WorldWideScience

Sample records for sustainable energy dtu

  1. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    ). The university is in the international vanguard of knowledge and research in the field of sustainable energy. With as many as 1,000 employees spread across a large number of departments, the university possesses extensive expertise on a wide range of energy technologies and energy systems. Research is carried...... out in close cooperation with internationally leading institutions and experts. Based on a wealth of core competencies, DTU takes a broadand holistic approach to energy research within both energy supply and consumption. Against this background, DTU identifies, presents and discusses new energy...... sustainable energy systems where security of supply, climate concerns and new green economic growth go hand in hand....

  2. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2009-08-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  3. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  4. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2009-08-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  5. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2010-06-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  6. Overview of the Sustainable Energy Research at DTU

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt

    2014-01-01

    Most of the Danish expertise in sustainable energy is found at the Technical University of Denmark, where approximately 1,000 staff members are carrying out research into sustainable energy. The research activities cover a broad area of scientific fields, from production, conversion, systems...

  7. Sustainable DTU, Electronics and It

    DEFF Research Database (Denmark)

    Schultz, Ole; Molin, Jesper; Hundebøll, Peder M.

    2014-01-01

    Diplom engineering students from basically all education can take the elective course SDTU where they learn about sustainability within product development – products which make DTU-Diplom Campus greener. In this course all participant learn about energy screening. They create an energy plan...... and suggest what should be done at the Campus to make it green and as the last part of it the prototype and suggest in detail what could be done. Over time there have been participating students from another elective course, Sustainable Electronics and IT as well students from Process and Innovation, Export...... Engineering and Civil Engineering students. The courses teach students that sustainability is a cross disciplinary topic – where engineering’s from different education has to cooperate for getting a proper solution. Electronic and IT Diplom engineering students are motivated learning about sustainability...

  8. DTU International Energy Report 2015

    DEFF Research Database (Denmark)

    to solve some of the challenges introduced by the broader integration of renewable sources. Closer integration and coordination of energy infrastructures might also lead to a more cost-effective energy system with a lower impact on the environment and climate. The DTU International Energy Report 2015......One of the challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources is to secure a well-functioning and stable electricity infrastructure. Today, conventional generation is responsible for providing many of the power system services needed...... for stable and reliable electricity infrastructure operation. When fluctuating renewable energy sources are taking over, the heating, cooling, gas, and transport infrastructures may be able to provide some of the flexibility needed. Closer integration of the various energy infrastructures is thus a means...

  9. Basic DTU Wind Energy controller

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Henriksen, Lars Christian

    This report contains a description and documentation, including source code, of the basic DTU Wind Energy controller applicable for pitch-regulated, variable speed wind turbines. The controller features both partial and full load operation capabilities as well as switching mechanisms ensuring...... smooth switching between the two modes of operation. The partial and full load controllers are both based on classical proportional-integral control theory as well as additional filters such as an optional drive train damper and a notch filter mitigating the influence of rotor speed dependent variations...... in the feedback. The controller relies on generator speed as the primary feedback sensor. Additionally, the reference generator power is used as a feedback term to smoothen the switching between partial and full load operation. Optionally, a low-pass filtered wind speed measurement can be used for wind speed...

  10. DTU International Energy Report 2013

    DEFF Research Database (Denmark)

    as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage...

  11. Energy research and teaching at CEE, DTU Elektro

    DEFF Research Database (Denmark)

    Holbøll, Joachim

    2014-01-01

    The Center for Electric Power and Energy (CEE) at DTU Elektro focuses on research and teaching within the present and the future energy system, aiming at a reliable, cost-efficient and sustainable energy system based on renewable energy. In such way is addressed one of the major and most important...... challenges of our modern society. The ongoing transformation of the energy system is triggered by technology development and specific energy strategies in Denmark. CEE is supporting the development of a range of new technologies and solutions as well as the underlying new knowledge, theory and methods...... and teaching in mentioned areas in order to support the considerable changes in the electrical grid towards much more dynamic operation of the power system in interaction with other energy infrastructures....

  12. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  13. Sustainability at DTU from Campus Service point of view -an invitation to use campus as learning lab

    DEFF Research Database (Denmark)

    Michaelsen, Lisbet

    2014-01-01

    Campus Service (CAS) at DTU has the mission of servicing our University with a high quality within all areas of Facility Management: planning, building, operation and maintenance. At the same time CAS supports the vision of DTU to be a sustainable university so we try to think sustainable in all...

  14. A Decade of Solid Oxide Electrolysis Improvements at DTU Energy

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Chen, Ming

    2017-01-01

    Solid oxide electrolysis cells (SOECs) can efficiently convert electrical energy (e.g. surplus wind power) to energy stored in fuels such as hydrogen or other synthetic fuels. Performance and durability of the SOEC has increased orders of magnitudes within the last decade. This paper presents....... All together, these improvements have led to a decrease in long-term degradation rate from ∼40 %/kh to ∼0.4 %/kh for steam electrolysis at -1 A/cm2, while the initial area specific resistance has been decreased from 0.44 Ωcm2 to 0.15 Ωcm2 at -0.5 A/cm2 and 750 °C....

  15. Overview of SOFC/SOEC development at DTU Energy Conversion

    DEFF Research Database (Denmark)

    Hagen, Anke

    2014-01-01

    According to a broad political agreement in Denmark, the Danish energy system should become independent on fossil fuels like oil, coal and natural gas by the year 2050. This aim requires expansion of electricity production from renewable sources, in particular wind mills. In order to balance...... Topsoe Fuel Cell A/S. Recent achievements will be presented ranging from development of new cell generations, manufacturability, up to testing under realistic operating conditions including degradation studies and high pressure testing. A strong focus will be on development of methodologies, e...

  16. Progress of SOFC/SOEC Development at DTU Energy: From Materials to Systems

    DEFF Research Database (Denmark)

    Hagen, Anke; Hendriksen, Peter Vang

    2017-01-01

    DTU Energy has over the past 20 years had a very substantial effort on SOFC/SOEC development. The current project volume corresponds to ~40 man years per year. Activities span over a broad range in the value chain, from materials to cells, stacks and analyses at energy system level. In addition...... to that, research areas comprise ceramic processing methods, micro-structural analysis, electrochemical characterization, and modelling. Among recent highlights are electrode and cell developments, including metal supported cells, stack development durability studies under realistic operation conditions...

  17. Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities.

    Science.gov (United States)

    Mikkelsen, Lars Pilgaard; Mishnaevsky, Leon

    2017-11-08

    Computational and analytical studies of degradation of wind turbine blade materials at the macro-, micro-, and nanoscale carried out by the modelling team of the Section Composites and Materials Mechanics, Department of Wind Energy, DTU, are reviewed. Examples of the analysis of the microstructural effects on the strength and fatigue life of composites are shown. Computational studies of degradation mechanisms of wind blade composites under tensile and compressive loading are presented. The effect of hybrid and nanoengineered structures on the performance of the composite was studied in computational experiments as well.

  18. Zebrafish a new sustainable vertebrate model established at DTU Food to study immunotoxicology

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Schmidt, Jacob Günther

    2014-01-01

    enable new research possibilities: Small in size, Short life cycle and generation time, Good reproduction in captivity, External fertilization, Transparent embryos, Rapid embryonic development, Several transgenic strains e.g. with fluorescent cell types. We use zebrafish and carp as vertebrate models...... to investigate the immune system and adverse immunotoxicological effects of chemical substances. At DTU Food we have just invested in a State-of-the-art zebrafish facility with fully automated control of water parameters. We are currently working with the influence of chemicals on the allograft reaction (tissue...

  19. Ny kandidatuddannelse i Bæredygtig Energi på Risø DTU

    DEFF Research Database (Denmark)

    Ryde, M.

    2007-01-01

    I september 2008 vil de første studerende begynde på en ny kandidatuddannelse med basis på Risø DTU. Det samlede studieforløb er normeret til to år, og de studerende er således godt i gang med deres studium når FN’s klimakonference afholdes i København2009...

  20. DTU International Energy Report 2016: The Energy-Water-Food Nexus - from local to global aspects

    DEFF Research Database (Denmark)

    Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil or......-users. The waste water is often returned to the environment after energy requiring waste water management.......Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil...

  1. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  2. Optimal development of the future Danish energy system – insights from TIMES-DTU model

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard; Balyk, Olexandr

    2015-01-01

    , Denmark was constrained to be a net exporter of electricity. The results imply that heat demand in future Danish energy system will be significantly reduced as a result of significant heat saving measures within the building stock, especially in rural and sub-urban areas. In urban areas, large district...... of CHP-based district heating and heat saving measures. In the same period Denmark became well-known by integration and export of wind turbines. In line with the changes in the past, Denmark currently has very ambitious renewable energy targets, most ambitious being the 100 % renewable energy system......) WLP with the constraint that 50 % of electricity production should come from wind starting from 2020, and (iii) WLP-NFE scenario with the constraint that power and heat sector should be fossil fuel-free starting from 2035 and Denmark should be 100 % renewable starting from 2050. In all scenarios...

  3. DTU:Toolbox

    DEFF Research Database (Denmark)

    2002-01-01

    The DTU:Toolbox™ is a collection of machine learning algorithms implemented mainly for Matlab™. Currently it holds: *Independent component analysis (ICA) *Artificial neural networks (ANN) Focus is on developing easy to use algorithms with no or a minimum of parameter tuning. All algorithms come...... Institutes of Health's Human Brain Project. All code can be used freely in research and other non-profit applications. If you publish results obtained with the DTU:Toolbox we kindly ask that our and other relevant sources are properly cited. Description, citation and implementation notes for the individual...

  4. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  5. Towards fusion energy as a sustainable energy source: Activities at DTU Physics

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Christensen, Alexander Simon; Dam, Magnus

    2014-01-01

    in the magnetic field of the fusion device. Understanding this is important for optimizing plasmaperformance and for controlling the heat load onto the walls of the confining vessel.Experimentally, we operate equipment to measure key plasma properties in experimental fusion devices such as ASDEX Upgrade...... in Germany (Fig. 1b+c). Using a technique called collective Thomson scattering(CTS), we can infer the plasma composition and the dynamics of energetic ions in the plasma. Control of these parameters is vital for achieving a high fusion yield in future power plants. We are also designing CTS equipment...... of high priority on the way towards a working fusion power plant. On the theoreticalfront, we are simulating plasma turbulence and transport of heat and particles in fusion plasmas (Fig. 1a). These issues play a key role in determining how the plasma behaves globally and how well it remains confined...

  6. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  7. Sustainable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Afgan, Naim H. [Instituto Superior Tecnico, Lisbon (Portugal); Al Gobaisi, Darwish; Carvalho, Maria G. [International Foundation for Water Science and Technology, Abu Dhabi (United Arab Emirates); Cumo, Maurizio [University of Rome ' La Sapienza' , Rome (Italy)

    1998-07-01

    The paper presents an overview of sustainable energy development and is aimed to emphasize the important aspects relevant to this activity. A short introduction, related to the present energy outlook with a survey of available data, is presented. This gives the possibility to assess the motivation for a sustainable energy development. Special attention is devoted to the definition of sustainability and its generic meaning. In this respect, particular attention is devoted to the discussion of different aspects of sustainability in the present world. In order to present an engineering approach to the sustainable development, attention is devoted to the review of sustainability criterions as they have to be introduced in the future products. The main emphasis is given to review a potential development in the energy engineering science which may lead to a sustainable energy development. Seven major areas are listed with specific problems and their relevance to the sustainable energy development. This includes the following areas: energy resources and development: efficiency assessment; clean air technologies; information technologies; new and renewable energy resources; environment capacity; mitigation of nuclear power threat to the environment. The education system is the milestone for any economic development. In this respect, sustainable energy development will require special attention to be devoted to the new development of the education system. The distance learning education system is envisages as the potential option for the knowledge dissemination of the new energy technologies. (Author)

  8. Energy and Sustainable Development

    International Nuclear Information System (INIS)

    2013-01-01

    None of the eight Millennium Development Goals (MDGs) adopted by the United Nations in 2000 directly addressed energy, although for nearly all of them - from eradicating poverty and hunger to improving education and health - progress has depended on greater access to modern energy. Thirteen years later, energy is being given more attention. The target date for the MDGs is 2015, and in 2012 the UN began deliberations to develop sustainable development goals to guide support for sustainable development beyond 2015. The Future We Want, the outcome document of the 2012 United Nations Conference on Sustainable Development (also known as Rio+20) gives energy a central role: ''We recognize the critical role that energy plays in the development process, as access to sustainable modern energy services contributes to poverty eradication, saves lives, improves health and helps provide for basic human needs''

  9. Magnetic cooling at Risoe DTU

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bjørk, Rasmus; Jensen, Jesper Buch

    2009-01-01

    Magnetic refrigeration at room temperature is of great interest due to a long-term goal of making refrigeration more energy-efficient, less noisy and free of any environmentally hostile materials. A refrigerator utilizing an active magnetic regenerator (AMR) is based on the magnetocaloric effect......, which manifests itself as a temperature change in magnetic materials when subjected to a varying magnetic field. In this work we present the current state of magnetic refrigeration research at Risoe DTU with emphasis on the numerical modeling of an existing AMR test machine. A 2D numerical heat......-transfer and fluid-flow model that represents the experimental setup is presented. Experimental data of both no-heat load and heat load situations are compared to the model. Moreover, results from the numerical modeling of the permanent magnet design used in the system are presented....

  10. Sustainable Energy for All

    DEFF Research Database (Denmark)

    be such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. Investment in sustainable energy is a smart strategy for growing markets, improving competitiveness, and providing greater equity and opportunity. Sustainable energy has two key elements...... to operate them competitively. Energy efficiency has a profound effect on productivity, ensuring universal access to modern energy services, health, education, climate change, food and water security and communication services. This book is an extended and updated version of 15 papers presented at the 3rd...... Triennial International Workshop on ‘Sustainable Energy for All: Transforming Commitments to Action’ organised by the Centre for Science & Technology of the Non-Aligned and Other Developing Countries (NAM S&T Centre) jointly with the Society of Energy Engineers and Managers (SEEM), Trivandrum, India...

  11. Chemistry of sustainable energy

    CERN Document Server

    Carpenter, Nancy E

    2014-01-01

    Energy BasicsWhat Is Energy?Energy, Technology, and SustainabilityEnergy Units, Terms, and AbbreviationsElectricity Generation and StorageOther ResourcesReferencesFossil FuelsFormation of Oil and GasExtraction of Fossil FuelsRefiningCarbon Capture and StorageSummaryOther ResourcesOnline Resources Related to Carbon Capture andSequestrationReferencesThermodynamicsIntroductionThe First Law of ThermodynamicsThe Second Law and Thermodynamic Cycles: the Carnot EfficiencyExerg

  12. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  13. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Piccioni, Gaia

    in the Arctic Ocean for DTU10MSS and DTU13MSS.A new reference surface for off-shore vertical referencing is introduced. This is called the DTU15LAT.The surface is derived from the DTU15MSS and the DTU10 Global ocean tide to give a 19 year Lowest Astronomical Tide referenced to either the Mean sea surface...

  14. Materials for Sustainable Energy

    Science.gov (United States)

    Crabtree, George

    2009-03-01

    The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.

  15. Institute for Sustainable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay [Univ. of Alabama, Tuscaloosa, AL (United States)

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  16. Sustainable Energy (SUSEN) project

    International Nuclear Information System (INIS)

    Richter, Jiri

    2012-01-01

    Research Centre Rez and University of West Bohemia started preparatory work on the 'Sustainable Energy' project, financed from EU structural funds. The goals and expected results of the project, its organization, estimated costs, time schedule and current status are described. (orig.)

  17. Energy and sustainability

    International Nuclear Information System (INIS)

    Brunner, D.

    2001-01-01

    This article describes the further education concepts of the Swiss Federal Government and the Swiss Cantons in the energy area with particular emphasis on post-graduate courses on energy and sustainability in building and civil engineering. The activities of a working group on further education in these areas and the basic objectives of the concepts in the planning, implementation and operational areas are discussed. The courses offered by various Swiss technical colleges in the building and energy areas are examined and experience gained within the framework of the Swiss 'Energy 2000' programme is discussed. Finally, the Penta Project on renewable energy sources, set up jointly by the SwissEnergy programme and various professional associations to provide further education and training for target audiences in the energy and building technical services areas, is looked at

  18. Energy for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Klaus [United Nations Environment Programme (Kenya)

    2003-09-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new

  19. Hopi Sustainable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  20. Photonics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Jeppesen, Palle; Jepsen, Peter Uhd; Lodahl, Peter

    2010-01-01

    DTU Fotonik, Department of Photonics Engineering at the Technical University of Denmark has about 200 employees including 60 PhD students. The ambition is to be among the world’s leading University departments within photonics research, education and innovation. To fulfil this ambition, DTU Fotonik...... tries to attract excellent researchers and students from all over the world and to collaborate with world leading research institutes and companies. The activities span from quantum photonics, nanotechnology and metamaterials over nonlinear fiber optics, optical sensors and diode lasers & LED systems...

  1. Energy-Economy-Sustainability

    International Nuclear Information System (INIS)

    Meier, R.; Renggli, M.; Previdoli, P.

    1999-12-01

    With an annual turnover of more than 20 billion Swiss Francs energy is an important factor of economic development. Even in periods of seemingly unlimited energy reserves emphasis has to placed on the safety of supply and energy policy has to be adjusted to long term goals. The high impacts of the use of energy are causing external costs of 11 to 16 billion Swiss Francs per year, thereby violating the requirements of a sustainable development. The research programme 'Principles of energy economy' of the Swiss Federal Office of Energy is focused on energy economy and energy policy. In this volume selected projects are presented in a concentrated form to a wider public. Perspectives are drawn up concerning future energy demand, and special attention is paid to the impact of political measures (including various types of taxes) on demand trends and on environmental effects. With the aid of refined models the economic consequences are demonstrated, and significant results are shown which influence the ongoing discussion on double dividends (positive effects on both energy/environment and on economy). The analysis of energy-related measures in the transportation sector including, e.g., promotion measures for renewable energy or consumption-related motor vehicle taxes, is another focus of the programme. In view of a possible revision of the nuclear energy liability act related questions are discussed from the economic point of view. Finally, considerations and results on the role of public service in a liberalized electricity market are reviewed. Dr. R. Meier is head of the research programme 'Principles of energy economy'. (authors) [de

  2. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  3. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  4. Sustainable Energy Path

    Directory of Open Access Journals (Sweden)

    Hiromi Yamamoto

    2005-12-01

    Full Text Available The uses of fossil fuels cause not only the resources exhaustion but also the environmental problems such as global warming. The purposes of this study are to evaluate paths toward sustainable energy systems and roles of each renewable. In order to realize the purposes, the authors developed the global land use and energy model that figured the global energy supply systems in the future considering the cost minimization. Using the model, the authors conducted a simulation in C30R scenario, which is a kind of strict CO2 emission limit scenarios and reduced CO2 emissions by 30% compared with Kyoto protocol forever scenario, and obtained the following results. In C30R scenario bioenergy will supply 33% of all the primary energy consumption. However, wind and photovoltaic will supply 1.8% and 1.4% of all the primary energy consumption, respectively, because of the limits of power grid stability. The results imply that the strict limits of CO2 emissions are not sufficient to achieve the complete renewable energy systems. In order to use wind and photovoltaic as major energy resources, we need not only to reduce the plant costs but also to develop unconventional renewable technologies.

  5. Sustainable development and energy indicators

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan

    2002-01-01

    Starting from the basic definition of sustainable development and its four dimensions, the role of indicators for sustainable energy development is analysed. In particular, it is shown that important energy efficiency indicators belong in fact to energy supply efficiency, while the end-use energy efficiency could be more pertinently represented by energy intensity indicators. Furthermore, the negentropic effects of science and technology related sustainable energy scenarios are pointed out. Finally, the sustainable development is related to wisdom, interpreted as a sum of knowledge, morality and timing. (Author)

  6. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  7. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  8. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  9. A sustainable energy development

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to encourage electric power production through renewable energies (such as wind energy with the Eole 2000 plan, solar water heaters in overseas departments, wood energy for space heating in buildings, photovoltaic energy), demand side management and cogeneration, and to enhance its purchase conditions by the government-owned EDF utility. Laws have been also introduced concerning air quality and the rational use of energy

  10. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  11. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  12. DTU PMU Laboratory Development - Testing and Validation

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; Yang, Guang-Ya; Martin, Kenneth E.

    2010-01-01

    This is a report of the results of phasor measurement unit (PMU) laboratory development and testing done at the Centre for Electric Technology (CET), Technical University of Denmark (DTU). Analysis of the PMU performance first required the development of tools to convert the DTU PMU data into IEE...

  13. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  14. Energy indicators for sustainable development

    International Nuclear Information System (INIS)

    Vera, Ivan; Langlois, Lucille

    2007-01-01

    Energy is an essential factor in overall efforts to achieve sustainable development. Countries striving to this end are seeking to reassess their energy systems with a view toward planning energy programmes and strategies in line with sustainable development goals and objectives. This paper summarizes the outcome of an international partnership initiative on indicators for sustainable energy development that aims to provide an analytical tool for assessing current energy production and use patterns at a national level. The proposed set of energy indicators represents a first step of a consensus reached on this subject by five international agencies-two from the United Nations system (the Department of Economic and Social Affairs and the International Atomic Energy Agency), two from the European Union (Eurostat and the European Environment Agency) and one from the Organization for Economic Cooperation and Development (the International Energy Agency). Energy and environmental experts including statisticians, analysts, policy makers and academics have started to implement general guidelines and methodologies in the development of national energy indicators for use in their efforts to monitor the effects of energy policies on the social, economic and environmental dimensions of sustainable development

  15. DTU climate change technologies. Recommendations on accelerated development and deployment of climate change technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Halsnaes, K. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, System Analysis Div., Roskilde (Denmark)); Nielsen, Niels Axel; Moeller, J.S.; Hansen, Jakob Fritz; Froekjaer Strand, I. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark))

    2009-09-15

    During 2009, the Technical University of Denmark (DTU) has held a number of international workshops for climate change. Participants came from industry, research institutions and government. The workshops focused on sustainable energy systems and climate change adaptation. The summary of conclusions and recommendations from the workshops constitutes a comprehensive set of technology tracks and recommended actions towards accelerated development and deployment of technology within these two key areas. The workshop process has led to three main conclusions. A. Radical changes are needed to develop sustainable energy systems. B. Tools and processes that climate-proof societal planning and management are needed in order to adapt to climate change. C. Partnerships concerning innovation and deployment (research, development and deployment) are required to meet time constraints.

  16. Center for electron nanoscopy, DTU

    DEFF Research Database (Denmark)

    Horsewell, Andy; Somers, Marcel A. J.; Chorkendorff, Ib

    2006-01-01

    DTU has been given[1] the opportunity to create a world-class facility with a unique suite of 8 electron microscopes, preparation equipment and facilities for image analysis and interpretation; all to be placed in a purpose-built building. This opportunity comes at the beginning of a new era...... front is in the field of scanning electron microscopy, SEM, which has already seen major advances due to field emission electron guns, FEG: I) Adding a focussed ion beam, so that specimen surface layers can be removed by controlled sputtering, a dual-beam FEGSEM FIB allows reconstruction...... in which several dramatic advances have recently taken place on two fronts. The first is in the field of transmission electron microscopy, TEM: I) As a result of Cs correction and monochromators, high resolution TEM can achieve spatial resolutions of 0.7Å and spectroscopy resolutions of 0.1eV; II) Using...

  17. Energy Security, Innovation & Sustainability Initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-30

    More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy

  18. Hawaii Energy Sustainable Program

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Griffin, James [Univ. of Hawaii, Honolulu, HI (United States); Maskrey, Arthur [Univ. of Hawaii, Honolulu, HI (United States); Antal, Jr., Michael [Univ. of Hawaii, Honolulu, HI (United States); Busquet, Severine [Univ. of Hawaii, Honolulu, HI (United States); Cooney, Michael [Univ. of Hawaii, Honolulu, HI (United States); Cole, John [Univ. of Hawaii, Honolulu, HI (United States); Dubarry, Matthieu [Univ. of Hawaii, Honolulu, HI (United States); Ewan, James [Univ. of Hawaii, Honolulu, HI (United States); Liaw, Bor Yann [Univ. of Hawaii, Honolulu, HI (United States); Matthews, Dax [Univ. of Hawaii, Honolulu, HI (United States); Coffman, Makena [Univ. of Hawaii, Honolulu, HI (United States)

    2016-12-31

    The objective of HESP was to support the development and deployment of distributed energy resource (DER) technologies to facilitate increased penetration of renewable energy resources and reduced use of fossil fuels in Hawaii’s power grids. All deliverables, publications and other public releases have been submitted to the DOE in accordance with the award and subsequent award modifications.

  19. Sustainability and energy use

    NARCIS (Netherlands)

    Velthuijsen, Jan Willem

    1997-01-01

    For various reasons the development of the energy markets throughout the world has been characterised by market imperfections and government intervention. The energy market has been primarily regarded as a matter of supply, and research has been dominated by technical issues. Since recently the

  20. Sustainable development and nuclear energy

    International Nuclear Information System (INIS)

    2000-05-01

    This report has four chapters .In the first chapter world energy statute and future plans;in the second chapter Turkey's energy statute and future plans; in the third chapter world energy outlook and in the last chapter sustainable development and nuclear energy has discussed in respect of environmental effects, harmony between generations, harmony in demand, harmony in sociapolitic and in geopolitic. Additional multimedia CD-ROM has included

  1. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  2. Sustainable cities and energy policies

    International Nuclear Information System (INIS)

    Capello, R.; Nijkamp, P.; Pepping, G.

    1999-01-01

    This book starts out with the optimistic perspective that modern cities can indeed play a strategic role in the necessary pathway to sustainable development, with particular emphasis on the opportunities offered by local energy and environmental initiatives. Our study aims to demonstrate that an urban sustainability policy has many socio-economic benefits, while it also seeks to identify the critical success and failure factors of sustainable city innovations. After a comprehensive review of various opportunities and experiences, attention is focused particularly on renewable energy resources which may offer new potential for the active involvement of local authorities. The study also highlights major impediments regarding the adoption and implementation of renewable energies, in particular, the development of advanced energy-environmental technology in a world dominated by natural (public) monopolies and/or monopolistic competition elements. In this context both theoretical and empirical elements are discussed, as well as institutional aspects. The theory and methodology is tested by a thorough empirical investigation into local renewable energy initiatives in three European countries, viz. Greece, Italy and The Netherlands. Based on an extensive data base, various statistical models are estimated in order to identify the key elements and major driving forces of sustainable development at the city level. And finally, the study is concluded with a long list of applicable and operational policy guidelines for urban sustainability. These lessons are largely based on meta-analytic comparative studies of the various initiatives investigated. (orig.)

  3. Energy, Sustainability and Development

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  4. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  5. Nanotechnology for sustainable energy

    International Nuclear Information System (INIS)

    Ali, M.; Ali, A.

    2011-01-01

    Nanotechnology and its applications have captured a worldwide market. Nanomaterials that have been developed using this technology can be incorporated into the devices so that renewable energy can be converted or generated more efficiently. Nanomaterials have the potential to change the way we generate, deliver and use energy. Hydrogen cells are used in auto industry as a viable power source. Compressed hydrogen tanks are used to supply Hydrogen, and Oxygen is used from the air directly. There is no pollution caused by hydrogen fuel cell autos since the only emission is water. Organic dyes (dye sensitizers), which are sensitive to light, can absorb a broader range of the sun's spectrum. A dye-sensitized solar cell has three primary parts. On top is a transparent anode made of fluoride-doped tin dioxide (SnO/sub 2/: F) deposited on the back typically of a glass plate. On the back of this conductive plate is a thin layer of titanium dioxide (TiO/sub 2/), which forms into a highly nanoporous structure with an extremely large surface-area. After soaking the film in the dye solution, a thin layer of the dye is left covalently bonded to the surface of the TiO/sub 2/ . Computational material science and nanoscience can play many critical roles in renewable energy research. These include: finding the right materials for hydrogen storage; finding the most reliable and efficient catalyst for water dissociation in hydrogen production; finding a cheap, environmentally benign, and stable material for efficient solar cell applications; and understanding the photo-electron process in a nanosystem, and hence helping design efficient nanostructure solar cells. (author)

  6. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  7. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  8. Renewable Energy: Energy Security and Sustainability

    Science.gov (United States)

    Turner, John

    2002-03-01

    Renewable energy offers the possibility of providing a complete, sustainable energy infrastructure without anthropogenic emission of CO2. Large-scale implementation of renewable technologies would eliminate the need to develop and implement sequestration systems, by reducing the use of, and ultimately eliminating fossil based energy production. Renewable energy also offers energy security because indigenous resources are sufficient. The major renewable energy systems include phovoltaics (solar cells), solar thermal (electric and thermal), wind, biomass (plants and trees), hydroelectric, ocean, and geothermal. Given the intermittent nature of solar energy, only those energy systems that are coupled to an energy storage technology will be viable. Among the energy storage technologies are hydrogen, batteries, flywheels, superconductivity, ultracapacitors, pumped hydro, molten salts (for thermal storage), and compressed gas. One of the most versatile energy storage systems and the best energy carrier for transportation is hydrogen. This talk will review some of the basic renewable energy systems, present possible pathways for the implementation of hydrogen into the energy infrastructure and offer research areas that need to be addressed to increase the viability of these renewable energy technologies.

  9. Energy Pathways for Sustainable Development

    NARCIS (Netherlands)

    Riahi, K.; Dentener, F.; Gielen, D.; Grubler, A.; Jewell, J.; Klimont, Z.; Krey, V.; McCollum, D.; Pachauri, S.; Rao, S.; Ruijven, B.J. van; Vuuren, D.P. van; Wilson, C.

    2012-01-01

    Chapter 17 explores possible transformational pathways of the future global energy system with the overarching aim of assessing the technological feasibility as well as the economic implications of meeting a range of sustainability objectives simultaneously. As such, it aims at the integration

  10. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  11. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  12. Energy for a sustainable world

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Reddy, A.K.N.; Williams, R.H.

    1988-01-01

    The book is devoted to the problem of energy planning for a sustainable world. The principal objective of the conventional approach to energy problem is economic growth and consequently the primary goal of conventional energy planning is to make energy supply expansion possible. This conventional approach is aggravating societal inequalities, environmental and security problems, and eroding self-reliance. On the other hand societal goals in energy planning should be equity, economic efficiency, environmental harmony, long-term viability, self-reliance and peace. These goals are relevant to both developing and industrialised countries. These goals should, therefore, be incorporated in a normative approach to energy planning. This can be done by focussing on end-uses of energy and the services which energy performs. In the first chapter, the relation of global energy problem with other major global problems such as North-South disparities, environmental degradation, climate change, population explosion and nuclear weapons is brought out. The energy strategies for industrialized countries and for developing countries are examined in chapters 2 and 3 respectively. The focus in both chapters is on end-uses of enegy, management of energy demand and exploitation of synergisms. In chapter 4, rough estimates of global energy demand are given and an illustrative energy scenario compatible with societal goals is described. In chapter 5, the policies necessary to implement end-use-oriented energy strategies are outlined. These policies relate to market mechanisms, administrative allocation of energy carriers, regulation and taxes. In the concluding chapter 6, the political feasibility of implementing the kind of energy future envisaged is discussed. The main finding of the authors is that it is possible to formulate energy strategies compatible with the solution of major global problems referred to in chapter 1 with about the same level of global energy use as today. (M.G.B.)

  13. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  14. Sustainable Plus-energy Houses

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    This study is an outcome of Elforsk, project number 344-060, Bæredygtige Energi-Plus huse (Sustainable plus-energy houses). The focus of this report is to document the approach and the results of different analyses concerning a plus-energy, single family house. The house was designed...... was monitored. This report is structured as follows. Chapter 1 presents the project and briefly explains the different phases of the project. The details of the house’s construction and its HVAC system are explained in Chapter 2, along with the energy efficiency measures and innovations. Chapter 3 introduces...... the investigations carried out in detail, with respect to different phases of the project. The investigations presented are divided into four phases: design phase and pre-competition period, competition period, year-round measurements in Denmark, and improvement suggestions for building and HVAC system. The results...

  15. Energy access and sustainable development

    Science.gov (United States)

    Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry

    2015-03-01

    With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

  16. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  17. Central Research Registration at Technical University of Denmark (DTU)

    DEFF Research Database (Denmark)

    Sand, Ane Ahrenkiel

    Some five years ago, DTU switched from decentralized research registration, where researchers entered their publications into the DTU research repository themselves to centralized research registration, whereby library staff upload academic publications to the repository on behalf of the research...

  18. Central research registration at Technical University of Denmark (DTU)

    DEFF Research Database (Denmark)

    Sand, Ane Ahrenkiel

    Some five years ago, DTU switched from decentralized research registration, where researchers entered their publications into the DTU research repository themselves to centralized research registration, whereby library staff upload academic publications to the repository on behalf of the research...

  19. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  20. Study Strategies for Engineering Students at DTU

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2002-01-01

    The study strategies of first year Master students are investigated at DTU fall 1999 - spring 2002. The results show that the students study less than their teachers expect. And they spend most time on activities not leading to deep understanding and engineering competencies. The students spend...... activated the students, but not significantly increased their independent studying....

  1. Sustainable energy supply; Baerekraftig energioppdekning

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kr.; Rosenberg, Eva [Institutt for energiteknikk, Kjeller(Norway); Kubberud Trond ECON, Oslo (Norway)

    1999-07-01

    This report discusses the potential for reducing the use of energy and quantifies the environmental disadvantages and estimated environmental costs of various energy carriers in Norway. The MARKAL model is used to work out three scenarios for a more sustainable use of energy. It is found that the environmental impact of NOx emissions are much greater than that of sulfur emissions. The damage caused by CO2 and NOx are of the same order of magnitude. The studies indicate that if the damage to the environment is internalized into the energy system, then it will lead to increased use of gas in the industry and transport sectors. The results are sensitive with respect to the cost development for the cleaning technology of conventional energy carriers and for storage and transport of gas. Internalizing the external costs is not enough to eliminate the environmental damage, at least not as this is valued today and with the technology supposed to be available for the next 30-40 years.

  2. Energy, environment and sustainable development

    International Nuclear Information System (INIS)

    Omer, Abdeen Mustafa

    2008-01-01

    level of building performance (BP), which can be defined as indoor environmental quality (IEQ), energy efficiency (EE) and cost efficiency (CE). circle Indoor environmental quality is the perceived condition of comfort that building occupants experience due to the physical and psychological conditions to which they are exposed by their surroundings. The main physical parameters affecting IEQ are air speed, temperature, relative humidity and quality. circle Energy efficiency is related to the provision of the desired environmental conditions while consuming the minimal quantity of energy. circle Cost efficiency is the financial expenditure on energy relative to the level of environmental comfort and productivity that the building occupants attained. The overall cost efficiency can be improved by improving the indoor environmental quality and the energy efficiency of a building. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this paper. Throughout the theme several issues relating to renewable energies, environment and sustainable development are examined from both current and future perspectives. (author)

  3. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  4. Integrated Renewable Energy and Campus Sustainability Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Uthoff, Jay [Luther College, Decorah, IA (United States); Jensen, Jon [Luther College, Decorah, IA (United States); Bailey, Andrew [Luther College, Decorah, IA (United States)

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  5. Design and Innovation - The DTU programme

    DEFF Research Database (Denmark)

    Alting, Leo; Andreasen, Mogens Myrup; Boelskifte, Per

    2006-01-01

    The new design & innovation programme at DTU represents a fundamental rethinking of the standard concepts dominating most engineering educations. The teaching, its background, context and basic educational ideas are presented and discussed in this paper together with the basic ideas of the accomp......The new design & innovation programme at DTU represents a fundamental rethinking of the standard concepts dominating most engineering educations. The teaching, its background, context and basic educational ideas are presented and discussed in this paper together with the basic ideas...... of the accompanying research. It is illustrated how the development of particularly the socio-technical dimensions of design and innovation are based on a close observation of the challenges facing industry. The new competences are expected to support modernisation of industrial methods and organisational schemes...... in innovation and product development....

  6. Evaluating the Best Renewable Energy Technology For Sustainable Energy Planning

    OpenAIRE

    Demirtas, Ozgur

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  7. Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin

    OpenAIRE

    Ozgur Demirta

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  8. Green energy strategies for sustainable development

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim; Ay, Murat

    2006-01-01

    In this study we propose some green energy strategies for sustainable development. In this regard, seven green energy strategies are taken into consideration to determine the sectoral, technological, and application impact ratios. Based on these ratios, we derive a new parameter as the green energy impact ratio. In addition, the green energy-based sustainability ratio is obtained by depending upon the green energy impact ratio, and the green energy utilization ratio that is calculated using actual energy data taken from literature. In order to verify these parameters, three cases are considered. Consequently, it can be considered that the sectoral impact ratio is more important and should be kept constant as much as possible in a green energy policy implementation. Moreover, the green energy-based sustainability ratio increases with an increase of technological, sectoral, and application impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy (e.g., wind, solar, tidal, biomass) is abundantly produced. Therefore, the investment in green energy supply and progress should be encouraged by governments and other authorities for a green energy replacement of fossil fuels for more environmentally benign and sustainable future

  9. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  10. A Sustainable Energy System in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2002-01-01

    This paper presents some of the problems in the Latvian energy system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems.......This paper presents some of the problems in the Latvian energy system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems....

  11. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Gonzalez, E.

    2005-01-01

    To sustain decent environmental conditions, it is essential to contain the emission of greenhouse gases. to a great extent, this can be achieved by reducing the almost exclusive dependence of fossil fuels for producing electricity and by championing nuclear energy and the renewable, which in the end are the least contaminating. Specifically, operation of the European nuclear fleet avoids the yearly emission of 700 million tons of CO 2 to the atmosphere. The need to combat climate change is very serious and increasingly imminent, especially if we remember that the World Health Organization has said that climate change could eventually cause 300,000 deaths. The different social players are aware of the problem. In fact, the European Union's Cabinet of Ministers approved the post-kyoto Environmental Strategy, which underlines the need to reduce CO e missions by 80% by the year 2050. It seems obvious that, in the long run, technological research and development will be fundamental pieces in the battle against environmental change and in the effort to one day provide 2,000 million people with access to electricity. (Author)

  12. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  13. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2001-01-01

    The characteristics of nuclear energy are reviewed and assessed from a sustainable development perspective highlighting key economic, environmental and social issues, challenges and opportunities relevant for energy policy making.. The analysis covers the potential role of nuclear energy in increasing the human and man-made capital assets of the world while preserving its natural and environmental resource assets as well as issues to be addressed in order to enhance the contribution of nuclear energy to sustainable development goals. (author)

  14. Sustainable energy landscapes: The power of imagination

    NARCIS (Netherlands)

    Stremke, S.

    2012-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Sustainable energy transition necessitates a transformation of large parts of the existing built environment and presents one of the great challenges of present-day

  15. Mexican energy policy and sustainability indicators

    International Nuclear Information System (INIS)

    Sheinbaum-Pardo, Claudia; Ruiz-Mendoza, Belizza Janet; Rodríguez-Padilla, Víctor

    2012-01-01

    The authors analyze the Mexican energy policy taking as reference the methodological framework for sustainable energy development proposed by the Economic Commission for Latin America and the Caribbean. This methodology takes eight related indicators to the social, environmental and economic dimensions in order to calculate a general sustainability indicator for the energy sector. In this methodology, the weight of each dimension is different; namely, the social and environmental issues have less relevance than the economic issues. The authors use this methodology because government institutions as the Department of Energy and the Department of Environment and Natural Resources have used some indicators from such a methodology to propose plans, programs, projects and bills. Authors know of the existence of other methodologies about sustainability. Nonetheless, opting for the Economic Commission for Latin America and the Caribbean's methodology is convenient because this organization is a respectable authority for civil servants from the Mexican institutions. Our objective is just to contrast the sustainability grade of the energy sector between 1990 and 2008 for Mexico whose government started reforms in the 1990s. It concludes that those reforms did not bring about a higher sustainability level for the energy sector. - Highlights: ► We used the OLADE, CEPAL and GTZ's methodology to calculate sustainability indicators for the Mexican energy sector. ► We studied the Mexican energy policy from 1990 to date and presented it. ► Currently, the Mexican energy sector is less sustainable than in 1990.

  16. Energy sustainable communities - social and psychological aspects

    International Nuclear Information System (INIS)

    Schweizer-Ries, P.; Baasch, St.; Jagszent, J.

    2004-01-01

    Besides technical, political and economic aspects of energy sustainability there are several social, behavioural and psychological dimensions of vital importance for a successful implementation of Renewable Energy Systems (RES) and Rational Use of Energy (RUE) within communities. The European Project ''Sustainable Communities-on the energy dimension'' pursues an interdisciplinary approach to detect essential success and facilitating factors. In the last years social and psychological aspects in the process of sustainability came to the fore more and more. Not only as a complementary science to facilitate the technical aims in the change process but also as an essential part for success. (authors)

  17. Energy control and sustainable development

    International Nuclear Information System (INIS)

    2002-01-01

    The contributions are dealing with the different aspects of energy control: key figures of the world consumption, evolution perspectives (energy control and energy demand in middle- and long-term world scenarios, global challenges, European perspectives, energy control in public decision in France, the new French energy accounting), regional differences (energy control in the United States, Russia, China, India, Brazil, West Africa, Mediterranean Sea), energy control and society (electricity privatisation in Salvador, regulatory approach or voluntary agreements for domestic appliances, comparison of energy control and renewable energies in France, complex accounting for energy demand control in a consumption society)

  18. Progress on linking gender and sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.

    2000-04-05

    The field of gender and energy has been identified as critical in global sustainable energy development and is increasingly important to decision makers. The theme of women and energy was of significance at the 1998 World Renewable Energy Congress in Florence, Italy. This paper traces further developments in this field by summarizing selected programmatic initiatives, meetings, and publications over the past 18 months.

  19. Monitoring the energy systems of sustainable buildings

    Science.gov (United States)

    Bollin, Elmar

    2011-05-01

    The complexity of sustainable energy systems for buildings services calls for more transparency of the processes which provide energy for the buildings heating, cooling and power needs. In the frame of applied scientific research at University of Applied Sciences Offenburg, different systems and even buildings in total have been monitored over years to analyse their performance and to optimize the system installations and operations. New EU regulations like EN 16001 require an effective monitoring and a continuous commissioning of the energy relevant systems to certificate sustainable processes. On the other hand, new operation tools are necessary to handle the volatility of renewable energy sources and the buildings demand. Predictive building automation has shown good results when applied for energy systems with high inertia. Operating large-scale solar thermal systems and sustainable buildings over long-term periods the University of Applied Sciences provided evidence that monitoring is an essential system tool for an energy and cost efficient operation of sustainable buildings.

  20. Sustainability in Transport Planning

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Greve, Carsten

    Contribution to session J: Joint University Sustainability Initiatives. This session will provide an inspiring overview of interdisciplinary research and teaching activities on sustainability bridging DTU, KU, and CBS, and introduce the joint collaboration Copenhagen Sustainability Initiative (COSI...

  1. A sustainable energy-system in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2003-01-01

    but a negative trade-balance. With this in mind, it is important that Latvia is able to meet the challenge and use the economic development to develop a sustainable energy-system and a sounder trade-balance. A combination of energy planning, national economy and innovation processes in boiler companies will form......The paper presents some of the problems in the Latvian energy-system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems. Latvia has economic growth...

  2. Sustainable development and energy supply

    International Nuclear Information System (INIS)

    Levi, H.W.

    1997-01-01

    'Sustainable' is an old established term which has made a political career in the past ten years. The roots of this career extend back into the 18th century, when an economic concept of forest management was developed to replace yield maximization achieved by means of complete deforestation by yield optimization attained by conservative forest management. This latter type of forest management was termed 'sustainable'. The language used in today's sustainability debate was based on the idea of preserving the capital provided by nature and living on the interest. As a consequence, the term 'sustainable' became one of the key points in environmental policy and economic policy after the Brundtland report had been published (V. Hauff, 1987), which also constitutes the background to this article. (orig.) [de

  3. Nuclear energy for sustainable agriculture

    International Nuclear Information System (INIS)

    Raghu, K.

    1998-01-01

    The use of improved crop plants and applying the concepts of integrated plant nutrient and integrated pest management are some of the ways for sustaining agriculture and developing ecofriendly management techniques. Ionizing radiations and isotopes (both stable and radioactive) have in the past been used for many applications in agriculture and they will have immense applications in future also

  4. Smart sustainable energy for rural community development

    CSIR Research Space (South Africa)

    Szewczuk, S

    2014-10-01

    Full Text Available are developed to increase the rate of electrification of these rural communities. To gain first hand understanding of the complexity of sustainable energy for rural community development, CSIR undertook a three year investigative project to investigate...

  5. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  6. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T.B.; Nakicenovic, N.; Patwardhan, A.; Gomez-Echeverri, L. (eds.)

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  7. Sustainable Energy Future - Nordic Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    This invited paper first outlines the methodologies applied in analysing the energy savings potentials, as applied to a Nordic and a European case study. Afterwards are shown results for how a high quality of life can be achieved with an energy consumption only a small fraction of the present in ...... in Europe. The energy policy in Denmark since 1973 is outlined, including the activities and the roles of NGOs. Finally are described some of the difficulties of implementing energy saving policies, especially in combination with increasing liberalization of the energy market....

  8. Intelligent computing for sustainable energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kang [Queen' s Univ. Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Li, Shaoyuan; Li, Dewei [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Niu, Qun (eds.) [Shanghai Univ. (China). School of Mechatronic Engineering and Automation

    2013-07-01

    Fast track conference proceedings. State of the art research. Up to date results. This book constitutes the refereed proceedings of the Second International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2012, held in Shanghai, China, in September 2012. The 60 full papers presented were carefully reviewed and selected from numerous submissions and present theories and methodologies as well as the emerging applications of intelligent computing in sustainable energy and environment.

  9. The Institution's position on sustainable energy

    International Nuclear Information System (INIS)

    Sargent, M.A.

    1999-01-01

    The twenty-first century will be an era in which sustainability will be a powerful value espoused by the community. The sustainability of energy, in terms of production and consumption, and in relation to the broader impacts of energy on society and the environment, will be a particular focus of the community. Australia, as a nett exporter of energy, and with a high per capita energy consumption, has both an economic and environmental imperative to be a leader in sustainable energy concepts and technologies. Australia therefore needs to position itself strategically, with a policy framework that facilitates the strategic positioning, to use and foster its diverse resources to provide for the social and economic needs of this generation, in a manner that ensures that the energy needs of the future generations can be met. The Institution of Engineers Australia has developed a Position on Sustainable Energy. The principles and actions through which the country's transition to a sustainable energy future will be managed are outlined

  10. Magnetic Materials in sustainable energy

    Science.gov (United States)

    Gutfleisch, Oliver

    2012-02-01

    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research in energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conversion and transportation. Magnetic materials are essential components of energy applications (i.e. motors, generators, transformers, actuators, etc.) and improvements in magnetic materials will have significant impact in this area, on par with many ``hot'' energy materials efforts. The talk focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, will be discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, will be examined in the context of their respective markets as well as their potential impact on energy efficiency. Finally, considering future bottle-necks in raw materials and in the supply chain, options for recycling of rare-earth metals will be analyzed.ootnotetextO. Gutfleisch, J.P. Liu, M. Willard, E. Bruck, C. Chen, S.G. Shankar, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient (review), Adv. Mat. 23 (2011) 821-842.

  11. Summer institute of sustainability and energy

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George W. [Univ. of Illinois, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-08-01

    The vision for the Summer Institute on Sustainability and Energy (SISE) is to integrate advancements in basic energy sciences with innovative energy technologies to train the next generation of interdisciplinary scientists and policy makers for both government and industry. Through BES related research, these future leaders will be equipped to make educated decisions about energy at the personal, civic, and global levels in energy related fields including science, technology, entrepreneurship, economics, policy, planning, and behavior. This vision explicitly supports the 2008 report by the Department of Energy’s Basic Energy Science Advisory Committee (2), which outlines scientific opportunities and challenges to achieve energy security, lower CO2 emissions, reduce reliance on foreign oil and create enduring economic growth through discovery, development and the marketing of new technologies for sustainable energy production, delivery, and use (3).

  12. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  13. Financial instruments supporting for energy and sustainability

    International Nuclear Information System (INIS)

    Maino, R.

    1999-01-01

    The article discusses the close connection between the production and consumption of energy and environmental sustainability. Saving and rational use of energy on the one side, and reduction of environmental impacts of the energy production on the other, are by now constantly recurring among the strategic objectives of modern energy policies. In this scenario the financial aspect is crucial; it may remove obstacles to competition, giving innovative companies greater opportunities [it

  14. Guidelines for a sustainable energy policy

    International Nuclear Information System (INIS)

    Maichel, G.; Klemmer, P.; Voss, A.; Grill, K.D.

    2000-01-01

    The publication contains four contributions of four different authors which elaborate the role, functions and capabilities of policymakers, the energy industry, and the population (consumers) in the process of designing, implementing, enforcing and accepting the paradigms and the framework conditions that will initiate and finally support in concrete terms a transition towards sustainable development in the context of energy demand and energy consumption in Europe. The titles of the four contributions (translated for the purpose of this abstract) are: 1. Regulatory policy and/or a free market system in the energy sector. 2. Self-commitments and self-regulatory approaches in the energy industry. 3. What does it take to establish a system of sustainable energy supply? 4. For an energy policy fit for the future in the 21. century. (orig./CB) [de

  15. Energy sustainable communities: Environmental psychological investigations

    International Nuclear Information System (INIS)

    Schweizer-Ries, Petra

    2008-01-01

    Energy sustainability is becoming an increasing issue-or rather 'the' issue in our society. Often it is reduced to a purely technical problem. Renewable energies and energy-efficient technologies are developed to solve the problem, but finally the end-users will 'decide' how much and what kind of energy they are going to consume. This article is targeted on showing the environmental psychological aspects of the change of energy demand and supply. It builds upon a transactional model of human technology interchange and summarises environmental psychological work done during more than 5 years. It refers to the idea of energy sustainable communities (ESCs), shows the development of one example community and concentrates on one aspect of the social dimension of ESCs, the 'acceptance of renewable energy technology', its definition and measurement in Germany

  16. Climate change, energy, sustainability and pavements

    International Nuclear Information System (INIS)

    Gopalakrishnan, Kasthurirangan; Steyn, Wynand JvdM; Harvey, John

    2014-01-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  17. Climate change, energy, sustainability and pavements

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Dept. of Civil, Construction and Environmental Engineering; Steyn, Wynand JvdM [Pretoria Univ. (South Africa). Dept. of Civil Engineering; Harvey, John (ed.) [California Univ., Davis, CA (United States). Dept. of Civil and Environmental Engineering

    2014-07-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  18. Sustainable energy landscapes : designing, planning, and development

    NARCIS (Netherlands)

    Stremke, S.; Dobbelsteen, van den A.

    2013-01-01

    In the near future the appearance and spatial organization of urban and rural landscapes will be strongly influenced by the generation of renewable energy. One of the critical tasks will be the re-integration of these sustainable energy landscapes into the existing environment—which people value and

  19. Sustainable Energy. Alternative proposals to Mercosur

    International Nuclear Information System (INIS)

    Honty, G.

    2002-01-01

    After a brief assessment of the Mercosur energy sector (Mercosur is a regional trade agreement subscribed to by Argentina, Brazil, Paraguay and Uruguay) an overview is given of proposals for a sustainable energy integration in the Mercosur: general proposals by sector, specific proposals for the larger economies (Argentina and Brazil), and means of implementation

  20. New clean energy enterprises and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Usher, Eric [United Nations Environment Programme, Rural Energy Enterprise Development (REED), Paris (France); Xiaodong Wang [United Nations Foundation, Climate Change Program, Washington, DC (United States)

    2002-06-01

    Though hundreds of billions of dollars have been invested, past development efforts have been largely unable to break the cycle of poverty - a cycle that is directly linked to the provision of energy. Too often, the potential of local enterprises to provide essential energy services has been ignored. Yet such an enterprise is one of the most potent engines for shifting towards a local human capacity to produce and distribute modern energy services. This recognition lies at the heart of REED, an approach to developing new sustainable energy enterprises that use clean, efficient and renewable energy technologies to meet the energy needs of underserved populations. (Author)

  1. THE ROLE OF ENERGY IN ECOLOGICAL SUSTAINABILITY

    Directory of Open Access Journals (Sweden)

    Popescu Maria-Floriana

    2015-07-01

    Full Text Available The rapid population growth leads to greater daily demand for energy, causing nations to diversify their portfolios and seek new sources of energy, including renewable to provide more energy. In a universe with seriously exhausted natural resources, severe urbanization, climate change and conflicts that go beyond borders, the issue of overpopulation unquestionably causes worldwide debates and can generate a snowball effect for the global economy or human society. Population’s increase in the nearby future will have a central role in challenges such as: global warming, air and water contamination, increase in the level of poverty, food scarcity, deforestation, desertification, health problems and resource shortages. The transformation into a sustainable environmental model, situated in a post-carbon economy, will imply setting barriers to industrial progress (will have to be sustainable and environmental friendly and also to population growth (will have to follow a normal pace. But, the level on vulnerability and uncertainty in the evolution of energy has been threatened lately by major events that took place all around the world. Security of supply, new geopolitical perspectives and ecological and sustainability issues are yet again on the bleeding line. Therefore, the goal of this theoretical article is to give an overview of the current situation concerning the role of energy in ecological sustainability. It expresses routes in which humans and enterprises can act in order to contribute to ecologically sustainable development. The subject of how we live on a congested planet represents the most critical sustainability of all. We are witnessing our current risks and we can also envision our possible, and particularly desirable, future: a steady human population, living and protecting the nature and planet, having finite needs of goods, services, or energy, and maintaining a healthy Earth for us and the animals that also depend on it. This is

  2. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  3. Is Nuclear Energy Sustainable - A Comparative Perspective

    International Nuclear Information System (INIS)

    Hirschberg, S.

    2002-01-01

    The electric utility sector is of central importance for economic growth and social development. While numerous societal and economic benefits arise from electricity production, it can also have impacts which may not be fully and unanimously reconciled with the concept of sustainability. Moving the electricity sector towards sustainable development calls for the integration of environmental, social and economic aspects in the decision-making process. As an input to such a process, one needs to assess how the different options perform with respect to specific sustainability criteria. As a part of the ''Comprehensive Assessment of Energy Systems'', carried out by the Paul Scherrer Institute (PSI), the electricity and heat supply systems are examined in view of sustainability criteria and the associated indicators, thus allowing operationalization of the sustainability concept

  4. Electric energy sustainability in the Eastern Balkans

    International Nuclear Information System (INIS)

    Koroneos, Christopher J.; Nanaki, Evanthia A.

    2007-01-01

    After years of military conflict and economic turmoil, the countries of South East Europe now face major challenges in achieving the market reforms necessary to rebuild their economies. A major driver of economy is the energy sector, although high-energy intensities are a burden for the companies and households. An efficient energy sector not only is vital for an economic recovery but also plays an important role to energy transit. The main goal of this work is a comprehensive assessment of electrical sustainability in some countries of South East Europe (Romania, Bulgaria, Turkey and Greece) mainly by means of exergy analysis as well as descriptive statistics. Exergy analysis can be used as an energy sustainability indicator and help decision-makers. The concept of exergy, applied to electricity generation efficiency could be a useful tool in the field of energy efficiency. Further implementation of thorough exergy analysis to the countries of Eastern Balkans, would be helpful in improving their electricity generation efficiency

  5. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-01

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  6. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-09

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  7. Renewable energy strategies for sustainable development

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    This paper discusses the perspective of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency improvements in the energy...... production, and replacement of fossil fuels by various sources of renewable energy. Consequently, large-scale renewable energy implementation plans must include strategies of how to integrate the renewable sources in coherent energy systems influenced by energy savings and efficiency measures. Based...... on the case of Denmark, this paper discusses the problems and perspectives of converting present energy systems into a 100 percent renewable energy system. The conclusion is that such development will be possible. The necessary renewable energy sources are present, if further technological improvements...

  8. Functional nanomaterials for energy and sustainability

    OpenAIRE

    Kelarakis, Antonios

    2014-01-01

    In view of the continuous decline in fossil fuel reserves, at a time when energy demands are steadily increasing, a diverse range of emerging nanotechnologies promise to secure modern solutions to the prehistoric energy problem. Each one of those distinct approaches capitalizes on different principles, concepts and methodologies to address different application requirements, but their common objective is to open a window to a sustainable energy future. Consequently, they all deserve substanti...

  9. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  10. New Croatian Energy Strategy - Towards sustainable energy

    International Nuclear Information System (INIS)

    Vujec, N.

    2010-01-01

    The Republic of Croatia has been building the Krsko Nuclear Power Plant and is participating in all the activities necessary for a successful operating of the plant now for almost thirty years. However, in the light of the nuclear energy renaissance it is necessary to prepare ourselves for new challenges, stricter criteria of safety and protection, respect the indispensability of continuous re-examination of safety of procedures and methods. The of Croatia has strictly committed herself to the nuclear energy programme development-CRONEP in accordance with the methodology of the International Atomic Energy Agency. Certainly, in the first moment till the possible decision on the building of nuclear power plant, it will be necessary to make an institutional framework and create human resources and such an infrastructure that will be able to, when the decision will be taken, support the project and realize it with maximal efficiency. We consider it the unique way in which it is possible to avoid what proved to be the weakness of some projects of nuclear power plants, that is missing a deadline and problems concerning financing that are intolerable taking into account the value of the investment. Likewise, since the Conference is dedicated to small and medium-sized electric networks or to small nuclear power programmes, it needs to be mentioned that except the largest facilities it should be promoted researching of nuclear power reactors of medium size whose development somehow falls behind in this moment Medium size reactors gives great advantages to smaller economies in technical and financial sense. From the current standpoint solutions of viability of nuclear programmes through re-processing of the spent nuclear fuel in new generation of power plants are discernible. Since today's technologies are sufficiently safe there is no need to wait with this development and fuel from one generation shall be re-processed into the fuel for the next generation of reactors. In

  11. The India market for sustainable energy

    International Nuclear Information System (INIS)

    Bakthavatsalam, V.

    2000-01-01

    Sustainable and qualitative growth of developing economics and habitats require increased energy input from renewable sources. To mainstream these innovative options, we need to continue to develop cost-effective renewable energy technologies, to focus our efforts on replicable innovative institutional and financial models which are based on cost recovery principles and fostering private partnerships to enable the developing countries to use these technologies. In response to these challenges the points energy policy, energy conservation, marketing, promoting energy conservation and efficient management are discussed

  12. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...... methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having...

  13. Energy alternatives for a sustainable Italy

    International Nuclear Information System (INIS)

    Coiante, D.; Lombard, P. L.; Molocchi, A.

    1998-01-01

    This article focuses on the main environmental problems caused by the development of the energy sector in Italy, addressing the current policies on energy production and consumption and the viable alternatives for furthering sustainable development by the year 2010. The analysis acknowledges that, as stated by Agenda 21 and the EU V Action Programme, sustainable development is a central issue. After considering the three main problems connected with the production and consumption of energy at the domestic level, the author describes syntetically the level of implementation of the current policies on environmental protection and efficient energy use in four important sectors (electricity, transport, industrial and household), underlining the main obstacles encountered on the sustainability path. The essential features of a strategy aimed at the sustainable development of the energy sector are finally presented. Such strategy is based on the reform of the price system in order both to account for the external costs and to promote technological innovation. The latter should be oriented to the improvement of energy efficiency in all sectors of production and use (CHP in particular) and to promotion of R and D of those renewable sources that are most suitable according to the social and economic Italian specificities [it

  14. Sustainable Welfare in Low Energy Societies

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1996-01-01

    The chapter presents some general basic concepts which are useful in analyzing future options for saving energy and thereby mitigate the environmental problems. Three factors are suggested as determinants of the energy demand, namely the population, the level of energy services (material welfare)...... between sustainability and economic growth. The conclusion is that for energy planning not only technical options should be considered, but also the developments in population as well as the economy.......), and the energy intensity of the technology applied. Examples of the technological options are presented. But also discussed are the limitations of the technology, which turns focus at the economic development as a determinant of future sustainability. A study of Low Electricity Europe illustrates the dilemma...

  15. Using Renewable Energy for a Sustainable Development

    Directory of Open Access Journals (Sweden)

    Aurel Gabriel SIMIONESCU

    2012-12-01

    Full Text Available Regarding energy, the greatest global challenges is ensuring growing demand to provide access to energy and to substantially reduce the sector's contribution to climate change. The aim of this article is to analyze the current situation of renewable in the EU and Member States' targets for sustainable and ecological development in context of Europe 2020. Wind power was proposed a significant increase to 494.7 TWh in 2020, for photovoltaic to 83.3 TWh and 370.3 TWh for hydropower. Sustainable development by promoting the use of renewable resources may be limited by constraints of infrastructure integration but also by economic factors and technologies.

  16. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  17. Climate change, energy, sustainability and pavements

    CERN Document Server

    Gopalakrishnan, Kasthurirangan; Harvey, John

    2014-01-01

    Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently.  To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world.  As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design,

  18. Worldwide Engagement for Sustainable Energy Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Almost 40 years after the Agency’s founding, the IEA responsibility for ensuring access to global oil supplies is still a core mandate. Yet over the course of its history, the IEA’s responsibilities have expanded along with both the international energy economy and conceptions of energy security itself. Our mission to promote secure and sustainable energy provision spans the energy mix. At the same time, a changing global energy map means that the industrialised nations of the world no longer dominate energy consumption. The IEA must work in close co-operation with partner countries and organisations worldwide to achieve its three core objectives: energy security, economic prosperity, and environmental sustainability. Working toward international commitments to reduce greenhouse gas emissions that cause global climate change; facilitating energy technology exchange, innovation and deployment; improving modern energy access to the billions of people who are without it; bolstering both cleanliness and security through energy efficiency; and promoting flexible and functioning energy markets – these efforts complement our traditional core responsibilities of mitigating the effects of supply disruptions and improving statistical transparency.

  19. Sustainable development of the Croatian energy sector

    International Nuclear Information System (INIS)

    Potocnik, V.

    2004-01-01

    The escalation of oil prices and the issue of energy supply security have emphasized the importance of a more rapid implementation of sustainable energy sector elements - renewable energy sources and energy efficiency. Croatia has recorded an increasingly negative balance of payments due to a considerable discrepancy between its import and its export, the former involving a significant amount of fossil fuels. Croatia has relatively scarce fossil fuels resources; on the other hand, its renewable energy sources as well as the possibility of energy efficiency improvement are comparatively abundant. Consequently, an increased use of renewable energies and the improvement of its energy efficiency are in the best interest of the Republic of Croatia.(author)

  20. Sustainable Energy Business Visits 2009; Duurzame Energie bedrijfsbezoeken 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2010-03-15

    Because the Steering Committee for Long-term Agreements on Energy for Mushrooms found the sustainable energy business visits of 2008 very valuable, it was decided in 2009 to assign Cpoint the task of conducting sustainable energy advisory visits, enabling mushroom cultivators to sign up for a free of charge sustainable energy visit. This report summarizes the results of these business visits [Dutch] Omdat de Duurzame Energie (DE) bedrijfsbezoeken van 2008 door de Stuurgroep MJA-e Paddestoelen als erg waardevol zijn ervaren, is er ook voor het jaar 2009 aan Cpoint een opdracht voor het uitvoeren van DE adviesbezoeken verstrekt, waarbij champignontelers zich konden opgeven voor een gratis DE adviesbezoek. In dit rapport wordt verslag gedaan van de resultaten van de bedrijfsbezoeken.

  1. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  2. Towards a sustainable energy strategy for Saskatchewan

    International Nuclear Information System (INIS)

    Coxworth, A.; Bigland-Pritchard, M.; Coxworth, E.; Orb, J.

    2007-01-01

    The production and consumption of energy raises significant environmental concerns regarding the depletion of non-renewable resources; air and water pollution; waste management; and damage of habitats. Saskatchewan, as elsewhere, needs to develop new approaches to meeting its energy needs. This report was intended to help decision-makers to consider the possibility of a sustainable, safe, environment and climate-friendly energy future for Saskatchewan. It provided an overview of energy use trends in Saskatchewan for refined petroleum products; natural gas; coal; primary electricity; and total energy consumption. Sustainability was defined and the need for change was discussed. Energy efficiency improvement and conservation opportunities in buildings, industry, electrical generation, and transport were also presented. The role of government in promoting energy efficiency was also discussed. Renewable energy opportunities were also offered for bio-energy; electrical generation; heating with renewables; and prospects for a renewables-fuelled Saskatchewan. Next, the report discussed technical, economic, political, and social barriers to progress. Several recommendations were offered in terms of energy efficiency and conservation; electricity generation; transportation; heating and cooling; industry; and financing change. 85 refs

  3. Quebec Research Center on Sustainable Energy (QRCSE)

    International Nuclear Information System (INIS)

    Guay, D.

    2006-01-01

    This paper describes the Quebec Research Center on Sustainable Energy. The Quebec Fuel Cells and Hydrogen Network was established in 2001. It consists of a number academic institutions with academic staff and students. It has established programs in fuel cells, hydrogen production and storage as well as batteries and super capacitors

  4. Energy efficiency and sustainability: evaluation of electricity ...

    African Journals Online (AJOL)

    ... and analysis of electricity consumer's attitudes, behaviours and practices towards energy use and sustainability. Using the random sampling method, the perception questionnaires were administered to respondents across the various streets chosen. The results indicate that although there is some level of awareness with ...

  5. International trends on sustainable energy Issues

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2007-01-01

    At the U.N. Commission on Sustainable Development (CSD), the role of nuclear power for a carbon free emission supply of energy is now being recognized although with certain reticence or opposition. Such recognition is taking place at the current cycle of discussions devoted to sustainable energy, industrial development, atmospheric pollution and climate change issues. This paper focuses on the arguments and facts provided during CSD deliberations for considering nuclear energy as a valid option: all available energy sources will need to be considered for an adjustment to a world that requires much less carbon liberation to the environment; in the transportation sector, actions need to be urgently implemented for promoting cleaner fuels and more efficient vehicles; massive reduction of greenhouse gas emissions must be urgently implemented in order to mitigate the impacts of global warming; sustainable energy solutions for developed economies are not always adequate in developing countries; the development evolution requires specifically tailored solutions to conditions of large annual growth-rates of energy demand. Consequently, nuclear power will provide the answer to many of these problems. (Author)

  6. Upgrade and extension of the climate station at DTU Byg

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Kristensen, Troels V.

    In the period 2013-2014 the project “Upgrade and Extension of the Climate Station at DTU Byg” is carried out at DTU Byg. The aim of the project is to renew the hardware and the software for data acquisition and monitoring, exchange cables and cable connections in order to avoid interference...... of electrical noise from the surroundings and exchange worn out equipment. Further, the aim is to make measured data from the climate station easily available for the users....

  7. Sustainable Energy Landscape: Implementing Energy Transition in the Physical Realm

    NARCIS (Netherlands)

    Stremke, S.

    2015-01-01

    Since the beginning of the new millennium, the concept of “energy landscape” is being discussed by academia from the environmental design domain while more and more practitioners have been contributing to sustainable energy transition. Yet, there remains some ambiguity as to what exactly is meant

  8. Energy and sustainable development in Finland

    International Nuclear Information System (INIS)

    2003-01-01

    The U.N. World Summit on Environment and Development in Rio de Janeiro in June 1992 was the origin of the international framework for sustainable development. As a basis for joint, sustainable action by governments, organizations, industries, and the public, the participating countries signed the Rio Declaration on Environment and Development, and drafted the associated action program, Agenda 21. Sustainable development comprises these three determinant factors: - Economy. - Ecology. - Social aspects. This is where entrepreneurial responsibility for society comes in. If industries want to generate overall positive effects, they must be efficient, competitive, and profitable on a long-term basis. Power supply systems meeting the criteria of sustainable development must be reliable, economically viable, socially acceptable, and environmentally compatible. The power supply in Finland is meeting these sustainability requirements in many ways. Finland's electricity supply is decentralized, using a variety of energy sources. Electricity can be generated and made available at low cost. The Finnish power industry is an important employer and a major factor in the economy. Moreover, electricity is generated in advanced types of power plants. In this way, the structure of the Finnish power supply system incorporates important factors of sustainable development. (orig.)

  9. The Potential of the Technical University of Denmark in the Light of Sustainable Livable Cities

    DEFF Research Database (Denmark)

    Jensen, Lotte Bjerregaard; Nielsen, Per Sieverts; Nielsen, Susanne Balslev

    2014-01-01

    on sustainability but also on global urbanization, compact cities, and smart cities supports new thinking in urban planning and design in technical education. The paper suggests a new initiative to further develop the sustainable urban planning research and education at DTU.......The Technical University of Denmark (DTU) has a long tradition for research and education in urban planning and sustainable urban development. An increasing societal focus on sustainability and urbanization in society supports this continuous focus on sustainable urban planning in technical...... educations. The focus on sustainable urban development includes understanding the role of civil engineering, water engineering, sustainable mobility and energy, and communities in developing future desirable solutions. However, beyond the challenges faced in each of the specific technical fields...

  10. Energy from Biomass for Sustainable Cities

    Science.gov (United States)

    Panepinto, D.; Zanetti, M. C.; Gitelman, L.; Kozhevnikov, M.; Magaril, E.; Magaril, R.

    2017-06-01

    One of the major challenges of sustainable urban development is ensuring a sustainable energy supply while minimizing negative environmental impacts. The European Union Directive 2009/28/EC has set a goal of obtaining 20 percent of all energy from renewable sources by 2020. In this context, it is possible to consider the use of residues from forest maintenance, residues from livestock, the use of energy crops, the recovery of food waste, and residuals from agro-industrial activities. At the same time, it is necessary to consider the consequent environmental impact. In this paper an approach in order to evaluate the environmental compatibility has presented. The possibilities of national priorities for commissioning of power plants on biofuel and other facilities of distributed generation are discussed.

  11. Methods of Comprehensive Assessment for China’s Energy Sustainability

    Science.gov (United States)

    Xu, Zhijin; Song, Yankui

    2018-02-01

    In order to assess the sustainable development of China’s energy objectively and accurately, we need to establish a reasonable indicator system for energy sustainability and make a targeted comprehensive assessment with the scientific methods. This paper constructs a comprehensive indicator system for energy sustainability from five aspects of economy, society, environment, energy resources and energy technology based on the theory of sustainable development and the theory of symbiosis. On this basis, it establishes and discusses the assessment models and the general assessment methods for energy sustainability with the help of fuzzy mathematics. It is of some reference for promoting the sustainable development of China’s energy, economy and society.

  12. Sustainable resource planning in energy markets

    International Nuclear Information System (INIS)

    Kamalinia, Saeed; Shahidehpour, Mohammad; Wu, Lei

    2014-01-01

    Highlights: • Sustainable resource planning with the consideration of expected transmission network expansion. • Incomplete information non-cooperative game-theoretic method for GEP. • Maximizing utility value whiling considering merits of having various generation portfolios. • Minimizing risk of investment using renewable generation options. • Application of the stochastic approach for evaluating the unpredictability of opponent payoffs and commodity values. - Abstract: This study investigates the role of sustainable energy volatility in a market participant’s competitive expansion planning problem. The incomplete information non-cooperative game-theoretic method is utilized in which each generation company (GENCO) perceives strategies of other market participants in order to make a decision on its strategic generation capacity expansion. Sustainable generation incentives, carbon emission penalties, and fuel price forecast errors are considered in the strategic decisions. The market clearing process for energy and reserves is simulated by each GENCO for deriving generation expansion decisions. A merit criterion (i.e., the utility value) is proposed for a more realistic calculation of the expected payoff of a GENCO with sustainable energy resources. Finally, the impact of transmission constraints is investigated on the GENCO’s expansion planning decision. The case studies illustrate the effectiveness of the proposed method

  13. Carbon-energy tax and sustainable development

    International Nuclear Information System (INIS)

    Ter Brugge, Marc.

    1994-01-01

    In 1992 the European Commission made a proposal for a carbon-energy tax to be introduced in Member States of the European Union (EU). So far, this proposal for a coordinated international response to the problem of global warming has met with a great deal of unwillingness among the Member States. During the first half of 1994 the Greek Chairmanship of the European Union will make another attempt to reach consensus. There does not seem to be much hope, however, that European countries will consent in the introduction of a EU-wide tax on carbon and energy. The Dutch government, in the mean time, has announced to introduce an energy tax for small users in 1995. In this paper InZet draws attention to the consequences for developing countries of the introduction of an energy tax in the industrialised countries. InZet strongly believes that instruments aimed at dealing with global environmental problems such as the greenhouse effect should have a global, integral focus. These instruments should be screened on their consequences for sustainable development in developing countries. Options for a more sustainable energy use in developing countries should form an integral part of energy policy instruments in the industrialised countries. The paper is structured as follows. In Chapter 1 an introduction to the phenomenon of global warming is given and the role of carbon/energy taxes in reducing CO 2 emissions is outlined. In Chapter 2 a definition of sustainable development and the means by which it can be supported in the South are discussed. Chapter 3 provides a description of various carbon/energy taxes, and in Chapter 4 the conclusions are given as well as several policy recommendations. 75 refs

  14. Sustainable energy use and energy supply - from vision to reality?

    International Nuclear Information System (INIS)

    Hake, J.F.; Eich, R.

    2003-01-01

    Agenda 21 formulated in connection with the UN-Summit in Rio de Janeiro summarises the demands and suggestions concerning a sustainable energy use and energy supply: 'Energy is essential to economic and social development and improved quality of life. Much of the world's energy, however, is currently produced and consumed in ways that could not be sustained if technology were to remain constant and if overall quantities were to increase substantially.' Since the adoption of Agenda 21 the energy issue has been at the centre of the Rio process, either directly, if aspects of supply for humans are concerned, or indirectly, if the anthropogenic greenhouse effect is dealt with. Germany takes an active role in participating in the Rio process, adopting it to national conceptions and supporting other countries on their path to Sustainable Development. Milestones of the German Rio Process are the commitment to the goals and actions of the Rio Declaration and the Agenda 21 as well to the corresponding UN conventions. The German Federal Government has taken several actions. In summer 2000 the Federal Cabinet adopted a bill according to which a Council for Sustainable Development (Nachhaltigkeitsrat) was to be instituted at the beginning of 2001. The Council's task is to participate in the development and formulation of a sustainability strategy for the Federal Republic of Germany. Furthermore, the Federal Government has agreed on the institution of a State Secretary Committee for Sustainable Development. The Committee's task is among other things to define concrete projects for the implementation of the federal sustainable strategy. (BA)

  15. Motivating sustainable energy consumption in the home

    Energy Technology Data Exchange (ETDEWEB)

    He, H.A.; Greenberg, S. [Calgary Univ., AB (Canada). Dept. of Computer Science

    2009-07-01

    This paper discussed social motivations related to household energy conservation. The aim of the study was to explore how technology can be designed and used in the home to encourage sustainable energy use. The basic techniques used to motivate sustainable energy action included behaviour change techniques; information techniques; positive motivational techniques; and coercive motivational techniques. The psychological theories used in the study included cognitive dissonance as a means of reminding people of the inconsistency of their attitudes towards energy and their behaviour, and utility theory as a means of determining personal motivations for energy conservation. The study showed that people are more motivated to act when presented with personalized information and monetary losses as opposed to monetary gain. Social value orientation and self-reflection motivations were also considered. The study showed that pro-social orientation can be used in the form of ambient displays located in public areas of the home. Self-reflection can be encouraged by allowing family members to annotate visualizations containing a history of their energy consumption data. Results of the study will be used to design actual feedback visualizations of energy use. 18 refs.

  16. The missing link in sustainable energy

    DEFF Research Database (Denmark)

    Blarke, Morten Boje

    This thesis investigates options for handling the problem of intermittency related to large-scale penetration of wind power into the West Danish energy system. But rather than being a story about wind power, the thesis explores the principles by which distributed energy plants could be better...... in favour of a domestic integration strategy for handling intermittency towards a sustainable energy system. It is found that large-scale transcritical compression heat pumps are suitable and ready for integration with existing cogenerators, but that system-wide energy, environmental, and economic benefits...... the relocation coefficient, for evaluating the wind-friendliness of distributed generators, and the cost-effectiveness hereof, and offers a new interactive modelling framework that allows for researchers and local operators to interact on evaluating options for domestic integration with respect to energy...

  17. Sustainable roofs with real energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  18. No sustainable development without an energy policy

    International Nuclear Information System (INIS)

    Akhras, G.

    2000-01-01

    The energy crisis of 1973, and again during the 1980s, prompted industrialized countries to adopt measures to reduce energy usage and to encourage conservation practices. Energy consumption in the transportation field was particularly high. However, after a while, some of the measures were either dropped or not enforced and our energy utilization continued to intensify. It soon became apparent that a different approach was required. At the Rio Conference in 1992, the idea of sustainable development was introduced with the objective to reduce global warming. The utilization of fossil fuels amplifies the emissions of greenhouse gases resulting in global warming which threatens the entire environment and also the health of citizens, particularly those living in cities. In 1997, 160 countries signed the Kyoto Protocol. Canada committed to reduce emissions of greenhouse gases by 6 per cent compared to 1990 levels, and this between 2008 and 2012. It is obvious that drastic steps are needed in order for Canada to meet this commitment. After an extensive analysis of the situation by various committees, it was concluded that activities related to the transportation of people in particular contribute greatly to the emission of greenhouse gases. The results also indicate that solutions need to be found to reduce energy consumption. The author recommended the adoption of intelligent structures and materials which imitate biological systems in a predictable manner to optimize certain functions. He also recommended a better integration of energy policy with the basic principles of sustainable development. 10 refs., 4 tabs

  19. Energy analysis for sustainable mega-cities

    Energy Technology Data Exchange (ETDEWEB)

    Phdungsilp, Aumnad

    2006-09-15

    Cities throughout Asia have experienced unprecedented development over the past decades. In many cases this has contributed to their rapid and uncontrolled growth, which has resulted in a multiplicity of problems, including rapid population increase, enhanced environmental pollution, collapsing traffic systems, dysfunctional waste management, and rapid increases in the consumption of energy, water and other resources. The significant energy use in cities is not very well perceived in Asian countries. Although a number of studies into energy consumption across various sectors have been conducted, most are from the national point of view. Energy demand analysis is not considered important at the level of the city. The thesis is focused on the dynamics of energy utilization in Asian mega-cities, and ultimately aims at providing strategies for maximizing the use of renewable energy in large urban systems. The study aims at providing an in-depth understanding of the complex dynamics of energy utilization in urban mega-centers. An initial general analysis is complemented by a detailed study of the current situation and future outlook for the city of Bangkok, Thailand. An integrated approach applied to the study includes identification of the parameters that affect the utilization of energy in mega-cities and a detailed analysis of energy flows and their various subsystems, including commercial, industrial, residential and that of transportation. The study investigates and evaluates the energy models most commonly used for analyzing and simulating energy utilization. Its purpose is to provide a user-friendly tool suitable for decision-makers in developing an energy model for large cities. In addition, a Multi-Criteria Decision-Making (MCDM) process has been developed to assess whether or not the energy systems meet the sustainability criteria. A metabolic approach has been employed to analyze the energy flow and utilization in selected Asian mega-cities, including Bangkok

  20. Political mechanisms of sustainable energy development in western countries

    International Nuclear Information System (INIS)

    Yershin, Sh. A.; Yershin, Sh. C.

    2014-01-01

    This article is about the development of politic mechanisms in sustainable energy in western countries (primarily EC, USA). The development of sustainable energy in western countries should be greatly based on government and business support and common ways of such help are described below. Also shown the significance of development of sustainable energy, its importance for environmental protection and perspectives Key words: sustainable energy, government regulation, wind energy, EC, USA, biofuel

  1. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  2. Solar energy in light of sustain development

    International Nuclear Information System (INIS)

    Markovska, Natasha; Pop-Jordanov, Jordan

    2001-01-01

    In the paper, a correlation between solar energy and sustain development has been considered, based on the concept of negentropy. Namely, the introduction of solar energy and renewable s in general corresponds to the proposed negentropic extension of the standard pathways in world metabolism, including science and technology as a supplementary negentropic resource. In this connection, the solar cell processes are based on micropatticies and their interactions, making the quantum mechanical approach in their analysis of exceptional importance. At the same time, it opens a possibility for revealing new quantum phenomena which could contribute to improvement of the cell performances. (Original)

  3. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  4. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    Directory of Open Access Journals (Sweden)

    Viorica-Alina Oltean

    2016-03-01

    Full Text Available In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested.

  5. Energy and sustainable development in Cuba

    International Nuclear Information System (INIS)

    Bravo Hidalgo, Debrayan

    2015-01-01

    Employment and enhancing the use of renewable energy sources could be considered as the beginning of a third ¨Industrial Revolution¨. The transition to a low carbon dioxide emission permits to a momentous turning point in the fight against climate change, improve energy security, and last but not least, significantly reduce the geopolitical intentions of this.The increase in renewable sources constitutes a guideline for energy policy in Cuba. Thus, programs for the construction of small hydropower plants, plant cells and photovoltaic panels, solar thermal energy systems for various services are developed; and the use of other primary sources such as wind and biomass.This work shows the implementation of these practices in the nation, the present results and future aspirations facing the demands of sustainable and steady development of generation and power consumption. (author)

  6. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  7. ENERGY AND SUSTAINABLE DEVELOPMENT IN CUBA

    Directory of Open Access Journals (Sweden)

    Debrayan Bravo Hidalgo

    2015-10-01

    Full Text Available Employment and enhancing the use of renewable energy sources could be considered as the beginning of a third ¨Industrial Revolution¨. The transition to a low carbon dioxide emission permits to a momentous turning point in the fight against climate change, improve energy security, and last but not least, significantly reduce the geopolitical intentions of this. The increase in renewable sources constitutes a guideline for energy policy in Cuba. Thus, programs for the construction of small hydropower plants, plant cells and photovoltaic panels, solar thermal energy systems for various services are developed; and the use of other primary sources such as wind and biomass. This work shows the implementation of these practices in the nation, the present results and future aspirations facing the demands of sustainable and steady development of generation and power consumption.

  8. Technology Paths in Energy-Efficient and Sustainable Construction

    DEFF Research Database (Denmark)

    Holm, Jesper; Lund Sørensen, Runa Cecilie

    2015-01-01

    Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing......Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing...

  9. Nuclear energy and sustainability: Understanding ITER

    International Nuclear Information System (INIS)

    Fiore, Karine

    2006-01-01

    Deregulation and new environmental requirements combined with the growing scarcity of fossil resources and the increasing world energy demand lead to a renewal of the debate on tomorrow's energies. Specifically, nuclear energy, which has undeniable assets, faces new constraints. On the one hand, nuclear energy is very competitive and harmless to greenhouse effect. From this point, it seems to be an ideal candidate to reach future objectives of sustainability, availability and acceptability. On the other hand, its technology of production - based on fission - remains imperfect and generates risks for environment and health. In this respect, it is less desirable. Therefore, world researchers turn today towards another type of nuclear technique, fusion, on which the project ITER is founded. This worldwide project is interesting for our analysis because, as a technological revolution, it takes into consideration all the global challenges of nuclear energy for the future, and particularly its capacity to meet the increasing energy needs of developing countries. It is the example par excellence of a successful international scientific collaboration oriented towards very long-run energy ends that involve huge technological, economic and political stakes. Focusing on this project, we thus have to reconsider the future place of nuclear energy in a more and more demanding world. Considering the magnitude of the efforts undertaken to implement ITER, this paper aims at analysing, in a detailed way, its goals, its challenges and its matter

  10. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  11. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon

    2017-09-22

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination processes are required to meet future sustainable desalination goal and COP21 goal. In this paper, we proposed a multi-effect desalination system operated with ocean thermocline energy, thermal energy harnessed from seawater temperature gradient. It can exploit low temperature differential between surface hot water temperature and deep-sea cold-water temperature to produce fresh water. Detailed theoretical model was developed and simulation was conducted in FORTRAN using international mathematical and statistical library (IMSL). We presented four different cases with deep-sea cold water temperature varies from 5 to 13°C and MED stages varies from 3 to 6. It shows that the proposed cycle can achieve highest level of universal performance ratio, UPR = 158, achieving about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the proposed cycle is truly a “green desalination” method of low global warming potential (GWP), best suited for tropical coastal shores having bathymetry depths up to 300m or more.

  12. Sustainable Urban Regeneration Based on Energy Balance

    Directory of Open Access Journals (Sweden)

    Sacha Silvester

    2012-07-01

    Full Text Available In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming economical and environmental interests on infrastructure, in relation to the sustainable urban development and regeneration from the perspective of the tripod people, technology and design is elaborated. However, this is at different scales, starting mainly from the perspective of the urban dynamics. This approach includes a renewed look at the ‘urban metabolism’ and the role of environmental technology, urban ecology and environment behavior focus. Second, the potential benefits of strategic and balanced introduction and use of decentralized devices and electric vehicles (EVs, and attached generation based on renewables are investigated in more detail in the case study of the ‘Merwe-Vierhaven’ area (MW4 in the Rotterdam city port in the Netherlands. In order to optimize the energy balance of this urban renewal area, it is found to be impossible to do this by tuning the energy consumption. It is more effective to change the energy mix and related infrastructures. However, the problem in existing urban areas is that often these areas are restricted to a few energy sources due to lack of available space for integration. Besides this, energy consumption in most cases is relatively concentrated in (existing urban areas. This limits the potential of sustainable urban regeneration based on decentralized systems, because there is no balanced choice regarding the energy mix based on renewables and system optimization. Possible solutions to obtain a balanced energy profile can come from either the choice to not provide all energy locally, or by adding different types of storage devices to the systems. The use of energy balance based on renewables as a

  13. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  14. Sustainable energy supply: the national dimension

    International Nuclear Information System (INIS)

    Schilling, H.D.

    2000-01-01

    Is the concept of sustainable development really a new concept of our times? The answer given by the author is 'no'. He explains the roots of this concept by referring to the energy conservation principle discovered in 1845 by Robert Meyer (1st law of thermodynamics), and to Rudolf Clausius who, in 1850, formulated the 2nd law of thermodynamics which was to become one of the most important scientific achievements of the 19th century. The author continues the brief historical survey of scientific knowledge and application of the energy conservation principle in connection with input-output systems in the broadest sense, and particularly in energy engineering. The second part of the paper deals with the recent past, advances in science and technology and the technology-ecology nexus, as well as social, educational and economic aspects of relevance in our time, including a look at future challenges. (orig./CB) [de

  15. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  16. 4th international conference in sustainability in energy and buildings

    CERN Document Server

    Höjer, Mattias; Howlett, Robert; Jain, Lakhmi

    2013-01-01

    This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organised by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB’12 proceedings includes invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimisation and modeling techniques, informati...

  17. Learning Objectives for Master's theses at DTU Management Engineering

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Rasmussen, Birgitte; Hinz, Hector Nøhr

    2010-01-01

    Learning objectives are normally formulated when you participate in a DTU course. It is namely the teacher’s task to formulate learning objectives and then evaluate your fulfilment of the learning objectives when assessing you exam or replacement assignment. With Master's theses it is, however......, different. The DTU Study Handbook states that:”Learning objectives are an integrated part of the supervision”, which provides you with the opportunity – naturally in cooperation with your supervisor – to formulate learning objectives for your Master's thesis. There are at least three good reasons for being...... that you formulate precise and useful learning objectives for your Master's thesis. These notes of inspiration have been written to help you do exactly this. The notes discuss the requirements for the learning objectives, examples of learning objectives and the assessment criteria defined by DTU Management...

  18. Energy research shows the way to sustainable energy policy

    International Nuclear Information System (INIS)

    Glatthard, T.

    2000-01-01

    This article takes a look at the work of the Swiss research programme on energy economics basics that aims to provide advice for policy makers. The programme investigates not only the technological but also the social and economic factors to be taken into consideration. In particular, the article reviews the programme's work on promotion strategies for sustainability in the energy area in connection with a proposed levy on energy. Examples are given of possible implementation strategies concerning new and existing buildings. The responsibilities of the parties to be involved in the implementation of promotional measures such as cantonal authorities, professional associations and agencies are discussed

  19. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  20. Nuclear energy and sustainability in Latin America

    International Nuclear Information System (INIS)

    Sterner, Thomas

    1991-01-01

    The concept of sustainability has been given numerous interpretations, some overlapping or complementary, some contradictory. Thus it is difficult to judge whether the nuclear industry does, or does not, meet sustainability criteria; particularly as the present nuclear technologies are not renewable. Uranium resources appear to be of the same order of magnitude as oil and gas resources. This implies that they are a transitional source of energy. There are also other potential arguments against the sustainability of nuclear power: its pollution, risks and costs. Environmental damage may come from various parts of the nuclear fuel cycle. Two types of risk will be discussed: first the risk of major accidents and thereby exceptional environmental damage, and second the risks associated with the proliferation of nuclear weapons. Each of these factors, as well as the pure economic cost of nuclear electricity, ought to be compared to the environmental damage, risks and costs of the available alternatives. Only the Latin American experience will be considered. For example, the need for Mexico to use nuclear power when it has large oil and gas supplies, is considered. (author)

  1. Sustainability reporting in the energy sector

    Directory of Open Access Journals (Sweden)

    Kowal Barbara

    2016-01-01

    Full Text Available Development of the concepts of sustainable development and corporate social responsibility has a great impact on reporting in companies. The increase of their importance has resulted in a need to create a reporting system that would provide information on not only the methods but also the results of implementation of those concepts in companies. Globally, there are many organizations that promote and support companies in the area of integrated reporting. The most popular standard for reporting non-financial data that is used by a number of companies worldwide is the Global Reporting Initiative (GRI Guidelines. The main objective of the GRI is to support the development of sustainable economy in which companies take responsibility for the economic, social, and environmental consequences of their operations, manage that responsibility, and report all their actions. An example of a sector where the concept of sustainable development and its transparent reporting has an impact on the formation of values is the energy sector, which creates value for stakeholders and, together with the financial sector, has the greatest impact on national economies.

  2. Energy services and energy poverty for sustainable rural development

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2011-01-01

    In many rural areas, poor people still depend on wood and other biomass fuels for most of their household and income-generating activities. The difficult, time-consuming work of collecting and managing traditional fuels is widely viewed as women's responsibility, which is a factor in women's disproportionate lack of access to education and income, and inability to escape from poverty. Therefore, it is important for energy access programs to have a special focus on women. New options for energy access and sustainable livelihoods, like small-scale biofuels production, can have dramatic benefits for rural women, and their families and communities. Energy development, as both a driving force and a consequence of such tremendous changes, has had profound impact on economic, social, and environmental development. Rural energy has always been a critical issue due to years of energy shortage for both households and industries. Biomass, for long time, has been the only available fuel in many rural areas. The situation in rural areas is even more critical as local demand for energy outstrips availability and the vast majority of people depend on non-commercial energy supplies. Energy is needed for household uses, such as cooking, lighting, heating; for agricultural uses, such as tilling, irrigation and post-harvest processing; and for rural industry uses, such as milling and mechanical energy and process heat. Energy is also an input to water supply, communication, commerce, health, education and transportation in rural areas. (author)

  3. Energy and sustainability: a global view

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1995-01-01

    A discussion is made of the conflicting concepts of sustainable development, focusing primarily on energy resources, as viewed by economists and environmentalists. According to the 'preservationist' view we 'borrow' the Earth from generations to come and have no right to use exhaustible resources. According to 'developmentalists' natural resources are either infinite or can be substituted by alternatives so there is no real problem of exhaustion of resources. It is shown that a compromise between such extreme positions is being forced by the heightened concerns for environmental protection. Outstanding among them are the problems of climate changes resulting from CO 2 (carbon dioxide) emissions from fossil fuel combustion. The energy consumed at present by industrialized and developing countries, and their projections to the year 2020 will be presented as well as the serious environmental consequences of a 'business-as-usual' scenario. These consequences will be much harder to cope with in the developing countries. Carbon emissions will be shown to increase with population, GDP and the 'energy intensity' of the economy. The 'decarbonization' trends of the present economies will be related to the decrease in total fertility rate and 'energy intensity' which is linked to technological advances in energy conservation and structural changes. Mechanisms to accelerate such trends will be discussed as well as financial mechanisms to pay for it, such as carbon taxes. (author) figs., tabs., refs

  4. Academic Training: Toward Sustainable Energy Systems?

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es) ,a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED' electricity interconnection, intending to carry solar electricity f...

  5. Academic Training: Toward Sustainable Energy Systems?

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es), a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED'electricity interconnection, intending to carry solar electricity fro...

  6. EU - India Sustainable Energy Efficiency Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Agster, Rainer; Henzler, Mikael P. (Adelphi Research GmbH, Berlin (Germany)); Asthana, Arvind (Bureau of Energy, Efficiency/GTZ-Indo-German Energy Programme (India))

    2009-07-01

    Between 2006-2008 the EU India Sustainable Energy Initiative (EISEEI) has supported marketing, implementation and enforcement of the Indian Energy Conservation Act, which came into force in 2002 - on state and local level. Market oriented five-year action plans were prepared, which are implemented by State Designated Agencies (SDA) in charge of energy efficiency measures in their respective states. Each Energy Conservation (EC) action plan states the foreseen activities for the next five years as well as general policies, a mission, and a vision relating to energy efficiency. The EISEEI project activities focused on facilitating a moderated dialogue between India and Europe as well as among the SDAs in order to support the preparation of action plans and operational plans. Furthermore, domestic and overseas trainings for SDA staff and the know-how exchange between policy makers, opinion leaders and professionals in these areas were facilitated. During the duration of the project the Indian Ministry of Power decided to apply the same methodology for 24 more SDAs to cover all Indian states. While the initial 6 pilot states were supported with EU and German development aid funds, the enlargement was 100% financed by the Indian government. The paper will highlight the efforts and results of mainstreaming energy efficiency at various consumer levels (from industry to households) in India. The paper will encompass also the involvement of various agencies and institutional structures as well as the operational experiences with the implementation of the action plan on energy efficiency in one of the fastest growing economies in the world.

  7. Model of sustainable development of energy system, case of Hamedan

    International Nuclear Information System (INIS)

    Sahabmanesh, Aref; Saboohi, Yadollah

    2017-01-01

    Sustainable economic growth and improvement of the social welfare depend upon the sufficient supply of energy resources, while the utilization of energy resources is one of the main factors of environmental degradation. This research is involved with development of a sustainable energy system model and a new method for sustainability assessment. This model represents the flow of energy from primary resources through processing, conversion, and end-use technologies in an optimization framework where the useful energy demand in various social and economic sectors is met. The impact of energy supply and consumption chain on the environment at each level of energy system is also embedded in the model structure. A multi-criteria analysis of changes is then applied and sustainable development indices of the whole system are concluded. Finally, effects of the energy subsidy policy and high economic growth rate on sustainability of the energy system in three scenarios are analyzed. Results demonstrate that energy subsidy decelerates the improvement rate of the total sustainability index. Also, when a high economic growth is accompanied with the energy subsidy this index reduces considerably. Results show that how penetration of renewable energy potentials changes the sustainability situation of energy systems. - Highlights: • Developing a new model for sustainable energy systems. • Presenting a new method for sustainability assessment of energy systems. • Optimizing the energy flow and capacity expansion of Hamedan energy system. • Utilizing an MCDA approach to obtain sustainability indices of the whole system. • Analysis of energy subsidy and high economic growth on energy sustainability.

  8. Pattern Definition with DUV-Lithography at DTU Danchip

    DEFF Research Database (Denmark)

    Keil, Matthias; Khomtchenko, Elena; Nyholt, Henrik

    2014-01-01

    Deep ultra violet (DUV) illumination generated with the help of a KrF laser can be utilized to produce components having sizes of some hundreds of nanometers. This light source with its 248nm wavelength is exploited in the DUV-lithography equipment at DTU Danchip in order to fill the resolution g...

  9. Current energy usage and sustainable energy in Kazakhstan: A review

    Science.gov (United States)

    Karatayev, Marat; Islam, Tofazzal; Salnikov, Vitaliy

    2014-05-01

    energy resources such as wind, solar, small hydro and biomass as alternative energy supplies in this country. Our analysis shows that wind and solar energy can become major contributors towards renewable energy in Kazakhstan. The biomass of agricultural residues, municipal solid waste and wood residues could be used for energy purposes too. Therefore, Kazakhstan should optimize energy consumption and take active and effective measures to increase the contribution of renewables in energy supply to make the country's energy mix environmentally sustainable.

  10. 24 month Progress Report from DTU

    DEFF Research Database (Denmark)

    Larsen, Erik; De Chiffre, Leonardo; Savio, Enrico

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188 coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines...

  11. EASYTRACK 30 month Progress Report from DTU

    DEFF Research Database (Denmark)

    Larsen, Erik; De Chiffre, Leonardo; Savio, Enrico

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188 coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines...

  12. The updated geodetic mean dynamic topography model – DTU15MDT

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Maximenko, Nikolai

    An update to the global mean dynamic topography model DTU13MDT is presented. For DTU15MDT the newer gravity model EIGEN-6C4 has been combined with the DTU15MSS mean sea surface model to construct this global mean dynamic topography model. The EIGEN-6C4 is derived using the full series of GOCE data...

  13. Development and sustainability issues - energy scenario

    International Nuclear Information System (INIS)

    Kakodkar, Anil

    2000-01-01

    The 20th century has seen an unprecedented rise in the rate of consumption of material and energy resources. These patterns of growth and consumption have caused enormous strains on the available natural resources and the environment. Further, the benefits of available natural resources have been shared in a highly inequitable manner with a small fraction of mankind using up a large fraction of resources to a level that environmental concerns have become a global matter and are threatening to jeopardize the development of the larger fraction of humanity on grounds of global sustainability. While it has been seen that major achievements in almost all areas of human endeavour in recent times, enabling improvements in quality of life and better control over environmental degradation, there is a new challenge now of sustainability of the development process for the majority of human population. The environment with its large inertia, flexibility and stabilising mechanisms has so far some how copped up at least on a global scale with the unprecedented consumption. However, the recent trends indicate that most of the environment related cycles may not be able to take the continued abuse without disastrous global consequences. Piloting and sustaining the legitimate development of societies particularly those which are left far behind in the march towards better quality of life has, therefore, become a matter which needs very urgent consideration and action. There is thus a strong need for charting of a well deliberated goal oriented action plan with a vision that ensures due attention to the interests of all sections of society on the basis of their justifiable needs

  14. Energy and sustainable development in North American Sunbelt cities

    Science.gov (United States)

    Roosa, Stephen A.

    The goals of sustainable development are often misunderstood and variously applied. Sustainability as an urban goal is hindered by the lack of a consensus definition of sustainable development. The failure to focus on energy in cities as a means of achieving urban sustainability is one reason that successful empirical examples of implementing sustainable development are rare. The paradox is that as society attempts to achieve the goals of sustainable development, cities are using more fossil fuel based energy, which results in more pollution and ultimately makes sustainability more difficult to achieve. This dissertation explores the linkages between energy and sustainability and their connection to urban polices. This research provides a detailed review of the history of the concept of sustainability, a review of literature to date, and comparative issues concerning sustainability. The literature review will describe the underlying causes and effects of changes which have led to concerns about urban sustainability. The types of urban policies that are used by Sunbelt cities will be discussed. The purpose of this research is multifold: (1) to study the energy related policies of Sunbelt cities; (2) to propose a workable typology of policies; (3) to develop an index by which cities can be ranked in terms of sustainability; and (4) to assess and evaluate the relationships between the adoption of urban policies that promote energy efficiency, energy conservation and alternative energy to determine if they are associated with reduced energy use and greater urban sustainability. This research involves use of empirical data, U.S. census information, database explorations and other data. Both qualitative and quantitative analysis methodologies were employed as a means of defining and exploring the dimensions of energy and sustainable development in urban areas. The research will find that certain urban policies are related to changes in indicators and measures of urban

  15. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  16. Sustainable Energy - Without the hot air

    Science.gov (United States)

    MacIsaac, Dan

    2009-11-01

    Reader John Roeder writes about a website associated with David MacKay's book Sustainable Energy-Without the hot air. The book is a freely downloadable PDF (or purchasable) book describing an analysis detailing a low-carbon renewable energy transformation route for a large, modern first world industrial country (the United Kingdom). Written for the layman, the work uses vernacular language, e.g., energy consumption and production in a series of bar charts detailing the impacts of necessary strategies such as population reduction, lifestyle changes, and technology changes. MacKay notes that most reasonable plans have large nuclear and ``clean coal'' or other carbon capture components, lots of pumped heat, wind, and much efficiency improvement. He debunks some sacred cows (roof-mounted micro-turbines; hydrogen-powered cars) while pointing out simple effective technologies such as roof-mounted solar water heaters. Similar modest changes in the U.S. (painting roofs white in the southern half of the country) have strong impacts. MacKay claims that he ``doesn't advocate any particular plan or technology,'' but ``tells you how many bricks are in the lego box, and how big each brick is'' so readers can start making planning decisions.

  17. Energy efficiency, sustainability and economic growth

    International Nuclear Information System (INIS)

    Ayres, Robert U.; Turton, Hal; Casten, Tom

    2007-01-01

    This paper explores two linked theses related to the role energy in economic development, and potential sources of increased energy efficiency for continued growth with reduced greenhouse gas (GHG) emissions. The first thesis is that, while reduced GHG emissions are essential for long-term global sustainability, the usual policy recommendation of increasing energy costs by introducing a carbon tax may be relatively ineffective under current market structures and have an unnecessarily adverse impact on economic growth. Our second thesis is that there exists a practical near-term strategy for reducing GHG emissions while simultaneously encouraging continued technology-driven economic growth. Moreover, this strategy does not require radical new technologies, but rather improved regulation or - more precisely - better deregulation of the electric power sector. In respect to the first of our two theses, this paper addresses a deficiency in neoclassical economic growth theory, in which growth is assumed to be automatic, inevitable and cost-free. We challenge both the assumption that growth will continue in the future at essentially the same rate (''the trend'') as it has in the past, and the corollary that our children's children will inevitably be richer and better able to afford the cost of repairing the environmental damages caused by current generations [Simon et al., The state of humanity. Cambridge MA: Blackwell Publishers Ltd.; 1995]. (author)

  18. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  19. Sustainable energy innovation: a new era for Australia

    International Nuclear Information System (INIS)

    Schuck, S.

    2002-01-01

    This book profiles Australian capability in sustainable energy innovations. Chapter 1 outlines the country's underlying drivers and support programs for sustainable energy development and gives an overview of Australia's sustainable energy industry. Renewable energy companies and their projects are covered in Chapter 2 while sustainable energy innovation in the fields of coal gas and cogeneration are highlighted in Chapter 3. This is followed by Chapter 4 which turns the spotlight on energy efficiency in the building and transport sectors. Chapter 5 focuses on the challenge of bringing sustainable Australian energy innovations to global markets highlighting interaction with government support programs and the transition from laboratory to commercial product. Chapter 6 peers into the future taking stock of the innovations waiting in the wings and predicting the technologies that are likely to emerge in coming years onto our energy landscape

  20. Sustainable Performance in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Dragoni, Nicola

    2013-01-01

    In this practical demo we illustrate the concept of "sustainable performance" in Energy-Harvesting Wireless Sensor Networks (EH-WSNs). In particular, for different classes of applications and under several energy harvesting scenarios, we show how it is possible to have sustainable performance when...... nodes in the network are powered by ambient energy....

  1. Understanding the human dimensions of a sustainable energy transition

    NARCIS (Netherlands)

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy

  2. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-01-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable…

  3. The DTU2010MSS Mean Sea Surface In The Arctic - For And With Cyrosat-2 Data

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2011-01-01

    The new Mean Sea Surface DTU10MSS and associated DTU10MDT is presented and evaluated in the Arctic Ocean for the use with Cryosat-2 data. The DTU10MSS is currently the only available MSS which has true global coverage and hence is suitable for referencing when Cryosat-2 data are used in the Arctic....... The DTU10MSS generally has a vertical accuracy better than 10 cm in most areas of the world confirmed by extensive comparison with GPS leveled tide gauges around Britain and Norway. Finally the first comparisons with Cryosat-2 data are presented. The DTU10MSS is valuable for Cryosat-2 due to its true...

  4. Sustainable Energy Portfolios for Small Island States

    Directory of Open Access Journals (Sweden)

    Sándor Szabó

    2015-09-01

    Full Text Available The study presents a cost effective electricity generation portfolio for six island states for a 20-year period (2015–2035. The underlying concept investigates whether adding sizeable power capacities of renewable energy sources (RES options could decrease the overall costs and contribute to a more sustainable, indigenous electricity generation at the same time. Often, island states rely on fossil fuels which, apart from dependence on foreign resources, also includes an additional, significant transport cost. This is an extra motive to study the extent in which island states represent primary locations for RES technologies. For the aims of the present study an optimization model has been developed and following numerous runs the obtained results show that installing PV and battery capacities can delay-reduce the huge investments in fossil options in early periods. Thus, investment on RES can have a positive, long-term effect on the overall energy mix. This prompt development can happen without adding new subsidies but there is a need to address the existing socio-economic barriers with intelligent design of financing and economic instruments and capacity building as discussed in the conclusions.

  5. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.

    1996-06-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future are: technological sustainability; economic sustainability; and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and the long term. (author). 23 refs

  6. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-01-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future, are technological sustainability, economic sustainability, and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and long term. (author)

  7. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  8. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  9. Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    The National Renewable Energy Laboratory's (NREL) Sustainability Report for 2003-2004 highlights the Laboratory's comprehensive sustainability activities. These efforts demonstrate NREL's progress toward achieving overall sustainability goals. Sustainability is an inherent centerpiece of the Laboratory's work. NREL's mission--to develop renewable energy and energy efficiency technologies and practices and transfer knowledge and innovations to address the nation's energy and environmental goals--is synergistic with sustainability. The Laboratory formalized its sustainability activities in 2000, building on earlier ideas--this report summarizes the status of activities in water use, energy use, new construction, green power, transportation, recycling, environmentally preferable purchasing, greenhouse gas emissions, and environmental management.

  10. Understanding the human dimensions of a sustainable energy transition.

    Science.gov (United States)

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes.

  11. Sustainable energy successes in Central and Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Oesterfelt, P. [eds.

    1998-12-31

    The publication describes more than 20 `good practices` in energy conservation in Central and Eastern Europe: successful campaigns and projects for increased energy efficiency and renewable energy. The cases are collected mainly by NGO-organisations in INFORSE (International Network for Sustainable Energy) - Europe as part of their contributions to the ECO-Forum Energy and Climate Group. (LN)

  12. Sustainability in Kenya's energy and development: an alien concept?

    NARCIS (Netherlands)

    Abdallah, S.M.

    2016-01-01

    Energy technologies, especially seen from the viewpoint of their importance as facilitators of development, are physical as well as social phenomena. This understanding is critical when considering energy that can advance sustainable development. Drawing from scholarly work, this development is

  13. Sustainable energy management - a prerequisite for the realization Kyoto Protocol

    Directory of Open Access Journals (Sweden)

    Mirjana Golušin

    2012-07-01

    Full Text Available Energy management can be defined as the process of planning, directing, implementing and controlling the process of generation, transmission and energy consumption. Energy management is a kind of synthesis of phenomena and concepts of modern energy management (management, or the use of modern settings management in the energy sector. Furthermore, when outlining the basic settings for power management Modern management is based on the assumptions of sustainability and conservation of energy stability for present and future generations. Therefore, modern energy management can be seen as a kind of synthesis of three actuarial sciences: energy, sustainable development and management. Sustainable Energy Management is a unique new concept, idea and approach that require many changes in the traditional way of understanding and interpretation of energy management at all levels. Sustainable energy management concept can not therefore be construed as an adopted and defined the concept, but must be constantly modified and adjusted in accordance with changes in the three areas that define it, and in accordance with the specific country or region where applicable. Accordingly, sustainable energy management can be defined as the process of energy management that is based on fundamental principles of sustainable development.

  14. The quest for sustainability in existing buildings

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Michaelsen, Lisbet; Jensen, Per Anker

    2014-01-01

    to sustainability at societal level. Due to lack of professional skills, decisions about operation and renovation of buildings are made every day in Denmark and beyond, without adequate knowledge about e.g. energy management and the potential ways of integrating sustainability (social, environmental and economic......). The consequence is energy-ineffective building stock and an extremely slow transmission into more sustainable buildings and cities. The professionals in facilities management has so far been overlooked as a key to ensure energy effective buildings. Through research, education and practice collaboration CFM intend...... to change this by upgrading the skills of especially Danish but also European facilities managers.The workshop includes an introduction to sustainability in FM (SFM) and CFM; but also participant reflections on the collective quest for sustainability in the existing buildings at DTU....

  15. Nuclear power and sustainable energy supply for Europe. European Commission

    International Nuclear Information System (INIS)

    Hilden, W.

    2005-01-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  16. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...... and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations....

  17. Mitigation/Adaptation: landscape architecture meets sustainable energy transition

    NARCIS (Netherlands)

    Stremke, S.

    2009-01-01

    Mitigation of climate change and adaptation to renewable energy sources are among the emerging fields of activity in landscape architecture. If landscape architects recognize the need for sustainable development on the basis of renewable energy sources, then how can we contribute to sustainable and

  18. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    Science.gov (United States)

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  19. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  20. The role of hydropower in environment ally sustainable energy development

    International Nuclear Information System (INIS)

    Gabriel, H.F.

    2005-01-01

    Hydropower has historically been the renewable energy leader, and from a technical-cost perspective, is very likely to remain the only viable renewable energy source for many countries. In recent years, hydropower has been much maligned, especially by NGOs, for not being a sustainable source of energy. Though hydropower is clearly a renewable source of energy, but the question arises whether it can also be sustainable. Hydropower can play an increasingly important role in enabling communities around the world to meet sustainability objectives. To become more accepted as a key contributor to sustainable energy systems, new and existing hydropower projects need to be built and operated in an environmentally, socially and economically sustainable manner. This paper highlights the sustain ability aspects of hydropower and discusses the criteria for selection of environmentally friendly hydropower project sites so that that hydropower can be developed in a sustainable manner and once again be considered favorably in the planning of generation mix for new energy development. Sustainability of hydropower projects involves treating both the social and environmental sustainability of the project at an early stage and including the interests of all stakeholders of the project. As a case study, the Ghazi- Barotha Hydropower Project (GBHP) in Pakistan has been selected, as it is the best example in managing the social issues and gaining public acceptance because of proper planning and addressing environmental and social issues at an early stage. (author)

  1. National Energy Plan 1997 - 2010; Sustainable Energy self-sufficiency

    International Nuclear Information System (INIS)

    1997-01-01

    The present revision of the PEN consists of two parts, a diagnosis and a strategy. In the diagnosis; the evolution and the changes are analyzed foreseen in the international and national environments to establish the form like the energy sector is affected and it responds to these conditions. In second part it revises the strategy to incorporate the required adjustments of agreement with the changes in the environment, the demand perspectives and sector and national politics limits. In the international thing, the process of transformation of the system economic World cup will contribute to strengthen the liberalization actions, deregulation and privatization of the economies of the development countries. Great part of the dynamics growth, will be sustained then in the private investment and in an atmosphere of global competition. The formation of regional blocks opens favorable perspectives for new cooperation forms and development of resources. In the case of the American hemisphere and with reference to the energy sector, one has an important potential to improve the self-sufficiency starting from regional supplies, especially starting from fossil resources. This expectation is important for Colombia that has well-known reservations and important potentials in these resources. The tendencies waited in the fossil resources are more favorable for the countries than they can have reservations and growing production of petroleum and of natural gas. Nevertheless, the development of the coal maintains favorable expectations, but with important requirements as for efficiency and quality in the production that it guarantee the positioning in a more and more concerned market. In the environmental thing, the growth foreseen in the consumption of fossil fuels also bears to the increment in the 2010 in the greenhouse gases, at levels between 36% and 49% superiors to those of 1990. That most of this increment will originate in the in the development countries and

  2. Environment, energy, economy. A sustainable future

    International Nuclear Information System (INIS)

    Luise, A.; Borrello, L.; Calef, D.; Cialani, C.; Di Majo, V.; Federio, A.; Lovisolo, G.; Musmeci, F.

    1998-01-01

    This paper is organized in five parts: 1. sustainable development from global point of view; 2. global problems and international instruments; 3. sustainable management of resources in economic systems; 4. forecasting and methods: models and index; 5. future urban areas [it

  3. Sustainable energy strategies for green energy supply. Paper no. IGEC-1-123

    International Nuclear Information System (INIS)

    Midilli, A.; Ay, M.; Dincer, I.

    2005-01-01

    The main objectives of this study are, first, to determine the sustainable energy strategies for green energy supply, and secondly, to derive the green energy recovery ratio and the sustainable green energy progress ratio, and thirdly, to investigate the effects of sustainable energy strategies on these ratios. For these purposes, 20-possible sustainable energy strategies are taken into consideration and are divided into three subgroups that are strategies on the technological impact, sectoral impact, and green energy impact in a society. Using the possible sustainable energy strategies, technological and sectoral impact ratios of green energy and also green energy activity ratio are determined and discussed in detail. Additionally, some Case studies are performed in the scope of this interesting investigation: (i) the effect of technological impact ratio on green energy recovery ratio, and sustainable green energy progress ratio, (ii) the effect of sectoral impact ratio on green energy recovery ratio, and sustainable green energy progress ratio, and (iii) the effect of green energy impact ratio on green energy recovery ratio and sustainable green energy progress ratio. It is found that sustainable green energy progress ratio increases with an increase of technological, sectoral, and green energy impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy is abundantly produced. Therefore, the investment in green energy supply should be, for the future of world nations, encouraged by governments and other authoritative bodies who, for strategic reasons, wish to have a green alternative to fossil

  4. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  5. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  6. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    Science.gov (United States)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  7. Energy for sustainable development in Malaysia: Energy policy and alternative energy

    International Nuclear Information System (INIS)

    Rahman Mohamed, Abdul; Lee, Keat Teong

    2006-01-01

    Energy is often known as the catalyst for development. Globally, the per capita consumption of energy is often used as a barometer to measure the level of economic development in a particular country. Realizing the importance of energy as a vital component in economic and social development, the government of Malaysia has been continuously reviewing its energy policy to ensure long-term reliability and security of energy supply. Concentrated efforts are being undertaken to ensure the sustainability of energy resources, both depletable and renewable. The aim of this paper is to describe the various energy policies adopted in Malaysia to ensure long-term reliability and security of energy supply. The role of both, non-renewable and renewable sources of energy in the current Five-Fuel Diversification Strategy energy mix will also be discussed. Apart from that, this paper will also describe the various alternative energy and the implementation of energy efficiency program in Malaysia

  8. On some Issues of the Energy Policy and Sustainable Development

    International Nuclear Information System (INIS)

    Gotsiridze, A.

    2003-01-01

    Some aspects of the energy resources world commerce problems are considered in the article. East-West and North-South energy transport corridors functioning significance and the importance of energy resources transit legal regime creation in the limits of the Energy Charter Theaty are mentioned. World Community great interest to the energy security strengthening and energy sustainable development problems is underscored in the work. (authors)

  9. Sustainable Development of Sewage Sludge-to-Energy in China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2017-01-01

    proposed. After the grey DEMATEL analysis, a grey Multi-Criteria Decision Making (MCDM) framework which allows multiple decision-makers/stakeholders to use linguistic terms to participate in the decision-making for prioritizing the alternative technologies for sludge-to-energy was developed......In order to promote the sustainable development of sludge-to-energy industry and help the decision-makers/stakeholders to select the most sustainable technology for achieving the sludge-to-energy target, this study aims at using grey Decision Making Trial and Evaluation Laboratory (DEMATEL......) to identify the critical barriers that hinder the sustainable development of sludge-to-energy industry in China and to investigate the cause-effect relationships among these barriers. Accordingly, some policy implications for promoting the sustainable development of sludge-to-energy industry in China were...

  10. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-10-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).

  11. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy.......This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  12. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  13. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    nuclear power. For the medium term, 2030-2050, new reactors aiming at reducing capital costs, enhancing safety and improving the efficiency of natural resource use are being developed by designers. In order to address new challenges of deregulated markets, innovative reactor designs should enhance economic competitiveness and reduce financial risks of nuclear energy. The renewed interest of governments for the nuclear option (e.g., US, Finland) has triggered national and international initiatives (GIF, INPRO) aiming at defining and implementing co-operative R and D programmes leading to the deployment of a new generation of nuclear systems meeting the economic, environmental and social goals of sustainable development. International co-operation is essential for a successful renaissance of nuclear energy in the competitive context of the new millennium. Sharing experience, expertise and know-how across countries offers unique opportunities for synergy and cost effectiveness. Intergovernmental organisations such as NEA can play a key role in this regard through providing a framework for exchanging information and undertaking joint projects. (author)

  14. Integrated energy planning for sustainable development

    International Nuclear Information System (INIS)

    2008-09-01

    Improving access to energy is a multi-faceted challenge that has far-reaching implications and long-lasting obligations. Energy is essential to all human activities and, indeed, critical to social and economic development. Lack of energy is a contributing factor to states of perpetual poverty for individuals, communities, nations and regions. In contrast, access to energy opens many new opportunities; and meeting the United Nations Millennium Development Goals cannot be accomplished without access to affordable energy services

  15. Integrated energy planning for sustainable development

    International Nuclear Information System (INIS)

    2008-12-01

    Improving access to energy is a multi-faceted challenge that has far-reaching implications and long-lasting obligations. Energy is essential to all human activities and, indeed, critical to social and economic development. Lack of energy is a contributing factor to states of perpetual poverty for individuals, communities, nations and regions. In contrast, access to energy opens many new opportunities; and meeting the United Nations Millennium Development Goals cannot be accomplished without access to affordable energy services

  16. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Nakicenovic, Nebojsa

    2003-01-01

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  17. Sustainable development - the potential contribution of nuclear energy

    International Nuclear Information System (INIS)

    Bourdier, Jean-Pierre; Barre, Bertrand; Durret, Louis-Francois

    1998-01-01

    Sustainable development combines development, durability and sustainability. Energy is crucial for development: it brings work, nutrition, health, security, community, etc. Electrical energy offers the most possibilities for the consumer, particularly as regards the problems of pollution on the site of consumption. Nuclear generation is one of the best ways of producing electricity. Midway between stock energies and flow energies, it has several advantages: low consumption of resources, safety, compactness and cleanliness. Waste is not a specifically nuclear problem: it should be considered in terms of a life cycle analysis; construction, dismantling and functioning have to be assessed. The size of certain energies' contribution to the greenhouse effect is therefore made clear. Reprocessing represents a saving of energy, without environmental or health damage. It contributes to energy control, and therefore to sustainable development

  18. Canadian energy policy and the struggle for sustainable development

    International Nuclear Information System (INIS)

    Doern, G.B.

    2005-01-01

    This book examined selected energy policy issues and challenges confronting Canadians over the last two decades. The aim of the book was to provide an analysis of how energy policy has evolved. The book presents an overview of energy policy and its relationship to sustainable development. Politico-economic contexts were reviewed, including the changing nature of national and continental energy markets, energy policy and sustainable development. The difficulties in evaluating the environment in energy policy were discussed. Issues concerning electricity restructuring in Canada were reviewed, with reference to Canada-US electricity trade and the climate change agenda. Alberta's oil and gas industry and the Kyoto Protocol were also examined, with reference to voluntary measures to address climate change. Issues concerning stewardship, indigenous peoples and petroleum-based economic development in the north were reviewed, as well as northern gas pipeline policy and sustainable development. Conclusions and recommendations were made concerning the following 6 analytical and practical energy policy and governance challenges facing the current government: Kyoto Protocol implementation challenges; energy security; northern pipelines and concerns with Aboriginal peoples and sustainable northern development; electricity restructuring and the limits of regulatory-market design; energy science and technology and innovation policy links; and prospects for turning the struggle for sustainable development in the energy policy field into something closer to an actual achievement. 37 refs

  19. Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    The Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES) in 2015 returned to its hometown, Dubrovnik, and once again served as a significant venue for scientists and specialists in different areas of sustainable development from all over the world to initiate...... traditionally cover a range of energy issues - higher renewables penetration and various technologies and fuels assessments at energy supply side, as well as, energy efficiency in various sectors, buildings, district heating, electric vehicles and demand modelling at energy demand side. Also, a review paper...

  20. Error Mitigation in Computational Design of Sustainable Energy Materials

    DEFF Research Database (Denmark)

    Christensen, Rune

    Transportation based on sustainable energy requires an energy carrier, which is able to store the predominately electrical energy generated from sustainable sources in a high energy density form. Metal-air batteries, hydrogen and synthetic fuels are possible future energy carriers. Density...... if not for the systematic errors. In this thesis it is shown how the systematic errors can be mitigated. For different alkali and alkaline earth metal oxides, systematic errors have previously been observed. These errors are primarily caused by differences in metal element oxidation state. The systematic errors can...

  1. A worldwide perspective on energy, environment and sustainable development

    International Nuclear Information System (INIS)

    Dincer, Ibrahim; Rosen, Marc A.

    1998-01-01

    Problems with energy supply and use are related not only to global warming, but also to such environmental concerns as air pollution, ozone depletion forest destruction and emission of radioactive substances. These issues must be taken into consideration simultaneously if humanity is to achieve a bright energy future with minimal environmental impacts. Much evidence exists which suggests that the future will be negatively impacted if humans keep degrading the environment. There is an intimate connection between energy, the environment and sustainable development. A society seeking sustainable development ideally must utilise only energy resources which cause no environmental impact (e.g. which release no emissions to the environment). However, since all energy resources lead to some environmental impact, it is reasonable to suggest that some (not all) of the concerns regarding the limitations imposed on sustainable development by environmental emissions and their negative impacts can be part overcome through increased energy efficiency. A strong relation clearly exists between energy efficiency and environmental impact since, for the same services or products, less resource utilisation and pollution is normally associated with higher efficiency processes. Anticipated patterns of future energy use and consequent environmental impact (Focusing on acid precipitation, stratospheric ozone depletion and the greenhouse effect) are comprehensively discussed in this paper. Also, some solutions to current environmental issues in terms of energy conservation and renewable energy technologies are identified and some theoretical and practical limitations on increased energy efficiency are explained. The relations between energy and sustainable development, and between the environment and sustainable development, are described, and in illustrative example is presented. Throughout the paper several issues relating to energy, environment and sustainable development are examined

  2. Sustainability, Ethics and Nuclear Energy : Escaping the Dichotomy

    NARCIS (Netherlands)

    Kermisch, C.F.N.; Taebi, B.

    2017-01-01

    In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions,

  3. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  4. The role of women in sustainable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Cecelski, E.

    2000-07-13

    This paper explores the question of how sustainable energy development--specifically, decentralized renewable energy technologies--can complement and benefit from the goal of increasing women's role in development. It is based on a paper that was originally presented at the World Renewable Energy Congress-V held in Florence, Italy, in September 1998, as a contribution to the National Renewable Energy Laboratory's program on gender and energy.

  5. Sustainable Design and Renewable Energy Concepts in Practice

    Science.gov (United States)

    Maxwell, Lawrence

    2009-07-01

    The energy use of residential and non-residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability, energy consumption, environment impacts, and the potential for climate change.

  6. Energy security and sustainability in Northeast Asia

    International Nuclear Information System (INIS)

    Hippel, David von; Suzuki, Tatsujiro; Williams, James H.; Savage, Timothy; Hayes, Peter

    2011-01-01

    'Energy Security' has typically, to those involved in making energy policy, meant mostly securing access to oil and other fossil fuels. With increasingly global, diverse energy markets, however, and increasingly transnational problems resulting from energy transformation and use, old energy security rationales are less salient, and other issues, including climate change and other environmental, economic, and international considerations are becoming increasingly important. As a consequence, a more comprehensive operating definition of 'Energy Security' is needed, along with a workable framework for analysis of which future energy paths or scenarios are likely to yield greater Energy Security in a broader, more comprehensive sense. Work done as a part of the Nautilus Institute's 'Pacific Asia Regional Energy Security' (PARES) project developed a broader definition of Energy Security, and described an analytical framework designed to help to compare the energy security characteristics - both positive and negative - of different quantitative energy paths as developed using software tools such as the LEAP (Long-range Energy Alternatives Planning) system.

  7. FOREN 2004. Sustainable Energy Development and European Integration

    International Nuclear Information System (INIS)

    Iancu Iulian

    2004-01-01

    The 7th Regional Energy Forum- FOREN 2004 with the main topic 'Sustainable Energy Development and European Integration' took place in Neptun-Olimp, on 13th to 17th June 2004. The event was organized by WEC Romanian National Committee, under the auspices of the World Energy Council (WEC). The event was accompanied by several related manifestation as: An up to date Technical Programme designed to explore key issues concerning the ability of the Romanian energy industry to integrate in the European Union; An Exhibition providing first hand access to service and equipment providers; A Partnership Programme, to present the achievements and developments of power companies in round tables, film projections, technical visits and advertising; Social events giving to participants the opportunity to establish direct connections with the Romanian colleagues. The Forum was open to members of the World Energy Council, energy industry leaders, government ministers and officials, heads of international organizations like: UNECE, EC, IEA, Eurelectric, IGU, EUROgas, USAID, academics, media, individual and corporate members interested in sustainable energy development. For further details concerning the agenda and registration. Forum 2004 was structured on five sections each containing a key issue a panel session, communication session and poster presentation on the following items: 1. Energy legislation and institutional framework; 2. The technological dimension of sustainable energy; 3. The ecological dimension of sustainable development; 4. The social dimension of sustainable development; 5. The power equipment manufacturing industry

  8. Energy solutions for sustainable development. Proceedings

    DEFF Research Database (Denmark)

    production technologies such as fuel cells, hydrogen, bio-energy and wind energy • Centralized energy technologies such as clean coal technologies • Providing renewable energy for the transport sector • Systems aspects, differences between the various major regions throughout the world • End-use technologies......, efficiency improvements and supply links • Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism...

  9. Considerations for a sustainable nuclear fission energy in Europe

    International Nuclear Information System (INIS)

    Cognet, G.; Ledermann, P.; Cacuci, D.

    2005-01-01

    Presented is the global energy perspectives and and sustainable development fission vision scenario. Described are the innovative concepts with technological breakthroughs concerning the fuel cycle and evolution of the spent fuel radiotoxic contents

  10. sustainable development of national energy resources

    African Journals Online (AJOL)

    RAYAN_

    environmental protection (oil pollution) and safety (oil rigs and collisions at sea). Gas does not even ..... improvement in energy efficiency and of the share of renewable energy in the global energy mix.27 .... 37 For discussion of PSNR in the WTO context, see China – Measures Related to the. Exportation of Various Raw ...

  11. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  12. Worldwide Engagement for Sustainable Energy Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Thirty-five years after the Agency's founding, the IEA responsibility for ensuring access to global oil supplies is still a core mandate -- but new energy-related concerns have arisen. Energy security is no longer only about oil. And the industrialised nations of the world are no longer the only major consumers of energy. Climate change driven by greenhouse gas emissions -- 60% of which derive from energy production or use -- is a growing threat. So energy policy was tasked with a new objective: to cut greenhouse gas emissions while maintaining economic growth.

  13. Renewable energy sources for sustainable tourism in the Carpathian region

    Science.gov (United States)

    Mandryk, O. M.; Arkhypova, L. M.; Pobigun, O. V.; Maniuk, O. R.

    2016-08-01

    The use of renewable energy in sustainable tourism development of the region is grounded in the paper. There are three stages of selecting areas for projects of renewable energy sources: selection of potentially suitable area; consideration of exclusion criteria, detailed assessment of potential sites or areas. The factors of impact on spatial constraints and opportunities for building wind, solar and small hydro power plants on the parameters of sustainable tourism development in the Carpathian region were determined.

  14. Sustainability and acceptance - new challenges for nuclear energy

    International Nuclear Information System (INIS)

    Lensa, W. von

    2001-01-01

    This paper discusses the concept of sustainability in relation to acceptance of nuclear energy. Acceptance is viewed in terms of public acceptance, industrial acceptance, and internal acceptance/consensus within the nuclear community. It addresses sustainability criteria, the need for innovation, and the different levels of acceptability. The mechanisms of risk perception are discussed along with the technological consequences from risk perception mechanisms leading to specific objections against nuclear energy. (author)

  15. Sustainability in Energy and Buildings : Proceedings of the 3rd International Conference in Sustainability in Energy and Buildings

    CERN Document Server

    Namaane, Aziz; Howlett, Robert; Jain, Lakhmi

    2012-01-01

    Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB’11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systèmes (LSIS) in Marseille, France in partnership with KES International.   SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field.   The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: - the application of intelligent sensing, control, optimisation and modelling techniques to sustainability and - the technology of sustainable buildings.  These two themes combine synergetically to address issues relating to The Intelligent Building.   SEB’11 attracted a significant number of submissions from around the w...

  16. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  17. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  18. Sustainable Energy Development in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mounir Belloumi

    2015-04-01

    Full Text Available The main objective of this research is to study the role of energy consumption in economic growth in Saudi Arabia over the period of 1971–2012 using the autoregressive distributed lag (ARDL cointegration procedure, and based on neoclassical growth, endogenous growth, and ecological-economics viewpoints. Our empirical results show the existence of a cointegrating relationship between the different variables investigated. In addition, all the inputs (conventional and non-conventional Granger cause economic growth in both the short and long runs. Our findings confirm the energy-led growth hypothesis in the case of Saudi Arabia. Hence, energy conservation policies may deteriorate economic growth in Saudi Arabia if they are not followed by measures that improve energy efficiency, energy saving technologies and encourage the investment and use of renewable energy sources such as solar and wind energies that can participate in the attenuation of climate changes.

  19. Energy solutions for sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2007-05-15

    The Risoe International Energy Conference took place 22 - 24 May 2007. The conference focused on: 1) Future global energy development options. 2) Scenario and policy issues. 3) Measures to achieve low-level stabilization at, for example, 500 ppm CO2 concentrations in the atmosphere. 4) Local energy production technologies such as fuel cells, hydrogen, bio-energy and wind energy. 5) Centralized energy technologies such as clean coal technologies. 6) Providing renewable energy for the transport sector. 7) Systems aspects, differences between the various major regions throughout the world. 8) End-use technologies, efficiency improvements and supply links. 9) Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism. (au)

  20. A new model for sustainable growth in the energy industry

    International Nuclear Information System (INIS)

    McFaddin, S.; Clouse, M.

    1993-01-01

    A new sustainable growth model is developed which enables the evaluations of the interdependence of financial objectives, operational performance and sustainable growth in the energy industry. This new model includes both the effect of inflation and growth produced from equity issues. Component analysis is shown to be an extremely useful tool in determining the effect of operational and financial variables on the sustainable growth rate. This new model is statistically compared with both actual growth rates and Higgins' model. Implications of this research include a more accurate financial planning tool for evaluating sustainable growth and a more effective tool for directing policies to stimulate growth in specific industries. (author)

  1. Technology policy and sustainable development: the case of renewable energy

    International Nuclear Information System (INIS)

    Wohlgemuth, N.

    2000-01-01

    Policies to address long-term energy concerns include a wide range of initiatives. Taxes can internalise costs; financial mechanisms, including subsidies, can target particularly favourable but otherwise non-competitive investments; regulation can apply standards to raise performance of appliances; information programmes can improve decision making; and R and D can make available new options. The 1987 report of the World Commission on Environment and development, found that 'energy efficiency can only buy for the world to develop 'low-energy-paths' based on renewable sources...'. Although many renewable energy systems are in a relatively early stage of development, they offer the world 'a potentially huge primary energy source, sustainable in perpetuity and available in various forms to every nation on Earth.' It suggested that an R and D programme of renewable energy is required to attain the same level of primary energy that is now obtained from a mix of fossil, nuclear, and renewable energy resources. Since renewable energy contributes to all dimensions of sustainable development, one policy challenge is to ensure that renewable energy has a fair opportunity to complete with other resources required for the provision of energy services, especially on 'liberalised' energy markets. This paper gives an overview of rationales for government intervention in energy-related R and D, and international energy R and D trends. it concludes that the liberalisation of energy markets has an overall negative impact on private sector investments in energy R and D and that without a sustained and diverse programme of energy R and D and implementation, we are crippling our ability to make the necessary improvements in the global energy system, especially in light of sustainable development requirements. (author)

  2. Energy indicators for tracking sustainability in developing countries

    International Nuclear Information System (INIS)

    Kemmler, Andreas; Spreng, Daniel

    2007-01-01

    Due to the fact that human activities and most sustainability issues are closely related to energy use, the energy system is a sound framework for providing lead indicators for sustainable development. Common energy-economic models enable the estimation of future states of the energy system. An energy system-based lead indicator set can be used to develop consistent and coherent future indicator estimates and to track sustainability, a clear advantage over existing sets. In developed countries, the sustainability discussion is focused on environmental topics, while in developing countries the issues of poverty and equity are equally important. Consequently, for measuring sustainable development in a developing country, the inclusion of a poverty indicator in a set of lead indicators is essential. By correlation and descriptive analysis, it is shown that reliable energy-based indicators of poverty can be created. Although no one-dimensional indicator is a comprehensive measure of poverty, the explanatory power of energy poverty indicators is comparable to that of other poverty indicators. Thus, the use of energy indicators is not restricted to environmental and economic issues but is also relevant for social issues

  3. Sustainable energy supply - a key to global growth

    International Nuclear Information System (INIS)

    Wright, J.K.

    2002-01-01

    From this overall concept of what constitutes sustainability, a range of considerations on equity of energy supply across regions, time scales over which fuel and energy source mixes and technology changes and the like, can be developed. Within the spatial dimension, considerations of sustainability that operate at the global scale need to be translated to the operations of large and small companies, national and local governments down to individual households. It is a complex mix in an increasingly complex world. But one thing is certain, the world's energy demand is going to continue to increase. This demand will be largely satisfied by fossil fuels and this use is not sustainable using current technology in the long term. Massive changes are required to turn the world around onto a more sustainable pathway that will probably take many decades even to make a significant start. The aim of this paper is to briefly explore some of the possible technological options that will guide us on the road to a more sustainable energy future. A genuinely sustainable energy system that also promotes sustainable growth with an improving standard of living for all is obviously a major challenge. At the same time the global demand for energy will continue to increase. On the global scale, the prospect of climate change imposes a major long-term constraint on the use of GHG emitting fuels and generating technologies. The long-term development of a sustainable energy system will require multiple interventions and a pluralistic approach to energy management. Ingredients within the mix are likely to require: 1. innovation in the way we currently generate and supply power 2. continued integration and greater penetration of renewables 3. greater use of embedded and distributed energy generation 4. aggressive end-use efficiency 5. development of technologies to enable continued use of fossil fuels until the transition to sustainability is completed. A combination of market and regulatory

  4. Is nuclear fusion a sustainable energy form?

    International Nuclear Information System (INIS)

    Bradshaw, A.M.; Hamacher, T.; Fischer, U.

    2011-01-01

    An acceptable criterion for strong sustainability in the consumption of natural resources is an effective, or virtual, limitlessness of supply, which can be defined, albeit arbitrarily, as corresponding to a few million years. The fuels for nuclear fusion-lithium and deuterium-satisfy this condition because of the abundance of lithium in seawater and of deuterium in all forms of water. The possible use of lithium-ion batteries on a large scale, particularly in the automobile industry, could, however, use up all the known terrestrial reserves and resources of lithium in the next few decades. Little attention has been paid so far to the financial, energetic, and above all, environmental aspects of lithium extraction from seawater. The neutron multipliers foreseen for fusion power plants, in particular beryllium, represent a major supply problem and require that other, sustainable solutions be urgently sought.

  5. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  6. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  7. Small hydropower projects and sustainable energy development in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, R.; Munasinghe, M. [Cambridge Univ. (United Kingdom); Munasinghe Inst. for Development, Colombo (Sri Lanka); Yale Univ., New Haven, CT (United States)

    2005-07-01

    Sustainable development has evolved to encompass three major viewpoints: economic, social and environmental. Given the wide-ranging potential impacts of energy on national sustainable development, we review the linkages between these two topics. In the Sri Lanka case study presented here, the Sustainomics framework is used to assess the role of small hydroelectric power projects in sustainable energy development. Key variables represent economic, social and environmental dimensions. This analysis helps policy-makers compare and rank project alternatives more easily and effectively. The multi-dimensional analysis, which includes environmental and social variables, supplements the more conventional cost benefit analysis based on economic values alone. (Author)

  8. At the Heart of a Sustainable Energy Transition: The Public Acceptability of Energy Projects

    NARCIS (Netherlands)

    Perlaviciute, Goda; Schuitema, Geertje; Devine-Wright, Patrick; Ram, Bonnie

    Public acceptability is at the heart of changing the energy system toward a more sustainable way of energy production and use. Without public acceptability and support for changes, a sustainable energy transition is unlikely to be viable. We argue that public acceptability is often addressed too

  9. THE ROLE OF ENERGY IN ECOLOGICAL SUSTAINABILITY

    OpenAIRE

    Popescu Maria-Floriana

    2015-01-01

    The rapid population growth leads to greater daily demand for energy, causing nations to diversify their portfolios and seek new sources of energy, including renewable to provide more energy. In a universe with seriously exhausted natural resources, severe urbanization, climate change and conflicts that go beyond borders, the issue of overpopulation unquestionably causes worldwide debates and can generate a snowball effect for the global economy or human society. Population’s increase in the ...

  10. Energy Sustainability and Its Impacts on Croatian Tourism

    Directory of Open Access Journals (Sweden)

    Marinela Krstinić Nižić

    2017-01-01

    Full Text Available Energy efficiency, renewable energy sources, and environmental protection projects play a pivotal role in tourism. The World Tourism Organization (UNWTO addresses resource management and energy use as one of the major issues. The main goal of the paper is to present the economic–financial analysis and the assessment of investment projects in the construction of a conventional mid-size hotel using fossil fuels and a mid-size hotel based on sustainable principles and renewable energy sources. Comparative analysis of conventional and energy efficient hotels is used to calculate the key financial indicators in decision making. Case study shows that the introduction of renewable energy sources meets the needs of modern guests and increases the hotel's competitiveness, while the effects of energy sustainability reflect on the environment and reduced CO2 emissions. Based on the results, the paper suggests measures for improving energy sustainability in hotels and other tourism facilities. The paper is intended for those who deal with theoretical and practical issues of energy sustainability in tourism, tourism certificates, renewable energy sources and investment costs―scientists, researchers, PhD candidates and students as a basis for further comparative studies and benchmarking. It can also be useful for a considerably wider circle of users―managers at all levels and other business decision makers, as well as proprietors, investors, and creditors.

  11. Sustainable energy development (May 2011) with some game-changers

    International Nuclear Information System (INIS)

    Lior, Noam

    2012-01-01

    This paper presents the opening talk that briefly surveys the present (May 2011) situation in sustainable energy development. Recent estimates and forecasts of the oil, gas, coal resources and their reserve/production ratio, nuclear and renewable energy potential, and energy uses are surveyed. A brief discussion of the status, sustainability (economic, environmental and social impact), and prospects of fossil, nuclear and renewable energy use, and of power generation is presented. Comments about energy use in general, with more detailed focus on recently emerging game-changing developments of postponement of “peak oil”, nuclear power future following the disaster in Japan, and effects of the recent global economy downturn of global sustainability, are brought up. Ways to resolve the problem of the availability, cost, and sustainability of energy resources alongside the rapidly rising demand are discussed. The author’s view of the promising energy R and D areas, their potential, foreseen improvements and their time scale, and last year’s trends in U.S. government energy funding are presented. -- Highlights: ► The present (May 2011) situation in sustainable energy development is surveyed. ► Recently emerging game-changing developments of postponement of “peak oil”, nuclear power future following the disaster in Japan, ad effects of the recent global economy downturn of global sustainability, are brought up. ► Promising energy R and D areas, their potential, foreseen improvements and their time scale. ► Last year’s trends in U.S. government energy funding are presented.

  12. Sustainable biotechnology: sources of renewable energy

    National Research Council Canada - National Science Library

    Singh, Om V; Harvey, Steven P

    2010-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anuj K. Chandel, Om V. Singh, and L.Venkateswar Rao 63 Tactical Garbage to Energy Refinery (TGER) . . . . . . . . . . . . . . . James J. Valdes and Jerry B. Warner...

  13. Tools for tracking progress. Indicators for sustainable energy development

    International Nuclear Information System (INIS)

    Khan, A.; Rogner, H.H.; Aslanian, G.

    2000-01-01

    A project on 'Indicators for Sustainable Energy Development (ISED)' was introduced by the IAEA as a part of its work programme on Comparative Assessment of Energy Sources for the biennium 1999-2000. It is being pursued by the Planning and Economic Studies Section of the Department of Nuclear Energy. The envisaged tasks are to: (1) identify the main components of sustainable energy development and derive a consistent set of appropriate indicators, keeping in view the indicators for Agenda 21, (2) establish relationship of ISED with those of the Agenda 21, and (3) review the Agency's databases and tools to determine the modifications required to apply the ISED. The first two tasks are being pursued with the help of experts from various international organizations and Member States. In this connection two expert group meetings were held, one in May 1999 and the other in November 1999. The following nine topics were identified as the key issues: social development; economic development; environmental congeniality and waste management; resource depletion; adequate provision of energy and disparities; energy efficiency; energy security; energy supply options; and energy pricing. A new conceptual framework model specifically tuned to the energy sector was developed, drawing upon work by other organizations in the environmental area. Within the framework of this conceptual model, two provisional lists of ISED - a full list and a core list - have been prepared. They cover indicators for the following energy related themes and sub-themes under the economic, social and environmental dimensions of sustainable energy development: Economic dimension: Economic activity levels; End-use energy intensities of selected sectors and different manufacturing industries; energy supply efficiency; energy security; and energy pricing. Social dimension: Energy accessibility and disparities. Environmental dimension: Air pollution (urban air quality; global climate change concern); water

  14. Energy and the World Summit on Sustainable Development: what next?

    International Nuclear Information System (INIS)

    Spalding-Fecher, Randall; Winkler, Harald; Mwakasonda, Stanford

    2005-01-01

    Given the importance of energy issues to sustainable development, energy was a priority issue at the World Summit on Sustainable Development in August 2002. The objective of this paper is to examine the outcomes of the Summit on energy, and to assess them against proposals to address the lack of access to modern energy and the need to move toward a cleaner energy system. We find that lack of political leadership from key countries prevented agreement not only on targets for renewable energy, but also on a programme to promote access. The achievements of the Summit were limited to enabling activities such as capacity building and technology transfer, rather than substantive agreements. While WSSD put energy higher on the agenda than before, no institutional home or programme to take the issues forward has emerged. This therefore remains a critical challenge to be addressed. Achieving this broad goal will require building a coalition to promote cleaner energy, and committing resources to programme for energy access. Based on analysis of proposals and the negotiations, we propose several key areas where progress is still possible and necessary, including: shifting more international public and private energy financing toward access investments and cleaner energy investments, advancing regional approaches to access and renewable energy targets, and a range of mechanisms to strengthen institutional capacity for integrating energy and sustainable development

  15. Embedding Sustainability and Renewable Energy Concepts into Undergraduate Curriculum

    Science.gov (United States)

    Belu, R.; Cioca, L.

    2017-12-01

    Human society is facing an uncertain future due to the present unsustainable use of natural resources and the growing imbalance with our natural environment. Creation of a sustainable society is a complex multi-disciplinary and multi-stage project, believed to dominate our century, requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions. Sustainable development means technological progress meeting the present needs without compromising future generation ability to meet its needs and aspirations. It has four aspects: environment, technology, economy, and societal organizations. Students are often taught to deal with technological developments and economic analysis to assess the process or product viability, but are not fully familiar with sustainability and optimization of technology development benefits and the environment. Schools in many disciplines are working to include sustainability concepts into their curricula. Teaching sustainability and renewable energy has become an essential feature today higher education. Sustainable and green design is about designs recognizing the constraints of the natural resource uses and the environment. It applies to all of engineering and science areas, as all systems interact with the environment in complex and important ways. Our project goals are to provide students with multiple and comprehensive exposures to sustainability and renewable energy concepts, facilitating the development of passion and skills to integrate them into practice. The expected outcomes include an increased social responsibility; development of innovative thinking skills; understanding of sustainability issues, and increasing student interests in the engineering and science programs. The project aims to incorporate sustainability and renewable energy concepts into our undergraduate curricula, employing the existing course resources, and developing new courses and laboratory experiments

  16. Sustainable development and energy in the european union

    International Nuclear Information System (INIS)

    Roth, A.

    2013-01-01

    Sustainable development represents a core objective of the European Union, being embodied through out its major polices. In the field of energy, the EU objectives, commonly known as ä20-20-20ö initiative, aim at ensuring a competitive, secure and sustainable energy for European households and industries by reducing the emissions of green house gases, an efficient use on energy and increasing the use of renewable energy. The present paper draws a review on the most important aspects of EU energy policy, its measures, results and costs from the perspective of security of supply, competitiveness of price and green house gases emissions. The aim is to highlight the trade offs which are involved in the orientation towards a sustainable path of the energetic sector of the European Union. (authors)

  17. Can environmental sustainability be used to manage energy price risk?

    International Nuclear Information System (INIS)

    Henriques, Irene; Sadorsky, Perry

    2010-01-01

    Energy security issues and climate change are two of the most pressing problems facing society and both of these problems are likely to increase energy price variability in the coming years. This paper develops and estimates a model of a company's energy price exposure and presents evidence showing that increases in a company's environmental sustainability lowers its energy price exposure. This result is robust across two different measures of energy prices. These results should be useful to companies seeking new ways of addressing energy price risk as well as governments concerned about the impact that energy price risk can have on economic growth and prosperity. (author)

  18. Introduction [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Toth, F.; Moreira, J.R.

    2006-01-01

    Energy has been a central concern to humankind throughout its long history. The adequate provision of energy services has become especially important for economic development since the Industrial Revolution. In recent decades, energy issues have been a fundamental component of the conceptual and strategic discussions on sustainable development worldwide. This chapter introduces the project 'Brazil: A Country Profile on Sustainable Energy Development' within this recent political context. The chapter starts with a concise overview of the energy related aspects of international sustainable development programmes and declarations, followed by a short summary of events and documents explicitly devoted to energy matters (Section 1.1). Recent arguments in the theoretical debate on sustainability are presented in Section 1.2 in order to provide the conceptual background for the sustainability assessment of Brazil's energy sector. The background, objectives and scope of the project are summarized in Section 1.3. Finally, in Section 1.4 a road map to the report is provided, drawing the attention of different audiences to chapters of interest to them

  19. Automated Demand Response for Energy Sustainability

    Science.gov (United States)

    2015-05-01

    electric loads for use in DR programs include HVAC equipment, lighting, water pumping, and other miscellaneous motor loads. Figure 5 shows a high...100 Appendix L: Comparative Analysis: Bldg 254/271 HVAC Controls Project ............................ 102 Appendix M: Comparative...Security Technology Certification Program FEMP Federal Energy Management Program FERC Federal Energy Regulatory Commission HVAC Heating, ventilation

  20. Pleading for a sustainable energy economy

    International Nuclear Information System (INIS)

    Boelkow, L.

    1996-01-01

    There will be only few to deny that it is time to initiate a re-orientation in the energy sector. However, the strategies to be adopted are the bone of contention. The article presents one concrete vision, showing that solar energy in particular is a power source for designing the future, and under competitive conditions at that. (orig.) [de

  1. United Nations: preparing to examine energy and sustainable development

    International Nuclear Information System (INIS)

    Radka, Mark

    2000-01-01

    This article examines the progress on sustainable development at the international level, and discusses the forthcoming meeting of the Commission for Sustainable Development (CSD-9) and the review of the progress of the Earth Summit in Rio in 1992. Details are given of the anticipated Third Assessment report of the Intergovernmental Panel on Climate Change which is expected to increase pressure to reduce emissions of greenhouses gases, the link between policies of sustainable development and renewable energy, the challenge of the growing demand for energy in the developing countries and the need to mitigate against environmental damage, and the setting up of the Sustainable Energy Advisory Facility (SEAF) by the United Nations Environment Programme to aid developing countries to participate in the CSD-9 process

  2. SUSTAINABLE DEVELOPMENT, ENERGY AND CLIMATE CHANGE IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Andrei ROTH

    2015-04-01

    Full Text Available Through sustainable development the needs of the current generation are fulfilled without jeopardizing the opportunities of future generations. The concept takes into account economic, social and environmental considerations. It has a wide range of applications from natural resources to population growth and biodiversity. One of its most important themes is energy. In this area, sustainable development relates with resource availability and green house gases emissions. Also it takes into account the needs of people without access to energy, and their legitimate quest for development. For the European Union, sustainable development represents an overarching objective. The present article analyzes the concept from a theoretical perspective, contrasting its strong points and weaknesses. It highlights the relation between sustainable development, energetic resources and climate change. The EU policies results in the field of energy are analyzed from the perspective of resources, energetic dependency and climate change efforts.

  3. United Nations: preparing to examine energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Mark [United Nations Environment Programme, Paris (France)

    2000-08-01

    This article examines the progress on sustainable development at the international level, and discusses the forthcoming meeting of the Commission for Sustainable Development (CSD-9) and the review of the progress of the Earth Summit in Rio in 1992. Details are given of the anticipated Third Assessment report of the Intergovernmental Panel on Climate Change which is expected to increase pressure to reduce emissions of greenhouses gases, the link between policies of sustainable development and renewable energy, the challenge of the growing demand for energy in the developing countries and the need to mitigate against environmental damage, and the setting up of the Sustainable Energy Advisory Facility (SEAF) by the United Nations Environment Programme to aid developing countries to participate in the CSD-9 process.

  4. Electricity. The answer to sustainable energy needs

    International Nuclear Information System (INIS)

    Bulcke, J.

    1996-01-01

    When debating the rational use of energy, it very often happens that all attention is drawn to the reduction of the use of electricity. Limiting, even eliminating the application of electric heating is seen as a rational choice. On the other hand, industrial consumers are urged to invest in combined heat and power, even without considering a thorough analysis of energy usage. Mastering such an environment is today's challenge for the electricity producers and distributors. Considering the fact that, for a majority of customers, the cost of electricity is more important than the cost of other energy sources, products and services has been developed which, lead to lower bills and lower energy use. From a marketing point of view, this approach introduces electro-thermy to the consumer thereby securing the electricity company of durable sales and even increases in sales. The high efficiency of electrothermal applications secures a reduction in primary energy use. (author)

  5. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  6. Renewable energy and environment ally sustainable development in Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.; Memon, M.; Uqaili, M.A.

    2005-01-01

    In Pakistan, about two-thirds of the primary energy requirements are met through conventional sources while traditional biomass accounts the remaining one-third The primary commercial energy is largely based on fossil fuels. Indigenous reserves of oil and gas are limited and the coal available in the country is of poor quality. Environmental pollution and greenhouse gas emissions from energy use are becoming significant environmental issues in the country. Achieving solutions to these environmental problems requires long-term potential actions for sustainable development. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions. Pakistan's geographical location has several advantages for extensive use of most of these renewable energy sources. This paper presents review of the present energy situation and environmental sustainability, and assesses the potential of renewable energy sources in Pakistan. Also, potential solutions to current environmental problems are identified along with renewable energy technologies. Several problems relating to renewable energy sources, environmentally sustainable development are discussed from both current and future perspectives. The present study shows that there is substantial potential of renewables in Pakistan. For achieving environmentally sustainable development, renewables must be developed and utilized. (author)

  7. Mesoscale modelling in China: Risø DTU numerical wind atlas calculation for NE China (Dongbei)

    DEFF Research Database (Denmark)

    Badger, Jake; Larsén, Xiaoli Guo; Hahmann, Andrea N.

    of the wind resource for Dongbei south of 50oN. The results of the numerical wind atlas show a wind resource over the region of interest modulated mainly by topographic features. These are principally elevated terrain features, giving high resources on exposed ridges and lower resources adjacent to the low......This document reports on the methods and findings of project “A01 Mesoscale Modelling”, part of the CMA component of the Wind Energy Development (WED) programme, focusing mainly on the methods and work undertaken by Risø DTU. The KAMM/WAsP methodology for numerical wind atlas calculation....... The major new aspects of the project were the large number of KAMM/WAsP sensitivity studies, comparison with WRF, and the CMA’s numerical wind atlas method (WERAS). Additionally, the reliability of the input data for the methodology, and the wave-number spectra properties of the output data were...

  8. Energy autarky: A conceptual framework for sustainable regional development

    International Nuclear Information System (INIS)

    Mueller, Matthias Otto; Staempfli, Adrian; Dold, Ursula; Hammer, Thomas

    2011-01-01

    Energy autarky is presented as a conceptual framework for implementing sustainable regional development based on the transformation of the energy subsystem. It is conceptualized as a situation in which the energy services used for sustaining local consumption, local production and the export of goods and services are derived from locally renewable energy resources. Technically, the implementation of higher degrees of energy autarky rests on increasing energy efficiency, realizing the potential of renewable energy resources and relying on a decentralized energy system. Practically, a transition towards regional energy autarky requires administrations and civil society actors to initialize and develop projects at the local level, ensure their acceptance and support by the regional population and implement the project in collaboration with relevant actors. Besides the description of the concept and the benefits its implementation brings, this article provides a process for implementation, and some examples from Austria, Germany and Switzerland. - Highlights: → We introduce energy autarky as a conceptual framework for sustainable development. → Transforming the energy subsystem creates various benefits for communities. → Local participation should lead to social acceptance of renewables. → We review and discuss projects implementing energy autarky. → Further research needs to compare successful implementations with failures.

  9. Sustainable energy policy in Honduras. Diagnosis and challenges

    International Nuclear Information System (INIS)

    Flores, Wilfredo C.; Ojeda, Osvaldo A.; Flores, Marco A.; Rivas, Francisco R.

    2011-01-01

    In view of having a still unexploited potential of natural resources available for clean energy and the possibility of using the regional electricity market in Central America, Honduras has several potential energy sources. The growing dependence on oil and the imminent increase in international prices of fossil fuels, coupled with the necessity of changing the energy sector arrangement, the State of Honduras has taken the lead for the development of a long-term sustainable energy policy. This energy policy must be able to develop various energy sources and guide both, the government and the private sector, to the planning and development of alternative energy sources and sustainable growth of the Honduran economy. In this paper, the various energy diagnoses and the potential for changing the Honduran energy mix are presented, as well as the investment required for sustainable management of the energy sector. Furthermore, the objectives of the energy policy and plan up to the year 2030 are presented, outlining the investment possibilities for the energy sector development, showing their costs and timeframes. (author)

  10. An Interdisciplinary Education of Sustainability, Energy and Green Economics

    Science.gov (United States)

    Sikand, M. V.; Mazzatenta, C.; Wong, K.; Socha, A.

    2017-12-01

    This following project demonstrates an interdisciplinary method of teaching Sustainability, Energy and Green Economics. It is shown that an interdisciplinary approach to introduce students to the foundations of sustainability strongly connects education with real world applications, and highlights the growing influence of sustainable practices on the world at large. The authors will present results from the interdisciplinary course "Sustainability, Energy and Green Economy" taught at the Center of Sustainable Energy, Bronx Community College, City University of New York (CSE-BCC-CUNY) by faculty from Physics, Chemistry, Biology. The course curriculum covers the relationship of humans within their environment, the facts of climate change, an analysis of the current global energy portfolio, the burgeoning renewable energy sector, and connections between consumption and quality of life. The students are exposed to empirical data and asked to evaluate trends to ascertain the future energy and resource demands of a growing global population. The students are lead through an estimation of their own carbon footprint. Emphasis is made on the concept of `Life Cycle Analysis' and how such analyses can be used to create market value and a "green product". The interdisciplinary approach to teach students on how the principles of sustainability are building the green economy and how to build a successful career within today's workforce encourages students to apply the critical lens of sustainability to all aspects of their personal lives, as well as local, regional and global economies. The authors will present data collected by students to formulate and articulate a hypothesis specifically related to the sustainability of societal and economic market trends.

  11. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  12. Tidal energy extraction: renewable, sustainable and predictable.

    Science.gov (United States)

    Nicholls-Lee, R F; Turnock, S R

    2008-01-01

    The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.

  13. Nuclear energy an asset for sustainable development

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The energy issue is now a worldwide concern. It is showed that nuclear energy combined with renewable energies are the only efficient response to face the challenge of climate warming by cutting drastically the emission of greenhouse gases in the electricity production. The second asset of nuclear energy is to be able to meet the growing need for electric power of developing countries. Energy conservation is a good thing to do in western countries but it is far to be sufficient. The success of France's nuclear energy program has enabled the country to be independent from other countries concerning its electricity production, to produce electricity at moderate and stable costs even on the long term, and to develop nuclear industry operators that are world leaders. According to the 28 june 2006 bill that clarifies the management of radioactive wastes, the disposal of high-level radioactive wastes in deep geological layers, will be put into service in 2025. The law has let the possibility of recovering the waste containers during a certain period after their burial if new solutions will have emerged. In the context of an expected renaissance of nuclear energy, the EPR (European Pressurized Reactor) is a valuable offer that must be developed. The construction of an EPR unit on the Flamanville site is necessary to perfect its design. (A.C.)

  14. MIT - Mighty Steps toward Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Settlemyre, Kevin [Sustainable IQ, Inc., Arlington, MA (United States); Bosnic, Zorana [HOK, San Francisco, CA (United States)

    2012-07-01

    Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray and Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.

  15. Energy demand, economic growth, and energy efficiency - the Bakun dam-induced sustainable energy policy revisited

    International Nuclear Information System (INIS)

    Keong, C.Y.

    2005-01-01

    In embarking on a dynamic course of economic development and industrial modernism, Malaysia sees the need to increase its electricity generation capacity through the development of a mega-dam project - the Bakun dam. Although hydroelectricity generation offers one of the benign options in accommodating the increasing energy consumption per capita in Malaysia, it is argued that the construction of Bakun's dam which involves a complete and irreversible destruction of 69,640 ha of old forest ecosystem remains a difficult and uncertain endeavour. It is further argued that apart from mega-dam technology, there are also other means to orchestrate a sustainable energy system in Malaysia. These include the implementation of demand and supply initiatives, such as the deployment of energy saving technology or influencing behavioral change towards a sustainable energy consumption pattern

  16. Multi-Agent Programming Contest 2016 – The Python-DTU Team

    DEFF Research Database (Denmark)

    Villadsen, Jørgen; Halkjær From, Andreas; Jacobi, Salvador

    2018-01-01

    We provide a detailed description of the Python-DTU system, including the overall system design and the tools used in the agent contest.......We provide a detailed description of the Python-DTU system, including the overall system design and the tools used in the agent contest....

  17. Multi-Agent Programming Contest 2011 - The Python-DTU Team

    DEFF Research Database (Denmark)

    Villadsen, Jørgen; Ettienne, Mikko Berggren; Vester, Steen

    We provide a brief description of the Python-DTU system, including the overall design, the tools and the algorithms that we plan to use in the agent contest.......We provide a brief description of the Python-DTU system, including the overall design, the tools and the algorithms that we plan to use in the agent contest....

  18. Multi-Agent Programming Contest 2012 - The Python-DTU Team

    DEFF Research Database (Denmark)

    Villadsen, Jørgen; Jensen, Andreas Schmidt; Ettienne, Mikko Berggren

    We provide a brief description of the Python-DTU system, including the overall design, the tools and the algorithms that we plan to use in the agent contest.......We provide a brief description of the Python-DTU system, including the overall design, the tools and the algorithms that we plan to use in the agent contest....

  19. The Mean Sea Surface DTU10mss - Comparison With Gps And Tide Gauges

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Bondo, Torsten

    2010-01-01

    in most areas of the world confirmed by extensive comparison with GPS leveled tide gauges around Britain and Norway. It is proposed that this model is used as a global vertical reference. This paper briefly outlines the update of the previous DTU model to DTU10MSS and presents comparisons on GPS positions...

  20. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  1. BPS, energy efficiency and renewable energy sources for buildings greening and zero energy cities planning harmony and ethics of sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, Marija S. [University of Belgrade, Serbia and Southeast University (China)

    2011-07-01

    Traditional village houses now use renewable materials and energy sources and this paper presents the intrinsic harmony of these buildings' greening and their sustainability. The paper covers building technical systems, sustainable energy supply, and the importance of renewable raw materials (RMS) for sustainable development. This study investigated the role of building dynamic behavior and optimized energy efficiency in reducing thermal loads significantly. A preliminary design for sustainable energy efficient settlements with net zero energy buildings is proposed and a comprehensive multidisciplinary engineering study was done which identified the technical feasibility of sustainable village energy and water supplies using solar or wind technologies. Overall, through analysis of sustainability definitions and possible ways to achieve sustainability, the study demonstrated that this can only be brought about by interdisciplinary interaction and finding the right balance between materiality and spirituality, science and art, and between technological development and concern for cultural and other human values.

  2. Technical Design of Flexible Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid.......The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  3. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  4. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  5. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  6. Renewable energy: the secure and sustainable option for Pakistan

    International Nuclear Information System (INIS)

    Asif, M.

    2005-01-01

    Pakistan is an energy deficient country that heavily relies on imports of fossil fuels to meet its energy requirements. Pakistan is facing severe energy challenges -indigenous oil and gas reserves are running out, energy demand is rapidly increasing, gap between demand and supply is growing, concerns about secure supply of energy are increasing and fuel cost is rising at an unprecedented rate. For sustainable development, it is crucial to ensure supply of adequate, consistent and secure supply of energy. Renewable energy resources that are sustainable are abundantly available in Pakistan in various forms such as hydel power, solar energy, wind power and biomass. To address the growing energy challenges, it has become inevitable for the country to diversify its energy market through harnessing renewable energy resources. It has been found that hydel power is one of the most significant renewable energy sources that can help Pakistan address the present as well as future energy challenges. It has been identified that solar water heating is another ready to adopt renewable energy technology that alone has the potential to meet as much as 12-15% of the country's entire energy requirements. (author)

  7. A SES (sustainable energy security) index for developing countries

    International Nuclear Information System (INIS)

    Narula, Kapil; Reddy, B. Sudhakara

    2016-01-01

    Measuring the performance of the energy system of a country is a prerequisite for framing good energy polices. However, the existing indices which claim to measure energy security have limited applicability for developing countries. Energy sustainability is also increasingly gaining importance and countries are keen to measure it to tailor their energy policies. Therefore, the concept of SES (sustainable energy security) has been proposed as the goal for a developing country. This paper presents an analytical framework for the assessment of SES of an energy system and the methodology for constructing an SES index. A hierarchical structure has been proposed and the energy system has been divided into 'supply', 'conversion & distribution' and 'demand' sub-systems. Each subsystem is further divided into its components which are evaluated for four dimensions of SES, Availability, Affordability, Efficiency and (Environmental) Acceptability using quantitative metrics. Energy indices are constructed using 'scores' (objective values), and 'weights' (subjective values representing tradeoffs) which are then aggregated, bottom-up, to obtain an overall SES Index for a country. The proposed SES Index is multidimensional, quantitative, modular, systemic and flexible. Such a SES Index can be used to design policy interventions for transitioning to a sustainable and a secure energy future. - Highlights: • A SES (sustainable energy security) index is proposed for developing countries. • A hierarchical structure includes the entire energy system from supply to end use. • The performance of all energy sources, energy carriers and sectors is assessed. • Availability, affordability, efficiency and acceptability dimensions are evaluated. • The SES index is multidimensional, quantitative, modular, systemic and flexible.

  8. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...

  9. AN ECOLOGICAL-ECONOMIC CONVERGENCE: TRANSITION TO SUSTAINABLE ENERGY

    Directory of Open Access Journals (Sweden)

    G. Kharlamova

    2013-08-01

    Full Text Available Sustainable energy development is complex challenge, so only complex decisions and approaches could be possible to implement in the most efficient way. There is still open question – what is the optimal volume of new energy resources using to support sustainable development and environment safety for any state of the world. Article deals with the availability of convergence to serve for the more effective usage of analytic and system approaches for modeling ecological-economic spillovers in the case of transition to sustainable energy. The economic effects of sustainable energy transition are considered. The analysis of dynamic of energy consumption in the scale of different type of resources during 1820-2030 years depicted the situation of complicated analysis of “economy-energy-environment” linkage. It arises the agenda of necessity to implement complex approaches for modeling and forecasting of new energy systems development. Different types of models and techniques to analyze economy-energy systems are listed and compared.

  10. Shaping a sustainable energy future for India: Management challenges

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2010-01-01

    Most of the studies on the Indian energy sector focus on the possible future scenarios of Indian energy system development without considering the management dimension to the problem-how to ensure a smooth transition to reach the desired future state. The purpose of this paper is to highlight some sector management concerns to a sustainable energy future in the country. The paper follows a deductive approach and reviews the present status and possible future energy outlooks from the existing literature. This is followed by a strategy outline to achieve long-term energy sustainability. Management challenges on the way to such a sustainable future are finally presented. The paper finds that the aspiration of becoming an economic powerhouse and the need to eradicate poverty will necessarily mean an increase in energy consumption unless a decoupling of energy and GDP growth is achieved. Consequently, the energy future of the country is eminently unsustainable. A strategy focussing on demand reduction, enhanced access, use of local resources and better management practices is proposed here. However, a sustainable path faces a number of challenges from the management and policy perspectives.

  11. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  12. World in transition 3 towards sustainable energy systems

    CERN Document Server

    2014-01-01

    'The publication of World in Transition: Towards Sustainable Energy Systems is timely indeed. The World Summit on Sustainable Development gave great prominence to this challenge, but failed to agree on a quantitative, time-bound target for the introduction of renewable energy sources. The German Advisory Council on Global Change (WBGU) has now produced a report with a global focus, which is essential in view of the global impacts of climate change. The report provides a convincing long-term analysis, which is also essential. Global energy policies have to take a long-term perspective, over the

  13. Implementation of sustainable energy programs in developing countries

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2001-01-01

    Energy, a major contributor to development, is an essential element for increasing quality of life. During the next decades, the developing world will experience an explosive increase of energy demand, requiring enormous efforts and ingenuity to be fully satisfied. Delays may create public frustration for not achieving paradigm levels of quality of life, giving eventually rise to serious pressures on governments. The concept of sustainable energy options for development cannot be analyzed under the same prism in developed and developing countries. The relative degree of a country development should be introduced when setting up the path to sustainable development. (author)

  14. Sustainable energy systems: Limitations and challenges based on exergy analysis

    OpenAIRE

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This thesis discusses problems and possibilities of more sustainable energy systems first of all for the energy supply of the Netherlands. The “trias energetica” is used to distinguish the steps that have...

  15. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  16. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  17. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  18. A source of energy : sustainable architecture and urbanism

    Energy Technology Data Exchange (ETDEWEB)

    Roestvik, Harald N.

    2011-07-01

    An update on the environmental challenges. Meant to inspire and be a source of energy.Tearing down myths and floodlighting paradoxes. Particularly relevant for students of architecture, architects and concerned citizens. Training tasks, recommendations for further source books and web sites, are included. From the content: Climate change and consensus, Population growth, Food production, The sustainable city, Transportation myths and facts, A mini history of environmental architecture, Architects' approach to sustainable design, The failure of western architects; a case study; China, The passive, zeb and plus energy building, Natural ventilation, Sustainable materials, Plastics in building, Nuclear energy, Solar energy, The grid of the future, Indoor climate and health. The sick building syndrome, Radon, Universal design, Paradoxes, Bullying techniques, Trust yourself, Timing, Which gateway will you choose?, On transience. (au)

  19. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I.

    2011-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings of the d......Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings......”). Consequently, there is an urgent need to develop alternative strategies and policy means in order to promote sustainable development. THE FULL TEXT IS IN RUSSIAN IN THE JOURNAL....

  20. Catalytic Science and Technology in Sustainable Energy II

    DEFF Research Database (Denmark)

    Wang, Yuxin; Xiao, Feng-Shou; Seshan, Kulathu K.

    2017-01-01

    as compared with the 29 contributions published twoyears ago in the previous special issue of Catalysis Today under the same title "Catalytic Science and Technology in Sustainable Energy". We gratefully acknowledge all the authors and reviewers of the manuscripts and the editorial team of Elsevier, without......This special issue of Catalysis Today results from four sessions, under the collective theme "Catalysis in Sustainable Energy", of the 2ndInternational Symposium on Catalytic Science and Technology in Sustainable Energy and Environment, held in Tianjin, China during October 12-14, 2016....... This biennial symposium offers an international forum for discussing and sharing the cutting-edge researches and the most recent breakthroughsin energy and environmental technologies based on catalysis principles. Included in this special issue are 36 invited contributions, which is a noticeable expansion...

  1. Is the German energy transition sustainable?

    International Nuclear Information System (INIS)

    Beeker, Etienne; Godot, Clelia

    2012-09-01

    In 2011, Germany began a radical energy policy, or 'Energiewende', with the aim of completely abandoning nuclear power by 2022 and then achieving an 80-95% reduction in the country's greenhouse gas emissions by 2050. By this date, the country will therefore have to be producing its electricity almost completely without the use of gas, oil and coal, having replaced 80% of these sources with renewable energies. Germany is a rich country with one of the most competitive industries in the world. Its environmental commitments have been clearly stated and Energiewende, which is widely discussed throughout the country, has so far seen strong support from the population, despite the expected increases in the price of electricity which, however, is already almost twice as expensive as in France. Germany therefore seems to hold the winning cards required to successfully implement its energy transition. However, many difficulties need to be overcome if this energy policy is to succeed, such as the development of the national power grid, the cost and financing of the necessary investments, improved electricity storage techniques, the acceptability of the planned increases in the price of electricity or the financial difficulties experienced by solar panel manufacturers as a result of the sharp reduction in subsidies and competition from Asia. In addition, recent political dissent within the government regarding the measures implemented to achieve its stated goal has slowed down the federal decision-making process on this matter. Finally, Germany's decision is not without consequences for its European neighbours. It is upsetting and weakening the supply and demand balance of the European energy system and putting some operators in a difficult position. The eyes of all energy world observers are therefore riveted on the changes taking place in Germany, because they will have significant consequences for the entire European Union, and even beyond. Contents: - The ambitious goal

  2. World Sustainable Energy Days Next 2014

    CERN Document Server

    Egger, Christiane

    2015-01-01

    These conference proceedings contain contributions to one of Europe’s largest annual conferences on energy efficiency and renewable energy. From two main fields – biomass and energy efficiency in buildings – contributions offer an insight into the research work and the scientific findings and developments of young researchers from all over the world. The papers were selected by a high-level scientific committee for oral presentation. They also communicate results, trends and opinions that will concern and influence the world’s energy experts and policy makers over the next decades. The conference was held from 26-27 February 2014. The conference The conference is organized by the Energy Agency of Upper Austria (OÖ Energiesparverband) and held in Wels annually in February or March. It attracts more than 700 experts from over 50 countries every year. The Editors Christiane Egger is the deputy managing director of the OÖ Energiesparverband and the Manager of the Ökoenergie-Cluster, a network of 160 co...

  3. Complex assessment of urban housing energy sustainability

    Science.gov (United States)

    Popova, Olga; Glebova, Julia; Karakozova, Irina

    2018-03-01

    The article presents the results of a complex experimental-analytical research of residential development energy parameters - survey of construction sites and determination of calculated energy parameters (resistance to heat transfer) considering their technical condition. The authors suggest a methodology for assessing residential development energy parameters on the basis of construction project's structural analysis with the use of advanced intelligent collection systems, processing (self-organizing maps - SOM) and data visualization (geo-informational systems - GIS). SOM clustering permitted to divide the housing stock (on the example of Arkhangelsk city) into groups with similar technical-operational and energy parameters. It is also possible to measure energy parameters of construction project of each cluster by comparing them with reference (normative) measures and also with each other. The authors propose mechanisms for increasing the area's energy stability level by implementing a set of reproduction activities for residential development of various groups. The analysis showed that modern multilevel and high-rise construction buildings have the least heat losses. At present, however, ow-rise wood buildings is the dominant styles of buildings of Arkhangelsk city. Data visualisation on the created heat map showed that such housing stock covers the largest urban area. The development strategies for depressed areas is in a high-rise building, which show the economic, social and environmental benefits of upward growth of the city. An urban regeneration programme for severely rundown urban housing estates is in a high-rise construction building, which show the economic, social and environmental benefits of upward growth of the city.

  4. Can Future Energy Needs be Met Sustainably?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    After briefly reviewing trends in energy demand, supply and efficiency, I will focus on the potential and outlook for the major low carbon energy sources - in order of decreasing current importance: bioenergy, hydro, nuclear, wind and solar. Together, they are sufficiently abundant to replace fossil fuels, which would presumably happen if they were economically competitive. I will discuss how close low carbon sources are to being competitive (which in the case of wind and solar depends on the cost of integrating large-scale intermittent supply), and the tech...

  5. Peat - The sustainable energy resource in Finland

    International Nuclear Information System (INIS)

    1994-01-01

    In Finland the level of energy consumption for heating, transportation and industry is higher than in many other European countries. This is due to the northern position of the country and also to the fact that Finland is sparsely inhabited. Peat is one of the Finnish domestic energy resources. This brochure provides a compact package of background information on fuel peat. All the data presented concerning the production and use of peat, employment, investments in the peat industry, emission levels resulting from the production and use of peat, new combustion technologies and peatland resources, have been collected from documents and other sources that are accessible to the general public

  6. Measuring the sustainability of energy systems

    International Nuclear Information System (INIS)

    Kroger, W.

    2001-01-01

    Today's energy policies are characterised by a contradictory position. In theory, there is a clear will to respond to emerging threats, e.g. evidence of man-made climate change, irresponsible use of limited resources, geopolitical discrepancies with unbalanced satisfaction of vital needs. In practice, decision making is dominated by economic competitiveness and maximization of short-term profit. The use of fossil fuels is unbroken and still increasing. A recent Green Paper concluded that the EU countries have to reduce growing structural weaknesses by limiting dependence on fuel imports and to give priority to energy systems that do not emit global warming gases. (authors)

  7. Sustainable energy developments in Europe and North America

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Europe and North America account for 70% of world energy consumption; 61% of which is fossil fuels. Energy trends and patterns in this region, if pursued, would have a large impact on region- and world-wide energy and ecosystems. This report addresses the issues of whether projected trends and supply structures would be 'sustainable' i.e. meet the needs of the present without compromising the ability of future generations to meet their own needs; what adaptations are warranted; and what role could and should be played by regional energy and environmental co-operation: including through the United Nations Economic Commission for Europe. The report is divided into three parts. Part 1 studies the interrelationships between environmental and energy policies in Europe and North America until 2010 and beyond. Part II contains research notes on CO{sub 2} concentration and energy scenarios; investment requirements of the energy supply industries in the ERE region for 1980-2000; energy technologies for the first decades of the 21st century. Scope and conditions for enhancing energy efficiency in the ERE region; CO{sub 2} and climate variation and its impact on energy policy in the USSR and European CMEA countries; the role of new and renewable sources of energy; projected energy developments in the ERE region until 2010, and pollution: synopsis of various international studies on the sustainability of energy developments. Part III describes the energy program of the UN-ECE.

  8. Operationalizing Sustainable Development Suncor Energy Inc: A critical case

    Science.gov (United States)

    Fergus, Andrew

    The concept of Sustainable Development is often understood as a framework within which organizations are able to move forward in a successful and beneficial manner. However, it is also seen as an ambiguous notion with little substance beyond a hopeful dialogue. If we are to base organizational action upon the concepts of Sustainable Development, it is vital that we comprehend the implications of how the concept is understood at a behavioral level. Industry leaders, competitors, shareholders, and stakeholders recognize Suncor Energy Inc as a leading organization within the Oil and Gas energy field. In particular it has a reputation for proactive thinking and action within the areas of environmental and social responsibility. Through attempting to integrate the ideas of Sustainable Development at a foundational level into the strategic plan, the management of Suncor Energy Inc has committed the organization to be a sustainable energy company. To achieve this vision the organization faces the challenge of converting strategic goals into operational behaviors, a process critical for a successful future. This research focuses on understanding the issues found with this conversion process. Through exploring a critical case, this research illuminates the reality of a best-case scenario. The findings thus have implications for both Suncor Energy Inc and more importantly all other organizations attempting to move in a Sustainable Development direction.

  9. Sustainability and Energy Efficiency in the Automotive Sector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

  10. Renewable energies and the challenge for a sustainable development

    International Nuclear Information System (INIS)

    2002-01-01

    After a presentation of some basic definitions and data (locations, assessment, utilisation), this collective report proposes a first set of contributions about perspectives for renewable energies: their role in middle- and long-term world scenarios, their relationship with greenhouse effect, the relentless technological pursuit through the example of hydrogen. A second set of contributions deals with the relationship between renewable energies and sustainable development: in northern countries (an environmental responsibility and a society issue), in southern countries (the challenge of access to energy), the promotion of renewable energies in the North-South cooperation, the chaotic decentralized electrification program in South Africa, the relationship between energy and struggle against poverty, the search for instruments to stimulate renewable electricity development, the sociological constraints to renewable energy development, the sustainable development at the service of new industries in countries of the North

  11. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  12. Energy sustainability performance of the regional economy

    Directory of Open Access Journals (Sweden)

    N. I. Danilov

    2005-03-01

    Full Text Available The results of the study of the dynamics of energy intensity of gross regional product of the Sverdlovsk region for the period 1996 - 2003 years. and projections for the period up to 2015. The principal possibility of growth performance of the regional economy, without a significant increase in the consumption of primary fuel.

  13. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  14. Sustainable urban regeneration based on energy balance

    NARCIS (Netherlands)

    Van Timmeren, A.; Zwetsloot, J.; Brezet, H.; Silvester, S.

    2012-01-01

    In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming

  15. CDIO Projects in Civil Engineering Study Program at DTU

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Simonsen, Claus; Christensen, Jørgen Erik

    2011-01-01

    In 2008 all Bachelor of engineering study programs at the Technical University of Denmark (DTU) have been adopted to the “Conceive – Design – Implement – Operate” approach. As part of the necessary changes it was decided that all seven study programs should have a cross disciplinary project...... or a design build project on each of the first four semesters. In this paper the four projects in the civil engineering study program are described along with a brief description of the entire study program. The aim is to provide additional information and documentation to accompany an exposition where...... students present their projects. Learning outcomes, training and assessment of personal, professional and social engineering skills are described from a project point of view. Progression of engineering skills is discussed from a study program perspective. The interrelation between the various elements...

  16. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    OpenAIRE

    Despoina E. Keramioti; Christos A. Frangopoulos

    2010-01-01

    A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat) of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three syste...

  17. Policy and advice for a sustainable energy future. The Netherlands

    International Nuclear Information System (INIS)

    Van der Werff, T.T.

    2000-01-01

    The VROM Council offered to host a workshop (27-28 October 2000) for a group of European environmental advisory bodies. This meeting is meant as a kick-off for a working group on energy and climate change. The workshop may help to develop standpoints of the advisory bodies on the basis of shared knowledge of problem perceptions and proposed solutions in other EU countries. This may increase the common denominator and thus promote common EU policies. The proposed title for this workshop is: Reconciling a sustainable energy future with the liberalisation and privatisation of the European energy market One of the participating councils from each country is expected to draft a report on the policies directed at a sustainable energy future in their respective countries. These reports should include the following elements of the national policies and relevant proposals of the councils: a brief description of the current energy supply and a lookout on sustainable development in the energy sector; .a description of the liberalisation and privatisation of the energy market, including the institutional reform (government involvement), juridical changes and realisation path and, if applicable, how the share of non fossil energy generation is enlarged; a description of how in the future a sustainable energy supply will be promoted, including (options for) policy strategies, measures and instruments; and a description of the European Union (EU) policy that is conditional for the realisation of these national policies. The VROM Council has asked CE to produce the report for the Netherlands. The report is organised as follows. Chapter 2 gives a brief description of the current Dutch energy and CO2 characteristics. Chapter 3 gives an overview of Dutch energy policy and chapter 4 an overview of Dutch climate policy. The chapters 5-7 give the views of the various councils on energy and climate policy (AER, VROMRaad, and SER). The final chapter, chapter 8, gives some suggestions for

  18. Energy politics: Can we achieve a sustainable energy path?

    International Nuclear Information System (INIS)

    Nicklas, M.

    1993-01-01

    The political pressures affecting global energy choices are numerous, vary by country, and are significantly changing. In evaluating our energy future, one cannot escape recognition of three dominant areas where reality more than politics will dictate needs and directions. Within the next decade the magnitude and importance of population growth, energy resource availability, and the environmental and societal costs of energy will gradually increase and dominate global energy decisionmaking. This paper will discuss these major forces, how they have influenced past actions, and how they will shape our energy future

  19. Policy Means for Sustainable Energy Scenarios

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nørgaard, Jørgen

    2011-01-01

    Consequences of global warming are appearing much faster than assumed just a few years ago and irreversible ”tipping points” are few years ahead (IPCC, 2007; Hansen et al., 2008; Kopp et al., 2009). Despite long and tedious preparations for COP15 in December 2009 the final result (Copenhagen Accord......, 2009) lacked sufficient concrete commitments for reduction of greenhouse gases (GHGs) after 2012 when the Kyoto Protocol expires. Human activities in their present form are strongly dependent on the supply of energy. A dominant part of the global energy supply is based on fossil fuels and a dominant...... part of the climate change is due to emission of CO2 from the use of fossil fuels. For simplicity, this paper focuses on CO2 emission from fossil fuels, but CO2 from deforestation as well as methane (CH4), laughing gas (N2O) and a number of industrial greenhouse gases should be included in a more...

  20. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  1. User innovation in sustainable home energy technologies

    International Nuclear Information System (INIS)

    Hyysalo, Sampsa; Juntunen, Jouni K.; Freeman, Stephanie

    2013-01-01

    The new millennium has marked an increasing interest in citizens as energy end-users. While much hope has been placed on more active energy users, it has remained less clear what citizens can and are willing to do. We charted user inventions in heat pump and wood pellet burning systems in Finland in years 2005–2012. In total we found 192 inventions or modifications that improved either the efficiency, suitability, usability, maintenance or price of the heat pump or pellet systems, as evaluated by domain experts. Our analysis clarifies that users are able to successfully modify, improve and redesign next to all subsystems in these technologies. It appears that supplier models do not cater sufficiently for the variation in users' homes, which leaves unexplored design space for users to focus on. The inventive users can speed up the development and proliferation of distributed renewable energy technologies both through their alternative designs as well as through the advanced peer support they provide in popular user run Internet forums related to the purchase, use and maintenance of these technologies. There are several implications for how such users can be of benefit to energy and climate policy as well as how to support them. - Highlights: ► We clarify how citizen users are able to invent in home heating systems. ► We researched inventions that users did to heat pump and wood pellet burning systems. ► During the years 2005–2012 there were 192 inventions by users in Finland alone. ► Users were able to invent in practically all subsystems of these technologies. ► Users’ ability merits policy attention and can lead to new types of policy action

  2. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Yongping; Zhao Shoufeng; Zheng Yuhui

    2005-01-01

    The status and role of nuclear energy in the sustainable energy development strategy in China are discussed in this research report. Specifically, the role of nuclear energy in meeting the requirements of energy and electricity supply, environment protection and greenhouse gas (GHG) emission-reduction is focused on. The report is mainly composed of three component parts. The serious situation and challenges concerning the national energy security and energy sustainable development, and major tasks proposed to carry out the strategy of energy sustainable development are expounded in the first part. In the second part, the position and role of nuclear energy in China are elaborated and analyzed in detail. Firstly, it is indicated that the development of nuclear energy is the objective requirement for optimizing national energy structure. From the viewpoint of climate and environment protection, energy mix is required to transit from conventional fossil fuels to clean and high-quality energy sources. The potential role of nuclear energy in energy structure optimization in China is compared with that of hydro and other renewable energy sources. Secondly, it is proposed that the development of nuclear energy is the important security option for safely supplying the national energy and electricity in the future, mainly from the point of nuclear power providing stable and reliable power supply, relieving the burden of coal exploitation and transportation and reducing the risk of energy security caused by dependence on oil and natural gas. Thirdly, it is elaborated that the development of nuclear energy is the inevitable selection for carrying out the national energy and electricity sustainable development. It is given further details that nuclear energy is a clean and economical energy option, a preference coinciding with the principles of the circular economy, a feasible technical choice to greatly reduce emission of greenhouse gases, a selection contributing to

  3. Energy [R]evolution 2010-a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Pregger, T.; Simon, S.; Naegler, T.; Graus, W.H.J.; Lins, C.

    2011-01-01

    The Energy [R]evolution 2010 scenario is an update of the Energy [R]evolution scenarios published in 2007 and 2008. It takes up recent trends in global energy demand and production and analyses to which extent this affects chances for achieving climate protection targets. The main target is to

  4. Energy [r]evolution - a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Muth, J.; Sawyer, S.; Pregger, T.; Simon, S.; Naegler, T.; O'Sullivan, M.; Schmid, S; Pagenkopf, J.; Frieske, B.; Graus, W.H.J.; Kermeli, K.; Zittel, W.; Rutovitz, J.; Harris, S.; Ackermann, T.; Ruwahata, R.; Martense, N.

    2012-01-01

    Energy [R]evolution 2012 provides a consistent fundamental pathway for how to protect our climate: getting the world from where we are now to where we need to be by phasing out fossil fuels and cutting CO2 emissions while ensuring energy security.The Energy [R]evolution Scenario has become a well

  5. Sustainable business models for wind and solar energy in Romania

    Directory of Open Access Journals (Sweden)

    Nichifor Maria Alexandra

    2015-06-01

    Full Text Available Renewable energy has become a crucial element for the business environment as the need for new energy resources and the degree of climate change are increasing. As developed economies strive towards greater progress, sustainable business models are of the essence in order to maintain a balance between the triple bottom line: people, planet and profit. In recent years, European Union countries have installed important capacities of renewable energy, especially wind and solar energy to achieve this purpose. The objective of this article is to make a comparative study between the current sustainable business models implemented in companies that are active in the wind and solar energy sector in Romania. Both sectors underwent tremendous changes in the last two years due to changing support schemes which have had a significant influence on the mechanism of the renewable energy market, as well as on its development. Using the classical Delphi method, based on questionnaires and interviews with experts in the fields of wind and solar energy, this paper offers an overview of the sustainable business models of wind and solar energy companies, both sectors opting for the alternative of selling electricity to trading companies as a main source of revenue until 2013 and as the main future trend until 2020. Furthermore, the participating wind energy companies noted a pessimistic outlook of future investments due to legal instability that made them to reduce their projects in comparison to PV investments, which are expected to continue. The subject of the article is of interest to scientific literature because sustainable business models in wind and photovoltaic energy have been scarcely researched in previous articles and are essential in understanding the activity of the companies in these two fields of renewable energy.

  6. Sustainable energy security for India - challenges and options

    International Nuclear Information System (INIS)

    Kakodkar, Anil

    2012-01-01

    Dr Anil Kakodkar presented a sort of broad philosophical overview of the energy issue, that in the context of what one may call as our sustainable future and not just in the context of the crisis as we see it today. This is because while we see some crisis on energy scene today, if we don't act in a proactive and timely manner, this crisis is likely to get much bigger than the one that we face today. Let us begin with a vision of sustainable India, India where, hopefully, the population will stabilize, an India where there will be no additional energy requirement in per capita terms, and where we can be assured of sustaining such a situation virtually for all time to come

  7. Vision 2050: sustainable energy supply and use in Switzerland

    International Nuclear Information System (INIS)

    Berg, M.; Brodmann, U.; Ott, W.

    2003-01-01

    This executive summary for the Swiss Federal Office of Energy SFOE summarises the results of a study carried out on the topic of how long-term strategies for Swiss energy policy. can be developed. A proposed series of studies is examined that is to show how Switzerland can find the way to a sustainable energy supplies and their sustainable use by the year 2050. Research areas are defined, particularly in the technical, behavioural and political sectors. Technical potentials in several areas, strategies and instruments are looked at, as is the social acceptance of proposed measures. Also, models for the analysis of economic effects are examined. Sustainability indicators and targets are reviewed, as are the benefits of developing strategies as early as possible. The report is completed with recommendations for further action

  8. Solar energy solutions for an environmentally sustainable world

    International Nuclear Information System (INIS)

    Morozov, A.I.; Pustovitov, V.D.

    1992-01-01

    The United Nations Conference of Environment and Development has focused the world's attention on the complex relationship between the environment and economic development. The essence of this relationship, and the emerging theme of UNCED, is the concept of sustainability. Sustainable economic development improves quality of life and raises standards of living by using the Earth's resources in a way that ensures that they are continually renewed, and will continue to support future generations. This is the subject of this report. While energy resources are essential to economic development, the authors current patterns of energy use are not sustainable. Reliance on fossil fuels, nuclear energy, and large-scale hydroelectric projects has contributed to serious environmental problems, including atmospheric pollution, loss of land productivity, loss of biological diversity, ocean and fresh water pollution, and hazardous waste generation. Thus, if they are to achieve sustainability in their patterns of energy consumption, it is imperative that they bring about a rapid and widespread transition to the utilization of environmentally sound energy sources and technologies. Solar energy technologies are environmentally sound, socially beneficial, and economically practical. They have been proven in a wide variety of applications around the world. The barriers to the widespread implementation of solar technologies are no longer technical, but rather social, economic, and political. These barriers can and must be removed

  9. Energy [R]evolution 2008-a sustainable world energy perspective

    International Nuclear Information System (INIS)

    Krewitt, Wolfram; Teske, Sven; Simon, Sonja; Pregger, Thomas; Graus, Wina; Blomen, Eliane; Schmid, Stephan; Schaefer, Oliver

    2009-01-01

    The Energy [R]evolution 2008 scenario is an update of the Energy [R]evolution scenario published in 2007. It takes up recent trends in global socio-economic developments, and analyses to which extent they affect chances for achieving global climate protection targets. The main target is to reduce global CO 2 emissions to 10 Gt per year in 2050, thus limiting global average temperature increase to 2 deg. C and preventing dangerous anthropogenic interference with the climate system. A review of sector and region specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding energy supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The Energy [R]evolution scenario shows that renewable energy can provide more than half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO 2 emissions, whilst at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%.

  10. Nuclear energy: obscure, dangerous and not sustainable

    International Nuclear Information System (INIS)

    Bravo Vila, C.

    2008-01-01

    Nuclear energy has become a true economic, technological, environmental and social failure. It has already caused serious problems to the public health and the environment, such as nuclear accidents, like the catastrophe of Chernobyl, the generation of radioactive wastes with which is not known what to do. The nuclear industry (protected by the regulator body, the Nuclear Safety Council, whose real and effective independence is being pursued by means of legal reforms) takes refuge in the secrecy to try to avoid that citizens could be aware of its safety problems, its negative environmental impact and its unsubstantiality. (Author)

  11. Sustainable Biosolids/Renewable Energy Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Steven D. [City of St. Petersburg, FL (United States); Smith, Arenee Fanchon Teena [City of St. Petersburg, FL (United States)

    2016-09-01

    In keeping with its designation as being Florida’s first “Green City”, the City's primary purpose of this project is to process and dispose of biosolids and yard wastes in a manner that results in the production of thermal, electrical, gas, or some other form of energy. This project was completed in two budget periods. Budget period one of the project consisted of a feasibility evaluation to determine potential applicable technologies, budget period two consisted of project design.

  12. City-integrated renewable energy for urban sustainability.

    Science.gov (United States)

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.

  13. Sustainable Nuclear Energy for the 21st Century

    International Nuclear Information System (INIS)

    2010-09-01

    Concerns over energy resource availability, energy security and climate change suggest an important role for nuclear power in supplying sustainable energy in the 21st century. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000 by a resolution of the IAEA General Conference to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. It is a mechanism for IAEA Member States that have joined the project as INPRO members to collaborate on topics of joint interest. By 2010, INPRO membership had grown to 30 countries and the European Commission. The results of INPRO's activities, however, are made available to all IAEA Member States

  14. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  15. Cuba: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    2008-08-01

    This publication is the product of an international project led by the IAEA to develop and test a suitable approach for the comprehensive assessment of national energy systems within a sustainable development context. This country profile on Cuba is the result of an intensive effort conducted by Cuban experts, primarily from the Centro de Gestion de la Informacion y Desarrollo de la Energia (CUBAENERGIA) with the collaboration of experts from energy related institutions in the country, jointly with the IAEA and the United Nations Department of Economic and Social Affairs (UNDESA). The framework, approach and guidelines set forth in this study comprise one set of effective mechanisms for incorporating the concepts of sustainable development into practical implementation strategies. The assessment is specifically directed at one of the most important sectors affecting economic and social development - energy. It is part of an initiative, officially registered as a Partnership with the United Nations Commission on Sustainable Development, that contributes to Agenda 21, the Johannesburg Plan of Implementation and the goals and objectives of the United Nations Millennium Declaration. The study is, to a certain extent, a continuation and implementation at the national level of two worldwide studies exploring the ties between energy and sustainable development: the World Energy Assessment undertaken by the United Nations Development Programme (UNDP), UNDESA and the World Energy Council; and the Energy Indicators for Sustainable Development undertaken by the IAEA, the International Energy Agency, UNDESA, Eurostat and the European Environment Agency. No study of a national energy system within the context of sustainable development can be final and definitive. To be useful, the assessment process must be adaptable over time to fit ever-changing conditions, priorities and national sustainable energy development criteria. This publication proposes one such approach for

  16. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  17. Energy indicators for sustainable development: Guidelines and methodologies

    International Nuclear Information System (INIS)

    2008-01-01

    This publication is the product of an international initiative to define a set of Energy Indicators for Sustainable Development (EISD) and corresponding methodologies and guidelines. The successful completion of this work is the result of an intensive effort led by the International Atomic Energy Agency (IAEA) in cooperation with the United Nations Department of Economic and Social Affairs (UNDESA), the International Energy Agency (IEA), Eurostat and the European Environment Agency (EEA). The thematic framework, guidelines, methodology sheets and energy indicators set out in this publication reflect the expertise of these various agencies, recognized worldwide as leaders in energy and environmental statistics and analysis. While each agency has an active indicator programme, one goal of this joint endeavour has been to provide users with a consensus by leading experts on definitions, guidelines and methodologies for the development and worldwide use of a single set of energy indicators. No set of energy indicators can be final and definitive. To be useful, indicators must evolve over time to fit country-specific conditions, priorities and capabilities. The purpose of this publication is to present one set of EISD for consideration and use, particularly at the national level, and to serve as a starting point in the development of a more comprehensive and universally accepted set of energy indicators relevant to sustainable development. It is hoped that countries will use the EISD to assess their energy systems and to track their progress towards nationally defined sustainable development goals and objectives. It is also hoped that users of the information presented in this publication will contribute to refinements of energy indicators for sustainable development by adding their own unique perspectives to what is presented herein

  18. Energy indicators for sustainable development: Guidelines and methodologies

    International Nuclear Information System (INIS)

    2005-04-01

    This publication is the product of an international initiative to define a set of Energy Indicators for Sustainable Development (EISD) and corresponding methodologies and guidelines. The successful completion of this work is the result of an intensive effort led by the International Atomic Energy Agency (IAEA) in cooperation with the United Nations Department of Economic and Social Affairs (UNDESA), the International Energy Agency (IEA), Eurostat and the European Environment Agency (EEA). The thematic framework, guidelines, methodology sheets and energy indicators set out in this publication reflect the expertise of these various agencies, recognized worldwide as leaders in energy and environmental statistics and analysis. While each agency has an active indicator programme, one goal of this joint endeavour has been to provide users with a consensus by leading experts on definitions, guidelines and methodologies for the development and worldwide use of a single set of energy indicators. No set of energy indicators can be final and definitive. To be useful, indicators must evolve over time to fit country-specific conditions, priorities and capabilities. The purpose of this publication is to present one set of EISD for consideration and use, particularly at the national level, and to serve as a starting point in the development of a more comprehensive and universally accepted set of energy indicators relevant to sustainable development. It is hoped that countries will use the EISD to assess their energy systems and to track their progress towards nationally defined sustainable development goals and objectives. It is also hoped that users of the information presented in this publication will contribute to refinements of energy indicators for sustainable development by adding their own unique perspectives to what is presented herein

  19. Affordability for sustainable energy development products

    International Nuclear Information System (INIS)

    Riley, Paul H.

    2014-01-01

    Highlights: • Clean cookstoves that also generate electricity improve affordability. • Excel spreadsheet model to assist stakeholders to choose optimum technology. • Presents views for each stakeholder villager, village and country. • By adding certain capital costs, affordability and sustainability are improved. • Affordability is highly dependent on carbon credits and social understandings. - Abstract: Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions. Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target. Thermo-electric is currently the only

  20. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  1. Energy in Sweden. Leading the way to a sustainable future?

    International Nuclear Information System (INIS)

    Dalenback, J.-O.

    2002-01-01

    This article traces the history of Sweden's energy policy from its reliance on fossil fuel imports in 1970 to the shift towards sustainable energy systems. The levying of a general energy tax and carbon dioxide taxation, and Sweden's large reduction in emissions are reported. Energy conservation, energy efficiency standards, the revision of building codes for energy efficiency, and innovative energy efficiency programmes are discussed. Renewable energy technologies are examined covering hydropower and wind power plants in Sweden, the use of biofuels, the development of new heat pumps, and solar heaters. The suggested long-term goal of 50% reduction in carbon dioxide emissions from 1990 to 2050 is considered. Swedish taxes on fuel for heat generation (1999) are listed

  2. Sustainability: criteria and indicators for the energy area

    International Nuclear Information System (INIS)

    Walter, F.; Gubler, F.; Brodmann, U.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the concept of sustainability with reference to the energy area. The importance of energy topics in the fundamental ideas behind sustainability - ecological compatibility, economic efficiency and social fairness - is discussed. The methods used to define the criteria and indicators for sustainability are discussed on the basis of existing systems. >From these, criteria and indicators are proposed for the energy area, including indicators for the influence of energy on the environment, economy and society, activity-indicators and indicators for energy efficiency and politics. The system boundaries for the indicators are discussed, as are grey energy and other 'grey' effects in the environmental, economic and social areas. The various criteria, indicators and the effort needed to collect data on them are presented in table form. The report is completed with a discussion of recommendations on what is still to be done in the area, how the results of the study can be used and what actions are still to be taken

  3. The tax credit devoted to the sustainable development (energy conservation, renewable energies). DGEMP-DIDEME

    International Nuclear Information System (INIS)

    2006-01-01

    The finances law of 2005 created a tax credit devoted to the sustainable development and the energy conservation. This tax credit aims to favor the diffusion of the sustainable energy equipments to reach the french objectives of energy conservation and renewable energies. All the concerned equipment for the individual house are detailed: heating systems, insulating materials, heating control appliances, appliances using the renewable energies, the heat pumps, equipment for the connection to heat networks, supplying by renewable energies or cogeneration. (A.L.B.)

  4. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  5. Choices for sustainability. Energy on the threshold of transition

    International Nuclear Information System (INIS)

    2005-06-01

    An overview is given of changes in the energy supply in the Netherlands up to 2050 and how the Dutch government can contribute to a cleaner environment and security of supply. Attention is paid to climatic change, the availability of fossil fuels, constraints to the use of renewable energy and the role of climate-neutral energy sources in the transition process. Finally, the chances for the Dutch economy in the transition towards a sustainable energy economy are discussed. The study is drafted by the political party CDA (christian-democratic party) [nl

  6. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Brian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elchinger, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardison, R. [Winrock International, Little Rock, AR (United States); Karsiwulan, D. [Winrock International, Little Rock, AR (United States); Castermans, B. [Winrock International, Little Rock, AR (United States)

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  7. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  8. Energy, sustainability and the environment technology, incentives, behavior

    CERN Document Server

    2011-01-01

    The complexity of carbon reduction and economic sustainability is significantly complicated by competing aspects of socioeconomic practices as well as legislative, regulatory, and scientific requirements and protocols. An easy to read and understand guide, Sioshansi, along with an international group of contributors, moves through the maze of carbon reduction methods and technologies, providing steps and insights to meet carbon reduction requirements and maintaining the health and welfare of the firm. The book's three part treatment is based on a clear and rigorous exposition of a wide range of options to reduce the carbon footprint Part 1 of the book, Challenge of Sustainability, examines the fundamental drivers of energy demand - economic growth, the need for basic energy services, and the interdependence of economic, political, environmental, social, equity, legacy and policy issues. Part 2 of the book, Technological Solutions, examines how energy can be used to support basic energy service needs of homes...

  9. Low Energy Flow - The Path Towards Sustainable Development

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1996-01-01

    The global economy will in the near future have to adapt to its dependence on the limited ecological system. Only renewable energy sources can provide a truly sustainable supply of energy. In an environmental ranking of the various energy options, it is pointed out, however, that also the use...... prevailing economic growth practice. We have to face this challenge, if we want to secure a decent material well-being for all people on earth, also the generations to come. Countries with econmies in a transition do in fact have some advantages, if aiming directly at a sustainable economy....... energy consumption by a factor three to five. But it is stressed, that these efficiency gains can easily be eaten up by decline in efficiencies in the ways we conduct our lifestyles and run our economies. To apply such an overall effciency view, however, turns out to pose a threat to the presently...

  10. Energy Scenarios For A Sustainable Future

    Directory of Open Access Journals (Sweden)

    Ion Chiuta

    2008-05-01

    Full Text Available It is clear that the future is not simplysomething already predetermined that we must acceptblindly: rather, it is open and to a large extent determinedby the course of actions we decide to take. For thisreason, we need to look at the future and its uncertaintiesin an articulated fashion, developing specific tools toconsider both how the future might unfold if we do notact and how we might like the future to unfold if actionwere to be taken.As demonstrated on valuable intellectual exercise forlooking into an uncertain future involves the developmentof “scenarios” intended as logical and plausibleconjectures about how fundamental drivers will affectglobal societies, economics, resource use and theenvironment. The literature review shows a multiplicity ofscenarios, conducted as different scales ranging from thenational to the global scale, with different time horizonsand with a focus on different strategic issues.Exploratory scenarios help prepare for events that,without representing a straight-line continuation of pasttrends, are plausible and entirely possible. Exploratoryscenarios can help a lot to accelerate and calibrate theresponse to new developments, as well as providing astrategic framework technology development policy.Normative scenario has, as its goal, the evolution of adesirable future rather than a future inexorably imposedupon us by the inertia of system. Building a normativescenario requires the creators to clearly define thedesirable characteristics of their future, and to expressthis future in terms of measurable targets.The use of such a scenario process lies as much in theissues it requires us to comfort as the precise details isgenerates. The future will not look exactly like the oneenvisioned: other priorities will intercede and nationalconditions and circumstances will dictate the specifics ofthe energy policies that may be adopted. But such aprocess of interacting around scenarios can providevaluable guidance as to

  11. Ecological economics, energy, and sustainable development

    International Nuclear Information System (INIS)

    Peet, J.

    1991-01-01

    Conventional techniques of economics, in different countries, do not normally take proper account of increases in the cost of energy (especially oil) that are expected in the next twenty years, or the rapidly declining ability of the environment to absorb wastes and pollutants, especially those resulting from the use of fossil fuels. Unless these factors are included in political-economic decision-making, and paths for future development adjusted to take account of them, many future development options will be severely damaged. In this paper, it is argued that new decision-making principles are urgently needed, in which societies accept that the physics of the environment are dominant, and the desires of people are subject to physical constraints. When future development options are considered, there is therefore a hierarchy of decision-making. Primary decisions depend upon the physics and ecology of the environment, of development, and of resource utilization. These have to be made before secondary decisions which are mainly ethical, and depend upon social and community values. These are best expressed by people, through adult education and the political process. Only then is it possible to make tertiary decisions, which relate to the allocation of resources. These decisions will depend heavily upon the use of economic tools. Several approaches have been proposed for improving political-economic decision-making. Some concentrate on modifications to markets, so they can incorporate ''externalities''. In other approaches, physical understandings are introduced into policy analyses, in order to indicate the constraints that limit development options. Some important techniques are reviewed, and suggestions are made about better methods of decision-making in the future. (author)

  12. Maximal sustained levels of energy expenditure in humans during exercise.

    Science.gov (United States)

    Cooper, Jamie A; Nguyen, David D; Ruby, Brent C; Schoeller, Dale A

    2011-12-01

    Migrating birds have been able to sustain an energy expenditure (EE) that is five times their basal metabolic rate. Although humans can readily reach these levels, it is not yet clear what levels can be sustained for several days. The study's purposes were 1) to determine the upper limits of human EE and whether or not those levels can be sustained without inducing catabolism of body tissues and 2) to determine whether initial body weight is related to the levels that can be sustained. We compiled data on documented EE as measured by doubly labeled water during high levels of physical activity (minimum of five consecutive days). We calculated the physical activity level (PAL) of each individual studied (PAL = total EE / basal metabolic rate) from the published data. Correlations were run to examine the relationship between initial body weight and body weight lost with both total EE and PAL. The uppermost limit of EE was a peak PAL of 6.94 that was sustained for 10 consecutive days of a 95-d race. Only two studies reported PALs above 5.0; however, significant decreases in body mass were found in each study (0.45-1.39 kg·wk(-1) of weight loss). To test whether initial weight affects the ability to sustain high PALs, we found a significant positive correlation between TEE and initial body weight (r = 0.46, P body weight (r = 0.27, not statistically significant). Some elite humans are able to sustain PALs above 5.0 for a minimum of 10 d. Although significant decreases in body weight occur at this level, catabolism of body tissue may be preventable in situations with proper energy intake. Further, initial body weight does not seem to affect the sustainability of PALs.

  13. Pharmacological preconditioning with diazoxide slows energy metabolism during sustained ischemia

    OpenAIRE

    Schwartz, Lisa M; Reimer, Keith A; Crago, Mark S; Jennings, Robert B

    2007-01-01

    Ischemic preconditioning (PC) is associated with slower destruction of the adenine nucleotide pool (∑Ad) and slower rate of anaerobic glycolysis during ischemic stress. These changes are concordant with the preconditioned state, supporting an essential role of lowered energy demand in the cardioprotective mechanism of PC. Although pharmacological PC induced by the activation of mitochondrial KATP channels also limits infarct size, its effect on energy metabolism during sustained ischemia is u...

  14. Potential for sustainable energy with biogas from sewage purification

    International Nuclear Information System (INIS)

    Coenen, J.; Van Gastel, M.; De Jong, K.

    2005-04-01

    Insight is given into the possibility to produce biogas from sewage purification plants in the Netherlands. Attention is paid to the estimated potential of sustainable energy from biogas, the economic effectiveness of several scenarios, the critical success factors and bottlenecks [nl

  15. Local Sustainable Energy Assessment of Uttarakhand and West Bengal

    DEFF Research Database (Denmark)

    Andersen, Jan; Lund, Søren

    The publication reports a sustainable energy assessment at the local project site of the HighARCS project in Nainital, Uttarakhand and Buxa, West Bengal, India. The assessment has been made as a contribution to the elaboration of biodiversity conservation and livelihoods improvement action plans....

  16. Sustainable energy systems : Limitations and challenges based on exergy analysis

    NARCIS (Netherlands)

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This

  17. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...

  18. GEA, 2012 : Global Energy Assessment - Toward a Sustainable Future

    NARCIS (Netherlands)

    Johansson, T.B.; Patwardhan, A.; Nakicenovic, N.; Gomez-Echeverri, L.; Turkenburg, W.C.; Global Energy Assessment (GEA) Council

    2012-01-01

    Energy is central to addressing major challenges of the 21st Century, challenges like climate change, economic and social development, human well-being, sustainable development, and global security. In 2005, Prof. Bert Bolin, the founding Chair of the Intergovernmental Panel on Climate Change

  19. Consumer-oriented Sustainable Energy Concepts; Consumentgerichte Duurzame Energieconcepten

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, H.J. [Universiteit Twente UT, Enschede (Netherlands)

    2009-10-15

    A study on the willingness of potential buyers of newly built houses to invest in energy efficient systems in order to realize a sustainable dwelling [Dutch] Een onder zoek naar de bereidheid van potentiele kopers van nieuwbouw woningen tot het investeren in energetische systemen om te komen tot een duurzame woning.

  20. Business Case: Sustainable Energy for De-mining Operations

    DEFF Research Database (Denmark)

    Buur, Jacob; Finnemann, Winie

    2011-01-01

    small, Danish companies work with an NGO and two university partners to develop a sustainable energy solution for humanitarian landmine removal in Angola as an alternative to the presently used diesel generators. I will discuss the challenges that face the companies, if they are to bring the project...

  1. Local Sustainable Energy Assessment Report of Quang Tri in Vietnam

    DEFF Research Database (Denmark)

    Andersen, Jan; Lund, Søren

    The publication reports a sustainable energy assessment at the local project site of the HighARCS project in Nainital, Uttarakhand and Buxa, West Bengal, India. The assessment has been made as a contribution to the elaboration of biodiversity conservation and livelihoods improvement action plans....

  2. On the Sustainability and Progress of Energy Neutral Mineral Processing

    Directory of Open Access Journals (Sweden)

    Frederik Reitsma

    2018-01-01

    Full Text Available A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.

  3. Sustainable energy, environmental and agricultural policies in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Turkey's demand for energy and electricity is increasing rapidly and heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO 2 ) emissions have grown along with its energy-consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases (GHGs). In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources.

  4. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  5. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  6. Sustainable Energy Development: The Key to a Stable Nigeria

    Directory of Open Access Journals (Sweden)

    Kalu Uduma

    2010-06-01

    Full Text Available This paper proposes the use of sustainable energy systems based on solar and biomass technologies to provide solutions to utility challenges in Nigeria and acute water shortage both in rural and urban areas of that country. The paper highlights the paradoxes of oil-rich Nigeria and the stark reality of social infrastructure deprivations in that country. Perennial power outages over many years have translated to the absence of or poorly-developed basic social infrastructures in Nigeria. The consequences of this lack have been an increase in abject poverty in rural and urban communities as well as the erosion of social order and threats to citizen and their property. This paper proposes the adaptation of two emerging technologies for building sustainable energy systems and the development of decentralized and sustainable energy sources as catalyst for much-needed social infrastructure development through the creation of Renewable Energy Business Incubators, creative lending strategies, NGO partnerships and shifting energy-distribution responsibilities. These changes will stimulate grassroots economies in the country, develop large quantities of much needed clean water, maintain acceptable standards of sanitation and improve the health and wellbeing of Nigerian communities. The proposed strategies are specific to the Nigerian context; however, the authors suggest that the same or similar strategies may provide energy and social infrastructure development solutions to other developing countries as well.

  7. Renewable energy in Iran: Challenges and opportunities for sustainable development

    International Nuclear Information System (INIS)

    Atabi, F.

    2004-01-01

    Around the globe, developing countries have reported different cases of successfully implemented renewable energy program supported by bilateral or multilateral funding. In developing countries subsidy has played a big role in renewable energy program marketing and whether this will lead to sustainable development is yet to be determined. The adoption of implementation strategies that will support sustainable development and overcoming barriers that hinder expansion of renewable energy technologies still remains as a big challenge to stake holders involved in promotion of renewable energy resources in developing countries. In this respect, developing countries need to re-examine their environmental policy for promotion of renewable energy technologies in order to define its role in revitalization of their economics. This paper reviews by policy incentives for promotion of renewable energy technologies in the Islamic Republic of Iran. Setting-up international collaborative business ventures between local industry in Iran and companies in developed countries is proposed as an implementation strategy that will appropriate diffusion of renewable energy technologies in the country. An organizational framework that may help to attain this objective is discussed and a structural model for renewable energy business partnership is presented. It is concluded that with appropriate policy formulations and strategies, renewable energy technologies can bring about the required socio-economic development in Iran

  8. Canada's energy perspectives and policies for sustainable development

    International Nuclear Information System (INIS)

    Hofman, Karen; Li, Xianguo

    2009-01-01

    A regression analysis is performed to make projections for the Canadian energy production and consumption. These have been increasing and are projected to increase even further in the near future. The primary energy production and consumption are projected to increase by 52% and 34%, respectively, by 2025 over 2004 if business as usual. The amount of fossil energy resources is finite and the extraction, transportation and combustion of fossil fuels cause environmental pollution and climate change. On the other hand, energy plays an important role in the economic and social development of Canada. Canada can develop further from an energy balance point of view, but this alone cannot be sustainable, because of the negative consequences of the major energy use on the environment. Application of energy localization and diversification is a promising solution, but in order to reach that, better energy efficiency and more use of renewable energy are necessary. Instead of non-compulsory policies Canada's policy approach should have more compulsory policies. Only then Canada can be made to develop further in a sustainable manner. (author)

  9. Role of Fusion Energy in a Sustainable Global Energy Strategy

    International Nuclear Information System (INIS)

    Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

    2001-01-01

    Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements

  10. Assessing the ecological and economic sustainability of energy crops

    International Nuclear Information System (INIS)

    Hanegraaf, M.C.; Biewinga, E.E.; Bijl, G. van der

    1998-01-01

    The production and use of biomass for energy has both positive and negative impacts on the environment. The environmental impacts of energy crops should be clarified before political choices concerning energy are made. An important aid to policy-making would be a systematic methodology to assess the environmental sustainability of energy crops. So far, most studies on the environmental aspects of energy crops deal mainly with the energy production of the crops and the possible consequences for CO 2 mitigation. The Dutch Centre for Agriculture and Environment (CLM) has developed a systematic methodology to assess the ecological and socio-economic sustainability of biomass crops. The method is best described as a multicriteria analysis of process chains and is very much related to Life Cycle Assessment (LCA). Characteristics of our methodology are the use of: definition of functional units; analysis of the entire lifecycle; definition of yield levels and corresponding agricultural practices; analysis of both ecological and economic criteria; definition of reference systems; definition of procedures for normalisation and weighting. CLM has applied the method to assess the sustainability of ten potentially interesting energy crops in four European regions. The results are used to outline the perspectives for large scale production of biomass crops with regard to the medium and long term land availability in Europe. For the crops considered, net energy budget ranges from 85 GJ net avoided energy per ha for rape seed for fuel to 248 GJ net avoided fossil energy per ha for silage maize for electricity from gasification. The methodology of the tool and its results were discussed at the concerted action ''Environmental aspects of biomass production and routes for European energy supply'' (AIR3-94-2455), organised by CLM in 1996. Major conclusions of the research: multicriteria analyhsis of process lifecycles is at present the best available option to assess the ecological

  11. The Potential of the Technical University of Denmark in the Light of Sustainable Livable Cities

    DEFF Research Database (Denmark)

    Jensen, Lotte Bjerregaard; Nielsen, Per Sieverts; Nielsen, Susanne Balslev

    2014-01-01

    The Technical University of Denmark (DTU) has a long tradition for research and education in urban planning and sustainable urban development. An increasing societal focus on sustainability and urbanization in society supports this continuous focus on sustainable urban planning in technical educa...... on sustainability but also on global urbanization, compact cities, and smart cities supports new thinking in urban planning and design in technical education. The paper suggests a new initiative to further develop the sustainable urban planning research and education at DTU....

  12. Measures for sustainable energy in the livestock farming industry; Maatregelen duurzame energie veehouderijsector

    Energy Technology Data Exchange (ETDEWEB)

    Schellekens, J. [DLV Bouw Milieu en Techniek, Uden (Netherlands)

    2010-07-15

    The sectors of pig farming, poultry farming and veal farming have been examined for sustainable energy deployment options in agricultural businesses. These are systems are ready for practice and to be used by individual businesses. Background information is provided on energy saving, deployment of photovoltaic energy, solar collectors, biomass incineration, heat pumps, air conditioning with ground water, and practical experiences in the deployment of sustainable energy systems. Moreover, an overview is given of subsidies and fiscal opportunities for sustainable energy deployment by agricultural businesses [Dutch] Voor de sectoren varkenshouderij, pluimveehouderij en vleeskalverhouderij is onderzocht wat de toepassingsmogelijkheden zijn van duurzame energie (DE) op agrarische bedrijven. Het betreft systemen welke praktijkrijp zijn en te gebruiken op individuele bedrijven. Er wordt achtergrondinformatie gegeven over energiebesparing, toepassen van photovoltaische energie, zonnecollectoren, verbranden van biomassa, warmtepompen, luchtconditionering met grondwater, praktijkervaringen in de toepassing van duurzame energiesystemen. Ook wordt een overzicht geven van subsidies en fiscale mogelijkheden voor toepassen van DE-systemen op agrarische bedrijven.

  13. Energy policy for India: towards sustainable energy security in India the twenty first century

    International Nuclear Information System (INIS)

    Chopra, S.K.

    2004-01-01

    In this book the background, justification and design for an Integrated Sustainable Energy Policy for the country for the next two decades. Detailed discussion of different energy sub-sectors is given. A separate section in the book focuses on Rural Energy in all its forms and uses. Rural energy is especially important for India and other developing countries because it affects the lives of over seventy percent of the country's population. Environmental concerns in the energy sector have also been discussed in detail in a separate section. These include both local and environmental issues, including India's commitment to various international conventions on environment. The implementation of the Integrated Sustainable Energy Policy is proposed to be done through a National Sustainable Energy Security

  14. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  15. Sustainable design of complex industrial and energy systems under uncertainty

    Science.gov (United States)

    Liu, Zheng

    Depletion of natural resources, environmental pressure, economic globalization, etc., demand seriously industrial organizations to ensure that their manufacturing be sustainable. On the other hand, the efforts of pursing sustainability also give raise to potential opportunities for improvements and collaborations among various types of industries. Owing to inherent complexity and uncertainty, however, sustainability problems of industrial and energy systems are always very difficult to deal with, which has made industrial practice mostly experience based. For existing research efforts on the study of industrial sustainability, although systems approaches have been applied in dealing with the challenge of system complexity, most of them are still lack in the ability of handling inherent uncertainty. To overcome this limit, there is a research need to develop a new generation of systems approaches by integrating techniques and methods for handling various types of uncertainties. To achieve this objective, this research introduced series of holistic methodologies for sustainable design and decision-making of industrial and energy systems. The introduced methodologies are developed in a systems point of view with the functional components involved in, namely, modeling, assessment, analysis, and decision-making. For different methodologies, the interval-parameter-based, fuzzy-logic-based, and Monte Carlo based methods are selected and applied respectively for handling various types of uncertainties involved, and the optimality of solutions is guaranteed by thorough search or system optimization. The proposed methods are generally applicable for any types of industrial systems, and their efficacy had been successfully demonstrated by the given case studies. Beyond that, a computational tool was designed, which provides functions on the industrial sustainability assessment and decision-making through several convenient and interactive steps of computer operation. This

  16. Interlocal collaboration on energy efficiency, sustainability and climate change issues

    Science.gov (United States)

    Chen, Ssu-Hsien

    Interlocal energy collaboration builds upon network structures among local policy actors dealing with energy, climate change and sustainability issues. Collaboration efforts overcome institutional collective action (ICA) dilemmas, and cope with the problems spanning jurisdictional boundaries, externalities, and free-rider problems. Interlocal energy collaboration emerges as the agreements in greenhouse gas (GHG) emission reduction, pollution control, land use, purchasing, retrofits, transportation, and so forth. Cities work collaboratively through contractual mechanisms (i.e. formal/informal agreements) and collective mechanisms (i.e. regional partnerships or membership organizations) on a variety of energy issues. What factors facilitate interlocal energy collaboration? To what extent is collaboration through interlocal contractual mechanisms different from collective mechanisms? This dissertation tries to answer these questions by examining: city goal priority on energy related issues as well as other ICA explanatory factors. Research data are drawn mainly from the 2010 national survey "Implementation of energy efficiency and sustainability program" supported by National Science Foundation and the IBM Endowment for the Business of Government. The research results show that city emphasis on common pool resource, scale economies and externality issues significantly affect individual selection of tools for energy collaboration. When expected transaction costs are extremely high or low, the contractual mechanism of informal agreement is more likely to be selected to preserve most local autonomy and flexibility; otherwise, written and formal tools for collaboration are preferred to impose constraints on individual behavior and reduce the risks of defection.

  17. Functional materials for sustainable energy technologies: four case studies.

    Science.gov (United States)

    Kuznetsov, V L; Edwards, P P

    2010-01-01

    The critical topic of energy and the environment has rarely had such a high profile, nor have the associated materials challenges been more exciting. The subject of functional materials for sustainable energy technologies is demanding and recognized as a top priority in providing many of the key underpinning technological solutions for a sustainable energy future. Energy generation, consumption, storage, and supply security will continue to be major drivers for this subject. There exists, in particular, an urgent need for new functional materials for next-generation energy conversion and storage systems. Many limitations on the performances and costs of these systems are mainly due to the materials' intrinsic performance. We highlight four areas of activity where functional materials are already a significant element of world-wide research efforts. These four areas are transparent conducting oxides, solar energy materials for converting solar radiation into electricity and chemical fuels, materials for thermoelectric energy conversion, and hydrogen storage materials. We outline recent advances in the development of these classes of energy materials, major factors limiting their intrinsic functional performance, and potential ways to overcome these limitations.

  18. Keeping options open. Energy, technology and sustainable development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger; Langlois, Lucille; McDonald, Alan

    2001-01-01

    The Ninth Session of the the Commission for Sustainable Development (CSD-9) in April 2001 provided an excellent opportunity for a full debate on the role of nuclear power in sustainable development, as part of its over-all discussion of energy, transport and the atmospheric change issues. On nuclear power, there were two important conclusions. First, countries agreed to disagree on the role of nuclear power in sustainable development. CSD-9's final text recognizes that some countries view nuclear power as incompatible with sustainable development while others believe it is an important contributor to sustainable development. For each case, the reasoning is presented in the text. The second conclusion, on which there was consensus agreement, is that 'the choice of nuclear energy rests with countries'. The arguments in favor of an important role for nuclear power role in sustainable development are that it broadens the resource base by putting uranium to productive use; it reduces harmful emissions; it expands electricity supplies and it increases the world's stock of technological and human capital. It is ahead of other energy technologies in internalizing all externalities, from safety to waste disposal to decommissioning - the costs of all of these are already included in the price of nuclear electricity in most countries. The complete nuclear power chain, from resource extraction to waste disposal including reactor and facility construction, emits only two to kilowatt-hour -- about the same as wind and solar power and two orders of magnitude below coal, oil, and even natural gas. In addition, nuclear power avoids the emission of many other air pollutants, such as SO 2 , NO x and particulates

  19. Energy policies and politics for sustainable world-system development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    by Euratom (Woodman 2003). A political approach to preconditions for sustainable energy policies is finally developed from (a) Barry Commoner's critique of 1979 of president Carter's energy plan followed by the impasse of the Reagan era with the US government's retreat from federal energy and environmental...... politics, put into perspective by (b) R.C.-Dupont 1993 as the movement of the US in a field of tension between eco- and geopolitics; and (c) a 2006 declaration of ten former environmental ministers to end the nuclear age and to reform the UN mandate of the International Atomic Energy Agency.......  Analytically, (a) Barry Commoner's theses of 1976 on the connections between energy, environmental and economic crises are discussed from thermo-dynamical inefficiencies through sector analyses to barriers of energy reform, actualized by (b) the contribution of Sterling 2002 reminding upon...

  20. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    Directory of Open Access Journals (Sweden)

    Despoina E. Keramioti

    2010-04-01

    Full Text Available A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three systems are placed in order of preference, which depends on the criteria used. In addition to conclusions reached as a result of the particular case study, recommendations for future work are given.

  1. Photovoltaic. Solar electricity, a sustainable source of energy

    International Nuclear Information System (INIS)

    Stryi-Hipp, Gerhard; Loyen, Richard; Knaack, Jan; Chrometzka, Thomas

    2008-06-01

    This German publication outlines that solar energy is now essential to any sustainable energy mix, and describes the operation principle of solar photovoltaic energy production. It describes how it can be applied for the production of electricity in isolated areas, and for individual housing as well as commercial buildings, and presents the concept of ground-based solar plants. The next part discusses the development of the photovoltaic market (its huge potential, its world size) and indicates the different associated arrangements of financial support or subsidy. It also discusses how photovoltaic markets can be developed, and proposes an overview of the German model

  2. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2010-01-01

    of the dominating neoclassical economy and the short time horizon of the present market system. On the supply side fossil fuels are becoming a central problem being the dominating global energy source while at the same time presenting serious problems in relation to global warming and limited resources (“peak oil......Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings...

  3. Sustainability and energy self-sufficiency; overcoming the barriers

    Directory of Open Access Journals (Sweden)

    Rania Abdel Galil

    2015-12-01

    Full Text Available Engendering more positive attitudes to renewable energy is by no means a simple feat. Renewable energy technologies are viewed as radical innovations which necessitate substantial changes in production and consumption patterns, hence often met with resistance from both institutions and individuals. Yet action is needed; global energy consumption is expected to rise by 41% and global carbon dioxide emissions by 29%, with most of the demand and rise coming from emerging economies (BP energy outlook 2035. Further, countries need to meet objectives of reduction of GHG under the United Nations Framework Convention on Climate Change. Renewable energy share in the global energy mix needs to significantly increase in order to reach supply sufficiency, energy security, energy equity and environmental sustainability.Meeting demands of energy is critical for the economic and social development of any country; energy must be secure, accessible and affordable at all levels of society, and any negative impact of energy production and energy use on the environment must be minimized. Middle East energy consumption is expected to grow by 69% whilst production to grow by 32%, with 97% of demand still met by fossil fuels by the end of the 2035. Energy investment of $316 billion will be required in the Middle East and North Africa (MENA between 2015 and 2019 to meet its growing demand for power (Apicorp, 2014. Diversifying energy sources is indeed of interest in the MENA region, spurred by growing demand for power and desalinated water, fluctuating fuel price, GHG emission reduction targets, depleting fossil fuel reserves and advances in renewable energy technology. However, there are many barriers that hinder the adoption of renewable energy technologies worldwide, but more so in the MENA region. These barriers are political, economic, social and technological. With a focus on Europe and MENA, it can be said that these barriers have much in common albeit framing

  4. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    OpenAIRE

    Saeed Hadian; Kaveh Madani

    2013-01-01

    With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to i...

  5. Some Sustainability Aspects of Energy Conversion in Urban Electric Trains

    Directory of Open Access Journals (Sweden)

    Doru A. Nicola

    2010-05-01

    Full Text Available The paper illustrates some aspects of energy conversion processes during underground electric train operation. Energy conversion processes are explained using exergy, in order to support transport system sustainability. Loss of exergy reflects a loss of potential of energy to do work. Following the notion that life in Nature demonstrates sustainable energy conversion, we approach the sustainability of urban transportation systems according to the model of an ecosystem. The presentation steps based on an industrial ecosystem metabolism include describing the urban electric railway system as an industrial ecosystem with its limits and components, defining system operation regimes, and assessing the equilibrium points of the system for two reference frames. For an electric train, exergy losses can be related to the energy flows during dynamic processes, and exergy conversion in these processes provides a meaningful measure of the industrial (i.e., transportation ecosystem efficiency. As a validation of the theoretical results, a case study is analyzed for three underground urban electric train types REU-U, REU-M, REU-G operating in the Bucharest Underground Railway System (METROREX. The main experimental results are presented and processed, and relevant diagrams are constructed. It is determined that there is great potential for improving the performance of rail systems and increasing their sustainability. For instance, power converters and efficient anti-skid systems can ensure optimum traction and minimum electricity use, and the recovered energy in electric braking can be used by other underground trains, increasing exergy efficiency, although caution must be exercised when doing so to avoid reducing the efficiency of the overall system.

  6. What drives energy consumers? : Engaging people in a sustainable energy transition

    NARCIS (Netherlands)

    Steg, Linda; Shwom, Rachel; Dietz, Thomas

    Providing clean, safe, reliable, and affordable energy for people everywhere will require converting to an energy system in which the use of fossil fuels is minimal. A sustainable energy transition means substantial changes in technology and the engagement of the engineering community. But it will

  7. Efficient use of land to meet sustainable energy needs

    Science.gov (United States)

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Field, Christopher B.

    2015-04-01

    The deployment of renewable energy systems, such as solar energy, to achieve universal access to electricity, heat and transportation, and to mitigate climate change is arguably the most exigent challenge facing humans today. However, the goal of rapidly developing solar energy systems is complicated by land and environmental constraints, increasing uncertainty about the future of the global energy landscape. Here, we test the hypothesis that land, energy and environmental compatibility can be achieved with small- and utility-scale solar energy within existing developed areas in the state of California (USA), a global solar energy hotspot. We found that the quantity of accessible energy potentially produced from photovoltaic (PV) and concentrating solar power (CSP) within the built environment (`compatible’) exceeds current statewide demand. We identify additional sites beyond the built environment (`potentially compatible’) that further augment this potential. Areas for small- and utility-scale solar energy development within the built environment comprise 11,000-15,000 and 6,000 TWh yr-1 of PV and CSP generation-based potential, respectively, and could meet the state of California’s energy consumptive demand three to five times over. Solar energy within the built environment may be an overlooked opportunity for meeting sustainable energy needs in places with land and environmental constraints.

  8. Energy and sustainable development in Nigeria. The way forward

    Energy Technology Data Exchange (ETDEWEB)

    OlayinkaOyedepo, Sunday [Covenant Univ., Ota (Nigeria). Mechanical Engineering Dept.

    2012-12-01

    Access to clean modern energy services is an enormous challenge facing the African continent because energy is fundamental for socioeconomic development and poverty eradication. Today, 60% to 70% of the Nigerian population does not have access to electricity. There is no doubt that the present power crisis afflicting Nigeria will persist unless the government diversifies the energy sources in domestic, commercial, and industrial sectors and adopts new available technologies to reduce energy wastages and to save cost. This review examines a set of energy policy interventions, which can make a major contribution to the sustainable economic, environmental, and social development of Africa's most populated country, Nigeria. Energy efficiency leads to important social benefits, such as reducing the energy bills for poor households. From an economic point of view, implementing the country's renewable energy target will have significant costs, but these can partly be offset by selling carbon credits according to the rules of the 'Clean Development Mechanism' agreed some 10 years ago, which will result in indirect health benefits. Nigeria could benefit from the targeted interventions that would reduce the local air pollution and help the country to tackle greenhouse gas emissions. Many factors that need to be considered and appropriately addressed in the shift to its sustainable energy future are examined in this article. These include a full exploitation and promotion of renewable energy resources, energy efficiency practices, as well as the application of energy conservation measures in various sectors such as in the construction of industrial, residential, and office buildings, in transportation, etc. (orig.)

  9. Sustainable energy prices and growth. Comparing macroeconomic and backcasting scenarios

    International Nuclear Information System (INIS)

    Ahlroth, Sofia; Hoejer, Mattias

    2007-01-01

    How do results from the sustainability research world of backcasting relate to the macroeconomic scenarios used for policy evaluation and planning? The answer is that they do not, mostly - they come from different scientific traditions and are not used in the same contexts. Yet they often deal with the same issues. We believe that much can be gained by bringing the two systems of thinking together. This paper is a first attempt to do so, by making qualitative comparisons between different scenarios and highlighting benefits and limitations to each of them. Why are the pictures we get of the energy future so different if we use a macroeconomic model from when using a backcasting approach based on sustainable energy use? It is evident that the methods for producing those two kinds of scenarios differ a lot, but the main reason behind the different results are found in the starting points rather than in the methods. Baseline assumptions are quite different, as well as the interpretations and importance attached to signals about the future. In this paper, it is discussed how those two types of scenarios differ and how they approach issues such as energy prices and growth. The discussion is based on a comparison between Swedish economic and sustainability scenarios. The economic scenarios aim at being forecasts of the future and are used as decision support for long-term policies. But are the assumptions in the economic scenarios reasonable? The sustainability scenarios are explicitly normative backcasting scenarios. They do not take the issue of growth and consumption fully into account. Could they be developed in this respect? The comparison between the scenarios is also used to look closer at the issue of energy prices in a society with sustainable energy use. One of the questions raised is if a low energy society calls for high energy prices. Moreover, the effects of tradable permits versus energy taxes is analysed in the context of how energy use could be kept low

  10. Sustainability of nuclear energy in Mexico: comparison with other sources

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J. L.

    2006-01-01

    Because of the importance of energy to sustainable development of Mexico, it is necessary to develop a tool which permits to make a comparative assessment of energy alternative options. This tool must take into a count their characteristics in terms of their economic, health, environmental and social impacts, both, positive and negative, local, regional and global. This paper describes a methodology to measure the sustainability of nuclear and other different sources for electricity generation. The first step consists on the search of common indicators to be compared. These indicators take into account the great variety of economic, social, and environmental impacts to be considered in the specific Mexican country. A total of fourteen indicators were considered grouped in three dimensions: economic, environmental and social. The second step is to obtain the values of all the indicators for each of the alternative options being compared. These values must be calculated taking into account the economic and technological characteristics of the country. The third step is to utilize an aggregation method to integrate all the indicators in an overall sustainable qualification. Fuzzy Logic was applied for the aggregation of indicators and was used to make sensitive analyses. Finally this paper presents the results for the case of the Mexican power system generation. The main result of the comparison is that nuclear energy in Mexico is an option more sustainable than gas, coal, and hydroelectric. Some sensitive analyses were also made to investigate the implication of the uncertainties in the indicator's values. Coal was in all cases the least sustainable option with largest environmental impacts. Wind energy was also included in a study case, the results of this assessment comparison showed that wind option in Mexico has an overall qualification very close to nuclear option when a backup power system is not included

  11. The DTU-ESA Millimeter-Wave Validation Standard Antenna – Manufacturing and Testing

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    A new precision tool for antenna test range qualification and inter-comparisons at mm-waves – the mm-VAST antenna – is under development at the Technical University of Denmark (DTU) in collaboration with TICRA under a European Space Agency (ESA) contract. The DTU-ESA mm-VAST antenna will facilitate...... mechanical design, fabrication and assembling procedures. The performance verification test plan as well as first measurement results are also discussed....

  12. The building and application of a flexible CAD model for the DTU ECOCAR

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    A flexible surface model is required for CFD-optimization of the DTU ECOCAR. The report exemplifies the creation of such a model using the 3D CAD system Creo 3.0 Parametric.......A flexible surface model is required for CFD-optimization of the DTU ECOCAR. The report exemplifies the creation of such a model using the 3D CAD system Creo 3.0 Parametric....

  13. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2011

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark (until 31-12- 2011: Association Euratom – Risø DTU) covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport...... temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2011....

  14. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Wang Yongping; Zhao Shoufeng; Zheng Yuhui; Yuan Yujun; Rao Shuang; Liu Qun; Ding Ruijie

    2006-03-01

    The status and role of nuclear energy in the energy security and sustainable energy development strategy in China are discussed. Specifically, the role of nuclear energy in meeting the requirements of energy and electricity supply, environment protection and greenhouse gas (GHG) emission-reduction is focused on. The report is mainly composed of three component parts. The serious situation and challenges concerning the national energy security and energy sustainable development are expounded. It is indicated that the development of nuclear energy is the objective requirement for optimizing national energy structure. It is proposed that the development of nuclear energy is the important security option for safely supplying the national energy and electricity in the future. It is elaborated that the development of nuclear energy is the inevitable selection for carrying out the national energy and electricity sustainable development. Nuclear energy is a preference coinciding with the principles of the circular economy, a selection contributing to improvement of ecological environment and an inexhaustible resource in the long term. Some suggestions are put forward to the nuclear energy development in China. (authors)

  15. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  16. “DOSSA”, highway to energy self-sustainability

    International Nuclear Information System (INIS)

    Abejon Aparicio, Noe; Lai, Cynthia; Chan-Halbrendt, Catherine

    2012-01-01

    Highlights: ► We present a new model to achieve zero energy emissions. ► We compared with the strategic plan implemented by the University of Hawai’i at Manoa. ► Comparison scenarios are created using projections of the involved 13 variables. ► The most probable three projections are used for each variable. ► DOSSA reaches energy institutional self-sustainability an average of 23 years earlier. -- Abstract: Emphasis has been put forth in the field of applied energy towards reducing consumption, using renewable energy sources and mitigating pollution and greenhouse gas emissions. Although these strategies are striving to achieve the same goal, there is no logical model that clearly establishes their pathway to success; therefore, DOSSA, a new and innovative model, has been developed to provide this necessary central bridge of multiple pathways through five easy and adaptable steps: (1) Data inventory; (2) Objectives; (3) Staff/Committee; (4) Strategy; and (5) Accountability (DOSSA). In this study, the DOSSA model was applied and compared to the University of Hawai’i at Manoa’s (UHM’s) current strategic energy plan: to achieve zero emissions in terms of energy by the year 2050. Under proper execution of each step from the model, this study shows the effectiveness of the application of DOSSA to any goal or objective by increasing efficiency and creative and innovative approaches to problems, specifically, environmental initiatives. Through the application of DOSSA in this case study at UHM, it was projected that UHM has the potential to be completely self-sustainable in terms of energy consumption approximately 23 years earlier to its expected “strategic plan” date of 2050. Thus, DOSSA cannot only be used as an instigator for achieving reduction goals but also as an accelerator for various green initiatives – a highway to energy self-sustainability.

  17. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  18. Energy and sustainable development : challenges, risks and leeway

    International Nuclear Information System (INIS)

    Dessus, B.

    2000-01-01

    Sustainable development is a major challenge facing humanity in this new millennium. Demographers have predicted that it will take approximately 100 years for our planet to reach demographic maturity, implying there is only that amount of time to find solutions to sustainable development. Problems related to energy needs and environment are influenced by factors such as: (1) population increase, (2) required access to development and urbanization, and (3) continuation by the Northern countries to consume goods and services. We are also challenged by four major risk factors concerning energy: (1) risk of depletion of fossil resources such as coal, petroleum, natural gas, (2) global warming caused by greenhouse gases, (3) risk from the utilization of nuclear energy, and (4) risk of intense utilization of potential agricultural lands for energy production. In the past 50 years, we have relied too much on the production of energy, and this approach has not yielded a satisfactory solution. Two types of scenarios were proposed for 2050. The first type is based on development through an abundance of energy, where the risks are unavoidable. The only differences between each scenario in this category is the increase or decrease of one risk factor to the detriment of the others. The second type of scenario is based on development through the control of energy requirements. Six scenarios proposed by the International Institute of Applied Systems Analysis and National Scientific Research Centre were compared. In each scenario, the world was subdivided into 11 geographical regions and based on world populations of 8 billion in 2020, and 10 billion in 2050, as well as very similar economic growth predictions. Results indicated that the main differentiating factor was volume of energy rather than type of energy resource. Greenhouse gases increase, as do the amounts of nuclear wastes. It became clear that energy conservation measures have the potential to help us achieve

  19. Energy for sustainable development in India: Linkages and strategic direction

    International Nuclear Information System (INIS)

    Srivastava, Leena; Rehman, I.H.

    2006-01-01

    In recent times the two major international endorsements of the elements of sustainable development the Millennium Development Goals (Mags) and the World Summit on Sustainable Development (Wsso), have recognized universal access to energy as an important goal. In India, with a population of over a 1000 million people, it is estimated that a mere 43.5% of the households have access to electricity. The choices that the country makes towards energizing the remaining population will have a significant impact on other Sustainable Development parameters such as agriculture, water, health, and even biodiversity. India has set itself a target, going beyond the Mags, of energizing all households by the year 2012. In view of the differentiated responsibilities of the various ministries to the Government of India, the strategy for reaching this target may not address itself to the larger development goals

  20. Enhancing energy security in Malayia: the challenges towards sustainable environment

    International Nuclear Information System (INIS)

    Sahid, E J M; Peng, L Y; Siang, C Ch

    2013-01-01

    Energy is known as one of the essential ingredients for economic development and security of energy supply is crucial in ensuring continuous economic development of a country. Malaysia's proven domestic oil reserves are estimated to last for another 25 years, while that of gas for another 39 years as of 2011. Despite the depleting indigenous energy resources, the primary energy demand has continued to grow robustly, at an annual rate of 6.3 percent per year from 1990 to 2010, while the primary energy import has grown 7.2% per year and the primary energy export has grown at a slower rate of 1.9% per year. This worrying trend is further compounded by the faster rate of primary oil import averaging 10.5% per year while the primary energy export has shrink at a rate of 1.4% per year. This paper has identified two main concerns namely overdependence on fossil fuel and increasing energy import dependency in creating a precarious position towards energy self-sufficiency. The study will analyse the energy security of the country and explore possible options and challenges in enhancing the energy supply security toward sustainable environment.

  1. Water management for sustainable and clean energy in Turkey

    Directory of Open Access Journals (Sweden)

    Ibrahim Yuksel

    2015-11-01

    Full Text Available Water management has recently become a major concern for many countries. During the last century consumption of water and energy has been increased in the world. This trend is anticipated to continue in the decades to come. One of the greatest reasons is the unplanned industrial activities deteriorating environment in the name of rising standard of life. What is needed is the avoidance of environmental pollution and maintenance of natural balance, in the context of sustainable development. However, Turkey’s geographical location has several advantages for extensive use of most of the renewable energy resources. There is a large variation in annual precipitation, evaporation and surface run-off parameters, in Turkey. Precipitation is not evenly distributed in time and space throughout the country. There are 25 hydrological basins in Turkey. But the rivers often have irregular regimes. In this situation the main aim is to manage and use the water resources for renewable, sustainable and clean energy. This paper deals with water management for renewable, sustainable and clean energy in Turkey.

  2. Resilience, Sustainability and Risk Management: A Focus on Energy

    Directory of Open Access Journals (Sweden)

    N. Agya Utama

    2012-08-01

    Full Text Available The natural and subsequent human disasters of March 11, 2011 in Japan have brought into focus more than ever the importance of resilience and risk mitigation in the construction of energy infrastructure. This article introduces some of the critical issues and discusses the implications of energy in alleviating or exacerbating the risks of natural disasters. Additionally, it presents a framework for considering the risks of energy systems from a broad perspective. The connection is drawn between design for sustainability and the risks associated with energy systems in natural disasters. As a result of the assessment, six criteria are proposed for energy systems to contribute to societal resilience in the face of natural disasters—they should be: (1 Continuous; (2 Robust; (3 Independent; (4 Controllable; (5 Non-hazardous; and (6 Matched to demand.

  3. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least......‐cost strategies. With Denmark as a case, this paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used. Based on a concrete proposal to implement the Danish governmental long...... that a least‐cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps. Keywords: Energy Efficiency, Renewable energy, Heating strategy, Heat savings, District heating, Smart energy...

  4. Sustainable development and peaceful use of nuclear energy in Romania

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2004-01-01

    The concept of sustainable development was elaborated in the late 1980s and was defined as a development that fulfills the needs of the present without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also many arguments in favor of nuclear energy as a reliable source such as: the large size of the nuclear power plants, their long periods of operation and the existent experience for operation. The risks associated with radiation are among the most extensively studied hazards known by man, but several factors are preserving public anxiety about radiation. Radiation is inaccessible to human senses, difficult to understand, and probabilistic in its effects, which to the public means uncertainty. Hence, radiological protection is essential to ensure that nuclear energy is compatible with sustainable development. Nuclear energy has, in normal operation, a low impact on health and environment. In order to meet the sustainable development goals, it is necessary to maintain its high standards of safety in spite of increasing competition in the electricity sector and reactors ageing in order to achieve a higher level of public acceptance. The complex technologies used by nuclear fuel cycle facilities are controlled and regulated by international and national institutions. A framework of regulatory, institutional and technical measures is already in place ensuring that the use of nuclear energy does not significantly modify

  5. Sustainability Assessment: Energy Efficiency in Buildings at a Community University

    Directory of Open Access Journals (Sweden)

    Stephane Louise Bocasanta

    2017-10-01

    Full Text Available This research aims to analyze the degree of sustainability of a building in a community university (object of analysis, as regards its energy efficiency. Therefore, it seeks out to contribute to the literature, provide a basis for the application of SICOGEA system in other buildings and contribute to the consolidation of an effective and consistent environmental management system. The research can be classified, as to its technical procedures, as a case study. As to its objectives it is descriptive, with a qualitative approach. The literature on environmental management and sustainability assessment of buildings was used to support the research. As to the results found, the overall University sustainability rate was 48%, which can be classified as regular, that is, it aims to deal with the legislation only. Therefore, it is believed that the institution can make improvements to achieve a more efficient index. By taking into consideration the deficit items, the following is suggested: to introduce sustainable procurement; to strive for stamps and certifications; to avoid environmental fines and indemnity; and to implement environmental auditing. However, it is clarified that these are suggestions that should be taken into consideration along with financial matters and within the institution planning questions. The analysis of financial sustainability was considered good and, ideally, it will go on.

  6. Sustainable Energy for All and the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Bellanca, Raffaella; Wilson, Emma

    2012-06-15

    The UN's Sustainable Energy for All initiative (SE4ALL) has a strong focus on the private sector to deliver universal energy access, improved efficiency and increased investment in renewable energy. Leading private sector associations have bought into SE4ALL, including the World Business Council for Sustainable Development (WBCSD) and the Global Compact. However, critics argue that SE4ALL is focusing too much on large-scale infrastructure investment and is missing opportunities to stimulate enterprise more locally and to benefit the poorest. The private sector – including large and smaller-scale businesses, both local and international – is keen to get involved in energy access in low-income markets and sees the value of an initiative such as SE4ALL. Yet some feel that SE4ALL is failing to engage all levels of the private sector effectively. To deliver universal energy access, SE4ALL needs to address the lack of finance for enterprises and end users, especially in untested markets; infrastructure and support services for new businesses; local skills, capacity and information about workable models; and favourable policy frameworks. With the right incentives, business can open up low-income markets by providing lifeimproving services to emerging middle class populations who are still excluded from energy access. To reach the poorest SE4ALL can promote private sector partnerships with government and NGOs, encourage corporate responsibility initiatives and support social entrepreneurs.

  7. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  8. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  9. Towards sustainability: energy efficiency, thermodynamic analysis, and the 'two cultures'

    International Nuclear Information System (INIS)

    Hammond, G.P.

    2004-01-01

    The UK Government is committed by their 2003 Energy White Paper to developing a sustainable energy economy in the 21st Century, and to taking a lead in reducing CO 2 emissions amongst the industrialised (OECD) countries. A target of reducing these emissions to 60% of their existing figure by 2050 has been adopted. The only way in which this fall could be achieved is by significantly reducing primary energy consumption to between 45% and 75% of the present demand; depending on the energy technology mix. This requires the widespread adoption of energy-saving measures across the economy. It is in this area that thermodynamic analysis can make a major contribution to identifying where the improvement potential lies. Energy options are inevitably constrained by thermodynamic limits on individual plant and the sector as a whole. Nevertheless, energy policy advice to Governments, particularly that in the UK, tends to be dominated by views from the humanities and social sciences. Thermodynamic ideas, by contrast, often appear rather esoteric to the non-specialist; this dichotomy is arguably a manifestation of C.P. Snow's 'two cultures' (the apparent divide between the arts and social sciences on the one hand, and engineering and the natural sciences on the other). Other methods for generating policy advice, including that from the discipline of economics, will not provide substitute insights to those of energy and exergy analysis. However, thermodynamic techniques such as these should not be used alone, but as part of a broader interdisciplinary 'toolkit' of sustainability assessment methods. They cannot determine, for example, the economic consequences or the environmental (ecotoxicological) impact of different energy technologies

  10. Energy, Transport, & the Environment Addressing the Sustainable Mobility Paradigm

    CERN Document Server

    King, Sir

    2012-01-01

    Sustainable mobility is a highly complex problem as it is affected by the interactions between socio-economic, environmental, technological and political issues. Energy, Transport, & the Environment: Addressing the Sustainable Mobility Paradigm brings together leading figures from business, academia and governments to address the challenges and opportunities involved in working towards sustainable mobility. Key thinkers and decision makers approach topics and debates including:   ·         energy security and resource scarcity ·         greenhouse gas and pollutant emissions ·         urban planning, transport systems and their management ·         governance and finance of transformation ·         the threats of terrorism and climate change to our transport systems.   Introduced by a preface from U.S. Secretary Steven Chu and an outline by the editors, Dr Oliver Inderwildi and Sir David King, Energy, Transport, & the Environment is divided into six secti...

  11. Bioarchitecture - a new vision of energy sustainable cities

    Science.gov (United States)

    Krzemińska, Alicja; Zaręba, Anna; Dzikowska, Anna

    2017-11-01

    Transformation of the natural environment will press the humanity to search for the new look at the problems of architecture and urban design. Nowadays passive houses construction is a standard and green roofs are incorporated in the design of contemporary cities. That's why city cluster will be successively transformed into sustainable bionic systems, which allows to protect the nature and stop further degradation and exploitation of public green space. The good examples of contemporary trend of designing in harmony with nature are energy sustainable underground buildings of Malcolm Wells, who in 60s designed his first energy sufficient construction. The underground cities and rock houses were built from the early beginning of architecture, with significant examples of cities: Sanmenxia in China in Henan Province, Matmata (Tunisia), Cappadocia (Turkey), Uplisciche (Georgia) or Brlhovce (Slovakia) etc. The underground buildings and cities, blending in with the background of topography, have a positive influence on the landscape and are energy sustainable. Climate responsive design materials create effective insulation, which allows to maintain the stable temperature inside the buildings. Bioarchitecture improves the microclimate in the neighborhood through increasing oxygen concentration in atmosphere and limiting of CO2 emission. Bioarchitecture represents new direction in changing the design priorities towards being closer with nature and it's needs.

  12. Sustainable energy catalogue - for European decision-makers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gram, S.; Jacobsen, Soeren

    2006-10-15

    The Green paper - A European Strategy for Sustainable, Competitive and Secure Energy, 2006 states that Europe has a rising dependency on imported energy reserves, which are concentrated in a few countries. The Rising gas and oil prices along with demands on lower emissions of CO2 adds pressure on the need for a new energy future for Europe. EU has since 1990 planned to become world leader in the renewable energy field. Therefore the EU member states have agreed that by 2010 21% of the consumed electricity and 5,75% of the consumed gasoline and diesel should originate from renewable energy sources. If the EU countries are to reach their goals, a commitment on several levels to develop and install energy from sustainable energy sources is needed. The purpose of this catalogue is to offer planners and decision-makers in EU states an inspirational tool to be used during local or regional transition towards sustainable energy technologies. The catalogue can also be used by everyone else who needs an overview of the sustainable energy technologies and their current development level and future potential, among others educational use is relevant. The catalogue provides an introduction to the following technologies that are already or are estimated to become central to a development with renewable energy in EU: Technologies for wind energy, wave energy, geothermal energy, bioenergy, solar energy, hydropower and fuel cells. The catalogue also includes a section about energy systems, which also includes a part about technologies for efficient use of energy. The catalogue could have included a few other technologies as e.g. heating pumps, but due to the size of the catalogue a priority was necessary. The catalogue does not claim to give all answers or to be complete regarding all details about the individual technologies; even so it offers information, which cannot easily be looked up on the Internet. In the back of the catalogue, under 'References and links' there

  13. Key Assets for a Sustainable Low Carbon Energy Future

    Science.gov (United States)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political

  14. Energy Planning - a Tool for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Henning Gulbrandsen, T.

    2006-01-01

    Working with energy and environment policy development in industry and local communities proves the importance of a systematic approach to management and handling of technology- and economical issues for a successful outcome. Raising awareness and competence is one the most important ways to fight poverty and raise prosperity. The industrial sectors need to improve their capacity to increase the cost efficiency and to meet the future competition from other countries and other domestic competitors, and the municipalities have to be more service-minded and efficient in their efforts to develop an agenda for delivering cost efficient services to the public sector. Lessons learned show that a comprehensive information service has to be set up for keeping all partners involved updated and informed about the progress of the different steps in the policy scheme. Information can be delivered on different levels depending of the partner status. Normally information meeting has to be arranged during the project execution and supplied with flyers with basic information concerning the progress, investment and expected results.(author)

  15. Sustainable energy and E-mobility at INEM

    Energy Technology Data Exchange (ETDEWEB)

    Gabele, Hugo; Panik, Ferdinand; Rising, David; Reiser, Stefan [Institut fuer nachhaltige Energietechnik und Mobilitaet, Esslingen-am-Neckar (Germany); Ziegler, Martin [HyLionTec GmbH, Stuttgart (Germany)

    2013-06-01

    The primary goal for the Institute for Sustainable Energy-Technology and Mobility is to provide students with hands-on experience in the field of alternative energy by means of R and D projects such as ''HydroSmart'' and ''Urban Buggy''. These projects, which lasted several semesters, have a special focus on practical skills and were particularly concerned with cost, functionality, engineering sophistication, customer satisfaction, and usability. In each case a final prototype was constructed, tested and presented. (orig.)

  16. Coping with climate change and China's wind energy sustainable development

    Directory of Open Access Journals (Sweden)

    De-Xin He

    2016-03-01

    Full Text Available Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from “large wind power country” to “strong wind power country”, opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.

  17. Collaborative market approaches to stimulate sustained renewable energy deployment

    International Nuclear Information System (INIS)

    Weissman, J.M.

    1996-01-01

    New market opportunities for renewable energy technologies are emerging in response to lower costs, greater possibilities for distributed products and services, strong customer preference for cleaner electricity, and the anticipation of deregulation of the electric power industry. In response, a series of innovative programs and market-based mechanisms are supporting accelerated, commercialization efforts. This paper reviews two different but complementary national collaborative initiatives. The PV-COMPACT, through its major program components, focuses on a number of market mechanisms and policy tools that support sustainable deployment of photovoltaic (PV) systems for utility markets. The Workshop In A Box Program, a collaborative effort managed by the Interstate Renewable Energy Council, supplies the right information to key state government agencies to assist them in evaluating decisions to purchase renewable energy products. This paper also addresses how distributed applications can open new markets for renewable energy systems including the evolution of customer choice programs like green pricing. The programs discussed in this paper demonstrate that no singular mechanism drives new and sustainable markets: it is the symbiotic relationship among many innovative and enterprising efforts and investments that leads to emerging renewable energy markets

  18. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  19. Simulation-based optimization of sustainable national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola

    2015-01-01

    The goals of the EU2030 energy policy should be achieved cost-effectively by employing the optimal mix of supply and demand side technical measures, including energy efficiency, renewable energy and structural measures. In this paper, the achievement of these goals is modeled by introducing an innovative method of soft-linking of EnergyPLAN with the generic optimization program (GenOpt). This soft-link enables simulation-based optimization, guided with the chosen optimization algorithm, rather than manual adjustments of the decision vectors. In order to obtain EnergyPLAN simulations within the optimization loop of GenOpt, the decision vectors should be chosen and explained in GenOpt for scenarios created in EnergyPLAN. The result of the optimization loop is an optimal national energy master plan (as a case study, energy policy in Serbia was taken), followed with sensitivity analysis of the exogenous assumptions and with focus on the contribution of the smart electricity grid to the achievement of EU2030 goals. It is shown that the increase in the policy-induced total costs of less than 3% is not significant. This general method could be further improved and used worldwide in the optimal planning of sustainable national energy systems. - Highlights: • Innovative method of soft-linking of EnergyPLAN with GenOpt has been introduced. • Optimal national energy master plan has been developed (the case study for Serbia). • Sensitivity analysis on the exogenous world energy and emission price development outlook. • Focus on the contribution of smart energy systems to the EU2030 goals. • Innovative soft-linking methodology could be further improved and used worldwide.

  20. SWOT analyses of the national energy sector for sustainable energy development

    International Nuclear Information System (INIS)

    Markovska, N.; Taseska, V.; Pop-Jordanov, J.

    2009-01-01

    A holistic perspective of various energy stakeholders regarding the Strengths, Weaknesses, Opportunities and Threats (SWOTs) of the energy sector in Macedonia is utilized as baseline to diagnose the current state and to sketch future action lines towards sustainable energy development. The resulting SWOT analyses pointed to the progressive adoption of European Union (EU) standards in energy policy and regulation as the most important achievement in the energy sector. The most important problems the national energy sector faces are scarce domestic resources and unfavorable energy mix, low electricity prices, a high degree of inefficiency in energy production and use, as well as insufficient institutional and human capacities. The formulated portfolio of actions towards enabling sustainable energy development urges the adoption of a comprehensive energy strategy built upon sustainability principles, intensified utilization of the natural gas, economic prices of electricity, structural changes in industry, promotion of energy efficiency and renewables, including Clean Development Mechanism (CDM) projects, enforcement of EU environmental standards and meeting the environmental requirements, as well as institutional and human capacity building.

  1. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  2. Personalized Energy Services : A Data-Driven Methodology towards Sustainable, Smart Energy Systems

    NARCIS (Netherlands)

    Srirangam Narashiman, A.U.N.

    2017-01-01

    The rapid pace of urbanization has an impact on climate change and other environmental issues. Currently, 54% of the global population lives in cities accounting for two-thirds of global energy demand. Sustainable energy generation and consumption is the top humanity’s problem for the next 50 years.

  3. Sustainable urban energy planning: A strategic approach to meeting climate and energy goals

    Energy Technology Data Exchange (ETDEWEB)

    Dobriansky, Larisa

    2010-09-15

    Meeting our 21st century challenges will require sustainable energy planning by our cities, where over half of the population resides. This already has become evident in the State of California, which has set rigorous greenhouse gas emission reduction targets and timeframes. To attain these targets will necessitate technically-integrated and cost-optimum solutions for innovative asset development and management within urban communities. Using California as a case study, this paper focuses on the crucial role for sustainable energy planning in creating the context and conditions for integrating and optimizing clean and efficient energy use with the urban built environment and infrastructure.

  4. The coming sustainable energy transition: History, strategies, and outlook

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Krishna, Karthik

    2011-01-01

    Facing global climate change and scarce petroleum supplies, the world must switch to sustainable energy systems. While historical transitions between major energy sources have occurred, most of these shifts lasted over a century or longer and were stimulated by resource scarcity, high labor costs, and technological innovations. The energy transition of the 21st century will need to be more rapid. Unfortunately, little is known about how to accelerate energy transitions. This article reviews past transitions and factors behind them, along with their time frames. Three modern case studies are discussed: Brazil, which shifted from an oil-based transportation system to one based on sugarcane-ethanol (success); France, which shifted from oil-fired electric power to nuclear power (success); and the United States, which attempted to shift from foreign oil to a mix of domestic energy resources (failure). Lessons from these attempts to govern energy transitions are discussed. Several policy instruments to accelerate a transition are identified, though even under ideal circumstances a global energy supply transition will be very slow. Given the need to simultaneously implement programs in countries with different political economies, a greater focus on energy efficiency, promotion of Smart Grids, and possibly a new treaty should yield more timely results. - Highlights: → We review the historical evidence on major energy transitions worldwide. → Case studies are presented of successful energy transitions in Brazil and France. → The United States provides an example of an unsuccessful energy transition. → We argue that a transition focused on energy efficiency can occur much more rapidly.

  5. Financing off-grid sustainable energy access for the poor

    International Nuclear Information System (INIS)

    Glemarec, Yannick

    2012-01-01

    This paper examines the role of public instruments in promoting private finance to achieve off-grid sustainable energy access. Renewable energy technologies are increasingly becoming the cheapest solutions for off-grid energy access. The dramatic uptake of mobile phones in developing countries shows how quickly decentralized services can develop on a commercial basis under the right conditions, and raises the prospect that private finance could also drive decentralized energy access for the poor. Indeed, there are already a number of instances of clean energy solutions – such as solar portable lights, household biogas units or solar home systems – that have managed to scale-up through leveraging private finance. However, the experience gained from first-generation market development projects show that, in almost all cases, significant public resources have been necessary to increase the affordability of clean energy technologies, provide access to financing for the poor, and remove non-economic barriers. Such public interventions may be funded by international public finance, domestic budgets and carbon finance. Despite mounting fiscal constraints facing governments worldwide, the emergence of new sources of climate finance and the political momentum in support of energy subsidy reforms, as well as new programming modalities, offer opportunities to leverage additional resources to achieve universal energy access by 2030. - Highlights: ► Renewable energy is increasingly the cheapest solution for off-grid energy access. ► Universal access to energy now depends less on technology and more business models. ► Substantial public finance will still be required to support universal energy access.

  6. ENVIRONMENTAL PROTECTION SUSTAINABILITY STRATEGIC FACTOR IN THE ENERGY INDUSTRY

    Directory of Open Access Journals (Sweden)

    CÎRNU Doru

    2015-06-01

    Full Text Available We propose to conceive an environmental strategy intended to integrate harmoniously Gorj energy industry with principles of sustainable development. The sustainable development complies trinomial: ecological-economic-social. In our view, sustainable development, requires clean water and unpolluted air, land consolidated rejuvenated forests, biodiversity and protected nature reserves, churches and monasteries secular admired by visitors, welcoming places entered in the natural and cultural harmony. It is also necessary to reduce the pressure generated by socio-economic factors on the environment and the principles of sustainable development. The quality of life in urban and rural areas show extreme differences compared to European standards. For efficiency, we addressed the modeling method by designing a model valid for all thermoelectric power plants based on fossil fuels, allowing simultaneously, so adding value and environmental protection. The general objective that we propose for the environment, natural resources and patrimony, is related to the prevention of climate change by limiting the emission of toxic gases and their adverse effects on the environment The achievement of strategic objectives and implementation of proposals submitted, we consider that would have a double impact, on the one side, to protect the environment and the quality of life and, on the other side a positive influence on economic and social level.

  7. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    Science.gov (United States)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  8. Nuclear energy and opportunity to strengthen the sustainable electricity sector

    International Nuclear Information System (INIS)

    Robles N, A. G.

    2016-09-01

    The beginning of electricity in Mexico was through the use and exploitation of natural resources; as the demand grew, more generation power plants were required with great capacity and at the same time the fuels used varied, although, oil continued to be the main fuel. At present, due to the effects of climate change, the Conference of the Parties has proposed to reduce the consumption of fossil fuels to give way to clean energy (wind, solar, geothermal, nuclear, etc.), which entails gradually modifying the energy matrix of the electricity sector. The National Development Plan and the National Electricity Sector Development Program, this coordinated by the Energy Secretariat in Mexico, establish policies to promote sustainable development, increasing electricity generation through clean energy sources, including nuclear energy. However, such plans are not accurate in the strategy to be followed to ensure compliance with the increased participation of nuclear energy. This article proposes a nuclear program for the Mexican electricity sector, under the terms of a State policy, aimed at crystallizing a sustainable electricity development 2015-2036; considering that the application to the electricity sector constitutes a representative and justified example of the incorporation of environmental aspects in decision processes for the preservation of the environment. In order to determine the quantity and type of reactors, as well as the number of nuclear power plants and increase of the installed capacity, the general planning scheme of the electric sector was used, taking as reference the modeling criteria of the WASP planning system. Finally, is concluded that the electricity generated by fission of radioactive elements is an opportunity to fulfill the commitments made by Mexico at COP 21 and to meet in an environmentally friendly way the energy requirement that our country needs. (Author)

  9. Sustainable development based energy policy making frameworks, a critical review

    International Nuclear Information System (INIS)

    Meyar-Naimi, H.; Vaez-Zadeh, S.

    2012-01-01

    This paper, in the first step, presents an overview of the origination and formulation of sustainable development (SD) concept and the related policy making frameworks. The frameworks include Pressure–State–Response (PSR), Driving Force–State–Response (DSR), Driving Force–Pressure–State–Impact–Response (DPSIR), Driving Force–Pressure–State–Effect–Action (DPSEA) and Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA). In this regard, 40 case studies using the reviewed frameworks reported during 1994–2011 are surveyed. Then, their application area and application intensity are investigated. It is concluded that PSR, and DPSEA and DPSEEA have the higher and lower application intensities, respectively. Moreover, using Analytical Hierarchy Process (AHP) with a set of criteria, it is shown that PSR and DPSIR have the highest and lowest priorities. Finally, the shortcomings of frameworks applications are discussed. The paper is helpful in selecting appropriate policy making frameworks and presents some hints for future research in the area for developing more comprehensive models especially for sustainable electric energy policy making. - Highlights: ► The origination and formulation of sustainable development (SD) concept is reviewed. ► SD based frameworks (PSR, DSR, DPSIR, DPSEA and DPSEEA) are also reviewed. ► Then, the frameworks application area and intensity in recent years are investigated. ► Finally, the SD concept and the SD based frameworks are criticized. ► It will be helpful for developing more comprehensive energy policy making models.

  10. Sustainable Energy Production - Facing up to our Common Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Bondevik, Kjell Magne [Prime Minister (Norway)

    1998-12-31

    With this presentation the Norwegian Prime Minister opened the conference, the Offshore Northern Seas Conference, an important meeting place for the oil and gas industry. Today, sustainable development, the environment and human rights are vital issues that politicians and the petroleum industry have included on their agendas. The end of the 1980s and the beginning of the 1990s mark the beginning of a new era in terms of de regulated markets and a growing concern about the Earth`s capacity to sustain a growing population and the present production and consumption patterns. This shift in political and economic practices has promoted far-reaching institutional changes and a rapid spread of capital, information and skills and an unprecedented integration of the world economy. Energy demand over the next 25 years will depend on fossil fuels, but renewable energy will become increasingly more important. The environmental issues discussed are (1) the local impact of production, distribution and use of fossil fuels, (2) the limited availability of fossil fuels and (3) the impact of the emission of greenhouse gases. The Prime Minister then discusses issues of human rights in sustainable development

  11. Sustainable Energy Production - Facing up to our Common Challenges

    International Nuclear Information System (INIS)

    Bondevik, Kjell Magne

    1998-01-01

    With this presentation the Norwegian Prime Minister opened the conference, the Offshore Northern Seas Conference, an important meeting place for the oil and gas industry. Today, sustainable development, the environment and human rights are vital issues that politicians and the petroleum industry have included on their agendas. The end of the 1980s and the beginning of the 1990s mark the beginning of a new era in terms of de regulated markets and a growing concern about the Earth's capacity to sustain a growing population and the present production and consumption patterns. This shift in political and economic practices has promoted far-reaching institutional changes and a rapid spread of capital, information and skills and an unprecedented integration of the world economy. Energy demand over the next 25 years will depend on fossil fuels, but renewable energy will become increasingly more important. The environmental issues discussed are (1) the local impact of production, distribution and use of fossil fuels, (2) the limited availability of fossil fuels and (3) the impact of the emission of greenhouse gases. The Prime Minister then discusses issues of human rights in sustainable development

  12. Sustainable energy consumption and production - a global view

    Energy Technology Data Exchange (ETDEWEB)

    Hernes, H.

    1995-12-31

    The paper gives a global view of sustainable energy consumption and production both in developed and developing countries. There is a need of replacing fossil fuel sources with renewable energy at a speed parallel to the depletion of the oil and gas sources. According to the author, the actual growth in developing countries` use of oil, coal and other sources of energy has almost tripled since 1970. Future population growth alone will spur a further 70% jump in energy use in 30 years, even if per capita consumption remains at current levels. For the OECD countries, energy use rose one fifth as much as economic growth between 1973 and 1989. Countries like China and India, and other developing countries, have huge coal reserves and energy needs. Policy makers have to integrate environmental concerns in decision making over the choice between different fuels, energy technologies and stricter environmental standards. Life cycle analyses can contribute to the development of overall indicators of environmental performance of different technologies. According to the IPCC (Intergovernmental Panel on Climate Change), anthropogenic CO{sub 2} emissions must be reduced by more than 60% in order to stabilize the CO{sub 2} concentration in the atmosphere. 8 refs.

  13. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    In many countries, the electricity supply and power plant operation are challenged by increasing amounts of fluctuating renewable energy sources. A smart energy system should be developed to integrate as much energy supply from fluctuating renewable sources and to utilise the scarce biomass....... It is concluded that the CCGT CHP plant is the most feasible both from a technical analysis and a market economic analysis with electricity exchange. It is found that the current economic framework for large CHP plants in Denmark generates a mismatch between socio economy and business economy as well...... as an unsustainable level of biomass consumption. Therefore, the regulatory framework should generally be considered in long-term planning of sustainable CHP systems....

  14. Renewable energy for sustainable ocean sensors and platforms

    Science.gov (United States)

    Carapezza, Edward M.; Molter, Trent M.

    2007-10-01

    In the future, networks of unmanned and unattended sensor systems will replace many of these manned assets and will become pervasive and highly connected in many maritime areas. Unmanned mobile surveillance systems will be able to operate with a high degree of autonomy and weather tolerance with minimum cost and manpower risk. Low cost, highly sustainable underwater power sources, for both stationary sensors systems and mobile surveillance platforms, are required for this vision. This paper presents a description of interim results of investigations into technologies and systems for generating renewable energy from coastal and open ocean areas. A range of technologies have been investigated from low power systems deriving energy from the microbial fuel cells and the direct bacterial conversion of methane gas to methanol liquid to larger power systems deriving energy from ocean waves, methane hydrate deposits, and hydrothermal vents.

  15. Energy, Economic Growth and Environmental Sustainability: Five Propositions

    Directory of Open Access Journals (Sweden)

    Steven Sorrell

    2010-06-01

    Full Text Available This paper advances five linked and controversial propositions that have both deep historical roots and urgent contemporary relevance. These are: (a the rebound effects from energy efficiency improvements are significant and limit the potential for decoupling energy consumption from economic growth; (b the contribution of energy to productivity improvements and economic growth has been greatly underestimated; (c the pursuit of improved efficiency needs to be complemented by an ethic of sufficiency; (d sustainability is incompatible with continued economic growth in rich countries; and (e a zero-growth economy is incompatible with a fractional reserve banking system. These propositions run counter to conventional wisdom and each highlights either a "blind spot" or "taboo subject" that deserves closer scrutiny. While accepting one proposition reinforces the case for accepting the next, the former is neither necessary nor sufficient for the latter.

  16. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.

    2007-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations. guidelines...... restrict use for environmental reasons. Forest certification standards include indicators directly related to the utilisation of wood for energy under several criteria, with most occurences found under environmental criteria. Roles and problems in relation to policy, legislation, certification standards....... and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also identifies...

  17. A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain

    OpenAIRE

    Lee Won Park; Sanghoon Lee; Hangbae Chang

    2018-01-01

    In this paper, we aim to provide a power trade system that will promote a sustainable electrical energy transaction ecosystem between prosumers and consumers of smart homes. We suggest a blockchain-based peer-to-peer (P2P) energy transaction platform be implemented to enable efficient electrical energy transaction between prosumers. We suggest the platform be built on the blockchain, as this technology allows a decentralized and distributed trading system, and allows a more transparent, trust...

  18. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  19. Energy Sustainable Mobile Networks via Energy Routing, Learning and Foresighted Optimization

    OpenAIRE

    Gambin, Angel Fernandez; Scalabrin, Maria; Rossi, Michele

    2018-01-01

    The design of self-sustainable base station (BS) deployments is addressed in this paper: BSs have energy harvesting and storage capabilities, they can use ambient energy to serve the local traffic or store it for later use. A dedicated power packet grid allows energy transfer across BSs, compensating for imbalance in the harvested energy or in the traffic load. Some BSs are offgrid, i.e., they can only use the locally harvested energy and that transferred from other BSs, whereas others are on...

  20. Building green covering for a sustainable use of energy

    Directory of Open Access Journals (Sweden)

    C.A. Campiotti

    2013-09-01

    Full Text Available Nowadays the growth of the cities increased built and paved areas, energy use and heat generation. The phenomenon of urban warming, called urban heat island, influences negatively outdoor comfort conditions, pollutants concentration, energy demand for air conditioning, as well as increases environmental impact due to the demand of energy generation. A sustainable technology for improving the energy efficiency of buildings is the use of green roofs and walls in order to reduce the energy consumption for conditioning in summer and improve the thermal insulation in winter. The use of green roofs and walls can contribute to mitigate the phenomenon of heat island, the emissions of greenhouse gases, and the storm water runoff affecting human thermal comfort, air quality and energy use of the buildings. Recently, a number of municipalities started to adopt regulations and constructive benefits for renovated and new buildings which incorporate green roofs and walls. The aim of this paper is to describe the green roofs and walls plant technology.

  1. The new district energy : building blocks for sustainable community development

    International Nuclear Information System (INIS)

    2008-01-01

    The price of energy is expected to rise as world demand for fossil fuels increases and energy supplies become harder to access. Governments and businesses are interested in the role of energy in the design, development and operation of buildings and whole communities. In addition to contributing to community economic development, district energy (DE) systems can assist communities in meeting their goals for sustainable growth and in managing the changing nature of risk in the generation and delivery of energy. This handbook was developed in order to encourage information sharing and provide ideas on how to advance district energy development in communities across Canada. The handbook identified those who could use DE and listed the benefits provided by DE. These included community, environmental, and business benefits. The handbook also offered suggestions for overcoming common challenges experienced by communities initiating a DE system and provided a checklist to help accelerate the uptake of DE systems in a community. These challenges included working with the community; using integrated design; building knowledge, know-how and technical skills; and partnering to improve project financing and reducing development risk. 50 refs., 8 tabs., 11 figs

  2. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    Directory of Open Access Journals (Sweden)

    David J. LePoire

    2014-03-01

    Full Text Available Societal prosperity is linked to sustainable energy and a healthy environment. However, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Other environmental resources and impacts may be nearing environmental thresholds, as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1 energy efficiency to bridge the transition to a renewable energy economy; (2 continued research, development, and assessment of new technologies; (3 improved understanding of environment impacts including natural capital use and degradation; (4 exploration of GDP alternative measures that include both economic production and environmental impacts; and (5 international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.

  3. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  4. The role of built environment energy efficiency in a sustainable UK energy economy

    International Nuclear Information System (INIS)

    Clarke, Joseph A.; Johnstone, Cameron M.; Kelly, Nicolas J.; Strachan, Paul A.; Tuohy, Paul

    2008-01-01

    Energy efficiency in the built environment can make significant contributions to a sustainable energy economy. In order to achieve this, greater public awareness of the importance of energy efficiency is required. In the short term, new efficient domestic appliances, building technologies, legislation quantifying building plant performance, and improved building regulations to include installed plant will be required. Continuing these improvements in the longer term is likely to see the adoption of small-scale renewable technologies embedded in the building fabric. Internet-based energy services could deliver low-cost building energy management and control to the mass market enabling plant to be operated and maintained at optimum performance levels and energy savings quantified. There are many technology options for improved energy performance of the building fabric and energy systems and it is not yet clear which will prove to be the most economic. Therefore, flexibility is needed in legislation and energy-efficiency initiatives

  5. Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model

    International Nuclear Information System (INIS)

    Chen Wenying; Li Hualin; Wu Zongxin

    2010-01-01

    China is striving for coordinated regional economic development and to solve the energy shortage in eastern China through a western China development plan with one focus being energy development and west to east energy transfer. This paper describes Western China Sustainable Energy Development Model (WSED) to evaluate various energy development scenarios for western China. The model includes a Western China MARKAL model, a Computable General Equilibrium Model for Western China (WCGE), and an Energy Service Demand Projection Model (ESDP). The ESDP provides energy service demand projections for the Western China MARKAL model, while the WCGE provides macroeconomic inputs for the ESDP and analyzes the impact of different energy development scenarios on western China economy. A reference scenario and several different west to east energy transfer scenarios with and without consideration of the water constraints and the endogenous technology learning are presented. The modeling describes the energy consumption, carbon emissions, water consumption, energy investment cost, and the impact on western China GDP of the different scenarios through the year 2050. These results have implications on sustainable energy development policies and sustainable west to east energy transfer strategies.

  6. Sustainable energy development material management team report. Fossil business unit

    International Nuclear Information System (INIS)

    Bird, P.; Keller, P.; Manning, P.; Nolan, M.; Ricci, A.; Turnbull, F.; Varadinek, H.

    1995-01-01

    Report of the Material Management Sustainable Energy Development (SED) Team was presented, outlining strategic directions and initiative for embedding SED principles in the materials management function. Six principles underlying SED were prescribed, accompanied by a framework for analysis. Excerpts from position papers used in the formulation of SED recommendations and initiatives were provided. The general theme of the recommendations was: (1) materials management activities should be review to ensure consistency with SED, (2) strategic alliances should be developed where appropriate and (3) staff in the Fossil Business Unit should promote SED among industry suppliers

  7. The energy inside the concept of the sustainable development

    International Nuclear Information System (INIS)

    Szauer, Maria Teresa

    1999-01-01

    The intimately bound of two thematic basic conceptual schemes are shown: The climatic change and the paper of the energy inside the concept of sustainable development. It is presented a description of the green house effect, their causes and consequences. They are analyzed, making emphasis in the differences among the countries of the north and of the south, the consumption of natural resources, the population's growth, and the deforestation like main causes of the climatic change. Lastly is discussed the international negotiations related with the topic

  8. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    for a number of special applications, such as disposable implantable power suppliers for medical sensor-transmitters and drug delivery/activator systems and self-powered enzyme-based biosensors; and they do offer practical advantages of using abundant organic raw materials for clean and sustainable energy...... production. Progress in enzyme biotechnology and electrochemistry enables now construction of biofuel cells exploiting a wide spectrum of enzymes wired to electrodes, able of prolonged for up to several months function.1-3 One of the most attractive designs exploits direct electronic communication between...

  9. Nuclear energy and sustainable development: contradiction or challenge?

    International Nuclear Information System (INIS)

    Laes, E.; Meskens, G.

    2001-01-01

    The concept of sustainable development is widely accepted as a principle for decision-making. However, it needs to be put into operation. Two classical approaches, cost-benefit analysis and multi-criteria analysis, are not suitable on account of the underlying rational choice theory and value system. Insights from these methods need to be complemented by the inherently pluralistic approach of cultural theory. This offers the prospects of the identification of all relevant criteria for the comparison of different energy vectors, broadening the perspective through an interdisciplinary working process, confronting uncertainty at a fundamental level, and the explicit integration of values and world views. (author)

  10. Nuclear energy and sustainable development: contradiction or challenge?

    Energy Technology Data Exchange (ETDEWEB)

    Laes, E.; Meskens, G. [SCK.CEN, Belgian Nuclear Research Centre, Mol (Belgium)

    2001-07-01

    The concept of sustainable development is widely accepted as a principle for decision-making. However, it needs to be put into operation. Two classical approaches, cost-benefit analysis and multi-criteria analysis, are not suitable on account of the underlying rational choice theory and value system. Insights from these methods need to be complemented by the inherently pluralistic approach of cultural theory. This offers the prospects of the identification of all relevant criteria for the comparison of different energy vectors, broadening the perspective through an interdisciplinary working process, confronting uncertainty at a fundamental level, and the explicit integration of values and world views. (author)

  11. Sustainable energy planning for 27 small Danish Islands. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    A methodology has been developed and implemented, whereby detailed assessment of a few model or archetype islands may be used as basis for subsequent estimation of possibilities for other islands of similar kind, provided certain key data for present day energy consumption are available. A consistent interaction with the population on the model islands has been important in that process. The technical-economical results of the study show, that a number of measures seem cost-effective with the aim of contributing to a sustainable energy supply for the small Danish islands. Most prominent are energy savings for both heat and electricity, grid connected wind turbines for electricity production and collective heat supply, in decreasing order of cost-effectiveness. It has become clear, that an organisational structure based on the cooperative idea is essential for realising this potential. In Denmark this is a strong tradition, recently manifesting itself in the fact, that a majority of Danish wind turbines have been installed in the fram work of cooperative idea is essential for realising this potential. In Denmark this is a strong tradition, recently manifesting itself in the fact, that a majority of Danish wind turbines have been installed in the framework of cooperatives. This means that it is a well proven concept, in Denmark well established in the legal and financial structure including the tax laws. Consequently such energy cooperatives represent the organisational structure recommended by the project also for other sustainable energy initiatives on the small Danish islands. The implication on a European level is that the methodology developed in the project, as well as the concrete recommendations of the project including organisational structures, seem well suited to be applied on a European level in the context of local communities with a strong identity. (LN)

  12. A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain

    Directory of Open Access Journals (Sweden)

    Lee Won Park

    2018-03-01

    Full Text Available In this paper, we aim to provide a power trade system that will promote a sustainable electrical energy transaction ecosystem between prosumers and consumers of smart homes. We suggest a blockchain-based peer-to-peer (P2P energy transaction platform be implemented to enable efficient electrical energy transaction between prosumers. We suggest the platform be built on the blockchain, as this technology allows a decentralized and distributed trading system, and allows a more transparent, trustworthy and secure P2P trading environment. We believe that such characteristics of the blockchain are necessary in electrical energy transactions within the smart home environment because the smart home aims to enhance user comfort and security, along with energy conservation and cost-savings. First, we classify the two different types of P2P trade to identify which will best benefit from the use of the suggested blockchain-based P2P energy-transaction platform. Within the two types of P2P trade, that we classify (pure P2P trade and hybrid P2P trade, the hybrid P2P trade will benefit more from a blockchain-based P2P energy-transaction platform. In the blockchain-based P2P energy-transaction platform, a smart contract is embedded in the blockchain and called an energy tag. The energy tag will set conditions for making every future energy transaction more cost-efficient while maintaining the most ideal and high-quality energy selection. With the blockchain-based energy tag in the energy-transaction process, multiple energy resources and home appliances will be democratically connected in order to provide users with high-quality, low-cost energy at all times and locations. In this paper, we provide simulation results that compare the unit price of electrical energy on the suggested platform to the unit price of electrical energy set by currently existing conventional power-generation companies. Additionally, we present simulation results that calculate how long

  13. Towards the sustainable energy system. The future of the transition policy for energy and environment

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.

    2006-11-01

    Inaugural speech at the occasion of the acceptance of the office for Energy Transition and Sustainable Development at the Faculty of Earth and Life Sciences of the Vrije Universiteit in Amsterdam, Netherlands, November 21, 2006. The transition policy in the Netherlands towards a sustainable energy supply system succeeded in creating a basis in the Dutch society, although at the cost of making clear choices with regard to concrete projects, new policy tools and financial means. In order to accelerate those choices the Dutch government needs to take decisive measures [nl

  14. Sustainability of the energy sector in the Mediterranean region

    International Nuclear Information System (INIS)

    Cantore, Nicola

    2012-01-01

    Energy and climate change is a key priority issue mentioned by the Mediterranean Strategy for Sustainable Development (MSSD) which explicitly claims that “Control, reduce or stabilize GhG (Greenhouse Gas) emissions” is a crucial target for Mediterranean countries. This paper uses the integrated assessment model IFs (International Futures) to implement a scenario analysis to investigate the mitigation potential of Mediterranean regions. It analyzes if the Mediterranean regions will be able to reach the MSSD climate change target and recommends amendments of the MSSD to implement with effectiveness climate change policies in the Mediterranean area. -- Highlights: ► In the majority of scenarios emissions in Mediterranean countries are not decreasing over 2020. ► Even in scenarios incorporating multiple policy actions emissions may not be decreasing over 2020. ► The Mediterranean Strategy for Sustainable Development needs to go beyond the 2015 deadline to promote climate policies. ► The Mediterranean Strategy for Sustainable Development is key to promote coordinated multiple actions to reduce emissions. ► Partial interventions could compromise the effectiveness of the overall regional emissions stabilization policies.

  15. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number......The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating...

  16. Long-term scenarios for sustainable energy use in Germany

    International Nuclear Information System (INIS)

    Fischedick, M.; Nitsch, J.; Lechtenboehmer, S.; Hanke, T.; Barthel, C.; Jungbluth, C.; Assmann, D.; Brueggen, T. vor der; Trieb, F.; Nast, M.; Langniss, O.; Brischke, L.A.

    2002-01-01

    The study was able to show, and explain vividly through scenarios describing change processes, that a sustainable use of energy (aimed, among other things, at reducing CO 2 emissions by 80% by 2050 compared with 1990 levels) is technically feasible, economically viable, compatible with farther-reaching objectives of energy policy (e.g. supply security), and does not, in spite of the substantial need for change, present the players involved with any insurmountable problems but, rather, constitutes both a challenge and an opportunity. Such a development is possible only if the efforts launched to give momentum to the increased use of renewable energy sources are continued consistently, the impending need for replacement and renewal within the generation system is consistently utilised for increasing efficiency and a reorientation mainly towards combined heat and power production, and energy saving is made a new focal point of energy policy. Furthermore, with regard to long-term infrastructure requirements (decentralisation, new fuels), the necessary decisions must be prepared at an early stage and sufficiently robust lines of development must be identified and followed. (orig.) [de

  17. Sustainability of hydropower as source of renewable and clean energy

    International Nuclear Information System (INIS)

    Luis, J; Sidek, L M; Desa, M N M; Julien, P Y

    2013-01-01

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  18. Sustainability of hydropower as source of renewable and clean energy

    Science.gov (United States)

    Luis, J.; Sidek, L. M.; Desa, M. N. M.; Julien, P. Y.

    2013-06-01

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  19. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  20. Sustainable energy policy. Submission to the Commonwealth Government

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This submission is provided by Australian business and industry to the Commonwealth Government in response to the invitation contained in a recent Issues paper. It would appear that the government's concern is primarily related to the link between energy generation and use and greenhouse gas emissions. This submission highlights the roles of demand growth, efficient delivery and effective implementation of policy framework. It is stated that the outset that energy policy should not be driven solely or even primarily by the greenhouse issue - economic sustainability is clearly at least of equal relevance. A viable and appropriate framework is suggested including: no-regrets action domestically; cost effective emission abatement in developing countries and research and development for long term solutions

  1. Good signs for sustainable development: Nuclear energy's contributions

    International Nuclear Information System (INIS)

    Khan, A.; Langlois, L.; Giroux, M.

    1997-01-01

    Over the past four decades, important achievements have been registered in fields of energy and the environment, medicine, agriculture, and industry, among others, where nuclear and radiation technologies are widely applied. Their use allows us, for example, to detect, trace, image and measure what our own eyes cannot see, to destroy cancer cells and germs, to pinpoint water resources, and to generate large amounts of electricity in an environmentally clean and economically competitive way. This article looks at the peaceful atom's contributions, especially within the context of the IAEA's activities for promoting sustainable development, and nuclear energy's versatile and varied applications. The beneficial applications of nuclear and radiation technologies have become valuable and sometimes indispensable, tools for addressing a range of needs and problems in Latin America, Africa, Asia, and other regions of the world

  2. Energy policies for low carbon sustainable transport in Asia

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash

    2015-01-01

    equivalent to 2 °C stabilization. Accounting for heterogeneity of national transport systems, these papers use diverse methods, frameworks and models to assess the response of the transport system to environmental policy, such as a carbon tax, as well as to a cluster of policies aimed at diverse development......Transformation of Asia's transport sector has vital implications for climate change, sustainable development and energy indicators. Papers in this special issue show how transport transitions in Asia may play out in different socio-economic and policy scenarios, including a low carbon scenario...... measures. Authors therefore advocate policies that target multiple dividends vis-à-vis carbon mitigation, energy security and local air quality. Whereas four papers focus on emissions mitigation policies, one paper examines challenges to adapt fast growing transport infrastructures to future climate change...

  3. Sustainable Mining Land Use for Lignite Based Energy Projects

    Science.gov (United States)

    Dudek, Michal; Krysa, Zbigniew

    2017-12-01

    This research aims to discuss complex lignite based energy projects economic viability and its impact on sustainable land use with respect to project risk and uncertainty, economics, optimisation (e.g. Lerchs and Grossmann) and importance of lignite as fuel that may be expressed in situ as deposit of energy. Sensitivity analysis and simulation consist of estimated variable land acquisition costs, geostatistics, 3D deposit block modelling, electricity price considered as project product price, power station efficiency and power station lignite processing unit cost, CO2 allowance costs, mining unit cost and also lignite availability treated as lignite reserves kriging estimation error. Investigated parameters have nonlinear influence on results so that economically viable amount of lignite in optimal pit varies having also nonlinear impact on land area required for mining operation.

  4. Nonregenerative natural resources in a sustainable system of energy supply.

    Science.gov (United States)

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Wind energy courses in the virtual classroom

    DEFF Research Database (Denmark)

    Badger, Merete

    2014-01-01

    The Virtual Campus Hub project has kick-started a development of online training courses. DTU Wind Energy now offers three E-learning courses to participants all over the world......The Virtual Campus Hub project has kick-started a development of online training courses. DTU Wind Energy now offers three E-learning courses to participants all over the world...

  6. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  7. Developing sustainable energy policies for electrical energy conservation in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Ajlan, S.A.; Al-Ibrahim, A.M.; Abdulkhaleq, M.; Alghamdi, F.

    2006-01-01

    Towards the end of 1998, the Saudi Arabian electricity sector embarked upon a major restructuring program. One of the aims of the program is to achieve sustainable performance. Although progress has been made, a number of challenges remain, including high demand growth, low generation capacity reserve margins, inefficient energy use, absence of time-of-use tariffs, and the need for large capital investments to meet current and future expansion. Electrical energy consumption in Saudi Arabia increased sharply during the last two decades due to rapid economic development and the absence of energy conservation measures. Peak loads reached nearly 24GW in 2001-25 times their 1975 level-and are expected to approach 60GW by 2023. The total investment needed to meet this demand may exceed $90 billion. Consequently, there is an urgent need to develop energy conservation policies for sustainable development. Current sustainable policies, particularly those pertaining to energy conservation, led to peak load savings of more than 871MW in 2001, mainly as a result of collaborations between the Ministry of Water and Electricity and the Saudi Electricity Company. In the long term, however, unless sustainable energy policies are developed at a national level, such efforts will be largely ineffective. To address this, policies and programs are being developed for public awareness, energy regulation and legislation, and energy information and programming. If energy conservation is taken into account, the forecast demand can be reduced by 5-10%. This is equivalent to 3-6GW of additional capacity, which represents a possible $1.5-3.0 billion saving over the next 20 years. Typically, investment in energy efficiency is 1% of utility sales revenues, which for a country like Saudi Arabia could be $15-60 million p.a. If only savings on air conditioning are considered, the return on investment is equivalent to 400-500MW p.a. of generating capacity-a saving of up to $0.25 billion p.a. In this

  8. Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth

    International Nuclear Information System (INIS)

    Oh, Tick Hui; Pang, Shen Yee; Chua, Shing Chyi

    2010-01-01

    Energy is essential to the way we live. Whether it is in the form of oil, gasoline or electricity, a country's prosperity and welfare depends on having access to reliable and secure supplies of energy at affordable prices. However, it is also one of the benefits taken for granted by many people, knowing little about the impact of electricity on their lives. Having dependent mainly on oil and gas for half a century, Malaysia has started to realize the importance to adopt renewable energy in the energy mix and continuously reviewed its energy policy to ensure sustainable energy supply and security. This paper examines and discusses the intricacy of the existing and new energy policies, issues and challenges in Malaysia. The overall approach in addressing the energy issues and challenges will continue to focus on adequacy, quality, security and sustainability of both non-renewable and renewable energy supply in the country's development and the promotion and implementation of its energy efficiency programs. The recently launched National Green Technology Policy is also discussed. (author)

  9. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  10. DTU says yes to operational friendly buildings but how should it be done in practice?

    DEFF Research Database (Denmark)

    Rasmussen, Helle Lohmann; Nielsen, Susanne Balslev; Møller, Anders B.

    2014-01-01

    Facilities managers often fight to be allowed to contribute their operational experiences to new building projects, but not at Campus Service of the Technical University of Denmark (DTU), where “ask the operations manager” has become a mantra for every building project in recent years, and there ......Facilities managers often fight to be allowed to contribute their operational experiences to new building projects, but not at Campus Service of the Technical University of Denmark (DTU), where “ask the operations manager” has become a mantra for every building project in recent years...

  11. Deriving the DTU15 Global high resolution marine gravity field from satellite altimetry

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    surface height observations, the Cryosat-2 has now completed its fifth cycle of 369 days. This opens for new ways of using “pseudo” repeat Geodetic mission data, by averaging or other means of analysisOne further advantage of the Cryosat-2 is its ability of provide new accurate sea surface height...... information for gravity field determination in the northernmost part of the Arctic Ocean upto 88N where no altimeters have measured before.The first evaluation of the DTU15 global marine gravity field is presented here. The DTU15 is based on five years of retracked altimetry from Cryosat-2 as well as data...

  12. DTU BCI speller: An SSVEP-based spelling system with dictionary support

    DEFF Research Database (Denmark)

    Vilic, Adnan; Kjaer, Troels W.; Thomsen, Carsten E.

    2013-01-01

    In this paper, a new brain computer interface (BCI) speller, named DTU BCI speller, is introduced. It is based on the steady-state visual evoked potential (SSVEP) and features dictionary support. The system focuses on simplicity and user friendliness by using a single electrode for the signal......) is 4.90 ± 3.84 with a best case of 8.74 CPM. All subjects reported systematically on different user friendliness measures, and the overall results indicated the potentials of the DTU BCI Speller system. For subjects with high classification accuracies, the introduced dictionary approach greatly reduced...

  13. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  14. Energy equity: will the UN Sustainable Energy For All initiative make a difference

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Emma

    2012-05-15

    Access to affordable modern energy services may not be a Millennium Development Goal (MDG) but without it, sustainable development, indeed the MDGs themselves, cannot be achieved. Yet energy access remains an area of great global inequity. On one hand, wealthy countries and communities consume vast amounts of often subsidised energy resources every day. On the other hand, 1-in-5 people lives with no access to grid electricity, and around 40 per cent of the world's population (nearly three billion people) lack the technologies to make cooking fuels clean, safe and efficient. Can the UN's Sustainable Energy for All initiative in 2012 redress the balance? Perhaps, but only if it puts improving the lives of the poorest and most vulnerable at the heart of its efforts.

  15. Energy and sustainable development. Perspectives from the Paris-based International Energy Agency

    International Nuclear Information System (INIS)

    Priddle, R.

    1999-01-01

    The G-8 leaders issued a statement expressing their commitment 'to encourage the development of energy markets' and declared that 'the greatest environmental threat of our future prosperity remains climate change and we confirm our determination to address it'. One of the options for tackling the greenhouse gas problem is to encourage substitution of carbon free fuels for conventional fossil fuels. This includes renewable energy sources and nuclear power, which has significant advantages to a society troubled by the prospect of climate change triggered by carbon emissions. Fuel supply to civil nuclear power plants is potentially, indefinitely sustainable. Uranium resources are globally widespread and could last 60 years, longer than the known reserves of oil and gas. Technological options are known for increasing the energy extracted from natural uranium. A recent IEA publication 'Nuclear Power Sustainability: Climate Change, Competition' discusses what would be necessary to make both renewable and nuclear energy sources cost-effective

  16. Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations

    Science.gov (United States)

    2016-04-04

    sustainable energy included renewable energy sources, such as hydroelectricity, solar energy , wind energy , wave power, geothermal energy , bioenergy, tidal ...June 2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER KEEPING THE FUTURE BRIGHT: DEPARTMENT OF DEFENSE (DOD) Sb. GRANT NUMBER SUSTAINABLE ENERGY STRATEGY...SUPPLEMENTARY NOTES Not for Commercial Use without the express written permission of the author 14. ABSTRACT The energy crisis of the 1970s brought an abrupt

  17. Strategic factors for the Romanian sustainable energy development

    International Nuclear Information System (INIS)

    Chirica, Teodor

    2006-01-01

    This is a presentation given to the Round Table 'National Policy of Nuclear Security', held at hotel Marriott, Bucharest, on April 25, 2006. The Romanian National Council (CNR) is a founding member of the World Energy Council, founded in 1924, and having at present 100 autonomous member committees. The structure of the electric energy production in Romania in 2005 is presented as follows: - lignite, 32% (19,133 GWh); - pit coal, 8% (4,482 GWh); - hydrocarbons, 17% (10,232 GWh); - hydroelectric, 34% (20,285 GWh); - nuclear power, 9% (5,554 GWh). European Commission adopted a new Green Paper on Energy and the European Summit concluded about the necessity of a common European policy in the energy sector. Based on these political directions the road map in the field of energy in Romania has adopted as a target for 2015 an energy production of 72.9 TWh by restructuring production units and installing new capacities. Special attention is given in this talk to the Romanian nuclear power contribution. It is pointed out the essential factor of nuclear energy acceptance for a sustainable development of this technology which implies a correct information of the population in the whole Europe about the advantages and disadvantages of nuclear power, having in view the challenges related to energy security and environmental protection. Every country has the right of choosing its own energy mix. In European Union, where nuclear power represents 33% of the energy production, of high priority appear to be the radioactive waste management and the final decommissioning of nuclear facilities. The experience acquired in Romania, after 9 years of commercial exploitation of Cernavoda NPP Unit 1, showed that the nuclear technology is safe and the results concerning nuclear safety, economical efficiency and environmental protection are excellent. Consequently, the Romanian Government engaged firmly to develop this technology. The commissioning of Cernavoda NPP Unit 2 is foreseen for mid

  18. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, need for comprehensive monitoring and data analysis, and state funding requirements and opportunity costs. The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  19. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    villages, b. impacts associated with climate change on human health, c. progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, d. need for comprehensive monitoring and data analysis, and e. state funding requirements and opportunity costs. Conclusion . The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  20. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    with climate change on human health,progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning,need for comprehensive monitoring and data analysis, andstate funding requirements and opportunity costs. Conclusion The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat. PMID:23971014