agriculture, industry and environmental conservation is presented. The radiation and isotope technology can increase productivity in a sustainable way. The IAEA programmes encompass mutation breeding, soil fertility and crop production, animal production, food irradiation, agrochemicals and insect pest control using nuclear technology

  17. Sustainable energy conversion for electricity and coproducts principles, technologies, and equipment

    CERN Document Server

    Rao, Ashok

    2015-01-01

    Provides an introduction to energy systems going on to describe various forms of energy sources Provides a comprehensive and a fundamental approach to the study of sustainable fuel conversion for the generation of electricity and for coproducing synthetic fuels and chemicals Covers the underlying principles of physics and their application to engineering including thermodynamics of combustion and power cycles, fluid flow, heat transfer, and mass transfer Details the coproduction of fuels and chemicals including key equipment used in synthesis and specific examples of coproduction in integrated

  18. Sustainability Of Electricity Supply Technologies under German Conditions: A Comparative Evaluation

    International Nuclear Information System (INIS)

    Hirschberg, S; Dones, R.; Heck, T.; Burgherr, P.; Schenler, W.; Bauer, C.

    2004-12-01

    On behalf of the International Committee on Nuclear Technology (ILK) the Paul Scherrer Institut carried out a comparative study addressing the sustainability of electricity supply technologies operating under German-specific conditions. The general objective of this analysis was to provide a support for the formulation of ILK position on the sustainability of various electricity supply technologies, with special emphasis on nuclear energy. The evaluation covers selected current fossil, nuclear and renewable technologies, which are representative for the average conditions in Germany. Two methods of indicator aggregation were employed, i.e. estimation of total (internal and extemal) costs and Multi-criteria Decision Analysis (MCDA). Use of MCDA is motivated by acknowledgement of the role of value judgements in decision-making. Both total costs and MCDA-based technology-specific total scores are useful comparative indicators of sustainability. Sustainability perspective implies a balanced (equal) importance assignment to economic, ecological and social aspects. In summary, this study provides a framework for systematic evaluation of sustainability of energy systems. Refinements of the methodology and specific indicators are feasible. Options for future applications include direct involvement of stakeholders, and evaluations of future technologies and of supply scenarios combining the various candidate technologies. Tools supporting such analyses have been developed by PSI and can be adjusted to the needs of country-specific applications. (author)

  19. Traditional technologies of fuels production for air-jet engines

    Directory of Open Access Journals (Sweden)

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  20. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  1. Sustained orderly development of the solar electric technologies

    International Nuclear Information System (INIS)

    Aitken, D.W.

    1992-01-01

    This article examines the need of electric utilities to support the commercialization of solar electric technologies now in order to have the technology available for future energy resources. The topics of the article include deteriorating opportunities, sustained orderly development of solar electric technologies, historical aspects, and market forces in the solar electric industry

  2. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems - 15483

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.

    2015-01-01

    The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21. century in a sustainable manner. The INPRO task titled 'Global scenarios' is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21. century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries' different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies. (authors)

  3. Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models

    Directory of Open Access Journals (Sweden)

    Juhwan Kim

    2018-01-01

    Full Text Available Recent developments in artificial intelligence (AI have led to a significant increase in the use of AI technologies. Many experts are researching and developing AI technologies in their respective fields, often submitting papers and patent applications as a result. In particular, owing to the characteristics of the patent system that is used to protect the exclusive rights to registered technology, patent documents contain detailed information on the developed technology. Therefore, in this study, we propose a statistical method for analyzing patent data on AI technology to improve our understanding of sustainable technology in the field of AI. We collect patent documents that are related to AI technology, and then analyze the patent data to identify sustainable AI technology. In our analysis, we develop a statistical method that combines social network analysis and Bayesian modeling. Based on the results of the proposed method, we provide a technological structure that can be applied to understand the sustainability of AI technology. To show how the proposed method can be applied to a practical problem, we apply the technological structure to a case study in order to analyze sustainable AI technology.

  4. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  5. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    International Nuclear Information System (INIS)

    Saxe, Maria

    2008-10-01

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  6. Sustainably produced ethanol. A premium fuel component; Nachhaltig produziertes Ethanol. Eine Premium Kraftstoffkomponente

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Joerg [Suedzucker AG, Obrigheim/Pfalz (Germany)

    2012-07-01

    Ethanol is the most used biofuel in the world. It is part of the European biofuel strategy, which is intended to preserve finite fossil resources, reduce greenhouse gas emissions and strengthen European agriculture. In addition to its traditional use in E5 fuel, ethanol most recently features in new fuels for petrol engines in Europe: as E10 as an expansion of the already existing concept of ethanol blends, such as in E5, or as ethanol fuel E85, a blend made up primarily of ethanol. There is already extensive international experience for both types of fuel for example in the USA or Brazil. The use of ethanol as a biofuel is linked to sustainability criteria in Europe which must be proven through a certification scheme. In addition to ethanol, the integrated production process also provides vegetable protein which is used in food as well as in animal feed and therefore provides the quality products of processed plants used for sustainable energy and in animal and human food. Ethanol has an effect on the vapour pressure, boiling behaviour and octane number of the fuel blend. Adjusting the blend stock petrol to fulfil the quality requirements of the final fuel is therefore necessary. Increasing the antiknock properties, increasing the heat of evaporation of the fuel using ethanol and the positive effects this has on the combustion efficiency of the petrol engine are particularly important. Investigations on cars or engines that were specifically designed for fuel with a higher ethanol content show significant improvements in using the energy from the fuel and the potential to reduce carbon dioxide emissions if fuels containing ethanol are used. The perspective based purely on an energy equivalent replacement of fossil fuels with ethanol is therefore misleading. Ethanol can also contribute to increasing the energy efficiency of petrol engines as well as being a replacement source of energy. (orig.)

  7. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  9. Performance Evaluation of Solid Oxide Fuel Cell by Computer ...

    African Journals Online (AJOL)

    The search for sustainable energy source that can compete with the existing one led to the discovery and acceptance of fuel cell technologies as a perfect replacement for fossil fuel. The ability of Solid Oxide Fuel Cells (SOFC) to capture the heat generation during the process of energy generation from electrochemical ...

  10. Transportation fuels of the future?

    International Nuclear Information System (INIS)

    Piel, W.J.

    2001-01-01

    Society is putting more emphasis on the mobile transportation sector to achieve future goals of sustainability and a cleaner environment. To achieve these goals, does society need to jump to a new combination of fuel and vehicle technology or can we just continue to improve on the current fuels and drive train technology that has powered us the past 70 or more years? Do we need to move to more exotic energy conversion technology (fuel cell vehicles?), or can improving fuel properties further allow us to continue using combustion engines to power our vehicles? What fuel properties can still be improved in gasoline and diesel? Besides removing sulfur, should there be less aromatics in fuels? Should aromatics be eliminated? Is there a role for oxygenates in gasoline and diesel? Do blending oxygenates in fuels help or hinder in achieving the environmental goals? Can we and should we reduce our dependency on crude oil for transportation energy? Why have not the previous government-sponsored Alternative Fuel programs displaced crude oil? The marketplace will determine which fuel and vehicle technology combination will eventually be used in the future. Does the information we know today give us insight to this future? This paper will attempt to address some of the key issues and questions on the role fuels may play in that marketplace decision

  11. Sustainability, Ethics and Nuclear Energy: Escaping the Dichotomy

    Directory of Open Access Journals (Sweden)

    Céline Kermisch

    2017-03-01

    Full Text Available In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions, namely: (i what should be sustained; (ii why should we sustain it; and (iii for whom should we sustain it. This leads us to conceptualize the notion of sustainability as a set of values, including safety, security, environmental benevolence, resource durability, and economic viability of the technology. The practical usefulness of sustainability as a moral framework is highlighted by demonstrating how it is applicable for understanding intergenerational dilemmas—between present and future generations, but also among different future generations—related to nuclear fuel cycles and radioactive waste management.

  12. Accelerating technological change. Towards a more sustainable transport system

    NARCIS (Netherlands)

    van der Vooren, A.

    2014-01-01

    This thesis provides insights into the mechanisms of technological change by capturing the complexity that characterises the current technological transition of the transport system into existing evolutionary models of technological change. The transition towards a more sustainable transport system

  13. PWR fuel inspection and repair technology development in the Republic of Korea

    International Nuclear Information System (INIS)

    Park, J.Y.

    1998-01-01

    As of September 1997, 10 PWRs and 2 PHWRs generate 10,320MW electricity in Korea. And another 8 PWRs and 2 PHWRs will be constructed by 2006. These will need about 400 MTU of PWR fuels and 400 MTU of PHWR fuels. To improve average burnup, thermal power, fuel usability and plant safety, better poolside fuel service technologies are strongly recommended as well as the fuel design and fabrication technology improvements. During the last twenty years of nuclear power plant operation in Korea, more than 4,000 fuel assemblies has been used. At the site, continuous coolant activity measurement, pool-side visual inspection and ultrasonic tests have been performed. Some of the fuels are damaged or failed for various reasons. Some of the defected fuels were examined in hot cell to investigate the cause of failure. Even though 30 PWR fuel assemblies were repaired by foreign engineers, fuel inspection and repair technologies are not established yet. Various kind of design for the fuel make the inspection, repair and reconstitution equipment more complex. As a result, recently, a plant to obtain overall technology for poolside fuel inspection, failed fuel repair and reconstitution through R and D activities are set forth. (author)

  14. Sustainable energy policy - implementation needs

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, M. [Global Energy and Environmental Consultants, Felmersham (United Kingdom)

    2000-07-01

    Implementation of sustainable energy must address current needs arising from poverty, inequity, unreliability of supplies, social and economic development requirements, and increasing efficiency as well as widening the fuel mix, accelerating the deployment of appropriate new renewable energy schemes, and giving the necessary consideration to protection of the biosphere and the needs of future generations. To achieve these multiple goals markets need to work better, additional investments need to be mobilised in sustainable energy, technological innovation needs to be encouraged, technological diffusion and capacity building in developing countries needs to be supported, and both sounder domestic policies and greater international co-operation are required. (author)

  15. Status and trends of nuclear technologies - Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2009-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in the year 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO intends to help to ensure that nuclear energy is available in the 21st century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to consider, jointly, actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. This IAEA publication is part of Phase 1 of INPRO. It intends to provide an overview on history, present situation and future perspectives of nuclear fuel cycle technologies. While this overview focuses on technical issues, nevertheless, the aspects of economics, environment, and safety and proliferation resistance are important background issues for this study. After a brief description about the INPRO project and an evaluation of existing and future reactor designs the publication covers nuclear fuel cycle issues in detail. It is expected that this documentation will provide IAEA Member States and their nuclear engineers and designers, as well as policy makers with useful information on status and trends of future nuclear fuel cycle technologies. Due to the size of the full report it was decided to create a summary of the information and attach a CD-ROM in the back of this summary report with the full text of the report

  16. Using persuasive technology to promote sustainable behavior in smart home environments

    NARCIS (Netherlands)

    Midden, C.J.H.

    2009-01-01

    Sustainable living is to a large extent the outcome of how consumers use the technology surrounding them. Seen from this perspective the rather strict separation of technological and behavioral solution is not only artificial but also detrimental to finding real sustainable solutions. Persuasive

  17. Technological growth of fuel efficiency in european automobile market 1975–2015

    International Nuclear Information System (INIS)

    Hu, Kejia; Chen, Yuche

    2016-01-01

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuel consumption per 100 km, and a 1% reduction in 0–100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target. - Highlights: • We evaluated fuel efficiency technological growth trends in European cars. • We quantified trade-offs between vehicle attributes and fuel consumption using statistical methods. • Technology development was offset by upsizing and upgrading of cars in 1975–2006. • Technology development and downsizing enabled large improvements in efficiency in 2006–2015. • Maintaining historical trend of efficiency improvement is not enough to achieve EU 2021 target.

  18. Perspective on the French closed fuel cycle: Open towards energy future and sustainability

    International Nuclear Information System (INIS)

    Tinturier, Bernard; Debes, Michel; Delbecq, Jean-Michel

    2006-01-01

    Energy sustainability and nuclear energy nowadays are far reaching issues with many implications and as a consequence, any long term sustainable strategy needs to be flexible. In France, nuclear energy (427 TWh in 2004, 80% of national electricity production) is a major asset for clean electricity production and for meeting Kyoto protocol objective in France. The decision to build a future EPR reactor in France has been taken. Regarding back end and fuel cycle, the current reprocessing and recycling strategy, with the existing industrial system (Cogema La Hague and Melox), has proven to be reliable and efficient. It enables to meet sustainability requirements, now and in the long run: ensuring a good management of high level waste through vitrification, reducing the amount of nuclear spent fuel in interim storage, recycling valuable nuclear material (Pu), keeping the possibility to use Pu concentrated in MOX spent fuel to start FBR in the future. To maintain this possibility for the far future, EDF considers that the Generation IV program is of major importance in order to develop future fast reactors able to use plutonium and to ensure a full utilization of uranium resource, while optimizing high level waste management. EDF strategy is to keep the nuclear option open in the future, with a two-steps approach for the renewal of the current nuclear fleet: first, around 2020, with the launching of generation III reactors like EPR, and second, depending on the energy demand, launching of Generation IV systems, around 2040 or beyond. To meet this energy prospect, R and D efforts must be devoted to fast breeder reactors (sodium cooled, which benefits already from industrial experience, and gas cooled, under consideration for R and D). Globally, this strategy is open to future progress and optimisation as needed to meet long term energy sustainability. It appears the necessity of a good consistency between all the components of the nuclear system: reactors, fuel cycle

  19. Development of coating technology for nuclear fuel by self-propagating high temperature synthesis

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, Bong G.; Lee, Y. W.

    1997-01-01

    This paper presents experimental results of the preparation of silicon carbide and graphite layers on a nuclear fuel from silane and propane gases by a conventional chemical vapor deposition and combustion synthesis technologies. The direct reaction between silicon and pyrolytic carbon in a high temperature releases sufficient amount of energy to make a synthesis self-sustaining under the preheating of about 1200 deg C. During this high temperature process, lamellar structure with isotropic carbon synthesis. A full characterization of phase composition and final morphology of the coated layers by X-ray diffraction, SEM and AES is presented. (author). 6 refs., 1 tab., 11 figs

  20. Sustainable development through nuclear technology : 29th annual conference of the Canadian Nuclear Society and 32nd CNS/CNA student conference

    International Nuclear Information System (INIS)

    2008-01-01

    The 29th Annual Conference of the Canadian Nuclear Society and 32nd CNS/CNA Student Conference on Sustainable Development through Nuclear Technology was held on June 1-4, 2008 in Toronto, Ontario, Canada. The theme of the conference was 'Nuclear Sustainability'. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. The renewed global interest in nuclear technology is based on a recognition of its potential to meet economic and environmental targets more favourably than competing technologies. Although many of these attractions are short-term in nature, they stem from a broader potential of nuclear technology to drive all aspects of development (social, environmental, economic) in a sustainable in this area. (author) a terial in support of fuel resources themselves. The conference drew a record attendance of over 450 delegates. Over 100 technical papers were presented within 15 technical sessions, as well as over 30 student papers in 5 sessions. The following list of session titles indicates the diversity of the technical papers: advanced reactors; plant and components; process systems; thermalhydraulics; safety and licensing; hydrogen; human factors; physics; instrumentation and control; environment and waste management; and plant operation. (author)

  1. Electrochemical Routes towards Sustainable Hydrocarbon Fuels

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2012-01-01

    The potential of renewable energy and possible solution to the intermittency problem of renewable energy sources like sun and wind are explained. The densest storage of energy is in the form of hydrocarbons. The most suitable method of conversion and storage within a foreseeable future is electro...... in the future. In spite of this, it is important to research and develop as many viable sustainable energy technologies as economical possible. © 2012 ECS - The Electrochemical Society  ...

  2. New Technologies for a sustainable nuclear energy and your effect in the management of radioactive waste; Nuevas tecnologias para una energia nuclear sostenible y su efecto en la gestion de residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Romero, E. M.

    2009-07-01

    The probable worldwide increase and distribution of nuclear energy for electricity generation, replacing partially fossil fuels, is promoting the development of technologies that foster its long-term sustain ability. Fast neutron system, combined with closed fuel cycles, are the key elements for the sustain ability. When combined, they can provide a significant reduction on the final high level wastes of the nuclear generation. In particular, Partitioning and Transmutation of actinides would allow the reduction of the nuclear wastes radiotoxicity, their content in fissile material and the heat load to the repository. (Author) 8 refs.

  3. Advanced fuel cycle on the basis of pyroelectrochemical process for irradiated fuel reprocessing and vibropacking technology

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Skiba, O.V.; Tsykanov, V.A.; Golovanov, V.N.; Bychkov, A.V.; Kisly, V.A.; Bobrov, D.A.

    2000-01-01

    For advanced nuclear fuel cycle in SSC RIAR there is developed the pyroelectrochemical process to reprocess irradiated fuel and produce granulated oxide fuel UO 2 , PuO 2 or (U,Pu)O 2 from chloride melts. The basic technological stage is the extraction of oxides as a crystal product with the methods either of the electrolysis (UO 2 and UO 2 -PuO 2 ) or of the precipitating crystalIization (PuO 2 ). After treating the granulated fuel is ready for direct use to manufacture vibropacking fuel pins. Electrochemical model for (U,Pu)O 2 coprecipitation is described. There are new processes being developed: electroprecipitation of mixed oxides - (U,Np)O 2 , (U,Pu,Np)O 2 , (U,Am)O 2 and (U,Pu,Am)O 2 . Pyroelectrochemical production of mixed actinide oxides is used both for reprocessing spent fuel and for producing actinide fuel. Both the efficiency of pyroelectrochemical methods application for reprocessing nuclear fuel and of vibropac technology for plutonium recovery are estimated. (author)

  4. SELECTION OF KURAU FISHING TECHNOLOGY UNITS Eleutheronema tetradactylum WHICH COMPETITIVE AND SUSTAINABLE

    Directory of Open Access Journals (Sweden)

    Muhammad Natsir Kholis

    2018-01-01

    Full Text Available Environmentally friendly fishing technology unit is needed in sustainable fisheries management. The purpose of this study was to determine the fishing technology unit of kurau competitive and sustainable. Data collection was carried out from July to September 2016 in the Coastal Pambang of Bengkalis District of Riau Province, by using the survey method. The analytical data method used is scoring the biological, technical and socioeconomic aspects the fishing technology unit of kurau. Results of research show that combined analysis of biological, technical and socioeconomic aspects have the value of the VA fishing line function (2.48 is higher than the other three fishing gear. Thus, the fishing line is a selected fishing technology unit of kurau competitive and sustainable in the Coastal Pambang Bengkalis District. Keywords: competitive,coastal pambang, fishing technology, kurau fish,sustainable fishing

  5. Technological Advances and Opportunities for the Development of Sustainable Biorefineries

    OpenAIRE

    Mussatto, Solange I.

    2017-01-01

    Moving to a more sustainable economy, where renewable biomass is used to produce fuels, chemicals, energy and materials, is one of the main challenges faced by the society nowadays in order to ensure a sustainable low-carbon economy for the future. In addition, a bio-based economy has the potential to generate new jobs and new opportunities for entrepreneurship, with further benefits to the global economy and the society. Biomass can be used to replace fossil feedstocks for the production of ...

  6. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  7. Fuel cell vehicles: technological solution

    International Nuclear Information System (INIS)

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  8. Achieving Nuclear Sustainability through Innovation

    International Nuclear Information System (INIS)

    2013-01-01

    In 2000, the IAEA Member States recognized that concerted and coordinated research and development is needed to drive innovation that ensures that nuclear energy can help meet energy needs sustainably in the 21st century. Following an IAEA General Conference resolution, an international 'think tank' and dialogue forum were established. The resulting organization, the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), helps nuclear technology holders and users coordinate the national and international studies, research and other activities needed to achieve innovations in nuclear reactor designs and fuel cycles. Currently, 38 countries plus the European Commission are participating in the project. This group includes both developing and developed economies that represent more than 75% of the world's population and 85% of its gross domestic product. INPRO undertakes collaborative projects among IAEA Member States, which analyse development scenarios and examine how nuclear energy can support the United Nations' goals for sustainable development in the 21st century. The results of these projects can be applied by IAEA Member States in their national nuclear energy strategies and can lead to international cooperation resulting in beneficial innovations in nuclear energy technology and its deployment. For example, INPRO studies the 'back end' of the fuel cycle, including recycling of spent fuel to increase resource use efficiency and to reduce the waste disposal burdens.

  9. The nuclear fuel cycle back-end: purposes and outlook

    International Nuclear Information System (INIS)

    Boullis, B.

    2010-01-01

    The recycling of spent fuels appears as the only way to get a sustainable nuclear energy. Uranium and plutonium recycling technologies are already implemented in France but they require to be upgraded in order to follow the technical evolutions of reactors. The research topics concerning recycling are: -) the adaptation of recycling technologies to higher burn-ups and to the use of Mox fuels, -) to improve the recycling technologies in terms of waste production, -) to prepare the multi-recycling of spent fuels from fast reactors, and -) to go ahead in the recycling policy by separating minor actinides in order to transmute them. (A.C.)

  10. Patent Keyword Extraction for Sustainable Technology Management

    Directory of Open Access Journals (Sweden)

    Jongchan Kim

    2018-04-01

    Full Text Available Recently, sustainable growth and development has become an important issue for governments and corporations. However, maintaining sustainable development is very difficult. These difficulties can be attributed to sociocultural and political backgrounds that change over time [1]. Because of these changes, the technologies for sustainability also change, so governments and companies attempt to predict and manage technology using patent analyses, but it is very difficult to predict the rapidly changing technology markets. The best way to achieve insight into technology management in this rapidly changing market is to build a technology management direction and strategy that is flexible and adaptable to the volatile market environment through continuous monitoring and analysis. Quantitative patent analysis using text mining is an effective method for sustainable technology management. There have been many studies that have used text mining and word-based patent analyses to extract keywords and remove noise words. Because the extracted keywords are considered to have a significant effect on the further analysis, researchers need to carefully check out whether they are valid or not. However, most prior studies assume that the extracted keywords are appropriate, without evaluating their validity. Therefore, the criteria used to extract keywords needs to change. Until now, these criteria have focused on how well a patent can be classified according to its technical characteristics in the collected patent data set, typically using term frequency–inverse document frequency weights that are calculated by comparing the words in patents. However, this is not suitable when analyzing a single patent. Therefore, we need keyword selection criteria and an extraction method capable of representing the technical characteristics of a single patent without comparing them with other patents. In this study, we proposed a methodology to extract valid keywords from

  11. DuPont IsoTherming clean fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Levinski, E. [E.I. DuPont Co., Wilmington, DE (United States)

    2009-07-01

    This poster described a hydroprocessing technology that DuPont has acquired from Process Dynamics, Inc. The IsoTherming clean fuel technology significantly reduces sulphur in motor fuels. The technology provides petroleum refiners the solution for meeting ultra low sulphur diesel requirements, at much lower costs than conventional technologies. IsoTherming hydroprocessing operates in a kinetically limited mode, with no mass transfer limitation. Hydrogen is delivered to the reactor in the liquid phase as soluble hydrogen, allowing for much higher space velocities than conventional hydrotreating reactors. Treated diesel is recycled back to the inlet of the reactor, generating less heat and more hydrogen into the reactor. The process results in a more isothermal reactor operation that allows for better yields, fewer light ends and greater catalyst life. The technology reduces coking, because the process provides enough hydrogen in the solution when cracking reactions take place. As a result, the process yields longer catalyst life. Other advantages for refiners include lower total investment; reduced equipment delivery lead times; reduced maintenance and operating costs; and configuration flexibility. tabs., figs.

  12. Presentation of the 10. European Event on Technology: technologies for a sustainable development; Presentation des 10. Entretiens Europeens de la Technologie: technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    The European Event on Technology (EET), is a major meeting on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview on recently acquired or upcoming technologies developed by sector. These proceedings present several technologies of interest for the energy and environment sectors: Energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy system; transports and propulsion systems: modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; urban goods transport: towards a drop in congestion and nuisance; new hybrid propulsion for buses: energy/environmental optimization; Tram-train: city-suburbs concept without transshipment; safety: computerization in controlling nuclear power plant processes (EPR architecture); refractory materials: a key factor for the increase in aero-turbo-engines output; the contribution of waste processing to the production of greenhouse gases; waste as a

  13. Sustainable development, clean technology and knowledge from industry

    Directory of Open Access Journals (Sweden)

    Sokolović Slobodan M.

    2012-01-01

    Full Text Available Clean technology or clean production is the most important factor for the economic growth of a society and it will play the main role not only in the area of cleaner production, but also in sustainable development. The development of clean technology will be the main factor of the company’s strategy in the future. Each company, which wants to reach the competitive position at the market and wants to be environmentally friendly, has to accept the new approach in corporate management and the strategy of new clean technology. The main principles of clean technology are based on the concept of maximum resource and energy productivity and virtually no waste. This approach may be limited by human resources and the level of their environmental knowledge. Companies are committed to the development of the workers’ skills, and thus to the improvement of the company for the full implementation of the environmental legislation and clean production concept. Based on this commitment, one of Tempus projects is designed to improve the university-enterprise cooperation in the process of creating sustainable industry in Serbia, Bosnia and Herzegovina and the Former Yugoslav Republic of Macedonia. To achieve this goal, partner universities will create special courses on sustainable industry and thus enhance the lifelong learning process and cooperation between industry and universities in the Western Balkan countries.

  14. Sustainable development: the contributions of gas technology

    International Nuclear Information System (INIS)

    Cappe, D.; Buchet, P.; Muller, T.; Millet, B.

    2007-01-01

    The aim of this workshop was to debate the following questions in relation with sustainable development: what are the contributions of gas technology to the short- and medium-term mastery of demand in residential, tertiary and industry markets? What are the efficient applications of gas technology and what are the energy saving potentialities by type of market? Three participants present their experience in this domain. (J.S.)

  15. Sustainable technology. Development of a non-perishable world

    International Nuclear Information System (INIS)

    Van Kasteren, J.

    2002-01-01

    An overview is given of the research proggramme Sustainable Technological Development - Knowledge Transfer and Embedment, which was finalized September 2001. The book provides an overview of new technology, which at present is developed and applied in the sectors food, housing, transport, industry, water, energy, trade and services [nl

  16. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  17. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Birky, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohlke, David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-01

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in which there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle

  18. A crop production ecology (CPE) approach to sustainable production of biomass for food, feed and fuel

    NARCIS (Netherlands)

    Haverkort, A.J.; Bindraban, P.S.; Conijn, J.G.; Ruijter, de F.J.

    2009-01-01

    With the rapid increase in demand for agricultural products for food, feed and fuel, concerns are growing about sustainability issues. Can agricultural production meet the needs of increasing numbers of people consuming more animal products and using a larger share of crops as fuel for transport,

  19. KNF's fuel service technologies and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Cheol; Kwon, Jung Tack; Kim, Jaeik; Park, Jong Youl; Kim, Yong Chan [KNF, Daejeon (Korea, Republic of)

    2009-04-15

    In Korea, since 1978, the commercial nuclear power plant was operated. After 10 years, from 1988, the nuclear fuel was produced by KNF (Korea Nuclear Fuel). The Fuel Service Team was established at KNF in 1995. Through the technical self reliance periods in cooperate with advanced foreign companies for 5 years, KNF has started to carry out fuel service activities onsite in domestic nuclear power plants. By ceaseless improving and advancing our own methodologies, after that, KNF is able to provide the most safe and reliable fuel repair services and poolside examinations including the root cause analysis of failed fuels. Recently, KNF developed the fuel cleaning system using ultrasonic technique for crud removal, and the CANDU fuel sipping system to detect a failed fuel bundle in PHWR. In this paper, all of KNF's fuel service technologies are briefly described, and the gained experience in shown.

  20. Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis

    International Nuclear Information System (INIS)

    Maxim, Alexandru

    2014-01-01

    Solving the issue of environmental degradation due to the expansion of the World's energy demand requires a balanced approach. The aim of this paper is to comprehensively rank a large number of electricity generation technologies based on their compatibility with the sustainable development of the industry. The study is based on a set of 10 sustainability indicators which provide a life cycle analysis of the plants. The technologies are ranked using a weighted sum multi-attribute utility method. The indicator weights were established through a survey of 62 academics from the fields of energy and environmental science. Our results show that large hydroelectric projects are the most sustainable technology type, followed by small hydro, onshore wind and solar photovoltaic. We argue that political leaders should have a more structured and strategic approach in implementing sustainable energy policies and this type of research can provide arguments to support such decisions. - Highlights: • We rank 13 electricity generation technologies based on sustainability. • We use 10 indicators in a weighted sum multi-attribute utility approach. • Weights are calculated based on a survey of 62 academics from the field. • Large hydroelectric projects are ranked as the most sustainable. • Decision makers can use the results to promote a more sustainable energy industry

  1. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  2. Is nuclear power environmentally sustainable? Paper no. IGEC-1-121

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2005-01-01

    The sustainability of nuclear energy is discussed in terms of its environmental impacts and its utilization of resources. The reactors in the present generation of fission reactors extract only a small percentage of the energy available from uranium. A solution to the long-term management of highly radioactive used reactor fuel is also a key factor in fission's sustainability. Recycling used fuel for enhanced energy production in advanced reactors and the mitigation of the long-term management of the remaining wastes, ideally with their ultimate destruction by nuclear transmutation are technologies that need to be developed in order to ensure the long term sustainability of nuclear fission. In contrast nuclear fusion, while not yet available for power production, promises to be inherently sustainable. (author)

  3. Thorium nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  4. User-led innovations and participation processes: lessons from sustainable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ornetzeder, Michael [ZSI - Centre for Social Innovation, Linke Wienzeile 246, A-1150 Vienna (Austria); Rohracher, Harald [IFF/IFZ - Inter-University Research Centre for Technology, Work and Culture, Schloegelgasse 2, A-8010 Graz (Austria)

    2006-01-01

    In this paper we will pose the question whether a higher level of user participation could be used as a strategy to improve the development and dissemination of sustainable energy technologies. We will especially focus on user-led innovation processes with a high involvement of individual end-users. In our argument we will draw on several case studies in the field of renewable energy technologies-in particular solar collectors and biomass heating systems-and sustainable building technologies. Users in these case studies were involved in the design or planning processes, sometimes in a very selective way and with limited influence, sometimes very active and for quite a long period of time. Especially in the case of renewable energy technologies self-building groups were highly successful and resulted in improved and widely disseminated technologies. Based on the empirical results of our case studies we will critically discuss the potential of user involvement (especially in self-building groups) for the development and promotion of sustainable energy technologies and outline technological and social pre-conditions for the success of such approaches. (author)

  5. User-led innovations and participation processes: lessons from sustainable energy technologies

    International Nuclear Information System (INIS)

    Ornetzeder, Michael; Rohracher, Harald

    2006-01-01

    In this paper we will pose the question whether a higher level of user participation could be used as a strategy to improve the development and dissemination of sustainable energy technologies. We will especially focus on user-led innovation processes with a high involvement of individual end-users. In our argument we will draw on several case studies in the field of renewable energy technologies-in particular solar collectors and biomass heating systems-and sustainable building technologies. Users in these case studies were involved in the design or planning processes, sometimes in a very selective way and with limited influence, sometimes very active and for quite a long period of time. Especially in the case of renewable energy technologies self-building groups were highly successful and resulted in improved and widely disseminated technologies. Based on the empirical results of our case studies we will critically discuss the potential of user involvement (especially in self-building groups) for the development and promotion of sustainable energy technologies and outline technological and social pre-conditions for the success of such approaches

  6. Life cycle assessment (LCA) methodology: importance in the integration of the fuel cell technology type PEMFC (proton exchange membrane fuel cells); Metodologia da analise de ciclo de vida: importancia na insercao da tecnologia de celula a combustivel do tipo PEMFC (membrana polimerica trocadora de protons)

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, Sandra Harumi; Seo, Emilia Satoshi Miyamaru [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)). Centro de Ciencia e Tecnologia de Materiais], e-mail: shfukuro@ipen.br

    2004-07-01

    To improve the standard of society's quality of life, it is necessary to improve the quality of distributed energy and its inherent services within a sustainability process. Among different technological routes that produce more sustainable energy are the fuel cells - also known as combustible batteries. The Global Environment Facility (GEF) has identified the fuel cells as a potential technology to reduce, in the future, the effect of greenhouse gases in both developed and developing countries. Although there are various types of fuel cells, the most used technology for research studies on fuel cells is the Polymer Electrolyte Fuel Cells (FEMFC). However, economic issues - related to the high cost of the membrane's materials and of the catalysts of groups of platinum metals - are still some of the obstacles that need to be overcome for this technology to be more accessible. There are also socio-environmental aspects related to the impacts caused by the extraction, the use and the destination of these metals. Taking in consideration the challenges of complying with the demands of the market and the society as well as with the growing tendency of more rigid patterns of environmental control, the objective of the present work is to show the tool of environmental management - Life Cycle Assessment (LCA) - and its importance on the pursuit for socio-economic and environmental alternatives feasible to the recycling of the catalysts of platinum of the PEMFC. This way, it intends to collaborate to the progress of the knowledge about environmental and socio-economic subjects related to the productive process of the PEMFC. (author)

  7. A state of the art on metallic fuel technology development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960's, the development of metallic fuels continued throughout the 1970's at ANL's experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980's, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab

  8. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  9. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Fuel System Supply Point

    Science.gov (United States)

    2014-06-19

    product used as a diesel product for ground use (1). Free water contamination (droplets) may appear as fine droplets or slugs of water in the fuel...methods and test procedures for the calibration and use of automatic particle counters. The transition of this technology to the fuel industry is...UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18

  10. Making technological innovation work for sustainable development

    OpenAIRE

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G.; Matus, Kira; Moon, Suerie; Murthy, Sharmila L.; Clark, William C.

    2016-01-01

    Sustainable development requires harnessing technological innovation to improve human well-being in current and future generations. However, poor, marginalized, and unborn populations too often lack the economic or political power to shape innovation processes to meet their needs. Issues arise at all stages of innovation, from invention of a technology through its selection, production, adaptation, adoption, and retirement. Three insights should inform efforts to intervene in innovation syste...

  11. Heavy water technology and its contribution to energy sustainability

    International Nuclear Information System (INIS)

    MacDiarmid, H.; Alizadeh, A.; Hopwood, J.; Duffey, R.

    2009-01-01

    Full text: As the global nuclear industry expands several markets are exploring avenues and technologies to underpin energy security. Heavy water reactors are the most versatile power reactors in the world. They have the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first commercial heavy water reactor in 1962. With the maturation of the industry, the unique design features of the now-familiar product-on-power refuelling, high neutron economy, and simple fuel design-make possible the realization of its potential fuel-cycle versatility. As resource constrains apply pressure on world markets, the feasibility of these options have become more attractive and closer to entering widespread commercial application

  12. Sustainable Wearables: Wearable Technology for Enhancing the Quality of Human Life

    Directory of Open Access Journals (Sweden)

    Jaewoon Lee

    2016-05-01

    Full Text Available This paper aims to elicit insights about sustainable wearables by investigating recent advancements in wearable technology and their applications. Wearable technology has advanced considerably from a technical perspective, but it has stagnated due to barriers without penetrating wider society despite early positive expectations. This situation is the motivation behind the focus on studies by many research groups in recent years into wearable applications that can provide the best value from a human-oriented perspective. The expectation is that a new means to resolve the issue can be found from a viewpoint of sustainability; this is the main point of this paper. This paper first focuses on the trend of wearable technology like bodily status monitoring, multi-wearable device control, and smart networking between wearable sensors. Second, the development intention of such technology is investigated. Finally, this paper discusses about the applications of current wearable technology from the sustainable perspective, rather than detailed description of the component technologies employed in wearables. In this paper, the definition of sustainable wearables is discussed in the context of improving the quality of individual life, social impact, and social public interest; those wearable applications include the areas of wellness, healthcare, assistance for the visually impaired, disaster relief, and public safety. In the future, wearables will not be simple data trackers or fun accessories but will gain extended objectives and meanings that play a valuable role for individuals and societies. Successful and sustainable wearables will lead to positive changes for both individuals and societies overall.

  13. Some aspects concerning the implementation of a fuel technology project

    International Nuclear Information System (INIS)

    Andreescu, N.; Alecu, M.; Mirion, I.

    1977-01-01

    The nuclear power programme in Romania envisages that until 1990 there will be installed about 6000 MWe in nuclear power plants. In order to put into practice such a nuclear programme there will be necessary high investments, possible to be achieved only by the ever increasing participation of the Romanian industry. With a view to this purpose, the Romanian authorities pay great attention to the research and development of the nuclear fuel manufacturing technology. Some research started in 1968-1969 and was intensified later in 1971 when the Institute for Nuclear Technology was founded and in 1972 when the IAEA-UNDP programme ''Development of Nuclear Technology in Romania'' started. This programme was conceived to deal with; 1. technology of UO2 powder and pellet fabrication; 2. manufacturing technology of fuel rods and bundle; 3. irradiation test of fuel rods; 4. development of various activities connected to fuel technology (thermal transfer loops, corrosion tests, neutronic, thermal and hydrodynamical calculations). Within the IAEA-UNDP project a demonstration facility was installed at INT where a great number of the works, resulting from the above mentioned directions, were performed. As a result of these works, at the end of 1975 in the demonstration facility there were manufactured in a reproducible way fuel rods according to the required specifications. The paper further presents the adopted irradiation testing programme, the out-of-pile testing programme, as well as some performances obtained during the different phases of the whole project. There have been conceived and manufactured some equipment meant for fabrication, tests, or for current control. The paper also shows some aspects connected to the personnel formation, as well as some aspects that will have to be solved in order to make possible the step from the demonstration facility to a fuel plant

  14. Review of coal-water fuel pulverization technology and atomization quality registration methods

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2017-01-01

    Full Text Available Possibilities of coal-water fuel application in industrial power engineering are considered and described. Two main problems and disadvantages of this fuel type are suggested. The paper presents information about liquid fuel atomization technologies and provides data on nozzle type for coal-water fuel pulverization. This article also mentions some of the existing technologies for coal-water slurry spraying quality determination.

  15. Alternative energy technologies as a cultural endeavor. A case study of hydrogen and fuel cell development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Galich, Ante [Luxembourg Univ., Walferdange (Luxembourg). Faculty of Language and Literature, Humanities, Arts and Education; Wissenschaftszentrum Berlin fuer Sozialforschung gGmbH, Berlin (Germany). Abt. ' ' Kulturelle Quellen von Neuheit' ' ; Marz, Lutz [Wissenschaftszentrum Berlin fuer Sozialforschung gGmbH, Berlin (Germany). Abt. ' ' Kulturelle Quellen von Neuheit' '

    2012-12-15

    The wider background to this article is the shift in the energy paradigm from fossil energy sources to renewable sources which should occur in the twenty-first century. This transformation requires the development of alternative energy technologies that enable the deployment of renewable energy sources in transportation, heating, and electricity. Among others, hydrogen and fuel cell technologies have the potential to fulfill this requirement and to contribute to a sustainable and emission-free transport and energy system. However, whether they will ever reach broad societal acceptance will not only depend on technical issues alone. The aim of our study is to reveal the importance of nontechnical issues. Therefore, the article at hand presents a case study of hydrogen and fuel cells in Germany and aims at highlighting the cultural context that affects their development. Our results were obtained from a rich pool of data generated in various research projects through more than 30 in-depth interviews, direct observations, and document analyses. We found that individual and collective actors developed five specific supportive practices which they deploy in five diverse arenas of meaning in order to attach certain values to hydrogen and fuel cell technologies. Based on the results, we drew more general conclusions and deducted an overall model for the analysis of culture in technological innovations that is outlined at the end of the article. It constitutes our contribution to the interdisciplinary collaboration required for tackling the shift in this energy paradigm.

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  17. Feasibility study on the development of advanced LWR fuel technology

    International Nuclear Information System (INIS)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others.

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO 2 pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO 2 -Gd 2 O 3 burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs

  18. Feasibility study on the development of advanced LWR fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO{sub 2} pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO{sub 2}-Gd{sub 2}O{sub 3} burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs.

  19. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  20. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  1. Let nuclear technology create new brilliancy for china's sustainable development

    International Nuclear Information System (INIS)

    Du Xiangwan

    2008-01-01

    This paper summarizes the development and application directions of nuclear technology, including five aspects: nuclear technology and energy nuclear technology and medicine, nuclear anclear analysis technology, nuclear radiation technology, astronautics and voyage's nuclear power, etc. The paper discusses the importance of them to sustainable development and generalizes the development trilogy of nuclear science and technology and its prospect. (authors)

  2. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  3. Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Netherlands

    International Nuclear Information System (INIS)

    Nasiri, Masoud; Ramazani Khorshid-Doust, Reza; Bagheri Moghaddam, Nasser

    2013-01-01

    Countries face many problems for the development of renewable energy technologies. However these problems are not the same for different countries. This paper provides insight into the development of Hydrogen and Fuel Cell Technology (HFCT) in Iran (1993–2010), as an alternative for increasing sustainability of energy system in long-term. This is done by applying the Technological Innovation System (TIS) approach and studying the structure and dynamics of seven key processes that affect the formation of HFCT TIS. Thereafter, the pattern of HFCT development in Iran is compared with the Netherlands, using a multi-level perspective. Then, it is shown that under-development and oil-dependency, which are two macro-economic factors at landscape level, can explain the main differences between these countries at regime and niche levels. This means that macro-economic factors cause Iran and the Netherlands to experience different ways for the development of HFCT. - Highlights: • Hydrogen and fuel cell technology development is modeled, using innovation systems. • This technology development in Iran and Netherlands are compared. • The causes of underdevelopment of this technology in Iran are explained

  4. The development and localization of nuclear fuel technology for KMRR

    International Nuclear Information System (INIS)

    Kim, Seong Yun; Lee, Ji Bok; Suk, Ho Chun; Kuk, Il Hyun; Hwang, Woan; Kim, Bong Goo; Park, Joo Hwan; Kim, Young Jin; Kang, Thae Khapp; Lee, Jae Choon

    1988-05-01

    This project was implemented aiming at localizing the fabrication of the KMRR fuel by october 1993. The contents of this project were divided into three parts: fuel design, fuel fabrication and process criticality analysis. In the fuel design, the radial power distribution in the fuel core was modeled and formulated taking account of the neutron flux depression in the radial direction. It was also performed to model and formulate the thermal characteristics such as the thermal conductivity and specific heat of the fuel core, U3Si-Al, the swelling and the film coefficient of heat transfer between the aluminum clad and light water coolant. The two dimensional heat transfer in the finned fuel element was equated based on the general equation governing the heat transfer in materials in order to develope a computer code, TEMP2D. TEMP2D solves finite differenced equations to calculate a two dimensional fuel temperature distribution under the steady and transient states. In the fuel fabrication, the technologies of fabricating uranium silicide fuel meat were tried by using depleted uranium as a raw material. These were extended to find the problems in technologies and to establish the ways of approach. The end product, so called fuel meat, was a metallic powder compound, U3Six(1≤x≤2), dispersed in Al matrix. The fuel meat was fabricated by the horizontal extrusion technique, and powder extrusion technique. Fabrication technologies comprise five different continuous processes: melting and casting of metallic uranium with silicon and aluminum, heat treatment, chipping and crushing, pulverizing, and extrusion. In the process criticality analysis, AMPX-KENO benchmark calculation was performed and calculational error of AMPX-KENO system was established. (Author)

  5. Proceedings of the symposium on nitride fuel cycle technology

    International Nuclear Information System (INIS)

    2004-12-01

    This report is the Proceedings of the Symposium of Nitride Fuel Cycle Technology, which was held on July 28, 2004, at the Tokai Research Establishment of the Japan Atomic Energy Research Institute. The purpose of this symposium is to exchange information and views on nitride fuel cycle technology among researchers from foreign and domestic organizations, and to discuss the recent and future research activities. The topics in the symposium are Present State of the Technology Development in the World and Japan, Fabrication Technology, Property Measurement and Pyrochemical Process. The intensive discussion was made among 53 participants. This report consists of 2 papers as invited presentations and 12 papers as contributed papers. (author)

  6. Technology status review and carbon abatement potential of renewable transport fuels in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J; Bauen, A

    2003-07-01

    The document reviews the technology for the production of renewable transport fuels (RTFs) and includes a discussion on the costs of the different RTF options and the role they might play in helping reduce emissions of greenhouse gases. The motivation for using RTFs in the UK are (1) to reduce transport sector costs; (2) reduce greenhouse gas emissions; (3) improve air quality; (4) improve energy security in the transport sector and (5) assist rural development through domestic production of biomass-based fuels. The RTFs of most interest at present are ethanol produced in the fermentation of sugar and starchy crops, and biodiesel from oil crops. Figures for the UK potential for RTFs are given. It is pointed out however that given the finite availability of renewable sources and the competition for other applications, the use of RTFs will need to be efficient for sustainability. The report was prepared by Imperial College London as part of the DTI New and Renewable Energy Programme.

  7. Canadian Fusion Fuels Technology Project activities report

    International Nuclear Information System (INIS)

    1985-01-01

    The Canadian Fusion Fuels Technology Project was formally established in 1982. The project is directed toward the further development of Canadian capabilities in five major areas: tritium technology, breeder technology, materials technology, equipment development and safety and the environment. The project is funded by three partners - Government of Canada (50%), Ontario Provincial Government (25%) and Ontario Hydro (25%). The fiscal year 1984/85 represents the third year of operation of the project. In 1984/85, 108 contracts were awarded totalling $4 million. Supplementary funding by subcontractors added approximately $1.9 million to the total project value. More than 200 people participated in the technical work involved in the project. Sixteen people were on attachment to foreign facilities for terms ranging from 1 month to 2.5 years. Five patents were applied for including a tritium discrimination monitor, a new radio-chemical tritium separation method, a new variation of fuel cleanup by gas chromatography, a passive tritium permeation system using bimetallic membranes, and a new breeder process using lithium salts dissolved in heavy water

  8. Coordinating Leader-Follower Supply Chain with Sustainable Green Technology Innovation on Their Fairness Concerns.

    Science.gov (United States)

    Du, Bisheng; Liu, Qing; Li, Guiping

    2017-11-08

    Sustainable green technology innovation is essential in all the stages of the supply chain development. The members of the supply chain in each stage need to invest in sustainable green technology innovation research and development. However, whether the sustainable green technology innovation investments and profits for all the members are fairness concerned is a critical factor to motivate the supply chain members. Motivated by a real business investigation, in this study, a supply chain model with one supplier and one manufacturer is analyzed. We consider fairness concerns for the supplier and the manufacturer with sustainable green technology innovation development. We derive the optimal results in both with and without fairness concern. The results indicate that fairness concerns can promote and coordinate the supply chain members without advantage inequity averseness, to invest more on their sustainable green technology innovation development.

  9. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  10. Fuel cell technology; Brennstoffzellen-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Stimming, U; Friedrich, K A; Cappadonia, M; Vogel, R

    1999-12-31

    Hydrogen from fossil or renewable sources is an important fuel for low-emission power generation in fuel cells. Methanol and maybe also ethanol can also be produced by direct electrochemical processes in low-temperature fuel cells (PEMFC, PAFC). Fuel cell systems with high operating temperatures are highly flexible with regard to fuel but tend to have material problems. On the other hand, rapid developments in materials development and the possibility of production technology transfer from the electronics industry lead one to expect a breakthrough in the near future. But in spite of this, niche market applications will prevail. Since power stations have a longer life than motor vehicles and fuel cells in mobile applications, emission reductions from fuel cell applications in road vehicles are more probable on a medium-term basis than from applications in power stations. (orig.) [Deutsch] Wasserstoff, der sowohl aus fossilen wie auch aus regenerativen Quellen erschlossen werden kann, ist ein wesentlicher Brennstoff fuer die emissionsarme Elektrizitaetsproduktion in Brennstoffzellen. Methanol und eventuell Ethanol koennen auch direkt elektrochemisch in Niedertemperaturbrennstoffzellen (PEMFC, PAFC) umgesetzt werden. Brennstoffzellensysteme mit hohen Betriebstemperaturen erlauben eine hohe Flexibilitaet bezueglich der verwendeten Brennstoffe, sind aber nach wie vor durch starke Materialprobleme belastet. Die enormen Fortschritte in der Materialentwicklung einerseits sowie ein moeglicher Transfer von Fertigungstechnologien aus der Elektronikindustrie andererseits lassen eine zukuenftige grosstechnische Nutzung von Brennstoffzellen erwarten. Die technische Einfuehrung wird dennoch nur ueber Nischenmaerkte moeglich sein. Da die mittlere Lebensdauer eines Kraftwerks deutlich hoeher ist als die eines Strassenfahrzeugs, ausserdem Brennstoffzellen auch in staerkerem Masse in Fahrzeugen eingesetzt werden koennen, sind mittelfristig Emissionen eher durch

  11. A state of the art on metallic fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960`s, the development of metallic fuels continued throughout the 1970`s at ANL`s experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980`s, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab.

  12. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  13. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    Science.gov (United States)

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  14. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a

  15. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET model--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet). Major publications that address GREET development are listed. These reports document methodologies, development, key default assumptions, applications, and results of the GREET model. They are also posted, along with additional materials for the GREET model, on the TTRDC Web site. For a given transportation fuel/technology combination, the GREET model separately calculates: (A)--Fuel-cycle energy consumption for the following three source categories: (1) Total energy (all energy sources), (2) Fossil fuels (petroleum, natural gas [NG], and coal), and (3) Petroleum. (B)--Fuel-cycle emissions of the following three greenhouse gases (GHGs): (1) Carbon dioxide (CO 2 ) (with a global warming potential [GWP] of 1), (2) Methane (CH 4 ) (with a GWP of 21), and (3) Nitrous oxide (N 2 O) (with a GWP of 310). (C)--Fuel-cycle emissions of the following five criteria pollutants (separated into total [T] and urban [U] emissions): (1) Volatile organic compounds (VOCs), (2) Carbon monoxide (CO), (3) Nitrogen oxides (NO x ), (4) Particulate matter with a mean aerodynamic diameter of 10 (micro)m or less (PM 10 ), and (5) Sulfur oxides

  16. Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    Mostafa Shaaban

    2018-05-01

    Full Text Available Future electricity planning necessitates a thorough multi-faceted analysis of the available technologies in order to secure the energy supply for coming generations. To cope with worldwide concerns over sustainable development and meet the growing demands of electricity we assess the future potential technologies in Egypt through covering their technical, economic, environmental and social aspects. In this study we fill the gap of a lacking sustainability assessment of energy systems in Egypt where most of the studies focus mainly on the economic and technical aspects of planning future installation of power plants in Egypt. Furthermore, we include the stakeholder preferences of the indicators in the energy sector into our assessment. Moreover, we perform a sensitivity analysis through single dimension assessment scenarios of the technologies as well as a sustainable scenario with equal preferences of all dimensions of the sustainability. We employ two multi-criteria decision analysis (MCDA methodologies: the analytical hierarchy process for weighing the assessment criteria, and the weighted sum method for generating a general integrated sustainability index for each technology. The study investigates seven technologies: coal, natural gas, wind, concentrated solar power, photovoltaics, biomass and nuclear. The results reveal a perfect matching between the ranking of the technologies by the stakeholders and the sustainable scenario showing the highest ranking for natural gas and the lowest for nuclear and coal. There is a strong potential for renewable energy technologies to invade the electricity market in Egypt where they achieve the second ranking after natural gas. The Monte-Carlo approach gives photovoltaics a higher ranking over concentrated solar power as compared to the sample data ranking. The study concludes the importance of a multi-dimensional evaluation of the technologies while considering the preferences of the stakeholders in

  17. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  18. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    Full text: Full text: The Molten-Salt Reactor (MSR) represents one of promising advanced reactor type assigned to the GEN IV reactor systems. It can be operated either as thorium breeder within the Th -133U fuel cycle or as actinide transmuter incinerating transuranium fuel. Essentially the main advantage of MSR comes out from the prerequisite, that this reactor type should be directly connected with the 'on-line' reprocessing of circulating liquid (molten-salt) fuel. This principle should allow very effective extraction of freshly constituted fissile material (233U). Besides, the on-line fuel salt clean up is necessary within a long run to keep the reactor in operation. As a matter of principle, it permits to clear away typical reactor poisons like xenon, krypton, lanthanides etc. and possibly also other products of burned plutonium and transmuted minor actinides. The fuel salt clean up technology should be linked with the fresh MSR fuel processing to continuously refill the new fuel (thorium or transuranics) into the reactor system. On the other hand, the technologies of fresh transuranium molten-salt fuel processing from the current LWR spent fuel and of the on-line reprocessing of MSR fuel represent two killing points of the whole MSR technology, which have to be successfully solved before MSR deployment in the future. There are three main pyrochemical partitioning techniques proposed for processing and/or reprocessing of MSR fuel: Fluoride volatilization processes, Molten salt / liquid metal extraction processes and Electrochemical separation processes. Two of them - Fluoride Volatility Method and Electrochemical separation process from fluoride media are under development in the Nuclear Research Institute Rez pic. R and D in the field of Fluoride Volatility Method is concentrated to the development and verification of experimental semi-pilot technology for LWR spent fuel reprocessing, which may result in a product the form and composition of which might be

  19. Sustainability, arid grasslands and grazing: New applications for technology

    Energy Technology Data Exchange (ETDEWEB)

    Pregenzer, A.L.; Parmenter, R.; Passell, H.D.; Budge, T.; Vande Caste, J.

    1999-12-08

    The study of ecology is taking on increasing global importance as the value of well-functioning ecosystems to human well-being becomes better understood. However, the use of technological systems for the study of ecology lags behind the use of technologies in the study of other disciplines important to human well-being, such as medicine, chemistry and physics. The authors outline four different kinds of large-scale data needs required by land managers for the development of sustainable land use strategies, and which can be obtained with current or future technological systems. They then outline a hypothetical resource management scenario in which data on all those needs are collected using remote and in situ technologies, transmitted to a central location, analyzed, and then disseminated for regional use in maintaining sustainable grazing systems. They conclude by highlighting various data-collection systems and data-sharing networks already in operation.

  20. Application of vacuum technology during nuclear fuel fabrication, inspection and characterization

    International Nuclear Information System (INIS)

    Majumdar, S.

    2003-01-01

    Full text: Vacuum technology plays very important role during various stages of fabrication, inspection and characterization of U, Pu based nuclear fuels. Controlled vacuum is needed for melting and casting of U, Pu based alloys, picture framing of the fuel meat for plate type fuel fabrication, carbothermic reduction for synthesis of (U-Pu) mixed carbide powder, dewaxing of green ceramic fuel pellets, degassing of sintered pellets and encapsulation of fuel pellets inside clad tube. Application of vacuum technology is also important during inspection and characterization of fuel materials and fuel pins by way of XRF and XRD analysis, Mass spectrometer Helium leak detection etc. A novel method of low temperature sintering of UO 2 developed at BARC using controlled vacuum as sintering atmosphere has undergone successful irradiation testing in Cirus. The paper will describe various fuel fabrication flow sheets highlighting the stages where vacuum applications are needed

  1. Electricity production with living plants on a green roof: Environmental performance of the Plant-Microbial Fuel Cell

    NARCIS (Netherlands)

    Helder, M.; Wei-Shan, C.; Harst, van der E.J.M.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.; Potting, J.

    2013-01-01

    Several renewable and (claimed) sustainable energy sources have been introduced into the market the during the last centuries in an attempt to battle pollution from fossil fuels. Especially biomass energy technologies have been under debate for their sustainability. A new biomass energy technology

  2. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  3. A Sustainability Assessment Methodology for Prioritizing the Technologies of Groundwater Contamination Remediation

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Wang, Yue

    2016-01-01

    More and more groundwater has 23 been polluted recently, and technologies for groundwater contamination remediation are of vital importance; however, it is usually difficult for the users to select the most suitable technology among multiple alternatives. In order to address this, this study aims...... at developing a sustainability assessment framework for prioritizing the technologies for groundwater contamination remediation by combining the concept of sustainability and multi-criteria decision making (MCDM) method. A criterion system which consists of six criteria in three aspects has been proposed...... for sustainability assessment of technologies for groundwater contamination remediation, and a novel MCDM method by combining the logarithmic fuzzy preference programming based fuzzy analytic hierarchy process and the improved ELECTRE method has been developed for prioritizing the alternatives. In order...

  4. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-01-01

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  5. Canadian capabilities in fusion fuels technology and remote handling

    International Nuclear Information System (INIS)

    1987-10-01

    This report describes Canadian expertise in fusion fuels technology and remote handling. The Canadian Fusion Fuels Technology Project (CFFTP) was established and is funded by the Canadian government, the province of Ontario and Ontario Hydro to focus on the technology necessary to produce and manage the tritium and deuterium fuels to be used in fusion power reactors. Its activities are divided amongst three responsibility areas, namely, the development of blanket, first wall, reactor exhaust and fuel processing systems, the development of safe and reliable operating procedures for fusion facilities, and, finally, the application of these developments to specific projects such as tritium laboratories. CFFTP also hopes to utilize and adapt Canadian developments in an international sense, by, for instance, offering training courses to the international tritium community. Tritium management expertise is widely available in Canada because tritium is a byproduct of the routine operation of CANDU reactors. Expertise in remote handling is another byproduct of research and development of of CANDU facilities. In addition to describing the remote handling technology developed in Canada, this report contains a brief description of the Canadian tritium laboratories, storage beds and extraction plants as well as a discussion of tritium monitors and equipment developed in support of the CANDU reactor and fusion programs. Appendix A lists Canadian manufacturers of tritium equipment and Appendix B describes some of the projects performed by CFFTP for offshore clients

  6. Commercialization of proton exchange membrane (PEM) fuel cell technology

    International Nuclear Information System (INIS)

    Goel, N.; Pant, A.; Sera, G.

    1995-01-01

    The MCTTC performed a market assessment for PEM Fuel Cells for terrestrial applications for the Center for Space Power (CSP). The purpose of the market assessment was to gauge the market and commercial potential for PEM fuel cell technology. Further, the market assessment was divided into subsections of technical and market overview, competitive environment, political environment, barriers to market entry, and keys to market entry. The market assessment conducted by the MCTTC involved both secondary and primary research. The primary target markets for PEM fuel cells were transportation and utilities in the power range of 10 kW to 100 kW. The fuel cell vehicle market size was estimated under a pessimistic scenario and an optimistic scenario. The estimated size of the fuel cell vehicle market in dollar terms for the year 2005 is $17.3 billion for the pessimistic scenario and $34.7 billion for the optimistic scenario. The fundamental and applied research funded and conducted by the National Aeronautics and Space Administration (NASA) and DOE in the area of fuel cells presents an excellent opportunity to commercialize dual-use technology and enhance U.S. business competitiveness. copyright 1995 American Institute of Physics

  7. Keeping options open. Energy, technology and sustainable development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger; Langlois, Lucille; McDonald, Alan

    2001-01-01

    The Ninth Session of the the Commission for Sustainable Development (CSD-9) in April 2001 provided an excellent opportunity for a full debate on the role of nuclear power in sustainable development, as part of its over-all discussion of energy, transport and the atmospheric change issues. On nuclear power, there were two important conclusions. First, countries agreed to disagree on the role of nuclear power in sustainable development. CSD-9's final text recognizes that some countries view nuclear power as incompatible with sustainable development while others believe it is an important contributor to sustainable development. For each case, the reasoning is presented in the text. The second conclusion, on which there was consensus agreement, is that 'the choice of nuclear energy rests with countries'. The arguments in favor of an important role for nuclear power role in sustainable development are that it broadens the resource base by putting uranium to productive use; it reduces harmful emissions; it expands electricity supplies and it increases the world's stock of technological and human capital. It is ahead of other energy technologies in internalizing all externalities, from safety to waste disposal to decommissioning - the costs of all of these are already included in the price of nuclear electricity in most countries. The complete nuclear power chain, from resource extraction to waste disposal including reactor and facility construction, emits only two to kilowatt-hour -- about the same as wind and solar power and two orders of magnitude below coal, oil, and even natural gas. In addition, nuclear power avoids the emission of many other air pollutants, such as SO 2 , NO x and particulates

  8. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  9. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  10. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  11. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    Directory of Open Access Journals (Sweden)

    Liam Wagner

    Full Text Available The United Nations Conference on Climate Change (Paris 2015 reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1 is used to forecast global energy demand growth (International Energy Agency and BP, which is driven by an increase of the global population (UN, energy use per person and real GDP (World Bank and Maddison. Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals.

  12. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    Science.gov (United States)

    Wagner, Liam; Ross, Ian; Foster, John; Hankamer, Ben

    2016-01-01

    The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals.

  13. Sensitivity analysis of synergistic collaborative scenarios towards sustainable nuclear energy systems

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Poplavskaya, E.

    2013-01-01

    The paper presents results of the study on the role of collaboration among countries towards sustainable global nuclear energy systems. The study explores various market shares for nuclear fuel cycle services, possible scale of collaboration among countries and assesses benefits and issues relevant for collaboration between suppliers and users of nuclear fuel cycle services. The approach used in the study is based on a heterogeneous world model with grouping of the non-personified nuclear energy countries according to different nuclear fuel cycle policies. The methodology applied in the analysis allocates a fraction of future global nuclear energy generation to each of such country-groups as a function of time. The sensitivity studies performed show the impacts of the group shares on the scope of collaboration among countries and on the resulting possible reactor mix and nuclear fuel cycle infrastructure versus time. The study quantitatively demonstrates that the synergistic approach to nuclear fuel cycle has a significant potential for offering a win-win collaborative strategy to both, technology holders and technology users on their joint way to future sustainable nuclear energy systems. The study also highlights possible issues on such a collaborative way. (authors)

  14. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    Science.gov (United States)

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected

  15. Electricity Technology Roadmap. Technology for the Sustainable Society. 2025

    International Nuclear Information System (INIS)

    2002-01-01

    The Dutch Electricity Technology Roadmap Initiative is being developed by KEMA as a joint effort of Dutch and European experts of universities, industry and (non)governmental organisations. It aims to assess how to structure the ongoing collaborative research and technological advancement, the exploration of the opportunities and the threats for the electricity-based innovations over the next twenty-five years. In addition it analyses how to manage the transition towards a knowledge based economy and a more sustainable society. To date, about 100 organisations have participated with KEMA and its sponsors in shaping a comprehensive vision of the opportunities to structure the knowledge based economy in the Digital Society with as basis the increase of electricity's value to society. This vision is being translated into a set of technology development destinations and a total of six distinct initiatives for targeted projects. KEMA is leading this ongoing road-mapping effort, with the support of TENNET and EPRI (USA). The Dutch power generation utilities and the Ministry of Economics (EZ) financially support the work. It is an investment in the future of the Dutch knowledge based economy and a guidance to structure and strengthen the value of public and private RandD investments. The Electricity Technology Roadmap Initiative explores a period of fast regulatory, political, technological and institutional change in the electricity enterprise and in the society. The strategic choices made in this period of change can have profound consequences on whether future opportunities are opened or closed, and whether threats increase or are eliminated The reluctance to proceed with important changes is understandable, given the extreme uncertainty under which decisions must be made. No regrets solutions may be appropriate in some circumstances. These situations highlight the need for foresight and the importance of strategic roadmapping. The first year of the Roadmap

  16. Experiences and Trends of Manufacturing Technology of Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    2012-08-01

    The 'Atoms for Peace' mission initiated in the mid-1950s paved the way for the development and deployment of nuclear fission reactors as a source of heat energy for electricity generation in nuclear power reactors and as a source of neutrons in non-power reactors for research, materials irradiation, and testing and production of radioisotopes. The fuels for nuclear reactors are manufactured from natural uranium (∼99.3% 238 U + ∼0.7% 235 U) and natural thorium (∼100% 232 Th) resources. Currently, most power and research reactors use 235 U, the only fissile isotope found in nature, as fuel. The fertile isotopes 238 U and 232 Th are transmuted in the reactor to human-made 239 Pu and 233 U fissile isotopes, respectively. Likewise, minor actinides (MA) (Np, Am and Cm) and other plutonium isotopes are also formed by a series of neutron capture reactions with 238 U and 235 U. Long term sustainability of nuclear power will depend to a great extent on the efficient, safe and secure utilization of fissile and fertile materials. Light water reactors (LWRs) account for more than 82% of the operating reactors, followed by pressurized heavy water reactors (PHWRs), which constitute ∼10% of reactors. LWRs will continue to dominate the nuclear power market for several decades, as long as economically viable natural uranium resources are available. Currently, the plutonium obtained from spent nuclear fuel is subjected to mono recycling in LWRs as uranium-plutonium mixed oxide (MOX), containing up to 12% PuO 2 , in a very limited way. The reprocessed uranium (RepU) is also re-enriched and recycled in LWRs in a few countries. Unfortunately, the utilization of natural uranium resources in thermal neutron reactors is 2 and MOX fuel technology has matured during the past five decades. These fuels are now being manufactured, used and reprocessed on an industrial scale. Mixed uranium- plutonium monocarbide (MC), mononitride (MN) and U-Pu-Zr alloys are recognized as advanced fuels

  17. Manufacturing technologies for direct methanol fuel cells (DMFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Gluesen, Andreas; Mueller, Martin; Kimiaie, Nicola; Konradi, Irene; Mergel, Juergen; Stolten, Detlef [Forschungszentrum Juelich (Germany). Inst. of Energy Research - IEF-3: Fuel Cells

    2010-07-01

    Fuel cell research is focussing on increasing power density and lifetime and reducing costs of the whole fuel cell system. In order to reach these aims, it is necessary to develop appropriately designed components outgoing from high quality materials, a suitable manufacturing process and a well balanced system. To make use of the advantages that can be obtained by developing production technology, we are mainly improving the coating and assembling techniques for polymer electrolyte fuel cells, especially Direct Methanol Fuel Cells (DMFCs). Coating is used for making fuel cell electrodes as well as highly conductive contacts. Assembling is used to join larger components like membrane electrode assemblies (MEAs) and bipolar units consisting of flow fields and the separator plate, as well as entire stacks. On the one hand a reproducible manufacturing process is required to study fine differences in fuel cell performance affected by new materials or new designs. On the other hand a change in each parameter of the manufacturing process itself can change product properties and therefore affect fuel cell performance. As a result, gas diffusion electrodes (GDEs) are now produced automatically in square-meter batches, the hot-pressing of MEAs is a fully automated process and by pre-assembling the number of parts that have to be assembled in a stack was reduced by a factor of 10. These achievements make DMFC manufacturing more reproducible and less error-prone. All these and further developments of manufacturing technology are necessary to make DMFCs ready for the market. (orig.)

  18. How to access and exploit natural resources sustainably: petroleum biotechnology.

    Science.gov (United States)

    Sherry, Angela; Andrade, Luiza; Velenturf, Anne; Christgen, Beate; Gray, Neil D; Head, Ian M

    2017-09-01

    As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially-mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Cycle update : advanced fuels and technologies for emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, G. [National Research Council of Canada, Ottawa, ON (Canada)

    2009-07-01

    This paper provided a summary of key achievements of the Program of Energy Research and Development advanced fuels and technologies for emissions reduction (AFTER) program over the funding cycle from fiscal year 2005/2006 to 2008/2009. The purpose of the paper was to inform interested parties of recent advances in knowledge and in science and technology capacities in a concise manner. The paper discussed the high level research and development themes of the AFTER program through the following 4 overarching questions: how could advanced fuels and internal combustion engine designs influence emissions; how could emissions be reduced through the use of engine hardware including aftertreatment devices; how do real-world duty cycles and advanced technology vehicles operating on Canadian fuels compare with existing technologies, models and estimates; and what are the health risks associated with transportation-related emissions. It was concluded that the main issues regarding the use of biodiesel blends in current technology diesel engines are the lack of consistency in product quality; shorter shelf life of biodiesel due to poorer oxidative stability; and a need to develop characterization methods for the final oxygenated product because most standard methods are developed for hydrocarbons and are therefore inadequate. 2 tabs., 13 figs.

  20. HTGR Fuel-Technology Program. Semiannual report for the period ending September 30, 1982

    International Nuclear Information System (INIS)

    1982-11-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at GA Technologies Inc. during the second half of FY-1982. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was completed during this period was the preparation of input data for a long-range technology program plan

  1. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Chungju National University, Chungju (Korea, Republic of); Ko, Won IL [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-12-15

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  2. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Park, Byung Heung; Ko, Won IL

    2011-01-01

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  3. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  4. Green energy strategies for sustainable development

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim; Ay, Murat

    2006-01-01

    In this study we propose some green energy strategies for sustainable development. In this regard, seven green energy strategies are taken into consideration to determine the sectoral, technological, and application impact ratios. Based on these ratios, we derive a new parameter as the green energy impact ratio. In addition, the green energy-based sustainability ratio is obtained by depending upon the green energy impact ratio, and the green energy utilization ratio that is calculated using actual energy data taken from literature. In order to verify these parameters, three cases are considered. Consequently, it can be considered that the sectoral impact ratio is more important and should be kept constant as much as possible in a green energy policy implementation. Moreover, the green energy-based sustainability ratio increases with an increase of technological, sectoral, and application impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy (e.g., wind, solar, tidal, biomass) is abundantly produced. Therefore, the investment in green energy supply and progress should be encouraged by governments and other authorities for a green energy replacement of fossil fuels for more environmentally benign and sustainable future

  5. High U-density nuclear fuel development with application of centrifugal atomization technology

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Kim, Ki Hwan; Lee, Don Bae

    1997-01-01

    In order to simplify the preparation process and improve the properties of uranium silicide fuels prepared by mechanical comminution, a fuel fabrication process applying rotating-disk centrifugal atomization technology was invented in KAERI in 1989. The major characteristic of atomized U 3 Si and U 3 Si 2 powders have been examined. The out-pile properties, including the thermal compatibility between atomized particle and aluminum matrix in uranium silicide dispersion fuels, have generally showed a superiority to the comminuted fuels. Moreover, the RERTR (reduced enrichment for research and test reactors) program, which recently begins to develop very-high-density uranium alloy fuels, including U-Mo fuels, requires the centrifugal atomization process to overcome the contaminations of impurities and the difficulties of the comminution process. In addition, a cooperation with ANL in the U.S. has been performed to develop high-density fuels with an application of atomization technology since December 1996. If the microplate and miniplate irradiation tests of atomized fuels, which have been performed with ANL, demonstrated the stability and improvement of in-reactor behaviors, nuclear fuel fabrication technology by centrifugal atomization could be most-promising to the production method of very-high-uranium-loading fuels. (author). 22 refs., 2 tabs., 12 figs

  6. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  7. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  8. Fuel cells science and engineering. Materials, processes, systems and technology. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Stolten, Detlef; Emonts, Bernd (eds.) [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF), Brennstoffzellen (IEF-3)

    2012-07-01

    The first volume is divided in four parts and 22 chapters. It is structured as follows: PART I: Technology. Chapter 1: Technical Advancement of Fuel-Cell Research and Development (Dr. Bernd Emonts, Ludger Blum, Thomas Grube, Werner Lehnert, Juergen Mergel, Martin Mueller and Ralf Peters); 2: Single-Chamber Fuel Cells (Teko W. Napporn and Melanie Kuhn); 3: Technology and Applications of Molten Carbonate Fuel Cells (Barbara Bosio, Elisabetta Arato and Paolo Greppi); 4: Alkaline Fuel Cells (Erich Guelzow); 5: Micro Fuel Cells (Ulf Groos and Dietmar Gerteisen); 6: Principles and Technology of Microbial Fuel Cells (Jan B. A. Arends, Joachim Desloover, Sebastia Puig and Willy Verstraete); 7: Micro-Reactors for Fuel Processing (Gunther Kolb); 8: Regenerative Fuel Cells (Martin Mueller). PART II: Materials and Production Processes. Chapter 9: Advances in Solid Oxide Fuel Cell Development between 1995 and 2010 at Forschungszentrum Juelich GmbH, Germany (Vincent Haanappel); 10: Solid Oxide Fuel Cell Electrode Fabrication by Infiltration (Evren Gunen); 11: Sealing Technology for Solid Oxide Fuel Cells (K. Scott Weil); 12: Phosphoric Acid, an Electrolyte for Fuel Cells - Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity (Carsten Korte); 13: Materials and Coatings for Metallic Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (Heli Wang and John A. Turner); 14: Nanostructured Materials for Fuel Cells (John F. Elter); 15: Catalysis in Low-Temperature Fuel Cells - An Overview (Sabine Schimpf and Michael Bron). PART III: Analytics and Diagnostics. Chapter 16: Impedance Spectroscopy for High-Temperature Fuel Cells (Ellen Ivers-Tiffee, Andre Leonide, Helge Schichlein, Volker Sonn and Andre Weber); 17: Post-Test Characterization of Solid Oxide Fuel-Cell Stacks (Norbert H. Menzler and Peter Batfalsky); 18: In Situ Imaging at Large-Scale Facilities (Christian Toetzke, Ingo Manke and Werner Lehnert); 19: Analytics of Physical Properties of Low

  9. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  10. The Social Agenda of Education for Sustainable Development within Design & Technology: The Case of the Sustainable Design Award

    Science.gov (United States)

    Pitt, James; Lubben, Fred

    2009-01-01

    The paper explores the adoption of the social dimensions of sustainability in technological design tasks. It uses a lens which contrasts education for sustainability as "a frame of mind" with an attempt to bridge a "value-action gap". This lens is used to analyse the effectiveness of the Sustainable Design Award, an intervention in post-16…

  11. Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation

    DEFF Research Database (Denmark)

    already spent on these technologies also lead to commercial success. The project ‘Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation’ was aiming at starting with the Establishment of such a center. The following report documents the achievements within the project...... of the fluctuating wind energy. As the fuel cell and hydrogen technologies come closer to commercialization, development of testing methodology, qualified testing and demonstration become increasingly important. Danish industrial players have expressed a strong need for support in the process to push fuel cell...... and hydrogen technologies from the research and development stage into the commercial domain. A Center to support industry with test, development, analysis, approval, certification, consultation, and training in the areas of fuel cell and hydrogen technologies was needed. Denmark has demonstrated leading...

  12. Toward a sustainable energy supply with reduced environmental burden. Development of metal fuel fast reactor cycle

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Kobayashi, Hiroaki; Kinoshita, Kensuke

    2009-01-01

    CRIEPI has been studying the metal fuel fast reactor cycle as an outstanding alternative for the future energy sources. In this paper, development of the metal fuel cycle is reviewed in the view point of technological feasibility and material balance. Preliminary estimation of reduction of the waste burden due to introduction of the metal fuel cycle technology is also reported. (author)

  13. Status of biomass fuels technologies research in the US

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, R.P.; Parker, S.; Glenn, B.

    1984-07-01

    Biomass is a tremendous potential source of fuel and chemical feedstocks. The US Department of Energy has sponsored a broad spectrum of research on biomass at various US government laboratories, private installations, and universities. The status of biomass fuels technologies research in the US is discussed.

  14. Nuclear fuel cycle and sustainable development: strategies for the future

    International Nuclear Information System (INIS)

    Bouchard, J.

    2004-01-01

    In this presentation, the author aims to define the major role of the nuclear energy in the future, according a sustainable development scenario. The today aging park and the new Generation IV technologies are presented. The transition scenario from Pu mono-recycling in PWRs to actinide global recycling in fast neutron Gen IV systems is also developed. Closed cycles and fast reactors appear as the appropriate answer to sustainable objectives in a vision of a large expansion. (A.L.B.)

  15. Sustainable Energy for All

    DEFF Research Database (Denmark)

    - renewable energy and energy efficiency. The promise of renewable energy can only be realised through significant R&D investments on technologies such as solar, biomass, wind, hydropower, geothermal power, ocean energy sources, solar-derived hydrogen fuel coupled with energy storage technologies necessary......Energy crisis is one of the most pressing issues of our century. The world currently invests more than $1 trillion per year in energy, much of it going toward the energy systems of the past instead of building the clean energy economies of the future. Effectively, the provision of energy should...... be such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. Investment in sustainable energy is a smart strategy for growing markets, improving competitiveness, and providing greater equity and opportunity. Sustainable energy has two key elements...

  16. A review on manufacturing technology for long-lived radionuclide fuel compounds

    International Nuclear Information System (INIS)

    Hwang, Doo Seong; Park, Jin Ho; Kim, Eung Ho; Chung, Won Myung; Lee, Kui Ill; Woo, Moon Sik; Kim, Yeon Ku; Yoo, Jae Hyung

    1998-03-01

    Thermal neutron reactor (LWR), fast neutron reactor (FBR), accelerator-driven subcritical system have been studied as the potential transmutation devices. The fuel types can be classified according to the concept of each reactor. Oxide fuel is considered in LWR and metal, oxide, and nitride fuels are studied in FBR. In accelerator-driven subcritical system molten salt, metal, and oxide fuels are considered. This review focused on characteristics according to transmutation system, and manufacturing technologies of each fuels. Accelerator-driven system is being proposed as the most reasonable concept in recent, since it has merits in terms of stability and free control of nuclides composition rate in charge of long-lived nuclides. Fluorides molten salt fuel is better chemically stable and corrosion resistant, and lower vapor pressure than chloride molten salt and metal in the fuel type of accelerator-driven system. And then the detail manufacturing technology of fluorides molten salt were reviewed. (author). 62 refs., 23 tabs., 37 figs

  17. Status and trends of nuclear technologies - Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Additional information (Companion CD-ROM)

    International Nuclear Information System (INIS)

    2009-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in the year 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO intends to help to ensure that nuclear energy is available in the 21st century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to consider, jointly, actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. This IAEA publication is part of Phase 1 of INPRO. It intends to provide an overview on history, present situation and future perspectives of nuclear fuel cycle technologies. While this overview focuses on technical issues, nevertheless, the aspects of economics, environment, and safety and proliferation resistance are important background issues for this study. After a brief description about the INPRO project and an evaluation of existing and future reactor designs the publication covers nuclear fuel cycle issues in detail. It is expected that this documentation will provide IAEA Member States and their nuclear engineers and designers, as well as policy makers with useful information on status and trends of future nuclear fuel cycle technologies. Due to the size of the full report it was decided to attach a CD-ROM in the back of the summary report

  18. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Cha, Chong Hee; Chung, Chang Hwan; Chun, Se Young; Song, Chul Hwa; Chung, Heung Joon; Won, Soon Yeun; Cho, Yeong Rho; Kim, Bok Deuk

    1988-05-01

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  19. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, H.

    2015-01-01

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  20. Proceedings of the 1999 Review Conference on Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-05

    The 1999 Review Conference on Fuel Cell Technology was jointly sponsored by the U.S. Department of Energy, Federal Energy Technology Center (FETC), the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI). It was held August 3 to 5 in Chicago, Illinois. The goal of this conference was to provide a forum for reviewing fuel cell research and development (R&D) programs, assist in strategic R&D planning, promote awareness of sponsor activities, and enhance interactions between manufacturers, researchers, and stakeholders. This conference was attended by over 250 representatives from industry, academia, national laboratories, gas and electric utilities, DOE, and other Government agencies. The conference agenda included a keynote session, five presentation sessions, a poster presentation reception, and three breakout sessions. The presentation session topics were DOD Fuel Cell Applications, Low-Temperature Fuel Cell Manufacturers, Low-Temperature Component Research, High-Temperature Fuel Cell Manufacturers, and High-Temperature Component Research; the breakout session topics were Future R&D Directions for Low-Temperature Fuel Cells, Future R&D Directions for High-Temperature Fuel Cells, and a plenary summary session. All sessions were well attended.

  1. Development of fuel performance and thermal hydraulic technology

    International Nuclear Information System (INIS)

    Jung, Youn Ho; Song, K. N.; Kim, H. K. and others

    2000-03-01

    Space grid in LWR fuel assembly is a key structural component to support fuel rods and to enhance heat transfer from fuel rod to the coolant. Therefore, the original spacer grid has been developed. In addition, new phenomena in fuel behavior occurs at the high burnup, so that models to analyze those new phenomena were developed. Results of this project can be summarized as follows. - Seven different spacer grid candidates have been invented and submitted for domestic and US patents. Spacer grid test specimen(3x3 array and 5x5 array) were fabricated for each candidate and the mechanical tests were performed. - Basic technologies in the mechanical and thermal hydraulic behavior in the spacer grid development are studied and relevant test facilities were established - Fuel performance analysis models and programs were developed for the high burnup pellet and cladding, and fuel performance data base were compiled - Procedures of fuel characterization and in-/out of-pile tests were prepared - Conceptual design of fuel rod for integral PWR was carried out. (author)

  2. The Technology Trend of Japanese Patent for the Nuclear Fuel Assembly Inspection

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Choi, Young Soo; Lee, Nam Ho; Jeong, Kyung Min; Suh, Yong Chil; Kim, Chang Hoi; Shin, Jung Cheol

    2008-06-01

    Japanese technology patents for the nuclear fuel assembly inspection unit, from the year 1993 to the year 2006, were investigated. The fuel rods which contain fissile material are grouped together in a closely-spaced array within the fuel assembly. Various kinds of reactor including the PWR reactor are being operated in Japan. There are many kinds of nuclear fuel assemblies in Japan, and the shape and the size of these nuclear fuel assemblies are various also. As the structure of these various fuel assemblies is a regular square as the same as the Korean one, the inspection method described in Japanese technology patent can be applied to the inspection of the nuclear fuel assembly of the Korea. This report focuses on advances in VIT(visual inspection test) of nuclear fuel assembly using the state-of-the-art CCD camera system

  3. The Technology Trend of Japanese Patent for the Nuclear Fuel Assembly Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Lee, Nam Ho; Jeong, Kyung Min; Suh, Yong Chil; Kim, Chang Hoi; Shin, Jung Cheol

    2008-06-15

    Japanese technology patents for the nuclear fuel assembly inspection unit, from the year 1993 to the year 2006, were investigated. The fuel rods which contain fissile material are grouped together in a closely-spaced array within the fuel assembly. Various kinds of reactor including the PWR reactor are being operated in Japan. There are many kinds of nuclear fuel assemblies in Japan, and the shape and the size of these nuclear fuel assemblies are various also. As the structure of these various fuel assemblies is a regular square as the same as the Korean one, the inspection method described in Japanese technology patent can be applied to the inspection of the nuclear fuel assembly of the Korea. This report focuses on advances in VIT(visual inspection test) of nuclear fuel assembly using the state-of-the-art CCD camera system.

  4. Status of reprocessing technology in the HTGR fuel cycle

    International Nuclear Information System (INIS)

    Kaiser, G.; Merz, E.; Zimmer, E.

    1977-01-01

    For more than ten years extensive R and D work has been carried out in the Federal Republic of Germany in order to develop the technology necessary for closing the fuel cycle of high-temperature gas-cooled reactors. The efforts are concentrated primarily on fuel elements having either highly enriched 235 U or recycled 233 U as the fissile and thorium as the fertile material embedded in a graphite matrix. They include the development of processes and equipment for reprocessing and remote preparation of coated microspheres from the recovered uranium. The paper reviews the issues and problems associated with the requirements to deal with high burn-up fuel from HTGR's of different design and composition. It is anticipated that a grind-burn-leach head-end treatment and a modified THOREX-type chemical processing are the optimum choice for the flowsheet. An overview of the present status achieved in construction of a small reprocessing facility, called JUPITER, is presented. It includes a discussion of problems which have already been solved and which have still to be solved like the treatment of feed/breed particle systems and for minimizing environmental impacts envisaged with a HTGR fuel cycle technology. Also discussed is the present status of remote fuel kernel fabrication and coating technology. Additional activities include the design of a mock-up prototype burning head-end facility, called VENUS, with a throughput equivalent to about 6000 MW installed electrical power, as well as a preliminary study for the utilisation of the Karlsruhe LWR prototype reprocessing plant (WAK) to handle HTGR fuel after remodelling of the installations. The paper concludes with an outlook of projects for the future

  5. A global sustainability perspective on 3D printing technologies

    International Nuclear Information System (INIS)

    Gebler, Malte; Schoot Uiterkamp, Anton J.M.; Visser, Cindy

    2014-01-01

    Three-dimensional printing (3DP) represents a relative novel technology in manufacturing which is associated with potentially strong stimuli for sustainable development. Until now, research has merely assessed case study-related potentials of 3DP and described specific aspects of 3DP. This study represents the first comprehensive assessment of 3DP from a global sustainability perspective. It contains a qualitative assessment of 3DP-induced sustainability implications and quantifies changes in life cycle costs, energy and CO 2 emissions globally by 2025. 3DP is identified to cost-effectively lower manufacturing inputs and outputs in markets with low volume, customized and high-value production chains as aerospace and medical component manufacturing. This lowers energy use, resource demands and related CO 2 emissions over the entire product life cycle, induces changes in labour structures and generates shifts towards more digital and localized supply chains. The model calculations show that 3DP contains the potential to reduce costs by 170–593 billion US $, the total primary energy supply by 2.54–9.30 EJ and CO 2 emissions by 130.5–525.5 Mt by 2025. The great range within the saving potentials can be explained with the immature state of the technology and the associated uncertainties of predicting market and technology developments. The energy and CO 2 emission intensities of industrial manufacturing are reducible by maximally 5% through 3DP by 2025, as 3DP remains a niche technology. If 3DP was applicable to larger production volumes in consumer products or automotive manufacturing, it contains the (theoretical) potential to absolutely decouple energy and CO 2 emission from economic activity. - Highlights: • Global sustainability aspects of 3DP in manufacturing are assessed in two ways. • 3DP will strongly influence manufacturing in aerospace, medical components, tooling. • 3DP re-shifts production to consumer countries due to decreased labour costs.

  6. Proceedings of spent fuel management technology workshop, 1997. 11. 13 - 11. 14, Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This proceedings cover the advanced spent fuel process technology, the development of a test facility for spent fuel management and remote handling technology, and the characteristics test technology. Fifteen papers are submitted.

  7. Proceedings of spent fuel management technology workshop, 1997. 11. 13 - 11. 14, Taejon, Korea

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings cover the advanced spent fuel process technology, the development of a test facility for spent fuel management and remote handling technology, and the characteristics test technology. Fifteen papers are submitted

  8. Proceedings of spent fuel management technology workshop, 1997. 11. 13 - 11. 14, Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings cover the advanced spent fuel process technology, the development of a test facility for spent fuel management and remote handling technology, and the characteristics test technology. Fifteen papers are submitted.

  9. LEU fuel powder technology at Babcock and Wilcox (USA)

    International Nuclear Information System (INIS)

    Bogacik, K.E.

    1984-01-01

    This paper traces BandW involvement in HEU fuel manufacturing to the current work directed at LEU reactor technology. Past work at BandW in areas such as alloying, fuel handling and core manufacturing has been of significant benefit to the current LEU fuel processing requirements. Recent investigations and process developments for production of LEU aluminide and silicide fuels are discussed. Techniques for alloying by vacuum are melting, followed by comminution methods after alloying, are presented for both the LEU aluminide and silicide fuel powders. Powder processing discussions include compacting techniques used by BandW for these alloys. This overview of BandW's LEU i nvolvement provides details of specific modifications and process developments in powdered fuels. Product attributes such as powder chemistry, size, and other physical properties of each LEU fuel are presented. (author)

  10. SUSTAINABILITY IN INFORMATION TECHNOLOGY: AN ANALYSIS OF THE ASPECTS CONSIDERED IN THE MODEL COBIT

    OpenAIRE

    Machado, Marcia Cristina; Hourneaux Junior, Flavio; Sobral, Fernanda Aparecida

    2017-01-01

    ABSTRACT Parallel to the development of technology in its different fronts and particularly about the various applications of Information Technology (IT), another trend that has been consolidated in organizations is the search for sustainability. There are initiatives such as Green IT, Sustainable IT, and Green software that combine these two elements (IT and sustainability). In this context, this study aims to identify the presence of sustainability aspects in the COBIT (Control Objectives f...

  11. An Assessment of the Sustainability of Information Technology at the ...

    African Journals Online (AJOL)

    The paper examined the extent to which the University of Zambia (UNZA) Library was addressing the information technology (IT) sustainability challenges. This was with a view to establishing a feasible IT sustainability model approach that could be adopted by the Library. In this case study, multiple sources of data, ...

  12. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  13. Application of spent fuel treatment technology to plutonium immobilization

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Ackerman, J.P.; Gay, E.C., Johnson, G.K.

    1996-01-01

    The purpose of the electrometallurgical treatment technology being developed at Argonne National Laboratory (ANL) is to convert certain spent nuclear fuels into waste forms that are suitable for disposal in a geological repository for nuclear waste. The spent fuels of interest are those that cannot be safely stored for a long time in their current condition, and those that cannot be qualified for repository disposal. This paper explores the possibility of applying this electrometallurgical treatment technology to immobilization of surplus fissile materials, primarily plutonium. Immobilization of surplus fissile materials by electrometallurgical treatment could be done in the same facilities, at the same time. and in the same equipment as the proposed treatment of the present inventory of spent nuclear fuel. The cost and schedule savings of this simultaneous treatment scheme would be significant

  14. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  15. Y-12 Site Sustainability Plan

    Energy Technology Data Exchange (ETDEWEB)

    Sherry, T D; Kohlhorst, D P; Little, S K

    2011-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the

  16. Co-Optimization of Fuels & Engines: Misfueling Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Sluder, C. Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jehlik, Forrest [Argonne National Lab. (ANL), Argonne, IL (United States); West, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-06

    This report examines diesel/gasoline misfueling, leaded/unleaded gasoline misfueling, E85/E15/E10 misfueling, and consumer selection of regular grade fuel over premium grade fuel in an effort to evaluate misfueling technologies that may be needed to support the introduction of vehicles optimized for a new fuel in the marketplace. This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy-sponsored multi-agency project to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines.

  17. 2016 National Algal Biofuels Technology Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  18. Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies

    NARCIS (Netherlands)

    Suurs, R.A.A.; Hekkert, M.P.; Smits, R.E.H.M.

    2009-01-01

    This study provides insight into the development of hydrogen and fuel cell technologies in the Netherlands (1980-2007). This is done by applying a Technological Innovation System (TIS) approach. This approach takes the perspective that a technology is shaped by a surrounding network of actors,

  19. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  20. Applications of current technology for continuous monitoring of spent fuel

    International Nuclear Information System (INIS)

    Drayer, R.

    2013-01-01

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  1. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  2. CANDU flexible and economical fuel technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Mingjun, C. [CNNC Nuclear Power Operation Management Co., Zhejiang (China); Zhenhua, Z.; Zhiliang, M. [CNNC Third Qinshan Nuclear Power Co., Zhejiang (China); Cottrell, C.M.; Kuran, S. [Candu Energy Inc., Mississauga, ON (Canada)

    2014-07-01

    Use in CANDU reactor is one good option of recycled uranium (RU) and thorium (Th) resource. It is also good economy to CANDU fuel. Since 2008 Qinshan CANDU Plant and our partners (Candu Energy and CNNC and NPIC) have made great efforts to develop the engineering technologies of Flexible and Economical Fuel (RU and Th) in CANDU type reactor and finding the CANDU's position in Chinese closed fuel cycle (CFC) system. This paper presents a proposal of developing strategy and implementation plan. Qinshan CANDU reactors will be converted to use recycled and depleted uranium based fuels, a first-of-its-kind. The fuel is composed of both recycled and depleted uranium and simulating natural uranium behavior. This paper discusses its development, design, manufacture and verification tested with success and the full core implementation plan by the end of 2014. (author)

  3. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    Science.gov (United States)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  4. Hydrogen and fuel cells emerging technologies and applications

    CERN Document Server

    Sorensen (Sorensen), Bent

    2011-01-01

    A hydrogen economy, in which this one gas provides the source of all energy needs, is often touted as the long-term solution to the environmental and security problems associated with fossil fuels. However, before hydrogen can be used as fuel on a global scale we must establish cost effective means of producing, storing, and distributing the gas, develop cost efficient technologies for converting hydrogen to electricity (e.g. fuel cells), and creating the infrastructure to support all this. Sorensen is the only text available that provides up to date coverage of all these issues at a level

  5. Technology for controlling emissions from power plants fired with fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Slack, A V

    1981-04-01

    Emission control technologies for fossil-fuel-fired power plants are examined. Acid rain, impaired visibility, and health effects of respirable particulates have combined to raise concerns from the local to the regional level. This report discusses advantages, disadvantages, and costs of technologies associated with emissions of sulfur oxides, nitrogen oxides, and particulate matter. Coal, oil and natural gas fuels are discussed. 7 refs.

  6. Sustainability of electricity supply technology portfolio

    International Nuclear Information System (INIS)

    Roth, Stefan; Hirschberg, Stefan; Bauer, Christian; Burgherr, Peter; Heck, Thomas; Schenler, Warren; Dones, Roberto

    2008-01-01

    This paper outlines the approach to the evaluation of sustainability of current and future electricity supply options of interest for a major Swiss utility Axpo Holding AG. The motivation behind this effort has been to provide a solid basis for a state-of-the-art interdisciplinary assessment and use this framework within a dialog with a wide spectrum of stakeholders. The development and implementation of the methodology was coordinated by Axpo in co-operation with the Paul Scherrer Institut (PSI) and other scientific institutions. The evaluation covers environmental, social and economic dimensions of sustainability. Methods used include among others Life Cycle Assessment (LCA), Impact Pathway Approach (IPA) and Probabilistic Safety Assessment (PSA). The associated databases developed by PSI have been extensively used, subject to major extensions necessary for analysing the future technologies. Learning curves were employed for future cost estimates. Furthermore, particularly in the social area expert surveys were used. The results were aggregated using total (internal plus external) costs approach and Multi-criteria Decision Analysis (MCDA). For MCDA a set of criteria and the associated indicators was established. In total 75 indicators were quantified, including 11 environmental, 33 social and 31 economic. 18 current and 18 future technologies have been analysed including nuclear as well as fossil and renewable technologies. Total costs were estimated for these technologies providing a clear ranking with nuclear having the lowest costs and some of the renewable showing remarkable cost reductions until 2030. This ranking is partially controversial mainly due to the limited representation of social aspects in the total costs. The results of MCDA-applications involving elicitation of preferences from a relatively homogeneous stakeholder group, i.e. 85 employees of the Axpo Group (including also NOK, EGL, CKW and Axpo IT), are summarized. In addition, sensitivity of

  7. Sustainability of electricity supply technology portfolio

    International Nuclear Information System (INIS)

    Roth, Stefan; Hirschberg, Stefan; Bauer, Christian; Burgherr, Peter; Dones, Roberto; Heck, Thomas; Schenler, Warren

    2009-01-01

    This paper outlines the approach to the evaluation of sustainability of current and future electricity supply options of interest for a major Swiss utility Axpo Holding AG. The motivation behind this effort has been to provide a solid basis for a state-of-the-art interdisciplinary assessment and use this framework within a dialog with a wide spectrum of stakeholders. The development and implementation of the methodology was coordinated by Axpo in co-operation with the Paul Scherrer Institut (PSI) and other scientific institutions. The evaluation covers environmental, social and economic dimensions of sustainability. Methods used include among others life cycle assessment (LCA), impact pathway approach (IPA) and probabilistic safety assessment (PSA). The associated databases developed by PSI have been extensively used, subject to major extensions necessary for analyzing the future technologies. Learning curves were employed for future cost estimates. Furthermore, particularly in the social area expert surveys were used. The results were aggregated using total (internal plus external) costs approach and multi-criteria decision analysis (MCDA). For MCDA a set of criteria and the associated indicators was established. In total 75 indicators were quantified, including 11 environmental, 33 social and 31 economic. Eighteen current and 18 future technologies have been analysed including nuclear as well as fossil and renewable technologies. Total costs were estimated for these technologies providing a clear ranking with nuclear having the lowest costs and some of the renewables showing remarkable cost reductions until 2030. This ranking is partially controversial mainly due to the limited representation of social aspects in the total costs. The results of MCDA-applications involving elicitation of preferences from a relatively homogeneous stakeholder group, i.e. 85 employees of the Axpo Group (including also NOK, EGL, CKW and Axpo IT), are summarized. In addition

  8. A thermodynamic perspective on technologies in the Anthropocene : analyzing environmental sustainability

    NARCIS (Netherlands)

    Liao, Wenjie

    2012-01-01

    Technologies and sustainable development are interrelated from a thermodynamic perspective, with industrial ecology (IE) as a major point of access for studying the relationship in the Anthropocene. To offer insights into the potential offered by thermodynamics in the environmental sustainability

  9. Remote technology in spent fuel management. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1999-01-01

    Spent fuel management has always been one of the important stages in the nuclear fuel cycle and it is still one of the most vital problems common to all countries with nuclear reactors. It begins with the discharge of spent fuel from a power or research reactor and ends with its ultimate disposition either by direct disposal or by reprocessing of the spent fuel. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and development activities that are of common interest. Within its spent fuel management programme, the IAEA has monitored the progress, the benefits and the implementation of remote technologies such as remote tools, robotics, etc. An Advisory Group Meeting on Remote Technology in Spent Fuel Management was held in September 1997 in order to bring together specialists working in this field and to collect information on new technical and economic developments. The objective of the Advisory Group meeting was to review remote technologies in use for the complete range of spent fuel handling and spent fuel management covering wet and dry environments, to describe ongoing developments and to prepare a technical report. This document contains contributions presented at the Meeting. Each paper was indexed and provided with an abstract

  10. Fuels from microalgae: Technology status, potential, and research requirements

    Energy Technology Data Exchange (ETDEWEB)

    Neenan, B.; Feinberg, D.; Hill, A.; McIntosh, R.; Terry, K.

    1986-08-01

    Although numerous options for the production of fuels from microalgae have been proposed, our analysis indicates that only two qualify for extensive development - gasoline and ester fuel. In developing the comparisons that support this conclusion, we have identified the major areas of microalgae production and processing that require extensive development. Technology success requires developing and testing processes that fully utilize the polar and nonpolar lipids produced by microalgae. Process designs used in these analyses were derived from fragmented, preliminary laboratory data. These results must be substantiated and integrated processes proposed, tested, and refined to be able to evaluate the commercial feasibility from microalgae. The production of algal feedstocks for processing to gasoline or ester fuel requires algae of high productivity and high lipid content that efficiently utilize saline waters. Species screening and development suggest that algae can achieve required standards taken individually, but algae that can meet the integrated requirements still elude researchers. Effective development of fuels from microalgae technology requires that R and D be directed toward meeting the integrated standards set out in the analysis. As technology analysts, it is inappropriate for us to dictate how the R and D effort should proceed to meet these standards. We end our role by noting that alternative approaches to meeting the feasibility targets have been identified, and it is now the task of program managers and scientists to choose the appropriate approach to assure the greatest likelihood of realizing a commercially viable technology. 70 refs., 39 figs., 35 tabs.

  11. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  12. Sustainability and the Fixed Bed Nuclear Reactor (FBNR

    Directory of Open Access Journals (Sweden)

    Farhang Sefidvash

    2012-08-01

    Full Text Available Sustainability as a multifaceted and holistic concept is analyzed. Sustainability involves human relationship with elements such as natural environment, economy, power, governance, education and technology with the ultimate purpose of carrying forward an ever-advancing civilization. The Fixed Bed Nuclear Reactor (FBNR is an innovative, small, simple in design, inherently safe, non-proliferating, and environmentally friendly concept that its deployment can generate energy in a sustainable manner contributing to the prosperity of humanity. The development of FBNR will provide electricity as well as desalinated water through a simple but advanced technology for the developing, as well as developed countries. FBNR is environmentally friendly due to its inherent safety and the convenience of using its spent fuel as the source of radiation for irradiation purposes in agriculture, industry, and medicine. Politically, if a ping pong game brought peace between China and USA, a program of development of FBNR supported by the peace loving international community can become a more mature means to bring peace among certain apparently hostile nations who crave sustainable energy, desalinated water and simple advanced technology.

  13. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  14. Technology Platform on Sustainable Nuclear Energy - a report on the vision

    International Nuclear Information System (INIS)

    Potocnik, J.

    2008-01-01

    The aim of the report is to prepare the establishment of the Technology Platform on Sustainable Nuclear Energy (SNP-TP). The report puts forth a version of the short-term, medium-term and long-term development of nuclear fission technologies, whose goal it is to achieve sustainable nuclear power generation, significant improvement of its economic indices, and continuous safety improvement, and to prevent it from abuse. The document includes proposals for timescales and milestones of the development and deployment of potentially sustainable nuclear technologies and provisions for a harmonization of educational and training activities in all EU Member States and for innovation of their research infrastructures. For the development of nuclear it is vital that it gains public acceptance. Therefore it is necessary to support research in the safety of nuclear facilities, staff and public protection from ionizing radiation, handling of all kinds of nuclear waste, and inspection methods involving the public. The time plans proposed will form the backbone of the Strategic Research Agenda (SRA), which should help Europe keep its leadership position in nuclear power, both in the research domain and in the industrial domain. The report emphasizes that nuclear will hold a key position among European energy sources, and calls upon European countries to make all efforts to meet the vision for a sustainable nuclear energy in line with European Commission's Strategic Plan for Energy Technologies. (author)

  15. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  16. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  17. Fuel price and technological uncertainty in a real options model for electricity planning

    International Nuclear Information System (INIS)

    Fuss, Sabine; Szolgayova, Jana

    2010-01-01

    Electricity generation is an important source of total CO 2 emissions, which in turn have been found to relate to an acceleration of global warming. Given that many OECD countries have to replace substantial portions of their electricity-generating capacity over the next 10-20 years, investment decisions today will determine the CO 2 -intensity of the future energy mix. But by what type of power plants will old (mostly fossil-fuel-fired) capacity be replaced? Given that modern, less carbon-intensive technologies are still expensive but can be expected to undergo improvements due to technical change in the near future, they may become more attractive, especially if fossil fuel price volatility makes traditional technologies more risky. At the same time, technological progress is an inherently uncertain process itself. In this paper, we use a real options model with stochastic technical change and stochastic fossil fuel prices in order to investigate their impact on replacement investment decisions in the electricity sector. We find that the uncertainty associated with the technological progress of renewable energy technologies leads to a postponement of investment. Even the simultaneous inclusion of stochastic fossil fuel prices in the same model does not make renewable energy competitive compared to fossil-fuel-fired technology in the short run based on the data used. This implies that policymakers have to intervene if renewable energy is supposed to get diffused more quickly. Otherwise, old fossil-fuel-fired equipment will be refurbished or replaced by fossil-fuel-fired capacity again, which enforces the lock-in of the current system into unsustainable electricity generation. (author)

  18. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  19. Domestic nuclear fuels supply: possibility of an independent technology

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1982-01-01

    After considering the different energy sources, their consumption and their respective periods of exploitation, technological considerations in the nuclear fuel field are made. The main subject is the Domestic Supply Project of Embalse Fuel (CANDU type). The different aspects which had to be developed during the realization of this project still under progress, and which are fundamental for the command of the technology, are described: 1) Qualification of the produced fuel elements: fuel elements' characteristics; the reactors' operating parameters, and the prototype fuel elements' characteristics; 2) Development of materials and/or suppliers: the obtainment of UO 2 and its physical properties are considered, as well as those of Zircaloy-4, the development of suppliers and the respective developments for the obtainment of materials such as beryllium, helium and colloidal graphite; 3) Processes development; the following processes are studied and defined: UO 2 pellets fabrication with UO 2 granulated powder; beryllium coating under vaccum; and induction brazing of bearing pads and spacers, end cap and end plate resistance welding and stamping of Zircaloy components, graphite-coating of cladding's internal face; 4) Development of special production equipments; automatic equipment for end cap-to-cladding resistance welding among others. The need for a specific program of quality assurance for nuclear fuels supply is emphasized and the basic criteria are established. The IAEA's quality asssurance requirements are also analyzed. (M.E.L.) [es

  20. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  1. Promoting Community Socio-Ecological Sustainability through Technology: A Case Study from Chile

    Science.gov (United States)

    Aguayo, Claudio; Eames, Chris

    2017-01-01

    The importance of community learning in effecting social change towards ecological sustainability has been recognised for some time. More recently, the use of Information and Communication Technology (ICT) tools to promote socio-ecological sustainability has been shown to have potential in community education for sustainable development (ESD). The…

  2. Catalytic Science and Technology in Sustainable Energy II

    DEFF Research Database (Denmark)

    Wang, Yuxin; Xiao, Feng-Shou; Seshan, Kulathu K.

    2017-01-01

    This special issue of Catalysis Today results from four sessions, under the collective theme "Catalysis in Sustainable Energy", of the 2ndInternational Symposium on Catalytic Science and Technology in Sustainable Energy and Environment, held in Tianjin, China during October 12-14, 2016. This bien...... whom the special issue would not have been possible. As the organizer of the EECAT 2016, Y Li expresses his special gratitude to the sponsors, especially Haldor Topsoe and Synfuels China, the participants and the co-organizers for their great contribution to the success of EECAT 2016....

  3. Development of CANFLEX fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. S.; Choi, C. B.; Park, C. H.; Kwon, W. J.; Kim, C. H.; Kim, B. J.; Koo, C. H.; Cho, D. S.; So, D. Y.; Suh, S. W.; Park, C. J.; Chang, D. H.; Yun, S. H. [KEPCO Nuclear Fuel Company, Taejeon (Korea)

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU(CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. One of the improvements in CANDU fuel fabrication technology, and advanced method of Zr-Be brazing was developed. For the formation of Zr-Be alloy, preheating and main heating temperature in the furnace is 700 deg C, 1200 deg C respectively. In order to find an appropriate material for the brazing joints in the CANDU fuel, the composition of Zr based amorphous metals were designed. And, the effect of hydrogen on the mechanical properties of cladding sheath and feasibility of the eddy current test to evaluate quality of end cap weld were also studied for the fundamental research purpose. As a preliminary study to suggest optimal way for the mass production of CANFLEX-NU fuel at KNFC the existing CANDU fuel facilities and fabrication/inspection processes were reviewed. The best way is that the current CANDU facility shall be modified to produce small diametrial CANFLEX elements and a new facility shall be constructed to produce large diametrial CANFLEX fuel elements. 46 refs., 99 figs., 10 tabs. (Author)

  4. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  5. New Technologies for Parliaments Managing Knowledge for Sustaining Democracy

    Directory of Open Access Journals (Sweden)

    Mauro ROMANELLI

    2016-12-01

    Full Text Available Parliaments as information and knowledge-based organizations are embracing the Internet and new technologies of information and communication for coping with the crisis of legitimacy relying on citizens feeling disenchanted about politics. Parliaments as democratic institutions engaging citizens use technology for better managing sources of knowledge and information and developing public policies as result of knowledge sharing and dialogue between public institutions and citizens. Parliaments dealing with an increasing complexity of governing tend to introduce new technologies following an information or knowledge approach to achieve legitimacy as credible institutions encouraging an active participation of citizens, for building a sustainable and democratic path promoting active citizenship. Parliaments sustain democracy by managing knowledge and information, structuring the e-parliament between merely providing a channel for citizens having access to information and developing active communication for engendering a dialogue with citizens to be included and exert influence in the policy process by encouraging participatory models driving the search of knowledge for building policies.

  6. Technological solution for vulnerable communities: Questioning the sustainability of Appropriate Technology

    International Nuclear Information System (INIS)

    Sianipar, C P M; Dowaki, K; Yudoko, G

    2015-01-01

    Vulnerability eradication has become an emerging concern in today's society following the increasing uncertainties in achieving societal resilience, particularly in vulnerable communities. Furthermore, incorporating technological solution, especially appropriate technology (AT), into such concern requires interdisciplinary understandings to achieve a holistic eradication based on the particularities of each community. This study aims to briefly reveal existing scholarly discourses and investigate potential gap(s) between previous researches. Literatures, particularly consisting meta-analysis on previous scholarly discussions, are surveyed. The findings reveal three progress among scientific discourses. The first one is the paradigm shift of developmental purposes from typical development to empowerment. Next, concerns in technology development indicate the parallel movement toward empowerment. Then, previous methodological developments, including approach in sustaining AT, indicate the needs to assess the future based on sustainability. Therefore, a new research is proposed to develop an assessment framework on AT for vulnerability eradication on the basis of empowerment paradigm, extended focuses in technology development, and extended coverage of future changes in dynamic matter. The framework needs to be developed based on the combination of positivist-deductive-qualitative research paradigms. This is intended to generalize the framework for being used in different cases, to build an applicative framework as an integral part of existing body of knowledge, and to develop an enriched and flexible construction of framework. Looking at existing researches, this brief study proposes insights to move scientific progress toward a more holistic vulnerability eradication using AT solution both in conceptual and practical levels

  7. Energy, sustainability and the environment technology, incentives, behavior

    CERN Document Server

    2011-01-01

    The complexity of carbon reduction and economic sustainability is significantly complicated by competing aspects of socioeconomic practices as well as legislative, regulatory, and scientific requirements and protocols. An easy to read and understand guide, Sioshansi, along with an international group of contributors, moves through the maze of carbon reduction methods and technologies, providing steps and insights to meet carbon reduction requirements and maintaining the health and welfare of the firm. The book's three part treatment is based on a clear and rigorous exposition of a wide range of options to reduce the carbon footprint Part 1 of the book, Challenge of Sustainability, examines the fundamental drivers of energy demand - economic growth, the need for basic energy services, and the interdependence of economic, political, environmental, social, equity, legacy and policy issues. Part 2 of the book, Technological Solutions, examines how energy can be used to support basic energy service needs of homes...

  8. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  9. An EKC-pattern in historical perspective. Carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997

    International Nuclear Information System (INIS)

    Lindmark, Magnus

    2002-01-01

    The environmental Kuznets curve (EKC) has been subject to research and debate since the early 1990s. This article examines the inverted-U trajectory of Swedish CO 2 emissions during an extended time period beginning in 1870. The basis for the investigation is a structural time series approach that utilizes a stochastic trend as an indicator of technological and structural change, and GDP growth and changes in the price of fuel and cement price as independent variables. Finally, the development of technological and structural change with respect to CO 2 emissions is interpreted within the context of growth regimes. The result suggests that the period 1920-1960, with high, sustained growth rates was associated with less technological and structural changes relating to CO 2 emissions than periods with lower growth rates, such as the late 1800s and the post-1970 period. Furthermore, it is suggested that time-specific technological clusters may affect EKC patterns

  10. An EKC-pattern in historical perspective. Carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Magnus [Department of Economic History, Umea University, SE-901 87 Umea (Sweden)

    2002-08-01

    The environmental Kuznets curve (EKC) has been subject to research and debate since the early 1990s. This article examines the inverted-U trajectory of Swedish CO{sub 2} emissions during an extended time period beginning in 1870. The basis for the investigation is a structural time series approach that utilizes a stochastic trend as an indicator of technological and structural change, and GDP growth and changes in the price of fuel and cement price as independent variables. Finally, the development of technological and structural change with respect to CO{sub 2} emissions is interpreted within the context of growth regimes. The result suggests that the period 1920-1960, with high, sustained growth rates was associated with less technological and structural changes relating to CO{sub 2} emissions than periods with lower growth rates, such as the late 1800s and the post-1970 period. Furthermore, it is suggested that time-specific technological clusters may affect EKC patterns.

  11. Energy, society and environment. Technology for a sustainable future

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-04-01

    Energy, Society and Environment examines energy and energy use, and the interactions between technology, society and the environment. The book is clearly structured to examine; Key environmental issues, and the harmful impacts of energy use; New technological solutions to environmental problems; Implementation of possible solutions, and Implications for society in developing a sustainable approach to energy use. Social processes and strategic solutions to problems are located within a clear, technological context with topical case studies. (UK)

  12. Urban Sustainability by Analysis of Renewable Technologies in the Public Transport of the City of Curitiba

    Directory of Open Access Journals (Sweden)

    Alexandre Dullius

    2017-10-01

    Full Text Available To work sustainability issues in the urban environment is one of the great challenges in current. One of the ways to reach goals of this size is through the insertion of sustainable technologies in the public transportation sector. Examples include the use of biofuel instead of fossil fuels and the adoption of hybrid electric buses. Such replacements have been carried out in the collective transportation of the city of Curitiba, Paraná, which has been a pioneer in this type of management and has 1.7 vehicles per inhabitant. Therefore, the proposal of the article is to question the extent to which these actions contribute to the sustainability of the planet. For this purpose, emissions from the vehicles that compose the city's bus fleet were quantified over a one-year period, with evaluation of opacity tests and greenhouse gas emissions [GHG's]. In the period, the public transport sector was responsible for the emission of approximately 200,000 metric tons CO2 eq. The use of biodiesel in public transportation in Curitiba prevented the emission of approximately 10,000 metric tons of CO2. The results of the opacity tests indicated that the hybrid model operating the B100 emits about 93% less black smoke. It was verified that there is a significant contribution by the city to reduce the emission of GHG's. By economic analysis, if the entire fleet of the city of Curitiba were hybrid, with the total volume of fuel used, an economy of R $ 62,558,868.08 would be obtained, which would cover public health expenditures emissions from public transportation, for example, from the city of São Paulo, the most populous in South America.

  13. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. S.; Yoon, J. S.; Hong, H. D. (and others)

    2007-02-15

    In this research, the remote handling technology was developed for the ACP application. The ACP gives a possible solution to reduce the rapidly cumulative amount of spent fuels generated from the nuclear power plants in Korea. The remote technologies developed in this work are a slitting device, a voloxidizer, a modified telescopic servo manipulator and a digital mock-up. A slitting device was developed to declad the spent fuel rod-cuts and collect the spent fuel UO{sub 2} pellets. A voloxidizer was developed to convert the spent fuel UO{sub 2} pellets obtained from the slitting process in to U{sub 3}O{sub 8} powder. Experiments were performed to test the capabilities and remote operation of the developed slitting device and voloxidizer by using simulated rod-cuts and fuel in the ACP hot cell. A telescopic servo manipulator was redesigned and manufactured improving the structure of the prototype. This servo manipulator was installed in the ACP hot cell, and the target module for maintenance of the process equipment was selected. The optimal procedures for remote operation were made through the maintenance tests by using the servo manipulator. The ACP digital mockup in a virtual environment was established to secure a reliability and safety of remote operation and maintenance. The simulation for the remote operation and maintenance was implemented and the operability was analyzed. A digital mockup about the preliminary conceptual design of an enginnering-scale ACP was established, and an analysis about a scale of facility and remote handling was accomplished. The real-time diagnostic technique was developed to detect the possible fault accidents of the slitting device. An assessment of radiation effect for various sensors was also conducted in the radiation environment.

  14. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  15. Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter

    International Nuclear Information System (INIS)

    Helder, Marjolein; Strik, David P.B.T.B.; Timmers, Ruud A.; Raes, Sanne M.T.; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2013-01-01

    The Plant-Microbial Fuel Cell (P-MFC) is in theory a technology that could produce sustainable electricity continuously. We operated two designs of the P-MFC under natural roof-top conditions in the Netherlands for 221 days, including winter, to test its resilience. Current and power densities are not stable under outdoor conditions. Highest obtained power density was 88 mW m −2 , which is lower than was achieved under lab-conditions (440 mW m −2 ). Cathode potential was in our case dependent on solar radiation, due to algae growth, making the power output dependent on a diurnal cycle. The anode potential of the P-MFC is influenced by temperature, leading to a decrease in electricity production during low temperature periods and no electricity production during frost periods. Due to freezing of the roots, plants did not survive winter and therefore did not regrow in spring. In order to make a sustainable, stable and weather independent electricity production system of the P-MFC attention should be paid to improving cathode stability and cold insulation of anode and cathode. Only when power output of the Plant-Microbial Fuel Cell can be increased under outdoor conditions and plant-vitality can be sustained over winter, it can be a promising sustainable electricity technology for the future. -- Highlights: ► Plant-Microbial Fuel Cells (P-MFCs) produce sustainable electricity under outdoor conditions. ► During frost periods no electricity is produced in P-MFCs. ► Cathodes limit performance of P-MFCs under outdoor conditions. ► Spartina anglica in P-MFCs does not survive on a roof-top during Dutch winter. ► The P-MFC needs optimization of power output to be a promising sustainable electricity technology

  16. Scientific challenges in sustainable energy technology

    Science.gov (United States)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  17. Next Generation Fuel Cell Technology for Passenger Cars and Buses

    OpenAIRE

    Mohrdieck, Dr.

    2009-01-01

    Daimler is presenting its latest fuel cell vehicle, the Mercedes-Benz B-Class F-CELL in 2009. Being one of the first series-produced fuel cell vehicles so far, the B-Class F-CELL will be a milestone on the road to commercialization of hydrogen-powered fuel cell vehicles. Equipped with advanced fuel cell technology it is suited for everyday operation and designed to fully meet customers´ expectations. From 2010 onwards, this zero emission vehicle is going to be operated by selected customers i...

  18. The right of all nations to access science, new technologies and sustainable development.

    Science.gov (United States)

    Majidi, Mohammad Reza; Dehshiri, Mohammad Reza

    2009-01-01

    This article explores the need for reflection on the right of developing countries to science and technology in addition to explaining the place of the scientific rights of nations in human rights as a whole. The discussion was conducted in relation to sustainable development. Through the examination of the current situation and the challenges to sustainable development, and taking into account the imbalance in the distribution of the benefits of science and new technologies, the authors advocate a comprehensive approach to promote cooperation and capacity-building in this area. They argue that linkages should be adopted between micro-levels and macro-levels of analysis by elevating rights and related issues from individuals to the national level in the field of the right to science and technology, and from the national to the international level in the field of sustainable development in order to institutionalise and ensure individual and national rights to science, technology and sustainable development. The authors also believe in a multidimensional perspective based on the balanced flourishing of the material and immaterial aspects of humankind in order to realise these rights in the context of dialogue and cultural diversity and to promote the culture of sustainable and dynamic peace based on justice in knowledge societies.

  19. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  20. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  1. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  2. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  3. A key review on emergy analysis and assessment of biomass resources for a sustainable future

    International Nuclear Information System (INIS)

    Zhang Gaijing; Long Weiding

    2010-01-01

    The present study comprehensively reviews emergy analysis and performance evaluation of biomass energy. Biomass resources utilization technologies include (a) bioethanol production, (b) biomass for bio-oil, (c) biodiesel production, (d) straw as fuel in district heating plants, (e) electricity from Municipal Solid Waste (MSW) incineration power plant, (f) electricity from waste landfill gas. Systems diagrams of biomass, which are to conduct a critical inventory of processes, storage, and flows that are important to the system under consideration and are therefore necessary to evaluate, for biomasses are given. Emergy indicators, such as percent renewable (PR), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are shown to evaluate the environmental load and local sustainability of the biomass energy. The emergy indicators show that bio-fuels from crop are not sustainable and waste management for fuels provides an emergy recovery even lower than mining fossil fuel.

  4. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  5. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  6. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  7. Assessing the sustainability of bioethanol production in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Khatiwada, Dilip

    2010-10-15

    Access to modern energy services derived from renewable sources is a prerequisite, not only for economic growth, rural development and sustainable development, but also for energy security and climate change mitigation. The least developed countries (LDCs) primarily use traditional biomass and have little access to commercial energy sources. They are more vulnerable to problems relating to energy security, air pollution, and the need for hard-cash currency to import fossil fuels. This thesis evaluates sugarcane-molasses bioethanol, a renewable energy source with the potential to be used as a transport fuel in Nepal. Sustainability aspects of molasses-based ethanol have been analyzed. Two important indicators for sustainability, viz. net energy and greenhouse gas (GHG) balances have been used to assess the appropriateness of bioethanol in the life cycle assessment (LCA) framework. This thesis has found that the production of bioethanol is energy-efficient in terms of the fossil fuel inputs required to produce it. Life cycle greenhouse gas (GHG) emissions from production and combustion are also lower than those of gasoline. The impacts of important physical and market parameters, such as sugar cane productivity, the use of fertilizers, energy consumption in different processes, and price have been observed in evaluating the sustainability aspects of bioethanol production. The production potential of bioethanol has been assessed. Concerns relating to the fuel vs. food debate, energy security, and air pollution have also been discussed. The thesis concludes that the major sustainability indicators for molasses ethanol in Nepal are in line with the goals of sustainable development. Thus, Nepal could be a good example for other LDCs when favorable governmental policy, institutional set-ups, and developmental cooperation from donor partners are in place to strengthen the development of renewable energy technologies

  8. New technologies in the production of motor fuels from renewable materials

    Directory of Open Access Journals (Sweden)

    Adnađević Borivoj K.

    2012-01-01

    Full Text Available This work presents resources of the Autonomous Province of Vojvodina available for bioethanol and motor fuels (gasoline and diesel fuel from sustainable resources: corn-stalks, straw, sweet sorghum, pork fat. The physicochemical basis for novel processes for motor fuel production is coupling microwave pyrolysis of oil shale and catalytic cracking of purified pyrolysis oil, hydrothermal liquefaction of algae and swine manure. The effects of the degree of purification of crude pyrolysis oil and oil shale on the degree of their conversion to gasoline and diesel fuel, as well as the product distribution are investigated. The effects of the duration and temperature of hydrothermal liquefaction of microalga, Botryoccocus braunii, and swine manure on their degrees of conversion into bio-oil and its thermal properties are investigated. The development of novel strategy of biofuel in the Autonomous Province of Vojvodina is presented.

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  10. Reviews on Solid Oxide Fuel Cell Technology

    Directory of Open Access Journals (Sweden)

    Apinan Soottitantawat

    2009-02-01

    Full Text Available Solid Oxide Fuel Cell (SOFC is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants. This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect are presented. Later, the current important designs of SOFC (i.e. Seal-less Tubular Design, Segmented Cell in Series Design, Monolithic Design and Flat Plate Design are exampled. In addition, the possible operations of SOFC (i.e. external reforming, indirect internal reforming, and direct internal reforming are discussed. Lastly, the research studies on applications of SOFCs with co-generation (i.e. SOFC with Combined Heat and Power (SOFC-CHP, SOFC with Gas Turbine (SOFC-GT and SOFC with chemical production are given.

  11. Status and outlook for biofuels, other alternative fuels and new vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N -O; Aakko-Saksa, P; Sipilae, K

    2008-03-15

    The report presents an outlook for alternative motor fuels and new vehicles. The time period covered extends up to 2030. The International Energy Agency and the U.S. Energy Information Administration predict that the world energy demand will increase by over 50% from now to 2030, if policies remain unchanged. Most of the growth in demand for energy in general, as well as for transport fuels, will take place in non-OECD countries. Gasoline and diesel are projected to remain the dominant automotive fuels until 2030. Vehicle technology and high quality fuels will eventually solve the problem of harmful exhaust emissions. However, the problem with CO{sub 2} still remains, and much attention will be given to increase efficiency. Hybrid technology is one option to reduce fuel consumption. Diesel engines are fuel efficient, but have high emissions compared with advanced gasoline engines. New combustion systems combining the best qualities of gasoline and diesel engines promise low emissions as well as high efficiency. The scenarios for alternative fuels vary a lot. By 2030, alternative fuels could represent a 10- 30% share of transport fuels, depending on policies. Ambitious goals for biofuels in transport have been set. As advanced biofuels are still in their infancy, it seems probable that traditional biofuels will also be used in 2030. Ethanol is the fastest growing biofuel. Currently the sustainability of biofuels is discussed extensively. Synthetic fuels promise excellent end-use properties, reduced emissions, and if produced from biomass, also reduced CO{sub 2} emissions. The report presents an analysis of technology options to meet the requirements for energy security, reduced CO{sub 2} emissions, reduced local emissions as well as sustainability in general in the long run. In the short term, energy savings will be the main measure for CO{sub 2} reductions in transport, fuel switches will have a secondary role. (orig.)

  12. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation

    Directory of Open Access Journals (Sweden)

    Julia E. Vidonish

    2016-12-01

    Full Text Available Thermal treatment technologies hold an important niche in the remediation of hydrocarbon-contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainability of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.

  13. HTGR Fuel Technology Program. Semiannual report for the period ending March 31, 1981

    International Nuclear Information System (INIS)

    1981-05-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at General Atomic during the first half of FY-81. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was initiated during this period was the preparation of input data for a long-range technology program plan

  14. EU policy: Which technological strategies for smart, sustainable growth?

    International Nuclear Information System (INIS)

    Liberali, Raffaele; )

    2011-01-01

    The EU's Strategic Energy Technology Plan (SET Plan) was launched in November 2007 in response to issues having to do with energy and the climate. Its priority is to speed up the development and deployment of new energy technology thanks to a global approach providing coordination among member states. This plan is to position Europe as a world leader in the transition toward smart, sustainable growth

  15. Sustained use of biogas fuel and blood pressure among women in rural Nepal

    Science.gov (United States)

    Neupane, Maniraj; Basnyat, Buddha; Fischer, Rainald; Froeschl, Guenter; Wolbers, Marcel; Rehfuess, Eva A

    2015-01-01

    Background More than two fifths of the world's population cook with solid fuels and are exposed to household air pollution (HAP). As of now, no studies have assessed whether switching to alternative fuels like biogas could impact cardiovascular health among cooks previously exposed to solid fuel use. Methods We conducted a propensity score matched cross-sectional study to explore if the sustained use of biogas fuel for at least ten years impacts blood pressure among adult female cooks of rural Nepal. We recruited one primary cook ≥30 years of age from each biogas (219 cooks) and firewood (300 cooks) using household and measured their systolic (SBP) and diastolic blood pressure (DBP). Household characteristics, kitchen ventilation and 24-h kitchen carbon monoxide were assessed. We matched cooks by age, body mass index and socio-economic status score using propensity scores and investigated the effect of biogas use through multivariate regression models in two age groups, 30–50 years and >50 years to account for any post-menopausal changes. Results We found substantially reduced 24-h kitchen carbon monoxide levels among biogas-using households. After matching and adjustment for smoking, kitchen characteristics, ventilation status and additional fuel use, the use of biogas was associated with 9.8 mmHg lower SBP [95% confidence interval (CI), −20.4 to 0.8] and 6.5 mmHg lower DBP (95% CI, −12.2 to −0.8) compared to firewood users among women >50 years of age. In this age group, biogas use was also associated with 68% reduced odds [Odds ratio 0.32 (95% CI, 0.14 to 0.71)] of developing hypertension. These effects, however, were not identified in younger women aged 30–50 years. Conclusions Sustained use of biogas for cooking may protect against cardiovascular disease by lowering the risk of high blood pressure, especially DBP, among older female cooks. These findings need to be confirmed in longitudinal or experimental studies. PMID:25460655

  16. Sustained use of biogas fuel and blood pressure among women in rural Nepal.

    Science.gov (United States)

    Neupane, Maniraj; Basnyat, Buddha; Fischer, Rainald; Froeschl, Guenter; Wolbers, Marcel; Rehfuess, Eva A

    2015-01-01

    More than two fifths of the world's population cook with solid fuels and are exposed to household air pollution (HAP). As of now, no studies have assessed whether switching to alternative fuels like biogas could impact cardiovascular health among cooks previously exposed to solid fuel use. We conducted a propensity score matched cross-sectional study to explore if the sustained use of biogas fuel for at least ten years impacts blood pressure among adult female cooks of rural Nepal. We recruited one primary cook ≥ 30 years of age from each biogas (219 cooks) and firewood (300 cooks) using household and measured their systolic (SBP) and diastolic blood pressure (DBP). Household characteristics, kitchen ventilation and 24-h kitchen carbon monoxide were assessed. We matched cooks by age, body mass index and socio-economic status score using propensity scores and investigated the effect of biogas use through multivariate regression models in two age groups, 30-50 years and >50 years to account for any post-menopausal changes. We found substantially reduced 24-h kitchen carbon monoxide levels among biogas-using households. After matching and adjustment for smoking, kitchen characteristics, ventilation status and additional fuel use, the use of biogas was associated with 9.8 mmHg lower SBP [95% confidence interval (CI), -20.4 to 0.8] and 6.5 mmHg lower DBP (95% CI, -12.2 to -0.8) compared to firewood users among women >50 years of age. In this age group, biogas use was also associated with 68% reduced odds [Odds ratio 0.32 (95% CI, 0.14 to 0.71)] of developing hypertension. These effects, however, were not identified in younger women aged 30-50 years. Sustained use of biogas for cooking may protect against cardiovascular disease by lowering the risk of high blood pressure, especially DBP, among older female cooks. These findings need to be confirmed in longitudinal or experimental studies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  18. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  19. competitive technologies for sustainable development

    International Nuclear Information System (INIS)

    Chriqui, Vincent; Bergougnoux, Jean; Hossie, Gaelle; Beeker, Etienne; Buba, Johanne; Delanoe, Julien; Ducos, Geraldine; Hilt, Etienne; Rigard-Cerison, Aude; Teillant, Aude; Auverlot, Dominique; Martinez, Elise; Dambrine, Fabrice; Roure, Francoise

    2012-08-01

    By letter dated 27 April 2011, the Director General of the Centre for Strategic Analysis, Vincent Chriqui, confided to Jean Bergougnoux, honorary president of the SNCF, Honorary General Director of EDF, the task of animating a reflection Prospective Technological Studies of the sectors of energy, transport and construction. This synthesis report, prepared with the assistance of rapporteurs Centre for Strategic Analysis, attempts to summarize and put into perspective all the work which show these specific reports. Admittedly some very complex issues still need supplements. It may therefore be useful to extend this work in a number of areas. Beyond its role in the competitiveness of a country, technological innovation is essential to provide appropriate responses to the challenges of our commitment to sustainable development in terms of economic growth, preservation of the environmental and social progress. Mission for Prospective Technological conducted by the Centre for Strategic Analysis has sought to clarify this dual problem by proposing a long-term vision for the energy, transport and construction. For each technology studied, it has attempted to assess both the possible contribution to sustainable development and the competitive potential of our country on the international scene. His work, chaired by Jean Bergougnoux have reviewed the technological advances that may occur in the coming decades in the sectors concerned. They examined the conditions for integration of these advances in systems and subsystems existing (or create) and the conditions of a mature technical, economic but also social. Wherever possible, two time horizons were identified: a medium-term horizon, 2030, for which we have a fairly clear vision of future developments and long-term horizon, 2050, which allows to consider jumps Scientists are still uncertain. Finally, the mission is interested in four transverse technologies involved consistently in the three study areas, which are likely to

  20. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    Science.gov (United States)

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.