WorldWideScience

Sample records for sustainable energies technical

  1. Technical Design of Flexible Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid.......The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  2. IAEA technical meeting on fissile material strategies for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy; Koyama, Kazutoshi

    2005-01-01

    A Technical Meeting (TM) on 'Fissile Material Management Strategies for Sustainable Nuclear Energy' was organized by the International Atomic Energy Agency (IAEA) in Vienna from 12 to 15 September 2005. Prior to the TM, three Working Groups (WG) composed of experts from 10 countries prepared Key Issues papers on: 1) Uranium Demand and Supply through 2050; 2) Back-end Fuel Cycle Options; and 3) Sustainable Nuclear Energy beyond 2050: Cross-cutting Issues. Some 36 papers, including 3 key issue papers, were presented during the TM in 3 different sessions. The present paper summarizes the deliberations of the TM. (author)

  3. The global technical potential of bio-energy in 2050 considering sustainability constraints.

    Science.gov (United States)

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-12-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

  4. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2011-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  5. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2009-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  6. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2010-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  7. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2010-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  8. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2009-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  9. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2008

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...

  10. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2010

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...

  11. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2009

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...

  12. The Institute for Sustained Performance, Energy, and Resilience, University of North Carolina, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Robert [Univ. of North Carolina, Chapel Hill, NC (United States)

    2018-01-20

    This is the final report for the UNC component of the SciDAD Institute for Sustained Performance, Energy, and Resilience. In this report, we describe activities on the SUPER project at RENCI at the University of North Carolina at Chapel Hill. While we focus particularly on UNC, we touch on project-wide activities as well as, on interactions with, and impacts on, other projects.

  13. Energy and sustainability

    International Nuclear Information System (INIS)

    Brunner, D.

    2001-01-01

    This article describes the further education concepts of the Swiss Federal Government and the Swiss Cantons in the energy area with particular emphasis on post-graduate courses on energy and sustainability in building and civil engineering. The activities of a working group on further education in these areas and the basic objectives of the concepts in the planning, implementation and operational areas are discussed. The courses offered by various Swiss technical colleges in the building and energy areas are examined and experience gained within the framework of the Swiss 'Energy 2000' programme is discussed. Finally, the Penta Project on renewable energy sources, set up jointly by the SwissEnergy programme and various professional associations to provide further education and training for target audiences in the energy and building technical services areas, is looked at

  14. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  15. Exploring the technical and economic feasibility of using the urban water system as a sustainable energy source

    Directory of Open Access Journals (Sweden)

    de Graaf Rutger

    2008-01-01

    Full Text Available The objective of this paper is to determine the technical and economic feasibility of an alternative energy system in which the urban water system functions as a source for sustainable energy supply. It is demonstrated that aquifer thermal energy storage supplemented with surface water heat collection in summer, yields sufficient heat to compensate total heat demand of a residential district. Using the urban water system as energy source makes natural gas supply obsolete, provides a CO2 reduction of 60% and is preferable in terms of costs compared to conventional gas based central heating installations. The feasibility of the urban groundwater system, urban surface water system, and the economic feasibility are determined in this paper. The local groundwater feasibility to supply the design discharge is determined by soil and aquifer characteristics from the national groundwater database, reference projects, and bore-hole data. A heat balance model is used to quantify effects on the water system. Internal rate of return calculation for the investments and full lifetime exploitation costs are used to determine the economic feasibility of the concept. In summer, there is a net water temperature decrease of 1.5-1.6 °C. Water quality and ecological improvement take place because a lower temperature results in increasing oxygen content. Moreover, the expected water temperature increase by climate change can be prevented. The concept is economically feasible. Considering the full lifetime and all investment and exploitation costs, the concept is more profitable than a conventional system.

  16. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  17. Sustainable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Afgan, Naim H. [Instituto Superior Tecnico, Lisbon (Portugal); Al Gobaisi, Darwish; Carvalho, Maria G. [International Foundation for Water Science and Technology, Abu Dhabi (United Arab Emirates); Cumo, Maurizio [University of Rome ' La Sapienza' , Rome (Italy)

    1998-07-01

    The paper presents an overview of sustainable energy development and is aimed to emphasize the important aspects relevant to this activity. A short introduction, related to the present energy outlook with a survey of available data, is presented. This gives the possibility to assess the motivation for a sustainable energy development. Special attention is devoted to the definition of sustainability and its generic meaning. In this respect, particular attention is devoted to the discussion of different aspects of sustainability in the present world. In order to present an engineering approach to the sustainable development, attention is devoted to the review of sustainability criterions as they have to be introduced in the future products. The main emphasis is given to review a potential development in the energy engineering science which may lead to a sustainable energy development. Seven major areas are listed with specific problems and their relevance to the sustainable energy development. This includes the following areas: energy resources and development: efficiency assessment; clean air technologies; information technologies; new and renewable energy resources; environment capacity; mitigation of nuclear power threat to the environment. The education system is the milestone for any economic development. In this respect, sustainable energy development will require special attention to be devoted to the new development of the education system. The distance learning education system is envisages as the potential option for the knowledge dissemination of the new energy technologies. (Author)

  18. The Role of Technical Innovation and Sustainability on Energy Consumption: A Case Study on the Taiwanese Automobile Industry

    Directory of Open Access Journals (Sweden)

    Chao-Wu Chou

    2015-06-01

    Full Text Available The impact of global warming and climate change is one of the most critical challenges of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. The continuous improvement in automobile energy consumption is one of the most effective ways to reduce global warming. A comparative analysis is proposed to examine the various automobiles that utilize technological innovation to improve their energy consumption. Their contribution to CO2 emissions is then investigated. This study focuses on technical innovation and output power of a conventional engine. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi have improved energy consumption and reduce CO2 emissions. In addition, the Toyota hybrid vehicles have also improved energy consumption and reduced greenhouse gases emissions.

  19. Engineering Sustainability: A Technical Approach to Sustainability

    OpenAIRE

    Rosen, Marc A.

    2012-01-01

    Sustainability is a critically important goal for human activity and development. Sustainability in the area of engineering is of great importance to any plans for overall sustainability given 1) the pervasiveness of engineering activities in societies, 2) their importance in economic development and living standards, and 3) the significant impacts that engineering processes and systems have had, and continue to have, on the environment. Many factors that need to be considered and appropriate...

  20. Evaluating the Best Renewable Energy Technology For Sustainable Energy Planning

    OpenAIRE

    Demirtas, Ozgur

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  1. Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin

    OpenAIRE

    Ozgur Demirta

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  2. Energy and Sustainable Development

    International Nuclear Information System (INIS)

    2013-01-01

    None of the eight Millennium Development Goals (MDGs) adopted by the United Nations in 2000 directly addressed energy, although for nearly all of them - from eradicating poverty and hunger to improving education and health - progress has depended on greater access to modern energy. Thirteen years later, energy is being given more attention. The target date for the MDGs is 2015, and in 2012 the UN began deliberations to develop sustainable development goals to guide support for sustainable development beyond 2015. The Future We Want, the outcome document of the 2012 United Nations Conference on Sustainable Development (also known as Rio+20) gives energy a central role: ''We recognize the critical role that energy plays in the development process, as access to sustainable modern energy services contributes to poverty eradication, saves lives, improves health and helps provide for basic human needs''

  3. Energy sustainable communities - social and psychological aspects

    International Nuclear Information System (INIS)

    Schweizer-Ries, P.; Baasch, St.; Jagszent, J.

    2004-01-01

    Besides technical, political and economic aspects of energy sustainability there are several social, behavioural and psychological dimensions of vital importance for a successful implementation of Renewable Energy Systems (RES) and Rational Use of Energy (RUE) within communities. The European Project ''Sustainable Communities-on the energy dimension'' pursues an interdisciplinary approach to detect essential success and facilitating factors. In the last years social and psychological aspects in the process of sustainability came to the fore more and more. Not only as a complementary science to facilitate the technical aims in the change process but also as an essential part for success. (authors)

  4. Sustainable Energy for All

    DEFF Research Database (Denmark)

    be such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. Investment in sustainable energy is a smart strategy for growing markets, improving competitiveness, and providing greater equity and opportunity. Sustainable energy has two key elements...... to operate them competitively. Energy efficiency has a profound effect on productivity, ensuring universal access to modern energy services, health, education, climate change, food and water security and communication services. This book is an extended and updated version of 15 papers presented at the 3rd...... Triennial International Workshop on ‘Sustainable Energy for All: Transforming Commitments to Action’ organised by the Centre for Science & Technology of the Non-Aligned and Other Developing Countries (NAM S&T Centre) jointly with the Society of Energy Engineers and Managers (SEEM), Trivandrum, India...

  5. Chemistry of sustainable energy

    CERN Document Server

    Carpenter, Nancy E

    2014-01-01

    Energy BasicsWhat Is Energy?Energy, Technology, and SustainabilityEnergy Units, Terms, and AbbreviationsElectricity Generation and StorageOther ResourcesReferencesFossil FuelsFormation of Oil and GasExtraction of Fossil FuelsRefiningCarbon Capture and StorageSummaryOther ResourcesOnline Resources Related to Carbon Capture andSequestrationReferencesThermodynamicsIntroductionThe First Law of ThermodynamicsThe Second Law and Thermodynamic Cycles: the Carnot EfficiencyExerg

  6. Sustainability and energy use

    NARCIS (Netherlands)

    Velthuijsen, Jan Willem

    1997-01-01

    For various reasons the development of the energy markets throughout the world has been characterised by market imperfections and government intervention. The energy market has been primarily regarded as a matter of supply, and research has been dominated by technical issues. Since recently the

  7. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  8. Explicating the Sustainable Design of Technical Artefacts

    DEFF Research Database (Denmark)

    Vissonova, Karina

    2016-01-01

    afforded by the properties of artefacts. The study is a conceptual analysis and as such belongs to the field of epistemology of design. It offers three contributions to the design discipline: (1) a proposition of the definition of the sustainable design kind; (2) a proposition of the concept of technical......Sustainable design of technical artefacts is referred to as if it were a kind of design with some specific characteristics. However, in design research and practice alike, there appears to be a lack of shared conceptions of what such a design might entail. Furthermore, we have no clear grounds...... for evaluating what makes the sustainable design solutions permissible. The lack of shared conceptions is largely due to ambiguities associated with the notion of sustainability. In response to these challenges, the aim of my study is to offer a definition of sustainable design of technical artefacts. I argue...

  9. Sustainable energy for all. Technical report of task force 1 in support of the objective to achieve universal access to modern energy services by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Birol, Fatih [International Energy Agency, Paris (France); Brew-Hammond, Abeeku (University of Science and Technology (Ghana

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force One which is dedicated to the objective of achieving universal access to modern energy services by 2030. The report shows that universal energy access can be realized by 2030 with strong, focused actions set within a coordinated framework.

  10. Materials for Sustainable Energy

    Science.gov (United States)

    Crabtree, George

    2009-03-01

    The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.

  11. Institute for Sustainable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay [Univ. of Alabama, Tuscaloosa, AL (United States)

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  12. Sustainable Energy (SUSEN) project

    International Nuclear Information System (INIS)

    Richter, Jiri

    2012-01-01

    Research Centre Rez and University of West Bohemia started preparatory work on the 'Sustainable Energy' project, financed from EU structural funds. The goals and expected results of the project, its organization, estimated costs, time schedule and current status are described. (orig.)

  13. Energy for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Klaus [United Nations Environment Programme (Kenya)

    2003-09-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new

  14. Hopi Sustainable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  15. Energy-Economy-Sustainability

    International Nuclear Information System (INIS)

    Meier, R.; Renggli, M.; Previdoli, P.

    1999-12-01

    With an annual turnover of more than 20 billion Swiss Francs energy is an important factor of economic development. Even in periods of seemingly unlimited energy reserves emphasis has to placed on the safety of supply and energy policy has to be adjusted to long term goals. The high impacts of the use of energy are causing external costs of 11 to 16 billion Swiss Francs per year, thereby violating the requirements of a sustainable development. The research programme 'Principles of energy economy' of the Swiss Federal Office of Energy is focused on energy economy and energy policy. In this volume selected projects are presented in a concentrated form to a wider public. Perspectives are drawn up concerning future energy demand, and special attention is paid to the impact of political measures (including various types of taxes) on demand trends and on environmental effects. With the aid of refined models the economic consequences are demonstrated, and significant results are shown which influence the ongoing discussion on double dividends (positive effects on both energy/environment and on economy). The analysis of energy-related measures in the transportation sector including, e.g., promotion measures for renewable energy or consumption-related motor vehicle taxes, is another focus of the programme. In view of a possible revision of the nuclear energy liability act related questions are discussed from the economic point of view. Finally, considerations and results on the role of public service in a liberalized electricity market are reviewed. Dr. R. Meier is head of the research programme 'Principles of energy economy'. (authors) [de

  16. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  17. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  18. Sustainable Energy Path

    Directory of Open Access Journals (Sweden)

    Hiromi Yamamoto

    2005-12-01

    Full Text Available The uses of fossil fuels cause not only the resources exhaustion but also the environmental problems such as global warming. The purposes of this study are to evaluate paths toward sustainable energy systems and roles of each renewable. In order to realize the purposes, the authors developed the global land use and energy model that figured the global energy supply systems in the future considering the cost minimization. Using the model, the authors conducted a simulation in C30R scenario, which is a kind of strict CO2 emission limit scenarios and reduced CO2 emissions by 30% compared with Kyoto protocol forever scenario, and obtained the following results. In C30R scenario bioenergy will supply 33% of all the primary energy consumption. However, wind and photovoltaic will supply 1.8% and 1.4% of all the primary energy consumption, respectively, because of the limits of power grid stability. The results imply that the strict limits of CO2 emissions are not sufficient to achieve the complete renewable energy systems. In order to use wind and photovoltaic as major energy resources, we need not only to reduce the plant costs but also to develop unconventional renewable technologies.

  19. Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, Nebojsa [International Institute for Applied Systems Analysis and Vienna University of Technology (Austria); Kammen, Daniel [Univ. of California, Berkeley, CA (United States); Jewell, Jessica [International Institute for Applied Systems Analysis (Austria)

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

  20. Sustainable development and energy indicators

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan

    2002-01-01

    Starting from the basic definition of sustainable development and its four dimensions, the role of indicators for sustainable energy development is analysed. In particular, it is shown that important energy efficiency indicators belong in fact to energy supply efficiency, while the end-use energy efficiency could be more pertinently represented by energy intensity indicators. Furthermore, the negentropic effects of science and technology related sustainable energy scenarios are pointed out. Finally, the sustainable development is related to wisdom, interpreted as a sum of knowledge, morality and timing. (Author)

  1. Energy sustainable communities: Environmental psychological investigations

    International Nuclear Information System (INIS)

    Schweizer-Ries, Petra

    2008-01-01

    Energy sustainability is becoming an increasing issue-or rather 'the' issue in our society. Often it is reduced to a purely technical problem. Renewable energies and energy-efficient technologies are developed to solve the problem, but finally the end-users will 'decide' how much and what kind of energy they are going to consume. This article is targeted on showing the environmental psychological aspects of the change of energy demand and supply. It builds upon a transactional model of human technology interchange and summarises environmental psychological work done during more than 5 years. It refers to the idea of energy sustainable communities (ESCs), shows the development of one example community and concentrates on one aspect of the social dimension of ESCs, the 'acceptance of renewable energy technology', its definition and measurement in Germany

  2. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    ). The university is in the international vanguard of knowledge and research in the field of sustainable energy. With as many as 1,000 employees spread across a large number of departments, the university possesses extensive expertise on a wide range of energy technologies and energy systems. Research is carried...... out in close cooperation with internationally leading institutions and experts. Based on a wealth of core competencies, DTU takes a broadand holistic approach to energy research within both energy supply and consumption. Against this background, DTU identifies, presents and discusses new energy...... sustainable energy systems where security of supply, climate concerns and new green economic growth go hand in hand....

  3. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  4. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  5. Solar energy technical training directory

    Energy Technology Data Exchange (ETDEWEB)

    Corcoleotes, G; Kramer, K; O& #x27; Connor, K

    1979-06-01

    Available solar energy offerings in the technical training area are presented. Institutions are listed alphabetically by state. Each listing includes an institution address and phone number, solar programs or curricula offered, and detailed solar couse information. An alphabetical index of institutions in included. (MHR)

  6. The Potential of the Technical University of Denmark in the Light of Sustainable Livable Cities

    DEFF Research Database (Denmark)

    Jensen, Lotte Bjerregaard; Nielsen, Per Sieverts; Nielsen, Susanne Balslev

    2014-01-01

    on sustainability but also on global urbanization, compact cities, and smart cities supports new thinking in urban planning and design in technical education. The paper suggests a new initiative to further develop the sustainable urban planning research and education at DTU.......The Technical University of Denmark (DTU) has a long tradition for research and education in urban planning and sustainable urban development. An increasing societal focus on sustainability and urbanization in society supports this continuous focus on sustainable urban planning in technical...... educations. The focus on sustainable urban development includes understanding the role of civil engineering, water engineering, sustainable mobility and energy, and communities in developing future desirable solutions. However, beyond the challenges faced in each of the specific technical fields...

  7. Sustainable Welfare in Low Energy Societies

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1996-01-01

    The chapter presents some general basic concepts which are useful in analyzing future options for saving energy and thereby mitigate the environmental problems. Three factors are suggested as determinants of the energy demand, namely the population, the level of energy services (material welfare)...... between sustainability and economic growth. The conclusion is that for energy planning not only technical options should be considered, but also the developments in population as well as the economy.......), and the energy intensity of the technology applied. Examples of the technological options are presented. But also discussed are the limitations of the technology, which turns focus at the economic development as a determinant of future sustainability. A study of Low Electricity Europe illustrates the dilemma...

  8. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  9. A sustainable energy development

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to encourage electric power production through renewable energies (such as wind energy with the Eole 2000 plan, solar water heaters in overseas departments, wood energy for space heating in buildings, photovoltaic energy), demand side management and cogeneration, and to enhance its purchase conditions by the government-owned EDF utility. Laws have been also introduced concerning air quality and the rational use of energy

  10. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  11. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  12. Overview of the Sustainable Energy Research at DTU

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt

    2014-01-01

    Most of the Danish expertise in sustainable energy is found at the Technical University of Denmark, where approximately 1,000 staff members are carrying out research into sustainable energy. The research activities cover a broad area of scientific fields, from production, conversion, systems...

  13. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  14. Energy indicators for sustainable development

    International Nuclear Information System (INIS)

    Vera, Ivan; Langlois, Lucille

    2007-01-01

    Energy is an essential factor in overall efforts to achieve sustainable development. Countries striving to this end are seeking to reassess their energy systems with a view toward planning energy programmes and strategies in line with sustainable development goals and objectives. This paper summarizes the outcome of an international partnership initiative on indicators for sustainable energy development that aims to provide an analytical tool for assessing current energy production and use patterns at a national level. The proposed set of energy indicators represents a first step of a consensus reached on this subject by five international agencies-two from the United Nations system (the Department of Economic and Social Affairs and the International Atomic Energy Agency), two from the European Union (Eurostat and the European Environment Agency) and one from the Organization for Economic Cooperation and Development (the International Energy Agency). Energy and environmental experts including statisticians, analysts, policy makers and academics have started to implement general guidelines and methodologies in the development of national energy indicators for use in their efforts to monitor the effects of energy policies on the social, economic and environmental dimensions of sustainable development

  15. Energy Security, Innovation & Sustainability Initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-30

    More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy

  16. Hawaii Energy Sustainable Program

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Griffin, James [Univ. of Hawaii, Honolulu, HI (United States); Maskrey, Arthur [Univ. of Hawaii, Honolulu, HI (United States); Antal, Jr., Michael [Univ. of Hawaii, Honolulu, HI (United States); Busquet, Severine [Univ. of Hawaii, Honolulu, HI (United States); Cooney, Michael [Univ. of Hawaii, Honolulu, HI (United States); Cole, John [Univ. of Hawaii, Honolulu, HI (United States); Dubarry, Matthieu [Univ. of Hawaii, Honolulu, HI (United States); Ewan, James [Univ. of Hawaii, Honolulu, HI (United States); Liaw, Bor Yann [Univ. of Hawaii, Honolulu, HI (United States); Matthews, Dax [Univ. of Hawaii, Honolulu, HI (United States); Coffman, Makena [Univ. of Hawaii, Honolulu, HI (United States)

    2016-12-31

    The objective of HESP was to support the development and deployment of distributed energy resource (DER) technologies to facilitate increased penetration of renewable energy resources and reduced use of fossil fuels in Hawaii’s power grids. All deliverables, publications and other public releases have been submitted to the DOE in accordance with the award and subsequent award modifications.

  17. Sustainable development and nuclear energy

    International Nuclear Information System (INIS)

    2000-05-01

    This report has four chapters .In the first chapter world energy statute and future plans;in the second chapter Turkey's energy statute and future plans; in the third chapter world energy outlook and in the last chapter sustainable development and nuclear energy has discussed in respect of environmental effects, harmony between generations, harmony in demand, harmony in sociapolitic and in geopolitic. Additional multimedia CD-ROM has included

  18. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  19. Sustainable cities and energy policies

    International Nuclear Information System (INIS)

    Capello, R.; Nijkamp, P.; Pepping, G.

    1999-01-01

    This book starts out with the optimistic perspective that modern cities can indeed play a strategic role in the necessary pathway to sustainable development, with particular emphasis on the opportunities offered by local energy and environmental initiatives. Our study aims to demonstrate that an urban sustainability policy has many socio-economic benefits, while it also seeks to identify the critical success and failure factors of sustainable city innovations. After a comprehensive review of various opportunities and experiences, attention is focused particularly on renewable energy resources which may offer new potential for the active involvement of local authorities. The study also highlights major impediments regarding the adoption and implementation of renewable energies, in particular, the development of advanced energy-environmental technology in a world dominated by natural (public) monopolies and/or monopolistic competition elements. In this context both theoretical and empirical elements are discussed, as well as institutional aspects. The theory and methodology is tested by a thorough empirical investigation into local renewable energy initiatives in three European countries, viz. Greece, Italy and The Netherlands. Based on an extensive data base, various statistical models are estimated in order to identify the key elements and major driving forces of sustainable development at the city level. And finally, the study is concluded with a long list of applicable and operational policy guidelines for urban sustainability. These lessons are largely based on meta-analytic comparative studies of the various initiatives investigated. (orig.)

  20. Towards a sustainable energy strategy for Saskatchewan

    International Nuclear Information System (INIS)

    Coxworth, A.; Bigland-Pritchard, M.; Coxworth, E.; Orb, J.

    2007-01-01

    The production and consumption of energy raises significant environmental concerns regarding the depletion of non-renewable resources; air and water pollution; waste management; and damage of habitats. Saskatchewan, as elsewhere, needs to develop new approaches to meeting its energy needs. This report was intended to help decision-makers to consider the possibility of a sustainable, safe, environment and climate-friendly energy future for Saskatchewan. It provided an overview of energy use trends in Saskatchewan for refined petroleum products; natural gas; coal; primary electricity; and total energy consumption. Sustainability was defined and the need for change was discussed. Energy efficiency improvement and conservation opportunities in buildings, industry, electrical generation, and transport were also presented. The role of government in promoting energy efficiency was also discussed. Renewable energy opportunities were also offered for bio-energy; electrical generation; heating with renewables; and prospects for a renewables-fuelled Saskatchewan. Next, the report discussed technical, economic, political, and social barriers to progress. Several recommendations were offered in terms of energy efficiency and conservation; electricity generation; transportation; heating and cooling; industry; and financing change. 85 refs

  1. Energy, Sustainability and Development

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  2. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  3. Nanotechnology for sustainable energy

    International Nuclear Information System (INIS)

    Ali, M.; Ali, A.

    2011-01-01

    Nanotechnology and its applications have captured a worldwide market. Nanomaterials that have been developed using this technology can be incorporated into the devices so that renewable energy can be converted or generated more efficiently. Nanomaterials have the potential to change the way we generate, deliver and use energy. Hydrogen cells are used in auto industry as a viable power source. Compressed hydrogen tanks are used to supply Hydrogen, and Oxygen is used from the air directly. There is no pollution caused by hydrogen fuel cell autos since the only emission is water. Organic dyes (dye sensitizers), which are sensitive to light, can absorb a broader range of the sun's spectrum. A dye-sensitized solar cell has three primary parts. On top is a transparent anode made of fluoride-doped tin dioxide (SnO/sub 2/: F) deposited on the back typically of a glass plate. On the back of this conductive plate is a thin layer of titanium dioxide (TiO/sub 2/), which forms into a highly nanoporous structure with an extremely large surface-area. After soaking the film in the dye solution, a thin layer of the dye is left covalently bonded to the surface of the TiO/sub 2/ . Computational material science and nanoscience can play many critical roles in renewable energy research. These include: finding the right materials for hydrogen storage; finding the most reliable and efficient catalyst for water dissociation in hydrogen production; finding a cheap, environmentally benign, and stable material for efficient solar cell applications; and understanding the photo-electron process in a nanosystem, and hence helping design efficient nanostructure solar cells. (author)

  4. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  5. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  6. Energy Impact Illinois - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Daniel [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant

    2014-02-18

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  7. Renewable Energy: Energy Security and Sustainability

    Science.gov (United States)

    Turner, John

    2002-03-01

    Renewable energy offers the possibility of providing a complete, sustainable energy infrastructure without anthropogenic emission of CO2. Large-scale implementation of renewable technologies would eliminate the need to develop and implement sequestration systems, by reducing the use of, and ultimately eliminating fossil based energy production. Renewable energy also offers energy security because indigenous resources are sufficient. The major renewable energy systems include phovoltaics (solar cells), solar thermal (electric and thermal), wind, biomass (plants and trees), hydroelectric, ocean, and geothermal. Given the intermittent nature of solar energy, only those energy systems that are coupled to an energy storage technology will be viable. Among the energy storage technologies are hydrogen, batteries, flywheels, superconductivity, ultracapacitors, pumped hydro, molten salts (for thermal storage), and compressed gas. One of the most versatile energy storage systems and the best energy carrier for transportation is hydrogen. This talk will review some of the basic renewable energy systems, present possible pathways for the implementation of hydrogen into the energy infrastructure and offer research areas that need to be addressed to increase the viability of these renewable energy technologies.

  8. Energy Pathways for Sustainable Development

    NARCIS (Netherlands)

    Riahi, K.; Dentener, F.; Gielen, D.; Grubler, A.; Jewell, J.; Klimont, Z.; Krey, V.; McCollum, D.; Pachauri, S.; Rao, S.; Ruijven, B.J. van; Vuuren, D.P. van; Wilson, C.

    2012-01-01

    Chapter 17 explores possible transformational pathways of the future global energy system with the overarching aim of assessing the technological feasibility as well as the economic implications of meeting a range of sustainability objectives simultaneously. As such, it aims at the integration

  9. BPS, energy efficiency and renewable energy sources for buildings greening and zero energy cities planning harmony and ethics of sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, Marija S. [University of Belgrade, Serbia and Southeast University (China)

    2011-07-01

    Traditional village houses now use renewable materials and energy sources and this paper presents the intrinsic harmony of these buildings' greening and their sustainability. The paper covers building technical systems, sustainable energy supply, and the importance of renewable raw materials (RMS) for sustainable development. This study investigated the role of building dynamic behavior and optimized energy efficiency in reducing thermal loads significantly. A preliminary design for sustainable energy efficient settlements with net zero energy buildings is proposed and a comprehensive multidisciplinary engineering study was done which identified the technical feasibility of sustainable village energy and water supplies using solar or wind technologies. Overall, through analysis of sustainability definitions and possible ways to achieve sustainability, the study demonstrated that this can only be brought about by interdisciplinary interaction and finding the right balance between materiality and spirituality, science and art, and between technological development and concern for cultural and other human values.

  10. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  11. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  12. Energy for a sustainable world

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Reddy, A.K.N.; Williams, R.H.

    1988-01-01

    The book is devoted to the problem of energy planning for a sustainable world. The principal objective of the conventional approach to energy problem is economic growth and consequently the primary goal of conventional energy planning is to make energy supply expansion possible. This conventional approach is aggravating societal inequalities, environmental and security problems, and eroding self-reliance. On the other hand societal goals in energy planning should be equity, economic efficiency, environmental harmony, long-term viability, self-reliance and peace. These goals are relevant to both developing and industrialised countries. These goals should, therefore, be incorporated in a normative approach to energy planning. This can be done by focussing on end-uses of energy and the services which energy performs. In the first chapter, the relation of global energy problem with other major global problems such as North-South disparities, environmental degradation, climate change, population explosion and nuclear weapons is brought out. The energy strategies for industrialized countries and for developing countries are examined in chapters 2 and 3 respectively. The focus in both chapters is on end-uses of enegy, management of energy demand and exploitation of synergisms. In chapter 4, rough estimates of global energy demand are given and an illustrative energy scenario compatible with societal goals is described. In chapter 5, the policies necessary to implement end-use-oriented energy strategies are outlined. These policies relate to market mechanisms, administrative allocation of energy carriers, regulation and taxes. In the concluding chapter 6, the political feasibility of implementing the kind of energy future envisaged is discussed. The main finding of the authors is that it is possible to formulate energy strategies compatible with the solution of major global problems referred to in chapter 1 with about the same level of global energy use as today. (M.G.B.)

  13. Dynamic management of sustainable development methods for large technical systems

    CERN Document Server

    Krishans, Zigurds; Merkuryev, Yuri; Oleinikova, Irina

    2014-01-01

    Dynamic Management of Sustainable Development presents a concise summary of the authors' research in dynamic methods analysis of technical systems development. The text illustrates mathematical methods, with a focus on practical realization and applications.

  14. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  15. Technical Education--The Key to Sustainable Technological Development

    Science.gov (United States)

    Odo, J. U.; Okafor, W. C.; Odo, A. L.; Ejikeugwu, L. N.; Ugwuoke, C. N.

    2017-01-01

    Technical education has been identified as one of the most effective human resource development that needs to be embraced for rapid industrialization and sustainable technological development of any nation. Technical education has been an integral part of national development in many societies because of its impact on productivity and economic…

  16. Technical application of Fuzzy logic in the construction of an energy sustainability index; Aplicacao das tecnicas de logica fuzzi na construcao de um indice de sustentabilidade energetica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Francisco Carlos B. dos; Carneiro, Alvaro Luiz Guimaraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo - SP (Brazil)], E-mails: fcarlos@usp.br, carneiro@ipen.br

    2010-11-15

    Aggregation tools database and subsequent interpretation are the most challenge in the area of sustainability This task becomes very complex due to correlation of topics that comprise the dimensions that form the basis of the concept of sustainable development. The technique known as Fuzzy Logic or Fuzzy Logic is a powerful tool to capture information on vacancies, which is often the only information available in the area of sustainability. (author)

  17. Sustainable Plus-energy Houses

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    This study is an outcome of Elforsk, project number 344-060, Bæredygtige Energi-Plus huse (Sustainable plus-energy houses). The focus of this report is to document the approach and the results of different analyses concerning a plus-energy, single family house. The house was designed...... was monitored. This report is structured as follows. Chapter 1 presents the project and briefly explains the different phases of the project. The details of the house’s construction and its HVAC system are explained in Chapter 2, along with the energy efficiency measures and innovations. Chapter 3 introduces...... the investigations carried out in detail, with respect to different phases of the project. The investigations presented are divided into four phases: design phase and pre-competition period, competition period, year-round measurements in Denmark, and improvement suggestions for building and HVAC system. The results...

  18. Sustainability and deliberate transition of socio-technical systems

    DEFF Research Database (Denmark)

    Hansen, Ole Erik; Søndergård, Bent; Stærdahl, Jens

    or developing socio-technical systems in order to integrate the concept of sustainability as a driver for the deliberate and purposeful shaping and transition. The article discusses the requirements to effective governance networks and governing of governance networks. Research within innovation systems......The article suggests that deliberate planning for sustainability demands a focus on the transition of socio-technical systems in order to establish robust and more sustainable patterns of production and consumption. This implies the necessity of a new perspective for environmental planning...... and policy. Deliberate planning for sustainability becomes a question of addressing governance structures of socio-technical systems, calling attention to how such governance structures emerge, stabilize and become dominant, which functions governance structures have to serve to become efficient, and how...

  19. Energy access and sustainable development

    Science.gov (United States)

    Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry

    2015-03-01

    With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

  20. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  1. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  2. The role of hydropower in environment ally sustainable energy development

    International Nuclear Information System (INIS)

    Gabriel, H.F.

    2005-01-01

    Hydropower has historically been the renewable energy leader, and from a technical-cost perspective, is very likely to remain the only viable renewable energy source for many countries. In recent years, hydropower has been much maligned, especially by NGOs, for not being a sustainable source of energy. Though hydropower is clearly a renewable source of energy, but the question arises whether it can also be sustainable. Hydropower can play an increasingly important role in enabling communities around the world to meet sustainability objectives. To become more accepted as a key contributor to sustainable energy systems, new and existing hydropower projects need to be built and operated in an environmentally, socially and economically sustainable manner. This paper highlights the sustain ability aspects of hydropower and discusses the criteria for selection of environmentally friendly hydropower project sites so that that hydropower can be developed in a sustainable manner and once again be considered favorably in the planning of generation mix for new energy development. Sustainability of hydropower projects involves treating both the social and environmental sustainability of the project at an early stage and including the interests of all stakeholders of the project. As a case study, the Ghazi- Barotha Hydropower Project (GBHP) in Pakistan has been selected, as it is the best example in managing the social issues and gaining public acceptance because of proper planning and addressing environmental and social issues at an early stage. (author)

  3. FOREN 2004. Sustainable Energy Development and European Integration

    International Nuclear Information System (INIS)

    Iancu Iulian

    2004-01-01

    The 7th Regional Energy Forum- FOREN 2004 with the main topic 'Sustainable Energy Development and European Integration' took place in Neptun-Olimp, on 13th to 17th June 2004. The event was organized by WEC Romanian National Committee, under the auspices of the World Energy Council (WEC). The event was accompanied by several related manifestation as: An up to date Technical Programme designed to explore key issues concerning the ability of the Romanian energy industry to integrate in the European Union; An Exhibition providing first hand access to service and equipment providers; A Partnership Programme, to present the achievements and developments of power companies in round tables, film projections, technical visits and advertising; Social events giving to participants the opportunity to establish direct connections with the Romanian colleagues. The Forum was open to members of the World Energy Council, energy industry leaders, government ministers and officials, heads of international organizations like: UNECE, EC, IEA, Eurelectric, IGU, EUROgas, USAID, academics, media, individual and corporate members interested in sustainable energy development. For further details concerning the agenda and registration. Forum 2004 was structured on five sections each containing a key issue a panel session, communication session and poster presentation on the following items: 1. Energy legislation and institutional framework; 2. The technological dimension of sustainable energy; 3. The ecological dimension of sustainable development; 4. The social dimension of sustainable development; 5. The power equipment manufacturing industry

  4. Sustainable energy supply; Baerekraftig energioppdekning

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kr.; Rosenberg, Eva [Institutt for energiteknikk, Kjeller(Norway); Kubberud Trond ECON, Oslo (Norway)

    1999-07-01

    This report discusses the potential for reducing the use of energy and quantifies the environmental disadvantages and estimated environmental costs of various energy carriers in Norway. The MARKAL model is used to work out three scenarios for a more sustainable use of energy. It is found that the environmental impact of NOx emissions are much greater than that of sulfur emissions. The damage caused by CO2 and NOx are of the same order of magnitude. The studies indicate that if the damage to the environment is internalized into the energy system, then it will lead to increased use of gas in the industry and transport sectors. The results are sensitive with respect to the cost development for the cleaning technology of conventional energy carriers and for storage and transport of gas. Internalizing the external costs is not enough to eliminate the environmental damage, at least not as this is valued today and with the technology supposed to be available for the next 30-40 years.

  5. Net-Zero Energy Technical Shelter

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    Technical shelters are the basic structures for storing electronic and technical equipment, and commonly used for telecommunication base station, windmill, gas station, etc. Due to their high internal heat load density and special operation schedule, they consume more energy than normal residential...... or commercial buildings. On the other hand, it is a big challenge to power the technical shelter in remote area where the grids are either not available or the expansion of grid is expensive. In order to minimize the energy consumption and obtain a reliable and cost-efficient power solution for technical...... shelter, this study will apply the net-zero energy concept into the technical shelter design. The energy conservation can be achieved by proper design of building envelop and optimization of the cooling strategies. Both experiments and numerical simulations are carried out to investigate the indoor...

  6. Energy, environment and sustainable development

    International Nuclear Information System (INIS)

    Omer, Abdeen Mustafa

    2008-01-01

    level of building performance (BP), which can be defined as indoor environmental quality (IEQ), energy efficiency (EE) and cost efficiency (CE). circle Indoor environmental quality is the perceived condition of comfort that building occupants experience due to the physical and psychological conditions to which they are exposed by their surroundings. The main physical parameters affecting IEQ are air speed, temperature, relative humidity and quality. circle Energy efficiency is related to the provision of the desired environmental conditions while consuming the minimal quantity of energy. circle Cost efficiency is the financial expenditure on energy relative to the level of environmental comfort and productivity that the building occupants attained. The overall cost efficiency can be improved by improving the indoor environmental quality and the energy efficiency of a building. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this paper. Throughout the theme several issues relating to renewable energies, environment and sustainable development are examined from both current and future perspectives. (author)

  7. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  8. New Croatian Energy Strategy - Towards sustainable energy

    International Nuclear Information System (INIS)

    Vujec, N.

    2010-01-01

    The Republic of Croatia has been building the Krsko Nuclear Power Plant and is participating in all the activities necessary for a successful operating of the plant now for almost thirty years. However, in the light of the nuclear energy renaissance it is necessary to prepare ourselves for new challenges, stricter criteria of safety and protection, respect the indispensability of continuous re-examination of safety of procedures and methods. The of Croatia has strictly committed herself to the nuclear energy programme development-CRONEP in accordance with the methodology of the International Atomic Energy Agency. Certainly, in the first moment till the possible decision on the building of nuclear power plant, it will be necessary to make an institutional framework and create human resources and such an infrastructure that will be able to, when the decision will be taken, support the project and realize it with maximal efficiency. We consider it the unique way in which it is possible to avoid what proved to be the weakness of some projects of nuclear power plants, that is missing a deadline and problems concerning financing that are intolerable taking into account the value of the investment. Likewise, since the Conference is dedicated to small and medium-sized electric networks or to small nuclear power programmes, it needs to be mentioned that except the largest facilities it should be promoted researching of nuclear power reactors of medium size whose development somehow falls behind in this moment Medium size reactors gives great advantages to smaller economies in technical and financial sense. From the current standpoint solutions of viability of nuclear programmes through re-processing of the spent nuclear fuel in new generation of power plants are discernible. Since today's technologies are sufficiently safe there is no need to wait with this development and fuel from one generation shall be re-processed into the fuel for the next generation of reactors. In

  9. Vision 2050: sustainable energy supply and use in Switzerland

    International Nuclear Information System (INIS)

    Berg, M.; Brodmann, U.; Ott, W.

    2003-01-01

    This executive summary for the Swiss Federal Office of Energy SFOE summarises the results of a study carried out on the topic of how long-term strategies for Swiss energy policy. can be developed. A proposed series of studies is examined that is to show how Switzerland can find the way to a sustainable energy supplies and their sustainable use by the year 2050. Research areas are defined, particularly in the technical, behavioural and political sectors. Technical potentials in several areas, strategies and instruments are looked at, as is the social acceptance of proposed measures. Also, models for the analysis of economic effects are examined. Sustainability indicators and targets are reviewed, as are the benefits of developing strategies as early as possible. The report is completed with recommendations for further action

  10. City-integrated renewable energy for urban sustainability.

    Science.gov (United States)

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.

  11. Integrated Renewable Energy and Campus Sustainability Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Uthoff, Jay [Luther College, Decorah, IA (United States); Jensen, Jon [Luther College, Decorah, IA (United States); Bailey, Andrew [Luther College, Decorah, IA (United States)

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  12. Re-Engineering Vocational and Technical Education for Sustainable ...

    African Journals Online (AJOL)

    Using the case of North Central Geo-Political Zone of Nigeria, this study interrogates the nexus between vocational and technical education (VTE) and sustainable development. Specific attention is put on provision and attainment of basic skills on one hand and job creation, self-employment, utilization of locally available ...

  13. RF Regional Technical Centers for MPC and A Sustainability Operations

    International Nuclear Information System (INIS)

    Lambert, L D; Toth, W J; Hendrickson, S

    2004-01-01

    The National Nuclear Security Administration (NNSA) programmatic vision to be a catalyst in Russia's assumption of responsibility for long-term system operation is exemplified in the sustainability cooperation with the RF Ministry of Defense (MOD). An identified goal for the MPC and A Program is to encourage the development of Russian Federation (RF) capabilities and commitments to operate and maintain safeguard improvements. The RF MOD Technical Support Center development fulfills the NNSA mission and MPC and A Program goal. The regional technical center concept involves a systematic approach to aid in the determination of the level of sustainability assistance required to transition operators, maintenance, training, and testing of MPC and A systems to the RF MOD. This paper describes the process used to create the RF MOD Technical support center. First are described the needs analyses conducted to determine the key system sustainability factors requiring support. These sustainability functions are then compiled to influence the form and ultimate physical design of the technical support center. Operational interfaces are described, in detail that show the benefit of the center to the individual sites. Finally, benefits relating to information accessibility and other economies of scale are described that highlight the central center concept's strengths

  14. Sustainable Urban Regeneration Based on Energy Balance

    Directory of Open Access Journals (Sweden)

    Sacha Silvester

    2012-07-01

    guiding principle, as elaborated in the MW4 case study, is a new approach in the field. It may enhance existing communities, and in some cases result in both the saving and demolition of parts of neighborhoods, which were not foreseen, while at the same time direct introduction of flexible appliances within the energy system for (temporary storage. It is concluded that the best achievable energy balance in the MW4 area consists of an elaboration in which a smart grid is able to shift the load of flexible devices and charge EVs via smart charging while energy generation is based upon the renewables biomass, wind, tides and the sun. The introduction of new sustainable technologies makes a protected environment for development evident. As for system configuration, the choices arise mainly from technical and social optimisation. In fact, the social, or user-related criteria will be decisive for enduring sustainability.

  15. Green energy strategies for sustainable development

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim; Ay, Murat

    2006-01-01

    In this study we propose some green energy strategies for sustainable development. In this regard, seven green energy strategies are taken into consideration to determine the sectoral, technological, and application impact ratios. Based on these ratios, we derive a new parameter as the green energy impact ratio. In addition, the green energy-based sustainability ratio is obtained by depending upon the green energy impact ratio, and the green energy utilization ratio that is calculated using actual energy data taken from literature. In order to verify these parameters, three cases are considered. Consequently, it can be considered that the sectoral impact ratio is more important and should be kept constant as much as possible in a green energy policy implementation. Moreover, the green energy-based sustainability ratio increases with an increase of technological, sectoral, and application impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy (e.g., wind, solar, tidal, biomass) is abundantly produced. Therefore, the investment in green energy supply and progress should be encouraged by governments and other authorities for a green energy replacement of fossil fuels for more environmentally benign and sustainable future

  16. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  17. A Sustainable Energy System in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2002-01-01

    This paper presents some of the problems in the Latvian energy system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems.......This paper presents some of the problems in the Latvian energy system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems....

  18. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Gonzalez, E.

    2005-01-01

    To sustain decent environmental conditions, it is essential to contain the emission of greenhouse gases. to a great extent, this can be achieved by reducing the almost exclusive dependence of fossil fuels for producing electricity and by championing nuclear energy and the renewable, which in the end are the least contaminating. Specifically, operation of the European nuclear fleet avoids the yearly emission of 700 million tons of CO 2 to the atmosphere. The need to combat climate change is very serious and increasingly imminent, especially if we remember that the World Health Organization has said that climate change could eventually cause 300,000 deaths. The different social players are aware of the problem. In fact, the European Union's Cabinet of Ministers approved the post-kyoto Environmental Strategy, which underlines the need to reduce CO e missions by 80% by the year 2050. It seems obvious that, in the long run, technological research and development will be fundamental pieces in the battle against environmental change and in the effort to one day provide 2,000 million people with access to electricity. (Author)

  19. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  20. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2001-01-01

    The characteristics of nuclear energy are reviewed and assessed from a sustainable development perspective highlighting key economic, environmental and social issues, challenges and opportunities relevant for energy policy making.. The analysis covers the potential role of nuclear energy in increasing the human and man-made capital assets of the world while preserving its natural and environmental resource assets as well as issues to be addressed in order to enhance the contribution of nuclear energy to sustainable development goals. (author)

  1. Sustainable energy landscapes: The power of imagination

    NARCIS (Netherlands)

    Stremke, S.

    2012-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Sustainable energy transition necessitates a transformation of large parts of the existing built environment and presents one of the great challenges of present-day

  2. Mexican energy policy and sustainability indicators

    International Nuclear Information System (INIS)

    Sheinbaum-Pardo, Claudia; Ruiz-Mendoza, Belizza Janet; Rodríguez-Padilla, Víctor

    2012-01-01

    The authors analyze the Mexican energy policy taking as reference the methodological framework for sustainable energy development proposed by the Economic Commission for Latin America and the Caribbean. This methodology takes eight related indicators to the social, environmental and economic dimensions in order to calculate a general sustainability indicator for the energy sector. In this methodology, the weight of each dimension is different; namely, the social and environmental issues have less relevance than the economic issues. The authors use this methodology because government institutions as the Department of Energy and the Department of Environment and Natural Resources have used some indicators from such a methodology to propose plans, programs, projects and bills. Authors know of the existence of other methodologies about sustainability. Nonetheless, opting for the Economic Commission for Latin America and the Caribbean's methodology is convenient because this organization is a respectable authority for civil servants from the Mexican institutions. Our objective is just to contrast the sustainability grade of the energy sector between 1990 and 2008 for Mexico whose government started reforms in the 1990s. It concludes that those reforms did not bring about a higher sustainability level for the energy sector. - Highlights: ► We used the OLADE, CEPAL and GTZ's methodology to calculate sustainability indicators for the Mexican energy sector. ► We studied the Mexican energy policy from 1990 to date and presented it. ► Currently, the Mexican energy sector is less sustainable than in 1990.

  3. Energy control and sustainable development

    International Nuclear Information System (INIS)

    2002-01-01

    The contributions are dealing with the different aspects of energy control: key figures of the world consumption, evolution perspectives (energy control and energy demand in middle- and long-term world scenarios, global challenges, European perspectives, energy control in public decision in France, the new French energy accounting), regional differences (energy control in the United States, Russia, China, India, Brazil, West Africa, Mediterranean Sea), energy control and society (electricity privatisation in Salvador, regulatory approach or voluntary agreements for domestic appliances, comparison of energy control and renewable energies in France, complex accounting for energy demand control in a consumption society)

  4. Progress on linking gender and sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.

    2000-04-05

    The field of gender and energy has been identified as critical in global sustainable energy development and is increasingly important to decision makers. The theme of women and energy was of significance at the 1998 World Renewable Energy Congress in Florence, Italy. This paper traces further developments in this field by summarizing selected programmatic initiatives, meetings, and publications over the past 18 months.

  5. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Brian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elchinger, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardison, R. [Winrock International, Little Rock, AR (United States); Karsiwulan, D. [Winrock International, Little Rock, AR (United States); Castermans, B. [Winrock International, Little Rock, AR (United States)

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  6. Monitoring the energy systems of sustainable buildings

    Science.gov (United States)

    Bollin, Elmar

    2011-05-01

    The complexity of sustainable energy systems for buildings services calls for more transparency of the processes which provide energy for the buildings heating, cooling and power needs. In the frame of applied scientific research at University of Applied Sciences Offenburg, different systems and even buildings in total have been monitored over years to analyse their performance and to optimize the system installations and operations. New EU regulations like EN 16001 require an effective monitoring and a continuous commissioning of the energy relevant systems to certificate sustainable processes. On the other hand, new operation tools are necessary to handle the volatility of renewable energy sources and the buildings demand. Predictive building automation has shown good results when applied for energy systems with high inertia. Operating large-scale solar thermal systems and sustainable buildings over long-term periods the University of Applied Sciences provided evidence that monitoring is an essential system tool for an energy and cost efficient operation of sustainable buildings.

  7. A sustainable energy-system in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2003-01-01

    but a negative trade-balance. With this in mind, it is important that Latvia is able to meet the challenge and use the economic development to develop a sustainable energy-system and a sounder trade-balance. A combination of energy planning, national economy and innovation processes in boiler companies will form......The paper presents some of the problems in the Latvian energy-system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems. Latvia has economic growth...

  8. Energy autarky: A conceptual framework for sustainable regional development

    International Nuclear Information System (INIS)

    Mueller, Matthias Otto; Staempfli, Adrian; Dold, Ursula; Hammer, Thomas

    2011-01-01

    Energy autarky is presented as a conceptual framework for implementing sustainable regional development based on the transformation of the energy subsystem. It is conceptualized as a situation in which the energy services used for sustaining local consumption, local production and the export of goods and services are derived from locally renewable energy resources. Technically, the implementation of higher degrees of energy autarky rests on increasing energy efficiency, realizing the potential of renewable energy resources and relying on a decentralized energy system. Practically, a transition towards regional energy autarky requires administrations and civil society actors to initialize and develop projects at the local level, ensure their acceptance and support by the regional population and implement the project in collaboration with relevant actors. Besides the description of the concept and the benefits its implementation brings, this article provides a process for implementation, and some examples from Austria, Germany and Switzerland. - Highlights: → We introduce energy autarky as a conceptual framework for sustainable development. → Transforming the energy subsystem creates various benefits for communities. → Local participation should lead to social acceptance of renewables. → We review and discuss projects implementing energy autarky. → Further research needs to compare successful implementations with failures.

  9. Sustainable development and energy supply

    International Nuclear Information System (INIS)

    Levi, H.W.

    1997-01-01

    'Sustainable' is an old established term which has made a political career in the past ten years. The roots of this career extend back into the 18th century, when an economic concept of forest management was developed to replace yield maximization achieved by means of complete deforestation by yield optimization attained by conservative forest management. This latter type of forest management was termed 'sustainable'. The language used in today's sustainability debate was based on the idea of preserving the capital provided by nature and living on the interest. As a consequence, the term 'sustainable' became one of the key points in environmental policy and economic policy after the Brundtland report had been published (V. Hauff, 1987), which also constitutes the background to this article. (orig.) [de

  10. The Potential of the Technical University of Denmark in the Light of Sustainable Livable Cities

    DEFF Research Database (Denmark)

    Jensen, Lotte Bjerregaard; Nielsen, Per Sieverts; Nielsen, Susanne Balslev

    2014-01-01

    The Technical University of Denmark (DTU) has a long tradition for research and education in urban planning and sustainable urban development. An increasing societal focus on sustainability and urbanization in society supports this continuous focus on sustainable urban planning in technical educa...... on sustainability but also on global urbanization, compact cities, and smart cities supports new thinking in urban planning and design in technical education. The paper suggests a new initiative to further develop the sustainable urban planning research and education at DTU....

  11. Complex Technical Solution for Renewable Energy

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2010-01-01

    Full Text Available This paper presents a complex technical solution for implementing renewable energy, namely: wind, solar photovoltaic and hydraulics. Because wind and solar photovoltaic energy habe a highly random character, it is required to find solution to store the product energy for unfavorable periods, without wind or solar radiations. This could be achieved using the third type of renewable energy, the hydraulic one, obtained from an hydroelectric pumped storage plant (HPSP, located in the imediate vicinity of the wind and solar photovoltaic plant.

  12. Marine renewable energies. Stakes and technical solutions

    International Nuclear Information System (INIS)

    Lacroix, Olivier; Macadre, Laura-Mae

    2012-05-01

    Marine renewable energies are able to supply carbon free energy from various ocean resources (tides, waves, currents, winds, salinity and temperature gradients). This sector, currently at an early stage of deployment, has good prospects of development in the coming years. ENEA releases a report on marine renewable energies giving a transversal vision of the associated stakes and prospects of development. Technical and economic characteristics, maturity level and specificities of each marine energy are analyzed. French and European sources of funding, regulatory framework and potential environmental and social impacts are also reported

  13. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  14. Nuclear energy for sustainable agriculture

    International Nuclear Information System (INIS)

    Raghu, K.

    1998-01-01

    The use of improved crop plants and applying the concepts of integrated plant nutrient and integrated pest management are some of the ways for sustaining agriculture and developing ecofriendly management techniques. Ionizing radiations and isotopes (both stable and radioactive) have in the past been used for many applications in agriculture and they will have immense applications in future also

  15. Smart sustainable energy for rural community development

    CSIR Research Space (South Africa)

    Szewczuk, S

    2014-10-01

    Full Text Available are developed to increase the rate of electrification of these rural communities. To gain first hand understanding of the complexity of sustainable energy for rural community development, CSIR undertook a three year investigative project to investigate...

  16. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  17. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T.B.; Nakicenovic, N.; Patwardhan, A.; Gomez-Echeverri, L. (eds.)

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  18. Sustainable Energy Future - Nordic Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    This invited paper first outlines the methodologies applied in analysing the energy savings potentials, as applied to a Nordic and a European case study. Afterwards are shown results for how a high quality of life can be achieved with an energy consumption only a small fraction of the present in ...... in Europe. The energy policy in Denmark since 1973 is outlined, including the activities and the roles of NGOs. Finally are described some of the difficulties of implementing energy saving policies, especially in combination with increasing liberalization of the energy market....

  19. Intelligent computing for sustainable energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kang [Queen' s Univ. Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Li, Shaoyuan; Li, Dewei [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Niu, Qun (eds.) [Shanghai Univ. (China). School of Mechatronic Engineering and Automation

    2013-07-01

    Fast track conference proceedings. State of the art research. Up to date results. This book constitutes the refereed proceedings of the Second International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2012, held in Shanghai, China, in September 2012. The 60 full papers presented were carefully reviewed and selected from numerous submissions and present theories and methodologies as well as the emerging applications of intelligent computing in sustainable energy and environment.

  20. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Yongping; Zhao Shoufeng; Zheng Yuhui

    2005-01-01

    The status and role of nuclear energy in the sustainable energy development strategy in China are discussed in this research report. Specifically, the role of nuclear energy in meeting the requirements of energy and electricity supply, environment protection and greenhouse gas (GHG) emission-reduction is focused on. The report is mainly composed of three component parts. The serious situation and challenges concerning the national energy security and energy sustainable development, and major tasks proposed to carry out the strategy of energy sustainable development are expounded in the first part. In the second part, the position and role of nuclear energy in China are elaborated and analyzed in detail. Firstly, it is indicated that the development of nuclear energy is the objective requirement for optimizing national energy structure. From the viewpoint of climate and environment protection, energy mix is required to transit from conventional fossil fuels to clean and high-quality energy sources. The potential role of nuclear energy in energy structure optimization in China is compared with that of hydro and other renewable energy sources. Secondly, it is proposed that the development of nuclear energy is the important security option for safely supplying the national energy and electricity in the future, mainly from the point of nuclear power providing stable and reliable power supply, relieving the burden of coal exploitation and transportation and reducing the risk of energy security caused by dependence on oil and natural gas. Thirdly, it is elaborated that the development of nuclear energy is the inevitable selection for carrying out the national energy and electricity sustainable development. It is given further details that nuclear energy is a clean and economical energy option, a preference coinciding with the principles of the circular economy, a feasible technical choice to greatly reduce emission of greenhouse gases, a selection contributing to

  1. Sustainable urban energy planning: A strategic approach to meeting climate and energy goals

    Energy Technology Data Exchange (ETDEWEB)

    Dobriansky, Larisa

    2010-09-15

    Meeting our 21st century challenges will require sustainable energy planning by our cities, where over half of the population resides. This already has become evident in the State of California, which has set rigorous greenhouse gas emission reduction targets and timeframes. To attain these targets will necessitate technically-integrated and cost-optimum solutions for innovative asset development and management within urban communities. Using California as a case study, this paper focuses on the crucial role for sustainable energy planning in creating the context and conditions for integrating and optimizing clean and efficient energy use with the urban built environment and infrastructure.

  2. The Institution's position on sustainable energy

    International Nuclear Information System (INIS)

    Sargent, M.A.

    1999-01-01

    The twenty-first century will be an era in which sustainability will be a powerful value espoused by the community. The sustainability of energy, in terms of production and consumption, and in relation to the broader impacts of energy on society and the environment, will be a particular focus of the community. Australia, as a nett exporter of energy, and with a high per capita energy consumption, has both an economic and environmental imperative to be a leader in sustainable energy concepts and technologies. Australia therefore needs to position itself strategically, with a policy framework that facilitates the strategic positioning, to use and foster its diverse resources to provide for the social and economic needs of this generation, in a manner that ensures that the energy needs of the future generations can be met. The Institution of Engineers Australia has developed a Position on Sustainable Energy. The principles and actions through which the country's transition to a sustainable energy future will be managed are outlined

  3. Magnetic Materials in sustainable energy

    Science.gov (United States)

    Gutfleisch, Oliver

    2012-02-01

    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research in energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conversion and transportation. Magnetic materials are essential components of energy applications (i.e. motors, generators, transformers, actuators, etc.) and improvements in magnetic materials will have significant impact in this area, on par with many ``hot'' energy materials efforts. The talk focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, will be discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, will be examined in the context of their respective markets as well as their potential impact on energy efficiency. Finally, considering future bottle-necks in raw materials and in the supply chain, options for recycling of rare-earth metals will be analyzed.ootnotetextO. Gutfleisch, J.P. Liu, M. Willard, E. Bruck, C. Chen, S.G. Shankar, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient (review), Adv. Mat. 23 (2011) 821-842.

  4. Summer institute of sustainability and energy

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George W. [Univ. of Illinois, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-08-01

    The vision for the Summer Institute on Sustainability and Energy (SISE) is to integrate advancements in basic energy sciences with innovative energy technologies to train the next generation of interdisciplinary scientists and policy makers for both government and industry. Through BES related research, these future leaders will be equipped to make educated decisions about energy at the personal, civic, and global levels in energy related fields including science, technology, entrepreneurship, economics, policy, planning, and behavior. This vision explicitly supports the 2008 report by the Department of Energy’s Basic Energy Science Advisory Committee (2), which outlines scientific opportunities and challenges to achieve energy security, lower CO2 emissions, reduce reliance on foreign oil and create enduring economic growth through discovery, development and the marketing of new technologies for sustainable energy production, delivery, and use (3).

  5. Solar energy solutions for an environmentally sustainable world

    International Nuclear Information System (INIS)

    Morozov, A.I.; Pustovitov, V.D.

    1992-01-01

    The United Nations Conference of Environment and Development has focused the world's attention on the complex relationship between the environment and economic development. The essence of this relationship, and the emerging theme of UNCED, is the concept of sustainability. Sustainable economic development improves quality of life and raises standards of living by using the Earth's resources in a way that ensures that they are continually renewed, and will continue to support future generations. This is the subject of this report. While energy resources are essential to economic development, the authors current patterns of energy use are not sustainable. Reliance on fossil fuels, nuclear energy, and large-scale hydroelectric projects has contributed to serious environmental problems, including atmospheric pollution, loss of land productivity, loss of biological diversity, ocean and fresh water pollution, and hazardous waste generation. Thus, if they are to achieve sustainability in their patterns of energy consumption, it is imperative that they bring about a rapid and widespread transition to the utilization of environmentally sound energy sources and technologies. Solar energy technologies are environmentally sound, socially beneficial, and economically practical. They have been proven in a wide variety of applications around the world. The barriers to the widespread implementation of solar technologies are no longer technical, but rather social, economic, and political. These barriers can and must be removed

  6. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  7. Financial instruments supporting for energy and sustainability

    International Nuclear Information System (INIS)

    Maino, R.

    1999-01-01

    The article discusses the close connection between the production and consumption of energy and environmental sustainability. Saving and rational use of energy on the one side, and reduction of environmental impacts of the energy production on the other, are by now constantly recurring among the strategic objectives of modern energy policies. In this scenario the financial aspect is crucial; it may remove obstacles to competition, giving innovative companies greater opportunities [it

  8. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  9. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  10. Technical Submission Form: Technical Specification of a Wave Energy Farm.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Kim Nielsen; Ben Kennedy; Bull, Diana L; Costello, Ronan Patrick; Jochem Weber

    2017-04-01

    The Wave - SPARC project developed the Technology Performance Level (TPL) assessment procedure based on a rigorous Systems Engineering exercise. The TPL assessment allows a whole system evaluation of Wave Energy Conversion Technology by measuring it against the requirements determined through the Systems Engineering exercise. The TPL assessment is intended to be useful in technology evaluation; in technology innovation; in allocation of public or priva te investment, and; in making equipment purchasing decisions. This Technical Submission Form (TSF) serves the purpose of collecting relevant and complete information, in a technology agnostic way, to allow TPL assessment s to be made by third party assessor s. The intended usage of this document is that the organization or people that are performing the role of developers or promoters of a particular technology will use this form to provide the information necessary for the organization or people who are perf orming the assessor role to use the TPL assessment.

  11. Guidelines for a sustainable energy policy

    International Nuclear Information System (INIS)

    Maichel, G.; Klemmer, P.; Voss, A.; Grill, K.D.

    2000-01-01

    The publication contains four contributions of four different authors which elaborate the role, functions and capabilities of policymakers, the energy industry, and the population (consumers) in the process of designing, implementing, enforcing and accepting the paradigms and the framework conditions that will initiate and finally support in concrete terms a transition towards sustainable development in the context of energy demand and energy consumption in Europe. The titles of the four contributions (translated for the purpose of this abstract) are: 1. Regulatory policy and/or a free market system in the energy sector. 2. Self-commitments and self-regulatory approaches in the energy industry. 3. What does it take to establish a system of sustainable energy supply? 4. For an energy policy fit for the future in the 21. century. (orig./CB) [de

  12. Climate change, energy, sustainability and pavements

    International Nuclear Information System (INIS)

    Gopalakrishnan, Kasthurirangan; Steyn, Wynand JvdM; Harvey, John

    2014-01-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  13. Climate change, energy, sustainability and pavements

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Dept. of Civil, Construction and Environmental Engineering; Steyn, Wynand JvdM [Pretoria Univ. (South Africa). Dept. of Civil Engineering; Harvey, John (ed.) [California Univ., Davis, CA (United States). Dept. of Civil and Environmental Engineering

    2014-07-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  14. Sustainable energy landscapes : designing, planning, and development

    NARCIS (Netherlands)

    Stremke, S.; Dobbelsteen, van den A.

    2013-01-01

    In the near future the appearance and spatial organization of urban and rural landscapes will be strongly influenced by the generation of renewable energy. One of the critical tasks will be the re-integration of these sustainable energy landscapes into the existing environment—which people value and

  15. Sustainable Energy. Alternative proposals to Mercosur

    International Nuclear Information System (INIS)

    Honty, G.

    2002-01-01

    After a brief assessment of the Mercosur energy sector (Mercosur is a regional trade agreement subscribed to by Argentina, Brazil, Paraguay and Uruguay) an overview is given of proposals for a sustainable energy integration in the Mercosur: general proposals by sector, specific proposals for the larger economies (Argentina and Brazil), and means of implementation

  16. New clean energy enterprises and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Usher, Eric [United Nations Environment Programme, Rural Energy Enterprise Development (REED), Paris (France); Xiaodong Wang [United Nations Foundation, Climate Change Program, Washington, DC (United States)

    2002-06-01

    Though hundreds of billions of dollars have been invested, past development efforts have been largely unable to break the cycle of poverty - a cycle that is directly linked to the provision of energy. Too often, the potential of local enterprises to provide essential energy services has been ignored. Yet such an enterprise is one of the most potent engines for shifting towards a local human capacity to produce and distribute modern energy services. This recognition lies at the heart of REED, an approach to developing new sustainable energy enterprises that use clean, efficient and renewable energy technologies to meet the energy needs of underserved populations. (Author)

  17. THE ROLE OF ENERGY IN ECOLOGICAL SUSTAINABILITY

    Directory of Open Access Journals (Sweden)

    Popescu Maria-Floriana

    2015-07-01

    Full Text Available The rapid population growth leads to greater daily demand for energy, causing nations to diversify their portfolios and seek new sources of energy, including renewable to provide more energy. In a universe with seriously exhausted natural resources, severe urbanization, climate change and conflicts that go beyond borders, the issue of overpopulation unquestionably causes worldwide debates and can generate a snowball effect for the global economy or human society. Population’s increase in the nearby future will have a central role in challenges such as: global warming, air and water contamination, increase in the level of poverty, food scarcity, deforestation, desertification, health problems and resource shortages. The transformation into a sustainable environmental model, situated in a post-carbon economy, will imply setting barriers to industrial progress (will have to be sustainable and environmental friendly and also to population growth (will have to follow a normal pace. But, the level on vulnerability and uncertainty in the evolution of energy has been threatened lately by major events that took place all around the world. Security of supply, new geopolitical perspectives and ecological and sustainability issues are yet again on the bleeding line. Therefore, the goal of this theoretical article is to give an overview of the current situation concerning the role of energy in ecological sustainability. It expresses routes in which humans and enterprises can act in order to contribute to ecologically sustainable development. The subject of how we live on a congested planet represents the most critical sustainability of all. We are witnessing our current risks and we can also envision our possible, and particularly desirable, future: a steady human population, living and protecting the nature and planet, having finite needs of goods, services, or energy, and maintaining a healthy Earth for us and the animals that also depend on it. This is

  18. Technical assistance for an evaluation of international schemes to promote biomass sustainability. Final report

    International Nuclear Information System (INIS)

    Londo, M.

    2009-12-01

    In this technical assistance report to the title subject report is given of Task 1: Review of GREEN-X assumptions on biomass availability and costs; Task 2: Impacts of sustainability criteria on biomass availability and costs; Task 3: Applicability of existing certification schemes; Task 4: Identification of feasible verification options; and Task 5: summary, integration. The key objective of Task 1 is to validate the present and future availability (up to 2020) and costs of biomass energy in the EU 27. The GREEN-X model forecasts the deployment of renewable energy systems under various scenarios in terms of supporting policy instruments, the availability of resources and generation technologies and energy, technology and resource price developments. Objective of task 2 is to assess to what extent the sustainability criteria as specified in the Renewable Energy Directive (RED (EP/EC 2009)) affect availability and costs of biofuels. The objective of task 3 is to assess to what extent national and international certification schemes (existing and under development) would be applicable for safeguarding the sustainability criteria as mentioned in the Renewable Energy Sources (RES) directive. The objective of Task 4 is to identify and analyse feasible options to verify compliance with biomass sustainability criteria, in the case of forest biomass.

  19. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  20. Is Nuclear Energy Sustainable - A Comparative Perspective

    International Nuclear Information System (INIS)

    Hirschberg, S.

    2002-01-01

    The electric utility sector is of central importance for economic growth and social development. While numerous societal and economic benefits arise from electricity production, it can also have impacts which may not be fully and unanimously reconciled with the concept of sustainability. Moving the electricity sector towards sustainable development calls for the integration of environmental, social and economic aspects in the decision-making process. As an input to such a process, one needs to assess how the different options perform with respect to specific sustainability criteria. As a part of the ''Comprehensive Assessment of Energy Systems'', carried out by the Paul Scherrer Institute (PSI), the electricity and heat supply systems are examined in view of sustainability criteria and the associated indicators, thus allowing operationalization of the sustainability concept

  1. Electric energy sustainability in the Eastern Balkans

    International Nuclear Information System (INIS)

    Koroneos, Christopher J.; Nanaki, Evanthia A.

    2007-01-01

    After years of military conflict and economic turmoil, the countries of South East Europe now face major challenges in achieving the market reforms necessary to rebuild their economies. A major driver of economy is the energy sector, although high-energy intensities are a burden for the companies and households. An efficient energy sector not only is vital for an economic recovery but also plays an important role to energy transit. The main goal of this work is a comprehensive assessment of electrical sustainability in some countries of South East Europe (Romania, Bulgaria, Turkey and Greece) mainly by means of exergy analysis as well as descriptive statistics. Exergy analysis can be used as an energy sustainability indicator and help decision-makers. The concept of exergy, applied to electricity generation efficiency could be a useful tool in the field of energy efficiency. Further implementation of thorough exergy analysis to the countries of Eastern Balkans, would be helpful in improving their electricity generation efficiency

  2. Renewable energy strategies for sustainable development

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    This paper discusses the perspective of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency improvements in the energy...... production, and replacement of fossil fuels by various sources of renewable energy. Consequently, large-scale renewable energy implementation plans must include strategies of how to integrate the renewable sources in coherent energy systems influenced by energy savings and efficiency measures. Based...... on the case of Denmark, this paper discusses the problems and perspectives of converting present energy systems into a 100 percent renewable energy system. The conclusion is that such development will be possible. The necessary renewable energy sources are present, if further technological improvements...

  3. Functional nanomaterials for energy and sustainability

    OpenAIRE

    Kelarakis, Antonios

    2014-01-01

    In view of the continuous decline in fossil fuel reserves, at a time when energy demands are steadily increasing, a diverse range of emerging nanotechnologies promise to secure modern solutions to the prehistoric energy problem. Each one of those distinct approaches capitalizes on different principles, concepts and methodologies to address different application requirements, but their common objective is to open a window to a sustainable energy future. Consequently, they all deserve substanti...

  4. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  5. The India market for sustainable energy

    International Nuclear Information System (INIS)

    Bakthavatsalam, V.

    2000-01-01

    Sustainable and qualitative growth of developing economics and habitats require increased energy input from renewable sources. To mainstream these innovative options, we need to continue to develop cost-effective renewable energy technologies, to focus our efforts on replicable innovative institutional and financial models which are based on cost recovery principles and fostering private partnerships to enable the developing countries to use these technologies. In response to these challenges the points energy policy, energy conservation, marketing, promoting energy conservation and efficient management are discussed

  6. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...... methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having...

  7. Energy alternatives for a sustainable Italy

    International Nuclear Information System (INIS)

    Coiante, D.; Lombard, P. L.; Molocchi, A.

    1998-01-01

    This article focuses on the main environmental problems caused by the development of the energy sector in Italy, addressing the current policies on energy production and consumption and the viable alternatives for furthering sustainable development by the year 2010. The analysis acknowledges that, as stated by Agenda 21 and the EU V Action Programme, sustainable development is a central issue. After considering the three main problems connected with the production and consumption of energy at the domestic level, the author describes syntetically the level of implementation of the current policies on environmental protection and efficient energy use in four important sectors (electricity, transport, industrial and household), underlining the main obstacles encountered on the sustainability path. The essential features of a strategy aimed at the sustainable development of the energy sector are finally presented. Such strategy is based on the reform of the price system in order both to account for the external costs and to promote technological innovation. The latter should be oriented to the improvement of energy efficiency in all sectors of production and use (CHP in particular) and to promotion of R and D of those renewable sources that are most suitable according to the social and economic Italian specificities [it

  8. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  9. Using Renewable Energy for a Sustainable Development

    Directory of Open Access Journals (Sweden)

    Aurel Gabriel SIMIONESCU

    2012-12-01

    Full Text Available Regarding energy, the greatest global challenges is ensuring growing demand to provide access to energy and to substantially reduce the sector's contribution to climate change. The aim of this article is to analyze the current situation of renewable in the EU and Member States' targets for sustainable and ecological development in context of Europe 2020. Wind power was proposed a significant increase to 494.7 TWh in 2020, for photovoltaic to 83.3 TWh and 370.3 TWh for hydropower. Sustainable development by promoting the use of renewable resources may be limited by constraints of infrastructure integration but also by economic factors and technologies.

  10. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  11. Climate change, energy, sustainability and pavements

    CERN Document Server

    Gopalakrishnan, Kasthurirangan; Harvey, John

    2014-01-01

    Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently.  To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world.  As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design,

  12. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    Science.gov (United States)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  13. Worldwide Engagement for Sustainable Energy Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Almost 40 years after the Agency’s founding, the IEA responsibility for ensuring access to global oil supplies is still a core mandate. Yet over the course of its history, the IEA’s responsibilities have expanded along with both the international energy economy and conceptions of energy security itself. Our mission to promote secure and sustainable energy provision spans the energy mix. At the same time, a changing global energy map means that the industrialised nations of the world no longer dominate energy consumption. The IEA must work in close co-operation with partner countries and organisations worldwide to achieve its three core objectives: energy security, economic prosperity, and environmental sustainability. Working toward international commitments to reduce greenhouse gas emissions that cause global climate change; facilitating energy technology exchange, innovation and deployment; improving modern energy access to the billions of people who are without it; bolstering both cleanliness and security through energy efficiency; and promoting flexible and functioning energy markets – these efforts complement our traditional core responsibilities of mitigating the effects of supply disruptions and improving statistical transparency.

  14. Technical conditions for sustainable growth in economic theory. An analysis

    International Nuclear Information System (INIS)

    Granda C, Catalina

    2008-01-01

    Economic theory and its models point out returns to scale, substitution among productive factors and technological progress as conditions for sustainable growth. This work aims at a critical appraisal of these conditions, particularly the ones related to substitution between natural resources and manmade capital and technical change, by recognizing the inevitable physical scarcity of resources concomitant to the human actions in a world governed by hemodynamic restrictions. To do so, the role that the mentioned conditions play in the theories of economic growth with resources is analyzed, and its limitations and objections from a biophysical perspective are indicated as well. Finally, a brief consideration as to how inappropriate the theoretical representations of economic activities are to take account of growth in spite of resource exhaustion or degradation is carried out

  15. Sustainable development of the Croatian energy sector

    International Nuclear Information System (INIS)

    Potocnik, V.

    2004-01-01

    The escalation of oil prices and the issue of energy supply security have emphasized the importance of a more rapid implementation of sustainable energy sector elements - renewable energy sources and energy efficiency. Croatia has recorded an increasingly negative balance of payments due to a considerable discrepancy between its import and its export, the former involving a significant amount of fossil fuels. Croatia has relatively scarce fossil fuels resources; on the other hand, its renewable energy sources as well as the possibility of energy efficiency improvement are comparatively abundant. Consequently, an increased use of renewable energies and the improvement of its energy efficiency are in the best interest of the Republic of Croatia.(author)

  16. Sustainable Energy Business Visits 2009; Duurzame Energie bedrijfsbezoeken 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2010-03-15

    Because the Steering Committee for Long-term Agreements on Energy for Mushrooms found the sustainable energy business visits of 2008 very valuable, it was decided in 2009 to assign Cpoint the task of conducting sustainable energy advisory visits, enabling mushroom cultivators to sign up for a free of charge sustainable energy visit. This report summarizes the results of these business visits [Dutch] Omdat de Duurzame Energie (DE) bedrijfsbezoeken van 2008 door de Stuurgroep MJA-e Paddestoelen als erg waardevol zijn ervaren, is er ook voor het jaar 2009 aan Cpoint een opdracht voor het uitvoeren van DE adviesbezoeken verstrekt, waarbij champignontelers zich konden opgeven voor een gratis DE adviesbezoek. In dit rapport wordt verslag gedaan van de resultaten van de bedrijfsbezoeken.

  17. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  18. Technical memo, energy engineering; Memotech, genie energetique

    Energy Technology Data Exchange (ETDEWEB)

    Dal Zotto, P.; Larre, J.M.; Merlet, A.; Picau, L.

    2003-07-01

    Organized like a database, this book allows to find rapidly all necessary information for the setting up and implementation of energy and air conditioning systems and for their management and maintenance: schemes symbols, standards and regulations, basic recalls of physics, technological solutions with explanation schemes and tables of characteristics. Contents: electrical engineering - general laws; properties of fluids and solids; schemes and graphics; thermal engineering; hydraulics; thermodynamics, refrigeration cycle and refrigerant; psychrometry - air treatment; acoustics; aeraulics; electrotechnics; thermal status and regulation; space heating equipments; refrigeration equipments; ventilation systems; air-conditioning systems; thermoregulation of thermal appliances; technical management of buildings. (J.S.)

  19. Sustainable network of independent technical expertise for radioactive waste disposal

    International Nuclear Information System (INIS)

    Serres, Christophe; Rocher, Muriel; Lemy, Frank; Havlova, Vaclava; Mrskova, Adela; Heriard Dubreuil, Gilles

    2014-01-01

    Full text of publication follows: SITEX is a 24-month FP7 project led by IRSN and bringing together 15 organisations representing technical safety organisations (TSO) and safety authorities, as well as civil society outreach specialists involved in the 'regulatory' review process of geological disposal of radioactive waste. SITEX aims at establishing the conditions required for developing a sustainable network of experts from various horizons (authorities, TSO, academic organisations, civil society,...) capable of developing and coordinating the technical expertise that is required from the stakeholders in charge of delivering opinion, independently from the waste management organisations (WMO), on the safety of geological disposals. The SITEX programme of work is split into a set of six work packages that address technical and organisational issues allowing to propose a structure of the missions and operating mode of the future network. These issues relate on the one hand to the study of the potential for sharing and developing technical expertise practices amongst stakeholders, on the other hand on the ability to implement co-ordinated R and D programmes run by TSO in order to develop the scientific knowledge necessary to perform independent technical assessments. Two major perspectives are identified for the future of the SITEX network: its ability to foster co-operation between regulatory bodies, TSO, implementers and civil society with a view to enhancing common understanding of key safety issues and challenges and to identifying possible harmonisation of practices; the constitution of a scientific task force (mainly driven by TSO) for research definition and implementation at the European level allowing to improve the co-ordination of scientific programmes between TSO and developing its own skills and analytical tools, independently of the WMO. A comprehensive list of safety issues relevant to the development and implementation of a geological repository has

  20. Proceedings of the 8. Brazilian congress on energy: energy policy, regulation and sustainable development. v. 2: energy planning and policy, energy conservation and rational use

    International Nuclear Information System (INIS)

    1999-01-01

    The theme energy policy, regulation and sustainable development chosen for the 8. Brazilian congress on energy to be held in Rio de Janeiro from 30 November of 1999 to 02 December of 1999, specifically means the contribution of energy to a satisfactory quality of life for everyone. Within such a context, the congress technical programme theme has been structured around six different divisions: energy, environment and development; energy sector regulation; energy policy and planning; technology innovation; energy conservation; and renewable energy sources and rural areas energy supply

  1. Proceedings of the 8. Brazilian congress on energy: energy policy, regulation and sustainable development. v. 1: energy, environment and energy sector regulation

    International Nuclear Information System (INIS)

    1999-01-01

    The theme energy policy, regulation and sustainable development chosen for the 8. Brazilian congress on energy to be held in Rio de Janeiro from 30 November of 1999 to 02 December of 1999, specifically means the contribution of energy to a satisfactory quality of life for everyone. Within such a context, the congress technical programme theme has been structured around six different divisions: energy, environment and development; energy sector regulation; energy policy and planning; technology innovation; energy conservation; and renewable energy sources and rural areas energy supply

  2. Quebec Research Center on Sustainable Energy (QRCSE)

    International Nuclear Information System (INIS)

    Guay, D.

    2006-01-01

    This paper describes the Quebec Research Center on Sustainable Energy. The Quebec Fuel Cells and Hydrogen Network was established in 2001. It consists of a number academic institutions with academic staff and students. It has established programs in fuel cells, hydrogen production and storage as well as batteries and super capacitors

  3. Energy efficiency and sustainability: evaluation of electricity ...

    African Journals Online (AJOL)

    ... and analysis of electricity consumer's attitudes, behaviours and practices towards energy use and sustainability. Using the random sampling method, the perception questionnaires were administered to respondents across the various streets chosen. The results indicate that although there is some level of awareness with ...

  4. International trends on sustainable energy Issues

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2007-01-01

    At the U.N. Commission on Sustainable Development (CSD), the role of nuclear power for a carbon free emission supply of energy is now being recognized although with certain reticence or opposition. Such recognition is taking place at the current cycle of discussions devoted to sustainable energy, industrial development, atmospheric pollution and climate change issues. This paper focuses on the arguments and facts provided during CSD deliberations for considering nuclear energy as a valid option: all available energy sources will need to be considered for an adjustment to a world that requires much less carbon liberation to the environment; in the transportation sector, actions need to be urgently implemented for promoting cleaner fuels and more efficient vehicles; massive reduction of greenhouse gas emissions must be urgently implemented in order to mitigate the impacts of global warming; sustainable energy solutions for developed economies are not always adequate in developing countries; the development evolution requires specifically tailored solutions to conditions of large annual growth-rates of energy demand. Consequently, nuclear power will provide the answer to many of these problems. (Author)

  5. Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The U.S. Agency for International Development (USAID), through their partnership with the U.S. Department of the Interior (DOI), requested the support of Oak Ridge National Laboratory (ORNL) to provide specialized technical assistance as part of the Smart Infrastructure for the Mekong (SIM) Program in Thailand. Introduced in July 2013 by U.S. Secretary of State John Kerry, SIM is a U.S. Government Inter-Agency program that provides Lower Mekong partner countries with targeted, demand-driven technical and scientific assistance to support environmentally sound, climate conscious and socially equitable infrastructure, clean energy development, and water resources optimization. The U.S. Government is committed to supporting sustainable economic development within the region by providing tools, best practices, technical assistance, and lessons learned for the benefit of partner countries. In response to a request from the Electricity Generating Authority of Thailand (EGAT), a SIM project was developed with two main activities: 1) to promote hydropower sustainability and efficiency through technical assessment training at two existing hydropower assets in Thailand, and 2) the design and implementation of one national and two or three regional science and policy workshops, to be co-hosted with EGAT, to build common understanding of and commitment to environmental and social safeguards for Mekong Basin hydropower projects. The U.S. Department of Energy (DOE) is leading the technical assessment (Activity 1), and has contracted ORNL to provide expert technical assistance focused on increasing efficiency at existing projects, with the goal of increasing renewable energy generation at little to no capital cost. ORNL is the leading national laboratory in hydropower analysis, with a nationally recognized and highly qualified team of scientists addressing small to large-scale systems (basin-, regional-, and national-scale) energy generation optimization analysis for DOE. The

  6. Sustainable Energy Landscape: Implementing Energy Transition in the Physical Realm

    NARCIS (Netherlands)

    Stremke, S.

    2015-01-01

    Since the beginning of the new millennium, the concept of “energy landscape” is being discussed by academia from the environmental design domain while more and more practitioners have been contributing to sustainable energy transition. Yet, there remains some ambiguity as to what exactly is meant

  7. Clean energy, technical files; Energie propre, les fiches techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document is the compilation of the 42 issues of the 'Energie propre - Maitrise de la Demande d'Energie' newsletter published between September 1996 and July 1999 by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE). Each issue is a technical file presenting a particular action or study carried out in the framework of the program of mastery of energy demand in Provence-Alpes-Cote d'Azur region (SE France). These studies and actions concern various types of buildings: high schools, residential buildings for old people, office buildings, social buildings, hotels, recreational facilities, and cover all aspects of energy conservation: space heating, lighting systems, ventilation systems, thermal insulation, appliances.. (J.S.)

  8. Energy and sustainable development in Finland

    International Nuclear Information System (INIS)

    2003-01-01

    The U.N. World Summit on Environment and Development in Rio de Janeiro in June 1992 was the origin of the international framework for sustainable development. As a basis for joint, sustainable action by governments, organizations, industries, and the public, the participating countries signed the Rio Declaration on Environment and Development, and drafted the associated action program, Agenda 21. Sustainable development comprises these three determinant factors: - Economy. - Ecology. - Social aspects. This is where entrepreneurial responsibility for society comes in. If industries want to generate overall positive effects, they must be efficient, competitive, and profitable on a long-term basis. Power supply systems meeting the criteria of sustainable development must be reliable, economically viable, socially acceptable, and environmentally compatible. The power supply in Finland is meeting these sustainability requirements in many ways. Finland's electricity supply is decentralized, using a variety of energy sources. Electricity can be generated and made available at low cost. The Finnish power industry is an important employer and a major factor in the economy. Moreover, electricity is generated in advanced types of power plants. In this way, the structure of the Finnish power supply system incorporates important factors of sustainable development. (orig.)

  9. Energy from Biomass for Sustainable Cities

    Science.gov (United States)

    Panepinto, D.; Zanetti, M. C.; Gitelman, L.; Kozhevnikov, M.; Magaril, E.; Magaril, R.

    2017-06-01

    One of the major challenges of sustainable urban development is ensuring a sustainable energy supply while minimizing negative environmental impacts. The European Union Directive 2009/28/EC has set a goal of obtaining 20 percent of all energy from renewable sources by 2020. In this context, it is possible to consider the use of residues from forest maintenance, residues from livestock, the use of energy crops, the recovery of food waste, and residuals from agro-industrial activities. At the same time, it is necessary to consider the consequent environmental impact. In this paper an approach in order to evaluate the environmental compatibility has presented. The possibilities of national priorities for commissioning of power plants on biofuel and other facilities of distributed generation are discussed.

  10. Methods of Comprehensive Assessment for China’s Energy Sustainability

    Science.gov (United States)

    Xu, Zhijin; Song, Yankui

    2018-02-01

    In order to assess the sustainable development of China’s energy objectively and accurately, we need to establish a reasonable indicator system for energy sustainability and make a targeted comprehensive assessment with the scientific methods. This paper constructs a comprehensive indicator system for energy sustainability from five aspects of economy, society, environment, energy resources and energy technology based on the theory of sustainable development and the theory of symbiosis. On this basis, it establishes and discusses the assessment models and the general assessment methods for energy sustainability with the help of fuzzy mathematics. It is of some reference for promoting the sustainable development of China’s energy, economy and society.

  11. Sustainable resource planning in energy markets

    International Nuclear Information System (INIS)

    Kamalinia, Saeed; Shahidehpour, Mohammad; Wu, Lei

    2014-01-01

    Highlights: • Sustainable resource planning with the consideration of expected transmission network expansion. • Incomplete information non-cooperative game-theoretic method for GEP. • Maximizing utility value whiling considering merits of having various generation portfolios. • Minimizing risk of investment using renewable generation options. • Application of the stochastic approach for evaluating the unpredictability of opponent payoffs and commodity values. - Abstract: This study investigates the role of sustainable energy volatility in a market participant’s competitive expansion planning problem. The incomplete information non-cooperative game-theoretic method is utilized in which each generation company (GENCO) perceives strategies of other market participants in order to make a decision on its strategic generation capacity expansion. Sustainable generation incentives, carbon emission penalties, and fuel price forecast errors are considered in the strategic decisions. The market clearing process for energy and reserves is simulated by each GENCO for deriving generation expansion decisions. A merit criterion (i.e., the utility value) is proposed for a more realistic calculation of the expected payoff of a GENCO with sustainable energy resources. Finally, the impact of transmission constraints is investigated on the GENCO’s expansion planning decision. The case studies illustrate the effectiveness of the proposed method

  12. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  13. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  14. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    Full text: Nuclear energy is an established component of electricity supply worldwide (16%) and in particular in OECD (nearly a quarter). It is supported by a mature industry benefiting from extensive experience (more than 8 000 reactor years of commercial operation) and dynamic R and D programmes implemented by governments and industries. Existing nuclear power plants are competing successfully in deregulated electricity markets owing to their low marginal production costs, their technical reliability (availability factors exceeding 80% in many countries) and good safety performance. Stringent safety requirements and radiation protection regulations in place in OECD countries allow potential impacts of nuclear energy facilities on human health and the environment to remain extremely low. Furthermore, nuclear energy, a nearly carbon free source, contributes to alleviating the risk of global climate change (worldwide, GHG emissions from the energy sector are already 8% lower than they would be without nuclear energy). Issues related to high-level waste management and disposal are being addressed in comprehensive, step by step approach. Progress towards the implementation of deep geological repositories is being demonstrated (e.g., Yucca Mountain in the US, Olkiluoto in Finland) and research on innovative fuel cycles aiming at partitioning and transmutation of minor actinides is being actively pursued. Up to 2010-2020, nuclear energy will maintain its role mainly through capacity upgrade and lifetime extension of existing plants, in many cases the most cost effective means to increase power capacity and generation. Examples are provided by utility policies and decisions in a number of OECD countries (e.g., Spain, Sweden, Switzerland, UK, US). Although only few new units are being or will be built in the very near term, their construction and operation is bringing additional experience on advanced evolutionary nuclear systems and paving the way for the renaissance of

  15. Carbon-energy tax and sustainable development

    International Nuclear Information System (INIS)

    Ter Brugge, Marc.

    1994-01-01

    In 1992 the European Commission made a proposal for a carbon-energy tax to be introduced in Member States of the European Union (EU). So far, this proposal for a coordinated international response to the problem of global warming has met with a great deal of unwillingness among the Member States. During the first half of 1994 the Greek Chairmanship of the European Union will make another attempt to reach consensus. There does not seem to be much hope, however, that European countries will consent in the introduction of a EU-wide tax on carbon and energy. The Dutch government, in the mean time, has announced to introduce an energy tax for small users in 1995. In this paper InZet draws attention to the consequences for developing countries of the introduction of an energy tax in the industrialised countries. InZet strongly believes that instruments aimed at dealing with global environmental problems such as the greenhouse effect should have a global, integral focus. These instruments should be screened on their consequences for sustainable development in developing countries. Options for a more sustainable energy use in developing countries should form an integral part of energy policy instruments in the industrialised countries. The paper is structured as follows. In Chapter 1 an introduction to the phenomenon of global warming is given and the role of carbon/energy taxes in reducing CO 2 emissions is outlined. In Chapter 2 a definition of sustainable development and the means by which it can be supported in the South are discussed. Chapter 3 provides a description of various carbon/energy taxes, and in Chapter 4 the conclusions are given as well as several policy recommendations. 75 refs

  16. Sustainable energy use and energy supply - from vision to reality?

    International Nuclear Information System (INIS)

    Hake, J.F.; Eich, R.

    2003-01-01

    Agenda 21 formulated in connection with the UN-Summit in Rio de Janeiro summarises the demands and suggestions concerning a sustainable energy use and energy supply: 'Energy is essential to economic and social development and improved quality of life. Much of the world's energy, however, is currently produced and consumed in ways that could not be sustained if technology were to remain constant and if overall quantities were to increase substantially.' Since the adoption of Agenda 21 the energy issue has been at the centre of the Rio process, either directly, if aspects of supply for humans are concerned, or indirectly, if the anthropogenic greenhouse effect is dealt with. Germany takes an active role in participating in the Rio process, adopting it to national conceptions and supporting other countries on their path to Sustainable Development. Milestones of the German Rio Process are the commitment to the goals and actions of the Rio Declaration and the Agenda 21 as well to the corresponding UN conventions. The German Federal Government has taken several actions. In summer 2000 the Federal Cabinet adopted a bill according to which a Council for Sustainable Development (Nachhaltigkeitsrat) was to be instituted at the beginning of 2001. The Council's task is to participate in the development and formulation of a sustainability strategy for the Federal Republic of Germany. Furthermore, the Federal Government has agreed on the institution of a State Secretary Committee for Sustainable Development. The Committee's task is among other things to define concrete projects for the implementation of the federal sustainable strategy. (BA)

  17. Motivating sustainable energy consumption in the home

    Energy Technology Data Exchange (ETDEWEB)

    He, H.A.; Greenberg, S. [Calgary Univ., AB (Canada). Dept. of Computer Science

    2009-07-01

    This paper discussed social motivations related to household energy conservation. The aim of the study was to explore how technology can be designed and used in the home to encourage sustainable energy use. The basic techniques used to motivate sustainable energy action included behaviour change techniques; information techniques; positive motivational techniques; and coercive motivational techniques. The psychological theories used in the study included cognitive dissonance as a means of reminding people of the inconsistency of their attitudes towards energy and their behaviour, and utility theory as a means of determining personal motivations for energy conservation. The study showed that people are more motivated to act when presented with personalized information and monetary losses as opposed to monetary gain. Social value orientation and self-reflection motivations were also considered. The study showed that pro-social orientation can be used in the form of ambient displays located in public areas of the home. Self-reflection can be encouraged by allowing family members to annotate visualizations containing a history of their energy consumption data. Results of the study will be used to design actual feedback visualizations of energy use. 18 refs.

  18. Sustainability Assessment: Energy Efficiency in Buildings at a Community University

    Directory of Open Access Journals (Sweden)

    Stephane Louise Bocasanta

    2017-10-01

    Full Text Available This research aims to analyze the degree of sustainability of a building in a community university (object of analysis, as regards its energy efficiency. Therefore, it seeks out to contribute to the literature, provide a basis for the application of SICOGEA system in other buildings and contribute to the consolidation of an effective and consistent environmental management system. The research can be classified, as to its technical procedures, as a case study. As to its objectives it is descriptive, with a qualitative approach. The literature on environmental management and sustainability assessment of buildings was used to support the research. As to the results found, the overall University sustainability rate was 48%, which can be classified as regular, that is, it aims to deal with the legislation only. Therefore, it is believed that the institution can make improvements to achieve a more efficient index. By taking into consideration the deficit items, the following is suggested: to introduce sustainable procurement; to strive for stamps and certifications; to avoid environmental fines and indemnity; and to implement environmental auditing. However, it is clarified that these are suggestions that should be taken into consideration along with financial matters and within the institution planning questions. The analysis of financial sustainability was considered good and, ideally, it will go on.

  19. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  20. The missing link in sustainable energy

    DEFF Research Database (Denmark)

    Blarke, Morten Boje

    This thesis investigates options for handling the problem of intermittency related to large-scale penetration of wind power into the West Danish energy system. But rather than being a story about wind power, the thesis explores the principles by which distributed energy plants could be better...... in favour of a domestic integration strategy for handling intermittency towards a sustainable energy system. It is found that large-scale transcritical compression heat pumps are suitable and ready for integration with existing cogenerators, but that system-wide energy, environmental, and economic benefits...... the relocation coefficient, for evaluating the wind-friendliness of distributed generators, and the cost-effectiveness hereof, and offers a new interactive modelling framework that allows for researchers and local operators to interact on evaluating options for domestic integration with respect to energy...

  1. Sustainable roofs with real energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  2. No sustainable development without an energy policy

    International Nuclear Information System (INIS)

    Akhras, G.

    2000-01-01

    The energy crisis of 1973, and again during the 1980s, prompted industrialized countries to adopt measures to reduce energy usage and to encourage conservation practices. Energy consumption in the transportation field was particularly high. However, after a while, some of the measures were either dropped or not enforced and our energy utilization continued to intensify. It soon became apparent that a different approach was required. At the Rio Conference in 1992, the idea of sustainable development was introduced with the objective to reduce global warming. The utilization of fossil fuels amplifies the emissions of greenhouse gases resulting in global warming which threatens the entire environment and also the health of citizens, particularly those living in cities. In 1997, 160 countries signed the Kyoto Protocol. Canada committed to reduce emissions of greenhouse gases by 6 per cent compared to 1990 levels, and this between 2008 and 2012. It is obvious that drastic steps are needed in order for Canada to meet this commitment. After an extensive analysis of the situation by various committees, it was concluded that activities related to the transportation of people in particular contribute greatly to the emission of greenhouse gases. The results also indicate that solutions need to be found to reduce energy consumption. The author recommended the adoption of intelligent structures and materials which imitate biological systems in a predictable manner to optimize certain functions. He also recommended a better integration of energy policy with the basic principles of sustainable development. 10 refs., 4 tabs

  3. Energy analysis for sustainable mega-cities

    Energy Technology Data Exchange (ETDEWEB)

    Phdungsilp, Aumnad

    2006-09-15

    Cities throughout Asia have experienced unprecedented development over the past decades. In many cases this has contributed to their rapid and uncontrolled growth, which has resulted in a multiplicity of problems, including rapid population increase, enhanced environmental pollution, collapsing traffic systems, dysfunctional waste management, and rapid increases in the consumption of energy, water and other resources. The significant energy use in cities is not very well perceived in Asian countries. Although a number of studies into energy consumption across various sectors have been conducted, most are from the national point of view. Energy demand analysis is not considered important at the level of the city. The thesis is focused on the dynamics of energy utilization in Asian mega-cities, and ultimately aims at providing strategies for maximizing the use of renewable energy in large urban systems. The study aims at providing an in-depth understanding of the complex dynamics of energy utilization in urban mega-centers. An initial general analysis is complemented by a detailed study of the current situation and future outlook for the city of Bangkok, Thailand. An integrated approach applied to the study includes identification of the parameters that affect the utilization of energy in mega-cities and a detailed analysis of energy flows and their various subsystems, including commercial, industrial, residential and that of transportation. The study investigates and evaluates the energy models most commonly used for analyzing and simulating energy utilization. Its purpose is to provide a user-friendly tool suitable for decision-makers in developing an energy model for large cities. In addition, a Multi-Criteria Decision-Making (MCDM) process has been developed to assess whether or not the energy systems meet the sustainability criteria. A metabolic approach has been employed to analyze the energy flow and utilization in selected Asian mega-cities, including Bangkok

  4. Political mechanisms of sustainable energy development in western countries

    International Nuclear Information System (INIS)

    Yershin, Sh. A.; Yershin, Sh. C.

    2014-01-01

    This article is about the development of politic mechanisms in sustainable energy in western countries (primarily EC, USA). The development of sustainable energy in western countries should be greatly based on government and business support and common ways of such help are described below. Also shown the significance of development of sustainable energy, its importance for environmental protection and perspectives Key words: sustainable energy, government regulation, wind energy, EC, USA, biofuel

  5. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    In many countries, the electricity supply and power plant operation are challenged by increasing amounts of fluctuating renewable energy sources. A smart energy system should be developed to integrate as much energy supply from fluctuating renewable sources and to utilise the scarce biomass....... It is concluded that the CCGT CHP plant is the most feasible both from a technical analysis and a market economic analysis with electricity exchange. It is found that the current economic framework for large CHP plants in Denmark generates a mismatch between socio economy and business economy as well...... as an unsustainable level of biomass consumption. Therefore, the regulatory framework should generally be considered in long-term planning of sustainable CHP systems....

  6. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  7. Teaching Sustainable Design Using BIM and Project-Based Energy Simulations

    Science.gov (United States)

    Shen, Zhigang; Jensen, Wayne; Wentz, Timothy; Fischer, Bruce

    2012-01-01

    The cross-disciplinary nature of energy-efficient building design has created many challenges for architecture, engineering and construction instructors. One of the technical challenges in teaching sustainable building design is enabling students to quantitatively understand how different building designs affect a building's energy performance.…

  8. Solar energy in light of sustain development

    International Nuclear Information System (INIS)

    Markovska, Natasha; Pop-Jordanov, Jordan

    2001-01-01

    In the paper, a correlation between solar energy and sustain development has been considered, based on the concept of negentropy. Namely, the introduction of solar energy and renewable s in general corresponds to the proposed negentropic extension of the standard pathways in world metabolism, including science and technology as a supplementary negentropic resource. In this connection, the solar cell processes are based on micropatticies and their interactions, making the quantum mechanical approach in their analysis of exceptional importance. At the same time, it opens a possibility for revealing new quantum phenomena which could contribute to improvement of the cell performances. (Original)

  9. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  10. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    Directory of Open Access Journals (Sweden)

    Viorica-Alina Oltean

    2016-03-01

    Full Text Available In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested.

  11. Energy and sustainable development in Cuba

    International Nuclear Information System (INIS)

    Bravo Hidalgo, Debrayan

    2015-01-01

    Employment and enhancing the use of renewable energy sources could be considered as the beginning of a third ¨Industrial Revolution¨. The transition to a low carbon dioxide emission permits to a momentous turning point in the fight against climate change, improve energy security, and last but not least, significantly reduce the geopolitical intentions of this.The increase in renewable sources constitutes a guideline for energy policy in Cuba. Thus, programs for the construction of small hydropower plants, plant cells and photovoltaic panels, solar thermal energy systems for various services are developed; and the use of other primary sources such as wind and biomass.This work shows the implementation of these practices in the nation, the present results and future aspirations facing the demands of sustainable and steady development of generation and power consumption. (author)

  12. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  13. ENERGY AND SUSTAINABLE DEVELOPMENT IN CUBA

    Directory of Open Access Journals (Sweden)

    Debrayan Bravo Hidalgo

    2015-10-01

    Full Text Available Employment and enhancing the use of renewable energy sources could be considered as the beginning of a third ¨Industrial Revolution¨. The transition to a low carbon dioxide emission permits to a momentous turning point in the fight against climate change, improve energy security, and last but not least, significantly reduce the geopolitical intentions of this. The increase in renewable sources constitutes a guideline for energy policy in Cuba. Thus, programs for the construction of small hydropower plants, plant cells and photovoltaic panels, solar thermal energy systems for various services are developed; and the use of other primary sources such as wind and biomass. This work shows the implementation of these practices in the nation, the present results and future aspirations facing the demands of sustainable and steady development of generation and power consumption.

  14. Sustainability and energy self-sufficiency; overcoming the barriers

    Directory of Open Access Journals (Sweden)

    Rania Abdel Galil

    2015-12-01

    the struggle on the micro level in Europe and on the macro level in MENA.On a political level, renewable energy policies in Europe are criticized as being uncoordinated, unstrategised and based on multiple interests, generally favouring macro level and inadequate to stimulate widespread adoption at the micro level. Similarly, in the MENA region, there is a lack of coordination between sustainable energy policies with other policy fields, namely economic, financial, environmental and social policy, with a lack of expertise in renewable energy policies and supportive policies for private investment. On an economic level, in Europe, sourcing and accessing finance is a major barrier for communities, with a lack appropriate organizational structures, the volatility of grant regimes and uncertain infrastructural costs perhaps associated with the near monopolistic position of some grid companies. Whereas in the MENA region, there are no incentives for economical use of energy, there is a lack of funding in public utilities in most countries, the investment climate is less attractive and a monopoly position of most electricity producers exists.Technically, on a national level in Europe, a problem of the incompatibility of the new technologies with the current infrastructure (grid connection and capacity are often identified as barriers, whilst on a community level, the lack of data on the efficiency of techniques, lack of technical skills and experience  to implement renewable energy solutions act as barriers. In MENA, technologies involving the use of renewables have barely become established on the market and there is a significant lack of knowledge in the areas of technology transfer, marketing and the development of services within the energy sector. Finally, on a social level, the picture in the MENA region is bleaker. In Europe, governments and communities are well aware of the challenges laying ahead in terms of energy and some are well underway in achieving targets

  15. Technology Paths in Energy-Efficient and Sustainable Construction

    DEFF Research Database (Denmark)

    Holm, Jesper; Lund Sørensen, Runa Cecilie

    2015-01-01

    Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing......Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing...

  16. Nuclear energy and sustainability: Understanding ITER

    International Nuclear Information System (INIS)

    Fiore, Karine

    2006-01-01

    Deregulation and new environmental requirements combined with the growing scarcity of fossil resources and the increasing world energy demand lead to a renewal of the debate on tomorrow's energies. Specifically, nuclear energy, which has undeniable assets, faces new constraints. On the one hand, nuclear energy is very competitive and harmless to greenhouse effect. From this point, it seems to be an ideal candidate to reach future objectives of sustainability, availability and acceptability. On the other hand, its technology of production - based on fission - remains imperfect and generates risks for environment and health. In this respect, it is less desirable. Therefore, world researchers turn today towards another type of nuclear technique, fusion, on which the project ITER is founded. This worldwide project is interesting for our analysis because, as a technological revolution, it takes into consideration all the global challenges of nuclear energy for the future, and particularly its capacity to meet the increasing energy needs of developing countries. It is the example par excellence of a successful international scientific collaboration oriented towards very long-run energy ends that involve huge technological, economic and political stakes. Focusing on this project, we thus have to reconsider the future place of nuclear energy in a more and more demanding world. Considering the magnitude of the efforts undertaken to implement ITER, this paper aims at analysing, in a detailed way, its goals, its challenges and its matter

  17. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  18. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon

    2017-09-22

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination processes are required to meet future sustainable desalination goal and COP21 goal. In this paper, we proposed a multi-effect desalination system operated with ocean thermocline energy, thermal energy harnessed from seawater temperature gradient. It can exploit low temperature differential between surface hot water temperature and deep-sea cold-water temperature to produce fresh water. Detailed theoretical model was developed and simulation was conducted in FORTRAN using international mathematical and statistical library (IMSL). We presented four different cases with deep-sea cold water temperature varies from 5 to 13°C and MED stages varies from 3 to 6. It shows that the proposed cycle can achieve highest level of universal performance ratio, UPR = 158, achieving about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the proposed cycle is truly a “green desalination” method of low global warming potential (GWP), best suited for tropical coastal shores having bathymetry depths up to 300m or more.

  19. Complex assessment of urban housing energy sustainability

    Science.gov (United States)

    Popova, Olga; Glebova, Julia; Karakozova, Irina

    2018-03-01

    The article presents the results of a complex experimental-analytical research of residential development energy parameters - survey of construction sites and determination of calculated energy parameters (resistance to heat transfer) considering their technical condition. The authors suggest a methodology for assessing residential development energy parameters on the basis of construction project's structural analysis with the use of advanced intelligent collection systems, processing (self-organizing maps - SOM) and data visualization (geo-informational systems - GIS). SOM clustering permitted to divide the housing stock (on the example of Arkhangelsk city) into groups with similar technical-operational and energy parameters. It is also possible to measure energy parameters of construction project of each cluster by comparing them with reference (normative) measures and also with each other. The authors propose mechanisms for increasing the area's energy stability level by implementing a set of reproduction activities for residential development of various groups. The analysis showed that modern multilevel and high-rise construction buildings have the least heat losses. At present, however, ow-rise wood buildings is the dominant styles of buildings of Arkhangelsk city. Data visualisation on the created heat map showed that such housing stock covers the largest urban area. The development strategies for depressed areas is in a high-rise building, which show the economic, social and environmental benefits of upward growth of the city. An urban regeneration programme for severely rundown urban housing estates is in a high-rise construction building, which show the economic, social and environmental benefits of upward growth of the city.

  20. Proceedings of the 8. Brazilian congress on energy: energy policy, regulation and sustainable development. v. 3: technological innovation, renewable sources and rural energization

    International Nuclear Information System (INIS)

    1999-01-01

    These proceedings cover the papers presented in the 8. Brazilian congress on energy held at Rio de Janeiro from November, 30 to December, 02, 1999, focusing energy policy, regulation and sustainable development, specifically the contribution of energy to a satisfactory quality of life for everyone. Within such a context, the congress technical programme has been structured around six different divisions: energy, environment and development; energy sector regulation; energy policy and planning; technology innovation; energy conservation; renewable energy sources and rural areas energy supply

  1. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  2. On sustainability assessment of technical systems. Experience from systems analysis with the ORWARE and Ecoeffect tools

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering

    2006-06-15

    alternatives at the same time, and carrying out the assessment of the three dimensions independently. It should give way to transparent system where the level of quality of input data can be comprehended. The assessment approach should focus on a selected number of key input data, tested calculation procedures, and comprehensible result presentation. The challenge in developing and applying this approach is the complexity of method integration and information processing. The different parts to be included in the same platform come in with additional uncertainties hampering result interpretations. The hitherto tendency of promoting disciplinary lines will continue to challenge further developments of such interdisciplinary approaches. The thesis draws on the experience from ORWARE, a Swedish technology assessment tool applied in the assessment of waste management systems and energy systems; and from the EcoEffect tool used in the assessment of building properties; all assessed as components of a larger system. The thesis underlines the importance of sustainability considerations beginning from the research and development phase of technical systems. The core message of this thesis is that technical systems should be researched as indivisible parts of a complex whole that includes society and the natural environment. Results from such researches can then be transformed into design codes and specifications for use in the research and development, planning and structuring, and implementation and management of technical systems.

  3. Sustainable energy supply: the national dimension

    International Nuclear Information System (INIS)

    Schilling, H.D.

    2000-01-01

    Is the concept of sustainable development really a new concept of our times? The answer given by the author is 'no'. He explains the roots of this concept by referring to the energy conservation principle discovered in 1845 by Robert Meyer (1st law of thermodynamics), and to Rudolf Clausius who, in 1850, formulated the 2nd law of thermodynamics which was to become one of the most important scientific achievements of the 19th century. The author continues the brief historical survey of scientific knowledge and application of the energy conservation principle in connection with input-output systems in the broadest sense, and particularly in energy engineering. The second part of the paper deals with the recent past, advances in science and technology and the technology-ecology nexus, as well as social, educational and economic aspects of relevance in our time, including a look at future challenges. (orig./CB) [de

  4. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  5. 4th international conference in sustainability in energy and buildings

    CERN Document Server

    Höjer, Mattias; Howlett, Robert; Jain, Lakhmi

    2013-01-01

    This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organised by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB’12 proceedings includes invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimisation and modeling techniques, informati...

  6. Energy research shows the way to sustainable energy policy

    International Nuclear Information System (INIS)

    Glatthard, T.

    2000-01-01

    This article takes a look at the work of the Swiss research programme on energy economics basics that aims to provide advice for policy makers. The programme investigates not only the technological but also the social and economic factors to be taken into consideration. In particular, the article reviews the programme's work on promotion strategies for sustainability in the energy area in connection with a proposed levy on energy. Examples are given of possible implementation strategies concerning new and existing buildings. The responsibilities of the parties to be involved in the implementation of promotional measures such as cantonal authorities, professional associations and agencies are discussed

  7. Simulation-based optimization of sustainable national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola

    2015-01-01

    The goals of the EU2030 energy policy should be achieved cost-effectively by employing the optimal mix of supply and demand side technical measures, including energy efficiency, renewable energy and structural measures. In this paper, the achievement of these goals is modeled by introducing an innovative method of soft-linking of EnergyPLAN with the generic optimization program (GenOpt). This soft-link enables simulation-based optimization, guided with the chosen optimization algorithm, rather than manual adjustments of the decision vectors. In order to obtain EnergyPLAN simulations within the optimization loop of GenOpt, the decision vectors should be chosen and explained in GenOpt for scenarios created in EnergyPLAN. The result of the optimization loop is an optimal national energy master plan (as a case study, energy policy in Serbia was taken), followed with sensitivity analysis of the exogenous assumptions and with focus on the contribution of the smart electricity grid to the achievement of EU2030 goals. It is shown that the increase in the policy-induced total costs of less than 3% is not significant. This general method could be further improved and used worldwide in the optimal planning of sustainable national energy systems. - Highlights: • Innovative method of soft-linking of EnergyPLAN with GenOpt has been introduced. • Optimal national energy master plan has been developed (the case study for Serbia). • Sensitivity analysis on the exogenous world energy and emission price development outlook. • Focus on the contribution of smart energy systems to the EU2030 goals. • Innovative soft-linking methodology could be further improved and used worldwide.

  8. MIT - Mighty Steps toward Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Settlemyre, Kevin [Sustainable IQ, Inc., Arlington, MA (United States); Bosnic, Zorana [HOK, San Francisco, CA (United States)

    2012-07-01

    Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray and Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.

  9. Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance

    Directory of Open Access Journals (Sweden)

    Agnese Attanasio

    2018-02-01

    Full Text Available There is a growing interest in the construction sector in the use of sustainable binders as an alternative to ordinary Portland cement, the production of which is highly impacting on the environment, due to high carbon dioxide emissions and energy consumption. Alkali-activated binders, especially those resulting from low-cost industrial by-products, such as coal fly ash or metallurgical slag, represent a sustainable option for cement replacement, though their use is more challenging, due to some technological issues related to workability or curing conditions. This paper presents sustainable alkali-activated mortars cured in room conditions and based on metakaolin, fly ash, and furnace slag (both by-products resulting from local sources and relevant blends, aiming at their real scale application in the building sector. The effect of binder composition—gradually adjusted taking into consideration technical and environmental aspects (use of industrial by-products in place of natural materials in the view of resources saving—on the performance (workability, compressive strength of different mortar formulations, is discussed in detail. Some guidelines for the design of cement-free binders are given, taking into consideration the effect of each investigated alumino-silicate component. The technical feasibility to produce the mortars with standard procedures and equipment, the curing in room conditions, the promising results achieved in terms of workability and mechanical performance (from 20.0 MPa up to 52.0 MPa, confirm the potential of such materials for practical applications (masonry mortars of class M20 and Md. The cement-free binders resulting from this study can be used as reference for the development of mortars and concrete formulations for sustainable building materials production.

  10. Towards a Sustainable Spatial Organization of the Energy System: Backcasting Experiences from Austria

    Directory of Open Access Journals (Sweden)

    Markus Knoflacher

    2012-02-01

    Full Text Available The transition to a sustainable energy system faces more challenges than a simple replacement of fossil energy sources by renewable ones. Since current structures do not favor sustainable energy generation and use, it is indispensable to change the existing infrastructure. A fundamental change of the energy system also requires re-organizing spatial structures and their respective institutions and governance structures. Especially in Austria, urban sprawl and unsustainable settlement structures are regarded as one of the main developments leading to increased energy demand. One of the aims within the project E-Trans 2050 was to identify socio-economic constellations that are central to the further transformation of the energy system and to focus on actors and their socio-technical framework conditions. Based on a sustainable future vision for the year 2050 a backcasting workshop was conducted to identify necessary steps for the envisaged transition to a more sustainable energy system. The results shed light on the necessary changes for a transformation towards sustainability in the specific Austrian situation. Critical issues are region-specific production of energy and its use, settlement and regional structures and values and role models, which all have a determining influence on energy demand. Combining the knowledge of extensive energy use with available energy resources in spatial planning decisions is a main challenge towards a long term sustainable energy system.

  11. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  12. Key Assets for a Sustainable Low Carbon Energy Future

    Science.gov (United States)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political

  13. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  14. Sustainable development and peaceful use of nuclear energy in Romania

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2004-01-01

    The concept of sustainable development was elaborated in the late 1980s and was defined as a development that fulfills the needs of the present without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also many arguments in favor of nuclear energy as a reliable source such as: the large size of the nuclear power plants, their long periods of operation and the existent experience for operation. The risks associated with radiation are among the most extensively studied hazards known by man, but several factors are preserving public anxiety about radiation. Radiation is inaccessible to human senses, difficult to understand, and probabilistic in its effects, which to the public means uncertainty. Hence, radiological protection is essential to ensure that nuclear energy is compatible with sustainable development. Nuclear energy has, in normal operation, a low impact on health and environment. In order to meet the sustainable development goals, it is necessary to maintain its high standards of safety in spite of increasing competition in the electricity sector and reactors ageing in order to achieve a higher level of public acceptance. The complex technologies used by nuclear fuel cycle facilities are controlled and regulated by international and national institutions. A framework of regulatory, institutional and technical measures is already in place ensuring that the use of nuclear energy does not significantly modify

  15. Nuclear energy and sustainability in Latin America

    International Nuclear Information System (INIS)

    Sterner, Thomas

    1991-01-01

    The concept of sustainability has been given numerous interpretations, some overlapping or complementary, some contradictory. Thus it is difficult to judge whether the nuclear industry does, or does not, meet sustainability criteria; particularly as the present nuclear technologies are not renewable. Uranium resources appear to be of the same order of magnitude as oil and gas resources. This implies that they are a transitional source of energy. There are also other potential arguments against the sustainability of nuclear power: its pollution, risks and costs. Environmental damage may come from various parts of the nuclear fuel cycle. Two types of risk will be discussed: first the risk of major accidents and thereby exceptional environmental damage, and second the risks associated with the proliferation of nuclear weapons. Each of these factors, as well as the pure economic cost of nuclear electricity, ought to be compared to the environmental damage, risks and costs of the available alternatives. Only the Latin American experience will be considered. For example, the need for Mexico to use nuclear power when it has large oil and gas supplies, is considered. (author)

  16. Sustainability reporting in the energy sector

    Directory of Open Access Journals (Sweden)

    Kowal Barbara

    2016-01-01

    Full Text Available Development of the concepts of sustainable development and corporate social responsibility has a great impact on reporting in companies. The increase of their importance has resulted in a need to create a reporting system that would provide information on not only the methods but also the results of implementation of those concepts in companies. Globally, there are many organizations that promote and support companies in the area of integrated reporting. The most popular standard for reporting non-financial data that is used by a number of companies worldwide is the Global Reporting Initiative (GRI Guidelines. The main objective of the GRI is to support the development of sustainable economy in which companies take responsibility for the economic, social, and environmental consequences of their operations, manage that responsibility, and report all their actions. An example of a sector where the concept of sustainable development and its transparent reporting has an impact on the formation of values is the energy sector, which creates value for stakeholders and, together with the financial sector, has the greatest impact on national economies.

  17. Energy services and energy poverty for sustainable rural development

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2011-01-01

    In many rural areas, poor people still depend on wood and other biomass fuels for most of their household and income-generating activities. The difficult, time-consuming work of collecting and managing traditional fuels is widely viewed as women's responsibility, which is a factor in women's disproportionate lack of access to education and income, and inability to escape from poverty. Therefore, it is important for energy access programs to have a special focus on women. New options for energy access and sustainable livelihoods, like small-scale biofuels production, can have dramatic benefits for rural women, and their families and communities. Energy development, as both a driving force and a consequence of such tremendous changes, has had profound impact on economic, social, and environmental development. Rural energy has always been a critical issue due to years of energy shortage for both households and industries. Biomass, for long time, has been the only available fuel in many rural areas. The situation in rural areas is even more critical as local demand for energy outstrips availability and the vast majority of people depend on non-commercial energy supplies. Energy is needed for household uses, such as cooking, lighting, heating; for agricultural uses, such as tilling, irrigation and post-harvest processing; and for rural industry uses, such as milling and mechanical energy and process heat. Energy is also an input to water supply, communication, commerce, health, education and transportation in rural areas. (author)

  18. Energy and sustainability: a global view

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1995-01-01

    A discussion is made of the conflicting concepts of sustainable development, focusing primarily on energy resources, as viewed by economists and environmentalists. According to the 'preservationist' view we 'borrow' the Earth from generations to come and have no right to use exhaustible resources. According to 'developmentalists' natural resources are either infinite or can be substituted by alternatives so there is no real problem of exhaustion of resources. It is shown that a compromise between such extreme positions is being forced by the heightened concerns for environmental protection. Outstanding among them are the problems of climate changes resulting from CO 2 (carbon dioxide) emissions from fossil fuel combustion. The energy consumed at present by industrialized and developing countries, and their projections to the year 2020 will be presented as well as the serious environmental consequences of a 'business-as-usual' scenario. These consequences will be much harder to cope with in the developing countries. Carbon emissions will be shown to increase with population, GDP and the 'energy intensity' of the economy. The 'decarbonization' trends of the present economies will be related to the decrease in total fertility rate and 'energy intensity' which is linked to technological advances in energy conservation and structural changes. Mechanisms to accelerate such trends will be discussed as well as financial mechanisms to pay for it, such as carbon taxes. (author) figs., tabs., refs

  19. Academic Training: Toward Sustainable Energy Systems?

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es) ,a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED' electricity interconnection, intending to carry solar electricity f...

  20. Academic Training: Toward Sustainable Energy Systems?

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es), a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED'electricity interconnection, intending to carry solar electricity fro...

  1. Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China

    Directory of Open Access Journals (Sweden)

    Xiaolin Yang

    2018-03-01

    Full Text Available Under dual pressures of energy and environmental security, sweet sorghum is becoming one of the most promising feedstocks for biofuel production. In the present study, the technical feasibility of sweet sorghum production was assessed in eight agricultural regions in China using the Sweet Sorghum Production Technique Maturity Model. Three top typical agricultural zones were then selected for further sustainability assessment of sweet sorghum production: Northeast China (NEC, Huang-Huai-Hai Basin (HHHB and Ganxin Region (GX. Assessment results demonstrated that NEC exhibited the best sustainable production of sweet sorghum, with a degree of technical maturity value of 0.8066, followed by HHHB and GX, with corresponding values of 0.7531 and 0.6594, respectively. Prospective economic profitability analysis indicated that bioethanol production from sweet sorghum was not feasible using current technologies in China. More efforts are needed to dramatically improve feedstock mechanization logistics while developing new bioethanol productive technology to reduce the total cost. This study provides insight and information to guide further technological development toward profitable industrialization and large-scale sweet sorghum bioethanol production.

  2. The new district energy : building blocks for sustainable community development

    International Nuclear Information System (INIS)

    2008-01-01

    The price of energy is expected to rise as world demand for fossil fuels increases and energy supplies become harder to access. Governments and businesses are interested in the role of energy in the design, development and operation of buildings and whole communities. In addition to contributing to community economic development, district energy (DE) systems can assist communities in meeting their goals for sustainable growth and in managing the changing nature of risk in the generation and delivery of energy. This handbook was developed in order to encourage information sharing and provide ideas on how to advance district energy development in communities across Canada. The handbook identified those who could use DE and listed the benefits provided by DE. These included community, environmental, and business benefits. The handbook also offered suggestions for overcoming common challenges experienced by communities initiating a DE system and provided a checklist to help accelerate the uptake of DE systems in a community. These challenges included working with the community; using integrated design; building knowledge, know-how and technical skills; and partnering to improve project financing and reducing development risk. 50 refs., 8 tabs., 11 figs

  3. Nuclear Energy Center Site Survey, 1975. Part III. Technical considerations

    International Nuclear Information System (INIS)

    1976-01-01

    Studies of the technical feasibility of nuclear energy centers (NECs) and the comparison between NEC technical feasibility and that of nuclear facilities on dispersed sites are reviewed. The conclusions related to technical feasibility of NEC are summarized. Technical feasibility was found to rest mainly on five major issues: heat dissipation, transmission, facility construction, radiological impact, and environmental impact. Although general conclusions can be reached in these five areas, it is recognized that they are interdependent, and detailed site-by-site analysis will be necessary. Some general conclusions on technical feasibility of NECs are presented, then detailed conclusions derived from the technical evaluation of NECs compared to dispersed site facilities are presented. The findings of this study on each of the five major feasibility issues are then discussed in sequence. The study concludes that nuclear energy centers, as defined herein, are technically feasible

  4. Technical Feasibility Study for Zero Energy K-12 Schools

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Goldwasser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Torcellini, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States); Studer, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    This technical feasibility study provides documentation and research results supporting a possible set of strategies to achieve source zero energy K-12 school buildings as defined by the U.S. Department of Energy (DOE) zero energy building (ZEB) definition (DOE 2015a). Under this definition, a ZEB is an energy-efficient building in which, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

  5. EU - India Sustainable Energy Efficiency Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Agster, Rainer; Henzler, Mikael P. (Adelphi Research GmbH, Berlin (Germany)); Asthana, Arvind (Bureau of Energy, Efficiency/GTZ-Indo-German Energy Programme (India))

    2009-07-01

    Between 2006-2008 the EU India Sustainable Energy Initiative (EISEEI) has supported marketing, implementation and enforcement of the Indian Energy Conservation Act, which came into force in 2002 - on state and local level. Market oriented five-year action plans were prepared, which are implemented by State Designated Agencies (SDA) in charge of energy efficiency measures in their respective states. Each Energy Conservation (EC) action plan states the foreseen activities for the next five years as well as general policies, a mission, and a vision relating to energy efficiency. The EISEEI project activities focused on facilitating a moderated dialogue between India and Europe as well as among the SDAs in order to support the preparation of action plans and operational plans. Furthermore, domestic and overseas trainings for SDA staff and the know-how exchange between policy makers, opinion leaders and professionals in these areas were facilitated. During the duration of the project the Indian Ministry of Power decided to apply the same methodology for 24 more SDAs to cover all Indian states. While the initial 6 pilot states were supported with EU and German development aid funds, the enlargement was 100% financed by the Indian government. The paper will highlight the efforts and results of mainstreaming energy efficiency at various consumer levels (from industry to households) in India. The paper will encompass also the involvement of various agencies and institutional structures as well as the operational experiences with the implementation of the action plan on energy efficiency in one of the fastest growing economies in the world.

  6. DOE technical standards list: Department of Energy standards index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  7. Model of sustainable development of energy system, case of Hamedan

    International Nuclear Information System (INIS)

    Sahabmanesh, Aref; Saboohi, Yadollah

    2017-01-01

    Sustainable economic growth and improvement of the social welfare depend upon the sufficient supply of energy resources, while the utilization of energy resources is one of the main factors of environmental degradation. This research is involved with development of a sustainable energy system model and a new method for sustainability assessment. This model represents the flow of energy from primary resources through processing, conversion, and end-use technologies in an optimization framework where the useful energy demand in various social and economic sectors is met. The impact of energy supply and consumption chain on the environment at each level of energy system is also embedded in the model structure. A multi-criteria analysis of changes is then applied and sustainable development indices of the whole system are concluded. Finally, effects of the energy subsidy policy and high economic growth rate on sustainability of the energy system in three scenarios are analyzed. Results demonstrate that energy subsidy decelerates the improvement rate of the total sustainability index. Also, when a high economic growth is accompanied with the energy subsidy this index reduces considerably. Results show that how penetration of renewable energy potentials changes the sustainability situation of energy systems. - Highlights: • Developing a new model for sustainable energy systems. • Presenting a new method for sustainability assessment of energy systems. • Optimizing the energy flow and capacity expansion of Hamedan energy system. • Utilizing an MCDA approach to obtain sustainability indices of the whole system. • Analysis of energy subsidy and high economic growth on energy sustainability.

  8. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  9. Current energy usage and sustainable energy in Kazakhstan: A review

    Science.gov (United States)

    Karatayev, Marat; Islam, Tofazzal; Salnikov, Vitaliy

    2014-05-01

    energy resources such as wind, solar, small hydro and biomass as alternative energy supplies in this country. Our analysis shows that wind and solar energy can become major contributors towards renewable energy in Kazakhstan. The biomass of agricultural residues, municipal solid waste and wood residues could be used for energy purposes too. Therefore, Kazakhstan should optimize energy consumption and take active and effective measures to increase the contribution of renewables in energy supply to make the country's energy mix environmentally sustainable.

  10. Long-term scenarios for sustainable energy use in Germany

    International Nuclear Information System (INIS)

    Fischedick, M.; Nitsch, J.; Lechtenboehmer, S.; Hanke, T.; Barthel, C.; Jungbluth, C.; Assmann, D.; Brueggen, T. vor der; Trieb, F.; Nast, M.; Langniss, O.; Brischke, L.A.

    2002-01-01

    The study was able to show, and explain vividly through scenarios describing change processes, that a sustainable use of energy (aimed, among other things, at reducing CO 2 emissions by 80% by 2050 compared with 1990 levels) is technically feasible, economically viable, compatible with farther-reaching objectives of energy policy (e.g. supply security), and does not, in spite of the substantial need for change, present the players involved with any insurmountable problems but, rather, constitutes both a challenge and an opportunity. Such a development is possible only if the efforts launched to give momentum to the increased use of renewable energy sources are continued consistently, the impending need for replacement and renewal within the generation system is consistently utilised for increasing efficiency and a reorientation mainly towards combined heat and power production, and energy saving is made a new focal point of energy policy. Furthermore, with regard to long-term infrastructure requirements (decentralisation, new fuels), the necessary decisions must be prepared at an early stage and sufficiently robust lines of development must be identified and followed. (orig.) [de

  11. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  12. Approach to a sustainable energy management; Enfoque para una gestion energetica sustentable

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Maria Cristina [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Facultad de Ciencias Juridicas y Sociales

    2004-07-01

    This article describe the challenges to a sustainable energy management pointing that the success or failure of these challenges will be determined by the level of commitment that players have with the objectives pursued, the firmness of the decision making process, the economical, technical and financial support Also available and the political, economical and social development condition of each individual country.

  13. Sustainable development and advanced nuclear energy concepts of the post-Soviet countries

    International Nuclear Information System (INIS)

    Gagarinski, A.Y.

    1995-01-01

    The concept of sustainable development and the status and prospects of nuclear power in the newly-independent states on the territory of former Soviet Union are considered. The ecological and economic prerequisites as well as the scientific-technical and industrial basis, advanced nuclear energy technologies for implementation of the national programs are discussed. (author)

  14. Development and sustainability issues - energy scenario

    International Nuclear Information System (INIS)

    Kakodkar, Anil

    2000-01-01

    The 20th century has seen an unprecedented rise in the rate of consumption of material and energy resources. These patterns of growth and consumption have caused enormous strains on the available natural resources and the environment. Further, the benefits of available natural resources have been shared in a highly inequitable manner with a small fraction of mankind using up a large fraction of resources to a level that environmental concerns have become a global matter and are threatening to jeopardize the development of the larger fraction of humanity on grounds of global sustainability. While it has been seen that major achievements in almost all areas of human endeavour in recent times, enabling improvements in quality of life and better control over environmental degradation, there is a new challenge now of sustainability of the development process for the majority of human population. The environment with its large inertia, flexibility and stabilising mechanisms has so far some how copped up at least on a global scale with the unprecedented consumption. However, the recent trends indicate that most of the environment related cycles may not be able to take the continued abuse without disastrous global consequences. Piloting and sustaining the legitimate development of societies particularly those which are left far behind in the march towards better quality of life has, therefore, become a matter which needs very urgent consideration and action. There is thus a strong need for charting of a well deliberated goal oriented action plan with a vision that ensures due attention to the interests of all sections of society on the basis of their justifiable needs

  15. Energy and sustainable development in North American Sunbelt cities

    Science.gov (United States)

    Roosa, Stephen A.

    The goals of sustainable development are often misunderstood and variously applied. Sustainability as an urban goal is hindered by the lack of a consensus definition of sustainable development. The failure to focus on energy in cities as a means of achieving urban sustainability is one reason that successful empirical examples of implementing sustainable development are rare. The paradox is that as society attempts to achieve the goals of sustainable development, cities are using more fossil fuel based energy, which results in more pollution and ultimately makes sustainability more difficult to achieve. This dissertation explores the linkages between energy and sustainability and their connection to urban polices. This research provides a detailed review of the history of the concept of sustainability, a review of literature to date, and comparative issues concerning sustainability. The literature review will describe the underlying causes and effects of changes which have led to concerns about urban sustainability. The types of urban policies that are used by Sunbelt cities will be discussed. The purpose of this research is multifold: (1) to study the energy related policies of Sunbelt cities; (2) to propose a workable typology of policies; (3) to develop an index by which cities can be ranked in terms of sustainability; and (4) to assess and evaluate the relationships between the adoption of urban policies that promote energy efficiency, energy conservation and alternative energy to determine if they are associated with reduced energy use and greater urban sustainability. This research involves use of empirical data, U.S. census information, database explorations and other data. Both qualitative and quantitative analysis methodologies were employed as a means of defining and exploring the dimensions of energy and sustainable development in urban areas. The research will find that certain urban policies are related to changes in indicators and measures of urban

  16. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  17. Sustainable Energy - Without the hot air

    Science.gov (United States)

    MacIsaac, Dan

    2009-11-01

    Reader John Roeder writes about a website associated with David MacKay's book Sustainable Energy-Without the hot air. The book is a freely downloadable PDF (or purchasable) book describing an analysis detailing a low-carbon renewable energy transformation route for a large, modern first world industrial country (the United Kingdom). Written for the layman, the work uses vernacular language, e.g., energy consumption and production in a series of bar charts detailing the impacts of necessary strategies such as population reduction, lifestyle changes, and technology changes. MacKay notes that most reasonable plans have large nuclear and ``clean coal'' or other carbon capture components, lots of pumped heat, wind, and much efficiency improvement. He debunks some sacred cows (roof-mounted micro-turbines; hydrogen-powered cars) while pointing out simple effective technologies such as roof-mounted solar water heaters. Similar modest changes in the U.S. (painting roofs white in the southern half of the country) have strong impacts. MacKay claims that he ``doesn't advocate any particular plan or technology,'' but ``tells you how many bricks are in the lego box, and how big each brick is'' so readers can start making planning decisions.

  18. Energy efficiency, sustainability and economic growth

    International Nuclear Information System (INIS)

    Ayres, Robert U.; Turton, Hal; Casten, Tom

    2007-01-01

    This paper explores two linked theses related to the role energy in economic development, and potential sources of increased energy efficiency for continued growth with reduced greenhouse gas (GHG) emissions. The first thesis is that, while reduced GHG emissions are essential for long-term global sustainability, the usual policy recommendation of increasing energy costs by introducing a carbon tax may be relatively ineffective under current market structures and have an unnecessarily adverse impact on economic growth. Our second thesis is that there exists a practical near-term strategy for reducing GHG emissions while simultaneously encouraging continued technology-driven economic growth. Moreover, this strategy does not require radical new technologies, but rather improved regulation or - more precisely - better deregulation of the electric power sector. In respect to the first of our two theses, this paper addresses a deficiency in neoclassical economic growth theory, in which growth is assumed to be automatic, inevitable and cost-free. We challenge both the assumption that growth will continue in the future at essentially the same rate (''the trend'') as it has in the past, and the corollary that our children's children will inevitably be richer and better able to afford the cost of repairing the environmental damages caused by current generations [Simon et al., The state of humanity. Cambridge MA: Blackwell Publishers Ltd.; 1995]. (author)

  19. Sustainable energy planning for 27 small Danish Islands. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    A methodology has been developed and implemented, whereby detailed assessment of a few model or archetype islands may be used as basis for subsequent estimation of possibilities for other islands of similar kind, provided certain key data for present day energy consumption are available. A consistent interaction with the population on the model islands has been important in that process. The technical-economical results of the study show, that a number of measures seem cost-effective with the aim of contributing to a sustainable energy supply for the small Danish islands. Most prominent are energy savings for both heat and electricity, grid connected wind turbines for electricity production and collective heat supply, in decreasing order of cost-effectiveness. It has become clear, that an organisational structure based on the cooperative idea is essential for realising this potential. In Denmark this is a strong tradition, recently manifesting itself in the fact, that a majority of Danish wind turbines have been installed in the fram work of cooperative idea is essential for realising this potential. In Denmark this is a strong tradition, recently manifesting itself in the fact, that a majority of Danish wind turbines have been installed in the framework of cooperatives. This means that it is a well proven concept, in Denmark well established in the legal and financial structure including the tax laws. Consequently such energy cooperatives represent the organisational structure recommended by the project also for other sustainable energy initiatives on the small Danish islands. The implication on a European level is that the methodology developed in the project, as well as the concrete recommendations of the project including organisational structures, seem well suited to be applied on a European level in the context of local communities with a strong identity. (LN)

  20. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  1. Role of Fusion Energy in a Sustainable Global Energy Strategy

    International Nuclear Information System (INIS)

    Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

    2001-01-01

    Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements

  2. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2009-08-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  3. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  4. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2009-08-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  5. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2010-06-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  6. Sustainable energy innovation: a new era for Australia

    International Nuclear Information System (INIS)

    Schuck, S.

    2002-01-01

    This book profiles Australian capability in sustainable energy innovations. Chapter 1 outlines the country's underlying drivers and support programs for sustainable energy development and gives an overview of Australia's sustainable energy industry. Renewable energy companies and their projects are covered in Chapter 2 while sustainable energy innovation in the fields of coal gas and cogeneration are highlighted in Chapter 3. This is followed by Chapter 4 which turns the spotlight on energy efficiency in the building and transport sectors. Chapter 5 focuses on the challenge of bringing sustainable Australian energy innovations to global markets highlighting interaction with government support programs and the transition from laboratory to commercial product. Chapter 6 peers into the future taking stock of the innovations waiting in the wings and predicting the technologies that are likely to emerge in coming years onto our energy landscape

  7. Solar energy task force report technical training guidelines

    Energy Technology Data Exchange (ETDEWEB)

    O& #x27; Connor, K

    1979-10-01

    Guidelines are offered for programs oriented to commercial applications in solar energy, specifically water and space heating. These technologies are examined because they are, in some cases, economicaly feasible. Sample curricula and programs, technical jobs and skills, and equipment are suggested to assist those institutions contemplating the development of technical training. (MHR)

  8. Sustainable Performance in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Dragoni, Nicola

    2013-01-01

    In this practical demo we illustrate the concept of "sustainable performance" in Energy-Harvesting Wireless Sensor Networks (EH-WSNs). In particular, for different classes of applications and under several energy harvesting scenarios, we show how it is possible to have sustainable performance when...... nodes in the network are powered by ambient energy....

  9. Understanding the human dimensions of a sustainable energy transition

    NARCIS (Netherlands)

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy

  10. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-01-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable…

  11. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  12. Sustainable Energy Portfolios for Small Island States

    Directory of Open Access Journals (Sweden)

    Sándor Szabó

    2015-09-01

    Full Text Available The study presents a cost effective electricity generation portfolio for six island states for a 20-year period (2015–2035. The underlying concept investigates whether adding sizeable power capacities of renewable energy sources (RES options could decrease the overall costs and contribute to a more sustainable, indigenous electricity generation at the same time. Often, island states rely on fossil fuels which, apart from dependence on foreign resources, also includes an additional, significant transport cost. This is an extra motive to study the extent in which island states represent primary locations for RES technologies. For the aims of the present study an optimization model has been developed and following numerous runs the obtained results show that installing PV and battery capacities can delay-reduce the huge investments in fossil options in early periods. Thus, investment on RES can have a positive, long-term effect on the overall energy mix. This prompt development can happen without adding new subsidies but there is a need to address the existing socio-economic barriers with intelligent design of financing and economic instruments and capacity building as discussed in the conclusions.

  13. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.

    1996-06-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future are: technological sustainability; economic sustainability; and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and the long term. (author). 23 refs

  14. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-01-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future, are technological sustainability, economic sustainability, and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and long term. (author)

  15. General Merchandise 50% Energy Savings Technical Support Document

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  16. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  17. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  18. Technical change during the energy transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, Sjak

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  19. National Energy Strategy: Technical annex 7

    International Nuclear Information System (INIS)

    1992-01-01

    This paper provides analyses of nuclear energy options and the role of nuclear power as a future energy source for the United States. The Current Policy Base case reflects an energy future with no new nuclear policy initiatives and the gradual phaseout of nuclear power. This paper compares such a phaseout to the expanded use of nuclear power and identifies the consequences

  20. The governance of sustainable socio-technical transitions

    NARCIS (Netherlands)

    Smith, A.G.; Stirling, A.C.; Berkhout, F.G.H.

    2005-01-01

    A quasi-evolutionary model of socio-technical transitions is described in which regimes face selection pressures continuously. Differentiated transition contexts determine the form and direction of regime change in response to these pressures. The articulation of pressures, and the degree to which

  1. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  2. A socio-technical approach to improving retail energy efficiency behaviours.

    Science.gov (United States)

    Christina, Sian; Waterson, Patrick; Dainty, Andrew; Daniels, Kevin

    2015-03-01

    In recent years, the UK retail sector has made a significant contribution to societal responses on carbon reduction. We provide a novel and timely examination of environmental sustainability from a systems perspective, exploring how energy-related technologies and strategies are incorporated into organisational life. We use a longitudinal case study approach, looking at behavioural energy efficiency from within one of the UK's leading retailers. Our data covers a two-year period, with qualitative data from a total of 131 participants gathered using phased interviews and focus groups. We introduce an adapted socio-technical framework approach in order to describe an existing organisational behavioural strategy to support retail energy efficiency. Our findings point to crucial socio-technical and goal-setting factors which both impede and/or enable energy efficient behaviours, these include: tensions linked to store level perception of energy management goals; an emphasis on the importance of technology for underpinning change processes; and, the need for feedback and incentives to support the completion of energy-related tasks. We also describe the evolution of a practical operational intervention designed to address issues raised in our findings. Our study provides fresh insights into how sustainable workplace behaviours can be achieved and sustained over time. Secondly, we discuss in detail a set of issues arising from goal conflict in the workplace; these include the development of a practical energy management strategy to facilitate secondary organisational goals through job redesign. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  4. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Science.gov (United States)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  5. Technical definition for nearly zero energy buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member States to define what these for them exactly constitute. In the definition local conditions are to be obviously taken into account, but the uniform methodology can be used in all...... sources, including energy from renewable sources produced on-site or nearby. Based on the directive’s definition, nearly zero energy building is technically defined through the net zero energy building, which is a building using 0 kWh/(m² a) primary energy. Following the cost-optimality principle...

  6. Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    The National Renewable Energy Laboratory's (NREL) Sustainability Report for 2003-2004 highlights the Laboratory's comprehensive sustainability activities. These efforts demonstrate NREL's progress toward achieving overall sustainability goals. Sustainability is an inherent centerpiece of the Laboratory's work. NREL's mission--to develop renewable energy and energy efficiency technologies and practices and transfer knowledge and innovations to address the nation's energy and environmental goals--is synergistic with sustainability. The Laboratory formalized its sustainability activities in 2000, building on earlier ideas--this report summarizes the status of activities in water use, energy use, new construction, green power, transportation, recycling, environmentally preferable purchasing, greenhouse gas emissions, and environmental management.

  7. Future living studio : Socio-technical experiments in sustainable design

    NARCIS (Netherlands)

    Jin, S.; Crul, M.R.M.; Brezet, J.C.

    2014-01-01

    Local creative community and design engineers are key stakeholders in initiating a local discourse on sustainability that includes considerations of production and consumption issues. The role of designers is increasingly changing to that of a strategic or facilitator role. Aligned with this global

  8. Electric grid stability and the design of sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    The article presents technical designs of potential future flexible energy systems, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid.......The article presents technical designs of potential future flexible energy systems, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  9. Innovative and practical technical development of nuclear energy. Efforts on proposal and recruitment type technical development of nuclear energy

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Shioiri, Akio; Hamada, Jun; Kanagawa, Takashi; Mori, Yukihide; Kouno, Koji

    2003-01-01

    In technical development of nuclear energy conceiving a view on energy environment problem at the 21st Century, technical development on innovative nuclear energy system as well as next generation LWR is an important subject. Even in Japan, on the 'Long-term program for research, development and utilization of nuclear energy (LPRNE)' summarized by the Atomic Energy Commission, investigation on R and Ds of innovative reactors under cooperation of government, industrial field, and universities is required. In the Energy Generalized Engineering Institute, by receiving a subsidy from the Ministry of Economy and Industry since 2000, a proposal recruitment business on innovative and practical technical development of nuclear energy has been carried out. Here were introduced hopeful and unique five themes out of them applied to the recruitment, such as a super-critical pressure water cooling reactor (SCPR), an integrated modular LWR (IMR): technical development for practice, technical development on general purpose boiling transitional analysis method, technical development on direct extraction of U and Pu from consumed fuels based on super-DIREX reprocessing method, and material transfer forecasting in natural barriers at landfill disposal of radioactive wastes. (G.K.)

  10. Understanding the human dimensions of a sustainable energy transition.

    Science.gov (United States)

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes.

  11. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  12. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  13. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  14. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  15. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  16. Sustainable energy successes in Central and Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Oesterfelt, P. [eds.

    1998-12-31

    The publication describes more than 20 `good practices` in energy conservation in Central and Eastern Europe: successful campaigns and projects for increased energy efficiency and renewable energy. The cases are collected mainly by NGO-organisations in INFORSE (International Network for Sustainable Energy) - Europe as part of their contributions to the ECO-Forum Energy and Climate Group. (LN)

  17. Sustainability in Kenya's energy and development: an alien concept?

    NARCIS (Netherlands)

    Abdallah, S.M.

    2016-01-01

    Energy technologies, especially seen from the viewpoint of their importance as facilitators of development, are physical as well as social phenomena. This understanding is critical when considering energy that can advance sustainable development. Drawing from scholarly work, this development is

  18. Sustainable energy management - a prerequisite for the realization Kyoto Protocol

    Directory of Open Access Journals (Sweden)

    Mirjana Golušin

    2012-07-01

    Full Text Available Energy management can be defined as the process of planning, directing, implementing and controlling the process of generation, transmission and energy consumption. Energy management is a kind of synthesis of phenomena and concepts of modern energy management (management, or the use of modern settings management in the energy sector. Furthermore, when outlining the basic settings for power management Modern management is based on the assumptions of sustainability and conservation of energy stability for present and future generations. Therefore, modern energy management can be seen as a kind of synthesis of three actuarial sciences: energy, sustainable development and management. Sustainable Energy Management is a unique new concept, idea and approach that require many changes in the traditional way of understanding and interpretation of energy management at all levels. Sustainable energy management concept can not therefore be construed as an adopted and defined the concept, but must be constantly modified and adjusted in accordance with changes in the three areas that define it, and in accordance with the specific country or region where applicable. Accordingly, sustainable energy management can be defined as the process of energy management that is based on fundamental principles of sustainable development.

  19. Nuclear power and sustainable energy supply for Europe. European Commission

    International Nuclear Information System (INIS)

    Hilden, W.

    2005-01-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  20. Nuclear energy: technical, economical and ecological data

    International Nuclear Information System (INIS)

    Anon.

    1975-04-01

    This information document aims to present all the different aspects of nuclear energy and the economic, industrial and ecological data from which the French nuclear energy programme was worked out, the techniques and the sites were chosen. Prepared with the collaboration of experts from the public services interested, this document attempts to cover all the questions raised and to provide answers (dependence with respect to oil versus the advantages of nuclear energy, environment and siting problems, consequences for public health and radiation protection, organization of nuclear industry [fr

  1. Regional energy assessment - Technical Guidebook nr. 1

    International Nuclear Information System (INIS)

    Leroy, Jean

    2015-01-01

    This publication indicates and describes how a regional energy assessment is to be performed. Some general aspects and features are first addressed: conversion coefficients, climate correction. Then, its describes how final consumptions of the different consuming sectors are to be addressed: industry with its nomenclature of activities, transport, housing, office building, agriculture. Final consumptions of the different energy products are then addressed: solid mineral fuels (in industry and other sectors), oil products (different types of fuels), natural gas, heat, electricity. Regional statistical sources are indicated for electric power, natural gas, oil, renewable energies, industry, and sectors as a whole

  2. Energy Revolution. A Sustainable Pathway to a Clean Energy Future for Europe. A European Energy Scenario for EU-25

    International Nuclear Information System (INIS)

    Teske, S.; Baker, C.

    2005-09-01

    Greenpeace and the Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment of the German Aerospace Center (DLR),have developed a blueprint for the EU energy supply that shows how Europe can lead the way to a sustainable pathway to a clean energy future. The Greenpeace energy revolution scenario demonstrates that phasing out nuclear power and massively reducing CO2-emissions is possible. The scenario comes close to a fossil fuels phase-out by aiming for a 80% CO2 emissions reduction by 2050.The pathway in this scenario achieves this phase-out in a relatively short time-frame without using technological options (such as 'clean coal') that are ultimately dead ends, deflecting resources from the real solutions offered by renewable energy. Whilst there are many technical options that will allow us to meet short-term EU Kyoto targets (-8% GHG by 2010), these may have limited long-term potential. The Greenpeace Energy Revolution Scenario shows that in the long run, renewable energy will be cheaper than conventional energy sources and reduce EU's dependence from world market prices from imported fossil and nuclear fuels.The rapid growth of renewable energy technologies will lead to a large investment in new technologies.This dynamic market growth will result in a shift of employment opportunities from conventional energy-related industries to new occupational fields in the renewable energy industry. Renewable energy is expected to provide about 700,000 jobs in the field of electricity generation from renewable energy sources by 2010

  3. Sustainable energy in the flower bulb sector; Duurzame energie in de bloembollensector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The aim of this study is to get a clear view on the technical and economic options for the deployment of sustainable technologies in the flower bulb sector. It subsequently addresses the energy demand of the sector and its distribution across various company processes. Next it addresses the penetration degree of sustainable techniques in use. After this, the opportunities for new sustainable techniques are elaborated. The most appealing techniques are calculated: wood-fired boiler (base load), gas-fired boiler (peak load) and the use of surface water; bio-CHP; PV modules and/or sustainable electricity [Dutch] Het doel van deze studie is de technische en economische mogelijkheden voor de toepassing van duurzame technologieën in de sector helder te krijgen. Hierbij is achtereenvolgens ingegaan op de energievraag van de sector en de opdeling daarvan over de verschillende bedrijfsprocessen. Vervolgens is ingegaan op de penetratiegraad waarin duurzame technieken zijn toegepast. Daarna zijn de mogelijkheden voor nieuwe duurzame technieken uitgewerkt. De meest aantrekkelijke technieken zijn doorgerekend: Houtketel (basislast), gasketel (pieklast) en het gebruik van oppervlaktewater; Bio-WKK; PV-panelen en/of duurzame elektriciteit.

  4. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...... and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations....

  5. Mitigation/Adaptation: landscape architecture meets sustainable energy transition

    NARCIS (Netherlands)

    Stremke, S.

    2009-01-01

    Mitigation of climate change and adaptation to renewable energy sources are among the emerging fields of activity in landscape architecture. If landscape architects recognize the need for sustainable development on the basis of renewable energy sources, then how can we contribute to sustainable and

  6. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    Science.gov (United States)

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  7. Technical databook for geothermal energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.; Igbene, A.; Fair, J.A.; Ozbek, H.; Tavana, M.

    1981-06-01

    A critical survey is made of selected basic data on those aqueous solutions needed to model geothermal energy utilization. The data are useful in the design and construction of power plants and for direct use. The result of the survey is given as a current status of data. More emphasis is placed on the viscosity, thermal conductivity and density of sodium chloride solutions up to 350/sup 0/C and 50 MPa. An ideal data book for geothermal energy is described.

  8. Large Hospital 50% Energy Savings: Technical Support Document

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Studer, D.; Parker, A.; Pless, S.; Torcellini, P.

    2010-09-01

    This Technical Support Document documents the technical analysis and design guidance for large hospitals to achieve whole-building energy savings of at least 50% over ANSI/ASHRAE/IESNA Standard 90.1-2004 and represents a step toward determining how to provide design guidance for aggressive energy savings targets. This report documents the modeling methods used to demonstrate that the design recommendations meet or exceed the 50% goal. EnergyPlus was used to model the predicted energy performance of the baseline and low-energy buildings to verify that 50% energy savings are achievable. Percent energy savings are based on a nominal minimally code-compliant building and whole-building, net site energy use intensity. The report defines architectural-program characteristics for typical large hospitals, thereby defining a prototype model; creates baseline energy models for each climate zone that are elaborations of the prototype models and are minimally compliant with Standard 90.1-2004; creates a list of energy design measures that can be applied to the prototype model to create low-energy models; uses industry feedback to strengthen inputs for baseline energy models and energy design measures; and simulates low-energy models for each climate zone to show that when the energy design measures are applied to the prototype model, 50% energy savings (or more) are achieved.

  9. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  10. Enhancing Effective Stakeholder Participation in Local Groundwater Sustainability Planning through Technical Assistance in California

    Science.gov (United States)

    Weintraub, C.; Christian-Smith, J.; Dobbin, K.; Cullen, K.

    2017-12-01

    This presentation will share content from UCS's new publication, Getting Involved in Groundwater; A Guide to Effective Engagement in California's Groundwater Sustainability Plans, as well as lessons learned from collaborating with community organizations to provide technical assistance to Groundwater Sustainability Agency (GSA) board members and stakeholders in the San Joaquin Valley on Groundwater Sustainability Plan (GSP) development. California's Sustainable Groundwater Management Act (SGMA) mandates extensive stakeholder engagement, presenting an opportunity for unincorporated, low-income communities that have historically been affected by but not included in water decisions. However, implementation requires a concerted, thoughtful effort. Through technical assistance and strategic outreach, the Union of Concerned Scientists (UCS) is working to ensure stakeholder engagement in GSP development is robust, diverse, and supported by the best science available. UCS created the GSP stakeholder engagement guide to equip GSA members, scientists and interested community members to meaningfully engage in the GSP development process. The guide serves as a technical primer on SGMA's GSP process and as a resource for understanding groundwater management in California. The guide is just one component of a larger effort to overcome barriers to effective engagement in sustainable groundwater management, especially those presented by technical information. In April, UCS co-hosted a technical assistance workshop for GSA and advisory committee members in Visalia, CA with the Community Water Center (CWC), a local environmental justice non-profit. The workshop was well received and UCS and the CWC were invited to host a second workshop in June. To deepen this engagement and provide one-on-one technical assistance, UCS developed a program to match relevant water experts in the UCS Science Network with GSA members or involved community members in need of specific technical support

  11. Sustainability and policy for the thermal use of shallow geothermal energy

    International Nuclear Information System (INIS)

    Hähnlein, Stefanie; Bayer, Peter; Ferguson, Grant; Blum, Philipp

    2013-01-01

    Shallow geothermal energy is a renewable energy resource that has become increasingly important. However, the use has environmental, technical and social consequences. Biological, chemical, and physical characteristics of groundwater and subsurface are influenced by the development of this resource. To guarantee a sustainable use it is therefore necessary to consider environmental and technical criteria, such as changes in groundwater quality and temperature. In the current study a comprehensive overview of consequences of geothermal systems in shallow aquifers is provided. We conclude that there is still a lack of knowledge on long-term environmental consequences. Due to local differences in geology and hydrogeology as well as in technical requirements, it is not recommendable to define only static regulations, such as fixed and absolute temperature thresholds. Flexible temperature limits for heating and cooling the groundwater and subsurface are therefore advisable. The limits should be oriented on previously undisturbed temperatures, and chemical, physical and biological conditions of aquifers. Based on these findings, recommendations for a sustainable policy for shallow geothermal systems are provided including a potential legal framework for a sustainable use. - Highlights: • We provide an overview of consequences of geothermal systems in shallow aquifers. • Static regulations for heating or cooling groundwater are not recommendable. • Temperature limits should be flexible and orientated on background values. • Suggestions for a sustainable policy for shallow geothermal systems are provided. • A potential legal framework for a sustainable use is presented

  12. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  13. National Energy Plan 1997 - 2010; Sustainable Energy self-sufficiency

    International Nuclear Information System (INIS)

    1997-01-01

    The present revision of the PEN consists of two parts, a diagnosis and a strategy. In the diagnosis; the evolution and the changes are analyzed foreseen in the international and national environments to establish the form like the energy sector is affected and it responds to these conditions. In second part it revises the strategy to incorporate the required adjustments of agreement with the changes in the environment, the demand perspectives and sector and national politics limits. In the international thing, the process of transformation of the system economic World cup will contribute to strengthen the liberalization actions, deregulation and privatization of the economies of the development countries. Great part of the dynamics growth, will be sustained then in the private investment and in an atmosphere of global competition. The formation of regional blocks opens favorable perspectives for new cooperation forms and development of resources. In the case of the American hemisphere and with reference to the energy sector, one has an important potential to improve the self-sufficiency starting from regional supplies, especially starting from fossil resources. This expectation is important for Colombia that has well-known reservations and important potentials in these resources. The tendencies waited in the fossil resources are more favorable for the countries than they can have reservations and growing production of petroleum and of natural gas. Nevertheless, the development of the coal maintains favorable expectations, but with important requirements as for efficiency and quality in the production that it guarantee the positioning in a more and more concerned market. In the environmental thing, the growth foreseen in the consumption of fossil fuels also bears to the increment in the 2010 in the greenhouse gases, at levels between 36% and 49% superiors to those of 1990. That most of this increment will originate in the in the development countries and

  14. Environment, energy, economy. A sustainable future

    International Nuclear Information System (INIS)

    Luise, A.; Borrello, L.; Calef, D.; Cialani, C.; Di Majo, V.; Federio, A.; Lovisolo, G.; Musmeci, F.

    1998-01-01

    This paper is organized in five parts: 1. sustainable development from global point of view; 2. global problems and international instruments; 3. sustainable management of resources in economic systems; 4. forecasting and methods: models and index; 5. future urban areas [it

  15. Quality Assurance in Higher Technical Education and the Context of Youth Empowerment for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Olufunmilayo T. Iyunade, Ph.D

    2014-06-01

    Full Text Available Recent empirical evidences on higher technical education at a national scale focused on the relevance, student’s poor perception, low enrolment and progression rates, and the growing impact of globalization on the management of higher technical and vocational education with little or no reference point to the factor of quality assurance. This paper therefore correlates quality assurance factors in higher technical education and the context of youth empowerment for sustainable development. A survey of public technical colleges was done in Ogun State. From an estimate population of 637 final year students and 28 instructors and management staff, a simple of 376 students and 17 instructors and management staff were selected using the stratify random sampling technique. A 4-point rating scale validated questionnaires tagged: ‘Higher Technical Education, Youth Empowerment and Sustainable Development Scale (HTEYESDS (r=0.79, complemented with focus Group Discussion (FGD was used for data collection. Three research questions were raised and answered. Data were analysed using descriptive and inferential statistics of Pearson correlation, multiple regression and analysis of variance at 0.05 apha level. Results showed that poor quality assurance limits the capacity of higher technical education in the empowerment of youth for sustainable development (82.6%. Quality assurance factors significantly correlated with higher technical education in the empowerment of youth for sustainable development (r=0.188; P < 0.05. It was therefore recommended that government should neither neglect nor compromise the factors of quality assurance in higher technical education as they predicts youth empowerment drive in the system.

  16. Sustainable energy strategies for green energy supply. Paper no. IGEC-1-123

    International Nuclear Information System (INIS)

    Midilli, A.; Ay, M.; Dincer, I.

    2005-01-01

    The main objectives of this study are, first, to determine the sustainable energy strategies for green energy supply, and secondly, to derive the green energy recovery ratio and the sustainable green energy progress ratio, and thirdly, to investigate the effects of sustainable energy strategies on these ratios. For these purposes, 20-possible sustainable energy strategies are taken into consideration and are divided into three subgroups that are strategies on the technological impact, sectoral impact, and green energy impact in a society. Using the possible sustainable energy strategies, technological and sectoral impact ratios of green energy and also green energy activity ratio are determined and discussed in detail. Additionally, some Case studies are performed in the scope of this interesting investigation: (i) the effect of technological impact ratio on green energy recovery ratio, and sustainable green energy progress ratio, (ii) the effect of sectoral impact ratio on green energy recovery ratio, and sustainable green energy progress ratio, and (iii) the effect of green energy impact ratio on green energy recovery ratio and sustainable green energy progress ratio. It is found that sustainable green energy progress ratio increases with an increase of technological, sectoral, and green energy impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy is abundantly produced. Therefore, the investment in green energy supply should be, for the future of world nations, encouraged by governments and other authoritative bodies who, for strategic reasons, wish to have a green alternative to fossil

  17. Evaluating the environmental sustainability of biomass-based energy strategy: Using an impact matrix framework

    International Nuclear Information System (INIS)

    Weldu, Yemane W.; Assefa, Getachew

    2016-01-01

    A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirable policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.

  18. Enabling sustainable uranium production: The Inter-regional Technical Cooperation experience

    International Nuclear Information System (INIS)

    Tulsidas, H.; Zhang, J.

    2014-01-01

    control and management and make activities sustainable. Each uranium development project is technically, environmentally and socio-economically different from another, and a one-size-fits-all type of approach is not suitable. Each person who interacted in one way or another with the project faced a unique challenge which they had to solve through an application of good practices appropriately applied to a new context. Use of informal on-line and social media communications was not intended at the start, but was quickly identified as a valuable tool for enabling the sharing of experiences. The paper will discuss the lesson learned, key success factors and the results of these past activities in promoting a sustainable uranium production future in over 40 Member States of International Atomic Energy Agency. (author)

  19. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  20. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  1. Engineering and technical basics of A. D. Kryachkov's "sustainable architecture"

    Science.gov (United States)

    Dukhanov, Sergey; Kinsht, Alexander

    2017-01-01

    The work of Siberian architect A. D. Kryachkov was focused on the development of buildings resistant to exposure to severe Siberian climate. The article investigates the role of engineering and construction factors in formation of his ideas. The research is based on A. D. Kryachkov's publications and design documents and photos of his buildings constructed in the 1910s-1930s. Comparative analysis of the documents revealed that engineering and technical factors played the key role in his approach. He carefully studied the behavior of structural materials and structural elements in the cold climate conditions. The findings were then used in the design process. The buildings constructed according to his projects between 1920 and 1930 have preserved their original image for many decades. This fact makes the opinion that Siberian climate is incompatible with artistic and expressive architecture controversial.

  2. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  3. Technical Feasibility Study for Zero Energy K-12 Schools

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Shanti D.; Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David

    2016-08-26

    A simulation-based technical feasibility study was completed to show the types of technologies required to achieve ZEB status with this building type. These technologies are prioritized across the building's subsystem such that design teams can readily integrate the ideas. Energy use intensity (EUI) targets were established for U.S. climate zones such that K-12 schools can be zero-ready or can procure solar panels or other renewable energy production sources to meet the zero energy building definition. Results showed that it is possible for K-12 schools to achieve zero energy when the EUI is between 20 and 26 kBtu/ft2/yr. Temperate climates required a smaller percentage of solar panel coverage than very hot or very cold climates. The paper provides a foundation for technically achieving zero energy schools with a vision of transforming the school construction market to mainstream zero energy buildings within typical construction budgets.

  4. Technical and Non-Technical Issues Towards the Commercialisation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    The thesis “Technical and non-technical issues towards the commercialisation of wave energy converters” elaborates on the necessary steps and on the different difficulties that appear during the development of a wave energy converter (WEC). It focuses on seven key areas which appear when a WEC...... and a collection of papers. The first part provides a brief history of wave energy, introduces the research topic, describes the different disciplines addressed in the thesis and relates them. The eight papers comprise the core part of the work. The papers address the research topic in different ways: from a legal...... considered cover all the stages from the WEC initial concept to its final commercial reality. Experience has emphasised the importance in structuring the various development stages, due to the fact that step-by-step advancements help to mitigate financial and technical risks throughout the development...

  5. Globally sustainable and stable nuclear energy resources for the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.

    2010-09-15

    We address the issues of future resource unsustainability, energy demand uncertainty and supply unpredictability. Inexorably growing global energy demand increases the costs of energy sources, and raises concerns about security of energy supply and environmental emissions of carbon dioxide and other greenhouse gases (GHGs). Taking the viewpoint of developing a sustainable global fuel cycle, we propose alternate paths outside the present rather traditional thinking. Nevertheless, they still represent existing and known technology opportunities that may run counter to many current national positions, and today's commercial and technical interests, while still presenting very large opportunities.

  6. Technical definition for nearly zero energy buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member States to define what these for them exactly constitute. In the definition local conditions are to be obviously taken into account, but the uniform methodology can be used in all...... Member States. The directive defines nearly zero energy building as a building that has a very high energy performance and requires the calculation of primary energy indicator. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable...... sources, including energy from renewable sources produced on-site or nearby. Based on the directive’s definition, nearly zero energy building is technically defined through the net zero energy building, which is a building using 0 kWh/(m² a) primary energy. Following the cost-optimality principle...

  7. Low energy demonstration accelerator technical area 53

    International Nuclear Information System (INIS)

    1996-01-01

    As part of the Department of Energy's (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation's nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice

  8. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    Science.gov (United States)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  9. Energy for sustainable development in Malaysia: Energy policy and alternative energy

    International Nuclear Information System (INIS)

    Rahman Mohamed, Abdul; Lee, Keat Teong

    2006-01-01

    Energy is often known as the catalyst for development. Globally, the per capita consumption of energy is often used as a barometer to measure the level of economic development in a particular country. Realizing the importance of energy as a vital component in economic and social development, the government of Malaysia has been continuously reviewing its energy policy to ensure long-term reliability and security of energy supply. Concentrated efforts are being undertaken to ensure the sustainability of energy resources, both depletable and renewable. The aim of this paper is to describe the various energy policies adopted in Malaysia to ensure long-term reliability and security of energy supply. The role of both, non-renewable and renewable sources of energy in the current Five-Fuel Diversification Strategy energy mix will also be discussed. Apart from that, this paper will also describe the various alternative energy and the implementation of energy efficiency program in Malaysia

  10. On some Issues of the Energy Policy and Sustainable Development

    International Nuclear Information System (INIS)

    Gotsiridze, A.

    2003-01-01

    Some aspects of the energy resources world commerce problems are considered in the article. East-West and North-South energy transport corridors functioning significance and the importance of energy resources transit legal regime creation in the limits of the Energy Charter Theaty are mentioned. World Community great interest to the energy security strengthening and energy sustainable development problems is underscored in the work. (authors)

  11. Technical Education as a Tool for Ensuring Sustainable Development: A Case of India

    Science.gov (United States)

    Sharma, Gagan Deep; Uppal, Raminder Singh; Mahendru, Mandeep

    2016-01-01

    This paper notes that education needs to essentially lead to sustainable development serving two-fold purpose--eradicating the problems of unemployment and poverty; and ensuring equitable distribution of wealth while ensuring the right understanding leading to a peaceful, prosperous and developed world. In its current state, technical education…

  12. Sustainable Development of Sewage Sludge-to-Energy in China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2017-01-01

    proposed. After the grey DEMATEL analysis, a grey Multi-Criteria Decision Making (MCDM) framework which allows multiple decision-makers/stakeholders to use linguistic terms to participate in the decision-making for prioritizing the alternative technologies for sludge-to-energy was developed......In order to promote the sustainable development of sludge-to-energy industry and help the decision-makers/stakeholders to select the most sustainable technology for achieving the sludge-to-energy target, this study aims at using grey Decision Making Trial and Evaluation Laboratory (DEMATEL......) to identify the critical barriers that hinder the sustainable development of sludge-to-energy industry in China and to investigate the cause-effect relationships among these barriers. Accordingly, some policy implications for promoting the sustainable development of sludge-to-energy industry in China were...

  13. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-10-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).

  14. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy.......This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  15. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  16. Integration of renewable energy sources for a sustainable energy policy at Djibouti

    International Nuclear Information System (INIS)

    Aye, Fouad Ahmed

    2009-01-01

    Generally, the predictable exhaustion of the fossil fuels, the necessity of fighting against the global warming, the awareness for the protection of the environment and finally the consideration of the sustainable development in energy policies put the renewable energies in the heart of a strategic stake for the future of our planet. But for the Republic of Djibouti which currently knows an annual economic growth of 3,5 %, it is almost vital to exploit its potential in renewable energies to ensure its economic growth, to realize savings of currencies and to initially achieve the Millennium human development goals whose calendar is fixed at 2015. Unfortunately, the country knows the same energy situation of the countries of sub-Saharan Africa where the energy is plentiful but the electricity is rare. Indeed, the current energy balance of the country is strongly overdrawn. The 97 % of the energy needs of the population (mainly urban in more than 85 %) are satisfied by the imports of oil productions and 90 % of the Djiboutians households use the kerosene as domestic fuel. The cover rate for the electricity network is very low, about 30 %. Only 0,2 % of the electric production (with a total capacity installed of 130 MW) is made from a unique source of renewable energy ( the photovoltaic solar energy). Nevertheless, the country has an important potential in renewable energies. At the level of the photovoltaic solar energy (PV), the technically exploitable solar potential is estimated in 1535 GWh/day. At the level of the wind energy, the estimation of the currently exploitable potential is 8 MW and yet no form of wind energy (whether it is the big or the small wind energy) is exploited in the country. At the level of the geothermal energy, the technically exploitable potential is estimated between 350 and 650 MWe. The economically exploitable potential for the only region of Assal-Ghoubbet is higher than 150 MWe, very widely upper to the current needs of the country. At

  17. SUSTAINING OCCUPATIONAL INFORMATION FOR CAREER CHOICE AND DEVELOPMENT IN STUDENTS OF TECHNICAL COLLEGES IN ENUGU STATE, NIGERIA

    OpenAIRE

    Moses Ikebe Odo

    2015-01-01

    This study takes on the issue of sustaining occupational information for career choice and development in students of technical colleges in Enugu State, Nigeria. The method adopted for this study was the survey design and the population included were all final year students of the three government technical colleges in Enugu State of Nigeria. The technical colleges were sampled as follows: Government Technical College, Enugu (156 students); Government Technical College, Nsukka (148 students);...

  18. Integrated energy planning for sustainable development

    International Nuclear Information System (INIS)

    2008-09-01

    Improving access to energy is a multi-faceted challenge that has far-reaching implications and long-lasting obligations. Energy is essential to all human activities and, indeed, critical to social and economic development. Lack of energy is a contributing factor to states of perpetual poverty for individuals, communities, nations and regions. In contrast, access to energy opens many new opportunities; and meeting the United Nations Millennium Development Goals cannot be accomplished without access to affordable energy services

  19. Integrated energy planning for sustainable development

    International Nuclear Information System (INIS)

    2008-12-01

    Improving access to energy is a multi-faceted challenge that has far-reaching implications and long-lasting obligations. Energy is essential to all human activities and, indeed, critical to social and economic development. Lack of energy is a contributing factor to states of perpetual poverty for individuals, communities, nations and regions. In contrast, access to energy opens many new opportunities; and meeting the United Nations Millennium Development Goals cannot be accomplished without access to affordable energy services

  20. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Nakicenovic, Nebojsa

    2003-01-01

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  1. Sustainable development - the potential contribution of nuclear energy

    International Nuclear Information System (INIS)

    Bourdier, Jean-Pierre; Barre, Bertrand; Durret, Louis-Francois

    1998-01-01

    Sustainable development combines development, durability and sustainability. Energy is crucial for development: it brings work, nutrition, health, security, community, etc. Electrical energy offers the most possibilities for the consumer, particularly as regards the problems of pollution on the site of consumption. Nuclear generation is one of the best ways of producing electricity. Midway between stock energies and flow energies, it has several advantages: low consumption of resources, safety, compactness and cleanliness. Waste is not a specifically nuclear problem: it should be considered in terms of a life cycle analysis; construction, dismantling and functioning have to be assessed. The size of certain energies' contribution to the greenhouse effect is therefore made clear. Reprocessing represents a saving of energy, without environmental or health damage. It contributes to energy control, and therefore to sustainable development

  2. Canadian energy policy and the struggle for sustainable development

    International Nuclear Information System (INIS)

    Doern, G.B.

    2005-01-01

    This book examined selected energy policy issues and challenges confronting Canadians over the last two decades. The aim of the book was to provide an analysis of how energy policy has evolved. The book presents an overview of energy policy and its relationship to sustainable development. Politico-economic contexts were reviewed, including the changing nature of national and continental energy markets, energy policy and sustainable development. The difficulties in evaluating the environment in energy policy were discussed. Issues concerning electricity restructuring in Canada were reviewed, with reference to Canada-US electricity trade and the climate change agenda. Alberta's oil and gas industry and the Kyoto Protocol were also examined, with reference to voluntary measures to address climate change. Issues concerning stewardship, indigenous peoples and petroleum-based economic development in the north were reviewed, as well as northern gas pipeline policy and sustainable development. Conclusions and recommendations were made concerning the following 6 analytical and practical energy policy and governance challenges facing the current government: Kyoto Protocol implementation challenges; energy security; northern pipelines and concerns with Aboriginal peoples and sustainable northern development; electricity restructuring and the limits of regulatory-market design; energy science and technology and innovation policy links; and prospects for turning the struggle for sustainable development in the energy policy field into something closer to an actual achievement. 37 refs

  3. Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    The Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES) in 2015 returned to its hometown, Dubrovnik, and once again served as a significant venue for scientists and specialists in different areas of sustainable development from all over the world to initiate...... traditionally cover a range of energy issues - higher renewables penetration and various technologies and fuels assessments at energy supply side, as well as, energy efficiency in various sectors, buildings, district heating, electric vehicles and demand modelling at energy demand side. Also, a review paper...

  4. Error Mitigation in Computational Design of Sustainable Energy Materials

    DEFF Research Database (Denmark)

    Christensen, Rune

    Transportation based on sustainable energy requires an energy carrier, which is able to store the predominately electrical energy generated from sustainable sources in a high energy density form. Metal-air batteries, hydrogen and synthetic fuels are possible future energy carriers. Density...... if not for the systematic errors. In this thesis it is shown how the systematic errors can be mitigated. For different alkali and alkaline earth metal oxides, systematic errors have previously been observed. These errors are primarily caused by differences in metal element oxidation state. The systematic errors can...

  5. A worldwide perspective on energy, environment and sustainable development

    International Nuclear Information System (INIS)

    Dincer, Ibrahim; Rosen, Marc A.

    1998-01-01

    Problems with energy supply and use are related not only to global warming, but also to such environmental concerns as air pollution, ozone depletion forest destruction and emission of radioactive substances. These issues must be taken into consideration simultaneously if humanity is to achieve a bright energy future with minimal environmental impacts. Much evidence exists which suggests that the future will be negatively impacted if humans keep degrading the environment. There is an intimate connection between energy, the environment and sustainable development. A society seeking sustainable development ideally must utilise only energy resources which cause no environmental impact (e.g. which release no emissions to the environment). However, since all energy resources lead to some environmental impact, it is reasonable to suggest that some (not all) of the concerns regarding the limitations imposed on sustainable development by environmental emissions and their negative impacts can be part overcome through increased energy efficiency. A strong relation clearly exists between energy efficiency and environmental impact since, for the same services or products, less resource utilisation and pollution is normally associated with higher efficiency processes. Anticipated patterns of future energy use and consequent environmental impact (Focusing on acid precipitation, stratospheric ozone depletion and the greenhouse effect) are comprehensively discussed in this paper. Also, some solutions to current environmental issues in terms of energy conservation and renewable energy technologies are identified and some theoretical and practical limitations on increased energy efficiency are explained. The relations between energy and sustainable development, and between the environment and sustainable development, are described, and in illustrative example is presented. Throughout the paper several issues relating to energy, environment and sustainable development are examined

  6. Sustainability, Ethics and Nuclear Energy : Escaping the Dichotomy

    NARCIS (Netherlands)

    Kermisch, C.F.N.; Taebi, B.

    2017-01-01

    In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions,

  7. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  8. The role of women in sustainable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Cecelski, E.

    2000-07-13

    This paper explores the question of how sustainable energy development--specifically, decentralized renewable energy technologies--can complement and benefit from the goal of increasing women's role in development. It is based on a paper that was originally presented at the World Renewable Energy Congress-V held in Florence, Italy, in September 1998, as a contribution to the National Renewable Energy Laboratory's program on gender and energy.

  9. Sustainable Design and Renewable Energy Concepts in Practice

    Science.gov (United States)

    Maxwell, Lawrence

    2009-07-01

    The energy use of residential and non-residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability, energy consumption, environment impacts, and the potential for climate change.

  10. Energy security and sustainability in Northeast Asia

    International Nuclear Information System (INIS)

    Hippel, David von; Suzuki, Tatsujiro; Williams, James H.; Savage, Timothy; Hayes, Peter

    2011-01-01

    'Energy Security' has typically, to those involved in making energy policy, meant mostly securing access to oil and other fossil fuels. With increasingly global, diverse energy markets, however, and increasingly transnational problems resulting from energy transformation and use, old energy security rationales are less salient, and other issues, including climate change and other environmental, economic, and international considerations are becoming increasingly important. As a consequence, a more comprehensive operating definition of 'Energy Security' is needed, along with a workable framework for analysis of which future energy paths or scenarios are likely to yield greater Energy Security in a broader, more comprehensive sense. Work done as a part of the Nautilus Institute's 'Pacific Asia Regional Energy Security' (PARES) project developed a broader definition of Energy Security, and described an analytical framework designed to help to compare the energy security characteristics - both positive and negative - of different quantitative energy paths as developed using software tools such as the LEAP (Long-range Energy Alternatives Planning) system.

  11. Glossary of scientific and technical terms in atomic energy

    International Nuclear Information System (INIS)

    1986-01-01

    In order to facilitate the task of Arabic speaking scientists in the field of nuclear energy, the Atomic Energy Commission of Syria assigned a committee constituted of leading physicists and chemists at Damascus University, the aim of the commission was to include the Arabic equivalent of the terms cited in English, French, Russian and Spanish in the glossary published by the United Nations, 1958 ''Atomic Energy Glossary of Technical Terms.'' The result of the committee's work was this glossary containing approximately 6000 terms in the field of nuclear energy which are given in Arabic, English, French, Russian and Spanish

  12. Energy solutions for sustainable development. Proceedings

    DEFF Research Database (Denmark)

    production technologies such as fuel cells, hydrogen, bio-energy and wind energy • Centralized energy technologies such as clean coal technologies • Providing renewable energy for the transport sector • Systems aspects, differences between the various major regions throughout the world • End-use technologies......, efficiency improvements and supply links • Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism...

  13. Considerations for a sustainable nuclear fission energy in Europe

    International Nuclear Information System (INIS)

    Cognet, G.; Ledermann, P.; Cacuci, D.

    2005-01-01

    Presented is the global energy perspectives and and sustainable development fission vision scenario. Described are the innovative concepts with technological breakthroughs concerning the fuel cycle and evolution of the spent fuel radiotoxic contents

  14. sustainable development of national energy resources

    African Journals Online (AJOL)

    RAYAN_

    environmental protection (oil pollution) and safety (oil rigs and collisions at sea). Gas does not even ..... improvement in energy efficiency and of the share of renewable energy in the global energy mix.27 .... 37 For discussion of PSNR in the WTO context, see China – Measures Related to the. Exportation of Various Raw ...

  15. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  16. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  17. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  18. Technical progress of nuclear energy: economic and environmental prospects

    International Nuclear Information System (INIS)

    Naudet, G.

    1994-01-01

    This document deals with three different aspects of the nuclear energy: first the operating and economic performances of nuclear power plants in the world, the French nuclear competitiveness. Then, the technical and economic perspectives about reactors and fuels cycle and the advantages towards atmospheric pollution are discussed to favour a new worldwide nuclear development. (TEC). 8 refs., 4 figs., 6 tabs

  19. Technical developments of solar energy collectors in the Netherlands

    NARCIS (Netherlands)

    Oversloot, H.P.; Geus, A.C. de

    1996-01-01

    Recent research by TNO covered two different technical developments for thermal solar energy systems. One concerns a feasibility study into an all plastic spectral selective absorber, the other is a feasibility study for an overheating protection device based on heatpipe techniques. Earlier studies

  20. Worldwide Engagement for Sustainable Energy Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Thirty-five years after the Agency's founding, the IEA responsibility for ensuring access to global oil supplies is still a core mandate -- but new energy-related concerns have arisen. Energy security is no longer only about oil. And the industrialised nations of the world are no longer the only major consumers of energy. Climate change driven by greenhouse gas emissions -- 60% of which derive from energy production or use -- is a growing threat. So energy policy was tasked with a new objective: to cut greenhouse gas emissions while maintaining economic growth.

  1. Renewable energy sources for sustainable tourism in the Carpathian region

    Science.gov (United States)

    Mandryk, O. M.; Arkhypova, L. M.; Pobigun, O. V.; Maniuk, O. R.

    2016-08-01

    The use of renewable energy in sustainable tourism development of the region is grounded in the paper. There are three stages of selecting areas for projects of renewable energy sources: selection of potentially suitable area; consideration of exclusion criteria, detailed assessment of potential sites or areas. The factors of impact on spatial constraints and opportunities for building wind, solar and small hydro power plants on the parameters of sustainable tourism development in the Carpathian region were determined.

  2. Sustainability and acceptance - new challenges for nuclear energy

    International Nuclear Information System (INIS)

    Lensa, W. von

    2001-01-01

    This paper discusses the concept of sustainability in relation to acceptance of nuclear energy. Acceptance is viewed in terms of public acceptance, industrial acceptance, and internal acceptance/consensus within the nuclear community. It addresses sustainability criteria, the need for innovation, and the different levels of acceptability. The mechanisms of risk perception are discussed along with the technological consequences from risk perception mechanisms leading to specific objections against nuclear energy. (author)

  3. Sustainability in Energy and Buildings : Proceedings of the 3rd International Conference in Sustainability in Energy and Buildings

    CERN Document Server

    Namaane, Aziz; Howlett, Robert; Jain, Lakhmi

    2012-01-01

    Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB’11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systèmes (LSIS) in Marseille, France in partnership with KES International.   SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field.   The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: - the application of intelligent sensing, control, optimisation and modelling techniques to sustainability and - the technology of sustainable buildings.  These two themes combine synergetically to address issues relating to The Intelligent Building.   SEB’11 attracted a significant number of submissions from around the w...

  4. Sustainable Energy Development in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mounir Belloumi

    2015-04-01

    Full Text Available The main objective of this research is to study the role of energy consumption in economic growth in Saudi Arabia over the period of 1971–2012 using the autoregressive distributed lag (ARDL cointegration procedure, and based on neoclassical growth, endogenous growth, and ecological-economics viewpoints. Our empirical results show the existence of a cointegrating relationship between the different variables investigated. In addition, all the inputs (conventional and non-conventional Granger cause economic growth in both the short and long runs. Our findings confirm the energy-led growth hypothesis in the case of Saudi Arabia. Hence, energy conservation policies may deteriorate economic growth in Saudi Arabia if they are not followed by measures that improve energy efficiency, energy saving technologies and encourage the investment and use of renewable energy sources such as solar and wind energies that can participate in the attenuation of climate changes.

  5. Energy solutions for sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2007-05-15

    The Risoe International Energy Conference took place 22 - 24 May 2007. The conference focused on: 1) Future global energy development options. 2) Scenario and policy issues. 3) Measures to achieve low-level stabilization at, for example, 500 ppm CO2 concentrations in the atmosphere. 4) Local energy production technologies such as fuel cells, hydrogen, bio-energy and wind energy. 5) Centralized energy technologies such as clean coal technologies. 6) Providing renewable energy for the transport sector. 7) Systems aspects, differences between the various major regions throughout the world. 8) End-use technologies, efficiency improvements and supply links. 9) Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism. (au)

  6. A new model for sustainable growth in the energy industry

    International Nuclear Information System (INIS)

    McFaddin, S.; Clouse, M.

    1993-01-01

    A new sustainable growth model is developed which enables the evaluations of the interdependence of financial objectives, operational performance and sustainable growth in the energy industry. This new model includes both the effect of inflation and growth produced from equity issues. Component analysis is shown to be an extremely useful tool in determining the effect of operational and financial variables on the sustainable growth rate. This new model is statistically compared with both actual growth rates and Higgins' model. Implications of this research include a more accurate financial planning tool for evaluating sustainable growth and a more effective tool for directing policies to stimulate growth in specific industries. (author)

  7. Technology policy and sustainable development: the case of renewable energy

    International Nuclear Information System (INIS)

    Wohlgemuth, N.

    2000-01-01

    Policies to address long-term energy concerns include a wide range of initiatives. Taxes can internalise costs; financial mechanisms, including subsidies, can target particularly favourable but otherwise non-competitive investments; regulation can apply standards to raise performance of appliances; information programmes can improve decision making; and R and D can make available new options. The 1987 report of the World Commission on Environment and development, found that 'energy efficiency can only buy for the world to develop 'low-energy-paths' based on renewable sources...'. Although many renewable energy systems are in a relatively early stage of development, they offer the world 'a potentially huge primary energy source, sustainable in perpetuity and available in various forms to every nation on Earth.' It suggested that an R and D programme of renewable energy is required to attain the same level of primary energy that is now obtained from a mix of fossil, nuclear, and renewable energy resources. Since renewable energy contributes to all dimensions of sustainable development, one policy challenge is to ensure that renewable energy has a fair opportunity to complete with other resources required for the provision of energy services, especially on 'liberalised' energy markets. This paper gives an overview of rationales for government intervention in energy-related R and D, and international energy R and D trends. it concludes that the liberalisation of energy markets has an overall negative impact on private sector investments in energy R and D and that without a sustained and diverse programme of energy R and D and implementation, we are crippling our ability to make the necessary improvements in the global energy system, especially in light of sustainable development requirements. (author)

  8. Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system

    International Nuclear Information System (INIS)

    Cherni, Judith A.; Dyner, Isaac; Henao, Felipe; Jaramillo, Patricia; Smith, Ricardo; Font, Raul Olalde

    2007-01-01

    Energy supply to the rural poor in developing countries is a complex activity that transcends the simple selection of a best technology. This paper explains the outcomes achieved by using a new multi-criteria decision-support system to assist in calculating the most appropriate set of energy options for providing sufficient power to fulfil local demands that improve livelihoods. The elicitation of the priorities of future users, which are subsequently integrated into the energy selection process, is seen as a mechanism for the promotion of energy policies that ensure that technological developments reduce poverty. The sustainable rural energy decision support system (SURE DSS), a methodological package and software designed by the research team RESURL builds upon technical and non-technical features of energy development in remote poor areas, drawing on a sustainable livelihoods approach as part of its rationale. SURE enables simulations and calculation of the disparities that may arise between current and potential livelihoods after specific energy solutions have been installed, as well as measuring potential trade-offs among alternative livelihoods. The paper reports the outcome of an application of SURE to the case of a remote Colombian rural community whose total energy demands are only partly met through a diesel generator

  9. Energy indicators for tracking sustainability in developing countries

    International Nuclear Information System (INIS)

    Kemmler, Andreas; Spreng, Daniel

    2007-01-01

    Due to the fact that human activities and most sustainability issues are closely related to energy use, the energy system is a sound framework for providing lead indicators for sustainable development. Common energy-economic models enable the estimation of future states of the energy system. An energy system-based lead indicator set can be used to develop consistent and coherent future indicator estimates and to track sustainability, a clear advantage over existing sets. In developed countries, the sustainability discussion is focused on environmental topics, while in developing countries the issues of poverty and equity are equally important. Consequently, for measuring sustainable development in a developing country, the inclusion of a poverty indicator in a set of lead indicators is essential. By correlation and descriptive analysis, it is shown that reliable energy-based indicators of poverty can be created. Although no one-dimensional indicator is a comprehensive measure of poverty, the explanatory power of energy poverty indicators is comparable to that of other poverty indicators. Thus, the use of energy indicators is not restricted to environmental and economic issues but is also relevant for social issues

  10. Sustainable energy supply - a key to global growth

    International Nuclear Information System (INIS)

    Wright, J.K.

    2002-01-01

    From this overall concept of what constitutes sustainability, a range of considerations on equity of energy supply across regions, time scales over which fuel and energy source mixes and technology changes and the like, can be developed. Within the spatial dimension, considerations of sustainability that operate at the global scale need to be translated to the operations of large and small companies, national and local governments down to individual households. It is a complex mix in an increasingly complex world. But one thing is certain, the world's energy demand is going to continue to increase. This demand will be largely satisfied by fossil fuels and this use is not sustainable using current technology in the long term. Massive changes are required to turn the world around onto a more sustainable pathway that will probably take many decades even to make a significant start. The aim of this paper is to briefly explore some of the possible technological options that will guide us on the road to a more sustainable energy future. A genuinely sustainable energy system that also promotes sustainable growth with an improving standard of living for all is obviously a major challenge. At the same time the global demand for energy will continue to increase. On the global scale, the prospect of climate change imposes a major long-term constraint on the use of GHG emitting fuels and generating technologies. The long-term development of a sustainable energy system will require multiple interventions and a pluralistic approach to energy management. Ingredients within the mix are likely to require: 1. innovation in the way we currently generate and supply power 2. continued integration and greater penetration of renewables 3. greater use of embedded and distributed energy generation 4. aggressive end-use efficiency 5. development of technologies to enable continued use of fossil fuels until the transition to sustainability is completed. A combination of market and regulatory

  11. Is nuclear fusion a sustainable energy form?

    International Nuclear Information System (INIS)

    Bradshaw, A.M.; Hamacher, T.; Fischer, U.

    2011-01-01

    An acceptable criterion for strong sustainability in the consumption of natural resources is an effective, or virtual, limitlessness of supply, which can be defined, albeit arbitrarily, as corresponding to a few million years. The fuels for nuclear fusion-lithium and deuterium-satisfy this condition because of the abundance of lithium in seawater and of deuterium in all forms of water. The possible use of lithium-ion batteries on a large scale, particularly in the automobile industry, could, however, use up all the known terrestrial reserves and resources of lithium in the next few decades. Little attention has been paid so far to the financial, energetic, and above all, environmental aspects of lithium extraction from seawater. The neutron multipliers foreseen for fusion power plants, in particular beryllium, represent a major supply problem and require that other, sustainable solutions be urgently sought.

  12. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  13. Assessing the Sustainability of Decentralized Renewable Energy Systems: A Comprehensive Framework with Analytical Methods

    Directory of Open Access Journals (Sweden)

    Aparna Katre

    2018-04-01

    Full Text Available The number of models of Decentralized Renewable Energy (DRE systems, particularly for rural electrification, is growing globally. Most approaches to assess the sustainability of these solutions beyond simple techno-economic considerations are comparative in nature, and only allow us to evaluate performance within a set of other interventions. This leaves a gap in our understanding of the conditions for a specific model to be sustainable and whether its replication is likely to succeed. The approach suggested develops a framework to evaluate the sustainability of specific models for energy access individually and proposes analytical methods to illustrate its use. It combines the multi-dimensional analysis over five sustainability dimensions and the Multi-Tier Framework (MTF to assess technical sustainability, extending MTF’s rigorous scoring methodology to the other dimensions. The scores are based on qualitative and quantitative data collected from key stakeholders, taking into account different perspectives and aims. The framework and analytical methods are exemplified using a subset of data collected in over 40 off-grid DRE systems utilizing a common community ownership and hybrid financial structure. The proposed methodology can be used to understand the sustainability conditions of a given approach to energy access and can therefore be used by practitioners and policy makers to develop strategies and guide policies to roll out effective solutions.

  14. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  15. Small hydropower projects and sustainable energy development in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, R.; Munasinghe, M. [Cambridge Univ. (United Kingdom); Munasinghe Inst. for Development, Colombo (Sri Lanka); Yale Univ., New Haven, CT (United States)

    2005-07-01

    Sustainable development has evolved to encompass three major viewpoints: economic, social and environmental. Given the wide-ranging potential impacts of energy on national sustainable development, we review the linkages between these two topics. In the Sri Lanka case study presented here, the Sustainomics framework is used to assess the role of small hydroelectric power projects in sustainable energy development. Key variables represent economic, social and environmental dimensions. This analysis helps policy-makers compare and rank project alternatives more easily and effectively. The multi-dimensional analysis, which includes environmental and social variables, supplements the more conventional cost benefit analysis based on economic values alone. (Author)

  16. At the Heart of a Sustainable Energy Transition: The Public Acceptability of Energy Projects

    NARCIS (Netherlands)

    Perlaviciute, Goda; Schuitema, Geertje; Devine-Wright, Patrick; Ram, Bonnie

    Public acceptability is at the heart of changing the energy system toward a more sustainable way of energy production and use. Without public acceptability and support for changes, a sustainable energy transition is unlikely to be viable. We argue that public acceptability is often addressed too

  17. THE ROLE OF ENERGY IN ECOLOGICAL SUSTAINABILITY

    OpenAIRE

    Popescu Maria-Floriana

    2015-01-01

    The rapid population growth leads to greater daily demand for energy, causing nations to diversify their portfolios and seek new sources of energy, including renewable to provide more energy. In a universe with seriously exhausted natural resources, severe urbanization, climate change and conflicts that go beyond borders, the issue of overpopulation unquestionably causes worldwide debates and can generate a snowball effect for the global economy or human society. Population’s increase in the ...

  18. Energy Sustainability and Its Impacts on Croatian Tourism

    Directory of Open Access Journals (Sweden)

    Marinela Krstinić Nižić

    2017-01-01

    Full Text Available Energy efficiency, renewable energy sources, and environmental protection projects play a pivotal role in tourism. The World Tourism Organization (UNWTO addresses resource management and energy use as one of the major issues. The main goal of the paper is to present the economic–financial analysis and the assessment of investment projects in the construction of a conventional mid-size hotel using fossil fuels and a mid-size hotel based on sustainable principles and renewable energy sources. Comparative analysis of conventional and energy efficient hotels is used to calculate the key financial indicators in decision making. Case study shows that the introduction of renewable energy sources meets the needs of modern guests and increases the hotel's competitiveness, while the effects of energy sustainability reflect on the environment and reduced CO2 emissions. Based on the results, the paper suggests measures for improving energy sustainability in hotels and other tourism facilities. The paper is intended for those who deal with theoretical and practical issues of energy sustainability in tourism, tourism certificates, renewable energy sources and investment costs―scientists, researchers, PhD candidates and students as a basis for further comparative studies and benchmarking. It can also be useful for a considerably wider circle of users―managers at all levels and other business decision makers, as well as proprietors, investors, and creditors.

  19. Sustainable energy development (May 2011) with some game-changers

    International Nuclear Information System (INIS)

    Lior, Noam

    2012-01-01

    This paper presents the opening talk that briefly surveys the present (May 2011) situation in sustainable energy development. Recent estimates and forecasts of the oil, gas, coal resources and their reserve/production ratio, nuclear and renewable energy potential, and energy uses are surveyed. A brief discussion of the status, sustainability (economic, environmental and social impact), and prospects of fossil, nuclear and renewable energy use, and of power generation is presented. Comments about energy use in general, with more detailed focus on recently emerging game-changing developments of postponement of “peak oil”, nuclear power future following the disaster in Japan, and effects of the recent global economy downturn of global sustainability, are brought up. Ways to resolve the problem of the availability, cost, and sustainability of energy resources alongside the rapidly rising demand are discussed. The author’s view of the promising energy R and D areas, their potential, foreseen improvements and their time scale, and last year’s trends in U.S. government energy funding are presented. -- Highlights: ► The present (May 2011) situation in sustainable energy development is surveyed. ► Recently emerging game-changing developments of postponement of “peak oil”, nuclear power future following the disaster in Japan, ad effects of the recent global economy downturn of global sustainability, are brought up. ► Promising energy R and D areas, their potential, foreseen improvements and their time scale. ► Last year’s trends in U.S. government energy funding are presented.

  20. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  1. Sustainable biotechnology: sources of renewable energy

    National Research Council Canada - National Science Library

    Singh, Om V; Harvey, Steven P

    2010-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anuj K. Chandel, Om V. Singh, and L.Venkateswar Rao 63 Tactical Garbage to Energy Refinery (TGER) . . . . . . . . . . . . . . . James J. Valdes and Jerry B. Warner...

  2. Tools for tracking progress. Indicators for sustainable energy development

    International Nuclear Information System (INIS)

    Khan, A.; Rogner, H.H.; Aslanian, G.

    2000-01-01

    A project on 'Indicators for Sustainable Energy Development (ISED)' was introduced by the IAEA as a part of its work programme on Comparative Assessment of Energy Sources for the biennium 1999-2000. It is being pursued by the Planning and Economic Studies Section of the Department of Nuclear Energy. The envisaged tasks are to: (1) identify the main components of sustainable energy development and derive a consistent set of appropriate indicators, keeping in view the indicators for Agenda 21, (2) establish relationship of ISED with those of the Agenda 21, and (3) review the Agency's databases and tools to determine the modifications required to apply the ISED. The first two tasks are being pursued with the help of experts from various international organizations and Member States. In this connection two expert group meetings were held, one in May 1999 and the other in November 1999. The following nine topics were identified as the key issues: social development; economic development; environmental congeniality and waste management; resource depletion; adequate provision of energy and disparities; energy efficiency; energy security; energy supply options; and energy pricing. A new conceptual framework model specifically tuned to the energy sector was developed, drawing upon work by other organizations in the environmental area. Within the framework of this conceptual model, two provisional lists of ISED - a full list and a core list - have been prepared. They cover indicators for the following energy related themes and sub-themes under the economic, social and environmental dimensions of sustainable energy development: Economic dimension: Economic activity levels; End-use energy intensities of selected sectors and different manufacturing industries; energy supply efficiency; energy security; and energy pricing. Social dimension: Energy accessibility and disparities. Environmental dimension: Air pollution (urban air quality; global climate change concern); water

  3. Energy and the World Summit on Sustainable Development: what next?

    International Nuclear Information System (INIS)

    Spalding-Fecher, Randall; Winkler, Harald; Mwakasonda, Stanford

    2005-01-01

    Given the importance of energy issues to sustainable development, energy was a priority issue at the World Summit on Sustainable Development in August 2002. The objective of this paper is to examine the outcomes of the Summit on energy, and to assess them against proposals to address the lack of access to modern energy and the need to move toward a cleaner energy system. We find that lack of political leadership from key countries prevented agreement not only on targets for renewable energy, but also on a programme to promote access. The achievements of the Summit were limited to enabling activities such as capacity building and technology transfer, rather than substantive agreements. While WSSD put energy higher on the agenda than before, no institutional home or programme to take the issues forward has emerged. This therefore remains a critical challenge to be addressed. Achieving this broad goal will require building a coalition to promote cleaner energy, and committing resources to programme for energy access. Based on analysis of proposals and the negotiations, we propose several key areas where progress is still possible and necessary, including: shifting more international public and private energy financing toward access investments and cleaner energy investments, advancing regional approaches to access and renewable energy targets, and a range of mechanisms to strengthen institutional capacity for integrating energy and sustainable development

  4. IAEA support of international research and development of materials for sustainable energy applications

    International Nuclear Information System (INIS)

    Zeman, Andrej; Kaiser, Ralf; Simon, Aliz

    2013-01-01

    Full-text:The key mandate of the International Atomic Energy Agency (IAEA) is to promote the peaceful application of nuclear science and technology, verification as well as nuclear safety in the world. This includes a number of activities which aim to support the Member States and stimulate international cooperation in order for sustainable development. During the last 35 years, a well-established mechanism called the Coordinated Research Projects (CRP) has been effectively used to stimulate international research and scientific interaction among the Member States, covering various topics in the nuclear science and technology. Besides direct support of, so called coordinated research, the IAEA is also involved in organizing a number of highly specific international conferences and technical meetings which help to provide a broader platform for the specialist and experts in dedicated areas of nuclear science and technology. In view of support for renewable energy and its application, the IAEA organized series of meetings in 2009 (IEA France), 2010 (UQTR Canada) and 2011 (ANL USA) in order to discuss the scientific and technical issues of particular of national research initiatives related to the hydrogen storage and conversion technologies. All selected outputs of the meetings were published in a technical document publication series which are available to all member states. More recent initiatives are focus on the key nuclear techniques which are extremely valuable in research and development of new innovative materials, methods and technologies, characterization and performance testing of functional materials for innovative energy technologies and their application in sustainable energy sources (nuclear and non-nuclear). It is also important to underline that these programmatic activities are an integral part of the IAEA program on the Road to Rio+20: Applying Nuclear Technology for Sustainable Development. The paper summarizes the IAEA actions relevant to the

  5. Embedding Sustainability and Renewable Energy Concepts into Undergraduate Curriculum

    Science.gov (United States)

    Belu, R.; Cioca, L.

    2017-12-01

    Human society is facing an uncertain future due to the present unsustainable use of natural resources and the growing imbalance with our natural environment. Creation of a sustainable society is a complex multi-disciplinary and multi-stage project, believed to dominate our century, requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions. Sustainable development means technological progress meeting the present needs without compromising future generation ability to meet its needs and aspirations. It has four aspects: environment, technology, economy, and societal organizations. Students are often taught to deal with technological developments and economic analysis to assess the process or product viability, but are not fully familiar with sustainability and optimization of technology development benefits and the environment. Schools in many disciplines are working to include sustainability concepts into their curricula. Teaching sustainability and renewable energy has become an essential feature today higher education. Sustainable and green design is about designs recognizing the constraints of the natural resource uses and the environment. It applies to all of engineering and science areas, as all systems interact with the environment in complex and important ways. Our project goals are to provide students with multiple and comprehensive exposures to sustainability and renewable energy concepts, facilitating the development of passion and skills to integrate them into practice. The expected outcomes include an increased social responsibility; development of innovative thinking skills; understanding of sustainability issues, and increasing student interests in the engineering and science programs. The project aims to incorporate sustainability and renewable energy concepts into our undergraduate curricula, employing the existing course resources, and developing new courses and laboratory experiments

  6. Sustainable development and energy in the european union

    International Nuclear Information System (INIS)

    Roth, A.

    2013-01-01

    Sustainable development represents a core objective of the European Union, being embodied through out its major polices. In the field of energy, the EU objectives, commonly known as ä20-20-20ö initiative, aim at ensuring a competitive, secure and sustainable energy for European households and industries by reducing the emissions of green house gases, an efficient use on energy and increasing the use of renewable energy. The present paper draws a review on the most important aspects of EU energy policy, its measures, results and costs from the perspective of security of supply, competitiveness of price and green house gases emissions. The aim is to highlight the trade offs which are involved in the orientation towards a sustainable path of the energetic sector of the European Union. (authors)

  7. Can environmental sustainability be used to manage energy price risk?

    International Nuclear Information System (INIS)

    Henriques, Irene; Sadorsky, Perry

    2010-01-01

    Energy security issues and climate change are two of the most pressing problems facing society and both of these problems are likely to increase energy price variability in the coming years. This paper develops and estimates a model of a company's energy price exposure and presents evidence showing that increases in a company's environmental sustainability lowers its energy price exposure. This result is robust across two different measures of energy prices. These results should be useful to companies seeking new ways of addressing energy price risk as well as governments concerned about the impact that energy price risk can have on economic growth and prosperity. (author)

  8. Pressure tube reactors and a sustainable energy future: the ultra development path

    International Nuclear Information System (INIS)

    Duffey, R.

    2008-01-01

    Nuclear energy must be made available, freely and readily, to help meet world energy needs, concerns over energy price and security of supply, and alleviating the uncertainties over potential climate change. The perspective offered here is a model for others to consider, adopting and adapting using whatever elements fit their own strategies and needs. The underlying philosophy is to retain flexibility in the reactor development, deployment and fuel cycle, while ensuring the principle that customer, energy market, safety, non-proliferation and sustainability needs are all addressed. Canada is the world's largest exporter of uranium, providing about one-third of the world supply for nuclear power reactors. Pressure tube reactors (PTRs), of which CANDU, is a prime example, have a major role to play in a sustainable energy future. The inherent fuel cycle flexibility of the PTR offers many technical, resource and sustainability and economic advantages over other reactor technologies and is the subject of this paper. The design evolution and development intent is to be consistent with improved or enhanced safety, licensing and operating limits, global proliferation concerns, and waste stream reduction, thus enabling sustainable energy futures. The limits are simply those placed by safety, economics and resource availability. (author)

  9. Pressure tube reactors and a sustainable energy future: the ultra development path

    International Nuclear Information System (INIS)

    Duffey, R.

    2008-01-01

    Nuclear energy must be made available, freely and readily, to help meet world energy needs, concerns over energy price and security of supply, and alleviating the uncertainties over potential climate change. The perspective offered here is a model for others to consider, adopting and adapting using whatever elements fit their own strategies and needs. The underlying philosophy is to retain flexibility in the reactor development, deployment and fuel cycle, while ensuring the principle that customer, energy market, safety, non-proliferation and sustainability needs are all addressed. Canada is the world's largest exporter of uranium, providing about one-third of the world supply for nuclear power reactors. Pressure tube reactors (PTRs), of which CANDU is a prime example, have a major role to play in a sustainable energy future. The inherent fuel cycle flexibility of the PTR offers many technical, resource and sustainability, and economic advantages over other reactor technologies and is the subject of this paper. The design evolution and development intent is to be consistent with improved or enhanced safety, licensing and operating limits, global proliferation concerns, and waste stream reduction, thus enabling sustainable energy futures. The limits are simply those placed by safety, economics and resource availability. (author)

  10. Introduction [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Toth, F.; Moreira, J.R.

    2006-01-01

    Energy has been a central concern to humankind throughout its long history. The adequate provision of energy services has become especially important for economic development since the Industrial Revolution. In recent decades, energy issues have been a fundamental component of the conceptual and strategic discussions on sustainable development worldwide. This chapter introduces the project 'Brazil: A Country Profile on Sustainable Energy Development' within this recent political context. The chapter starts with a concise overview of the energy related aspects of international sustainable development programmes and declarations, followed by a short summary of events and documents explicitly devoted to energy matters (Section 1.1). Recent arguments in the theoretical debate on sustainability are presented in Section 1.2 in order to provide the conceptual background for the sustainability assessment of Brazil's energy sector. The background, objectives and scope of the project are summarized in Section 1.3. Finally, in Section 1.4 a road map to the report is provided, drawing the attention of different audiences to chapters of interest to them

  11. Automated Demand Response for Energy Sustainability

    Science.gov (United States)

    2015-05-01

    electric loads for use in DR programs include HVAC equipment, lighting, water pumping, and other miscellaneous motor loads. Figure 5 shows a high...100 Appendix L: Comparative Analysis: Bldg 254/271 HVAC Controls Project ............................ 102 Appendix M: Comparative...Security Technology Certification Program FEMP Federal Energy Management Program FERC Federal Energy Regulatory Commission HVAC Heating, ventilation

  12. Pleading for a sustainable energy economy

    International Nuclear Information System (INIS)

    Boelkow, L.

    1996-01-01

    There will be only few to deny that it is time to initiate a re-orientation in the energy sector. However, the strategies to be adopted are the bone of contention. The article presents one concrete vision, showing that solar energy in particular is a power source for designing the future, and under competitive conditions at that. (orig.) [de

  13. Relevancy of the Massive Open Online Course (MOOC about Sustainable Energy for Adolescents

    Directory of Open Access Journals (Sweden)

    Maija Aksela

    2016-12-01

    energy. In the designing of MOOCs for studying sustainable energy, it is important to take the following things into consideration: (i the balance between theory and practical examples; (ii the support for interaction; and (iii other support (e.g., technical and learning strategies for students. Communication with other learners and getting feedback from teachers and tutors remain the vital challenges for the developers of MOOCs in the future.

  14. United Nations: preparing to examine energy and sustainable development

    International Nuclear Information System (INIS)

    Radka, Mark

    2000-01-01

    This article examines the progress on sustainable development at the international level, and discusses the forthcoming meeting of the Commission for Sustainable Development (CSD-9) and the review of the progress of the Earth Summit in Rio in 1992. Details are given of the anticipated Third Assessment report of the Intergovernmental Panel on Climate Change which is expected to increase pressure to reduce emissions of greenhouses gases, the link between policies of sustainable development and renewable energy, the challenge of the growing demand for energy in the developing countries and the need to mitigate against environmental damage, and the setting up of the Sustainable Energy Advisory Facility (SEAF) by the United Nations Environment Programme to aid developing countries to participate in the CSD-9 process

  15. SUSTAINABLE DEVELOPMENT, ENERGY AND CLIMATE CHANGE IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Andrei ROTH

    2015-04-01

    Full Text Available Through sustainable development the needs of the current generation are fulfilled without jeopardizing the opportunities of future generations. The concept takes into account economic, social and environmental considerations. It has a wide range of applications from natural resources to population growth and biodiversity. One of its most important themes is energy. In this area, sustainable development relates with resource availability and green house gases emissions. Also it takes into account the needs of people without access to energy, and their legitimate quest for development. For the European Union, sustainable development represents an overarching objective. The present article analyzes the concept from a theoretical perspective, contrasting its strong points and weaknesses. It highlights the relation between sustainable development, energetic resources and climate change. The EU policies results in the field of energy are analyzed from the perspective of resources, energetic dependency and climate change efforts.

  16. United Nations: preparing to examine energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Mark [United Nations Environment Programme, Paris (France)

    2000-08-01

    This article examines the progress on sustainable development at the international level, and discusses the forthcoming meeting of the Commission for Sustainable Development (CSD-9) and the review of the progress of the Earth Summit in Rio in 1992. Details are given of the anticipated Third Assessment report of the Intergovernmental Panel on Climate Change which is expected to increase pressure to reduce emissions of greenhouses gases, the link between policies of sustainable development and renewable energy, the challenge of the growing demand for energy in the developing countries and the need to mitigate against environmental damage, and the setting up of the Sustainable Energy Advisory Facility (SEAF) by the United Nations Environment Programme to aid developing countries to participate in the CSD-9 process.

  17. Electricity. The answer to sustainable energy needs

    International Nuclear Information System (INIS)

    Bulcke, J.

    1996-01-01

    When debating the rational use of energy, it very often happens that all attention is drawn to the reduction of the use of electricity. Limiting, even eliminating the application of electric heating is seen as a rational choice. On the other hand, industrial consumers are urged to invest in combined heat and power, even without considering a thorough analysis of energy usage. Mastering such an environment is today's challenge for the electricity producers and distributors. Considering the fact that, for a majority of customers, the cost of electricity is more important than the cost of other energy sources, products and services has been developed which, lead to lower bills and lower energy use. From a marketing point of view, this approach introduces electro-thermy to the consumer thereby securing the electricity company of durable sales and even increases in sales. The high efficiency of electrothermal applications secures a reduction in primary energy use. (author)

  18. Technical energy savings versus changes in human behaviour

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1996-01-01

    Energy savings seems to be the most environmentally benign element in an energy policy. The paper is a reflection on the work on saving energy both by improving technology and by adapting human daily behaviour. A simple model is suggested for the energy chain which converts the primary energy all...... the way into human satisfaction via energy services. Results of various analyses and field experiments show saving potentials for electricity of 50 - 80 per cents. Barriers for implementing these technical saving options are discussed. Also the necessity and potentials for changing behavioural or life...... style is discussed, including survey results which points towards a change in values towards more demand for leisure time rather than more income. Finally result from a study for a low electricity Europe is included....

  19. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  20. Renewable energy and environment ally sustainable development in Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.; Memon, M.; Uqaili, M.A.

    2005-01-01

    In Pakistan, about two-thirds of the primary energy requirements are met through conventional sources while traditional biomass accounts the remaining one-third The primary commercial energy is largely based on fossil fuels. Indigenous reserves of oil and gas are limited and the coal available in the country is of poor quality. Environmental pollution and greenhouse gas emissions from energy use are becoming significant environmental issues in the country. Achieving solutions to these environmental problems requires long-term potential actions for sustainable development. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions. Pakistan's geographical location has several advantages for extensive use of most of these renewable energy sources. This paper presents review of the present energy situation and environmental sustainability, and assesses the potential of renewable energy sources in Pakistan. Also, potential solutions to current environmental problems are identified along with renewable energy technologies. Several problems relating to renewable energy sources, environmentally sustainable development are discussed from both current and future perspectives. The present study shows that there is substantial potential of renewables in Pakistan. For achieving environmentally sustainable development, renewables must be developed and utilized. (author)

  1. Sustainable energy policy in Honduras. Diagnosis and challenges

    International Nuclear Information System (INIS)

    Flores, Wilfredo C.; Ojeda, Osvaldo A.; Flores, Marco A.; Rivas, Francisco R.

    2011-01-01

    In view of having a still unexploited potential of natural resources available for clean energy and the possibility of using the regional electricity market in Central America, Honduras has several potential energy sources. The growing dependence on oil and the imminent increase in international prices of fossil fuels, coupled with the necessity of changing the energy sector arrangement, the State of Honduras has taken the lead for the development of a long-term sustainable energy policy. This energy policy must be able to develop various energy sources and guide both, the government and the private sector, to the planning and development of alternative energy sources and sustainable growth of the Honduran economy. In this paper, the various energy diagnoses and the potential for changing the Honduran energy mix are presented, as well as the investment required for sustainable management of the energy sector. Furthermore, the objectives of the energy policy and plan up to the year 2030 are presented, outlining the investment possibilities for the energy sector development, showing their costs and timeframes. (author)

  2. An Interdisciplinary Education of Sustainability, Energy and Green Economics

    Science.gov (United States)

    Sikand, M. V.; Mazzatenta, C.; Wong, K.; Socha, A.

    2017-12-01

    This following project demonstrates an interdisciplinary method of teaching Sustainability, Energy and Green Economics. It is shown that an interdisciplinary approach to introduce students to the foundations of sustainability strongly connects education with real world applications, and highlights the growing influence of sustainable practices on the world at large. The authors will present results from the interdisciplinary course "Sustainability, Energy and Green Economy" taught at the Center of Sustainable Energy, Bronx Community College, City University of New York (CSE-BCC-CUNY) by faculty from Physics, Chemistry, Biology. The course curriculum covers the relationship of humans within their environment, the facts of climate change, an analysis of the current global energy portfolio, the burgeoning renewable energy sector, and connections between consumption and quality of life. The students are exposed to empirical data and asked to evaluate trends to ascertain the future energy and resource demands of a growing global population. The students are lead through an estimation of their own carbon footprint. Emphasis is made on the concept of `Life Cycle Analysis' and how such analyses can be used to create market value and a "green product". The interdisciplinary approach to teach students on how the principles of sustainability are building the green economy and how to build a successful career within today's workforce encourages students to apply the critical lens of sustainability to all aspects of their personal lives, as well as local, regional and global economies. The authors will present data collected by students to formulate and articulate a hypothesis specifically related to the sustainability of societal and economic market trends.

  3. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities

    Directory of Open Access Journals (Sweden)

    Zaręba Anna

    2017-01-01

    Full Text Available Minimizing energy consumption is the effect of sustainable design technics as among many others: designing buildings with solar access and natural ventilation, using climate responsive design materials and effective insulation. Contemporary examples of zero-carbon cities: Masdar City, United Arab Emirates and Dongtan, China, confirm technical feasibility of renewable energy by implementation of solar PV and wind technologies. The ecological city - medium or high density urban settlement separated by greenspace causes the smallest possible ecological footprint on the surrounding countryside through efficient use of land and its resources, recycling used materials and converting waste to energy. This paper investigates the concept of energy sustainable cities, examines, how urban settlements might affect building energy design in eco-villages, eco-districts (e.g. Vauban, Freiburg in Germany, Bo01 Malmo in Sweden, and discuss the strategies for achieving Zero Emission Cities principles in densely populated areas. It is focused on low energy architectural design solutions which could be incorporated into urban settlements to create ecological villages, districts and cities, designed with consideration of environmental impact, required minimal inputs of energy, water, food, waste and pollution.

  4. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities

    Science.gov (United States)

    Zaręba, Anna; Krzemińska, Alicja; Łach, Janusz

    2017-11-01

    Minimizing energy consumption is the effect of sustainable design technics as among many others: designing buildings with solar access and natural ventilation, using climate responsive design materials and effective insulation. Contemporary examples of zero-carbon cities: Masdar City, United Arab Emirates and Dongtan, China, confirm technical feasibility of renewable energy by implementation of solar PV and wind technologies. The ecological city - medium or high density urban settlement separated by greenspace causes the smallest possible ecological footprint on the surrounding countryside through efficient use of land and its resources, recycling used materials and converting waste to energy. This paper investigates the concept of energy sustainable cities, examines, how urban settlements might affect building energy design in eco-villages, eco-districts (e.g. Vauban, Freiburg in Germany, Bo01 Malmo in Sweden), and discuss the strategies for achieving Zero Emission Cities principles in densely populated areas. It is focused on low energy architectural design solutions which could be incorporated into urban settlements to create ecological villages, districts and cities, designed with consideration of environmental impact, required minimal inputs of energy, water, food, waste and pollution.

  5. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  6. Tidal energy extraction: renewable, sustainable and predictable.

    Science.gov (United States)

    Nicholls-Lee, R F; Turnock, S R

    2008-01-01

    The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.

  7. Nuclear energy an asset for sustainable development

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The energy issue is now a worldwide concern. It is showed that nuclear energy combined with renewable energies are the only efficient response to face the challenge of climate warming by cutting drastically the emission of greenhouse gases in the electricity production. The second asset of nuclear energy is to be able to meet the growing need for electric power of developing countries. Energy conservation is a good thing to do in western countries but it is far to be sufficient. The success of France's nuclear energy program has enabled the country to be independent from other countries concerning its electricity production, to produce electricity at moderate and stable costs even on the long term, and to develop nuclear industry operators that are world leaders. According to the 28 june 2006 bill that clarifies the management of radioactive wastes, the disposal of high-level radioactive wastes in deep geological layers, will be put into service in 2025. The law has let the possibility of recovering the waste containers during a certain period after their burial if new solutions will have emerged. In the context of an expected renaissance of nuclear energy, the EPR (European Pressurized Reactor) is a valuable offer that must be developed. The construction of an EPR unit on the Flamanville site is necessary to perfect its design. (A.C.)

  8. Energy demand, economic growth, and energy efficiency - the Bakun dam-induced sustainable energy policy revisited

    International Nuclear Information System (INIS)

    Keong, C.Y.

    2005-01-01

    In embarking on a dynamic course of economic development and industrial modernism, Malaysia sees the need to increase its electricity generation capacity through the development of a mega-dam project - the Bakun dam. Although hydroelectricity generation offers one of the benign options in accommodating the increasing energy consumption per capita in Malaysia, it is argued that the construction of Bakun's dam which involves a complete and irreversible destruction of 69,640 ha of old forest ecosystem remains a difficult and uncertain endeavour. It is further argued that apart from mega-dam technology, there are also other means to orchestrate a sustainable energy system in Malaysia. These include the implementation of demand and supply initiatives, such as the deployment of energy saving technology or influencing behavioral change towards a sustainable energy consumption pattern

  9. Technical and economic assessment of energy conversion technologies for MSW

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.

    2002-07-01

    Thermal processes for municipal solid wastes (MSW) based on pyrolysis and/or gasification that have relevance to the emerging UK market are described in this report, and the results of the technical and economical assessment of these processes are presented. The Mitsui R21 Technology, the Thermoselect Process, the Nippon Steel Waste Melting Process, the Pyropleq Process, and the Compact Power Process are selected for detailed comparison on the basis of the overall technical concept, the energy balance and the requirements for consumables, environmental performance, and the technical and commercial status of the technology. Details are also given of a comparison of the novel thermal technologies with conventional mass burn incineration for MSW.

  10. Technical and economic assessment of energy conversion technologies for MSW

    International Nuclear Information System (INIS)

    Livingston, W.R.

    2002-01-01

    Thermal processes for municipal solid wastes (MSW) based on pyrolysis and/or gasification that have relevance to the emerging UK market are described in this report, and the results of the technical and economical assessment of these processes are presented. The Mitsui R21 Technology, the Thermoselect Process, the Nippon Steel Waste Melting Process, the Pyropleq Process, and the Compact Power Process are selected for detailed comparison on the basis of the overall technical concept, the energy balance and the requirements for consumables, environmental performance, and the technical and commercial status of the technology. Details are also given of a comparison of the novel thermal technologies with conventional mass burn incineration for MSW

  11. Sustainable energy planning by using multi-criteria analysis application in the island of Crete

    Energy Technology Data Exchange (ETDEWEB)

    Tsoutsos, Theocharis; Drandaki, Maria; Iosifidis, Eleftherios; Kiosses, Ioannis [Technical University of Crete, University Campus, GR 73100 Chania (Greece); Frantzeskaki, Niki [Delft University of Technology, Faculty of Technology, Policy and Management, Jaffalaan 4, 2628BX Delft (Netherlands)

    2009-05-15

    The sustainable energy planning includes a variety of objectives, as the decision-making is directly related to the processes of analysis and management of different types of information (technological, environmental, economic and social). Very often, the traditional evaluation methods, such as the cost-benefit analysis and macro-economic indicators, are not sufficient to integrate all the elements included in an environmentally thorough energy plan. On the contrary the multiple criteria methods provide a tool, which is more appropriate to assemble and to handle a wide range of variables that is evaluated in different ways and thus offer valid decision support. This paper exploits the multi-criteria methodology for the sustainable energy planning on the island of Crete in Greece. A set of energy planning alternatives are determined upon the implementation of installations of renewable energy sources on the island and are assessed against economic, technical, social and environmental criteria identified by the actors involved in the energy planning arena. The study constitutes an exploratory analysis with the potential to assist decision makers responsible for regional energy planning, providing them the possibility of creating classifications of alternative sustainable energy alternatives. (author)

  12. Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T. D., IV; Miller, M.; Fleming, L.; Younge, K.; Newcomb, J.

    2011-03-01

    Low-carbon energy innovation is essential to combat climate change, promote economic competitiveness, and achieve energy security. Using U.S. patent data and additional patent-relevant data collected from the Internet, we map the landscape of low-carbon energy innovation in the United States since 1975. We isolate 10,603 renewable and 10,442 traditional energy patents and develop a database that characterizes proxy measures for technical and commercial impact, as measured by patent citations and Web presence, respectively. Regression models and multivariate simulations are used to compare the social, institutional, and geographic drivers of breakthrough clean energy innovation. Results indicate statistically significant effects of social, institutional, and geographic variables on technical and commercial impacts of patents and unique innovation trends between different energy technologies. We observe important differences between patent citations and Web presence of licensed and unlicensed patents, indicating the potential utility of using screened Web hits as a measure of commercial importance. We offer hypotheses for these revealed differences and suggest a research agenda with which to test these hypotheses. These preliminary findings indicate that leveraging empirical insights to better target research expenditures would augment the speed and scale of innovation and deployment of clean energy technologies.

  13. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  14. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  15. Renewable energy: the secure and sustainable option for Pakistan

    International Nuclear Information System (INIS)

    Asif, M.

    2005-01-01

    Pakistan is an energy deficient country that heavily relies on imports of fossil fuels to meet its energy requirements. Pakistan is facing severe energy challenges -indigenous oil and gas reserves are running out, energy demand is rapidly increasing, gap between demand and supply is growing, concerns about secure supply of energy are increasing and fuel cost is rising at an unprecedented rate. For sustainable development, it is crucial to ensure supply of adequate, consistent and secure supply of energy. Renewable energy resources that are sustainable are abundantly available in Pakistan in various forms such as hydel power, solar energy, wind power and biomass. To address the growing energy challenges, it has become inevitable for the country to diversify its energy market through harnessing renewable energy resources. It has been found that hydel power is one of the most significant renewable energy sources that can help Pakistan address the present as well as future energy challenges. It has been identified that solar water heating is another ready to adopt renewable energy technology that alone has the potential to meet as much as 12-15% of the country's entire energy requirements. (author)

  16. A SES (sustainable energy security) index for developing countries

    International Nuclear Information System (INIS)

    Narula, Kapil; Reddy, B. Sudhakara

    2016-01-01

    Measuring the performance of the energy system of a country is a prerequisite for framing good energy polices. However, the existing indices which claim to measure energy security have limited applicability for developing countries. Energy sustainability is also increasingly gaining importance and countries are keen to measure it to tailor their energy policies. Therefore, the concept of SES (sustainable energy security) has been proposed as the goal for a developing country. This paper presents an analytical framework for the assessment of SES of an energy system and the methodology for constructing an SES index. A hierarchical structure has been proposed and the energy system has been divided into 'supply', 'conversion & distribution' and 'demand' sub-systems. Each subsystem is further divided into its components which are evaluated for four dimensions of SES, Availability, Affordability, Efficiency and (Environmental) Acceptability using quantitative metrics. Energy indices are constructed using 'scores' (objective values), and 'weights' (subjective values representing tradeoffs) which are then aggregated, bottom-up, to obtain an overall SES Index for a country. The proposed SES Index is multidimensional, quantitative, modular, systemic and flexible. Such a SES Index can be used to design policy interventions for transitioning to a sustainable and a secure energy future. - Highlights: • A SES (sustainable energy security) index is proposed for developing countries. • A hierarchical structure includes the entire energy system from supply to end use. • The performance of all energy sources, energy carriers and sectors is assessed. • Availability, affordability, efficiency and acceptability dimensions are evaluated. • The SES index is multidimensional, quantitative, modular, systemic and flexible.

  17. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...

  18. AN ECOLOGICAL-ECONOMIC CONVERGENCE: TRANSITION TO SUSTAINABLE ENERGY

    Directory of Open Access Journals (Sweden)

    G. Kharlamova

    2013-08-01

    Full Text Available Sustainable energy development is complex challenge, so only complex decisions and approaches could be possible to implement in the most efficient way. There is still open question – what is the optimal volume of new energy resources using to support sustainable development and environment safety for any state of the world. Article deals with the availability of convergence to serve for the more effective usage of analytic and system approaches for modeling ecological-economic spillovers in the case of transition to sustainable energy. The economic effects of sustainable energy transition are considered. The analysis of dynamic of energy consumption in the scale of different type of resources during 1820-2030 years depicted the situation of complicated analysis of “economy-energy-environment” linkage. It arises the agenda of necessity to implement complex approaches for modeling and forecasting of new energy systems development. Different types of models and techniques to analyze economy-energy systems are listed and compared.

  19. Shaping a sustainable energy future for India: Management challenges

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2010-01-01

    Most of the studies on the Indian energy sector focus on the possible future scenarios of Indian energy system development without considering the management dimension to the problem-how to ensure a smooth transition to reach the desired future state. The purpose of this paper is to highlight some sector management concerns to a sustainable energy future in the country. The paper follows a deductive approach and reviews the present status and possible future energy outlooks from the existing literature. This is followed by a strategy outline to achieve long-term energy sustainability. Management challenges on the way to such a sustainable future are finally presented. The paper finds that the aspiration of becoming an economic powerhouse and the need to eradicate poverty will necessarily mean an increase in energy consumption unless a decoupling of energy and GDP growth is achieved. Consequently, the energy future of the country is eminently unsustainable. A strategy focussing on demand reduction, enhanced access, use of local resources and better management practices is proposed here. However, a sustainable path faces a number of challenges from the management and policy perspectives.

  20. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  1. NEW METHODOLOGICAL APPROACH IN TECHNO-ECONOMIC AND ENVIRONMENTAL OPTIMISATION OF SUSTAINABLE ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Svetlana Stevović

    2010-01-01

    Full Text Available Among its other objectives and principles, sustainable development concept includes finding the optimal technical solutions that will enable exploitation of the resources of energy with minimal environmental damage. The main goal of this paper is to demonstrate methodological approach by using several operational research methods for selecting the optimal solution for complex, multipurpose power-plants construction concept problem with taking the sustainable development aspects into account. These methods are: ELECTRE I-IV, PROMETHEE I-IV, method of analytic hierarchy process (AHP and linear programming. The aim of this research was to find out highly efficient, but relatively simple methods of defining environmental-friendly and socio-politically acceptable technical solution. The new methodology is developed and tested by case studies of determining the optimal choice for the construction of thermal and hydropower plants in the areas extremely exposed to conflict of economic, environmental and socio-political interest.

  2. World in transition 3 towards sustainable energy systems

    CERN Document Server

    2014-01-01

    'The publication of World in Transition: Towards Sustainable Energy Systems is timely indeed. The World Summit on Sustainable Development gave great prominence to this challenge, but failed to agree on a quantitative, time-bound target for the introduction of renewable energy sources. The German Advisory Council on Global Change (WBGU) has now produced a report with a global focus, which is essential in view of the global impacts of climate change. The report provides a convincing long-term analysis, which is also essential. Global energy policies have to take a long-term perspective, over the

  3. Implementation of sustainable energy programs in developing countries

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2001-01-01

    Energy, a major contributor to development, is an essential element for increasing quality of life. During the next decades, the developing world will experience an explosive increase of energy demand, requiring enormous efforts and ingenuity to be fully satisfied. Delays may create public frustration for not achieving paradigm levels of quality of life, giving eventually rise to serious pressures on governments. The concept of sustainable energy options for development cannot be analyzed under the same prism in developed and developing countries. The relative degree of a country development should be introduced when setting up the path to sustainable development. (author)

  4. Sustainable energy systems: Limitations and challenges based on exergy analysis

    OpenAIRE

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This thesis discusses problems and possibilities of more sustainable energy systems first of all for the energy supply of the Netherlands. The “trias energetica” is used to distinguish the steps that have...

  5. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  6. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  7. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  8. A source of energy : sustainable architecture and urbanism

    Energy Technology Data Exchange (ETDEWEB)

    Roestvik, Harald N.

    2011-07-01

    An update on the environmental challenges. Meant to inspire and be a source of energy.Tearing down myths and floodlighting paradoxes. Particularly relevant for students of architecture, architects and concerned citizens. Training tasks, recommendations for further source books and web sites, are included. From the content: Climate change and consensus, Population growth, Food production, The sustainable city, Transportation myths and facts, A mini history of environmental architecture, Architects' approach to sustainable design, The failure of western architects; a case study; China, The passive, zeb and plus energy building, Natural ventilation, Sustainable materials, Plastics in building, Nuclear energy, Solar energy, The grid of the future, Indoor climate and health. The sick building syndrome, Radon, Universal design, Paradoxes, Bullying techniques, Trust yourself, Timing, Which gateway will you choose?, On transience. (au)

  9. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I.

    2011-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings of the d......Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings......”). Consequently, there is an urgent need to develop alternative strategies and policy means in order to promote sustainable development. THE FULL TEXT IS IN RUSSIAN IN THE JOURNAL....

  10. Catalytic Science and Technology in Sustainable Energy II

    DEFF Research Database (Denmark)

    Wang, Yuxin; Xiao, Feng-Shou; Seshan, Kulathu K.

    2017-01-01

    as compared with the 29 contributions published twoyears ago in the previous special issue of Catalysis Today under the same title "Catalytic Science and Technology in Sustainable Energy". We gratefully acknowledge all the authors and reviewers of the manuscripts and the editorial team of Elsevier, without......This special issue of Catalysis Today results from four sessions, under the collective theme "Catalysis in Sustainable Energy", of the 2ndInternational Symposium on Catalytic Science and Technology in Sustainable Energy and Environment, held in Tianjin, China during October 12-14, 2016....... This biennial symposium offers an international forum for discussing and sharing the cutting-edge researches and the most recent breakthroughsin energy and environmental technologies based on catalysis principles. Included in this special issue are 36 invited contributions, which is a noticeable expansion...

  11. Is the German energy transition sustainable?

    International Nuclear Information System (INIS)

    Beeker, Etienne; Godot, Clelia

    2012-09-01

    In 2011, Germany began a radical energy policy, or 'Energiewende', with the aim of completely abandoning nuclear power by 2022 and then achieving an 80-95% reduction in the country's greenhouse gas emissions by 2050. By this date, the country will therefore have to be producing its electricity almost completely without the use of gas, oil and coal, having replaced 80% of these sources with renewable energies. Germany is a rich country with one of the most competitive industries in the world. Its environmental commitments have been clearly stated and Energiewende, which is widely discussed throughout the country, has so far seen strong support from the population, despite the expected increases in the price of electricity which, however, is already almost twice as expensive as in France. Germany therefore seems to hold the winning cards required to successfully implement its energy transition. However, many difficulties need to be overcome if this energy policy is to succeed, such as the development of the national power grid, the cost and financing of the necessary investments, improved electricity storage techniques, the acceptability of the planned increases in the price of electricity or the financial difficulties experienced by solar panel manufacturers as a result of the sharp reduction in subsidies and competition from Asia. In addition, recent political dissent within the government regarding the measures implemented to achieve its stated goal has slowed down the federal decision-making process on this matter. Finally, Germany's decision is not without consequences for its European neighbours. It is upsetting and weakening the supply and demand balance of the European energy system and putting some operators in a difficult position. The eyes of all energy world observers are therefore riveted on the changes taking place in Germany, because they will have significant consequences for the entire European Union, and even beyond. Contents: - The ambitious goal

  12. World Sustainable Energy Days Next 2014

    CERN Document Server

    Egger, Christiane

    2015-01-01

    These conference proceedings contain contributions to one of Europe’s largest annual conferences on energy efficiency and renewable energy. From two main fields – biomass and energy efficiency in buildings – contributions offer an insight into the research work and the scientific findings and developments of young researchers from all over the world. The papers were selected by a high-level scientific committee for oral presentation. They also communicate results, trends and opinions that will concern and influence the world’s energy experts and policy makers over the next decades. The conference was held from 26-27 February 2014. The conference The conference is organized by the Energy Agency of Upper Austria (OÖ Energiesparverband) and held in Wels annually in February or March. It attracts more than 700 experts from over 50 countries every year. The Editors Christiane Egger is the deputy managing director of the OÖ Energiesparverband and the Manager of the Ökoenergie-Cluster, a network of 160 co...

  13. Canadian energy supply and demand 1993 - 2010: Technical report

    International Nuclear Information System (INIS)

    1994-12-01

    The National Energy Board has since 1959 prepared and maintained projections of energy supply requirements and has from tine to time published reports on them. The objectives of this report are to provide a comprehensive 'all energy' market analysis and outlook to service as a standard of reference for all parties interested in Canadian energy issues; to provide a framework for public discussion on emerging energy issues of national importance and to monitor the prospects for the supply, demand and price of natural gas in Canada pursuant to the Market-Based Procedure for regulating. The focus of the technical report provides detailed descriptions of the analytical methods used and the quantitative results. The quantitative analysis will be of value to users who wish to develop their own views of prospects or to have a detailed assessment of the impact of alternative assumptions. 106 tabs., 171 figs

  14. Towards sustainable development in Austria. Renewable energy contributions

    International Nuclear Information System (INIS)

    Faninger, G.

    2003-01-01

    Besides energy conservation, the exploration of renewable energy sources, in particular biomass and solar energy, are central aspects of the Austrian energy policy, regarded as an optimal option for achieving CO2-emission reduction objectives. The market penetration of Renewable Energy Technologies in the last twenty years was supported by the Austrian Energy Research Programme. The result of successful developments of biomass heating, solar thermal, solar electrical and wind energy technologies is the key for the market development of these renewable energy technologies. With the market penetration of renewable energy technologies new business areas were established and employment created. Today, some renewable energy technologies in Austria have reached economic competitiveness. Some technologies not reached commercialisation, and need more development to improve efficiency, reliability and cost to become commercial. This would include material and system development, pilot plants or field experiments to clarify technical problems, and demonstration plants to illustrate performance capabilities and to clarify problems for commercialisation

  15. Can Future Energy Needs be Met Sustainably?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    After briefly reviewing trends in energy demand, supply and efficiency, I will focus on the potential and outlook for the major low carbon energy sources - in order of decreasing current importance: bioenergy, hydro, nuclear, wind and solar. Together, they are sufficiently abundant to replace fossil fuels, which would presumably happen if they were economically competitive. I will discuss how close low carbon sources are to being competitive (which in the case of wind and solar depends on the cost of integrating large-scale intermittent supply), and the tech...

  16. Peat - The sustainable energy resource in Finland

    International Nuclear Information System (INIS)

    1994-01-01

    In Finland the level of energy consumption for heating, transportation and industry is higher than in many other European countries. This is due to the northern position of the country and also to the fact that Finland is sparsely inhabited. Peat is one of the Finnish domestic energy resources. This brochure provides a compact package of background information on fuel peat. All the data presented concerning the production and use of peat, employment, investments in the peat industry, emission levels resulting from the production and use of peat, new combustion technologies and peatland resources, have been collected from documents and other sources that are accessible to the general public

  17. Measuring the sustainability of energy systems

    International Nuclear Information System (INIS)

    Kroger, W.

    2001-01-01

    Today's energy policies are characterised by a contradictory position. In theory, there is a clear will to respond to emerging threats, e.g. evidence of man-made climate change, irresponsible use of limited resources, geopolitical discrepancies with unbalanced satisfaction of vital needs. In practice, decision making is dominated by economic competitiveness and maximization of short-term profit. The use of fossil fuels is unbroken and still increasing. A recent Green Paper concluded that the EU countries have to reduce growing structural weaknesses by limiting dependence on fuel imports and to give priority to energy systems that do not emit global warming gases. (authors)

  18. Sustainable energy developments in Europe and North America

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Europe and North America account for 70% of world energy consumption; 61% of which is fossil fuels. Energy trends and patterns in this region, if pursued, would have a large impact on region- and world-wide energy and ecosystems. This report addresses the issues of whether projected trends and supply structures would be 'sustainable' i.e. meet the needs of the present without compromising the ability of future generations to meet their own needs; what adaptations are warranted; and what role could and should be played by regional energy and environmental co-operation: including through the United Nations Economic Commission for Europe. The report is divided into three parts. Part 1 studies the interrelationships between environmental and energy policies in Europe and North America until 2010 and beyond. Part II contains research notes on CO{sub 2} concentration and energy scenarios; investment requirements of the energy supply industries in the ERE region for 1980-2000; energy technologies for the first decades of the 21st century. Scope and conditions for enhancing energy efficiency in the ERE region; CO{sub 2} and climate variation and its impact on energy policy in the USSR and European CMEA countries; the role of new and renewable sources of energy; projected energy developments in the ERE region until 2010, and pollution: synopsis of various international studies on the sustainability of energy developments. Part III describes the energy program of the UN-ECE.

  19. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  20. Photovoltaic energy in Mali. Technical and organisational challenges of solar solutions deployment

    International Nuclear Information System (INIS)

    Lacroix, Olivier; Lesaffre, Dominique

    2011-01-01

    In 2008, electricity access rate in rural Mali was below 11%. In view of the challenges of electrification and development of rural areas in Mali, solar energy is seen as a strategic technology. The SIDI has asked ENEA to work on the technical and organisational terms ensuring sustainable access and spreading of photovoltaic systems in rural Mali. As such, in this report, ENEA improves the knowledge of the sector's private actors, suggests support architectures tackling the problematic, and highlights critical points by market segments

  1. Operationalizing Sustainable Development Suncor Energy Inc: A critical case

    Science.gov (United States)

    Fergus, Andrew

    The concept of Sustainable Development is often understood as a framework within which organizations are able to move forward in a successful and beneficial manner. However, it is also seen as an ambiguous notion with little substance beyond a hopeful dialogue. If we are to base organizational action upon the concepts of Sustainable Development, it is vital that we comprehend the implications of how the concept is understood at a behavioral level. Industry leaders, competitors, shareholders, and stakeholders recognize Suncor Energy Inc as a leading organization within the Oil and Gas energy field. In particular it has a reputation for proactive thinking and action within the areas of environmental and social responsibility. Through attempting to integrate the ideas of Sustainable Development at a foundational level into the strategic plan, the management of Suncor Energy Inc has committed the organization to be a sustainable energy company. To achieve this vision the organization faces the challenge of converting strategic goals into operational behaviors, a process critical for a successful future. This research focuses on understanding the issues found with this conversion process. Through exploring a critical case, this research illuminates the reality of a best-case scenario. The findings thus have implications for both Suncor Energy Inc and more importantly all other organizations attempting to move in a Sustainable Development direction.

  2. Sustainability and Energy Efficiency in the Automotive Sector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

  3. Vision 2050: sustainable energy supply and use in Switzerland; Vision 2050: Nachhaltige Energieversorgung und Energienutzung in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.; Brodmann, U. [Factor Consulting und Management AG, Zuerich (Switzerland); Ott, W. [Econcept AG, Zuerich (Switzerland)

    2003-07-01

    This executive summary for the Swiss Federal Office of Energy SFOE summarises the results of a study carried out on the topic of how long-term strategies for Swiss energy policy. can be developed. A proposed series of studies is examined that is to show how Switzerland can find the way to a sustainable energy supplies and their sustainable use by the year 2050. Research areas are defined, particularly in the technical, behavioural and political sectors. Technical potentials in several areas, strategies and instruments are looked at, as is the social acceptance of proposed measures. Also, models for the analysis of economic effects are examined. Sustainability indicators and targets are reviewed, as are the benefits of developing strategies as early as possible. The report is completed with recommendations for further action.

  4. Renewable energies and the challenge for a sustainable development

    International Nuclear Information System (INIS)

    2002-01-01

    After a presentation of some basic definitions and data (locations, assessment, utilisation), this collective report proposes a first set of contributions about perspectives for renewable energies: their role in middle- and long-term world scenarios, their relationship with greenhouse effect, the relentless technological pursuit through the example of hydrogen. A second set of contributions deals with the relationship between renewable energies and sustainable development: in northern countries (an environmental responsibility and a society issue), in southern countries (the challenge of access to energy), the promotion of renewable energies in the North-South cooperation, the chaotic decentralized electrification program in South Africa, the relationship between energy and struggle against poverty, the search for instruments to stimulate renewable electricity development, the sociological constraints to renewable energy development, the sustainable development at the service of new industries in countries of the North

  5. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  6. Energy sustainability performance of the regional economy

    Directory of Open Access Journals (Sweden)

    N. I. Danilov

    2005-03-01

    Full Text Available The results of the study of the dynamics of energy intensity of gross regional product of the Sverdlovsk region for the period 1996 - 2003 years. and projections for the period up to 2015. The principal possibility of growth performance of the regional economy, without a significant increase in the consumption of primary fuel.

  7. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  8. Sustainable urban regeneration based on energy balance

    NARCIS (Netherlands)

    Van Timmeren, A.; Zwetsloot, J.; Brezet, H.; Silvester, S.

    2012-01-01

    In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming

  9. Socio-technical strategies and behavior change to increase the adoption and sustainability of wastewater resource recovery systems.

    Science.gov (United States)

    Prouty, Christine; Mohebbi, Shima; Zhang, Qiong

    2018-06-15

    Given the increasing vulnerability of communities to the negative impacts of untreated wastewater, resource recovery (RR) systems provide a paradigm shift away from a traditional approach of waste separation and treatment towards a productive recovery of water, energy and nutrients. The aim of this research is to understand the relationships between factors that influence the adoption and sustainability of wastewater-based RR systems to inform technology implementation strategies. The study presents a theory-informed, community-influenced system dynamics (SD) model to provide decision-makers with an adaptable tool that simulates system-level responses to the strategies that are developed for the coastal town of Placencia, Belize. The modeling framework is informed by literature-based theories such as the theory of diffusion of innovations (TDI) and the theory of planned behavior (TPB). Various methods, including surveys, interviews, participatory observations, and a water constituents mass balance analysis are used to validate relationships and numerically populate the model. The SD model was evaluated with field data and simulated to identify strategies that will improve the adoption and sustainability of RR systems. Site demonstrations (marketing strategy) made a significant impact on the stock of adopted RR systems. The stock of sustained RR systems is driven by the sustainability rate (i.e. economic and environmental viability) which can be improved by more site demonstrations and tank options (technical strategy). These strategies, however, only contributed to incremental improvements in the system's sustainability performance. This study shows that changing community behaviors (i.e. reporting the correct number of users and reclaiming resources), represented by structural change in the SD model, is the more significant way to influence the sustainable management of the community's wastewater resources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    OpenAIRE

    Despoina E. Keramioti; Christos A. Frangopoulos

    2010-01-01

    A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat) of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three syste...

  11. Policy and advice for a sustainable energy future. The Netherlands

    International Nuclear Information System (INIS)

    Van der Werff, T.T.

    2000-01-01

    The VROM Council offered to host a workshop (27-28 October 2000) for a group of European environmental advisory bodies. This meeting is meant as a kick-off for a working group on energy and climate change. The workshop may help to develop standpoints of the advisory bodies on the basis of shared knowledge of problem perceptions and proposed solutions in other EU countries. This may increase the common denominator and thus promote common EU policies. The proposed title for this workshop is: Reconciling a sustainable energy future with the liberalisation and privatisation of the European energy market One of the participating councils from each country is expected to draft a report on the policies directed at a sustainable energy future in their respective countries. These reports should include the following elements of the national policies and relevant proposals of the councils: a brief description of the current energy supply and a lookout on sustainable development in the energy sector; .a description of the liberalisation and privatisation of the energy market, including the institutional reform (government involvement), juridical changes and realisation path and, if applicable, how the share of non fossil energy generation is enlarged; a description of how in the future a sustainable energy supply will be promoted, including (options for) policy strategies, measures and instruments; and a description of the European Union (EU) policy that is conditional for the realisation of these national policies. The VROM Council has asked CE to produce the report for the Netherlands. The report is organised as follows. Chapter 2 gives a brief description of the current Dutch energy and CO2 characteristics. Chapter 3 gives an overview of Dutch energy policy and chapter 4 an overview of Dutch climate policy. The chapters 5-7 give the views of the various councils on energy and climate policy (AER, VROMRaad, and SER). The final chapter, chapter 8, gives some suggestions for

  12. Energy politics: Can we achieve a sustainable energy path?

    International Nuclear Information System (INIS)

    Nicklas, M.

    1993-01-01

    The political pressures affecting global energy choices are numerous, vary by country, and are significantly changing. In evaluating our energy future, one cannot escape recognition of three dominant areas where reality more than politics will dictate needs and directions. Within the next decade the magnitude and importance of population growth, energy resource availability, and the environmental and societal costs of energy will gradually increase and dominate global energy decisionmaking. This paper will discuss these major forces, how they have influenced past actions, and how they will shape our energy future

  13. Policy Means for Sustainable Energy Scenarios

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nørgaard, Jørgen

    2011-01-01

    Consequences of global warming are appearing much faster than assumed just a few years ago and irreversible ”tipping points” are few years ahead (IPCC, 2007; Hansen et al., 2008; Kopp et al., 2009). Despite long and tedious preparations for COP15 in December 2009 the final result (Copenhagen Accord......, 2009) lacked sufficient concrete commitments for reduction of greenhouse gases (GHGs) after 2012 when the Kyoto Protocol expires. Human activities in their present form are strongly dependent on the supply of energy. A dominant part of the global energy supply is based on fossil fuels and a dominant...... part of the climate change is due to emission of CO2 from the use of fossil fuels. For simplicity, this paper focuses on CO2 emission from fossil fuels, but CO2 from deforestation as well as methane (CH4), laughing gas (N2O) and a number of industrial greenhouse gases should be included in a more...

  14. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  15. User innovation in sustainable home energy technologies

    International Nuclear Information System (INIS)

    Hyysalo, Sampsa; Juntunen, Jouni K.; Freeman, Stephanie

    2013-01-01

    The new millennium has marked an increasing interest in citizens as energy end-users. While much hope has been placed on more active energy users, it has remained less clear what citizens can and are willing to do. We charted user inventions in heat pump and wood pellet burning systems in Finland in years 2005–2012. In total we found 192 inventions or modifications that improved either the efficiency, suitability, usability, maintenance or price of the heat pump or pellet systems, as evaluated by domain experts. Our analysis clarifies that users are able to successfully modify, improve and redesign next to all subsystems in these technologies. It appears that supplier models do not cater sufficiently for the variation in users' homes, which leaves unexplored design space for users to focus on. The inventive users can speed up the development and proliferation of distributed renewable energy technologies both through their alternative designs as well as through the advanced peer support they provide in popular user run Internet forums related to the purchase, use and maintenance of these technologies. There are several implications for how such users can be of benefit to energy and climate policy as well as how to support them. - Highlights: ► We clarify how citizen users are able to invent in home heating systems. ► We researched inventions that users did to heat pump and wood pellet burning systems. ► During the years 2005–2012 there were 192 inventions by users in Finland alone. ► Users were able to invent in practically all subsystems of these technologies. ► Users’ ability merits policy attention and can lead to new types of policy action

  16. Energy [R]evolution 2010-a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Pregger, T.; Simon, S.; Naegler, T.; Graus, W.H.J.; Lins, C.

    2011-01-01

    The Energy [R]evolution 2010 scenario is an update of the Energy [R]evolution scenarios published in 2007 and 2008. It takes up recent trends in global energy demand and production and analyses to which extent this affects chances for achieving climate protection targets. The main target is to

  17. Energy [r]evolution - a sustainable world energy outlook

    NARCIS (Netherlands)

    Teske, S.; Muth, J.; Sawyer, S.; Pregger, T.; Simon, S.; Naegler, T.; O'Sullivan, M.; Schmid, S; Pagenkopf, J.; Frieske, B.; Graus, W.H.J.; Kermeli, K.; Zittel, W.; Rutovitz, J.; Harris, S.; Ackermann, T.; Ruwahata, R.; Martense, N.

    2012-01-01

    Energy [R]evolution 2012 provides a consistent fundamental pathway for how to protect our climate: getting the world from where we are now to where we need to be by phasing out fossil fuels and cutting CO2 emissions while ensuring energy security.The Energy [R]evolution Scenario has become a well

  18. Renewable energy resources in Mali : potential and options for a sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Dembele, P. [Mali-Folkecenter, Faladie SEMA, Bamako (Mali)

    2006-07-01

    With a population of approximately 12 million, the per capita energy consumption of Mali is 228 Kilo tons of oil equivalent per inhabitant per year. Household energy consumption accounts for nearly 86 per cent of the total energy consumed with almost 99 per cent coming from wood energy. Energy consumption in the transportation, industrial and agricultural sectors is 10, 3, and 1 per cent respectively. The energy sector in Mali is characterized by the over-exploitation of forestry resources, dependence on imported oil and an under-exploitation of potential renewable energy resources such as solar, wind and biomass. The supply of solar energy is inexhaustible as the country receives almost 12 hours of sunshine with an average daily insolation of 5-7 KWh/m{sup 2}/day. Applications of photovoltaic (PV) technology in Mali concerns the basic needs of the population such as water pumping, lighting, battery charging and refrigeration. In 1994, the Mali government gave preferential fiscal policy on all solar equipment in order to encourage the wide spread use of solar energy, but technical constraints such as low efficiency, appropriate technology transfer methods, and sustainable financing mechanisms remain to be addressed. This paper described several programs that have been initiated to promote the use of renewable energy, protect the fragile environment threatened by the Sahara Desert and to provide access to drinking water. These achievements however, have not yet guaranteed energy sustainability, particularly in rural areas. It was recommended that efforts should be made to strengthen the renewable energy sector, correct inadequacies, introduce a sustainable renewable energy technology transfer process, and consolidate knowledge and experiences to focus on low cost renewable energy technologies. It was suggested that a natural resource map of the country should be made available in order allow for comparative cost and technology sustainability analysis before deciding

  19. Sustainable business models for wind and solar energy in Romania

    Directory of Open Access Journals (Sweden)

    Nichifor Maria Alexandra

    2015-06-01

    Full Text Available Renewable energy has become a crucial element for the business environment as the need for new energy resources and the degree of climate change are increasing. As developed economies strive towards greater progress, sustainable business models are of the essence in order to maintain a balance between the triple bottom line: people, planet and profit. In recent years, European Union countries have installed important capacities of renewable energy, especially wind and solar energy to achieve this purpose. The objective of this article is to make a comparative study between the current sustainable business models implemented in companies that are active in the wind and solar energy sector in Romania. Both sectors underwent tremendous changes in the last two years due to changing support schemes which have had a significant influence on the mechanism of the renewable energy market, as well as on its development. Using the classical Delphi method, based on questionnaires and interviews with experts in the fields of wind and solar energy, this paper offers an overview of the sustainable business models of wind and solar energy companies, both sectors opting for the alternative of selling electricity to trading companies as a main source of revenue until 2013 and as the main future trend until 2020. Furthermore, the participating wind energy companies noted a pessimistic outlook of future investments due to legal instability that made them to reduce their projects in comparison to PV investments, which are expected to continue. The subject of the article is of interest to scientific literature because sustainable business models in wind and photovoltaic energy have been scarcely researched in previous articles and are essential in understanding the activity of the companies in these two fields of renewable energy.

  20. Sustainable energy security for India - challenges and options

    International Nuclear Information System (INIS)

    Kakodkar, Anil

    2012-01-01

    Dr Anil Kakodkar presented a sort of broad philosophical overview of the energy issue, that in the context of what one may call as our sustainable future and not just in the context of the crisis as we see it today. This is because while we see some crisis on energy scene today, if we don't act in a proactive and timely manner, this crisis is likely to get much bigger than the one that we face today. Let us begin with a vision of sustainable India, India where, hopefully, the population will stabilize, an India where there will be no additional energy requirement in per capita terms, and where we can be assured of sustaining such a situation virtually for all time to come

  1. Energy [R]evolution 2008-a sustainable world energy perspective

    International Nuclear Information System (INIS)

    Krewitt, Wolfram; Teske, Sven; Simon, Sonja; Pregger, Thomas; Graus, Wina; Blomen, Eliane; Schmid, Stephan; Schaefer, Oliver

    2009-01-01

    The Energy [R]evolution 2008 scenario is an update of the Energy [R]evolution scenario published in 2007. It takes up recent trends in global socio-economic developments, and analyses to which extent they affect chances for achieving global climate protection targets. The main target is to reduce global CO 2 emissions to 10 Gt per year in 2050, thus limiting global average temperature increase to 2 deg. C and preventing dangerous anthropogenic interference with the climate system. A review of sector and region specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding energy supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The Energy [R]evolution scenario shows that renewable energy can provide more than half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO 2 emissions, whilst at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%.

  2. Nuclear energy: obscure, dangerous and not sustainable

    International Nuclear Information System (INIS)

    Bravo Vila, C.

    2008-01-01

    Nuclear energy has become a true economic, technological, environmental and social failure. It has already caused serious problems to the public health and the environment, such as nuclear accidents, like the catastrophe of Chernobyl, the generation of radioactive wastes with which is not known what to do. The nuclear industry (protected by the regulator body, the Nuclear Safety Council, whose real and effective independence is being pursued by means of legal reforms) takes refuge in the secrecy to try to avoid that citizens could be aware of its safety problems, its negative environmental impact and its unsubstantiality. (Author)

  3. Sustainable Biosolids/Renewable Energy Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Steven D. [City of St. Petersburg, FL (United States); Smith, Arenee Fanchon Teena [City of St. Petersburg, FL (United States)

    2016-09-01

    In keeping with its designation as being Florida’s first “Green City”, the City's primary purpose of this project is to process and dispose of biosolids and yard wastes in a manner that results in the production of thermal, electrical, gas, or some other form of energy. This project was completed in two budget periods. Budget period one of the project consisted of a feasibility evaluation to determine potential applicable technologies, budget period two consisted of project design.

  4. Sustainable Nuclear Energy for the 21st Century

    International Nuclear Information System (INIS)

    2010-09-01

    Concerns over energy resource availability, energy security and climate change suggest an important role for nuclear power in supplying sustainable energy in the 21st century. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000 by a resolution of the IAEA General Conference to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. It is a mechanism for IAEA Member States that have joined the project as INPRO members to collaborate on topics of joint interest. By 2010, INPRO membership had grown to 30 countries and the European Commission. The results of INPRO's activities, however, are made available to all IAEA Member States

  5. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  6. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 24. Energy Efficiency in Central Java

    Energy Technology Data Exchange (ETDEWEB)

    Windarto, Joko; Nugroho, Agung; Hastanto, Ari; Mahartoto, Gigih [Diponegoro University, Semarang (Indonesia)

    2012-01-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Energy has a very important role and has become a basic necessity in national sustainable development. Therefore, energy should be used sparingly and in a rational manner so that present and future energy demand can be met. Given the importance of using energy efficiently Government needs to devise a framework regulating the utilization of energy resources through the efficient application of technology and stimulating energy-saving behaviours. The purpose of this technical working group in CASINDO project is to research the steps and policy measures needed to improve the efficiency of electrical energy consumption in the household, industrial, and commercial buildings sector for Central Java. The government's efforts in promoting energy efficiency in Indonesia are still hampered by public awareness factor. This study exists to promote public awareness of energy efficiency by describing the financial benefits and possibilities of savings energies in order to support the government's energy saving program, replacement of old equipment that uses high power consumption with a new low-power one, reduction of unnecessary lighting, appreciation to the people who find and develop energy-efficient power utilization, persuade industries to uses the speed controller driver for production and fan motor to streamline the electrical energy usage.

  7. Cuba: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    2008-08-01

    This publication is the product of an international project led by the IAEA to develop and test a suitable approach for the comprehensive assessment of national energy systems within a sustainable development context. This country profile on Cuba is the result of an intensive effort conducted by Cuban experts, primarily from the Centro de Gestion de la Informacion y Desarrollo de la Energia (CUBAENERGIA) with the collaboration of experts from energy related institutions in the country, jointly with the IAEA and the United Nations Department of Economic and Social Affairs (UNDESA). The framework, approach and guidelines set forth in this study comprise one set of effective mechanisms for incorporating the concepts of sustainable development into practical implementation strategies. The assessment is specifically directed at one of the most important sectors affecting economic and social development - energy. It is part of an initiative, officially registered as a Partnership with the United Nations Commission on Sustainable Development, that contributes to Agenda 21, the Johannesburg Plan of Implementation and the goals and objectives of the United Nations Millennium Declaration. The study is, to a certain extent, a continuation and implementation at the national level of two worldwide studies exploring the ties between energy and sustainable development: the World Energy Assessment undertaken by the United Nations Development Programme (UNDP), UNDESA and the World Energy Council; and the Energy Indicators for Sustainable Development undertaken by the IAEA, the International Energy Agency, UNDESA, Eurostat and the European Environment Agency. No study of a national energy system within the context of sustainable development can be final and definitive. To be useful, the assessment process must be adaptable over time to fit ever-changing conditions, priorities and national sustainable energy development criteria. This publication proposes one such approach for

  8. Data-driven planning of distributed energy resources amidst socio-technical complexities

    Science.gov (United States)

    Jain, Rishee K.; Qin, Junjie; Rajagopal, Ram

    2017-08-01

    New distributed energy resources (DER) are rapidly replacing centralized power generation due to their environmental, economic and resiliency benefits. Previous analyses of DER systems have been limited in their ability to account for socio-technical complexities, such as intermittent supply, heterogeneous demand and balance-of-system cost dynamics. Here we develop ReMatch, an interdisciplinary modelling framework, spanning engineering, consumer behaviour and data science, and apply it to 10,000 consumers in California, USA. Our results show that deploying DER would yield nearly a 50% reduction in the levelized cost of electricity (LCOE) over the status quo even after accounting for socio-technical complexities. We abstract a detailed matching of consumers to DER infrastructure from our results and discuss how this matching can facilitate the development of smart and targeted renewable energy policies, programmes and incentives. Our findings point to the large-scale economic and technical feasibility of DER and underscore the pertinent role DER can play in achieving sustainable energy goals.

  9. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  10. Energy indicators for sustainable development: Guidelines and methodologies

    International Nuclear Information System (INIS)

    2008-01-01

    This publication is the product of an international initiative to define a set of Energy Indicators for Sustainable Development (EISD) and corresponding methodologies and guidelines. The successful completion of this work is the result of an intensive effort led by the International Atomic Energy Agency (IAEA) in cooperation with the United Nations Department of Economic and Social Affairs (UNDESA), the International Energy Agency (IEA), Eurostat and the European Environment Agency (EEA). The thematic framework, guidelines, methodology sheets and energy indicators set out in this publication reflect the expertise of these various agencies, recognized worldwide as leaders in energy and environmental statistics and analysis. While each agency has an active indicator programme, one goal of this joint endeavour has been to provide users with a consensus by leading experts on definitions, guidelines and methodologies for the development and worldwide use of a single set of energy indicators. No set of energy indicators can be final and definitive. To be useful, indicators must evolve over time to fit country-specific conditions, priorities and capabilities. The purpose of this publication is to present one set of EISD for consideration and use, particularly at the national level, and to serve as a starting point in the development of a more comprehensive and universally accepted set of energy indicators relevant to sustainable development. It is hoped that countries will use the EISD to assess their energy systems and to track their progress towards nationally defined sustainable development goals and objectives. It is also hoped that users of the information presented in this publication will contribute to refinements of energy indicators for sustainable development by adding their own unique perspectives to what is presented herein

  11. Energy indicators for sustainable development: Guidelines and methodologies

    International Nuclear Information System (INIS)

    2005-04-01

    This publication is the product of an international initiative to define a set of Energy Indicators for Sustainable Development (EISD) and corresponding methodologies and guidelines. The successful completion of this work is the result of an intensive effort led by the International Atomic Energy Agency (IAEA) in cooperation with the United Nations Department of Economic and Social Affairs (UNDESA), the International Energy Agency (IEA), Eurostat and the European Environment Agency (EEA). The thematic framework, guidelines, methodology sheets and energy indicators set out in this publication reflect the expertise of these various agencies, recognized worldwide as leaders in energy and environmental statistics and analysis. While each agency has an active indicator programme, one goal of this joint endeavour has been to provide users with a consensus by leading experts on definitions, guidelines and methodologies for the development and worldwide use of a single set of energy indicators. No set of energy indicators can be final and definitive. To be useful, indicators must evolve over time to fit country-specific conditions, priorities and capabilities. The purpose of this publication is to present one set of EISD for consideration and use, particularly at the national level, and to serve as a starting point in the development of a more comprehensive and universally accepted set of energy indicators relevant to sustainable development. It is hoped that countries will use the EISD to assess their energy systems and to track their progress towards nationally defined sustainable development goals and objectives. It is also hoped that users of the information presented in this publication will contribute to refinements of energy indicators for sustainable development by adding their own unique perspectives to what is presented herein

  12. Technical Support Document: 50% Energy Savings for Small Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  13. Affordability for sustainable energy development products

    International Nuclear Information System (INIS)

    Riley, Paul H.

    2014-01-01

    Highlights: • Clean cookstoves that also generate electricity improve affordability. • Excel spreadsheet model to assist stakeholders to choose optimum technology. • Presents views for each stakeholder villager, village and country. • By adding certain capital costs, affordability and sustainability are improved. • Affordability is highly dependent on carbon credits and social understandings. - Abstract: Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions. Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target. Thermo-electric is currently the only

  14. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    in Denmark; conversion of pulverised fuel plants from coal to wood pellets and a circulating fluidised bed (CFB) plant for wood chips. From scientific research projects another solution is suggested as the most feasible; the combined cycle gas turbine (CCGT) plant. In this study a four scenarios...... are constructed to analyse how the different alternatives influences the energy system. The scenarios are analysed in the energy systems modelling tool EnergyPLAN both from a technical energy systems perspective and from a market economic analysis with focus on the electricity exchange potential of the scenarios....... The scenarios are assessed on their total socioeconomic costs and the biomass consumption. The CCGT CHP plant is concluded to be the most feasible of the assessed types considering both a technical analysis and a market economic analysis with electricity exchange. It is also concluded that the current economic...

  15. Energy in Sweden. Leading the way to a sustainable future?

    International Nuclear Information System (INIS)

    Dalenback, J.-O.

    2002-01-01

    This article traces the history of Sweden's energy policy from its reliance on fossil fuel imports in 1970 to the shift towards sustainable energy systems. The levying of a general energy tax and carbon dioxide taxation, and Sweden's large reduction in emissions are reported. Energy conservation, energy efficiency standards, the revision of building codes for energy efficiency, and innovative energy efficiency programmes are discussed. Renewable energy technologies are examined covering hydropower and wind power plants in Sweden, the use of biofuels, the development of new heat pumps, and solar heaters. The suggested long-term goal of 50% reduction in carbon dioxide emissions from 1990 to 2050 is considered. Swedish taxes on fuel for heat generation (1999) are listed

  16. Technical Training: ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    CERN Technical Training 2005: Learning for the LHC! ELEC-2005: Electronics in High Energy Physics - Spring Term ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms: the Winter Term, Introduction to electronics in HEP, already took place; the next three Terms will run throughout the year: Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) - now open for registration Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Ele...

  17. Sustainability: criteria and indicators for the energy area

    International Nuclear Information System (INIS)

    Walter, F.; Gubler, F.; Brodmann, U.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the concept of sustainability with reference to the energy area. The importance of energy topics in the fundamental ideas behind sustainability - ecological compatibility, economic efficiency and social fairness - is discussed. The methods used to define the criteria and indicators for sustainability are discussed on the basis of existing systems. >From these, criteria and indicators are proposed for the energy area, including indicators for the influence of energy on the environment, economy and society, activity-indicators and indicators for energy efficiency and politics. The system boundaries for the indicators are discussed, as are grey energy and other 'grey' effects in the environmental, economic and social areas. The various criteria, indicators and the effort needed to collect data on them are presented in table form. The report is completed with a discussion of recommendations on what is still to be done in the area, how the results of the study can be used and what actions are still to be taken

  18. Modelling transport energy demand: A socio-technical approach

    International Nuclear Information System (INIS)

    Anable, Jillian; Brand, Christian; Tran, Martino; Eyre, Nick

    2012-01-01

    Despite an emerging consensus that societal energy consumption and related emissions are not only influenced by technical efficiency but also by lifestyles and socio-cultural factors, few attempts have been made to operationalise these insights in models of energy demand. This paper addresses that gap by presenting a scenario exercise using an integrated suite of sectoral and whole systems models to explore potential energy pathways in the UK transport sector. Techno-economic driven scenarios are contrasted with one in which social change is strongly influenced by concerns about energy use, the environment and well-being. The ‘what if’ Lifestyle scenario reveals a future in which distance travelled by car is reduced by 74% by 2050 and final energy demand from transport is halved compared to the reference case. Despite the more rapid uptake of electric vehicles and the larger share of electricity in final energy demand, it shows a future where electricity decarbonisation could be delayed. The paper illustrates the key trade-off between the more aggressive pursuit of purely technological fixes and demand reduction in the transport sector and concludes there are strong arguments for pursuing both demand and supply side solutions in the pursuit of emissions reduction and energy security.

  19. The tax credit devoted to the sustainable development (energy conservation, renewable energies). DGEMP-DIDEME

    International Nuclear Information System (INIS)

    2006-01-01

    The finances law of 2005 created a tax credit devoted to the sustainable development and the energy conservation. This tax credit aims to favor the diffusion of the sustainable energy equipments to reach the french objectives of energy conservation and renewable energies. All the concerned equipment for the individual house are detailed: heating systems, insulating materials, heating control appliances, appliances using the renewable energies, the heat pumps, equipment for the connection to heat networks, supplying by renewable energies or cogeneration. (A.L.B.)

  20. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  1. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    introduction of climate change prevention measures. However, the general public and particularly politicians of many countries are set against nuclear power (both the existing and new reactors), and some even use law mechanisms to ban any activity in that respect. Since nuclear power has thus been a political issue for too long, now a mature and a more realistic approach is needed to the nuclear energy in terms of security of supply, as well as of the market competitiveness and sustainable development. A very important contribution is made by nuclear in terms of the avoidance of greenhouse gas emissions. If the existing nuclear plants were phased out and replaced with other conventional generating plant, it would be impossible to achieve the Kyoto objectives. Although the use of nuclear power instead of burning fossil fuels to generate electricity makes a significant contribution to reducing electricity-related CO 2 emissions, it is nevertheless often criticized on the grounds of the radioactive waste it produces. Radioactive waste is an issue where the technical solutions most definitely exist and further research is also being continued on the development of possible alternative solutions, but for the implementation of these solutions, a more and better communication is necessary to obtain consensus and political acceptance. Existing nuclear power stations are very cheap to run. Once the capital costs have been incurred, there are therefore huge economic advantages in keeping them going for their full lifespan. The existing reactor units in Europe produce electricity at a cost of between 1.6 and 1.9 cents per kWh, compared with 2.5-2.7 cents per kWh for plants that burn natural gas. The decision for a premature closure of the existing stations faced in Sweden and in Germany, is not only a waste of an important capital resource, but it requires a switch to alternative generation that may produce power at much higher costs, and in the same time is likely to have a worse

  2. Choices for sustainability. Energy on the threshold of transition

    International Nuclear Information System (INIS)

    2005-06-01

    An overview is given of changes in the energy supply in the Netherlands up to 2050 and how the Dutch government can contribute to a cleaner environment and security of supply. Attention is paid to climatic change, the availability of fossil fuels, constraints to the use of renewable energy and the role of climate-neutral energy sources in the transition process. Finally, the chances for the Dutch economy in the transition towards a sustainable energy economy are discussed. The study is drafted by the political party CDA (christian-democratic party) [nl

  3. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  4. Energy, sustainability and the environment technology, incentives, behavior

    CERN Document Server

    2011-01-01

    The complexity of carbon reduction and economic sustainability is significantly complicated by competing aspects of socioeconomic practices as well as legislative, regulatory, and scientific requirements and protocols. An easy to read and understand guide, Sioshansi, along with an international group of contributors, moves through the maze of carbon reduction methods and technologies, providing steps and insights to meet carbon reduction requirements and maintaining the health and welfare of the firm. The book's three part treatment is based on a clear and rigorous exposition of a wide range of options to reduce the carbon footprint Part 1 of the book, Challenge of Sustainability, examines the fundamental drivers of energy demand - economic growth, the need for basic energy services, and the interdependence of economic, political, environmental, social, equity, legacy and policy issues. Part 2 of the book, Technological Solutions, examines how energy can be used to support basic energy service needs of homes...

  5. Low Energy Flow - The Path Towards Sustainable Development

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1996-01-01

    The global economy will in the near future have to adapt to its dependence on the limited ecological system. Only renewable energy sources can provide a truly sustainable supply of energy. In an environmental ranking of the various energy options, it is pointed out, however, that also the use...... prevailing economic growth practice. We have to face this challenge, if we want to secure a decent material well-being for all people on earth, also the generations to come. Countries with econmies in a transition do in fact have some advantages, if aiming directly at a sustainable economy....... energy consumption by a factor three to five. But it is stressed, that these efficiency gains can easily be eaten up by decline in efficiencies in the ways we conduct our lifestyles and run our economies. To apply such an overall effciency view, however, turns out to pose a threat to the presently...

  6. Energy Scenarios For A Sustainable Future

    Directory of Open Access Journals (Sweden)

    Ion Chiuta

    2008-05-01

    Full Text Available It is clear that the future is not simplysomething already predetermined that we must acceptblindly: rather, it is open and to a large extent determinedby the course of actions we decide to take. For thisreason, we need to look at the future and its uncertaintiesin an articulated fashion, developing specific tools toconsider both how the future might unfold if we do notact and how we might like the future to unfold if actionwere to be taken.As demonstrated on valuable intellectual exercise forlooking into an uncertain future involves the developmentof “scenarios” intended as logical and plausibleconjectures about how fundamental drivers will affectglobal societies, economics, resource use and theenvironment. The literature review shows a multiplicity ofscenarios, conducted as different scales ranging from thenational to the global scale, with different time horizonsand with a focus on different strategic issues.Exploratory scenarios help prepare for events that,without representing a straight-line continuation of pasttrends, are plausible and entirely possible. Exploratoryscenarios can help a lot to accelerate and calibrate theresponse to new developments, as well as providing astrategic framework technology development policy.Normative scenario has, as its goal, the evolution of adesirable future rather than a future inexorably imposedupon us by the inertia of system. Building a normativescenario requires the creators to clearly define thedesirable characteristics of their future, and to expressthis future in terms of measurable targets.The use of such a scenario process lies as much in theissues it requires us to comfort as the precise details isgenerates. The future will not look exactly like the oneenvisioned: other priorities will intercede and nationalconditions and circumstances will dictate the specifics ofthe energy policies that may be adopted. But such aprocess of interacting around scenarios can providevaluable guidance as to

  7. Ecological economics, energy, and sustainable development

    International Nuclear Information System (INIS)

    Peet, J.

    1991-01-01

    Conventional techniques of economics, in different countries, do not normally take proper account of increases in the cost of energy (especially oil) that are expected in the next twenty years, or the rapidly declining ability of the environment to absorb wastes and pollutants, especially those resulting from the use of fossil fuels. Unless these factors are included in political-economic decision-making, and paths for future development adjusted to take account of them, many future development options will be severely damaged. In this paper, it is argued that new decision-making principles are urgently needed, in which societies accept that the physics of the environment are dominant, and the desires of people are subject to physical constraints. When future development options are considered, there is therefore a hierarchy of decision-making. Primary decisions depend upon the physics and ecology of the environment, of development, and of resource utilization. These have to be made before secondary decisions which are mainly ethical, and depend upon social and community values. These are best expressed by people, through adult education and the political process. Only then is it possible to make tertiary decisions, which relate to the allocation of resources. These decisions will depend heavily upon the use of economic tools. Several approaches have been proposed for improving political-economic decision-making. Some concentrate on modifications to markets, so they can incorporate ''externalities''. In other approaches, physical understandings are introduced into policy analyses, in order to indicate the constraints that limit development options. Some important techniques are reviewed, and suggestions are made about better methods of decision-making in the future. (author)

  8. Maximal sustained levels of energy expenditure in humans during exercise.

    Science.gov (United States)

    Cooper, Jamie A; Nguyen, David D; Ruby, Brent C; Schoeller, Dale A

    2011-12-01

    Migrating birds have been able to sustain an energy expenditure (EE) that is five times their basal metabolic rate. Although humans can readily reach these levels, it is not yet clear what levels can be sustained for several days. The study's purposes were 1) to determine the upper limits of human EE and whether or not those levels can be sustained without inducing catabolism of body tissues and 2) to determine whether initial body weight is related to the levels that can be sustained. We compiled data on documented EE as measured by doubly labeled water during high levels of physical activity (minimum of five consecutive days). We calculated the physical activity level (PAL) of each individual studied (PAL = total EE / basal metabolic rate) from the published data. Correlations were run to examine the relationship between initial body weight and body weight lost with both total EE and PAL. The uppermost limit of EE was a peak PAL of 6.94 that was sustained for 10 consecutive days of a 95-d race. Only two studies reported PALs above 5.0; however, significant decreases in body mass were found in each study (0.45-1.39 kg·wk(-1) of weight loss). To test whether initial weight affects the ability to sustain high PALs, we found a significant positive correlation between TEE and initial body weight (r = 0.46, P body weight (r = 0.27, not statistically significant). Some elite humans are able to sustain PALs above 5.0 for a minimum of 10 d. Although significant decreases in body weight occur at this level, catabolism of body tissue may be preventable in situations with proper energy intake. Further, initial body weight does not seem to affect the sustainability of PALs.

  9. Pharmacological preconditioning with diazoxide slows energy metabolism during sustained ischemia

    OpenAIRE

    Schwartz, Lisa M; Reimer, Keith A; Crago, Mark S; Jennings, Robert B

    2007-01-01

    Ischemic preconditioning (PC) is associated with slower destruction of the adenine nucleotide pool (∑Ad) and slower rate of anaerobic glycolysis during ischemic stress. These changes are concordant with the preconditioned state, supporting an essential role of lowered energy demand in the cardioprotective mechanism of PC. Although pharmacological PC induced by the activation of mitochondrial KATP channels also limits infarct size, its effect on energy metabolism during sustained ischemia is u...

  10. Integrating ethical and technical considerations in the energy debate

    International Nuclear Information System (INIS)

    Pickering, G.W.

    1980-01-01

    A study being carried out by the author on analyzing and integrating ethical and technical considerations in formulating an energy policy for the United States, with special emphasis on nuclear issues, is reviewed. Beginning with an overview of the historical development of the American nuclear program and the emergence of an organized politcal opposition to that program, seven outstanding issues are identified: institutional adequacy, radiation, reactor safety, waste disposal, economics and reliability, international consequences, and alternative energy sources, and an attempt is made to identify the range of dispute in relation to each. A framework is proposed for analyzing these issues by introducing guidelines for defining a social justice problem. Suggestions are made about how to get morally serious about such issues, and this framework is applied to four issues: radiation, reactor safety, waste disposal, and institutional adequacy. Ultimately it is a political choice whether or not to include nuclear power in a nations's energy policy. It is important, however, that such choices be made using the best technical and ethical assessments of the consequences. (LL)

  11. Potential for sustainable energy with biogas from sewage purification

    International Nuclear Information System (INIS)

    Coenen, J.; Van Gastel, M.; De Jong, K.

    2005-04-01

    Insight is given into the possibility to produce biogas from sewage purification plants in the Netherlands. Attention is paid to the estimated potential of sustainable energy from biogas, the economic effectiveness of several scenarios, the critical success factors and bottlenecks [nl

  12. Local Sustainable Energy Assessment of Uttarakhand and West Bengal

    DEFF Research Database (Denmark)

    Andersen, Jan; Lund, Søren

    The publication reports a sustainable energy assessment at the local project site of the HighARCS project in Nainital, Uttarakhand and Buxa, West Bengal, India. The assessment has been made as a contribution to the elaboration of biodiversity conservation and livelihoods improvement action plans....

  13. Sustainable energy systems : Limitations and challenges based on exergy analysis

    NARCIS (Netherlands)

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This

  14. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...

  15. GEA, 2012 : Global Energy Assessment - Toward a Sustainable Future

    NARCIS (Netherlands)

    Johansson, T.B.; Patwardhan, A.; Nakicenovic, N.; Gomez-Echeverri, L.; Turkenburg, W.C.; Global Energy Assessment (GEA) Council

    2012-01-01

    Energy is central to addressing major challenges of the 21st Century, challenges like climate change, economic and social development, human well-being, sustainable development, and global security. In 2005, Prof. Bert Bolin, the founding Chair of the Intergovernmental Panel on Climate Change

  16. Consumer-oriented Sustainable Energy Concepts; Consumentgerichte Duurzame Energieconcepten

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, H.J. [Universiteit Twente UT, Enschede (Netherlands)

    2009-10-15

    A study on the willingness of potential buyers of newly built houses to invest in energy efficient systems in order to realize a sustainable dwelling [Dutch] Een onder zoek naar de bereidheid van potentiele kopers van nieuwbouw woningen tot het investeren in energetische systemen om te komen tot een duurzame woning.

  17. Business Case: Sustainable Energy for De-mining Operations

    DEFF Research Database (Denmark)

    Buur, Jacob; Finnemann, Winie

    2011-01-01

    small, Danish companies work with an NGO and two university partners to develop a sustainable energy solution for humanitarian landmine removal in Angola as an alternative to the presently used diesel generators. I will discuss the challenges that face the companies, if they are to bring the project...

  18. Local Sustainable Energy Assessment Report of Quang Tri in Vietnam

    DEFF Research Database (Denmark)

    Andersen, Jan; Lund, Søren

    The publication reports a sustainable energy assessment at the local project site of the HighARCS project in Nainital, Uttarakhand and Buxa, West Bengal, India. The assessment has been made as a contribution to the elaboration of biodiversity conservation and livelihoods improvement action plans....

  19. On the Sustainability and Progress of Energy Neutral Mineral Processing

    Directory of Open Access Journals (Sweden)

    Frederik Reitsma

    2018-01-01

    Full Text Available A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.

  20. Sustainable energy, environmental and agricultural policies in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Turkey's demand for energy and electricity is increasing rapidly and heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO 2 ) emissions have grown along with its energy-consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases (GHGs). In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources.

  1. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  2. Sustainable Energy Development: The Key to a Stable Nigeria

    Directory of Open Access Journals (Sweden)

    Kalu Uduma

    2010-06-01

    Full Text Available This paper proposes the use of sustainable energy systems based on solar and biomass technologies to provide solutions to utility challenges in Nigeria and acute water shortage both in rural and urban areas of that country. The paper highlights the paradoxes of oil-rich Nigeria and the stark reality of social infrastructure deprivations in that country. Perennial power outages over many years have translated to the absence of or poorly-developed basic social infrastructures in Nigeria. The consequences of this lack have been an increase in abject poverty in rural and urban communities as well as the erosion of social order and threats to citizen and their property. This paper proposes the adaptation of two emerging technologies for building sustainable energy systems and the development of decentralized and sustainable energy sources as catalyst for much-needed social infrastructure development through the creation of Renewable Energy Business Incubators, creative lending strategies, NGO partnerships and shifting energy-distribution responsibilities. These changes will stimulate grassroots economies in the country, develop large quantities of much needed clean water, maintain acceptable standards of sanitation and improve the health and wellbeing of Nigerian communities. The proposed strategies are specific to the Nigerian context; however, the authors suggest that the same or similar strategies may provide energy and social infrastructure development solutions to other developing countries as well.

  3. Renewable energy in Iran: Challenges and opportunities for sustainable development

    International Nuclear Information System (INIS)

    Atabi, F.

    2004-01-01

    Around the globe, developing countries have reported different cases of successfully implemented renewable energy program supported by bilateral or multilateral funding. In developing countries subsidy has played a big role in renewable energy program marketing and whether this will lead to sustainable development is yet to be determined. The adoption of implementation strategies that will support sustainable development and overcoming barriers that hinder expansion of renewable energy technologies still remains as a big challenge to stake holders involved in promotion of renewable energy resources in developing countries. In this respect, developing countries need to re-examine their environmental policy for promotion of renewable energy technologies in order to define its role in revitalization of their economics. This paper reviews by policy incentives for promotion of renewable energy technologies in the Islamic Republic of Iran. Setting-up international collaborative business ventures between local industry in Iran and companies in developed countries is proposed as an implementation strategy that will appropriate diffusion of renewable energy technologies in the country. An organizational framework that may help to attain this objective is discussed and a structural model for renewable energy business partnership is presented. It is concluded that with appropriate policy formulations and strategies, renewable energy technologies can bring about the required socio-economic development in Iran

  4. Canada's energy perspectives and policies for sustainable development

    International Nuclear Information System (INIS)

    Hofman, Karen; Li, Xianguo

    2009-01-01

    A regression analysis is performed to make projections for the Canadian energy production and consumption. These have been increasing and are projected to increase even further in the near future. The primary energy production and consumption are projected to increase by 52% and 34%, respectively, by 2025 over 2004 if business as usual. The amount of fossil energy resources is finite and the extraction, transportation and combustion of fossil fuels cause environmental pollution and climate change. On the other hand, energy plays an important role in the economic and social development of Canada. Canada can develop further from an energy balance point of view, but this alone cannot be sustainable, because of the negative consequences of the major energy use on the environment. Application of energy localization and diversification is a promising solution, but in order to reach that, better energy efficiency and more use of renewable energy are necessary. Instead of non-compulsory policies Canada's policy approach should have more compulsory policies. Only then Canada can be made to develop further in a sustainable manner. (author)

  5. Energy Materials Coordinating Committee, fiscal year 1997. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1997 and describes the materials research programs of various offices and divisions within the Department.

  6. Assessing the ecological and economic sustainability of energy crops

    International Nuclear Information System (INIS)

    Hanegraaf, M.C.; Biewinga, E.E.; Bijl, G. van der

    1998-01-01

    The production and use of biomass for energy has both positive and negative impacts on the environment. The environmental impacts of energy crops should be clarified before political choices concerning energy are made. An important aid to policy-making would be a systematic methodology to assess the environmental sustainability of energy crops. So far, most studies on the environmental aspects of energy crops deal mainly with the energy production of the crops and the possible consequences for CO 2 mitigation. The Dutch Centre for Agriculture and Environment (CLM) has developed a systematic methodology to assess the ecological and socio-economic sustainability of biomass crops. The method is best described as a multicriteria analysis of process chains and is very much related to Life Cycle Assessment (LCA). Characteristics of our methodology are the use of: definition of functional units; analysis of the entire lifecycle; definition of yield levels and corresponding agricultural practices; analysis of both ecological and economic criteria; definition of reference systems; definition of procedures for normalisation and weighting. CLM has applied the method to assess the sustainability of ten potentially interesting energy crops in four European regions. The results are used to outline the perspectives for large scale production of biomass crops with regard to the medium and long term land availability in Europe. For the crops considered, net energy budget ranges from 85 GJ net avoided energy per ha for rape seed for fuel to 248 GJ net avoided fossil energy per ha for silage maize for electricity from gasification. The methodology of the tool and its results were discussed at the concerted action ''Environmental aspects of biomass production and routes for European energy supply'' (AIR3-94-2455), organised by CLM in 1996. Major conclusions of the research: multicriteria analyhsis of process lifecycles is at present the best available option to assess the ecological

  7. Technical and Non-Technical Issues towards the Commercialisation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    The thesis elaborates on the necessary steps and on the different difficulties that appear during the development of a wave energy converter (WEC). It focuses on seven key areas which appear when a WEC is going through the initial sea trials. As examined throughout the thesis, all these subjects...... are of relevance to successfully reach the commercialisation of WECs and need attention from the sector as such, not least from device developers. The thesis is presented in two parts: a main introduction and a collection of papers. The first part provides a brief history of wave energy, introduces the research....... Experience has emphasised the importance in structuring the various development stages, due to the fact that step-by-step advancements help to mitigate financial and technical risks throughout the development. As a result, the thesis first identifies the phases that generally appear within WEC developments...

  8. Considerations in promoting markets for sustainable energy technologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Mark [United Nations Environment Programme, Div. of Technology, Industry and Economics (France); Kamel, Sami [Risoe National Lab., UNEP Risoe Centre for Energy, Climate Change and Sustainable Development, Roskilde (Denmark)

    2003-09-01

    The growth in demand for energy in both developed and developing countries is expected to continue an upward trend for many years, with a large portion of the increase projected to occur in developing countries. As these countries undertake various economic development initiatives and programmes it is important from a global environmental perspective that they increase the proportion of efficient, low carbon emitting energy in the energy mix. This paper identifies a number of ways of improving markets that foster increased adoption of clean energy technologies in developing countries. The paper concludes that a holistic approach is needed if new technology promotion efforts are to succeed. Ensuring the appropriateness of the technology, and hence its sustainability, requires proper attention to social, economic and political criteria as well as the fundamental technical characteristics. (au)

  9. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    Science.gov (United States)

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C

    2014-07-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all

  10. Measures for sustainable energy in the livestock farming industry; Maatregelen duurzame energie veehouderijsector

    Energy Technology Data Exchange (ETDEWEB)

    Schellekens, J. [DLV Bouw Milieu en Techniek, Uden (Netherlands)

    2010-07-15

    The sectors of pig farming, poultry farming and veal farming have been examined for sustainable energy deployment options in agricultural businesses. These are systems are ready for practice and to be used by individual businesses. Background information is provided on energy saving, deployment of photovoltaic energy, solar collectors, biomass incineration, heat pumps, air conditioning with ground water, and practical experiences in the deployment of sustainable energy systems. Moreover, an overview is given of subsidies and fiscal opportunities for sustainable energy deployment by agricultural businesses [Dutch] Voor de sectoren varkenshouderij, pluimveehouderij en vleeskalverhouderij is onderzocht wat de toepassingsmogelijkheden zijn van duurzame energie (DE) op agrarische bedrijven. Het betreft systemen welke praktijkrijp zijn en te gebruiken op individuele bedrijven. Er wordt achtergrondinformatie gegeven over energiebesparing, toepassen van photovoltaische energie, zonnecollectoren, verbranden van biomassa, warmtepompen, luchtconditionering met grondwater, praktijkervaringen in de toepassing van duurzame energiesystemen. Ook wordt een overzicht geven van subsidies en fiscale mogelijkheden voor toepassen van DE-systemen op agrarische bedrijven.

  11. Energy policy for India: towards sustainable energy security in India the twenty first century

    International Nuclear Information System (INIS)

    Chopra, S.K.

    2004-01-01

    In this book the background, justification and design for an Integrated Sustainable Energy Policy for the country for the next two decades. Detailed discussion of different energy sub-sectors is given. A separate section in the book focuses on Rural Energy in all its forms and uses. Rural energy is especially important for India and other developing countries because it affects the lives of over seventy percent of the country's population. Environmental concerns in the energy sector have also been discussed in detail in a separate section. These include both local and environmental issues, including India's commitment to various international conventions on environment. The implementation of the Integrated Sustainable Energy Policy is proposed to be done through a National Sustainable Energy Security

  12. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  13. Sustainable design of complex industrial and energy systems under uncertainty

    Science.gov (United States)

    Liu, Zheng

    Depletion of natural resources, environmental pressure, economic globalization, etc., demand seriously industrial organizations to ensure that their manufacturing be sustainable. On the other hand, the efforts of pursing sustainability also give raise to potential opportunities for improvements and collaborations among various types of industries. Owing to inherent complexity and uncertainty, however, sustainability problems of industrial and energy systems are always very difficult to deal with, which has made industrial practice mostly experience based. For existing research efforts on the study of industrial sustainability, although systems approaches have been applied in dealing with the challenge of system complexity, most of them are still lack in the ability of handling inherent uncertainty. To overcome this limit, there is a research need to develop a new generation of systems approaches by integrating techniques and methods for handling various types of uncertainties. To achieve this objective, this research introduced series of holistic methodologies for sustainable design and decision-making of industrial and energy systems. The introduced methodologies are developed in a systems point of view with the functional components involved in, namely, modeling, assessment, analysis, and decision-making. For different methodologies, the interval-parameter-based, fuzzy-logic-based, and Monte Carlo based methods are selected and applied respectively for handling various types of uncertainties involved, and the optimality of solutions is guaranteed by thorough search or system optimization. The proposed methods are generally applicable for any types of industrial systems, and their efficacy had been successfully demonstrated by the given case studies. Beyond that, a computational tool was designed, which provides functions on the industrial sustainability assessment and decision-making through several convenient and interactive steps of computer operation. This

  14. Interlocal collaboration on energy efficiency, sustainability and climate change issues

    Science.gov (United States)

    Chen, Ssu-Hsien

    Interlocal energy collaboration builds upon network structures among local policy actors dealing with energy, climate change and sustainability issues. Collaboration efforts overcome institutional collective action (ICA) dilemmas, and cope with the problems spanning jurisdictional boundaries, externalities, and free-rider problems. Interlocal energy collaboration emerges as the agreements in greenhouse gas (GHG) emission reduction, pollution control, land use, purchasing, retrofits, transportation, and so forth. Cities work collaboratively through contractual mechanisms (i.e. formal/informal agreements) and collective mechanisms (i.e. regional partnerships or membership organizations) on a variety of energy issues. What factors facilitate interlocal energy collaboration? To what extent is collaboration through interlocal contractual mechanisms different from collective mechanisms? This dissertation tries to answer these questions by examining: city goal priority on energy related issues as well as other ICA explanatory factors. Research data are drawn mainly from the 2010 national survey "Implementation of energy efficiency and sustainability program" supported by National Science Foundation and the IBM Endowment for the Business of Government. The research results show that city emphasis on common pool resource, scale economies and externality issues significantly affect individual selection of tools for energy collaboration. When expected transaction costs are extremely high or low, the contractual mechanism of informal agreement is more likely to be selected to preserve most local autonomy and flexibility; otherwise, written and formal tools for collaboration are preferred to impose constraints on individual behavior and reduce the risks of defection.

  15. Functional materials for sustainable energy technologies: four case studies.

    Science.gov (United States)

    Kuznetsov, V L; Edwards, P P

    2010-01-01

    The critical topic of energy and the environment has rarely had such a high profile, nor have the associated materials challenges been more exciting. The subject of functional materials for sustainable energy technologies is demanding and recognized as a top priority in providing many of the key underpinning technological solutions for a sustainable energy future. Energy generation, consumption, storage, and supply security will continue to be major drivers for this subject. There exists, in particular, an urgent need for new functional materials for next-generation energy conversion and storage systems. Many limitations on the performances and costs of these systems are mainly due to the materials' intrinsic performance. We highlight four areas of activity where functional materials are already a significant element of world-wide research efforts. These four areas are transparent conducting oxides, solar energy materials for converting solar radiation into electricity and chemical fuels, materials for thermoelectric energy conversion, and hydrogen storage materials. We outline recent advances in the development of these classes of energy materials, major factors limiting their intrinsic functional performance, and potential ways to overcome these limitations.

  16. The development of Sustainability Graduate Community (SGC) as a learning pathway for sustainability education - a framework for engineering programmes in Malaysia Technical Universities Network (MTUN)

    Science.gov (United States)

    Johan, Kartina; Mohd Turan, Faiz

    2016-11-01

    ‘Environmental and sustainability’ is one of the Program Outcome (PO) designated by the Board of Engineers Malaysia (BEM) as one of the accreditation program requirement. However, to-date the implementation of sustainability elements in engineering programme in the technical universities in Malaysia is within individual faculty's curriculum plan and lack of university-level structured learning pathway, which enable all students to have access to an education in sustainability across all disciplines. Sustainability Graduate Community (SGC) is a framework designed to provide a learning pathway in the curriculum of engineering programs to inculcate sustainability education among engineering graduates. This paper aims to study the required attributes in Sustainability Graduate Community (SGC) framework to produce graduates who are not just engineers but also skilful in sustainability competencies using Global Project Management (GPM) P5 Standard for Sustainability. The development of the conceptual framework is to provide a constructive teaching and learning plan for educators and policy makers to work on together in developing the Sustainability Graduates (SG), the new kind of graduates from Malaysia Technical Universities Network (MTUN) in Malaysia who are literate in sustainability practices. The framework also support the call for developing holistic students based on Malaysian Education Blueprint (Higher Education) and address the gap between the statuses of engineering qualification to the expected competencies from industries in Malaysia in particular by achieving the SG attributes outlined in the framework

  17. Keeping options open. Energy, technology and sustainable development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger; Langlois, Lucille; McDonald, Alan

    2001-01-01

    The Ninth Session of the the Commission for Sustainable Development (CSD-9) in April 2001 provided an excellent opportunity for a full debate on the role of nuclear power in sustainable development, as part of its over-all discussion of energy, transport and the atmospheric change issues. On nuclear power, there were two important conclusions. First, countries agreed to disagree on the role of nuclear power in sustainable development. CSD-9's final text recognizes that some countries view nuclear power as incompatible with sustainable development while others believe it is an important contributor to sustainable development. For each case, the reasoning is presented in the text. The second conclusion, on which there was consensus agreement, is that 'the choice of nuclear energy rests with countries'. The arguments in favor of an important role for nuclear power role in sustainable development are that it broadens the resource base by putting uranium to productive use; it reduces harmful emissions; it expands electricity supplies and it increases the world's stock of technological and human capital. It is ahead of other energy technologies in internalizing all externalities, from safety to waste disposal to decommissioning - the costs of all of these are already included in the price of nuclear electricity in most countries. The complete nuclear power chain, from resource extraction to waste disposal including reactor and facility construction, emits only two to kilowatt-hour -- about the same as wind and solar power and two orders of magnitude below coal, oil, and even natural gas. In addition, nuclear power avoids the emission of many other air pollutants, such as SO 2 , NO x and particulates

  18. Energy policies and politics for sustainable world-system development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    by Euratom (Woodman 2003). A political approach to preconditions for sustainable energy policies is finally developed from (a) Barry Commoner's critique of 1979 of president Carter's energy plan followed by the impasse of the Reagan era with the US government's retreat from federal energy and environmental...... politics, put into perspective by (b) R.C.-Dupont 1993 as the movement of the US in a field of tension between eco- and geopolitics; and (c) a 2006 declaration of ten former environmental ministers to end the nuclear age and to reform the UN mandate of the International Atomic Energy Agency.......  Analytically, (a) Barry Commoner's theses of 1976 on the connections between energy, environmental and economic crises are discussed from thermo-dynamical inefficiencies through sector analyses to barriers of energy reform, actualized by (b) the contribution of Sterling 2002 reminding upon...

  19. Towards a new world: The contributions of nuclear energy to a sustainable future

    International Nuclear Information System (INIS)

    Duffey, R. B.; Miller, A. I.; Fehrenbach, P. J.; Kuran, S.; Tregunno, D.; Suppiah, S.

    2007-01-01

    Over the last few years, the world has seen growing concern about the sustainability of the Planet when supplying increasing energy use. The major issues are: increased energy prices in the world markets; growing energy demand in emerging economies; security and stability of oil and gas supply; potentially adverse climate change due to carbon-based emissions; and the need to deploy economic, sustainable and reliable alternates. Large undefined 'wedges' of alternate energy technologies are needed. In light of these major difficulties, there is renewed interest and need for a greater role for nuclear energy as a safe, sustainable and economic energy contributor. The shift has been, from being viewed by some as politically discounted, to being accepted as absolutely globally essential. We have carefully considered, and systematically, extensively and technically analyzed the contributions that nuclear energy can and should make to a globally sustainable energy future. These include restraining emissions, providing safe and secure power, operating synergistically with other sources, and being both socially and fiscally attractive. Therefore, we quantify in this paper the major contributions: a) The reduction in climate change potential and the global impact of future nuclear energy deployment through emissions reduction, using established analysis tools which varying the plausible future penetration and scale of nuclear energy. b) The minimization of economic costs and the maximization of global benefits, including investment requirements, carbon price implications, competitive market penetration, and effect of variable daily pricing. c) The introduction of fuel switching, including base-load nuclear energy synergistically enabling both hydrogen production and the introduction of significant wind power. d) The management and reduction of waste streams, utilizing intelligent designs and fuel cycles that optimize fuel resource use and minimize emissions, waste disposal

  20. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    Directory of Open Access Journals (Sweden)

    Despoina E. Keramioti

    2010-04-01

    Full Text Available A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three systems are placed in order of preference, which depends on the criteria used. In addition to conclusions reached as a result of the particular case study, recommendations for future work are given.