WorldWideScience

Sample records for sustainable cropping system

  1. Environmental Sustainability of Some Cropping Systems in the ...

    African Journals Online (AJOL)

    One of the greatest challenges facing agriculture in the tropics is the need to develop viable cropping systems for the rained uplands that are capable of ensuring increased and sustained crop production with minimum degradation of the non- renewable soil resource base. Increased population has reduced the ...

  2. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis

    Directory of Open Access Journals (Sweden)

    Tiffany L. Fess

    2018-01-01

    Full Text Available We are at a pivotal time in human history, as the agricultural sector undergoes consolidation coupled with increasing energy costs in the context of declining resource availability. Although organic systems are often thought of as more sustainable than conventional operations, the lack of concise and widely accepted means to measure sustainability makes coming to an agreement on this issue quite challenging. However, an accurate assessment of sustainability can be reached by dissecting the scientific underpinnings of opposing production practices and crop output between cropping systems. The purpose of this review is to provide an in-depth and comprehensive evaluation of modern global production practices and economics of organic cropping systems, as well as assess the sustainability of organic production practices through the clarification of information and analysis of recent research. Additionally, this review addresses areas where improvements can be made to help meet the needs of future organic producers, including organic-focused breeding programs and necessity of coming to a unified global stance on plant breeding technologies. By identifying management strategies that utilize practices with long-term environmental and resource efficiencies, a concerted global effort could guide the adoption of organic agriculture as a sustainable food production system.

  3. Sustainability issues on rice–wheat cropping system

    Directory of Open Access Journals (Sweden)

    Rajan Bhatt

    2016-03-01

    In this review, an attempt was made to highlight different issues resulted from the practise of intensive rice–wheat cropping sequence of the region, which must be considered while framing and implementing any integrated approach/project such as conservation agriculture for improving the productions, profits and sustainability of RWCS in the region.

  4. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...... health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed...

  5. Geospatial technologies for conservation planning: An approach to build more sustainable cropping systems

    Science.gov (United States)

    Current agricultural production systems must adapt to meet increasing demands for more economically and environmentally sustainable cropping systems. The application of precision agricultural technologies and geospatial and environmental modeling for conservation planning can aid in this transition....

  6. Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation

    NARCIS (Netherlands)

    Moeller, C.; Pala, M.; Manschadi, A.M.; Meinke, H.B.; Sauerborn, J.

    2007-01-01

    Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was

  7. Direct and indirect impacts of crop-livestock organization on mixed crop-livestock systems sustainability: a model-based study.

    Science.gov (United States)

    Sneessens, I; Veysset, P; Benoit, M; Lamadon, A; Brunschwig, G

    2016-11-01

    Crop-livestock production is claimed more sustainable than specialized production systems. However, the presence of controversial studies suggests that there must be conditions of mixing crop and livestock productions to allow for higher sustainable performances. Whereas previous studies focused on the impact of crop-livestock interactions on performances, we posit here that crop-livestock organization is a key determinant of farming system sustainability. Crop-livestock organization refers to the percentage of the agricultural area that is dedicated to each production. Our objective is to investigate if crop-livestock organization has both a direct and an indirect impact on mixed crop-livestock (MC-L) sustainability. In that objective, we build a whole-farm model parametrized on representative French sheep and crop farming systems in plain areas (Vienne, France). This model permits simulating contrasted MC-L systems and their subsequent sustainability through the following indicators of performance: farm income, production, N balance, greenhouse gas (GHG) emissions (/kg product) and MJ consumption (/kg product). Two MC-L systems were simulated with contrasted crop-livestock organizations (MC20-L80: 20% of crops; MC80-L20: 80% of crops). A first scenario - constraining no crop-livestock interactions in both MC-L systems - permits highlighting that crop-livestock organization has a significant direct impact on performances that implies trade-offs between objectives of sustainability. Indeed, the MC80-L20 system is showing higher performances for farm income (+44%), livestock production (+18%) and crop GHG emissions (-14%) whereas the MC20-L80 system has a better N balance (-53%) and a lower livestock MJ consumption (-9%). A second scenario - allowing for crop-livestock interactions in both MC20-L80 and MC80-L20 systems - stated that crop-livestock organization has a significant indirect impact on performances. Indeed, even if crop-livestock interactions permit

  8. Environmental Sustainability of Some Cropping Systems in the ...

    African Journals Online (AJOL)

    Nekky Umera

    This development clearly reduces the vegetative carbon sink, as well as resulting in a loss of biodiversity ... on the length of fallow and cropping cycle, organic inputs, and the inherent fertility of the soil. In regions ... and root crops (cassava, yam, sweet potato and cocoyam) in the humid zone, sorghum, maize and cowpea in ...

  9. Toward Cropping Systems That Enhance Productivity and Sustainability

    National Research Council Canada - National Science Library

    R. James Cook

    2006-01-01

    .... The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops...

  10. Improved Crotalaria cover crop fallow system for sustainable maize ...

    African Journals Online (AJOL)

    An on-station trial was carried out at the Research Farm of the Faculty of Agriculture, University for Development Studies, Tamale, in the northern Guinea Savanna agroecological zone of Ghana. The study compared different seeding rates of leguminous cover crops, inorganic fertilization, and a combination of the two in a ...

  11. Feed legumes for truly sustainable crop-animal systems

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2017-06-01

    Full Text Available Legume cultivation has sharply decreased in Italy during the last 50 years. Lucerne remains widely grown (with about 12% of its area devoted to dehydration, whereas soybean is definitely the most-grown grain legume. Poor legume cropping is mainly due to the gap in yielding ability with major cereals, which has widened up in time according to statistical data. Lucerne displays definitely higher crude protein yield and somewhat lower economic gap with benchmark cereals than feed grain legumes. Pea because of high feed energy production per unit area and rate of genetic progress, and white lupin because of high protein yield per unit area, are particularly interesting for Italian rain-fed environments. Greater legume cultivation in Europe is urged by the need for reducing energy and green-house gas emissions and excessive and unbalanced global N flows through greater symbiotic N fixation and more integrated crop-animal production, as well as to cope with ongoing and perspective raising prices of feed proteins and N fertilisers and insecurity of feed protein supplies. The transition towards greater legume cultivation requires focused research effort, comprehensive stakeholder cooperation and fair economic compensation for legume environmental services, with a key role for genetic improvement dragged by public breeding or pre-breeding. New opportunities for yield improvement arise from the ongoing development of cost-efficient genome-enabled selection procedures, enhanced adaptation to specific cropping conditions via ecophysiological and evolutionary-based approaches, and more thorough exploitation of global genetic resources.

  12. Designing a new cropping system for high productivity and sustainable water usage under climate change.

    Science.gov (United States)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-03

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  13. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration

    Science.gov (United States)

    To, Jennifer PC; Zhu, Jinming; Benfey, Philip N

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration. PMID:21173868

  14. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  15. ROLE OF ALLELOPATHY IN THE STIMULATORY AND INHIBITORY EFFECTS OF HAIRY VETCH COVER CROP RESIDUE IN NO-TILLAGE SUSTAINABLE PRODUCTION SYSTEMS

    Science.gov (United States)

    Cover crops can provide multiple benefits to sustainable cropping systems including building soil organic matter, controlling soil and nutrient losses from fields, moderating radiation and moisture exchange, releasing nutrients for subsequent crops, and suppressing weed and pest populations. Many o...

  16. Sustainability assessment of crop protection systems: SustainOS methodology and its application for apple orchards

    NARCIS (Netherlands)

    Mouron, P.; Heijne, B.; Naef, A.; Strassemever, J.; Haver, F.; Avilla, J.

    2012-01-01

    Crop protection in general and apple crop protection in particular often rely on pesticides, although several alternative pest management measures are available. In this context European agricultural policy requires the implementation of Integrated Pest Management (IPM) by 2014. Within IPM, more

  17. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems.

    Science.gov (United States)

    Mattos, Bruno D; Tardy, Blaise L; Magalhães, Washington L E; Rojas, Orlando J

    2017-09-28

    We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sustainability of European winter wheat- and maize-based cropping systems: Economic, environmental and social ex-post assessment of conventional and IPM-based systems

    NARCIS (Netherlands)

    Vasileiadis, V.P.; Dachbrodt-saaydeh, S.; Kudsk, P.; Colnenne-David, C.; Leprince, F.; Holb, I.J.; Kierzek, R.; Furlan, L.; Loddo, D.; Melander, B.; Jørgensen, L.N.; Newton, A.C.; Toque, C.; Dijk, van W.; Lefebvre, M.; Benezit, M.; Sattin, M.

    2017-01-01

    In order to ensure higher sustainability of winter wheat and maize production in Europe, cropping systems featuring different levels of Integrated Pest Management (IPM) need to be tested in the field and validated for their sustainability before being adopted by farmers. However, the sustainability

  19. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    Science.gov (United States)

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  20. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system.

    Science.gov (United States)

    Yao, Zhisheng; Yan, Guangxuan; Zheng, Xunhua; Wang, Rui; Liu, Chunyan; Butterbach-Bahl, Klaus

    2017-12-01

    High nitrogen (N) inputs in Chinese vegetable and cereal productions played key roles in increasing crop yields. However, emissions of the potent greenhouse gas nitrous oxide (N2O) and atmospheric pollutant nitric oxide (NO) increased too. For lowering the environmental costs of crop production, it is essential to optimize N strategies to maintain high crop productivity, while reducing the associated N losses. We performed a 2 year-round field study regarding the effect of different combinations of poultry manure and chemical N fertilizers on crop yields, N use efficiency (NUE) and N2O and NO fluxes from a Welsh onion-winter wheat system in the North China Plain. Annual N2O and NO emissions averaged 1.14-3.82 kg N ha-1 yr-1 (or 5.54-13.06 g N kg-1 N uptake) and 0.57-1.87 kg N ha-1 yr-1 (or 2.78-6.38 g N kg-1 N uptake) over all treatments, respectively. Both N2O and NO emissions increased linearly with increasing total N inputs, and the mean annual direct emission factors (EFd) were 0.39% for N2O and 0.19% for NO. Interestingly, the EFd for chemical N fertilizers (N2O: 0.42-0.48%; NO: 0.07-0.11%) was significantly lower than for manure N (N2O: 1.35%; NO: 0.76%). Besides, a negative power relationship between yield-scaled N2O, NO or N2O + NO emissions and NUE was observed, suggesting that improving NUE in crop production is crucial for increasing crop yields while decreasing nitrogenous gas release. Compared to the current farmers' fertilization rate, alternative practices with reduced chemical N fertilizers increased NUE and decreased annual N2O + NO emissions substantially, while crop yields remained unaffected. As a result, annual yield-scaled N2O + NO emissions were reduced by > 20%. Our study shows that a reduction of current application rates of chemical N fertilizers by 30-50% does not affect crop productivity, while at the same time N2O and NO emissions would be reduced significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sustainable agriculture for a dynamic world: Forage-Crop-Livestock systems research

    Science.gov (United States)

    Research at the USDA-Agricultural Research Service, Grazinglands Research Laboratory is focused on development and delivery of improved technologies, strategies, and planning tools for integrated crop-forage-livestock systems under variable climate, energy, and market conditions. The GRL research p...

  2. Smart investments in sustainable food production: revisiting mixed crop-livestock systems.

    Science.gov (United States)

    Herrero, M; Thornton, P K; Notenbaert, A M; Wood, S; Msangi, S; Freeman, H A; Bossio, D; Dixon, J; Peters, M; van de Steeg, J; Lynam, J; Parthasarathy Rao, P; Macmillan, S; Gerard, B; McDermott, J; Seré, C; Rosegrant, M

    2010-02-12

    Farmers in mixed crop-livestock systems produce about half of the world's food. In small holdings around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize, millet, rice, and sorghum crops and in their turn supply manure and traction for future crops. Animals act as insurance against hard times and supply farmers with a source of regular income from sales of milk, eggs, and other products. Thus, faced with population growth and climate change, small-holder farmers should be the first target for policies to intensify production by carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental impact, supported by improved access to markets, new varieties, and technologies.

  3. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  4. Mixed crop-livestock farming systems: a sustainable way to produce beef? Commercial farms results, questions and perspectives.

    Science.gov (United States)

    Veysset, P; Lherm, M; Bébin, D; Roulenc, M

    2014-08-01

    Mixed crop-livestock (MC-L) farming has gained broad consensus as an economically and environmentally sustainable farming system. Working on a Charolais-area suckler cattle farms network, we subdivided the 66 farms of a constant sample, for 2 years (2010 and 2011), into four groups: (i) 'specialized conventional livestock farms' (100% grassland-based farms (GF), n=7); (ii) 'integrated conventional crop-livestock farms' (specialized farms that only market animal products but that grow cereal crops on-farm for animal feed, n=31); (iii) 'mixed conventional crop-livestock farms' (farms that sell beef and cereal crops to market, n=21); and (iv) organic farms (n=7). We analyse the differences in structure and in drivers of technical, economic and environmental performances. The figures for all the farms over 2 years (2010 and 2011) were pooled into a single sample for each group. The farms that sell crops alongside beef miss out on potential economies of scale. These farms are bigger than specialized beef farms (with or without on-farm feed crops) and all types of farms show comparable economic performances. The big MC-L farms make heavier and consequently less efficient use of inputs. This use of less efficient inputs also weakens their environmental performances. This subpopulation of suckler cattle farms appears unable to translate a MC-L strategy into economies of scope. Organic farms most efficiently exploit the diversity of herd feed resources, thus positioning organic agriculture as a prototype MC-L system meeting the core principles of agroecology.

  5. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    dryland Mediterranean cropping systems, and to discuss and recommend sustainable cropping technologies that could be used at the small-scale farm level. Four crop management practices were evaluated: crop rotations, reduced tillage, use of organic manure, and supplemental and deficit irrigation. Among......In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  6. Agricultural innovations for sustainable crop production intensification

    Directory of Open Access Journals (Sweden)

    Michele Pisante

    2012-10-01

    Full Text Available Sustainable crop production intensification should be the first strategic objective of innovative agronomic research for the next 40 years. A range of options exist (often very location specific for farming practices, approaches and technologies that ensure sustainability, while at the same time improving crop production. The main challenge is to encourage farmers in the use of appropriate technologies,  and  to  ensure  that  knowledge  about  sound  production  practices  is  increasingly accepted and applied by farmers. There is a huge, but underutilized potential to link farmers’ local knowledge with science-based innovations, through favourable institutional arrangements.  The same  holds  for  the  design,  implementation  and  monitoring  of  improved  natural  resource management  that  links  community  initiatives  to  external  expertise.  It is also suggested that a comprehensive effort be undertaken to measure different stages of the innovation system, including technological adoption and diffusion at the farm level, and to investigate the impact of agricultural policies on technological change and technical efficiency. This paper provides a brief review of agronomic management practices that support sustainable crop production system and evidence on developments  in the selection of crops and cultivars; describes farming systems for crop which take a predominantly ecosystem approach; discusses the scientific application of ecosystem principles for the management of pest and weed populations; reviews the  improvements in fertilizer and nutrient management that explain productivity growth; describes the benefits and constraints of irrigation technologies; and suggests a way forward. Seven changes in the context for agricultural development are proposed that heighten the need to examine how innovation occurs in the agricultural sector.

  7. Promoting Cassava as an Industrial Crop in Ghana: Effects on Soil Fertility and Farming System Sustainability

    OpenAIRE

    Adjei-Nsiah, S.; Owuraku Sakyi-Dawson

    2012-01-01

    Cassava is an important starchy staple crop in Ghana with per capita consumption of 152.9 kg/year. Besides being a staple food crop, cassava can be used as raw material for the production of industrial starch and ethanol. The potential of cassava as an industrial commercial crop has not been exploited to a large extent because of perceptions that cassava depletes soils. Recent finding from field studies in the forest/savannah transitional agroecological zone of Ghana indicates that when integ...

  8. Sustainability of maize-based cropping systems in rural areas of ...

    African Journals Online (AJOL)

    The residual soil fertility benefits of the preceding legumes to the following maize crop were demonstrated in the study. Incorporating stover of Bambara nut, cowpea, groundnut dry bean and soyabean gave higher maize yields compared to plots where the stover was removed. Total maize dry matter yield increases of 1.30 ...

  9. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  10. Farming with future: making crop protection sustainable

    NARCIS (Netherlands)

    Wijnands, F.G.

    2011-01-01

    The project Farming with future works with parties with a vested interest to promote sustainable crop protection in practice. Besides developing new knowledge, it spends a good deal of its energy in the embedding of sustainable practices within relevant organisations, businesses and agrarian

  11. On-farm research in Western Siberia: Potential of adapted management practices for sustainable intensification of crop production systems

    Science.gov (United States)

    Kühling, Insa; Trautz, Dieter

    2015-04-01

    Western Siberia is of global significance in terms of agricultural production, carbon sequestration and biodiversity preservation. Abandonment of arable land and changes in the use of permanent grasslands were triggered by the dissolution of the Soviet Union in and the following collapse of the state farm system. The peatlands, forests and steppe soils of Western Siberia are one of the most important carbon sinks worldwide. These carbon stocks are, if deteriorated, an important source of radiative forcing even in comparison to anthropogenic emissions. This situation is aggravated by recent and future developments in agricultural land use in the southern part of Western Siberia, in particular in Tyumen province. The increase of drought risk caused by climate change will led to more challenges in these water-limited agricultural production systems. The German-Russian interdisciplinary research project "SASCHA" aims to provide sustainable land management practices to cope with these far-reaching changes for Tyumen province. In particular, on farm scale agricultural strategies are being developed for increased efficiencies in crop production systems. Therefore a 3-factorial field trial with different tillage and seeding operations was installed with spring wheat on 10 ha under practical conditions in 2013. Within all combinations of tillage (no-till/conventional), seed rate (usual/reduced) and seed depth (usual/shallower) various soil parameters as well as plant development and yield components were intensively monitored during the growing seasons. Results after 2-years show significant impacts of the tillage operation on soil moisture and soil temperature. Also a higher trend in nitrogen mineralization could be observed without tillage. Plant development in terms of phenological growth stages took place simultaneously in all variants. Under no-till regime we measured slightly higher grain yields and significant advantages in protein yields. In conjunction with

  12. Crop farmers use of environmentally sustainable agricultural ...

    African Journals Online (AJOL)

    The study was carried out to assess crop farmers' use of environmentally sustainable agricultural practices in Ogun State. Multi – Stage-sampling and simple random sampling procedure was employed to select two hundred (200) farmers from villages selected from the four agricultural zones of Ogun State Agricultural ...

  13. Pathways for sustainable development of mixed crop livestock systems: Taking a livestock and pro-poor approach

    NARCIS (Netherlands)

    Tarawali, S.A.; Herrero, M.; Descheemaeker, K.K.E.; Grings, E.; Blmmel, M.

    2011-01-01

    Mixed crop livestock systems provide the majority of the cereal and livestock domestic products for households in developing countries. We explore the question of whether such systems can respond to increasing demands for livestock products without compromising future livelihoods of the poor or the

  14. Rice Cultivation Methods and Their Sustainability Aspects: Organic and Conventional Rice Production in Industrialized Tropical Monsoon Asia with a Dual Cropping System

    Directory of Open Access Journals (Sweden)

    Hung-Chun Lin

    2016-06-01

    Full Text Available Options to tackle the sustainability challenges faced in the production of rice, including global and local environmental perspectives, need to be discussed. Here, the global warming potential, water consumption and cumulative energy demand were analyzed using a life-cycle assessment to highlight the sustainability aspects of rice production in Taiwan, where a mixed organic and conventional rice production with a dual cropping system is practiced. The results show that the conventional farming method practiced in Houbi district contributes less to global warming and annual water consumption and consumes less energy than the organic method practiced in Luoshan village on a grain weight basis. It is also more lucrative for farmers because of the higher rice yield. Considering the yield ratio based on the data from two districts, the regional characteristics are more responsible for these differences. Giving up dual cropping to avail water to other sectors by fallowing during the second cropping season is preferable from the GHG emission and productivity perspectives. However, because water shortages usually occur in the first cropping season, it is more realistic to fallow during the first cropping season when domestic and other industrial users have the higher priority. The results presented here can serve as the foundation for exploring the possibilities of options, such as new biorefinery technologies and water allocation policies, in relation to influences on GHG emissions and the national self-sufficiency of rice.

  15. Pathways to sustainable intensification through crop water management

    Science.gov (United States)

    MacDonald, Graham K.; D'Odorico, Paolo; Seekell, David A.

    2016-09-01

    How much could farm water management interventions increase global crop production? This is the central question posed in a global modelling study by Jägermeyr et al (2016 Environ. Res. Lett. 11 025002). They define the biophysical realm of possibility for future gains in crop production related to agricultural water practices—enhancing water availability to crops and expanding irrigation by reducing non-productive water consumption. The findings of Jägermeyr et al offer crucial insight on the potential for crop water management to sustainably intensify agriculture, but they also provide a benchmark to consider the broader role of sustainable intensification targets in the global food system. Here, we reflect on how the global crop water management simulations of Jägermeyr et al could interact with: (1) farm size at more local scales, (2) downstream water users at the river basin scale, as well as (3) food trade and (4) demand-side food system strategies at the global scale. Incorporating such cross-scale linkages in future research could highlight the diverse pathways needed to harness the potential of farm-level crop water management for a more productive and sustainable global food system.

  16. Sustainable commercialization of new crops for the agricultural bioeconomy

    Directory of Open Access Journals (Sweden)

    N.R. Jordan

    2016-01-01

    Full Text Available Abstract Diversification of agroecological systems to enhance agrobiodiversity is likely to be critical to advancing environmental, economic, and social sustainability of agriculture. Temperate-zone agroecological systems that are currently organized for production of summer-annual crops can be diversified by integration of fallow-season and perennial crops. Integration of such crops can improve sustainability of these agroecological systems, with minimal interference with current agricultural production. Importantly, these crops can provide feedstocks for a wide range of new bio-products that are forming a new agricultural bioeconomy, potentially providing greatly increased economic incentives for diversification. However, while there are many fallow-season and perennial crops that might be used in such a “bioeconomic” strategy for diversification, most are not yet well adapted and highly-marketable. Efforts are underway to enhance adaptation and marketability of many such crops. Critically, these efforts require a strategic approach that addresses the inherent complexity of these projects. We outline a suitable approach, which we term “sustainable commercialization”: a coordinated innovation process that integrates a new crop into the agriculture of a region, while intentionally addressing economic, environmental and social sustainability challenges via multi-stakeholder governance. This approach centers on a concerted effort to coordinate and govern innovation in three critical areas: germplasm development, multifunctional agroecosystem design and management, and development of end uses, supply chains, and markets. To exemplify the approach, we describe an ongoing effort to commercialize a new fallow-season crop, field pennycress (Thlaspi arvense L..

  17. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  18. Cisgenics - A Sustainable Approach for Crop Improvement

    Science.gov (United States)

    Telem, R.S.; Wani, Shabir. H.; Singh, N.B.; Nandini, R.; Sadhukhan, R.; Bhattacharya, S.; Mandal, N.

    2013-01-01

    The implication of molecular biology in crop improvement is now more than three decades old. Not surprisingly, technology has moved on, and there are a number of new techniques that may or may not come under the genetically modified (GM) banner and, therefore, GM regulations. In cisgenic technology, cisgenes from crossable plants are used and it is a single procedure of gene introduction whereby the problem of linkage drag of other genes is overcome. The gene used in cisgenic approach is similar compared with classical breeding and cisgenic plant should be treated equally as classically bred plant and differently from transgenic plants. Therefore, it offers a sturdy reference to treat cisgenic plants similarly as classically bred plants, by exemption of cisgenesis from the current GMO legislations. This review covers the implications of cisgenesis towards the sustainable development in the genetic improvement of crops and considers the prospects for the technology. PMID:24396278

  19. Replacing fallow by cover crops: economic sustainability

    Science.gov (United States)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  20. Biofuels, bioenergy, and bioproducts from sustainable agricultural and forest crops: proceedings of the short rotation crops international conference

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Rob Mitchell; Jim, eds. Richardson

    2008-01-01

    The goal of this conference was to initiate and provide opportunities for an international forum on the science and application of producing both agricultural and forest crops for biofuels, bioenergy, and bioproducts. There is a substantial global need for development of such systems and technologies that can economically and sustainably produce short rotation crops...

  1. Sustainability of Marketing Food Crops through the Internet in Lagos ...

    African Journals Online (AJOL)

    abdulaphyz

    and communication technological infrastructure to the sustainability (marketing) of food crops. Given these, government ... i. what are the benefits of marketing and purchasing food crops through the Internet in Lagos State? ..... the conventional market and move from one place to the other to buy different food crops, they can ...

  2. Evaluating a core germplasm collection of the cover crop hairy vetch for use in sustainable farming systems

    Science.gov (United States)

    Understanding linkage between genotype and agronomically important phenotypes (early flowering, hard seed and winter hardiness) will facilitate cultivar selection and inform breeding programs concerned with the cover crop hairy vetch (Vicia villosa). . We used molecular and biochemical techniques to...

  3. Integrated crop-livestock systems and cover crop grazing in the Northern Great Plains

    Science.gov (United States)

    Integrating crops and livestock has been identified as an approach to sustainably intensify agricultural systems, increasing production while reducing the need for external inputs, building soil health, and increasing economic returns. Cover crops and grazing these cover crops are a natural fit with...

  4. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  5. Women's participation in sustainable crop farming activities in Ogun ...

    African Journals Online (AJOL)

    T-test analysis also revealed that, there is no significant difference between the women farmers participation in sustainable crop farming activities in the two different ecological zones of the study area (t = 2.74, P = 0.81). Keywords: crop farming, participation, sustainable, women farmer. Moor Journal of Agricultural Research ...

  6. A NUTRIENT-IN-WATER RESOURCE FOR SUSTAINABLE CROP ...

    African Journals Online (AJOL)

    sys01

    2011-09-03

    Sep 3, 2011 ... SUSTAINABLE CROP PRODUCTION ON 'ACID SANDS' OF SOUTHERN. NIGERIA. Amalu U. C. and Okon P. B. ... sustainable production of arable and vegetable crops. Application of a solution of urea and lime, ... conducted at Teaching and Research Farm,. Faculty of Agriculture, University of Calabar,.

  7. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    Science.gov (United States)

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  8. GM Crops, Organic Agriculture and Breeding for Sustainability

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2014-07-01

    Full Text Available The ongoing debate about the use of genetically-modified (GM crops in agriculture has largely focused on food safety and genetic contamination issues. Given that the majority of GM crops have been produced to respond to the problem of crop yield reductions caused by diseases, insects and weeds, the paper argues that in those cases, the currently used GM crops are an unstable solution to the problem, because they represent such a strong selection pressure, that pests rapidly evolve resistance. Organic agriculture practices provide a more sustainable way of producing healthy food; however, the lower yields often associated with those practices, making the resultant healthy food more expensive, open the criticism that such practices will not be able to feed human populations. Evolutionary plant breeding offers the possibility of using the evolutionary potential of crops to our advantage by producing a continuous flow of varieties better adapted to organic systems, to climate change and to the ever changing spectrum of pests, without depending on chemical control.

  9. Crop Sequence Influences on Sustainable Spring Wheat Production in the Northern Great Plains

    Directory of Open Access Journals (Sweden)

    Joseph M. Krupinsky

    2010-11-01

    Full Text Available Cropping systems in American agriculture are highly successful since World War II, but have become highly specialized, standardized, and simplified to meet the demands of an industrialized food system. Minimal attention has been given to the efficient exploitation of crop diversity and the synergistic and/or antagonistic relationships of crops in crop sequences. Objectives of our research were to determine if previous crop sequences have long-term benefits and/or drawbacks on spring wheat seed yield, seed N concentration, and seed precipitation-use efficiency in the semiarid northern Great Plains, USA. Research was conducted 6 km southwest of Mandan, ND using a 10 × 10 crop matrix technique as a research tool to evaluate multiple crop sequence effects on spring wheat (triticum aestivum L. production in 2004 and 2005. Spring wheat production risks can be mitigated when second year crop residue was dry pea (Pisium sativum L. averaged over all first year crop residues. When compared to spring wheat as second year crop residue in the dry year of 2004, dry pea as the second year residue crop resulted in a 30% spring wheat seed yield increase. Sustainable cropping systems need to use precipitation efficiently for crop production, especially during below average precipitation years like 2004. Precipitation use efficiency average over all treatments, during the below average precipitation year was 23% greater than the above average precipitation year of 2005. Diversifying crops in cropping systems improves production efficiencies and resilience of agricultural systems.

  10. Increase globe artichoke cropping sustainability using sub-surface drip-irrigation systems in a Mediterranean coastal area for reducing groundwater withdrawal

    Science.gov (United States)

    Mantino, Alberto; Marchina, Chiara; Bonari, Enrico; Fabbrizzi, Alessandro; Rossetto, Rudy

    2017-04-01

    During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 - 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the

  11. Winter cover crops decrease weediness in organic cropping systems

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Vyacheslav; Alaru, Maarika; Maeorg, Erkki; Luik, Anne

    2017-01-01

    By inserting cover crops into organic cropping systems, the number and biomass of weeds decreased. Winter cover crops clearly have a suppressive effect on weeds by providing competition for light, water and space.

  12. Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems

    Directory of Open Access Journals (Sweden)

    Trifone D'Addabbo

    2014-11-01

    Full Text Available Synthetic pesticides have played a major role in crop protection related to the intensification of agricultural systems. In the recent years, environmental side effects and health concerns raised by an indiscriminate use have led the EU to the ban of many synthetic pesticides. As a result of this drastic revision, currently there is a strong need for new and alternative pest control methods. An interesting source of biorational pesticides may be represented by the biocidal compounds naturally occurring in plants as products of the secondary metabolism. Groups of plant secondary metabolites most promising for the development of pesticidal formulations are glucosinolates, saponins, and more generally terpenoid phytoconstituents, such as essential oil and their constituents. Glucosinolates are thioglucosidic secondary metabolites occurring mainly in the Brassicaceae and, at a less extent, in Capparidaceae families. The incorporation of glucosinolate- containing plant material into the soil results in degradation products highly toxic to soilborne pest, pathogens and weeds. This practice, known as biofumigation, may be considered as an ecological alternative to soil toxic fumigants. Plant-derived saponins are triterpene glycosides present in top and root tissues of plant species of the families Leguminosae, Alliaceae, Asteraceae, Polygalaceae and Agavaceae. Saponins and saponin-rich plant materials have been also reported for a biocidal activity on phytoparasites and soilborne plant pathogens. Essential oils are volatile, natural, heterogeneous mixtures of single substances, mainly terpenes and phenolics, formed as secondary metabolites by aromatic plants belonging to several botanical families. Among terpenes, limonoid triterpenes have been demonstrated to possess interesting insecticidal, nematicidal and antifungal properties. Occurrence of these compounds is mainly limited to Meliaceae and Rutaceae. Alkaloids, phenolics, cyanogenic glucosides

  13. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    Science.gov (United States)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  14. SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.

    Science.gov (United States)

    De Deyn, G B

    2015-01-01

    Sustainable production of food, feed and fiberwarrants sustainable soil management and crop protection. The tools available to achieve this are both in the realm of the plants and of the soil, with a key role for plant-soil interactions. At the plant level we have vast knowledge of variation within plant species with respect to pests and diseases, based on which we can breed for resistance. However, given that systems evolve this resistance is bound to be temporarily, hence also other strategies are needed. Here I plea for an integrative approach for sustainable production using ecological principles. Ecology, the study of how organisms interact with their environment, teaches us that diversity promotes productivity and yield stability. These effects are thought to be governed through resource use complementarity and reduced build-up of pests and diseases both above- and belowground. In recent years especially the role of soil biotic interactions has revealed new insights in how plant diversity and productivity are related to soil biodiversity and the functions soil biota govern. In our grassland biodiversity studies we found that root feeders can promote plant diversity and succession without reducing plant community productivity, this illustrates the role of diversity to maintain productivity. Also diversity within species offers scope for sustainable production, for example through awareness of differences between plant genotypes in chemical defense compounds that can attract natural enemies of pests aboveground- and belowground thereby providing plant protection. Plant breeding can also benefit from using complementarity between plant species in the selection for new varieties, as our work demonstrated that when growing in species mixtures plant species adapt to each other over time such that their resource acquisition traits become more complementing. Finally, in a recent meta-analysis we show that earthworms can stimulate crop yield with on average 25%, but

  15. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  16. Sustainable crop models for fruit, vegetable and flower quality productions.

    Directory of Open Access Journals (Sweden)

    Inglese Paolo

    2011-02-01

    Full Text Available Sustainable development is a paradigm that has evolved over the time, since the ideas of socially acceptable and compatible development, on which it was originally based, are now supported by the more recent notions of ecological equilibria and production process economy, both of which need to be also preserved. Environmental and health safety, rational use of the natural resources and technological tools, upkeep of high social growth rates and respect of a social equity are the basis of the sustainability for any production process, including the agriculture. The new globalization framework has penalized small farms and, at the same time, has put serious constraints to the development of stronger economic systems (medium/large farms, as well. As consequence, the EU has outlined several strategic programs to support small agricultural systems in marginal areas by: 1 strengthening all the quality- related aspects of agricultural production, including nutritional and cultural traits associated to local, typical and in some cases to neglected crops; 2 improving traditional cultural practices by adapting the cropping cycles and fomenting new partnerships between the different parts of the production chain, as for example; promotion of small horticultural chains. Specific political actions for the horticultural production sector have also been developed. Some of these policies are specifically addressed to preserve the biodiversity and to create quality labels certifying typical and/or organic products. All of these are possible strategies that may counteract and cope with the globalization process and increase the competitiveness of many production systems especially those performed by local and small entrepreneurs. New sustainable development models are required by both the market and the implicit requirements of the production system, inside a context on which Europe must face with new emerging economies with lower production costs, by increasing

  17. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability......, and cannot be applied for intercropping and agroforestry systems. The allocation approaches take into account the cropping system effects by establishing a mathematical relationship between crops present in the cropping systems. The model for integrative life-cycle assessment in agriculture (MiLA) approach...

  18. Cover crops support ecological intensification of arable cropping systems.

    Science.gov (United States)

    Wittwer, Raphaël A; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G A

    2017-02-03

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  19. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  20. Turning the aquatic weed Azolla into a sustainable crop

    NARCIS (Netherlands)

    Brouwer, P.

    2017-01-01

    Growing worldwide demands for food, energy and chemicals threatens natural ecosystems and global climate. Plants are crucial for food production, but may also be used to produce sustainable energy and materials. Hereto novel crops are sought with high productivity per hectare, whilst requiring

  1. Women's participation in sustainable crop farming activities in ...

    African Journals Online (AJOL)

    A multi-stage random sampling method was used in selecting 150 women farmers from two ADP zones. An interview schedule was designed to obtain data on the respondents' eleven identified sustainable crop-farming activities. Results show that most of the respondents have between 3-10 years of farming experience.

  2. Sustainable Biofuel Crops Project, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Juhn, Daniel [Conservation International, Arlington, VA (United States). Moore Center for Science and Oceans. Integrated Assessment and Planning; Grantham, Hedley [Conservation International, Arlington, VA (United States). Moore Center for Science and Oceans. Integrated Assessment and Planning

    2014-05-28

    Over the last six years, the Food and Agriculture Organization of the United Nations (FAO) has developed the Bioenergy and Food Security (BEFS) Approach to help countries design and implement sustainable bioenergy policies and strategies. The BEFS Approach consists of two sets of multidisciplinary and integrated tools and guidance (the BEFS Rapid Appraisal and the BEFS Detailed Analysis) to facilitate better decision on bioenergy development which should foster both food and energy security, and contribute to agricultural and rural development. The development of the BEFS Approach was for the most part funded by the German Federal Ministry of Food and Agriculture. Recognizing the need to provide support to countries that wanted an initial assessment of their sustainable bioenergy potential, and of the associated opportunities, risks and trade offs, FAO began developing the BEFS-RA (Rapid Appraisal). The BEFS RA is a spreadsheet–based assessment and analysis tool designed to outline the country's basic energy, agriculture and food security context, the natural resources potential, the bioenergy end use options, including initial financial and economic implications, and the identification of issues that might require fuller investigation with the BEFS Detailed Analysis.

  3. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  4. GM as a route for delivery of sustainable crop protection.

    Science.gov (United States)

    Bruce, Toby J A

    2012-01-01

    Modern agriculture, with its vast monocultures of lush fertilized crops, provides an ideal environment for adapted pests, weeds, and diseases. This vulnerability has implications for food security: when new pesticide-resistant pest biotypes evolve they can devastate crops. Even with existing crop protection measures, approximately one-third yield losses occur globally. Given the projected increase in demand for food (70% by 2050 according to the UN), sustainable ways of preventing these losses are needed. Development of resistant crop cultivars can make an important contribution. However, traditional crop breeding programmes are limited by the time taken to move resistance traits into elite crop genetic backgrounds and the limited gene pools in which to search for novel resistance. Furthermore, resistance based on single genes does not protect against the full spectrum of pests, weeds, and diseases, and is more likely to break down as pests evolve counter-resistance. Although not necessarily a panacea, GM (genetic modification) techniques greatly facilitate transfer of genes and thus provide a route to overcome these constraints. Effective resistance traits can be precisely and conveniently moved into mainstream crop cultivars. Resistance genes can be stacked to make it harder for pests to evolve counter-resistance and to provide multiple resistances to different attackers. GM-based crop protection could substantially reduce the need for farmers to apply pesticides to their crops and would make agricultural production more efficient in terms of resources used (land, energy, water). These benefits merit consideration by environmentalists willing to keep an open mind on the GM debate.

  5. Improving rice-based rainfed production systems in Southeast Asia for contributing towards food security and rural development through sustainable crop production intensification

    Directory of Open Access Journals (Sweden)

    Abha Mishra

    2016-04-01

    Full Text Available Continuing degradation of the environment and the cumulating food, energy, water and financial crises have led to a situation where many people’s access to sufficient, nutritious food is affected as well as their livelihoods, income, and ultimate food and nutrition security. In the wake of these stresses and crises, there is an emerging interest to find efficient, easily accessible and sustainable approaches that can address these crises. One candidate for this is the System of Rice Intensification (SRI with its “less can produce more” prescription. A regional collaborative project currently underway is being implemented in rainfed areas of the Lower Mekong River Basin (LMB countries. This involves smallholder rice farmers, researchers, extension personnel, and development professionals, together with staff of relevant government ministries (http://www.sri-lmb.ait.asia/. The project objective is to produce healthier and profitable rice crops under rainfed conditions using SRI methods, evaluated and refined through farmers’ participatory action research (FPAR. As part of the action-research, more than 120 sets of field experiments have been carried out at 60 FPAR sites in Cambodia and Thailand, directly involving 3600 farmers. The experiments have ranged from the integration of many SRI principles with farmers’ current local practices or improved practices which was termed as “SRI-transition” to full demonstrations and assessments of SRI methodology, i.e., SRI demonstration. The initial calculation of yields has showed an average paddy yield of 5.03 t/ha with SRI-transition, whereas with SRI-demonstration the average yield was 6.41 t/ha. These yields were 60 and 100% higher than the average baseline yield in the region, 3.14 t/ha, for the same farmers and same locales. Productivity gains (dollars gained/dollars spent per ha were calculated for both rainfed and irrigated production areas. In comparative terms, the economic gains for

  6. Using membrane transporters to improve crops for sustainable food production.

    Science.gov (United States)

    Schroeder, Julian I; Delhaize, Emmanuel; Frommer, Wolf B; Guerinot, Mary Lou; Harrison, Maria J; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V; Munns, Rana; Nishizawa, Naoko K; Tsay, Yi-Fang; Sanders, Dale

    2013-05-02

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land.

  7. The role of leguminous cover crops in sustainable production of oil ...

    African Journals Online (AJOL)

    They also play an important role in soil erosion control and soil moisture conservation in plantations. The development of sound sustainable and productive cropping systems such as the incorporation of legumes in oil palm plantations is therefore of paramount importance. This paper reviews some research carried out on ...

  8. The potential of hemp (Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal.

    NARCIS (Netherlands)

    Werf, van der H.M.G.; Mathijssen, E.W.J.M.; Haverkort, A.J.

    1996-01-01

    Hemp (Cannabis sativa L.) fibre can be used as a raw material for paper and textile production. A comprehensive research programme in the Netherlands has concluded that fibre hemp is a potentially profitable crop, having the right profile to fit into sustainable farming systems. This paper presents

  9. GM crops, the environment and sustainable food production.

    Science.gov (United States)

    Raven, Peter H

    2014-12-01

    Today, over 7.1 billion people rely on the earth's resources for sustenance, and nearly a billion people are malnourished, their minds and bodies unable to develop properly. Globally, population is expected to rise to more than 9 billion by 2050. Given the combined pressures of human population growth, the rapidly growing desire for increased levels of consumption, and the continued use of inappropriate technologies, it is not surprising that humans are driving organisms to extinction at an unprecedented rate. Many aspects of the sustainable functioning of the natural world are breaking down in the face of human-induced pressures including our individual and collective levels of consumption and our widespread and stubborn use of destructive technologies. Clearly, agriculture must undergo a redesign and be better and more effectively managed so as to contribute as well as possible to feeding people, while at the same time we strive to lessen the tragic loss of biodiversity and damage to all of its productive systems that the world is experiencing. For GM crops to be part of the solution, biosafety assessments should not be overly politically-driven or a burdensome impedance to delivering this technology broadly. Biosafety scientists and policy makers need to recognize the undeniable truth that inappropriate actions resulting in indecision also have negative consequences. It is no longer acceptable to delay the use of any strategy that is safe and will help us achieve the ability to feed the world's people.

  10. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability

    Science.gov (United States)

    Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-01-01

    Abstract In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  11. System Innovation for Sustainability

    DEFF Research Database (Denmark)

    System Innovation for Sustainability 2 focuses on change towards sustainable personal mobility based on implemented cases analysed from a system perspective. It examines what changes can be made to help us reduce our need for mobility, or start to make use of more sustainable mobility systems...... in order to provide sustainable solutions to our current ‘lock-in’ problems. Three major problem areas are considered (the ‘three Cs’): carbon emissions (and the growing contribution of mobility to the climate change crisis), congestion, and casualties. And each strategy proposed addresses one or more...... such as governments, manufacturers and consumers to intervene in the complex system to promote sustainable mobility. It concludes with a reflection on problems, trends and action needed. The ‘System Innovation for Sustainability’ series is the fruit of the first major international research network on SCP...

  12. Traits to ecosystems: The ecological sustainability challenge when developing future energy crops

    Directory of Open Access Journals (Sweden)

    Martin eWeih

    2014-05-01

    Full Text Available Today we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g. nitrogen, N, the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat and perennial (Salix energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties and nutrient regimes in the energy yield per plant-internal N (MJ g-1 yr-1, which would result in different N resource depletion per unit energy produced.

  13. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints.

    Science.gov (United States)

    Gonçalves, Alexandre; Goufo, Piebiep; Barros, Ana; Domínguez-Perles, Raúl; Trindade, Henrique; Rosa, Eduardo A S; Ferreira, Luis; Rodrigues, Miguel

    2016-07-01

    The growing awareness of the relevance of food composition for human health has increased the interest of the inclusion of high proportions of fruits and vegetables in diets. To reach the objective of more balanced diets, an increased consumption of legumes, which constitutes a sustainable source of essential nutrients, particularly low-cost protein, is of special relevance. However, the consumption of legumes also entails some constraints that need to be addressed to avoid a deleterious impact on consumers' wellbeing and health. The value of legumes as a source of nutrients depends on a plethora of factors, including genetic characteristics, agro-climatic conditions, and postharvest management that modulate the dietary effect of edible seeds and vegetative material. Thus, more comprehensive information regarding composition, especially their nutritional and anti-nutritional compounds, digestibility, and alternative processing procedures is essential. These were the challenges to write this review, which focusses on the nutritional and anti-nutritional composition of Vigna unguiculata L. Walp, an emerging crop all over the world intended to provide a rational support for the development of valuable foods and feeds of increased commercial value. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Emergy Analysis and Sustainability Efficiency Analysis of Different Crop-Based Biodiesel in Life Cycle Perspective

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna

    2013-01-01

    Biodiesel as a promising alternative energy resource has been a hot spot in chemical engineering nowadays, but there is also an argument about the sustainability of biodiesel. In order to analyze the sustainability of biodiesel production systems and select the most sustainable scenario, various...... kinds of crop-based biodiesel including soybean-, rapeseed-, sunflower-, jatropha- and palm-based biodiesel production options are studied by emergy analysis; soybean-based scenario is recognized as the most sustainable scenario that should be chosen for further study in China. DEA method is used...... to evaluate the sustainability efficiencies of these options, and the biodiesel production systems based on soybean, sunflower, and palm are considered as DEA efficient, whereas rapeseed-based and jatropha-based scenarios are needed to be improved, and the improved methods have also been specified....

  15. Emergy Analysis and Sustainability Efficiency Analysis of Different Crop-Based Biodiesel in Life Cycle Perspective

    Science.gov (United States)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna; Fedele, Andrea; Scipioni, Antonio

    2013-01-01

    Biodiesel as a promising alternative energy resource has been a hot spot in chemical engineering nowadays, but there is also an argument about the sustainability of biodiesel. In order to analyze the sustainability of biodiesel production systems and select the most sustainable scenario, various kinds of crop-based biodiesel including soybean-, rapeseed-, sunflower-, jatropha- and palm-based biodiesel production options are studied by emergy analysis; soybean-based scenario is recognized as the most sustainable scenario that should be chosen for further study in China. DEA method is used to evaluate the sustainability efficiencies of these options, and the biodiesel production systems based on soybean, sunflower, and palm are considered as DEA efficient, whereas rapeseed-based and jatropha-based scenarios are needed to be improved, and the improved methods have also been specified. PMID:23766723

  16. Sustainable Water Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2013-02-01

    Full Text Available Sustainable water systems often comprise complex combinations of traditional and new system components that mimic natural processes. These green systems aim to protect public health and safety, and restore natural and human landscapes. Green infrastructure elements such as most sustainable drainage systems trap storm water but may contaminate groundwater. There is a need to summarize recent trends in sustainable water systems management in a focused document. The aim of this special issue is therefore to disseminate and share scientific findings on novel sustainable water systems addressing recent problems and opportunities. This special issue focuses on the following key topics: climate change adaptation and vulnerability assessment of water resources systems; holistic water management; carbon credits; potable water savings; sustainable water technologies; nutrient management; holistic storm water reuse; water and wastewater infrastructure planning; ecological status of watercourses defined by the Water Framework Directive. The combined knowledge output advances the understanding of sustainable water, wastewater and storm water systems in the developed and developing world. The research highlights the need for integrated decision-support frameworks addressing the impact of climate change on local and national water resources management strategies involving all relevant stakeholders at all levels.

  17. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  18. Integrating crops and livestock in subtropical agricultural systems.

    Science.gov (United States)

    Wright, Iain A; Tarawali, Shirley; Blümmel, Michael; Gerard, Bruno; Teufel, Nils; Herrero, Mario

    2012-03-30

    As the demand for livestock products increases, and is expected to continue to increase over the next few decades, especially in developing countries, smallholder mixed systems are becoming more intensive. However, with limited land and water resources and concern about the environmental impact of agricultural practices and climate change, the challenge is to find ways of increasing productivity that do not compromise household food security, but rather increase incomes equitably and sustain or enhance the natural resource base. In developed countries there has been increased specialisation of crop and livestock production. In contrast, the majority of livestock in developing countries is kept in mixed crop/livestock systems. Crops (cereal grains and pulses) and crop residues provide the basis of the diet for animals, e.g. cereal straw fed to dairy cattle or sweet potato vines fed to pigs. Animal manure can provide significant nutrient inputs to crops. Water productivity is higher in mixed crop/livestock systems compared with growing crops alone. Mixed systems allow for a more flexible and profitable use of family labour where employment opportunities are limited. They also spread risks across several enterprises, a consideration in smallholder systems that may become even more important under certain climate change scenarios. Integrated crop/livestock systems can play a significant role in improving global food security but will require appropriate technological developments, institutional arrangements and supportive policy environments if they are to fulfil that potential in the coming decades. Copyright © 2011 Society of Chemical Industry.

  19. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  20. The role of short-rotation woody crops in sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, J.P. [National Council of the Paper Industry for Air and Stream Improvement, Medford, MA (United States); Tolbert, V.R. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society`s needs.

  1. Evaluation of Crop-Livestock Integration Systems among Farm ...

    African Journals Online (AJOL)

    USER

    ... of crops and livestock. Keywords: Crop-livestock integration systems, adopted village, farm family. .... crop is planted at about the time when the first crop is being harvested. Crop residues ..... Agronomy Monograph, 54. Madison, WI.

  2. Incorporating soil health management practices into viable potato cropping systems

    Science.gov (United States)

    Soil health is critical to agricultural sustainability, environmental quality, and ecosystem function, but is generally degraded through intensive potato production. Soil and crop management practices beneficial to soil health, such as crop rotations, cover crops and green manures, organic amendment...

  3. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  4. Water use in camelina-soybean dual cropping systems

    Science.gov (United States)

    Dual cropping systems can be potentially used as a sustainably intensified approach to integrating the production of food, feed, fiber, and fuel (i.e., bioenergy) on agriculturally productive landscapes. Recently, we reported that winter camelina (Camelina sativa) can be feasibly double- and relay-c...

  5. Increasing cropping system diversity balances productivity, profitability and environmental health

    Science.gov (United States)

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  6. GIS based evaluation of crop suitability for agricultural sustainability around Kolaghat thermal power plant, India.

    Science.gov (United States)

    Adak, Subhas; Adhikari, Kalyan; Brahmachari, Koushik

    2016-09-01

    Fly ash exhaust from Kolaghat thermal power plant, West Bengal, India,?? affects the areas within the radius of 3 - 4 km. Land information system indicated that surface texture within 4 km was silty loam and clay content increased with increase of distance. Soil pH was alkaline (7.58-8.01) in affected circles, whereas soil was acidic (5.95-6.41) in rest of block. Organic carbon (OC) is roving from 0.36 to 0.64% in the nearer circles which is lesser from others. The present Crop suitability analysis revealed that 96.98 % area was suitable (S1) for maize, sesame, jute, whereas these were cultivated in less than 1% of land. Flowers are the best suitable (S1) in 88.9 % but it was grown in 6.02 % area.? The present rice area within 4 km of KTPP is showing moderately suitable (S2) and S1 for the rest. Wheat is moderately suitable (S2) in the almost all the circles.? Cultivation of vegetable crops is limited in the affected circles while the highly suitable (S1) comprises 67.49 % for the remaining areas though it covered only 6.01 % of the block.? This evaluation precisely improves more than 300% from the earlier cropping intensity of 177.95 %. Suitability based land use allocation serves as stepping stone to promote agricultural sustainability. Geographic information system (GIS) model has been developed to assess site specific crop suitability for sustainable agricultural planning.

  7. Groundwater Sustainability Through Optimal Crop Choice in the Indian Punjab

    Science.gov (United States)

    Desai, R.; Siegfried, T. U.; B Krishnamurthy, C.; Sobolowski, S.

    2010-12-01

    total discounted crop revenue being the goal function and non-declining revenue as well as groundwater sustainability constraints. Areas set aside for individual crops in individual seasons and districts are decision variables and levels of support prices determine revenue streams. The SP was solved with a Monte Carlo simulation-based approach by sampling the 100 climate realizations where the expected goal function is approximated by the corresponding sample average function. Results indicate that a climate sensitive crop choice can lead to expected net economic gains while ensuring non-declining groundwater tables at the same time if support prices for water intensive crops are sufficiently low as compared to the prices of climate-sensitive crops. This is promising since it shows that wisely chosen support price signals could incentivize farmers to adopt climate-sensitive crop choice while at the same time stabilize the state fiscal burden from subsidized energy for groundwater pumping. It would, however, imply that India should gradually develop other regions of modern mechanized agricultural so as to ensure sufficient caloric supplies at the national scale.

  8. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Directory of Open Access Journals (Sweden)

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  9. Irrigation treatments, water use efficiency and crop sustainability in cereal-forage rotations in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2012-10-01

    Full Text Available Agricultural systems based on crop rotation are beneficial to crop sustainability and productivity. Wheat-forage rotations combined with irrigation are the agronomic techniques best able to exploit Mediterranean environmental conditions. This paper describes a long-term field trial to ascertain the effect of combined irrigation and durum wheat-forage rotations on crop yield and soil chemical properties. The two forage crops: annual grass-clover winter binary mixture and perennial lucerne were carried out through 1991-2008 under rainfed and irrigated treatments. The experiments were used to highlight the effect of irrigation and wheat-forage crop rotations on water use efficiency (WUE and sustainability of organic matter (OM in topsoil. Irrigation increased the dry matter (DM of annual binary mixture and lucerne by 49.1% and 66.9%, respectively. Continuous wheat rotation reduced seed yield (SY, stability of production, and crude protein (CP characteristics of kernel and OM in topsoil. The yearly gain in wheat after forage crops was 0.04 t (ha yr-1 under rainfed and 0.07 t (ha yr-1 under irrigation treatments. The CP and soil OM of wheat forage crops rotations, compared with those of continuous wheat under rainfed and irrigated was a 0.8 and 0.5 % increase in CP and 5.1 and 4.4 in OM, respectively. The rotations of annual grass-clover winter binary mixture and lucerne meadow under both irrigated treatments increased the OM over continuous wheat (9.3 % and 8.5 in annual grass-clover winter binary mixture and 12.5 and 9.5 lucerne meadow under rainfed and irrigation, respectively. Irrigation reduced the impact of weather on crop growing, reducing water use efficiency (mean over rotations for DM production (15.5 in meadow and 17.5 in annual grass-clover winter binary mixture [L water (kg DM-1] and wheat SY. However, the agronomic benefits achieved by forage crops in topsoil are exhausted after three years of continuous wheat rotation.

  10. Sustainable Drainage Systems

    OpenAIRE

    Miklas Scholz

    2015-01-01

    Urban water management has somewhat changed since the publication of The Sustainable Drainage System (SuDS) Manual in 2007 [1], transforming from building traditional sewers to implementing SuDS, which are part of the best management practice techniques used in the USA and seen as contributing to water-sensitive urban design in Australia. Most SuDS, such as infiltration trenches, swales, green roofs, ponds, and wetlands, address water quality and quantity challenges, and enhance the local bio...

  11. GM Crops, Organic Agriculture and Breeding for Sustainability

    OpenAIRE

    Salvatore Ceccarelli

    2014-01-01

    The ongoing debate about the use of genetically-modified (GM) crops in agriculture has largely focused on food safety and genetic contamination issues. Given that the majority of GM crops have been produced to respond to the problem of crop yield reductions caused by diseases, insects and weeds, the paper argues that in those cases, the currently used GM crops are an unstable solution to the problem, because they represent such a strong selection pressure, that pests rapidly evolve resistance...

  12. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  13. Sustainable Aluminium Systems

    Directory of Open Access Journals (Sweden)

    Sergio R. Ermolli

    2010-09-01

    Full Text Available In the present paper, an analytical presentation of some popular aluminium systems that contribute to sustainability of structures is presented. Special emphasis has been given to the properties of aluminium, while the influence of these systems in the overall performance of the structure regarding environment and economy is described. In particular, characteristics of aluminium elements such as high reflectivity and recyclability and their role in life cycle analysis (LCA are analyzed. The connections between energy efficiency and conservation of buildings and aluminium application are also discussed. Building applications such as curtain walls, window frames and facade sheets are presented and thoroughly investigated, considering their environmental and economic aspects. Furthermore, many innovative techniques that use aluminium elements in collaboration with other systems in order to produce renewable energy, such as solar panels and photovoltaics, are introduced. Finally, environmental innovations such as optimized ventilation mechanisms and light and shade management systems based on aluminium members are presented.

  14. Goal conflicts in long-term cropping system trials - the example of carrots

    OpenAIRE

    Modig, P.; Albertsson Juhlin, M.-L.; Gunnarsson, A.; Gissén, C.

    2013-01-01

    Agricultural research on multiple cropping systems in parallel increases the potential for knowledge transfer between organic and conventional systems. This project aims to develop cropping systems towards greater sustainability through work in long-term trials that have a unique opportunity to contribute to a holistic research perspective. Data on the fourth crop rotation (2007-2012) are now being compiled. This paper presents preliminary results from cultivation of carrots as an example to ...

  15. On Farm Agronomic and First Environmental Evaluation of Oil Crops for Sustainable Bioenergy Chains

    Directory of Open Access Journals (Sweden)

    Luca Lazzeri

    Full Text Available Energy crops, and in particular oil crops, could be an important occasion for developing new non food production rows for a new multi-functional agriculture in Italy. In this view, the use of local biomass is a fundamental starting point for the development of a virtuous energy chain that should pursue not only agricultural profitability, but also chain sustainability and that is less dependent on the global market, characterized by instability in terms of biomass availability and price. From this perspective, particular attention must be paid to crop choice on the basis of its rusticity and of its adaptability to local growing conditions and to low input cropping systems. In this context, alike woody and herbaceous biomasses, oil crops such as sunflower and rapeseed should be able to support local agricultural bioenergy chain in Italy. In addition, in a local bioenergy chain, the role of the farmers should not be limited just to grain production; but also grain processing should be performed at farm or consortium level in oilseed extraction plants well proportioned to the cropped surface. In this way, by means of a simple power generator, farmer could thus produce its own thermal and electric energy from the oil, maximizing his profit. This objective could also be achieved through the exploitation of the total biomass, including crop residues and defatted seed meals, that may be considered as fundamental additional economic and/or environmental benefits of the chain. This paper reports some results of three-years on-farm experiments on oil crop chain carried out in the framework of “Bioenergie” project, that was focused to enhance farmers awareness of these criteria and to the feasibility at open field scale of low-input cultivation of rapeseed, sunflower and Brassica carinata in seven Italian regions. In several on-farm experiences, these crops produced more than 800 kg ha-1 of oil with good energy properties. Defatted seed meals could be

  16. On Farm Agronomic and First Environmental Evaluation of Oil Crops for Sustainable Bioenergy Chains

    Directory of Open Access Journals (Sweden)

    Paolo Spugnoli

    2011-02-01

    Full Text Available Energy crops, and in particular oil crops, could be an important occasion for developing new non food production rows for a new multi-functional agriculture in Italy. In this view, the use of local biomass is a fundamental starting point for the development of a virtuous energy chain that should pursue not only agricultural profitability, but also chain sustainability and that is less dependent on the global market, characterized by instability in terms of biomass availability and price. From this perspective, particular attention must be paid to crop choice on the basis of its rusticity and of its adaptability to local growing conditions and to low input cropping systems. In this context, alike woody and herbaceous biomasses, oil crops such as sunflower and rapeseed should be able to support local agricultural bioenergy chain in Italy. In addition, in a local bioenergy chain, the role of the farmers should not be limited just to grain production; but also grain processing should be performed at farm or consortium level in oilseed extraction plants well proportioned to the cropped surface. In this way, by means of a simple power generator, farmer could thus produce its own thermal and electric energy from the oil, maximizing his profit. This objective could also be achieved through the exploitation of the total biomass, including crop residues and defatted seed meals, that may be considered as fundamental additional economic and/or environmental benefits of the chain. This paper reports some results of three-years on-farm experiments on oil crop chain carried out in the framework of “Bioenergie” project, that was focused to enhance farmers awareness of these criteria and to the feasibility at open field scale of low-input cultivation of rapeseed, sunflower and Brassica carinata in seven Italian regions. In several on-farm experiences, these crops produced more than 800 kg ha-1 of oil with good energy properties. Defatted seed meals could be

  17. Productivity and nutrient cycling in bioenergy cropping systems

    Science.gov (United States)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  18. Sustainable Drainage Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2015-05-01

    Full Text Available Urban water management has somewhat changed since the publication of The Sustainable Drainage System (SuDS Manual in 2007 [1], transforming from building traditional sewers to implementing SuDS, which are part of the best management practice techniques used in the USA and seen as contributing to water-sensitive urban design in Australia. Most SuDS, such as infiltration trenches, swales, green roofs, ponds, and wetlands, address water quality and quantity challenges, and enhance the local biodiversity while also being acceptable aesthetically to the public. Barriers to the implementation of SuDS include adoption problems, flood and diffuse pollution control challenges, negative public perception, and a lack of decision support tools addressing, particularly, the retrofitting of these systems while enhancing ecosystem services. [...

  19. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    Science.gov (United States)

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  20. Transgenic Crops and Sustainable Agriculture in the European Context

    Science.gov (United States)

    Ponti, Luigi

    2005-01-01

    The rapid adoption of transgenic crops in the United States, Argentina, and Canada stands in strong contrast to the situation in the European Union (EU), where a de facto moratorium has been in place since 1998. This article reviews recent scientific literature relevant to the problematic introduction of transgenic crops in the EU to assess if…

  1. Successful systems sustaining change.

    Science.gov (United States)

    Bullas, Sheila; Bryant, John

    2007-01-01

    Much has been published on the success and particularly the failure of IT projects; still failures are commonplace. This prospective study focused from the outset on assessing risk of failure and addressing critical success factors. The aim was to apply existing methods in a challenging acute care hospital where success demanded rapid achievement of sustainable improvements in clinical and administrative processes. The implementations were part of the English National Programme for IT. The desired outcomes required the integration of accepted tools and techniques to provide a pragmatic approach to systems implementation: Lean, Six Sigma, PRINCE2 and Benefits Management. The outcome and further insights into success and failure of IT projects in healthcare are described. In particular lessons are identified related to the business need for the project and the successful achievement of the required benefits and business change.

  2. Environmental Sustainability of Gm Crops for Food Safety on Risk Society

    Directory of Open Access Journals (Sweden)

    Gil Ramos de Carvalho Neto

    2016-10-01

    Full Text Available GM crops are presented as an alternative to the erradication of hunger. The risk society, however, considering the brazilian environmental law - specially the brazilian legislation on biosafety - the food safety and nutritional law and the economic and social data on the subject, it appears that the environmental sustainability of these crops is not yet complete. Producers should adopt additional safeguards if they wish a sustainable agriculture with effective food security.

  3. Genetically Modified Crops: Towards Agricultural Growth, Agricultural Development, or Agricultural Sustainability?

    OpenAIRE

    Azadi, Hossein; Ghanian, Mansour; Ghuchani, Omid M.; Rafiaani, Parisa; Taning, Clauvis N. T.; Hajivand, Roghaye Y.; Dogot, Thomas

    2015-01-01

    The present debate on how to increase global food production in a sustainable way has focused on arguments over the pros and cons of genetically modified (GM) crops. Scientists in both public and private sectors clearly regard GM technology as a major new set of tools, whereas industry sees it as an opportunity for increased profits. However, it remains questionable whether GM crops can contribute to agricultural growth, agricultural development, and agricultural sustainability. This review p...

  4. Investigation of ethanol productivity of cassava crop as a sustainable ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... a sustainable source of biofuel in tropical countries. B. A. Adelekan. Department of Agricultural ..... supporting sustainable agriculture and sustainable develop- ment, provided the feedstock of biofuels is .... transferred to a mortar where they were mashed using a pestle to attain sufficient size reduction.

  5. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    is analyzed for the whole cropping system. The environmental conditions, crop choices and management will all affect the fate of the N left in the soil, and whether this will contribute mainly to leaching loss or be used for production in later crops. As an example, increasing pre-crop fertilization was shown...

  6. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    Science.gov (United States)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  7. Sustainable commercialization of new crops for the agricultural bioeconomy

    National Research Council Canada - National Science Library

    Jordan, N.R; Dorn, K; Runck, B; Ewing, P; Williams, A; Anderson, K.A; Felice, L; Haralson, K; Goplen, J; Altendorf, K; Fernandez, A; Phippen, W; Sedbrook, J; Marks, M; Wolf, K; Wyse, D; Johnson, G

    2016-01-01

    .... Importantly, these crops can provide feedstocks for a wide range of new bio-products that are forming a new agricultural bioeconomy, potentially providing greatly increased economic incentives for diversification...

  8. Yield gap analysis of feed-crop livestock systems

    NARCIS (Netherlands)

    Linden, van der Aart; Oosting, Simon J.; Ven, van de Gerrie W.J.; Veysset, Patrick; Boer, de Imke J.M.; Ittersum, van Martin K.

    2018-01-01

    Sustainable intensification is a strategy contributing to global food security. The scope for sustainable intensification in crop sciences can be assessed through yield gap analysis, using crop growth models based on concepts of production ecology. Recently, an analogous cattle production model

  9. Effect of nitrogen fertilization and cover cropping systems on sorghum grain characteristics.

    Science.gov (United States)

    Kaufman, R C; Wilson, J D; Bean, S R; Presley, D R; Blanco-Canqui, H; Mikha, M

    2013-06-19

    Cover crop treatments and nitrogen (N) fertilization rates were investigated for their impact on sorghum grain quality attributes. Sorghum was planted in field plots treated with differing cover cropping systems and fertilization rates. The size (weight and diameter) and hardness of the kernels were influenced by both the cover crop and N rates. The protein content increased as the N rate increased and also with the addition of cover crops to the system. The protein digestibility values and starch granule size distributions were not affected by N rate or the cover cropping treatments. Soil properties were tested to determine relationships with grain quality attributes. The utilization of cover crops appears to increase the protein content without causing a deleterious effect on protein digestibility. The end-product quality is not hampered by the use of beneficial cropping systems necessary for sustainable agriculture.

  10. The Bentley Cropping Systems Fellowship Checklist

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    2014-10-01

    The Bentley Cropping Systems Fellowship. Checklist. Deadline to apply: October 1, 2014. Please note: Only online applications are accepted. HOW TO APPLY. Use the link on the Competitions page to access the online application system and submit a complete application, including ALL requested documents by 4:00 pm ...

  11. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    Science.gov (United States)

    Brauman, Kate A.; Siebert, Stefan; Foley, Jonathan A.

    2013-06-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ∼40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people.

  12. Do Smallholder, Mixed Crop-Livestock Livelihoods Encourage Sustainable Agricultural Practices? A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Thomas K. Rudel

    2016-02-01

    Full Text Available As calls for bolstering ecosystem services from croplands have grown more insistent during the past two decades, the search for ways to foster these agriculture-sustaining services has become more urgent. In this context we examine by means of a meta-analysis the argument, proposed by Robert McC. Netting, that small-scale, mixed crop-livestock farming, a common livelihood among poor rural peoples, leads to environmentally sustainable agricultural practices. As predicted, mixed crop-livestock farms exhibit more sustainable practices, but, contrary to predictions, a small scale of operation does not predict sustainability. Many smallholders on mixed crop-livestock farms use sustainable practices, but other smallholders practice a degrading, input-scarce agriculture. Some large farm operators use soil-conserving, minimum-tillage techniques while other large operators ignore soil-conserving techniques and practice an industrialized, high chemical input agriculture. The strength and pervasiveness of the link in the data between mixed crop-livestock farming and sustainable agricultural practices argues for agricultural policies that promote mixed crop-livestock livelihoods.

  13. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection

    Directory of Open Access Journals (Sweden)

    Carolyn Mitchell

    2016-07-01

    Full Text Available Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.

  14. Debates on Genetically Modified Crops in the Context of Sustainable Development.

    Science.gov (United States)

    Gerasimova, Ksenia

    2016-04-01

    The paper discusses conflicts in perceptions of GM crops illustrating the complexities of GM debates and applications of the concept of sustainable development. The concept consists of three discourses that both opponents and supporters of GM crops refer to in their analyses: environmentalism, social and economic development and the two sub-issues of sustainable development-biodiversity loss and food security. This creates a unique situation when both proponents and opponents of GM food use the same framework of sustainable development to support their arguments and do not reach a common ground. This will be illustrated by a review of the arguments brought by these two groups.

  15. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems (e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  16. Gender Analysis of Sustainable Agricultural Practices by Crop ...

    African Journals Online (AJOL)

    Sustainable agricultural practices describe the effort of farmers at protecting and enhancing the environment to preserve it for further exploitation. Therefore both men and women have important roles to play in preserving their environment. This paper analyzed the gender roles in the use of sustainable agricultural practices ...

  17. Cover Crops in West Africa: Contributing to Sustainable Agriculture ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    It documents past experiences withcover cropping in Africa and will hopefully stimulate future research on priority socioeconomic and biophysical aspects of this important topic. The editors Daniel Buckles is Senior ... IDRC evidence and innovation supports India's adaptation to climate change. IDRC is investing in local ...

  18. Investigation of ethanol productivity of cassava crop as a sustainable ...

    African Journals Online (AJOL)

    The ethanol productivity of cassava crop was investigated in a laboratory experiment by correlating volumes and masses of ethanol produced to the masses of samples used. Cassava tubers (variety TMS 30555) were peeled, cut and washed. 5, 15, 25 and 35 kg samples of the tubers were weighed in three replicates, ...

  19. Sustainability of Marketing Food Crops through the Internet in Lagos ...

    African Journals Online (AJOL)

    abdulaphyz

    commerce for marketing and purchasing of agricultural commodities. This study assessed continued success of communicating food crops through the. Internet and by extension e-commerce (virtual retail stores). This becomes imperative .... If sellers and consumers' intention to make use of the Internet for marketing or ...

  20. Tropical annual cropping systems: Ant ecology

    Science.gov (United States)

    Carroll, C. Ronald; Risch, Stephen J.

    1983-01-01

    The ecological role of ants in tropical annual cropping systems is discussed in general and with respect to a specific Mexican agroecosystem Generally, the potential positive contributions of ants to crop yields result from their impact on soil structure, nutrient cycling, and reduction of insect and weed pests In annual wet lowland fields in eastern Mexico, the ant community is simple and dominated by the aggressive fire ant, Solenopsis geminata. The influence of vegetation structure and composition on the ant community and, specifically, on the foraging behavior of S geminata is discussed

  1. Policies for reintegrating crop and livestock systems

    NARCIS (Netherlands)

    Garrett, Rachael D.; Niles, Meredith; Dias Bernardes Gil, Juliana; Dy, Philip; Reis, Julio; Valentim, Judson

    2017-01-01

    The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food

  2. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sustainability, overall and process efficiency of energy crops

    OpenAIRE

    Schäfer, Winfried

    2008-01-01

    A method to calculate efficiency of energy crop production including sun energy, direct and indirect energy for cultivation, processing, and conversion into fuel is demonstrated using rape and derived fuels as an example. Every production and conversion step is a process and calculated separately. The overall efficiency includes energy input and output of all processes. The process efficiency of rape cultivation reaches in Finland up to 1100 %. However, the overall energy effic...

  4. Managing Sustainable Information Systems Development

    DEFF Research Database (Denmark)

    Kautz, Karlheinz

    2013-01-01

    Sustainable information systems development (ISD) in the context of this paper is not about products that support sustainability at large with its environmental, economic and social dimensions and little about the development of sustainable products, which are both without doubt important topics....... This paper is about a prerequisite for such products, namely, a sustainable ISD process, a process which exhibits reasonable and responsible stewardship and utilisation of the existing resources for ISD—people and information in the context of scope, time/schedule, budget/cost, quality and risk....

  5. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  6. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    Science.gov (United States)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great

  7. Surge in insect resistance to transgenic crops and prospects for sustainability.

    Science.gov (United States)

    Tabashnik, Bruce E; Carrière, Yves

    2017-10-11

    Transgenic crops have revolutionized insect pest control, but their effectiveness has been reduced by evolution of resistance in pests. We analyzed global monitoring data reported during the first two decades of transgenic crops, with each case representing the responses of one pest species in one country to one insecticidal protein from Bacillus thuringiensis (Bt). The cases of pest resistance to Bt crystalline (Cry) proteins produced by transgenic crops increased from 3 in 2005 to 16 in 2016. By contrast, in 17 other cases there was no decrease in pest susceptibility to Bt crops, including the recently introduced transgenic corn that produces a Bt vegetative insecticidal protein (Vip). Recessive inheritance of pest resistance has favored sustained susceptibility, but even when inheritance is not recessive, abundant refuges of non-Bt host plants have substantially delayed resistance. These insights may inform resistance management strategies to increase the durability of current and future transgenic crops.

  8. Use of human waste in sustainable crop production in Nigeria ...

    African Journals Online (AJOL)

    The plant nutrient in both urine and excreta come from arable fields and thus should be recycled as fertilizers to support sustainability and retain fertility of the soil. Urine acts very fast and is very rich in nitrogen. Policy on the use of the technology must be promoted and awareness created to the farmers to enable them utilize ...

  9. Sustainable soil management practices of crop farmers in Mkpat ...

    African Journals Online (AJOL)

    Sustainability which is the successful management of resources for agriculture to satisfy the changing human needs and the capacity to remain productive and at the same time conserving the resource base, is the focus of this study. Therefore, the various conventional methods of managing soil, which are commonly being ...

  10. Cover crops for sustainable agrosystems in the Americas. Chapter 2

    NARCIS (Netherlands)

    Scholberg, J.M.S.; Dogliotti, S.; Leoni, C.; Zotarelli, L.; Cherr, C.M.; Rossing, W.A.H.

    2010-01-01

    Rapid depletion of global fertilizer and fossil fuel reserves, combined with concerns about global warming, have resulted in increased interest in alternative strategies for sustaining agricultural production. Moreover, many farmers are being caught in a vicious spiral of unsustainability related to

  11. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  12. Managed Multi-strata Tree + Crop Systems: An Agroecological Marvel

    Directory of Open Access Journals (Sweden)

    P. K. Ramachandran Nair

    2017-12-01

    Full Text Available Today, when the emphasis on single-species production systems that is cardinal to agricultural and forestry programs the world over has resulted in serious ecosystem imbalances, the virtues of the time-tested practice of growing different species together as in managed Multi-strata Tree + Crop (MTC systems deserve serious attention. The coconut-palm-based multispecies systems in tropical homegardens and shaded perennial systems are just two such systems. A fundamental ecological principle of these systems is niche complementarity, which implies that systems that are structurally and functionally more complex than crop- or tree monocultures result in greater efficiency of resource (nutrients, light, and water capture and utilization. Others include spatial and temporal heterogeneity, perennialism, and structural and functional diversity. Unexplored or under-exploited areas of benefits of MTC systems include their ecosystem services such as carbon storage, climate regulation, and biodiversity conservation. These multispecies integrated systems indeed represent an agroecological marvel, the principles of which could be utilized in the design of sustainable as well as productive agroecosystems. Environmental and ecological specificity of MTC systems, however, is a unique feature that restricts their comparison with other land-use systems and extrapolation of the management features used in one location to another.

  13. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    soil features resulted in a positive impact on the water permeability of the soil. Availability of soil moisture during the crop growth resulted in better plant water status. Subsequent release of conserved soil water regulated proper plant water status, soil structure, and lowered soil penetrometer resistance. Productions obtained at STC did not have significant differences for the wheat and maize crop but were higher for soybean. The advantages of minimum soil tillage systems for Romanian pedo-climatic conditions can be used to improve methods in low producing soils with reduced structural stability on sloped fields, as well as measures of water and soil conservation on the whole agroecosystem. Presently, it is necessary to make a change concerning the concept of conservation practices and to consider a new approach regarding the good agricultural practice. We need to focus on an upper level concerning conservation by focusing on soil quality. Carbon management is necessary for a complexity of matters including soil, water management, field productivity, biological fuel and climatic change. In conclusion a Sustainable Agriculture includes a range of complementary agricultural practices: (i) minimum soil tillage (through a system of reduced tillage or no-tillage) to preserve the structure, fauna and soil organic matter; (ii) permanent soil cover (cover crops, residues and mulches) to protect the soil and help to remove and control weeds; (iii) various combinations and rotations of the crops which stimulate the micro-organisms in the soil and controls pests, weeds and plant diseases. Acknowledgements: This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change, and International Cooperation Program - Sub-3.1. Bilateral AGROCEO c. no. 21BM

  14. Profitability of groundnut-based cropping systems among farmers in ...

    African Journals Online (AJOL)

    , having an average household size of 8 people and had some level of formal education. Two groundnut-based cropping systems were identified, namely; groundnut/sorghum and sole groundnut cropping systems. The analysis of cost and ...

  15. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems.

    Science.gov (United States)

    Anten, Niels P R; Vermeulen, Peter J

    2016-06-01

    Plant communities with traits that would maximize community performance can be invaded by plants that invest extra in acquiring resources at the expense of others, lowering the overall community performance, a so-called tragedy of the commons (TOC). By contrast, maximum community performance is usually the objective in agriculture. We first give an overview of the occurrence of TOCs in plants, and explore the extent to which past crop breeding has led to trait values that go against an unwanted TOC. We then show how linking evolutionary game theory (EGT) with mechanistic knowledge of the physiological processes that drive trait expression and the ecological aspects of biotic interactions in agro-ecosystems might contribute to increasing crop yields and resource-use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Farmers typology and crops sustainability in Alto Urubamba, La Convencion – Cusco

    Directory of Open Access Journals (Sweden)

    Isaías Merma

    2012-06-01

    Full Text Available The research was conducted in the geographical region of Alto Urubamba, province of La Convencion, Cusco - Peru. The objective was to identify types of farmers and evaluate crops sustainability on farms of high forest. Surveys were applied to a sample of 106 farmers in both biophysical and socio-economic terms in order to identify typology; this information was analyzed through descriptive statistics. Multivariate analysis using preselected variables was performed to identify types of farmers. In addition, sustainability of eight tropical crops was evaluated; for this purpose, three farms for each crop were selected from 24 evaluated farms. Practical indicators of soil quality and crop health with a valuation from 0 to 10 were used; farmers participated during this evaluation. The results show that there are three types of farmers according to their efficiency in resources management and their economic logic. The crops of tea (6.65 and mango (6.50 obtained the highest values of sustainability, followed by coffee (6.25, cocoa (6.25, citrus (5.50, banana (5.45 and coca (5.10. Papaya (4.60 shows a value less than five; therefore, is considered as unsustainable according to local conditions.

  17. Developing robust crop plants for sustaining growth and yield under adverse climatic changes

    Science.gov (United States)

    Agricultural production and quality are expected to suffer from adverse changes in climatic conditions, including global warming, and this will affect worldwide human and animal food security. Global warming has been shown to negatively impact crop yield and therefore will affect sustainability of a...

  18. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  19. Invited review: Sustainable forage and grain crop production for the US dairy industry.

    Science.gov (United States)

    Martin, N P; Russelle, M P; Powell, J M; Sniffen, C J; Smith, S I; Tricarico, J M; Grant, R J

    2017-12-01

    A resilient US dairy industry will be underpinned by forage and crop production systems that are economically, environmentally, and socially sustainable. Land use for production of perennial and annual forages and grains for dairy cattle must evolve in response to multiple food security and environmental sustainability issues. These include increasing global populations; higher incomes and demand for dairy and other animal products; climate change with associated temperature and moisture changes; necessary reductions in carbon and water footprints; maintenance of soil quality and soil nutrient concerns; and competition for land. Likewise, maintaining producer profitability and utilizing practices accepted by consumers and society generally must also be considered. Predicted changes in climate and water availability will likely challenge current feed and dairy production systems and their national spatial distribution, particularly the western migration of dairy production in the late 20th century. To maintain and stabilize profitability while reducing carbon footprint, particularly reductions in methane emission and enhancements in soil carbon sequestration, dairy production will need to capitalize on genetic and management innovations that enhance forage and grain production and nutritive value. Improved regional and on-farm integration of feed production and manure utilization is needed to reduce environmental nitrogen and phosphorus losses and mitigate greenhouse gas emissions. Resilient and flexible feed production strategies are needed to address each of these challenges and opportunities to ensure profitable feeding of dairy cattle and a sustainable dairy industry. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  20. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure

    2017-03-01

    The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.

  1. Crop residue recycling for economic and environmental sustainability: The case of India

    Directory of Open Access Journals (Sweden)

    Devi Saroj

    2017-09-01

    Full Text Available India is one of the key producers of food grain, oilseed, sugarcane and other agricultural products. Agricultural crops generate considerable amounts of leftover residues, with increases in food production crop residues also increasing. These leftover residues exhibit not only resource loss but also a missed opportunity to improve a farmer’s income. The use of crop residues in various fields are being explored by researchers across the world in areas such as textile composite non-woven making processes, power generation, biogas production, animal feed, compost and manures, etc. The increasing trend in addition of bio-energy cogeneration plants, increasing demand for animal feedstock and increasing trend for organic agriculture indicates a competitive opportunity forcrop residue in Agriculture. It is to be noted that the use of this left over residue isoften not mutually exclusive which makes measurement of its economic value more difficult.For example, straw can be used as animal bedding and thereafter as a crop fertilizer. In view of this, the main aim of this paper envisaged to know about how much crop residue is left unutilized and how best they can be utilized for alternative purposes for environmental stewardship and sustainability. In this context, an attempt has been made to estimate the total crop residue across the states and its economic value though data available from various government sources and a SWOT analysis performed for possible alternative uses of residue in India. This paper also discusses the successful case studies of India and global level of use of crop residues in economic activities. Over all 516 Mtonnes of crop residue was produced in 2014-15 in India among which cereals were the largest producer of crop residue followed by sugarcane. The energy potential from paddy rice straw crop residue was estimated as 486,955 megawatt for 2014-15 and similarly for coarse cereals it was 226,200megawatt.

  2. Mixed crop-livestock systems: an economic and environmental-friendly way of farming?

    Science.gov (United States)

    Ryschawy, J; Choisis, N; Choisis, J P; Joannon, A; Gibon, A

    2012-10-01

    -based systems. Concerning crop management practices, our results revealed an intensification gradient from low to high input farming systems. Beyond some general trends, a wide range of management practices and levels of intensification were observed among farms with a similar production system. Mixed crop-livestock farms were very heterogeneous with respect to the use of inputs. Nevertheless, our study revealed a lower potential for nitrogen pollution in mixed crop-livestock and beef production systems than in dairy and crop farming systems. Even if a wide variability exists within system, mixed crop-livestock systems appear to be a way for an environmental and economical sustainable agriculture.

  3. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p methodology of defining meteorological risks and subsequently relating the risk to the cropping calendar will be demonstrated for major arable crops in Belgium. Physically based crop models assist in understanding the links between adverse weather events, sensitive crop stages and crop damage. Financial support was obtained from Belspo under research contract SD/RI/03A.

  4. Fuzzy multi attributive comparison of tillage crop and manure management systems

    Science.gov (United States)

    Determining the best alternative between cropping system options is often complicated by disparities in research results due to differences between years as a result of seasonal variability. The economic cost of the systems further complicates the determination of best alternative for sustainable c...

  5. A spatially based field specific crop recordkeeping system prototype ...

    African Journals Online (AJOL)

    Results have shown that a record keeping system may link crop records to respective mapped crop fields in a GIS environment. This was then used to view crop field area, update new field data in the non spatial database and query and display field data for a specified period of interest. New data were added to their ...

  6. Crop-livestock systems: old wine in new bottles

    NARCIS (Netherlands)

    Keulen, van H.; Schiere, J.B.

    2004-01-01

    Many farmers in tropical and temperate countries manage a mix of crops and animals. In these systems crop residues can be used to feed the animals and the excreta from the animals as nutrients for the crops. Other forms of mixing take place where grazing under fruit-trees keeps the grass short,

  7. Yield losses of soybean and maize by competition with interseeded cover crops and weeds in organic-based cropping systems

    OpenAIRE

    Uchino, H; Iwama, K.; Jitsuyama, Y; Yudate, T.; Nakamura, S

    2009-01-01

    Weed management is a major issue in organic farming systems. Although interseeding cover crops is one alternative to herbicides, cover crops often suppress not only weeds but also main crops. Therefore, using cover crops for weed control without adverse effects on main crop growth is important. To verify the effect of cover crops on competition between main crops, cover crops and weeds in a snowy-cold region, main crops soybean (Glycine max Merr.) in 2005 and maize (Zea mays L.) in 2006 were ...

  8. A multi-scale hydroclimatological assessment of perennial bioenergy cropping systems

    Science.gov (United States)

    Georgescu, Matei; Miguez-Macho, Gonzalo; Wagner, Melissa; Wang, Meng; Bagley, Justin; Vanloocke, Andrew

    2017-04-01

    Hydro-climatic sustainability associated with deployment of perennial bioenergy cropping systems requires a holistic approach that extends beyond merely carbon accounting. Here, we present results from a five-year National Science Foundation project (Water Sustainability and Climate initiative) focused on development of geographically explicit maps depicting sustainable regional "hot-spots" of perennial biomass energy expansion in the United States (U.S.). Using short-term/high-resolution (1 year/1km) and climate scale/medium range resolution (10 years/20km) simulations with the Weather Research and Forecasting (WRF) system, an atmospheric code coupled to a suite of land surface models, we quantify impacts on the hydrologic cycle, and examine the effect of energy crops (e.g., miscanthus and switchgrass) on subsurface hydrology (e.g., soil moisture, groundwater impacts) and atmospheric dynamics. We avoid the competition with food crops by focusing energy crop deployment exclusively on abandoned and degraded farmland regions within the Continental U.S. Finally, assessment of photosynthetic production of bioenergy crops is made, based on hydro-climatic constraints associated with varying scenarios of perennial bioenergy crop deployment simulated with WRF.

  9. Sustainable domestic effluent reuse via Subsurface Drip Irrigation (SDI): alfalfa as a perennial model crop.

    Science.gov (United States)

    Kazumba, Shija; Gillerman, Leonid; DeMalach, Yoel; Oron, Gideon

    2010-01-01

    Scarcity of fresh high-quality water has heightened the importance of wastewater reuse primarily in dry regions together with improving its efficient use by implementing the Subsurface Drip Irrigation (SDI) method. Sustainable effluent reuse combines soil and plant aspects, along with the maintainability of the application system. In this study, field experiments were conducted for two years on the commercial farm of Revivim and Mashabay-Sade farm (RMF) southeast of the City of Beer-Sheva, Israel. The purpose was to examine the response of alfalfa (Medicago sativa) as a perennial model crop to secondary domestic effluent application by means of a SDI system as compared with conventional overhead sprinkler irrigation. Emitters were installed at different depths and spacing. Similar amounts of effluent were applied to all plots during the experimental period. The results indicated that in all SDI treatments, the alfalfa yields were 11% to 25% higher than the ones obtained under sprinkler irrigated plots, besides the one in which the drip laterals were 200 cm apart. The average Water Use Efficiency (WUE) was better in all SDI treatments in comparison with the sprinkler irrigated plots. An economic assessment reveals the dependence of the net profit on the emitters' installation geometry, combined with the return for alfalfa in the market.

  10. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields.

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.

  11. Production versus environmental impact trade-offs for Swiss cropping systems: a model-based approach

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Six, Johan

    2017-04-01

    There is a growing need to improve sustainability of agricultural systems. The key focus remains on optimizing current production systems in order to deliver food security at low environmental costs. It is therefore essential to identify and evaluate agricultural management practices for their potential to maintain or increase productivity and mitigate climate change and N pollution. Previous research on Swiss cropping systems has been concentrated on increasing crop productivity and soil fertility. Thus, relatively little is known about management effects on net soil greenhouse gas (GHG) emissions and environmental N losses in the long-term. The aim of this study was to extrapolate findings from Swiss long-term field experiments and to evaluate the system-level sustainability of a wide range of cropping systems under conditions beyond field experimentation by comparing their crop productivity and impacts on soil carbon, net soil GHG emissions, NO3 leaching and soil N balance over 30 years. The DayCent model was previously parameterized for common Swiss crops and crop-specific management practices and evaluated for productivity, soil carbon dynamics and N2O emissions from Swiss cropping systems. Based on a prediction uncertainty criterion for crop productivity and soil carbon (rRMSEproductivity of Swiss cropping systems was mainly driven by total N inputs to the systems. The GWP of systems ranged from -450 to 1309 kg CO2 eq ha-1 yr-1. All studied systems, except for ORG-RT-GM systems, acted as a source of net soil GHG emissions with the relative contribution of soil N2O emissions to GWP of more than 60%. The GWP of systems with CT decreased consistently with increasing use of organic manures (MIN>IN>ORG). NT relative to RT management showed to be more effective in reducing GWP from MIN systems due to reduced soil N2O emissions and positive effects on soil C sequestration. GM relative to CC management was shown to be more effective in mitigating NO3 leaching and

  12. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  13. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  14. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established to evaluate how conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.

  15. Long-Term Cropping Effects on Agricultural Sustainability in Alar Oasis of Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Lu Gong

    2016-01-01

    Full Text Available Agricultural sustainability has become a major concern in arid regions of China. In order to better understand the influence of continuous cropping on soil quality, six experimental fields were established in the Alar Oasis of Xinjiang, including uncultivated land (as a zero year treatment duration and five different continuous cropping years on cotton fields, with different cropping durations (5, 10, 15, 20 and 25 years, respectively. Thirteen soil indicators were selected including soil physicochemical properties, nutrient properties and enzymatic activities. The results show that duration of continuous cropping of cotton fields significantly influences a number of soil properties. Cultivation durations ranked according to soil quality indexes (SQI are as follows: 15 years (0.828 > 20 years (0.816 > 10 years (0.668> 5 years (0.548 > 25 years (0.377 > 0 years (0.205, and sustainable yield index (SYI are as follows: 10 years (0.830 > 15 years (0.777 > 20 years (0.667 > 5 years (0.586 > 25 years (0.159.

  16. Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making

    Directory of Open Access Journals (Sweden)

    Paul Vincelli

    2016-05-01

    Full Text Available Genetic engineering (GE offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals.

  17. Energy, Nutrient and Economic Cross Indicators of Cropping Systems in Northern Italy

    Directory of Open Access Journals (Sweden)

    Nicola Castoldi

    2010-03-01

    Full Text Available Agro-ecological indicators are useful tools to provide synthetic representations of agricultural systems. Simple indicators can be combined to calculate cross indicators, for example efficiencies, calculated as a ratio between two simple indicators. In sustainability studies, efficiency is frequently calculated in energy terms (energy output / energy input; however, other “output” and “input” terms can be used. In this study, we evaluated how the ranking of systems changes when different metrics of agricultural production (economic gross margin vs. energy output and resource use (nutrients inputs and surpluses, fossil energy inputs, economic costs are used. The calculations were carried out for a study area in northern Italy (Sud Milano Agricultural Park, characterised by intensively cultivated arable cropping systems (cereals and forage crops. Crop types were ranked differently when metrics changed. In general, maize (a highly productive crop had good performances when evaluated using the output / input energy ratio, while rice was good when we used the ratios based on gross margin. When energy or monetary outputs were divided by N surplus, all crop types had very similar median values, suggesting a common energetic and economic efficiency of N use. Overall, different cross indicators may provide a different representation of the system studied. This means that it is not possible to provide a unique synthetic evaluation of sustainability, which instead depends on the indicator(s chosen.We conclude that it is very important to clarify the objective of sustainability studies and to select accordingly the most adequate indicators.

  18. Global crop production forecasting data system analysis

    Science.gov (United States)

    Castruccio, P. A. (Principal Investigator); Loats, H. L.; Lloyd, D. G.

    1978-01-01

    The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources.

  19. Unravelling the causes of variability in crop yields and treatment responses for better tailoring of options for sustainable intensification in southern Mali

    NARCIS (Netherlands)

    Falconnier, G.N.; Descheemaeker, Katrien; Mourik, Van T.A.; Giller, K.E.

    2016-01-01

    Options that contribute to sustainable intensification offer an avenue to improve crop yields and farmers' livelihoods. However, insufficient knowledge on the performance of various options in the context of smallholder farm systems impedes local adaptation and adoption. Therefore, together with

  20. Toward Knowledge Systems for Sustainability Science

    Science.gov (United States)

    Zaks, D. P.; Jahn, M.

    2011-12-01

    Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated

  1. New climate-proof cropping systems in dry areas of the Mediterranean region

    DEFF Research Database (Denmark)

    Jacobsen, Sven-Erik

    2014-01-01

    FP7 project entitled 'Sustainable water use securing food production in dry areas of the Mediterranean region (SWUP-MED)' working on climate-proof cropping systems in Morocco, Syria, Turkey and southern Europe, collaborating with UK, Denmark and Australia. The results are valid for other parts...

  2. Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review

    Directory of Open Access Journals (Sweden)

    William Deen

    2013-02-01

    Full Text Available In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern agro-ecosystems using inter-seeded legumes provides further opportunities to improve land management practices that sustain crop yields and their resilience to biotic and abiotic stresses. Benefits of legume cover crops have been known for decades and red clover (Trifolium pratense is one of the most common and beneficial when frost-seeded under winter wheat in advance of maize in a rotation. However, its use has been declining mostly due to the use of synthetic fertilizers and herbicides, concerns over competition with the main crop and the inability to fully capture red clover benefits due to difficulties in the persistence of uniform stands. In this manuscript, we first review the environmental, agronomic, rotational and economical benefits associated with inter-seeded red clover. Red clover adaptation to a wide array of common wheat-based rotations, its potential to mitigate the effects of land degradation in a changing climate and its integration into sustainable food production systems are discussed. We then identify areas of research with significant potential to impact cropping system profitability and sustainability.

  3. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    Science.gov (United States)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical

  4. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei, E-mail: weiwu@nwsuaf.edu.cn [College of Agronomy, Northwest A& F University, Yangling, Shaanxi 712100 (China); Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre (ECORC), Ottawa, ON K1A 0C6 (Canada); Ma, Baoluo, E-mail: Baoluo.Ma@AGR.GC.CA [Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre (ECORC), Ottawa, ON K1A 0C6 (Canada)

    2015-04-15

    The increasing food demands of a growing human population and the need for an environmentally friendly strategy for sustainable agricultural development require significant attention when addressing the issue of enhancing crop productivity. Here we discuss the role of integrated nutrient management (INM) in resolving these concerns, which has been proposed as a promising strategy for addressing such challenges. INM has multifaceted potential for the improvement of plant performance and resource efficiency while also enabling the protection of the environment and resource quality. This review examines the concepts, objectives, procedures and principles of INM. A comprehensive literature search revealed that INM enhances crop yields by 8–150% compared with conventional practices, increases water-use efficiency, and the economic returns to farmers, while improving grain quality and soil health and sustainability. Model simulation and fate assessment further reveal that reactive nitrogen (N) losses and GHG (greenhouse gas) emissions are reduced substantially under advanced INM practices. Lower inputs of chemical fertilizer and therefore lower human and environmental costs (such as intensity of land use, N use, reactive N losses and GHG emissions) were achieved under advanced INM practices without compromising crop yields. Various approaches and perspectives for further development of INM in the near future are also proposed and discussed. Strong and convincing evidence indicates that INM practice could be an innovative and environmentally friendly strategy for sustainable agriculture worldwide. - Highlights: • The increasing pressure to meet global cereal demand poses great challenge. • A changing environment further threatens cereal production. • Literature summary shows 8–150% yield advantage from use of INM method. • INM contributions to mitigation of environmental costs are remarkable. • High crop productivity and less environmental impact can be

  5. Effects of cropping systems on soil biology

    Science.gov (United States)

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  6. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    Science.gov (United States)

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  7. Proactive sustainability strategy and corporate sustainability performance: The mediating effect of sustainability control systems.

    Science.gov (United States)

    Wijethilake, Chaminda

    2017-07-01

    This study examines to what extent corporations use sustainability control systems (SCS) to translate proactive sustainability strategy into corporate sustainability performance. The study investigates the mediating effect of SCS on the relationship between proactive sustainability strategy and corporate sustainability performance. Survey data were collected from top managers in 175 multinational and local corporations operating in Sri Lanka and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). SCS were observed to only partially mediate the relationship between proactive sustainability strategy and corporate sustainability performance. The mediating effect of SCS is further examined under three sustainability strategies; environmental and social strategies reveal a partial mediation, while the economic strategy exhibits no mediation. The study also finds that (i) a proactive sustainability strategy is positively associated with SCS and corporate sustainability performance and (ii) SCS are positively associated with corporate sustainability performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    Science.gov (United States)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips

  9. Decomposition, N contribution and soil organic matter balances of crop residues and vermicompost in maize-based cropping systems in southwest Mexico

    NARCIS (Netherlands)

    Flores Sanchez, D.; Pastor, A.; Rossing, W.A.H.; Kropff, M.J.; Lantinga, E.A.

    2016-01-01

    Soil fertility depletion is one of the main concerns of the farmers in the Costa Chica, Mexico. The current crop management exacerbates nutrient cycling unbalances and threatens the sustainability of the common maize production systems. It is necessary to supply the soil with organic sources. Field

  10. Tree Crops, a Permanent Agriculture: Concepts from the Past for a Sustainable Future

    Directory of Open Access Journals (Sweden)

    C. Reed Funk

    2013-09-01

    Full Text Available J. Russell Smith (1874–1966, a professor of geography at Columbia University, witnessed the devastation of soil erosion during his extensive travels. He first published his landmark text, Tree Crops, A Permanent Agriculture in 1929, in which he described the value of tree crops for producing food and animal feed on sloping, marginal, and rocky soils as a sustainable alternative to annual crop agriculture less suited to these lands. A cornerstone of his thesis was using wide germplasm collection and plant breeding to improve this largely underutilized and genetically unexploited group of plants to develop locally adapted, high-yielding cultivars for the many climatic zones of North America. Smith proposed an establishment of “Institutes of Mountain Agriculture” to undertake this work. For a variety of reasons, though, his ideas were not implemented to any great degree. However, our growing population’s increasing demands on natural resources and the associated environmental degradation necessitate that Smith’s ideas be revisited. In this review, his concepts, supported by modern scientific understanding and advances, are discussed and expanded upon to emphasize their largely overlooked potential to enhance world food and energy security and environmental sustainability. The discussion leads us to propose that his “institutes” be established worldwide and with an expanded scope of work.

  11. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter

    2015-01-01

    . In comparison with non-LBCC, LBCCs have the potential to partly replace the effect of manure application in organic cropping systems with greater crop production and less environmental footprint with respect to N2O emissions. However, harvest of the catch crops may reduce crop yield unless the harvested N......Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report...... crops. The effect of two catch crop management strategies was also tested: autumn harvest of the catch crop versus incorporation of whole-crop residues by spring ploughing. LBCCs accumulated 59–67 kg N ha−1 in their tops, significantly more than those of the non-LBCC, 32–40 kg N ha−1. Macro...

  12. Production function analysis of Cassava-based cropping systems in ...

    African Journals Online (AJOL)

    Production function analysis of Cassava-based cropping systems in River state, Nigeria. ... An analysis of production function of cassava-based cropping systems in Rivers State is the main focus of this paper. A total of 180 ... Multiple regression model was the main tool of data analysis where different functions were tried.

  13. Influence of cowpea genotype and sorghum-cropping system on ...

    African Journals Online (AJOL)

    Influence of cowpea genotype and sorghum-cropping system on cowpea infestation by some insect pests in the sudan savannah of Nigeria. ... seasons to investigate the influence of cowpea genotypes and sorghum cropping system on cowpea damage by legume pod borer, Maruca testulalis (Fabricius), bean flower thrips,

  14. Costing systems design for sustainability

    Directory of Open Access Journals (Sweden)

    Mihaela TURTUREA

    2013-10-01

    Full Text Available The aim of this article is to present an overall image of the way Accounting responds to nowadays user’s needs in relation to the quantification of the impact companies have towards the environment. Regarding this, there have been analyzed concepts like sustainable development, environmental accounting, environmental costs and there have been presented the main progress towards environmental cost identification and measurement from the perspective of Activity Based Costing system. To provide an overall image of this concepts, there have been used as research methodology methods the documentation from literature review, analysis, synthesis and comparison.

  15. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees

    2015-01-01

    Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops......) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge us to find sustainable alternatives to pesticide-based pest management. Here, we review the effect of climate change on crop protection...... and propose strategies to reduce the impact of future invasive as well as rapidly evolving resident populations. The major points are the following: (1) the main consequence of climate change and globalization is a heightened level of unpredictability of spatial and temporal interactions between weather...

  16. Finding Sustainability Indicators for Information System Assessment

    OpenAIRE

    Nyström, Tobias; Mustaquim, Moyen

    2015-01-01

    Nowadays, the importance of sustainability is persuading novel shifts in everyday life. This diversity makes it significant and challenging for sustainability to be quantified and measured. While the existence of perfect sustainability indicators is relatively unreasonable, they have important pragmatic roles in quantification and measurement by bridging sustainability's three pillars. Information system (IS) and sustainability are popular research areas, which clearly reflect the divergent a...

  17. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    Science.gov (United States)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    correspond with low soil organic carbon and cation exchange capacity and high content of sand. These areas are considered as management zones to improve crop productivity and soil properties responsible for soil quality and functions. We conclude that soil organic carbon, cation exchange capacity and pH should be included as indicators of soil quality in sandy soils. The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: Soil Care for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).

  18. Sustainable intensification in agricultural systems.

    Science.gov (United States)

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-12-01

    Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural-environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of

  19. The crop assessment subsystem: System implementation and approaches used for the generation of crop production reports

    Science.gov (United States)

    Mcallum, W. E.; Hatch, R. E.; Boatwright, S. M.; Liszcz, C. J.; Evans, S. M. (Principal Investigator)

    1979-01-01

    The primary responsibility of the crop assessment subsystem (CAS) during the three phases of LACIE was to produce crop reports that included estimates of wheat area, yield, and production, as well as a specified set of associated statistical descriptors. The operations of CAS are described with emphasis on sampling strategy, input/output data, evolution of aggregation/reporting system capabilities, and CAS aggregation procedures.

  20. Business system: Sustainable development and anticipatory system

    Directory of Open Access Journals (Sweden)

    Vojko Potočan

    2002-01-01

    Full Text Available The existence and development of humankind depends mainly upon the co-ordinated operation of all areas and levels of human activity. However, in theory and in practice there is no model of operation, which would provide a harmonized and target oriented development. A partial solution is offered by sustainable development, which tries to define and carry out common goals of mankind with a harmonized implementation of human activities at all levels of its living and behaviour. Companies belong to central institutions of modern society which essentially co–create the sustainability of society. The company’s endeavour by simulation to prepare models of their goals concerning their internal and external environment. On the base of systemic treatment, we can define companies as business system, which can survive in a log-run only on the basis of sustainable development. The business system can also be supported by the application of the anticipatory systems. The anticipatory systems can be, in this sense, understood as an entity of the methodological approach, techniques and modes of work. Their characteristics have, a direct impact on the determination of goals, on the orientation of operation, and hence on the achievement of the business system results.

  1. Sustainability versus yield in agricultural soils under various crop production practices - a microbial perspective

    Science.gov (United States)

    Pereg, Lily; Aldorri, Sind; McMillan, Mary

    2017-04-01

    Wheat and cotton are important food and cash crops often grown in rotation on black, grey and red clay soil, in Australia. The common practice of nitrogen and phosphate fertilizers have been solely in the form of agrochemicals, however, a few growers have incorporated manure or composted plant material into the soil before planting. While the cotton yield in studied farms was comparable, we found that the use of such organic amendments significantly enhanced the pool of nitrogen cycling genes, suggesting increased potential of soil microbial function as well as increased microbial metabolic diversity and abundance. Therefore, the regular use of organic amendments contributed to improved soil sustainability.

  2. A multi-adaptive framework for the crop choice in paludicultural cropping systems

    Directory of Open Access Journals (Sweden)

    Nicola Silvestri

    2017-03-01

    Full Text Available The conventional cultivation of drained peatland causes peat oxidation, soil subsidence, nutrient loss, increasing greenhouse gas emissions and biodiversity reduction. Paludiculture has been identified as an alternative management strategy consisting in the cultivation of biomass on wet and rewetted peatlands. This strategy can save these habitats and restore the ecosystem services provided by the peatlands both on the local and global scale. This paper illustrates the most important features to optimise the crop choice phase which is the crucial point for the success of paludiculture systems. A multi-adaptive framework was proposed. It was based on four points that should be checked to identify suitable crops for paludicultural cropping system: biological traits, biomass production, attitude to cultivation and biomass quality. The main agronomic implications were explored with the help of some results from a plurennial open-field experimentation carried out in a paludicultural system set up in the Massaciuccoli Lake Basin (Tuscany, Italy and a complete example of the method application was provided. The tested crops were Arundo donax L., Miscanthus×giganteus Greef et Deuter, Phragmites australis L., Populus×canadensis Moench. and Salix alba L. The results showed a different level of suitability ascribable to the different plant species proving that the proposed framework can discriminate the behaviour of tested crops. Phragmites australis L. was the most suitable crop whereas Populus×canadensis Moench and Miscanthus×giganteus Greef et Deuter (in the case of biogas conversion occupied the last positions in the ranking.

  3. Sustainability of current GM crop cultivation : Review of people, planet, profit effects of agricultural production of GM crops, based on the cases of soybean, maize, and cotton

    NARCIS (Netherlands)

    Franke, A.C.; Breukers, M.L.H.; Broer, W.; Bunte, F.H.J.; Dolstra, O.; Engelbronner-Kolff, d' F.M.; Lotz, L.A.P.; Montfort, J.; Nikoloyuk, J.; Rutten, M.M.; Smulders, M.J.M.; Wiel, van de C.C.M.; Zijl, M.

    2011-01-01

    This report adresses the question whether the cultivation of genetically modified (GM) crops abroad for import in the Netherlands, as compared to the cultivation of their conventional (non-GM) counterparts, is in line with Dutch policy and societal aims striving after more sustainable forms of

  4. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  5. Linking N Cycling to Microbial Function Within Soil Microenvironments in Cover Crop Systems

    Science.gov (United States)

    Kong, A. Y.; Scow, K. M.; Hristova, K.; Six, J.

    2007-12-01

    Cover crops have emerged as a crop management strategy to achieve agricultural sustainability and maintain environmental quality. Thus, fundamental knowledge of microbial-mediated C and N cycling is vital to understanding soil organic matter (SOM) dynamics in cover cropped agroecosystems. We investigated the effects of short-term cover crop-C input on N processing by microbial communities within SOM microenvironments and in bulk soil, across a gradient of organic to conventional crop management. We hypothesized that cover crop C and N inputs promote soil aggregation, which increases the abundance of ammonia oxidizing bacteria (AOB) and stimulates greater microbial cycling of N within soil microenvironments, thereby leading to potential increases in N stabilization coupled with decreases in N loss. Our hypothesis was tested on the long-term organic, low-input, and conventional maize-tomato rotations at the Center for Integrated Farming Systems experiment (Davis, CA). We collected soil samples (0-15cm) across the cover crop and subsequent maize growing seasons and then isolated three SOM fractions soil: coarse particulate organic matter (cPOM; >250um), microaggregates (53-250um), and silt-and-clay (<53um). Total C and N were measured on both bulk soil and SOM fractions. Real-time polymerase chain reaction (PCR) using primers for the functional genes, amoA and nosZ, were employed to quantify AOB and denitrifier population sizes, respectively. We also measured gross ammonification and nitrification rates in short-term 15N-incubations of the bulk soil to link cover crop induced N cycling to N-transforming bacteria. Total soil C and N concentrations and soil aggregation were higher in the organic than conventional and low-input systems. The amoA and no Z copy numbers g-1 dry soil were highest in the microaggregate fraction and similar between the cPOM and silt-and-clay fractions, among all cropping treatments. Abundances of AOB and denitrifiers were lower in bulk soil

  6. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavarría, D.N.; Verdenelli, R.A.; Muñoz, M.J.; Conforto, C.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S.

    2016-11-01

    Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC) as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation) during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L.), vetch (Vicia sativa L.) and radish (Raphanus sativus L.) which weresown in two different mixtures of species: oat and radish mix (CC1) and oat, radish and vetch mix (CC2), with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield. (Author)

  7. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Directory of Open Access Journals (Sweden)

    Diego N. Chavarría

    2016-06-01

    Full Text Available Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L., vetch (Vicia sativa L. and radish (Raphanus sativus L. which were sown in two different mixtures of species: oat and radish mix (CC1 and oat, radish and vetch mix (CC2, with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield.

  8. Developing Sustainable Life Support System Concepts

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  9. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    OpenAIRE

    Ioan GRAD; Camelia MĂNESCU; Teodor MATEOC; Nicoleta MATEOC-SÎRB

    2014-01-01

    The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc..) they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydr...

  10. The hydrometeorological sustainability of Miscanthus x giganteus as a biofuel crop in the US Midwest

    Science.gov (United States)

    Roy, Gavin R.

    Miscanthus x giganteus (M. x giganteus ) is a dense, 3-5 m tall, productive perennial grass that has been suggested to replace corn as the principal source of biofuel for the US transportation industry. However, cultivating a regime of this water-intensive rhizomatous crop across the US Midwest may not be agronomically realistic if it is unable to survive years of low precipitation or extreme cold wintertime soil temperatures, both of which have previously killed experimental crops. The goal of this research was to use a third-generation land surface model (LSM) to provide a new assessment of the hypothetical biogeophysical sustainability of a regime of M. x giganteus across the US Midwest given that, for the first time, a robust and near-complete dataset over a large area of mature M. x giganteus was available for model validation. Modifications to the local hydrology and microclimate would necessarily occur in areas where M. x giganteus is adapted, but a switch to this biofuel crop can only occur where its intense growing season water usage (up to 600 mm) and wintertime soil temperature requirements (no less than -6° C) are feasibly sustainable without irrigation. The first step was to interpret the observed turbulent and ecosystem flux behavior over an extant area of mature M. x giganteus and replicate this behavior within the SiB3 third-generation LSM (Simple Biosphere Model, version 3). A new vegetation parameterization was developed in SiB3 using several previous empirical studies of M. x giganteus as a foundation. The simulation results were validated against a new, robust series of turbulent and ecosystem flux data taken over a four-hectare experimental crop of M. x giganteus in Champaign, IL, USA from 2011-2013. Wintertime mortality of M. x giganteus was subsequently assessed. It was proposed that areas with higher seasonal snowfall in the US Midwest may be favorable for M. x giganteus sustainability and expansion due to the significant insulating effect

  11. Integrating winter camelina into maize and soybean cropping systems

    Science.gov (United States)

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  12. The Social Dimensions of Sustainability and Change in Diversified Farming Systems

    OpenAIRE

    Christopher M. Bacon; Christy Getz; Sibella Kraus; Maywa Montenegro; Kaelin Holland

    2012-01-01

    Agricultural systems are embedded in wider social-ecological processes that must be considered in any complete discussion of sustainable agriculture. Just as climatic profiles will influence the future viability of crops, institutions, i.e., governance agreements, rural household and community norms, local associations, markets, and agricultural ministries, to name but a few, create the conditions that foster sustainable food systems. Because discussions of agricultural sustainability often o...

  13. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  14. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production.

    Science.gov (United States)

    Wargent, Jason J; Jordan, Brian R

    2013-03-01

    Largely because of concerns regarding global climate change, there is a burgeoning interest in the application of fundamental scientific knowledge in order to better exploit environmental cues in the achievement of desirable endpoints in crop production. Ultraviolet (UV) radiation is an energetic driver of a diverse range of plant responses and, despite historical concerns regarding the damaging consequences of UV-B radiation for global plant productivity as related to stratospheric ozone depletion, current developments representative of a range of organizational scales suggest that key plant responses to UV-B radiation may be exploitable in the context of a sustainable contribution towards the strengthening of global crop production, including alterations in secondary metabolism, enhanced photoprotection, up-regulation of the antioxidative response and modified resistance to pest and disease attack. Here, we discuss the prospect of this paradigm shift in photobiology, and consider the linkages between fundamental plant biology and crop-level outcomes that can be applied to the plant UV-B response, in addition to the consequences for related biota and many other facets of agro-ecosystem processes. © 2013 The Author. New Phytologist © 2012 New Phytologist Trust.

  15. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  16. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  17. Soil, Water, and Greenhouse-gas Impacts of Alternative Biomass Cropping Systems

    Science.gov (United States)

    Schulte Moore, L. A.; Bach, E.; Cambardella, C.; Hargreaves, S.; Helmers, M.; Hofmockel, K.; Isenhart, T.; Kolka, R. K.; Ontl, T.; Welsh, W.; Williams, R.; Landscape Biomass Team

    2010-12-01

    Through the 2008 Energy Independence and Security Act and other state and federal mandates, the U.S. is embarking on an aggressive agenda to reduce dependency on fossil fuels. While grain-derived ethanol will be used to largely meet initial renewable fuels targets, advanced biofuels derived from lignocellulosic materials are expected to comprise a growing proportion of the renewable energy portfolio and provide a more sustainable solution. As part of our interdisciplinary research, we are assessing the environmental impacts of four lignocellulosic biomass cropping systems and comparing them to a conventional corn cropping system. This comparison is conducted using a randomized, replicated experiment initiated in fall 2008, which compares the five cropping systems across a toposequence (i.e., floodplain, toeslope, backslope, shoulder, summit). In addition to assessing herbaceous and woody biomass yields, we are evaluating the environmental performance of these systems through changes in water quality, greenhouse-gas emissions, and carbon pools. Initial results document baseline soil parameters, including the capacity of the soils to sequester carbon across the toposequence, and the impacts of landscape heterogeneity and cropping system on soil moisture and nitrate-nitrogen levels in the vadose zone. Additional results on greenhouse-gas emissions and carbon dynamics are forthcoming from this year’s field research. The fuller understanding of the environmental performance of these systems will help inform federal and state policies seeking to incentivize the development of a sustainable bioenergy industry.

  18. Ecosystem services of woody crop production systems

    Science.gov (United States)

    The use of fast growing forest tree species to produce biomass for fuel, fodder, and building materials has a long history. Research programs on short rotation wood crops began in the 1960s; 50 years ago, the concept of silage sycamore (Platanus sp.) was conceived in Georgia. The basic premise was t...

  19. Soil properties, crop production and greenhouse gas emissions in organic and conventional cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen E; Porter, John Roy

    2010-01-01

    : total soil organic carbon (SOC), total N, microbial biomass N (MBN), potentially mineralizable N (PMN), and levels of potential ammonium oxidation (PAO) and denitrifying enzyme activity (DEA). In situ measurements of soil heterotrophic carbon dioxide (CO2) respiration and nitrous oxide emissions were...... crops, respectively. Nevertheless, SOC levels in 2008 were similar across systems. The cumulative soil respiration for the period February to August 2008 ranged between 2 and 3 t CO2–C ha−1 and was correlated (r = 0.95) with average C inputs. In the organic cropping systems, pig slurry application...... and inclusion of catch crops generally increased soil respiration, PMN and PAO. At field capacity, relative gas diffusivity at 0–5 cm depth was >50% higher in the organic than the inorganic fertilizer-based system (P

  20. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  1. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  2. Ecosystem services of woody crop production systems

    Science.gov (United States)

    Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee; Gary S. Ba??uelos; Amir Hass

    2016-01-01

    Short-rotation woody crops are an integral component of regional and national energy portfolios, as well as providing essential ecosystem services such as biomass supplies, carbon sinks, clean water, and healthy soils. We review recent USDA Forest Service Research and Development efforts from the USDA Biomass Research Centers on the provisioning of these ecosystem...

  3. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  4. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  5. Evaluation of Crop-Livestock Integration Systems among Farm ...

    African Journals Online (AJOL)

    USER

    livestock production. The major cropping system among rural farm families in the study area is mixed cropping (70%). However, many farmers (72.5%) in .... Vegetables. 12.5. 10.0. 7.5. 10.0. Forage and pastures. 2.5. 0.0. 5.0. 2.5. Livestock production system. Extensive. 40.0. 50.0. 32.5. 40.8. Semi intensive. 57.5. 50.0. 55.0.

  6. DayCent modelling of Swiss cropping systems

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Büchi, Lucie; Mäder, Paul; Mayer, Jochen; Charles, Raphael; van der Heijden, Marcel; Six, Johan

    2016-04-01

    There is a growing need to identify and evaluate sustainable greenhouse gas (GHG) mitigation options, their bio-economic feasibility in the agricultural sector, and support implementation of agricultural GHG mitigation activities that are an integral part of climate change strategies. In recent years, several ecosystem biogeochemical process-based models and comprehensive decision making tools integrated with these models have been developed. The DayCent model simulates all major ecosystem processes that affect soil C and N dynamics, including plant production, water flow, heat transport, SOC decomposition, N mineralization and immobilization, nitrification, denitrification, and methane oxidation. However, if the model is to be reliably used for identification of GHG mitigation options and climate change strategies across the EU agricultural regions, it requires site- and region-specific calibration and evaluation. Here, we calibrated and validated the model to Swiss climate and soil conditions and management options using available long-term experimental data. Data on crop productivity, soil organic carbon and N2O emissions were derived from four field sites located in Thervil (1977-2013), Frick (2003-2013), Changins (1971-2013), and Reckenholz (2009-2013) that have evaluated the effects of agricultural input systems (specifically, organic, biodynamic, and conventional with and without manure additions) and soil management options (various tillage practices and cover cropping). The preliminary results show that the DayCent model was able to reproduce 76% of variability in the crop productivity (n = 1 316) and 75% variability in measured soil organic carbon (n = 402) across all long-term trials. Model calibration was evaluated against independent proportions of the data. The uncertainty in model predictions induced by model structure and uncertainty in the measured data still needs to be further evaluated using the Monte Carlo approach. The calibrated model will be

  7. THE NUTRIENTS BALANCE OF CROP ROTATION AS AN INDICATOR OF SUSTAINABLE FARMING ON ARABLE LAND

    Directory of Open Access Journals (Sweden)

    Eva Hanáčková

    2009-03-01

    Full Text Available The nutrient balance of five crop rotation systems under conventional and minimal tillage with interaction of different fertilization treatments was investigated at the experimental station of Slovak Agricultural University in Nitra Dolná Malanta, during 2004-2005. The five-field crop rotation of maize (Zea mays L. - winter wheat (Triticum aestivum L. - spring barley (Hordeum vulgare L. underseeded with red clover - red clover (Trifolium pratense - common pea (Pisum sativum L. and mustard as catch crop was used. The most serious deficit of nitrogen (- 62.2 kg.ha-1.yr-1, phosphorus (- 24.0 kg.ha-1.yr-1 and potassium (- 89.2 kg.ha-1.yr-1 was on control treatments. Deficit of nitrogen was also found-out in treatments with mineral fertilizers application. However higher deficit of nitrogen (- 25.4 kg.ha-1.yr- 1 was registered under conventional tillage. In treatment fertilized with mineral fertilizers together with by - product of pre - crop incorporation into soil (PZ, small balance surplus of nitrogen (8 kg.ha-1.yr-1 - B1, 11.5 kg. ha-1.yr-1 - B2, respectively was calculated. The positive balance of phosphorus achieved in treatments with into soil incorporated by - products of pre - crops (in both systems of soil cultivation amounting value of 3.9 kg.ha-1.yr-1 can contribute to good supply of phosphorous in soil. The negative balance of potassium fluctuating from - 89.2 kg.ha-1.yr-1 (control treatment to - 22 kg.ha-1.yr-1 (PZ is acceptable owing to high content of available potassium in soil of experimental stand.

  8. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad.

    Science.gov (United States)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J; Owen, Micheal D K; Tillie, Pascal; Messéan, Antoine; Kudsk, Per

    2017-06-01

    Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.

  9. Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    2013-02-01

    absorption capability. The insensitivity of A. theophrasti to BOA was due to reduced accumulation in seedlings. Overall, results confirm that the use of a rye cover crop in a suitable crop rotation represents a sustainable weed management practice permitting a reduction in the amount of herbicides used in agroecosystems, thus limiting the environmental risks of intensive agriculture.

  10. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa

    Science.gov (United States)

    Thornton, Philip K.; Herrero, Mario

    2015-09-01

    Mixed crop-livestock systems are the backbone of African agriculture, providing food security and livelihood options for hundreds of millions of people. Much is known about the impacts of climate change on the crop enterprises in the mixed systems, and some, although less, on the livestock enterprises. The interactions between crops and livestock can be managed to contribute to environmentally sustainable intensification, diversification and risk management. There is relatively little information on how these interactions may be affected by changes in climate and climate variability. This is a serious gap, because these interactions may offer some buffering capacity to help smallholders adapt to climate change.

  11. Sustainability and Cities as Systems of Innovation

    DEFF Research Database (Denmark)

    Johnson, Bjørn; Lehmann, Martin

    Cities often constitute relevant environments for interactive learning and innovation potentially capable of tackling sustainability problems. In this paper we ask if the concept of systems of innovation can increase our understanding of city dynamics and help promoting the sustainable development...... of cities. Through a combination of the innovation system approach and the perspective of creative cities, we argue that a slightly modified concept – sustainable city systems of innovation – may be helpful in this context. To underline this, we discuss certain ‘city-traits’ of sustainability and conclude...

  12. Survey of Rice Cropping Systems in Kampong Chhnang Province, Cambodia

    Directory of Open Access Journals (Sweden)

    Volker KLEINHENZ

    2013-03-01

    Full Text Available Although Cambodia might have achieved self-sufficiency and an exported surplus in rice production, its rice-based farming systems are widely associated with low productivity, low farmer income and rural poverty. The study is based on a questionnaire village survey in 14 communes containing 97 villages of Kampong Chhnang Province from March to June, 2011. It analyzes the prevailing rice-based cropping systems and evaluates options for their improvement. Differences in cropping systems depend on the distance from the Tonle Sap water bodies. At distances greater than 10 km, transplanted wet-season rice cropping system with low productivity of about 1.6 t/hm2 prevails. This deficiency can be primarily attributed to soils with high coarse sand fractions and low pH ( 4.0. Farmers predominantly cultivate dry-season recession rice between January and April. Seventy-nine percent of the area is sown directly and harvested by combines. Adoption ratio of commercial rice seeds is 59% and yields average 3.2 t/hm2. Introduction of the second dry-season rice between April and July may double annual yields in this rice cropping system. Besides upgrading other cultivation technologies, using seeds from commercial sources will improve yield and rice quality. Along with rice, farmers grow non-rice crops at different intensities ranging from single annual crops to intensive sequences at low yields.

  13. Linyphiid spider populations in sustainable wheat‐clover bi‐cropping compared to conventional wheat‐growing practice

    DEFF Research Database (Denmark)

    Gravesen, Eigil Vestergaard

    2008-01-01

    Linyphiid web densities in wheat-clover bi-crop systems where winter wheat was grown in an under-storey of white clover were compared with web densities estimated in conventional wheat-growing systems. The web densities in the wheat-clover bi-crop systems were on average between 200 and 250 webs ...

  14. The Development of a Remote Sensor System and Decision Support Systems Architecture to Monitor Resistance Development in Transgenic Crops

    Science.gov (United States)

    Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen

    2008-01-01

    The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.

  15. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  16. Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.

    Science.gov (United States)

    Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.

  17. Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.

    Directory of Open Access Journals (Sweden)

    Felicity A Edwards

    Full Text Available Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.

  18. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  19. Threshold Concepts, Systems and Learning for Sustainability

    Science.gov (United States)

    Sandri, Orana Jade

    2013-01-01

    This paper presents a framework for understanding the role that systems theory might play in education for sustainability (EfS). It offers a sketch and critique of Land and Meyer's notion of a "threshold concept", to argue that seeing systems as a threshold concept for sustainability is useful for understanding the processes of…

  20. Cropping system innovation for coping with climatic warming in China

    Directory of Open Access Journals (Sweden)

    Aixing Deng

    2017-04-01

    Full Text Available China is becoming the largest grain producing and carbon-emitting country in the world, with a steady increase in population and economic development. A review of Chinese experiences in ensuring food self-sufficiency and reducing carbon emission in the agricultural sector can provide a valuable reference for similar countries and regions. According to a comprehensive review of previous publications and recent field observations, China has experienced on average a larger and faster climatic warming trend than the global trend, and there are large uncertainties in precipitation change, which shows a non-significantly increasing trend. Existing evidence shows that the effects of climatic warming on major staple crop production in China could be markedly negative or positive, depending on the specific cropping region, season, and crop. However, historical data analysis and field warming experiments have shown that moderate warming, of less than 2.0 °C, could benefit crop production in China overall. During the most recent warming decades, China has made successful adaptations in cropping systems, such as new cultivar breeding, cropping region adjustment, and cropping practice optimization, to exploit the positive rather than to avoid the negative effects of climatic warming on crop growth. All of these successful adaptations have greatly increased crop yield, leading to higher resource use efficiency as well as greatly increased soil organic carbon content with reduced greenhouse gas emissions. Under the warming climate, China has not only achieved great successes in crop production but also realized a large advance in greenhouse gas emission mitigation. Chinese experiences in cropping system innovation for coping with climatic warming demonstrate that food security and climatic warming mitigation can be synergized through policy, knowledge, and technological innovation. With the increasingly critical status of food security and climatic warming

  1. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J.

    2017-01-01

    Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation...... of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops...... are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM...

  2. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  3. Comparison of the effects of different crop rotation systems on winter ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... sunflower-wheat-fodder pea + sunflower crop rotation system both in the first and second three year ... that binary cropping system consisting of wheat- ... The first 3 year (1995-1998) application plan for the crop rotation trials in which wheat was used as main crop. Year 1.System 2.System 3.System. 4.

  4. Traditional formwork system sustainability performance: experts’ opinion

    Science.gov (United States)

    Taher Al-ashwal, Mohammed; Abdullah, Redzuan; Zakaria, Rozana

    2017-11-01

    The traditional formwork system is one of the commonly used systems in concrete construction. It is considered as one of the least observed activities in term of sustainability performance. In this paper, the sustainability performance of the traditional formwork has been assessed by using a multi-criteria assessment tool to facilitate the decision on the sustainability performance measurement. A quantitative five Likert scale survey study using judgemental sampling is employed in this study. A sample of 93 of engineering construction experts, with different fields including contractors, developers, and consultants in the Malaysian context has made the body of the collected primary data. The results show variety in the distribution of the respondents’ working experience. The sustainability performance is considered moderately sustainable by the experts with only given 40.24 % of the overall total score for the three sustainable categories namely environmental, social and economic. Despite the finding that shows that the economic pillar was rated as the most sustainable aspect in comparison to the environmental and social pillars the traditional formwork system sustainability still needs enhancement. Further incorporation of the social and environmental pillars into the concrete construction the sustainability performance of traditional formwork system could be improved.

  5. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980-2014 in Northern China.

    Science.gov (United States)

    Zhang, Xin; Bol, Roland; Rahn, Clive; Xiao, Guangmin; Meng, Fanqiao; Wu, Wenliang

    2017-10-15

    Global population increase will require rapid increase of food production from existing agricultural land by 2050, which will inevitably mean the increase of agricultural productivity. Due to agricultural sustainable intensification since the 1990s, crop production in Huantai County of northern China has risen to 15tha-1yr-1 for the annual wheat-maize rotation system. We examined the temporal dynamics of nitrogen (N) budget, N losses, and N use efficiency (NUE) during the 35years (1980-2014) in Huantai. The results revealed that atmospheric N deposition increased 220% while reactive N losses decreased by 21.5% from 1980s to 2010s. During 1980-2002, annual N partial factor productivity (PFPN), apparent NUE and N recovery efficiency (REN) increased from 20.3 to 40.7kggrainkg-1Nfert, from 36.5% to 71.0%, and from 32.4% to 57.7%, respectively; meanwhile, reactive N losses intensity, land use intensity and N use intensity decreased by 69.8%, 53.4%, 50.0%, respectively, but without further significant changes after 2002. Overall increases in NUE and decreases in N losses were largely due to the introduction of optimized fertilization practice, mechanization and increased incorporation of crop straw in Huantai. Straw incorporation was also significant in soil N stock accrual and fertility improvement. By 2030, northern China may reach the lowest end of PFPN values in developed countries (>45kggrainkg-1Nfert). These agricultural sustainable intensification practices will be critical in maintaining high grain yields and associated decreases in environmental pollution, although water use efficiency in the region still needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. System theoretic approach to sustainable development problems

    Directory of Open Access Journals (Sweden)

    Batanović Vladan

    2011-01-01

    Full Text Available This paper shows that the concepts and methodology contained in the system theory and operations research are suitable for application in the planning and control of the sustainable development. The sustainable development problems can be represented using the state space concepts, such as the transition of system, from the given initial state to the final state. It is shown that sustainable development represents a specific control problem. The peculiarity of the sustainable development is that the target is to keep the system in the prescribed feasible region of the state space. The analysis of planning and control problems of sustainable development has also shown that methods developed in the operations research area, such as multicriteria optimization, dynamic processes simulation, non-conventional treatment of uncertainty etc. are adequate, exact base, suitable for resolution of these problems.

  7. Assessing the sustainability of small wastewater systems

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    The authors present a planning tool for comparing and assessing the sustainability of different wastewater systems. The core of the planning tool is an assessment method based on both technical and social elements. The point of departure is that no technique is inherently sustainable or ecological...

  8. Structural sustainability of cambisol under different land use system

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    2012-12-01

    Full Text Available Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a young secondary forest; b old secondary forest; c forest; d pasture; e cropping, and f agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth, the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.

  9. Regional modelling of nitrate leaching from Swiss organic and conventional cropping systems under climate change

    Science.gov (United States)

    Calitri, Francesca; Necpalova, Magdalena; Lee, Juhwan; Zaccone, Claudio; Spiess, Ernst; Herrera, Juan; Six, Johan

    2016-04-01

    Organic cropping systems have been promoted as a sustainable alternative to minimize the environmental impacts of conventional practices. Relatively little is known about the potential to reduce NO3-N leaching through the large-scale adoption of organic practices. Moreover, the potential to mitigate NO3-N leaching and thus the N pollution under future climate change through organic farming remain unknown and highly uncertain. Here, we compared regional NO3-N leaching from organic and conventional cropping systems in Switzerland using a terrestrial biogeochemical process-based model DayCent. The objectives of this study are 1) to calibrate and evaluate the model for NO3-N leaching measured under various management practices from three experiments at two sites in Switzerland; 2) to estimate regional NO3-N leaching patterns and their spatial uncertainty in conventional and organic cropping systems (with and without cover crops) for future climate change scenario A1B; 3) to explore the sensitivity of NO3-N leaching to changes in soil and climate variables; and 4) to assess the nitrogen use efficiency for conventional and organic cropping systems with and without cover crops under climate change. The data for model calibration/evaluation were derived from field experiments conducted in Liebefeld (canton Bern) and Eschikon (canton Zürich). These experiments evaluated effects of various cover crops and N fertilizer inputs on NO3-N leaching. The preliminary results suggest that the model was able to explain 50 to 83% of the inter-annual variability in the measured soil drainage (RMSE from 12.32 to 16.89 cm y-1). The annual NO3-N leaching was also simulated satisfactory (RMSE = 3.94 to 6.38 g N m-2 y-1), although the model had difficulty to reproduce the inter-annual variability in the NO3-N leaching losses correctly (R2 = 0.11 to 0.35). Future climate datasets (2010-2099) from the 10 regional climate models (RCM) were used in the simulations. Regional NO3-N leaching

  10. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  11. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    Science.gov (United States)

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-02-09

    compromising on food and biofuel production. Optimization runs yielded an optimal cropping pattern with 32% of watershed area in stover removal, 15% in switchgrass and 2% in Miscanthus. The optimal scenario resulted in 14% reduction in nitrate and 22% reduction in total phosphorus from the baseline. This framework can be used as an effective tool to take decisions regarding environmentally and economically sustainable strategies to minimize the nutrient delivery at minimal biomass production cost, while simultaneously meeting food and biofuel production targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Sustainable energy crop: An analysis of ethanol production from cassava in Thailand

    Science.gov (United States)

    Ubolsook, Aerwadee

    The first essay formulates a dynamic general equilibrium optimal control model of an energy crop as part of a country's planned resource use over a period of time. The model attempts to allocate consumption, production, and factors of production to achieve the country's sustainable development goal. A Cobb-Douglas specification is used for both utility and production functions in the model. We calibrate the model with Thailand data. The selected model is used to generate the stationary state solution and to simulate the optimal policy function and optimal time paths. Two methods are used: a linear approximation method and the Runke-Kutta reverse shooting method. The model provides numerical results that can be used as information for decision makers and stakeholders to devise an economic plan to achieve sustainable development goals. The second essay studies the effect of international trade and changes in labor supply, land supply, and the price of imported energy on energy crop production for bio fuel and food, as well as impacts on social welfare. We develop a dynamic general equilibrium model to describe two baseline scenarios, a closed economy and an open economy. We find that international trade increases welfare and decreases the energy price. Furthermore, resources are allocated to produce more food under the open economy scenario than the quantities produced under a closed economy assumption. An increase in labor supply and land supply result in an increase in social welfare. An increase in imported energy price leads to a welfare loss, higher energy production, and lower food production. The third essay develops a partial equilibrium econometric model to project the impacts of an increase in ethanol production on the Thai agriculture sector over the next ten years. The model is applied to three scenarios for analyzing the effect of government ethanol production targets. The results from the baseline model and scenario analysis indicate that an expansion

  13. Prunus persica crop management as step toward AMF diversity conservation for the sustainable soil management

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Lozano, Z.; Garcia-Orenes, F.; Roldan, A.

    2012-04-01

    We investigated the diversity of arbuscular mycorrhizal fungi (AMF) in roots of Prunus persica under two fertilization treatments (CF: consisted of application of chicken manure (1400 kg.ha-1), urea (140 kg.ha-1), complex fertilizer 12-12-17/2 (280 kg.ha-1), and potassium sulfate (40 kg.ha-1) and IF: consisted of application of urea (140 kg.ha-1), complex fertilizer 12-12-17/2 (400 kg.ha-1) and potassium sulfate (70 kg.ha-1)) combined with integrated pest management (IM) or chemical pest management (CM), in a tropical agroecosystem in the north of Venezuela. Our goal was to ascertain how different fertilizers/pest management can modify the AMF diversity colonizing P. persica roots as an important step towards sustainable soil use and therefore protection of biodiversity. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty-one different phylotypes were identified, which were grouped in five families: Glomeraceae, Paraglomeraceae, Acaulosporaceae, Gigasporaceae and Archaeosporaceae. Sixteen of these sequence groups belonged to the genus Glomus, two to Paraglomus, one to Acaulospora, one to Scutellospora and one to Archaeospora. A different distribution of the AMF phylotypes as consequence of the difference between treatments was observed. Thus, the AMF communities of tree roots in the (IF+CM) treatment had the lowest diversity (H'=1.78) with the lowest total number of AMF sequence types (9). The trees from both (CF+IM) and (IF+IM) treatments had similar AMF diversity (H'?2.00); while the treatment (CF+CM) yielded the highest number of different AMF sequence types (17) and showed the highest diversity index (H'=2.69). In conclusion, the crop management including combination of organic and inorganic fertilization and chemical pest control appears to be the most suitable strategy with respect to reactivate the AMF diversity in the roots of this crop and thus, the agricultural and environmental

  14. A knowledge management system for indigenous crops production: case of sorghum farming in south Tharaka, Kenya

    Directory of Open Access Journals (Sweden)

    Robert Oboko

    2016-12-01

    Full Text Available Recent researches have shown that a food security strategy that dependent entirely on exotic crops, which are greatly affected by sporadic rainfall, is not sustainable. There is a need to shift to indigenous crops that are more tolerant to unpredictable weather patterns. Little shareable knowledge exists on the production of these crops; the production knowledge is passed by word of mouth and demonstration across generations, and sometimes lost in the process. This research seeks to show how this gap can be addressed using a knowledge management system (KMS. One of the key factors that distinguishes the intelligent production process of the 21st century is the emphasis on data, information and ultimately knowledge. The importance of KMS in agriculture cannot be over emphasized. This research started with an exploratory pre-study to identify the key functionality that needed to be captured by the KMS. The pre-study brought to the fore the need for the use of technology information in improving the sorghum production process. Three key themes emerged from the pre-study, namely identification of best practices, convenient way of disseminating information to stakeholders, and finally enhancement of research processes through use of information technology. These functional needs formed the basis for the development of the KMS. Further works can be undertaken to expand the solution to include more weather tolerant crops patterns, in order to provide a wider crops option to smallholder farmers.

  15. Sustainable, Reliable Mission-Systems Architecture

    Science.gov (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  16. Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management

    NARCIS (Netherlands)

    Vasileiadisa, V.P.; Sattin, M.; Weide, van der R.Y.

    2011-01-01

    Maize-based cropping systems (MBCSs), with different frequency of maize in the crop sequence, are common in European arable systems. Pesticide use differs according to the type of active ingredients and target organisms in different regions. Within the EU Network of Excellence ENDURE, two

  17. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Rachael D. Garrett

    2017-03-01

    Full Text Available The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food production regions that span a range of socioeconomic contexts, Brazil, New Zealand, and the United States, incentivize or disincentivize the use of integrated crop and livestock practices (ICLS. Our analysis indicates that Brazil and New Zealand have the most favorable policy environment for ICLS, while the United States provides the least favorable environment. The balance of policy incentives and disincentives across our three cases studies mirrors current patterns of ICLS usage. Brazil and New Zealand have both undergone a trend toward mixed crop livestock systems in recent years, while the United States has transitioned rapidly toward continuous crop and livestock production. If transitions to ICLS are desired, particularly in the United States, it will be necessary to change agricultural, trade, environmental, biofuels, and food safety policies that currently buffer farmers from risk, provide too few incentives for pollution reduction, and restrict the presence of animals in crop areas. It will also be necessary to invest more in research and development in all countries to identify the most profitable ICLS technologies in each region.

  18. WEBGIS based CropWatch online agriculture monitoring system

    Science.gov (United States)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  19. The perspective crops for the bioregenerative human life support systems

    Science.gov (United States)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  20. Integrated crop protection as a system approach

    NARCIS (Netherlands)

    Haan, de J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values

  1. Soil organisms in organic and conventional cropping systems

    Directory of Open Access Journals (Sweden)

    Bettiol Wagner

    2002-01-01

    Full Text Available Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum and corn (Zea mays crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. CO2 evolution during the cropping season was higher, up to the double for the organic agriculture system as compared to the conventional. The number of earthworms was about ten times higher in the organic system. There was no difference in the decomposition rate of organic matter of the two systems. In general, the number of microartropods was always higher in the organic plots in relation to the conventional ones, reflectining on the Shannon index diversity. The higher insect population belonged to the Collembola order, and in the case of mites, to the superfamily Oribatuloidea. Individuals of the groups Aranae, Chilopoda, Dyplopoda, Pauropoda, Protura and Symphyla were occasionally collected in similar number in both cropping systems.

  2. MY SIRR: Minimalist agro-hYdrological model for Sustainable IRRigation management-Soil moisture and crop dynamics

    Science.gov (United States)

    Albano, Raffaele; Manfreda, Salvatore; Celano, Giuseppe

    The paper introduces a minimalist water-driven crop model for sustainable irrigation management using an eco-hydrological approach. Such model, called MY SIRR, uses a relatively small number of parameters and attempts to balance simplicity, accuracy, and robustness. MY SIRR is a quantitative tool to assess water requirements and agricultural production across different climates, soil types, crops, and irrigation strategies. The MY SIRR source code is published under copyleft license. The FOSS approach could lower the financial barriers of smallholders, especially in developing countries, in the utilization of tools for better decision-making on the strategies for short- and long-term water resource management.

  3. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Science.gov (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  4. Selection of crop cultivars suited to the location combined with astute management can reduce crop yield penalties in pasture cropping systems

    NARCIS (Netherlands)

    Thomass, D.R.; Lawes, R.A.; Descheemaeker, K.K.E.; Moore, A.D.

    2014-01-01

    Pasture cropping is an emerging farming-systems practice of southern Australia, in which winter grain crops are sown into an established stand of a winter-dormant, summer-growing perennial pasture. There is a pressing need to define times, locations and climates that are suitable for pasture

  5. Performance and sustainability of short-rotation energy crops treated with municipal and industrial residues

    OpenAIRE

    Dimitriou, Ioannis

    2005-01-01

    The sustainability of short-rotation willow coppice (SRWC) as a multifunctional system for phytoremediation—the use of plants for treatment of contaminated air, soil or water—and for producing energy biomass, was studied. SRWC is grown commercially in Sweden to produce energy biomass, nutrient-rich residues being applied as cost-efficient fertiliser to increase production. The principal residues used are municipal wastewater, landfill leachate, industrial wastewater (e.g. log-yard runoff), se...

  6. Factors affecting the choice of cropping systems in Kebbi State ...

    African Journals Online (AJOL)

    The study examined the factors that influence choice of cropping systems in Kebbi State Nigeria. The technique applied in the study was Logit regression. Data to conduct the research was obtained mainly from primary sources through a questionnaire survey of 256 farmers, comprising 98 monocroppers and 158 ...

  7. Crop-Livestock Farming Systems Varying with Different Altitudes in ...

    African Journals Online (AJOL)

    In Sub-Saharan Africa, rangeland is increasingly converted to cropland, creating diverse crop-livestock practices in different environments. As these practices lead to highly adapted livestock production systems using resources that vary locally and seasonally, not much is known about their similarities and differences.

  8. Direct nitrous oxide emissions in Mediterranean climate cropping systems

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos Rodriguez, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Bouwman, Lex; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for

  9. Effects of land quality, management and cropping systems on ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... The study was carried out to assess the effects of land quality, management and cropping system on cassava production in the derived savanna and rain forest of southwestern Nigeria. Soil quality was studied from farmers' fields which had been under cassava cultivation for at least ten (10) years. The.

  10. Cover crop termination timing is critical in organic rotational no-till systems

    Science.gov (United States)

    Cover crop-based rotational no-till enables organic farmers to reduce labor and build soil health. In these systems, cover crops are terminated with a roller-crimper and cash crops are direct-seeded into the mulch. A cropping system experiment was conducted at three locations in the Mid-Atlantic t...

  11. Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production.

    Science.gov (United States)

    Luan, Mingda; Tang, Ren-Jie; Tang, Yumei; Tian, Wang; Hou, Congong; Zhao, Fugeng; Lan, Wenzhi; Luan, Sheng

    2017-06-01

    Potassium (K) and phosphate (Pi) are both macronutrients essential for plant growth and crop production, but the unrenewable resources of phosphorus rock and potash have become limiting factors for food security. One critical measure to help solve this problem is to improve nutrient use efficiency (NUE) in plants by understanding and engineering genetic networks for ion uptake, translocation, and storage. Plants have evolved multiple systems to adapt to various nutrient conditions for growth and production. Within the NUE networks, transport proteins and their regulators are the primary players for maintaining nutrient homeostasis and could be utilized to engineer high NUE traits in crop plants. A large number of publications have detailed K+ and Pi transport proteins in plants over the past three decades. Meanwhile, the discovery and validation of their regulatory mechanisms are fast-track topics for research. Here, we provide an overview of K+ and Pi transport proteins and their regulatory mechanisms, which participate in the uptake, translocation, storage, and recycling of these nutrients in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. PSSD - Planning System for Sustainable Development

    DEFF Research Database (Denmark)

    PSSD - Planning System for Sustainable Development - is a part of the Baltic Sea Region's INTERREG II C program. The current report describes some theories, methods and tools developed under the PSSD project. First, the theoretical foundation of the project is described. Secondly, the role...... of indicators in sustainable development is discussed and a Web-based indicator generator is described. Thirdly, we describe a number of methods and tools, which support planning for sustainable development. Finally, some technical interface tools - especially a Web-based interface to the methods and tools...

  13. Biological Soil Properties in Integrated Crop-Livestock-Forest Systems

    Directory of Open Access Journals (Sweden)

    Paula Camylla Ramos Assis

    Full Text Available ABSTRACT Currently, agricultural productivity and sustainable development are the desired bases for the creation of production systems. Farming for greater production and the efficient use of soil resources are at the core of modern systems. However, the way in which agricultural management and practices can change soil quality has become increasingly important. The aim of this study was to detect changes in soil biological properties caused by implementation of the integrated crop-livestock-forest system (iCLF and to identify the properties suitable for detecting changes in soil biological quality. Soil samples were collected from the 0.00-0.10 m layer in Nova Canaã do Norte, MT, Brazil, and Cachoeira Dourada, GO, Brazil, in areas of the iCLF with 1 (iCLF1 or 3 (iCLF3 eucalyptus rows and in areas of recovered and degraded pasture. In Cachoeira Dourada, in the iCLF1, samples were taken in the tree row and at 2.5, 5.0, and 10.0 m from this row. In Nova Canaã in the iCLF3, samples were taken in the center row and at 3.0, 6.0, 9.0, and 12.0 m from this row. In Cachoeira Dourada, samples were taken in the center row and at 1.5, 3.0, 4.5, 6.0, and 9.0 m from this row. All samples had five replicates. In Nova Canaã, the iCLF1 caused less disturbance in the microbial population than the degraded pasture, which was evidenced by the lower metabolic quotient and basal respiration. The sampling position in relation to the tree row had little effect on comparison of the iCLF with the degraded pasture in regard to soil biological properties. Carbon and N of the microbial biomass and the microbial quotient were the best properties for differentiating the iCLF from the degraded pasture. ICLFs have not yet led to improvements in soil biological quality in relation to the degraded pasture.

  14. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  15. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Directory of Open Access Journals (Sweden)

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  16. Economic Performance and Sustainability of a Novel Intercropping System on the North China Plain.

    Science.gov (United States)

    Huang, Chengdong; Liu, Quanqing; Heerink, Nico; Stomph, TjeerdJan; Li, Baoshen; Liu, Ruili; Zhang, Hongyan; Wang, Chong; Li, Xiaolin; Zhang, Chaochun; van der Werf, Wopke; Zhang, Fusuo

    2015-01-01

    Double cropping of wheat and maize is common on the North China Plain, but it provides limited income to rural households due to the small farm sizes in the region. Local farmers in Quzhou County have therefore innovated their production system by integration of watermelon as a companion cash crop into the system. We examine the economic performance and sustainability of this novel intercropping system using crop yield data from 2010 to 2012 and farm household survey data collected in 2012. Our results show that the gross margin of the intercropping system exceeded that of the double cropping system by more than 50% in 2012. Labor use in the intercropping system was more than three times that in double cropping. The lower returns per labor hour in intercropping, however, exceeded the average off-farm wage in the region by a significant margin. Nutrient surpluses and irrigation water use are significant larger under the intercropping system. We conclude that the novel wheat-maize/watermelon intercropping system contributes to rural poverty alleviation and household-level food security, by raising farm incomes and generating more employment, but needs further improvement to enhance its sustainability.

  17. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    OpenAIRE

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyano...

  18. Towards a sustainable industrial system

    DEFF Research Database (Denmark)

    Evans, Steve; Gregory, Mike; Ryan, Chris

    Our industrial system has been responsible for raising the quality of life of peoples around the world. It is becoming increasingly clear however, that the current system is creating unintended and serious consequences for the environment at a global level. Change on a significant scale is required...... urgently. Some businesses are already engaged in reducing their impact through the introduction of new products, processes and business models. Academics concerned with the industrial system have a responsibility to study these emerging models, to interact with them and to synthesise and spread...... the knowledge. Whilst it is important to address the impact of each product of the industrial system and to pursue aggressive reduction of the effects of specific activities, we must also examine the operation of the whole system. Only in this way can we hope to bring the benefits of industrialisation to those...

  19. First or second generation biofuel crops in Brandenburg, Germany? A model-based comparison of their production-ecological sustainability

    NARCIS (Netherlands)

    Vries, de S.C.; Ven, van de G.W.J.; Ittersum, van M.K.

    2014-01-01

    We assessed and compared the production-ecological sustainability of first and second generation biofuel production systems in the state of Brandenburg, Germany. Production ecological sustainability was defined by a limited set of sustainability indicators including net energy yield per hectare, GHG

  20. A sustainable energy-system in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2003-01-01

    but a negative trade-balance. With this in mind, it is important that Latvia is able to meet the challenge and use the economic development to develop a sustainable energy-system and a sounder trade-balance. A combination of energy planning, national economy and innovation processes in boiler companies will form......The paper presents some of the problems in the Latvian energy-system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems. Latvia has economic growth...

  1. Health Systems Sustainability and Rare Diseases.

    Science.gov (United States)

    Ferrelli, Rita Maria; De Santis, Marta; Egle Gentile, Amalia; Taruscio, Domenica

    2017-01-01

    The paper is addressing aspects of health system sustainability for rare diseases in relation to the current economic crisis and equity concerns. It takes into account the results of the narrative review carried out in the framework of the Joint Action for Rare Diseases (Joint RD-Action) "Promoting Implementation of Recommendations on Policy, Information and Data for Rare Diseases", that identified networks as key factors for health systems sustainability for rare diseases. The legal framework of European Reference Networks and their added value is also presented. Networks play a relevant role for health systems sustainability, since they are based upon, pay special attention to and can intervene on health systems knowledge development, partnership, organizational structure, resources, leadership and governance. Moreover, sustainability of health systems can not be separated from the analysis of the context and the action on it, including fiscal equity. As a result of the financial crisis of 2008, cuts of public health-care budgets jeopardized health equity, since the least wealthy suffered from the greatest health effects. Moreover, austerity policies affected economic growth much more adversely than previously believed. Therefore, reducing public health expenditure not only is going to jeopardise citizens' health, but also to hamper fair and sustainable development.

  2. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  3. Circular Thermodynamics of Organisms and Sustainable Systems

    Directory of Open Access Journals (Sweden)

    Mae-Wan Ho

    2013-07-01

    Full Text Available A circular thermodynamics of organisms and sustainable systems is presented based on dynamic closures in nested space-time domains that enable the system to approach the ideal of zero entropy production simultaneously at equilibrium and far from equilibrium conditions.

  4. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  5. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  6. Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion.

    Science.gov (United States)

    Escalante, Humberto; Castro, Liliana; Gauthier-Maradei, Paola; Rodríguez De La Vega, Reynel

    2016-11-01

    Implementing anaerobic digestion (AD) in energy production from crop residues requires development of decision tools to assess its feasibility and sustainability. A spatial decision support system (SDSS) was constructed to assist decision makers to select appropriate feedstock according to biomethanation potential, identify the most suitable location for biogas facilities, determine optimum plant capacity and supply chain, and evaluate associated risks and costs. SDSS involves a spatially explicit analysis, fuzzy multi-criteria analysis, and statistical and optimization models. The tool was validated on seven crop residues located in Santander, Colombia. For example, fique bagasse generates about 0.21millionm(3)CH4year(-1) (0.329m(3)CH4kg(-1) volatile solids) with a minimum profitable plant of about 2000tonyear(-1) and an internal rate of return of 10.5%. SDSS can be applied to evaluate other biomass resources, availability periods, and co-digestion potential. Copyright © 2016. Published by Elsevier Ltd.

  7. Implications for the agriculture sector of a green economy transition in the Western Cape province of South Africa : a system dynamics modelling approach to food crop production

    Directory of Open Access Journals (Sweden)

    Van Niekerk, J. B. S.

    2017-05-01

    Full Text Available The Western Cape Provincial government in South Africa has introduced a green economy framework, ‘Green is Smart’, to create a more sustainable economy. This framework stipulates plans for the Western Cape Province to implement more sustainable farming practices for food crop production. While sustainable farming practices will have benefits for the environment, they will also impact food crop production and will require financial investments from stakeholders. To comprehend fully the problem at hand, and to understand better the implications of a green economy transition for the food crop production system, system dynamics modelling was undertaken. The model’s findings highlight that sustainable farming practices will only be financially and environmentally viable if they match the yields of conventional farming practices.

  8. A Sustainable European Union Own Resources System

    Directory of Open Access Journals (Sweden)

    Cieslukowski Maciej

    2016-10-01

    Full Text Available From 1992, after the UN “Earth Summit” in Rio de Janeiro, sustainable development has become a priority of many countries and international organizations, including the European Union. After the crisis of 2008+ and the strong criticism of traditional economics, it also became a fundamental element of economic development in the XXI century. This new model is based on a solid and integrated economic, socio-cultural and ecological order. Such a development should be supported by suitable budgetary systems at each level of public government. The paper presents a conception of the sustainable EU own resources system and proposes the methodology of its evaluation.

  9. Forage based animal production systems and sustainability, an invited keynote

    Directory of Open Access Journals (Sweden)

    Abdul Shakoor Chaudhry

    2008-07-01

    Full Text Available Forages are essential for the successful operation of animal production systems. This is more relevant to ruminants which are heavily dependant upon forages for their health and production in a cost-effective and sustainable manner. While forages are an economical source of nutrients for animal production, they also help conserve the soil integrity, water supply and air quality. Although the role of these forages for animal production could vary depending upon the regional preferences for the animal and forage species, climate and resources, their importance in the success of ruminant production is acknowledged. However with the increasing global human population and urbanisation, the sustainability of forage based animal production systems is sometimes questioned due to the interrelationship between animal production and the environment. It is therefore vital to examine the suitability of these systems for their place in the future to supply quality food which is safe for human consumption and available at a competitive price to the growing human population. Grassland and forage crops are recognised for their contribution to the environment, recreation and efficiency of meat and milk production,. To maintain sustainability, it is crucial that such farming systems remain profitable and environmentally friendly while producing nutritious foods of high economical value. Thus, it is pertinent to improve the nutritive value of grasses and other forage plants in order to enhance animal production to obtain quality food. It is also vital to develop new forages which are efficiently utilised and wasted less by involving efficient animals. A combination of forage legumes, fresh or conserved grasses, crop residues and other feeds could help develop an animal production system which is economically efficient, beneficial and viable. Also, it is crucial to use efficient animals, improved forage conservation methods, better manure handling, and minimum

  10. Sustaining an Effective ABC-ABM System

    Directory of Open Access Journals (Sweden)

    Gary COKINS

    2011-02-01

    Full Text Available The purpose of this paper is to describe the Activity- Based Costing (ABC and Activity-Based Management (ABM system and techniques to sustain them as a permanent and repeatable production reporting system, not just for one-off analysis. A comparison is made between ABC/ABM modeling software that extracts source data and business systems that include ABC/ABM modeling features. There are presented the stages of updating, running and rerunning the ABC/ABM system. The resulting information calculated and provided by the ABC/ABM system are analyzed and interpreted in terms of a multidimensional data analysis. The article ends with the authors' conclusions about the benefits of continued operation of sustaining the ABC/ABM system.

  11. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    Agro‐biofuels are expected to reduce the emissions of greenhouse gases because CO2 emitted during the combustion of the biofuels has recently been taken from the atmosphere by the energy crop. Thus, when replacing fossil fuels with biofuels we reduce the emission of fossil fuel‐derived CO2...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel‐derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass......‐clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co‐production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  12. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    Agro-biofuels are expected to reduce the emissions of greenhouse gases because CO2 emitted during the combustion of the biofuels has recently been taken from the atmosphere by the energy crop. Thus, when replacing fossil fuels with biofuels we reduce the emission of fossil fuel-derived CO2...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye-vetch, vetch and grass......-clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co-production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  13. Sustainable Food Security Measurement: A Systemic Methodology

    Science.gov (United States)

    Findiastuti, W.; Singgih, M. L.; Anityasari, M.

    2017-04-01

    Sustainable food security measures how a region provides food for its people without endangered the environment. In Indonesia, it was legally measured in Food Security and Vulnerability (FSVA). However, regard to sustainable food security policy, the measurement has not encompassed the environmental aspect. This will lead to lack of environmental aspect information for adjusting the next strategy. This study aimed to assess Sustainable Food security by encompassing both food security and environment aspect using systemic eco-efficiency. Given existing indicator of cereal production level, total emission as environment indicator was generated by constructing Causal Loop Diagram (CLD). Then, a stock-flow diagram was used to develop systemic simulation model. This model was demonstrated for Indonesian five provinces. The result showed there was difference between food security order with and without environmental aspect assessment.

  14. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  15. A sustainable system of systems approach: a new HFE paradigm.

    Science.gov (United States)

    Thatcher, Andrew; Yeow, Paul H P

    2016-01-01

    Sustainability issues such as natural resource depletion, pollution and poor working conditions have no geographical boundaries in our interconnected world. To address these issues requires a paradigm shift within human factors and ergonomics (HFE), to think beyond a bounded, linear model understanding towards a broader systems framework. For this reason, we introduce a sustainable system of systems model that integrates the current hierarchical conceptualisation of possible interventions (i.e., micro-, meso- and macro-ergonomics) with important concepts from the sustainability literature, including the triple bottom line approach and the notion of time frames. Two practical examples from the HFE literature are presented to illustrate the model. The implications of this paradigm shift for HFE researchers and practitioners are discussed and include the long-term sustainability of the HFE community and comprehensive solutions to problems that consider the emergent issues that arise from this interconnected world. A sustainable world requires a broader systems thinking than that which currently exists in ergonomics. This study proposes a sustainable system of systems model that incorporates ideas from the ecological sciences, notably a nested hierarchy of systems and a hierarchical time dimension. The implications for sustainable design and the sustainability of the HFE community are considered.

  16. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae.

    Science.gov (United States)

    Ndimba, Bongani Kaiser; Ndimba, Roya Janeen; Johnson, T Sudhakar; Waditee-Sirisattha, Rungaroon; Baba, Masato; Sirisattha, Sophon; Shiraiwa, Yoshihiro; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2013-11-20

    Sustainable energy is the need of the 21st century, not because of the numerous environmental and political reasons but because it is necessary to human civilization's energy future. Sustainable energy is loosely grouped into renewable energy, energy conservation, and sustainable transport disciplines. In this review, we deal with the renewable energy aspect focusing on the biomass from bioenergy crops to microalgae to produce biofuels to the utilization of high-throughput omics technologies, in particular proteomics in advancing our understanding and increasing biofuel production. We look at biofuel production by plant- and algal-based sources, and the role proteomics has played therein. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. nteraction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    E azizi

    2016-05-01

    of 3 soybean varieties, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest NUE. In the two years, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest nitrogen and phosphorus absorption efficiency (NAE. Intercropping of millet, soybean and sesame showed the highest potassium uptake efficiency. In this study, nutrient resource did not have a significant effect on water and nutrient use efficiency. The research results have indicated that often nitrogen amount and use efficiency in legume and non legume intercropping were higher than monocultures. This indicates the synergist effect in the intercroppings (Vandermeer, 1989; Szumigalski & Van Acker, 2006. In general, the different benefits of diversity and better use of available inputs are obtained by increasing the diversity of crops and proper selection of plants cultivated in intercropping systems and crop rotations in monoculture systems Acknowledgments This research (044 p was funded by the Vice Chancellor for Research of the Ferdowsi University of Mashhad, which is hereby acknowledged.

  18. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    Science.gov (United States)

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  19. Local soil fertility management on small-scale farming systems for sustainable agriculture

    Science.gov (United States)

    Namriah, Kilowasid, Laode Muhammad Harjoni

    2015-09-01

    The sustainability of small-scale farming systems on marginal lands is still being a topic of debate in scientific and institutional communities. To address this, a study was conducted to find a method of sustaining the productivity of marginal lands for food crop production. Agricultural practices (fallow and traditional cultivation) used by the local small-scale farmers in managing soil fertility to meet the natural biological processes above and below the ground were studied in Muna Island Southeast Sulawesi, Indonesia. Participatory approach was used to gather data and information on soil and land as well as to collect soil macrofauna. The results showed that the practices of local small-scale farmers are based on local soil and land suitability. Organic materials are the source of nutrient inputs to sustain the productivity of their lands by fallowing, burning natural vegetation, putting back the crop residues, doing minimum tillage and mix- and inter-crops. In conclusion, the sustainability of local small-scale farming systems will be established by knowing and understanding local soil and land classification systems and preferred crops being planted. Following the nature of fallow and monitoring soil macrofauna diversity and abundance, all preferred crops should be planted during rainy season with different time of harvest until the next rainy season. Therefore, soils are still covered with crops during dry season. It was suggested that planting time should be done in the rainy season. Doing more researches in other locations with different socio-cultural, economical, and ecological conditions is suggested to validate and refine the method.

  20. SOIL FUNGISTASIS AGAINST FUSARIUM GRAMINEARUM UNDER DIFFERENT CROP MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bruno Brito Lisboa

    2015-02-01

    Full Text Available Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L. + vetch (Vicia sativa L./maize (Zea mays L. + cowpea (Vigna sinensis L., black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA. A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.

  1. Sustainability of Agricultural Systems: Concept to Application

    Science.gov (United States)

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  2. Sustainable information systems: a knowledge perspective

    NARCIS (Netherlands)

    Maruster, L.; Faber, N.R.; Peters, K.

    2008-01-01

    Purpose – The purpose of this paper is to propose a re-orientation of the way the concept of sustainability is dealt with in relation to information systems, positioning human behaviour and the processing of knowledge at the centre of the concept. Design/methodology/approach – The concept of

  3. Edible insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    Edible insects in Sustainable Food Systems comprehensively covers the basic principles of entomology and population dynamics; edible insects and culture; nutrition and health; gastronomy; insects as animal feed; factors influencing preferences and acceptability of insects; environmental impacts...... and conservation; considerations for insect farming and policy and legislation. The book contains practical information for researchers, NGOs and international organizations, decision-makers, entrepreneurs and students...

  4. Start with the seed: Native crops, indigenous knowledge, and community seed systems prerequisites for food sovereignty

    Science.gov (United States)

    The dynamic conservation and sustainable utilization of native crop genetic resources are crucial for food sovereignty of Native American communities. Indigenous knowledge of crop diversity when linked to food traditions, local practices and social norms provide the basis for building sovereign comm...

  5. Socioeconomic and environmental assessment of biodiesel crops on family farming systems in Brazil

    NARCIS (Netherlands)

    Belo Leitea, Dal J.G.; Barbosa Justino, F.; Nunes Vieira da Silva, J.V.; Florin, M.J.; Ittersum, van M.K.

    2015-01-01

    In Brazil, local agricultural research agendas are increasingly challenged by the search for sustainable biodiesel crop options for family farmers, especially under semi-arid conditions. The aim of this paper is to explore the suitability of different biodiesel crops (i.e. soybean, castor bean and

  6. Robust cropping systems to tackle pests under climate change. A review

    NARCIS (Netherlands)

    Lamichhane, J.R.; Barzman, M.; Booij, C.J.H.; Boonekamp, P.M.; Desneux, N.; Huber, L.; Kudsk, P.; Langrell, S.R.H.; Ratnadass, A.; Ricci, P.; Sarah, J.L.; Messéan, A.

    2015-01-01

    Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops) and

  7. Global drivers, sustainable manufacturing and systems ergonomics.

    Science.gov (United States)

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully

  8. Farming system design for innovative crop-livestock integration in Europe.

    Science.gov (United States)

    Moraine, M; Duru, M; Nicholas, P; Leterme, P; Therond, O

    2014-08-01

    The development of integrated crop-livestock systems (ICLS) is a major challenge for the ecological modernisation of agriculture but appears difficult to implement at a large scale. A participatory method for ICLS design has been developed and implemented in 15 case studies across Europe, representing a range of production systems, challenges, constraints and resources for innovation. Local stakeholders, primarily farmers, but also cooperatives, environmental-association representatives and natural-resource managers, were involved in the identification of challenges and existing initiatives of crop-livestock integration; in the design of new options at field, farm and territory levels; and then in qualitative multicriteria assessment of these options. A conceptual framework based on a conceptual model (crops, grasslands, animals) was developed to act as a boundary object in the design step and invite innovative thinking in 'metabolic' and 'ecosystemic' approaches. A diversity of crops and grasslands interacting with animals appeared central for designing sustainable farming systems at the territory level, providing and benefitting from ecosystem services. Within this diversity, we define three types of integrated systems according to their degrees of spatial and temporal coordination: complementarity, local synergy, territorial synergy. Moreover, the options for cooperation and collective organisation between farmers and other stakeholders in territories to organise and manage this diversity of land use revealed opportunities for smart social innovation. The qualitative multicriteria assessment identified farmer workload as the main issue of concern while demonstrating expected benefits of ICLS simultaneously for economic, agronomic, environmental and social criteria. This study concludes that participatory design of ICLS based on a generic multi-level and multi-domain framework and a methodology to deal with a local context can identify new systems to be tested

  9. Sustainability of organic, integrated and conventional farming systems in Tuscany

    NARCIS (Netherlands)

    Pacini, C.; Giesen, G.W.J.; Vazzana, C.; Wossink, G.A.A.

    2002-01-01

    Agricultural researchers widely recognise the importance of sustainable agricultural production systems and the need to develop appropriate methods to measure sustainability. The principal purpose of this paper is to evaluate the financial and environmental aspects of sustainability of Organic,

  10. Sustainability in Higher Education : Analysis and Selection of Assessment Systems

    NARCIS (Netherlands)

    Maragakis, A.; van den Dobbelsteen, A.A.J.F.

    2015-01-01

    There is a noticeable increase in interest with regards to sustainability in higher education. As institutions investigate, implement and market sustainability efforts, there is a myriad of sustainability assessment methodologies currently available. Although these assessment systems were created

  11. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    Science.gov (United States)

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  12. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    Science.gov (United States)

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  13. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and a 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.

  14. Use of Greendrone Uas System for Maize Crop Monitoring

    Science.gov (United States)

    Nasir, A. K.; Tharani, M.

    2017-08-01

    This research work presents the use of a low-cost Unmanned Aerial System (UAS) - GreenDrone for the monitoring of Maize crop. GreenDrone consist of a long endurance fixed wing air-frame equipped with a modified Canon camera for the calculation of Normalized Difference Vegetation Index (NDVI) and FLIR thermal camera for Water Stress Index (WSI) calculations. Several flights were conducted over the study site in order to acquire data during different phases of the crop growth. By the calculation of NDVI and NGB images we were able to identify areas with potential low yield, spatial variability in the plant counts, and irregularities in nitrogen application and water application related issues. Furthermore, some parameters which are important for the acquisition of good aerial images in order to create quality Orthomosaic image are also discussed.

  15. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  16. Information Systems Solutions for Environmental Sustainability

    DEFF Research Database (Denmark)

    Gholami, Roya; Watson, Richard T.; Hasan, Helen

    2016-01-01

    themselves in creating solutions for environmental problems. Moreover, information is a perquisite for assessing the state of the environment and making appropriate decisions to ameliorate identified problems. Indeed, the IS scholarly community needs to help create a sustainable society. While......We contend that too few information systems (IS) academics engage in impactful research that offers solutions to global warming despite the fact that climate change is one of the most critical challenges facing this generation. Climate change is a major threat to global sustainability in the 21st...... century. Unfortunately, from submissions of our call for papers presenting IS solutions for environmental sustainability, we found only one paper worthy of publication. Given that IS have been the major force for productivity increases in the last half-century, we suggest that IS scholars should immerse...

  17. Participatory systems mapping for sustainable consumption

    DEFF Research Database (Denmark)

    Sedlacko, Michal; Martinuzzi, Andre; Røpke, Inge

    2014-01-01

    The paper describes our usage of and experience with the method of participatory systems mapping. The method, developed for the purpose of facilitating knowledge brokerage, builds on participatory modelling approaches and applications and was used in several events involving both researchers...... and policy makers. The paper presents and discusses examples of how different types of participatory interaction with causal loop diagrams (‘system maps’) produced different insights on issues related to sustainable consumption and enabled participatory reflection and sharing of knowledge. Together...

  18. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    Science.gov (United States)

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of crop residue on soil and plant water evaporation in a dryland cotton system

    Science.gov (United States)

    Lascano, R. J.; Baumhardt, R. L.

    1996-03-01

    Dryland agricultural cropping systems emphasize sustaining crop yields with limited use of fertilizer while conserving both rain water and the soil. Conservation of these resources may be achieved with management systems that retain residues at the soil surface simultaneously modifying both its energy and water balance. A conservation practice used with cotton grown on erodible soils of the Texas High Plains is to plant cotton into chemically terminated wheat residues. In this study, the partitioning of daily and seasonal evapotranspiration ( E t) into soil and plant water evaporation was compared for a conventional and a terminated-wheat cotton crop using the numerical model ENWATBAL. The model was configured to account for the effects of residue on the radiative fluxes and by introducing an additional resistance to latent and sensible heat fluxes derived from measurements of wind speed and vapor conductance from a soil covered with wheat-stubble. Our results showed that seasonal E t was similar in both systems and that cumulative soil water evaporation was 50% of E t in conventional cotton and 31% of E t in the wheat-stubble cotton. Calculated values of E t were in agreement with measured values. The main benefit of the wheat residues was to suppress soil water evaporation by intercepting irradiance early in the growing season when the crop leaf area index (LAI) was low. In semiarid regions LAI of dryland cotton seldom exceeds 2 and residues can improve water conservation. Measured soil temperatures showed that early in the season residues reduced temperature at 0.1 m depth by as much as 5°C and that differences between systems diminished with depth and over time. Residues increased lint yield per unit of E t while not modifying seasonal E t and reducing cumulative soil water evaporation.

  20. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    OpenAIRE

    Ella, Victor B.; Reyes, Manuel R.; Mercado, Jr., Agustin; Adrian, Ares; Padre, Rafael

    2016-01-01

    Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS) have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Phil...

  1. Climate change adaptability of cropping and farming systems for Europe

    DEFF Research Database (Denmark)

    Justes, Eric; Rossing, Walter; Vermue, Anthony

    Introduction: Prospective studies showed that the European agriculture will be impacted by climate change (CC) with different effects depending on the geographic region. The ERA-Net+ project Climate-CAFE (call of FACCE-JPI) aims to improve the “adaptive capacity” of arable and forage based farming...... systems to CC through a gradient of adaptation strategies. Methods: The adaptation strategies are evaluated at cropping and farming systems as well as regional levels for nine “Adaptation Pilots” along a North-South climate gradient in the EU. Three categories of strategies are evaluated: i) Resistance...

  2. Sources of Nitrogen for Winter Wheat in Organic Cropping Systems

    DEFF Research Database (Denmark)

    Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E

    2013-01-01

    correlated across all sites and rotations (r2 = 0.72). The MBN corresponded to 46 to 85, 85 to 145, and 74 to 172 kg N ha−1 at the three sites and differed significantly between cropping systems, but MBN could not explain differences in wheat grain N yields. Instead, a multiple linear regression model...... mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...

  3. Managing soil microbial communities in grain production systems through cropping practices

    Science.gov (United States)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  4. A model for an innovative crop protection system in the future illustrated for maize

    NARCIS (Netherlands)

    Zijlstra, C.

    2010-01-01

    To show how innovative techniques for monitoring and precision spraying can be used we have developed a generic model for crop protection system for future high tech cropping systems. We have illustrated how to work with it taking maize as a model crop

  5. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Science.gov (United States)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  6. Advancing a sustainable highway system : highlights of FHWA sustainability activities

    Science.gov (United States)

    2014-06-01

    FHWA is undertaking a significant amount of work related to sustainability across a number of program areas throughout the Agency. The purpose of this report is to showcase some of the ways in which FHWA is : incorporating and embedding sustainabilit...

  7. In search of sustainable transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Nijkamp, P.; Vleugel, J.

    1995-12-31

    Several options can be envisaged in order to alleviate the external costs of modern transport systems: moral conviction, strict regulations (including enforcement), user charge principles (e.g. road pricing, Pigovian taxation), sophisticated environment-friendly technologies (e.g. route guidance, zero-emission cars) and alternative modes of physical planning (e.g. compact city design). Any reduction target in environmental stress has to be assessed from both an environmental sustainability viewpoint and from a cost effectiveness viewpoint. Such an assessment may be based on evaluation criteria that are internal to the transport system or on criteria that mirror an overall systemic efficiency and sustainability. This provokes the question of the most appropriate level of reduction of environmental pollution by the transport sector compared to other economic sectors. A policy strategy aiming at a more sustainable transport system has to identify quantitative criteria which would offer guidelines on the maximum allowable contribution to environmental degradation by the transport sector. This presupposes knowledge on the total permissible pollution in a given area and in a given time frame, as well as knowledge on the share of the transport system in this total volume of pollution (for different pollutants). The aim of this paper is to develop some thoughts on the question of identifying the maximum allowable pollution share by the transport sector, assuming a critical level of maximum resource use, a maximum carrying capacity, a maximum environmental utilisation space, a maximum sustainable yield or some other critical threshold level for environmental decay. The notion of maximum environmental capacity use (MECU) is used to indicate the maximum resource use of a given environmental capital stock that - in a given time period - is compatible with both socio-economic objectives and environmental quality conditions now and in the future. 6 tabs., 24 refs.

  8. Climate Variability and Change in Bihar, India: Challenges and Opportunities for Sustainable Crop Production

    Directory of Open Access Journals (Sweden)

    Kindie Tesfaye

    2017-11-01

    Full Text Available Climate change and associated uncertainties have serious direct and indirect consequences for crop production and food security in agriculture-based developing regions. Long-term climate data analysis can identify climate risks and anticipate new ones for planning appropriate adaptation and mitigation options. The aim of this study was to identify near-term (2030 and mid-term (2050 climate risks and/or opportunities in the state of Bihar, one of India’s most populous and poorest states, using weather data for 30 years (1980–2009 as a baseline. Rainfall, maximum and minimum temperatures, and evapotranspiration will all increase in the near- and mid-term periods relative to the baseline period, with the magnitude of the change varying with time, season and location within the state. Bihar’s major climate risks for crop production will be heat stress due to increasing minimum temperatures in the rabi (winter season and high minimum and maximum temperatures in the spring season; and intense rainfall and longer dry spells in the kharif (monsoon season. The increase in annual and seasonal rainfall amounts, and extended crop growing period in the kharif season generally provide opportunities; but increasing temperature across the state will have considerable negative consequences on (staple crops by affecting crop phenology, physiology and plant-water relations. The study helps develop site-specific adaptation and mitigation options that minimize the negative effects of climate change while maximizing the opportunities.

  9. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Olutobi Adeyemi

    2017-02-01

    Full Text Available Globally, the irrigation of crops is the largest consumptive user of fresh water. Water scarcity is increasing worldwide, resulting in tighter regulation of its use for agriculture. This necessitates the development of irrigation practices that are more efficient in the use of water but do not compromise crop quality and yield. Precision irrigation already achieves this goal, in part. The goal of precision irrigation is to accurately supply the crop water need in a timely manner and as spatially uniformly as possible. However, to maximize the benefits of precision irrigation, additional technologies need to be enabled and incorporated into agriculture. This paper discusses how incorporating adaptive decision support systems into precision irrigation management will enable significant advances in increasing the efficiency of current irrigation approaches. From the literature review, it is found that precision irrigation can be applied in achieving the environmental goals related to sustainability. The demonstrated economic benefits of precision irrigation in field-scale crop production is however minimal. It is argued that a proper combination of soil, plant and weather sensors providing real-time data to an adaptive decision support system provides an innovative platform for improving sustainability in irrigated agriculture. The review also shows that adaptive decision support systems based on model predictive control are able to adequately account for the time-varying nature of the soil–plant–atmosphere system while considering operational limitations and agronomic objectives in arriving at optimal irrigation decisions. It is concluded that significant improvements in crop yield and water savings can be achieved by incorporating model predictive control into precision irrigation decision support tools. Further improvements in water savings can also be realized by including deficit irrigation as part of the overall irrigation management

  10. ENVIRONMENTAL SYSTEMS MANAGEMENT AND SUSTAINABLE SYSTEMS THEORY

    Science.gov (United States)

    Environmental Systems Management is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects. This is importa...

  11. Engineering performant, innovative and sustainable health systems

    OpenAIRE

    Wouters, Raphael

    2016-01-01

    Background: In a time of growing health expenditures and inefficiencies, ageing populations, rise of chronic diseases, co-morbity and technical evolutions, there is a worldwide quest for performant, innovative and sustainable health systems that are, a.o. effective and cost-efficient, patient-centric and co-creative and able to deal with the growing society dynamics.Problem statement: Effectively implementing strategic initiatives that tackle these challenges appears a frightening task since ...

  12. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  13. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Yang

    2017-06-01

    Full Text Available In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle; peanuts → winter wheat-summer maize (PWS, 2-year cycle; ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle; and winter wheat-summer maize (WS, each year. We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm. They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain.

  14. Projected Dryland Cropping System Shifts in the Pacific Northwest in Response to Climate Change

    Directory of Open Access Journals (Sweden)

    Claudio O. Stöckle

    2017-04-01

    Full Text Available Agriculture in the dryland region of the Inland Pacific Northwest (IPNW, including northern Idaho, eastern Washington and northern Oregon is typically characterized based on annual rainfall and associated distribution of cropping systems that have evolved in response to biophysical and socio-economic factors. Three agro-ecological classes (AEC have been proposed for the region: (a crop/fallow (CF, (b annual crop/fallow transition (CCF, and (c continuous cropping (CC. AECs attempt to associate land use into relatively homogeneous areas that result in common production systems. Although there is an interest in sustainable intensification of cropping systems (e.g., reduction of fallow, the question remains whether climate change will preclude intensification or shift the borders of existing AECs toward greater fallow utilization. A simulation study was conducted to address this question, with the aim of classifying 4 × 4 km pixels throughout the region into one of the three AECs for baseline (1979–2010 and future periods (2030s, 2015–2045; 2050s, 2035–2065; 2070s, 2055–2085. Baseline data were derived from traditional rotations and historical climate records. Data for future projections were derived from atmospheric CO2 concentration considering daily weather downloaded from 12 global circulation models and 2 representative concentration pathways (RCP 4.5 and 8.5. Due to the direct effect of atmospheric CO2 on photosynthesis and stomatal conductance, the transpiration use efficiency of crops (TUE; g above-ground biomass kg water−1 showed an increasing trend, with winter wheat TUE changing from 4.76 in the historical period to 6.17 and 7.08 g kg−1 in 2070s, depending on AEC. Compared to the baseline, total grain yield by the 2070s in the region was projected to increase in the range of 18–48% (RCP 4.5 and 30–65% (RCP 8.5, depending on AEC. As a consequence of these changes, compared to the historical baseline period, the future

  15. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems but their impact in non...... tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programmes based on integrated pest management (IPM) principles. Conventional non-inversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption...... is mostly higher as compared to plough-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in non-inversion tillage systems and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems...

  16. Development of CropWatch Online Agriculture Monitoring System

    Science.gov (United States)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.; Yan, N.

    2016-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI) in the Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing agricultural information for thirty-one countries over the world. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. The digital agriculture system is an effective tool for people browse and analysis the agriculture monitoring results. For helping our group to analysis and write the bulletin better and providing our readers an alternative way to browser our results, we design and build the CropWatch online agriculture monitoring system based on the WEBGIS techniques. The figure shows the CropWatch online system structure. In this web application, three methods are provided to browse the data: Vector mode, Raster mode and Cluster mode. (1)Vector mode provides the statistical data of each area which including the current time value and the maximum and minimum values in five years. In this mode, users are able to look the global statistical data and the historical data change in a chart by selecting the region of interest; (2) Raster mode provides the abnormal index value by pixel globally. In this mode, users are able to locate the precise area where the notable exception occurred after they ensure the region in global statistical data. Meanwhile, the historical data change chart is still provided in this mode; (3) Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Cluster mode provides the time series change by pixel in one country which users selected. The time series data is classified into 4 or 5 types by the ISODATA method. Users can click each type in the

  17. Soil Management Practices to Improve Nutrient-use Efficiencies and Reduce Risk in Millet-based Cropping Systems in the Sahel

    Directory of Open Access Journals (Sweden)

    Koala, S.

    2003-01-01

    Full Text Available Low soil fertility and moisture deficit are among the main constraints to sustainable crop yields in the Sahel. A study therefore, was conducted at the ICRISAT Sahelian Center, Sadore in Niger to test the hypothesis that integrated soil husbandry practices consisting of manure, fertilizer and crop residues in rotational cropping systems use organic and mineral fertilizes efficiently, thereby resulting in higher yields and reduced risk. Results from an analysis of variance showed that choice of cropping systems explained more than 50% of overall variability in millet and cowpea grain yields. Among the cropping systems, rotation gave higher yields than sole crop and intercropping systems and increased millet yield by 46% without fertilizer. Rainfall-use efficiency and partial factor productivity of fertilizer were similarly higher in rotations than in millet monoculture system. Returns from cowpea grown in cowpea-millet rotation without fertilizer and the medium rates of fertilizers (4 kg P.ha-1 + 15 kg N.ha-1 were found to be most profitable in terms of high returns and low risk, principally because of a higher price of cowpea than millet. The study recommends crop diversification, either in the form of rotations or relay intercropping systems for the Sahel as an insurance against total crop failure.

  18. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the

  19. Use of Satellite-based Remote Sensing to inform Evapotranspiration parameters in Cropping System Models

    Science.gov (United States)

    Dhungel, S.; Barber, M. E.

    2016-12-01

    The objectives of this paper are to use an automated satellite-based remote sensing evapotranspiration (ET) model to assist in parameterization of a cropping system model (CropSyst) and to examine the variability of consumptive water use of various crops across the watershed. The remote sensing model is a modified version of the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC™) energy balance model. We present the application of an automated python-based implementation of METRIC to estimate ET as consumptive water use for agricultural areas in three watersheds in Eastern Washington - Walla Walla, Lower Yakima and Okanogan. We used these ET maps with USDA crop data to identify the variability of crop growth and water use for the major crops in these three watersheds. Some crops, such as grapes and alfalfa, showed high variability in water use in the watershed while others, such as corn, had comparatively less variability. The results helped us to estimate the range and variability of various crop parameters that are used in CropSyst. The paper also presents a systematic approach to estimate parameters of CropSyst for a crop in a watershed using METRIC results. Our initial application of this approach was used to estimate irrigation application rate for CropSyst for a selected farm in Walla Walla and was validated by comparing crop growth (as Leaf Area Index - LAI) and consumptive water use (ET) from METRIC and CropSyst. This coupling of METRIC with CropSyst will allow for more robust parameters in CropSyst and will enable accurate predictions of changes in irrigation practices and crop rotation, which are a challenge in many cropping system models.

  20. Integrated Crop-Livestock Systems and Water Quality in the Northern Great Plains: Review of Current Practices and Future Research Needs.

    Science.gov (United States)

    Faust, Derek R; Kumar, Sandeep; Archer, David W; Hendrickson, John R; Kronberg, Scott L; Liebig, Mark A

    2018-01-01

    Integrated crop-livestock systems hold potential to achieve environmentally sustainable production of crop and livestock products. Although previous studies suggest that integrated crop-livestock systems improve soil health, impacts of integrated crop-livestock systems on water quality and aquatic ecosystems are largely unknown. This review (i) summarizes studies examining surface water quality and soil leachate for management practices commonly used in integrated crop-livestock systems (e.g., no-till, cover crops, livestock grazing) with emphasis on the Northern Great Plains ecoregion of North America, (ii) quantifies management system effects on nutrient and total suspended solids concentrations and loads, and (iii) identifies information gaps regarding water quality associated with integrated crop-livestock systems and research needs in this area. In general, management practices used in integrated crop-livestock systems reduced losses of total suspended solids, nitrogen (N), and phosphorus (P) in surface runoff and soil leachate. However, certain management practices (e.g., no-till or reduced tillage) reduced losses of total N (relative median change = -65%), whereas soluble P losses in runoff increased (57%). Conversely, practices such as grazing increased median total suspended solids (22%), nitrate (45%), total N (85%), and total P (25%) concentrations and loads in surface runoff and aquatic ecosystems. An improved understanding of the interactive effects of integrated crop-livestock management practices on surface water quality and soil leachate under current and future climate scenarios is urgently needed. To close this knowledge gap, future studies should focus on determining concentrations and loads of total suspended solids, N, P, and organic carbon in runoff and soil leachate from integrated crop-livestock systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Determinants and the perceived effects of adoption of sustainable improved food crop technologies by smallholder farmers along the value chain in Nigeria

    Directory of Open Access Journals (Sweden)

    Abiodun Elijah Obayelu

    2016-06-01

    Full Text Available Adoption of improved agricultural technologies is fundamental to transformation of sustainable farming system, and a driving force for increasing agricultural productivity. This study provides empirical evidence on the determinants, and the perceived effects of adoption of improved food crop technologies in Nigeria. It is a cross-sectional survey of available technologies and 1,663 farm households in Nigeria. Data were analyzed with both descriptive and inferential statistics. The findings revealed very low technology adoption index. Available food crop production technologies used by sampled respondents were assessed as effective, appropriate, readily available, affordable, durable, user and gender friendly, with requisite skill to use them. However, processing technologies such as cabinet dryer were observed as unaffordable, not durable, not gender or users friendly. Packaging machines are also not users or gender friendly; washing machine not affordable, durable and gender friendly. Grain processing technologies like De-stoner, grading, and packaging machines are still not locally available and affordable. While parboilers have a negative impact on product quality, farmers’ health and the environment, tomato grinding machines have positive impact on the quality of the product, health of the users, yield and negatively affect the environment. The main determinants of adoption are the crop types, farm size and locations. Adoption of herbicide and inorganic fertilizer were influenced by travel cost to nearest place of acquisition, while the age of farmer has a positive and significant influence on the adoption of pesticide, water management and cassava harvester. Interestingly, male farmers only exhibit greater likelihood of adopting land preparation, inorganic and organic fertilizer technologies compared to their female counterpart. Therefore, policy options that consider all users at the development stages, favour reduction of travel cost

  2. Nematode Interactions in Nature: Models for Sustainable Control of Nematode Pests of Crop Plants?

    NARCIS (Netherlands)

    Putten, van der W.H.; Cook, R.; Costa, S.; Davies, K.G.; Fargette, M.; Freitas, H.; Hol, W.H.G.; Kerry, B.R.; Maher, N.; Mateille, T.; Moens, M.; Peña, de la E.; Piskiewicz, A.M.; Raeymaekers, A.D.W.; Rodriquez-Echeverria, S.; Wurff, van der A.W.G.

    2006-01-01

    Plant-parasitic nematodes are major crop pests in agro-ecosystems while in nature their impact may range from substantial to no significant growth reduction. The aim of this review is to determine if nematode population control in natural ecosystems may provide us with a model for enhancing

  3. Nematode interactions in nature: models for sustainable control of nematode pests of crop plants?

    NARCIS (Netherlands)

    Van der Putten, W.H.; Cook, R.; Costa, S.R.; Davies, K.G.; Fargette, M.; Freitas, H.; Hol, W.H.G.; Kerry, B.R.; Maher, N.; Mateille, T.; Moens, M.; De la Peña, E.; Piskiewicz, A.; Raeymaekers, A.; Rodríguez-Echeverría, S.; Van der Wurff, A.W.G.

    2006-01-01

    Plant-parasitic nematodes are major crop pests in agro-ecosystems while in nature their impact may range from substantial to no significant growth reduction. The aim of this review is to determine if nematode population control in natural ecosystems may provide us with a model for enhancing

  4. Fibre crops as sustainable source of biobased material for industrial products in Europe and China

    NARCIS (Netherlands)

    Dam, van J.E.G.

    2014-01-01

    Bast fibre industries have a long standing tradition, both in China and Europe. In the past decades significant changes have taken place in the sector and strong competition is faced on the market with manmade fibres on the one hand, and on the other hand at the farm level with other crops that

  5. Sustainable introduction of GM crops into european agriculture: a summary report of the FP6 SIGMEA research project*

    Directory of Open Access Journals (Sweden)

    Messéan Antoine

    2009-01-01

    Full Text Available In 2003, the European Commission established the principle of coexistence which refers to “the ability of farmers to make a practical choice between conventional, organic and GM-crop production, in compliance with the legal obligations for labelling and/or purity standards” and laid down guidelines defining the context of this coexistence1. In order to determine what is needed for the sustainable introduction of GM crops in Europe, the cross-disciplinary SIGMEA Research Project was set up to create a science-based framework to inform decision-makers. SIGMEA has (i collated and analysed European data on gene flow and the environmental impacts of the major crop species which are likely to be transgenic in the future (maize, rapeseed, sugar beet, rice, and wheat, (ii designed predictive models of gene flow at the landscape level, (iii analysed the technical feasibility and economic impacts of coexistence in the principal farming regions of Europe, (iv developed novel GMO detection methods, (v addressed legal issues related to coexistence, and (vi proposed public and farm scale decisionmaking tools, as well as guidelines regarding management and governance. This publishable version of the final activity report of the FP6 SIGMEA research project, covers the fourteen major issues under investigation.

  6. A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture.

    Science.gov (United States)

    Gaxiola, Roberto A; Edwards, Mark; Elser, James J

    2011-08-01

    Concerns about phosphorus (P) sustainability in agriculture arise not only from the potential of P scarcity but also from the known effects of agricultural P use beyond the field, i.e., eutrophication leading to dead zones in lakes, rivers and coastal oceans due to runoffs from fertilized fields. Plants possess a large number of adaptive responses to P(i) (orthophosphate) limitation that provide potential raw materials to enhance P(i) scavenging abilities of crop plants. Understanding and engineering these adaptive responses to increase the efficiency of crop capture of natural and fertilizer P(i) in soils is one way to optimize P(i) use efficiency (PUE) and, together with other approaches, help to meet the P sustainability challenge in agriculture. Research on the molecular and physiological basis of P(i) uptake is facilitating the generation of plants with enhanced P(i) use efficiency by genetic engineering. Here we describe work done in this direction with emphasis on the up-regulation of plant proton-translocating pyrophosphatases (H(+)-PPases). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan.

    Science.gov (United States)

    Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad

    2017-11-01

    Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha-1), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.

  8. An Ultrasonic System for Weed Detection in Cereal Crops

    Directory of Open Access Journals (Sweden)

    Dionisio Andújar

    2012-12-01

    Full Text Available Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group

  9. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  10. Comparison of risk in organic, integrated and conventional cropping systems in eastern Norway

    OpenAIRE

    G., Lien; O., Flaten; A., Korsaeth; K.D., Schumann; J.W., Richardson; R., Eltun; J.B., Hardaker

    2005-01-01

    The aim of this study was to compare risk of organic, integrated and conventional cropping systems. Experimental cropping system data (1991-1999) from eastern Norway were combined with farm budget data. Empirical distributions of net farm income for different cropping systems were estimated with a simulation model. The results show that the organic system had the greatest net farm income variability, but both the existing payment system and organic price premiums make it the most economically...

  11. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  12. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential.

    Science.gov (United States)

    Krupnik, Timothy J; Schulthess, Urs; Ahmed, Zia Uddin; McDonald, Andrew J

    2017-01-01

    Changing dietary preferences and population growth in South Asia have resulted in increasing demand for wheat and maize, along side high and sustained demand for rice. In the highly productive northwestern Indo-Gangetic Plains of South Asia, farmers utilize groundwater irrigation to assure that at least two of these crops are sequenced on the same field within the same year. Such double cropping has had a significant and positive influence on regional agricultural productivity. But in the risk-prone and food insecure lower Eastern Indo-Gangetic Plains (EIGP), cropping is less intensive. During the dryer winter months, arable land is frequently fallowed or devoted to lower yielding rainfed legumes. Seeing opportunity to boost cereals production, particularly for rice, donors and land use policy makers have consequently reprioritized agricultural development investments in this impoverished region. Tapping groundwater for irrigation and intensified double cropping, however, is unlikely to be economically viable or environmentally sound in the EIGP. Constraints include saline shallow water tables and the prohibitively high installation and energetic extraction costs from deeper freshwater aquifers. The network of largely underutilized rivers and natural canals in the EIGP could conversely be tapped to provide less energetically and economically costly surface water irrigation (SWI). This approach is now championed by the Government of Bangladesh, which has requested USD 500 million from donors to implement land and water use policies to facilitate SWI and double cropping. Precise geospatial assessment of where freshwater flows are most prominent, or where viable fallow or low production intensity cropland is most common, however remains lacking. In response, we used remotely sensed data to identify agricultural land, detect the temporal availability of freshwater in rivers and canals, and assess crop production intensity over a three-year study period in a 33,750 km2

  13. Wireless computer vision system for crop stress detection

    Science.gov (United States)

    Knowledge of soil water deficits, crop water stress, and biotic stress from disease or insects is important for optimal irrigation scheduling and water management. Crop spectral reflectances provide a means to quantify visible and near infrared thermal crop stress, but in-situ measurements can be cu...

  14. Water use in a winter camelina – soybean double crop system

    Science.gov (United States)

    Double-cropping winter camelina (Camelina sativa) followed by soybean (Glycine max) may increase land-use efficiency by producing food and biofuel in a single season and is a viable cropping system for the northern Corn Belt. However, regional success of double-cropping, especially under dryland con...

  15. Impacts and adaptation of European crop production systems to climate change

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Trnka, M; Kersebaum, K C

    2011-01-01

    on the: (1) main vulnerabilities of crops and cropping systems under present climate; (2) estimates of climate change impacts on the production of nine selected crops; (3) possible adaptation options as well as (4) adaptation observed so far. In addition we focused on the overall awareness and presence...

  16. Interaction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    M Allahdadi

    2016-05-01

    Full Text Available Introduction With the continuous growth of world population, degradation and ecological imbalance throughout the world, there is a need to increase agricultural production and environmental protection measures. In this respect, efforts to supply nutrients to the environment are at the head of the programs. One of the ways to approach this goal is the use of intercropping systems (Najafi & Mohammadi, 2005(. Suitable performance in intercropping systems may be achieved by selecting genotypes possessing traits consistent with and appropriate for establishing minimum and maximum synergy and competition employing proper agronomic practices such as density and planting pattern (Mutungamiri et al., 2001. In this context, selected plants should be less competitive in terms of environmental impact. The purpose of this study was to investigate the effect of different planting patterns on the competition between the two species of Calendula and soybean and to evaluate the yield and quality of an intercropping system compared with a mono-cropping system. Materials and Methods In order to evaluate the competition between soybean and calendula, a field experiment was conducted based on randomized complete block design with 7 treatments and 3 replications in the research farm of the Faculty of Agriculture, the University of Tabriz in 2009. The treatments included pure stands for both species, 1:1, 2:2, 4:2, 4:4 and 6:4 for soybean and calendula number of rows per strip, respectively. Before planting, soybean seeds were inoculated with Bradyrhyzobium japonicum. Before harvesting, the number of pods per plant, seeds per plant, 1000- grain weight, grain yield, percentage of oil and protein of soybean grain were measured in 10 randomly selected plants. The number of flowers per plant, dry inflorescence weight and dry petal weight of Calendula were recorded. The harvest of flowers of calendula began on July 30 and harvesting was done every 15 days in six steps. It

  17. Physical quality of an Oxisol under an integrated crop-livestock-forest system in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2014-04-01

    Full Text Available Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30; integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45; integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30; integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45; integrated crop-livestock with pasture height of 30 cm (CL30; integrated crop-livestock with pasture height of 45 cm (CL45 and native vegetation (NV. Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b and penetration resistance (PR, and decreased total porosity (¦t and macroporosity (¦ma, compared to NV. The values of r b (1.18-1.47 Mg m-3, ¦ma (0.14-0.17 m³ m-3 and PR (0.62-0.81 MPa at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC and the soil organic carbon pool (SOCpool. All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1.

  18. The International Breeder's Rights System and Crop Plant Innovation.

    Science.gov (United States)

    Barton, J H

    1982-06-04

    Legal arrangements governing a plant breeder's intellectual property rights to his inventions are likely to affect the future of crop research. Such systems, although controversial, are probably currently desirable for the developed world. The new genetic technologies may change this judgment, and certainly require redefinition of the lines between plant patents and regular patents. Several safeguards, present in the United States breeder's rights law, should be applied more broadly. A new safeguard-of ensuring that material be entered into germplasm banks-should be applied everywhere. For the developing world, the desirability of a plant patent system is much less clear; new agreements may be desirable to ensure the free flow and collection of germplasm.

  19. Transport systems and policies for sustainable cities

    Directory of Open Access Journals (Sweden)

    Vučić Vukan R.

    2008-01-01

    Full Text Available The 20th century witnessed revolutionary developments in transportation technology with major impacts on the form and character of cities. Progress in increasing mobility has brought many benefits as well as serious problems, particularly in deterioration of livability and sustainability. Increase in auto ownership led to serious problems of chronic traffic congestion. Attempts to rebuild cities to provide full accommodation of private cars have led to serious problems of auto dependency and deterioration of cities. Experiences from recent decades have shown that urban transportation is much more complex than usually realized. Livable and sustainable cities require policies that lead to creation of a transportation system consisting of coordinated public transit and private cars, and encourages pedestrian environment and efficient, sustainable development. Great need for better understanding of the complex problems in implementing incentives and disincentives aimed at achieving intermodal balance is emphasized. Brief descriptions of cities which lead in achieving such livable conditions is followed by a summary of lessons and guidelines for the future.

  20. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  1. Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases.

    Science.gov (United States)

    Periyannan, Sambasivam

    2017-12-04

    Contents I. II. III. IV. V. VI. VII. VIII. References SUMMARY: Genetically encoded resistance is a major component of crop disease management. Historically, gene loci conferring resistance to pathogens have been identified through classical genetic methods. In recent years, accelerated gene cloning strategies have become available through advances in sequencing, gene capture and strategies for reducing genome complexity. Here, I describe these approaches with key emphasis on the isolation of resistance genes to the cereal crop diseases that are an ongoing threat to global food security. Rapid gene isolation enables their efficient deployment through marker-assisted selection and transgenic technology. Together with innovations in genome editing and progress in pathogen virulence studies, this creates further opportunities to engineer long-lasting resistance. These approaches will speed progress towards a future of farming using fewer pesticides. © 2017 Commonwealth of Australia. New Phytologist © 2017 New Phytologist Trust.

  2. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  3. Environmental assessment of two different crop systems in terms of biomethane potential production.

    Science.gov (United States)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. © 2013.

  4. Integrated crop-livestock systems and climate change policies

    Directory of Open Access Journals (Sweden)

    Marcos da Silva Fernandes

    2014-06-01

    Full Text Available The Brazilian scenario for the agricultural activity expansion has generated economic returns to the country, but with high environmental liability. Within this context, the National Plan on Climate Change and the National Program for a Low Carbon Agriculture (LCA were launched. This study aimed to simulate scenarios of agricultural production in the North-Central region of the Mato Grosso State, Brazil. By using linear programming models, the potential of crop-livestock integration (CLI systems was evaluated as a low carbon emission alternative to the traditional agricultural systems in the region. The results showed that CLI systems cannot be considered an attractive alternative to the farmers, since there are production strategies that generate higher economic gains. Likewise, the tools implemented by the LCA program were not enough for promoting the agricultural production in CLI systems. The study also aimed to evaluate the impact of the Certified Emission Reduction (CER in areas planted under CLI systems. The results showed that the carbon credit system can be an important fomenting tool, in which, at the rate of $ 25.00 per CER (1 ton of equivalent CO2, the producer could get expressive economic gains, due to the implementation of CLI systems.

  5. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...... methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having...

  6. Sustainable Energy, Water and Environmental Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-06-01

    Full Text Available This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having transmission beyond sight.

  7. Long-Term Feasibility of Sustainable Citrus-Farming Systems in the Region of Valencia, Spain

    OpenAIRE

    Moll, Elena Maria Peris; Igual, Juan Francisco Julia

    2006-01-01

    This paper studies the long-term feasibility of citrus crop, either grown organically or employing integrated production methods, in the Region of Valencia, Spain. The concept of sustainability in agriculture has become a subject of general interest, and obtaining high-quality and safe food standards is a priority of the European Union authorities, especially after the recent crises of the European agrifood system. Citrus production made of 43.3% of Valencia's agricultural production in 2000 ...

  8. Sustainable Urban Agriculture in Ghana: What Governance System Works?

    Directory of Open Access Journals (Sweden)

    Eileen Bogweh Nchanji

    2017-11-01

    Full Text Available Urban farming takes advantage of its proximity to market, transport and other urban infrastructure to provide food for the city and sustain the livelihoods of urban and peri-urban dwellers. It is an agricultural activity which employs more than 50% of the local urban population with positive and negative impacts on local and national development. Urban agriculture is an informal activity not supported by law but in practice is regulated to a certain extent by state institutions, traditional rulers, farmers and national and international non-governmental organisations. Tamale’s rapid population growth, exacerbated by the unplanned development system and institutional conflicts, are factors contributing to the present bottlenecks in the urban agricultural system. In this paper, these bottlenecks are conceptualised as problems of governance. These issues will be illustrated using ethnographic data from land sales, crop-livestock competition, waste-water irrigation, and markets. I will explain how conflicts which arise from these different situations are resolved through the interactions of various governance systems. Informal governance arrangements are widespread, but neither they nor formal systems are always successful in resolving governance issues. A participatory governance does not seem possible due to actors’ divergent interests. A governance solution for this sector is not yet apparent, contributing to food and nutritional insecurity.

  9. Methodological Aspects of On-Farm Monitoring of Cropping Systems Management

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    Full Text Available To conduct agro-environmental assessments at field and farm scale, detailed management data of crop and animal production systems are needed. However, this type of data is only rarely collected by public administrations. In the period 2005-2006, we made an experience of on-farm monitoring of cropping systems management, within a larger project aimed at assessing sustainability of agricultural systems in Italian Parks. In this paper, we describe and discuss the steps taken to carry out periodic face-to-face interviews in farms in the Sud Milano Agricultural Park (northern Italy. The first step was the selection of seven farms, which we identified by applying cluster analysis at a large database describing 733 farms of the Park. After having identified the most relevant agro-environmental issues in the studied area, we established a list of simple but sound indicators to evaluate the effects of agricultural management on the environment. The criteria used to select the indicators were that they should: be calculated on easily available data, not be based on direct measurements, make a synthesis of different aspects of reality, and be easily calculated and understood. The indicators selected evaluate nutrient management, fossil energy use, pesticide toxicity, soil management, and economic performance. Subsequently, we designed a data model to store input data used to calculate the indicators (farm configuration, flows of materials and money through the farm gate, animals and their rations, history of crop cultivation, crop management. The data model that we obtained is relatively complex, but adequate to store and analyse the large amount of data acquired during the two-year project. A questionnaire was developed to fully comply with the indicators selected and the data model. The questionnaire was used to carry out approximately six interviews per farm each year, with an investment of time of 1-2 hours per interview. Appropriate double checks of

  10. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  11. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    OpenAIRE

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-01-01

    Abstract While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of clima...

  12. Using the GENESYS model quantifying the effect of cropping systems on gene escape from GM rape varieties to evaluate and design cropping systems

    Directory of Open Access Journals (Sweden)

    Colbach Nathalie

    2004-01-01

    Full Text Available Gene flow in rapeseed is a process taking place both in space and over the years and cannot be studied exclusively by field trials. Consequently, the GENESYS model was developed to quantify the effects of cropping systems on transgene escape from rapeseed crops to rapeseed volunteers in neighbour plots and in the subsequent crops. In the present work, this model was used to evaluate the risk of rape harvest contamination by extraneous genes in various farming systems in case of co-existing GM, conventional and organic crops. When 50 % of the rape varieties in the region were transgenic, the rate of GM seeds in non-GM crop harvests on farms with large fields was lower than the 0.9 % purity threshold proposed by the EC for rape crop production (food and feed harvests, but on farms with smaller fields, the threshold was exceeded. Harvest impurity increased in organic farms, mainly because of their small field size. The model was then used to evaluate the consequences of changes in farming practices and to identify those changes reducing harvest contamination. The effects of these changes depended on the field pattern and farming system. The most efficient practices in limiting harvest impurity comprised improved set-aside management by sowing a cover crop in spring on all set-aside fields in the region, permanently banning rape crops and set-aside around seed production fields and (for non-GM farmers clustering farm fields to reduce gene inflow from neighbour fields.

  13. System learning approach to assess sustainability and ...

    Science.gov (United States)

    This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key method in Information Theory, to preserve trends in the historical data and prevent over fitting projections. The methodology was applied to demographic, environmental, food and energy consumption, and agricultural production in the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking conditions in human and natural systems. However, available data are often so far out of date that they limit the ability to manage these systems. Results indicate that the approaches developed provide viable tools for forecasting outcomes with the aim of assisting management toward sustainable trends. This methodology is also applicable for modeling different scenarios in other dynamic systems. Indicators are indispensable for tracking conditions in human and natural systems, however, available data is sometimes far out of date and limit the ability to gauge system status. Techniques like regression and simulation are not sufficient because system characteristics have to be modeled ensuring over simplification of complex dynamics. This work presents a methodology combining the power of an Artificial Neural Network and Information Theory to capture patterns in a real dyna

  14. Reporting Systems for Sustainability: What Are They Measuring?

    Science.gov (United States)

    Davidson, Kathryn M.

    2011-01-01

    The dominance of the neoliberal discourse in the sustainability debate has tended to privilege the economy over environment and social dimensions with implications for what is measured by sustainability monitoring systems. Moreover, systems to measure sustainability, including those influenced by neoliberal discourse, lack robust definitions and…

  15. Do Smallholder, Mixed Crop-Livestock Livelihoods Encourage Sustainable Agricultural Practices? A Meta-Analysis

    NARCIS (Netherlands)

    Rudel, Thomas K.; Kwon, Oh-Jung; Paul, B.K.

    2016-01-01

    As calls for bolstering ecosystem services from croplands have grown more insistent during the past two decades, the search for ways to foster these agriculture-sustaining services has become more urgent. In this context we examine by means of a meta-analysis the argument, proposed by Robert McC.

  16. Sustainability aspects of biobased products : comparison of different crops and products from the vegetable oil platform

    NARCIS (Netherlands)

    Meesters, K.P.H.; Corré, W.J.; Conijn, J.G.; Patel, M.K.; Bos, H.L.

    2012-01-01

    This study focusses on the production of vegetable oil based products. A limited number of aspacts of the sustainability of the full chain (from agriculture to product at the factory gate) was evaluated. Three different vegetable oils were taken into account: palm oil, soy oil and rapeseed oil. Also

  17. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    NARCIS (Netherlands)

    Zhu, Li Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; Loo, Van Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue Rong; Green, Allan G.; Shockey, Jay; Klasson, Thomas K.; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of

  18. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses

    NARCIS (Netherlands)

    Bender, S.F.; van der Heijden, M.G.A.

    2015-01-01

    Efficient resource use is a key factor for sustainable production and a necessity for meeting future global food demands. However, the factors that control resource use efficiency in agro-ecosystems are only partly understood. We investigated the influence of soil biota on nutrient leaching,

  19. Fertiliser use: one of the keys to attaining and sustaining higher crop ...

    African Journals Online (AJOL)

    exhausted. The decline in native fertility is worsened by other factors such as soil erosion and deforestation on top of low input continuous cultivation that characterises much of subsistence fanning in Sub-Saharan Africa . Improving the productivity of such soils to a nigh sustainable level in light of increasing population ...

  20. Food security as a function of Sustainable Intensification of Crop Production

    Directory of Open Access Journals (Sweden)

    Theodor Friedrich

    2016-05-01

    Full Text Available The challenge to eradicate hunger and establish food security across all its four pillars (availability, accessibility, health and safety, and continuity is ongoing. The actual situation in global food production leads most of the attention to improving accessibility and safety of food, particularly to vulnerable populations. However, in view of the growth in demand, which includes changes in preferences for example towards food of animal origin, availability and continuity will play larger roles in future. Food production needs to increase over the coming decades at challenging rates, while facing problems of degradation and reduced availability of natural resources for production such as soil and water, and facing increasing challenges from climate change. The actual trends in yield development suggest that a simple gradual improvement of production within the existing concepts will not provide a sustainable or feasible solution, and that more fundamental changes in the agricultural production paradigm are required to face these future challenges. The Sustainable Intensification represents such a change in paradigm in which high production levels are combined with sustainability. The concept of sustainable intensification, the rationale for it and its functional elements, represented by Conservation Agriculture, are presented in this paper.

  1. Environmental impacts and sustainability of egg production systems 1

    National Research Council Canada - National Science Library

    Xin, H; Gates, R. S; Green, A. R; Mitloehner, F. M; Moore, P. A; Wathes, C. M

    2011-01-01

    ABSTRACT As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified...

  2. PRACT (Prototyping Rotation and Association with Cover crop and no Till) - a tool for designing conservation agriculture systems

    NARCIS (Netherlands)

    Naudin, K.; Husson, M.O.; Scopel, E.; Auzoux, S.; Giller, K.E.

    2015-01-01

    Moving to more agroecological cropping systems implies deep changes in the organization of cropping systems. We propose a method for formalizing the process of innovating cropping system prototype design using a tool called PRACT (Prototyping Rotation and Association with Cover crop and no Till)

  3. An Integrated Sustainable Business and Development System: Thoughts and Opinions

    Directory of Open Access Journals (Sweden)

    Rachel J. C. Chen

    2014-09-01

    Full Text Available Companies understand the importance of monitoring and managing their environmental impacts and aim to integrate, with consistent quality control, effective reduce-reuse-recycle programs and risk preventions. By building an integrated sustainable business and development system to meet certain environmental standards, many companies are eligible to be “green” certified. Companies may consider recognizing global visions on sustainability while implementing local best practices. An integrated sustainable business and development system includes talent management, sustainable supply chain, practicing strategies of leveraging resources effectively, implementing social responsibilities, initiating innovative programs of recycling, reducing, and reusing, advancing leaders’ perceptions towards sustainability, reducing innovation barriers, and engaging sustainable practices strategically.

  4. Information systems outsourcing towards sustainable business value

    CERN Document Server

    Hirschheim, Rudy; Dibbern, Jens

    2014-01-01

    This book attempts to synthesize research that contributes to a better understanding of how to reach sustainable business value through information systems (IS) outsourcing. Important topics in this realm are how IS outsourcing can contribute to innovation, how it can be dynamically governed, how to cope with its increasing complexity through multi-vendor arrangements, how service quality standards can be met, how corporate social responsibility can be upheld and how to cope with increasing demands of internationalization and new sourcing models, such as crowdsourcing and platform-based cooperation. These issues are viewed from either the client or vendor perspective, or both. The book should be of interest to all academics and students in the fields of Information Systems, Management and Organization as well as corporate executives and professionals who seek a more profound analysis and understanding of the underlying factors and mechanisms of outsourcing.

  5. The Challenge of Improving Soil Fertility in Yam Cropping Systems of West Africa

    Science.gov (United States)

    Frossard, Emmanuel; Aighewi, Beatrice A.; Aké, Sévérin; Barjolle, Dominique; Baumann, Philipp; Bernet, Thomas; Dao, Daouda; Diby, Lucien N.; Floquet, Anne; Hgaza, Valérie K.; Ilboudo, Léa J.; Kiba, Delwende I.; Mongbo, Roch L.; Nacro, Hassan B.; Nicolay, Gian L.; Oka, Esther; Ouattara, Yabile F.; Pouya, Nestor; Senanayake, Ravinda L.; Six, Johan; Traoré, Orokya I.

    2017-01-01

    Yam (Dioscorea spp.) is a tuber crop grown for food security, income generation, and traditional medicine. This crop has a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha−1. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are being more and more degraded. The aims of this review were to show the importance of soil fertility for yam, discuss barriers that might limit the adoption of integrated soil fertility management (ISFM) in yam-based systems in West Africa, present the concept of innovation platforms (IPs) as a tool to foster collaboration between actors for designing innovations in yam-based systems and provide recommendations for future research. This review shows that the development of sustainable, feasible, and acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from the problem definition, to the co-design of soil management innovations, the evaluation of research results, their communication and their implementation. Finally, this research should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts. PMID:29209341

  6. The Challenge of Improving Soil Fertility in Yam Cropping Systems of West Africa

    Directory of Open Access Journals (Sweden)

    Emmanuel Frossard

    2017-11-01

    Full Text Available Yam (Dioscorea spp. is a tuber crop grown for food security, income generation, and traditional medicine. This crop has a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha−1. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are being more and more degraded. The aims of this review were to show the importance of soil fertility for yam, discuss barriers that might limit the adoption of integrated soil fertility management (ISFM in yam-based systems in West Africa, present the concept of innovation platforms (IPs as a tool to foster collaboration between actors for designing innovations in yam-based systems and provide recommendations for future research. This review shows that the development of sustainable, feasible, and acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from the problem definition, to the co-design of soil management innovations, the evaluation of research results, their communication and their implementation. Finally, this research should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts.

  7. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  8. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  9. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  10. A Computational Tool for Comparative Energy Cost Analysis of Multiple-Crop Production Systems

    Directory of Open Access Journals (Sweden)

    Efthymios Rodias

    2017-06-01

    Full Text Available Various crops can be considered as potential bioenergy and biofuel production feedstocks. The selection of the crops to be cultivated for that purpose is based on several factors. For an objective comparison between different crops, a common framework is required to assess their economic or energetic performance. In this paper, a computational tool for the energy cost evaluation of multiple-crop production systems is presented. All the in-field and transport operations are considered, providing a detailed analysis of the energy requirements of the components that contribute to the overall energy consumption. A demonstration scenario is also described. The scenario is based on three selected energy crops, namely Miscanthus, Arundo donax and Switchgrass. The tool can be used as a decision support system for the evaluation of different agronomical practices (such as fertilization and agrochemicals application, machinery systems, and management practices that can be applied in each one of the individual crops within the production system.

  11. Application of multiple criteria decision making for the design and analysis of greenhouse cropping systems

    NARCIS (Netherlands)

    Bakker, E.J.; Sanden, van de P.A.C.M.

    1998-01-01

    Greenhouse cropping systems have various objectives and can be controlled in various ways. Selection or design of an optimal cropping system requires weighing of the objectives as well as proper understanding of the input-output relations of the system. The field of Multiple Criteria Decision Making

  12. Carabid assemblages (Coleoptera: Carabidae) in a rotation of three different crops in southern Alberta, Canada: a comparison of sustainable and conventional farming.

    Science.gov (United States)

    Bourassa, S; Cárcamo, H A; Larney, F J; Spence, J R

    2008-10-01

    Carabids were sampled in 2000 (pretreatment year) and 2003-2005 in experimental plots in southern Alberta, Canada, after a rotation of beans, wheat, and potato under sustainable and conventional farming practices. Each phase of the rotation was present in every year. Crop type had a stronger effect than sustainable treatment on carabid-expected species richness, diversity, and species composition. However, carabid activity density was consistently higher in plots under sustainable treatments than those maintained conventionally. Potato plots, which were sprayed with insecticide for pest control, showed a significantly lower carabid activity density than the other crops. These results support other studies showing the beneficial effect of sustainable farming on activity density of carabid beetles.

  13. Environmental Management Systems and Sustainability in SMEs

    Directory of Open Access Journals (Sweden)

    Shah Satya

    2016-01-01

    Full Text Available Environmental sustainability in manufacturing sector has been allocated a major consideration in the international literature. Due to growing concerns over the high effect of SMEs on world manufacturing industries and their contribution to pollution; this research attempts to focus on the key parameters that interact in the application of environmental management system, taking into account the main features of SMEs and also the integral role of industrial entrepreneurs in inspiring their firms’ approaches. The paper explores the potential opportunities which enable these enterprises to move towards organizations with high level of responsibility regarding environmental protection in order to provide a healthier life for future generations. Case investigation is carried out on an adhesive manufacturing company, which covers a notable market share within the sector. The research identifies that the company requires developing both internal and external entities within an explicit plan to revolutionize the recruitment patterns. Given the lack of adequate studies in adhesive technology, more researches are recommended in the future to consider the sustainable innovations on a broader sample of adhesive manufacturing companies to perform the life-cycle analysis due to the harmful organic compounds and toxic vapours of the adhesive products.

  14. Sustainable bioreactor systems for producing hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A. [Univ. of Hawaii, Honolulu, HI (United States); Benemann, J.R. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Molecular Biology; Tredici, M.R. [Univ. of Florence (Italy). Dipt. di Scienze e Tecnologie Alimentari e Microbiogiche

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  15. TOWARD A THEORY OF SUSTAINABLE SYSTEMS

    Science.gov (United States)

    While there is tremendous interest in the topic of sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory starting with Information Theory and ecological models. We discuss the state of complex sustainable syste...

  16. Assessing human health risks from pesticide use in conventional and innovative cropping systems with the BROWSE model.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Kennedy, Marc C; Barriuso, Enrique; Alletto, Lionel; Justes, Eric; Munier-Jolain, Nicolas; Mamy, Laure

    2017-08-01

    Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem. The objectives of this work were to assess and to compare (1) the human exposure to pesticides used in conventional and innovative cropping systems designed to reduce pesticide needs, and (2) the corresponding risks for human health. Humans (operator and residents) exposure to pesticides and risks for human health were assessed for each pesticide with the BROWSE model. Then, a method was proposed to represent the overall risk due to all pesticides used in one system. This study considers 3 conventional and 9 associated innovative cropping systems, and 116 plant protection products containing 89 different active substances (i.e. pesticides). The modelling results obtained with BROWSE showed that innovative cropping systems such as low input or no herbicide systems would reduce the risk for human health in comparison to the corresponding conventional cropping systems. On the contrary, BROWSE showed that conservation tillage system would lead to unacceptable risks in the conditions of our study, because of a high number of pesticide applications, and especially of some herbicides. For residents, the dermal absorption was the main exposure route while ingestion was found to be negligible. For operators, inhalation was also a predominant route of exposure. In general, human exposure to pesticides and human health risks were found to be correlated to the treatment frequency

  17. A multiple soil ecosystem services approach to evaluate the sustainability of reduced tillage systems

    Science.gov (United States)

    Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam

    2017-04-01

    In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that

  18. Black oat cover crop management in watermelon production systems

    Science.gov (United States)

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  19. Transgenes sustain epigeal insect biodiversity in diversified vegetable farm systems.

    Science.gov (United States)

    Leslie, T W; Hoheisel, G A; Biddinger, D J; Rohr, J R; Fleischer, S J

    2007-02-01

    Many ecological studies have focused on the effects of transgenes in field crops, but few have considered multiple transgenes in diversified vegetable systems. We compared the epigeal, or soil surface-dwelling, communities of Coleoptera and Formicidae between transgenic and isoline vegetable systems consisting of sweet corn, potato, and acorn squash, with transgenic cultivars expressing Cry1(A)b, Cry3, or viral coat proteins. Vegetables were grown in replicated split plots over 2 yr with integrated pest management (IPM) standards defining insecticide use patterns. More than 77.6% of 11,925 insects from 1,512 pitfall traps were identified to species, and activity density was used to compare dominance distribution, species richness, and community composition. Measures of epigeal biodiversity were always equal in transgenic vegetables, which required fewer insecticide applications than their near isolines. There were no differences in species richness between transgenic and isoline treatments at the farm system and individual crop level. Dominance distributions were also similar between transgenic and isoline farming systems. Crop type, and not genotype, had a significant influence on Carabidae and Staphylinidae community composition in the first year, but there were no treatment effects in the second year, possibly because of homogenizing effects of crop rotations. Communities were more influenced by crop type, and possibly crop rotation, than by genotype. The heterogeneity of crops and rotations in diversified vegetable farms seems to aid in preserving epigeal biodiversity, which may be supplemented by reductions in insecticide use associated with transgenic cultivars.

  20. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops

    DEFF Research Database (Denmark)

    Thorup-Kristensen, Kristian; Dresbøll, Dorte Bodin; Kristensen, Hanne Lakkenborg

    2012-01-01

    of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for biodiversity......, it is not always obvious that these goals are reached. As an example, strong dependence on import of manure is often seen in current organic production, especially in systems producing high value crops such as vegetable crops. The aim of the present study was to test novel approaches to organic rotations, designed...... among crop species, but on average the organic crops yielded c. 82% of conventional yields in all three organic systems, when calculated based on the area actually grown with the main crops. In the O3 system some of the area of the vegetable fields was allocated to intercrops, so vegetable yields...

  1. Optimal Cropping Pattern Based on Multiple Economic, Regional, and Agricultural Sustainability Criteria in Sari, Iran: Application of a Consolidated Model of AHP and Linear Programming

    Directory of Open Access Journals (Sweden)

    E. Fallahi

    2016-10-01

    Full Text Available Introduction: Determining a suitable cropping pattern is an important task for planners and requires an exact and realistic decision-making process based on several goals and criteria corresponding to secure the interest of agricultural beneficiaries in long-term. Accordingly, this study reviews the current pattern operated by farmers in Sari, Iran, and intends to provide a cropping pattern that considers the multifold regional and agricultural sustainability criteria along with economic considerations. Materials and Methods: In order to achieve the study goals, a consolidated model of AHP and Linear Programming was applied. For this purpose, we constructed a three-level AHP, including a goal (determining the weight of each crop, seven criteria, and seven alternatives. Profitability, compatibility with regional and geographical conditions, water consumption, environmental effects of cropping, job creation opportunities, skill and proficiency required for producing a crop, and risk taken to cultivate a crop were considered as the criteria in the model. Seven alternative crops including rice, wheat, rapeseed, barley, soybean, clover, and vegetables were considered too. The next step is determining the weight of each criterion with regard to the goal and the weight of each alternative with regard to each criteria. By multiplying these weights, final weights for various crops were obtained from the model. Derived weights for each crop were then applied as objective function coefficients in the Linear Programming model and the model was solved subject to the constraints. Results and Discussion: Optimal cropping pattern determined based on the consolidated model of AHP and Linear Programming and the results compared to a scenario that only looks forward to maximizing the economic interests. Due to the low profitability of rapeseed and barley, these crops eliminated from the pattern in the profit-maximizing scenario. According to the results, the

  2. Sustainable food systems for optimal planetary health.

    Science.gov (United States)

    Canavan, Chelsey R; Noor, Ramadhani A; Golden, Christopher D; Juma, Calestous; Fawzi, Wafaie

    2017-06-01

    Sustainable food systems are an important component of a planetary health strategy to reduce the threat of infectious disease, minimize environmental footprint and promote nutrition. Human population trends and dietary transition have led to growing demand for food and increasing production and consumption of meat, amid declining availability of arable land and water. The intensification of livestock production has serious environmental and infectious disease impacts. Land clearing for agriculture alters ecosystems, increases human-wildlife interactions and leads to disease proliferation. Context-specific interventions should be evaluated towards optimizing nutrition resilience, minimizing environmental footprint and reducing animal and human disease risk. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  3. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  4. INDICATORS FOR SUSTAINABILITY IN INDUSTRIAL SYSTEMS CASE STUDY: PAPER MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Maria Emiliana Fortună

    2011-12-01

    Full Text Available The paper describes a framework for promoting sustainability by using indicators for sustainable production. The concept of sustainable production is described as it is viewed by various organisms actions involved in the analysis of the sustainable industrial systems.The measure of sustainability is approached considering indicators of sustainable production, addressing both their dimensions and qualitative and quantitative features.The proposed framework refines the sustainability dimension for a case study which envisages sustainability in paper manufacturing. The analysis takes into account the life cycle analysis for the considered process since the environmental impact is seen as an essential sustainability indicator. Paper recycling and reuse is associated environmental and social costs, as a preferred alternative in waste minimization hierarchy in the manufacturing of non-trees eco-friendly paper.Proactive initiatives to improve the environmental performances of production process are considered as powerful tools for improving the paper manufacturing environmental footprint.

  5. Soil chemical atributtes on brachiaria spp in integrated crop livestock system

    Directory of Open Access Journals (Sweden)

    Valdinei Tadeu Paulino

    2013-12-01

    Full Text Available Integrated crop-livestock systems have attracted more interest in the last few years due to their capacity of improving stability and sustainability of agricultural systems when compared to more specialized production ones. The crop-livestock integration is an effective technique, but complex to maintain pasture productivity and its recovery, whose efficiency depends on soil physical management and its chemical fertility. Regarding the soil fertility, the corrective practices generally begin with the liming due to the high acidity of most Brazilian soils and low levels of Ca and Mg in the exchange complex and high Al saturation. In areas of crop-livestock systems, liming corrects the surface acidity potential. However, this practice can leave the subsoil with excess aluminum and lack of calcium, which inhibit root growth and affect the absorption of water and nutrients. The application of gypsum allows the improvement of the subsoil, reducing Al saturation and increasing levels of calcium and sulfur. The aim of this study was to investigate changes in the soil chemical properties of a Haplorthox soil in integrated crop-livestock system (ICL with Brachiaria brizantha cv. Marandu and Piatã, Brachiaria ruziziensis with gypsum and liming application. This study was conducted at the Instituto de Zootecnia, Nova Odessa/SP, a pasture established on a soil with medium texture (61.4% sand, silt 14.6% and 24.0% clay. The treatment plots consisted on integration crop-livestock (ICL cultivated - maize and B. Marandu,  ICL - maize and B. ruziziensis, ICL - maize and B. Piatã and an untreated control group (control - without liming and fertilization grazed pasture throughout the year, located immediately adjacent to the ICL evaluation, which was cultivated for 25 years with B. brizantha cv. Marandu. All pastures were desiccated in October with glyphosate-based herbicide (4 liters per hectare. Then gypsum (1.2 Mg ha-1 and liming (1.2 Mg ha-1 were applied

  6. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  7. Corn and Soybeans in a Strip Intercropping System: Crop Growth Rates, Radiation Interception, and Grain Yield Components

    Directory of Open Access Journals (Sweden)

    Diego Verdelli

    2012-01-01

    Full Text Available Crop growth rates (CGR, radiation interception (IPAR, yields, and their components were determined in two crops monocultures (using one corn and two soybean genotypes and in intercropped “strips,” during three growing seasons. Corn yield in the strips significantly increased in the three seasons (13–16% as compared to that in the monocultures. This response was due to increased yield in corn plants of the border rows of the strips, which was highly correlated to an increased IPAR, allowing high CGR at critical crop stages. As a result, more dry matter was partitioned to grain and also an increased number of ears per plant were generated. Conversely, yields of soybeans in the strips were 2 to 11% lower than that in the monocultures, with variable significance depending on soybean cultivar and/or year. Grain number per unit area was the yield component most closely associated to yield variation in both crops. We believe that if yield components of this system are more closely identified, more appropriate genotypes will fit into strip intercropping, thus contributing to the spread of this technique and thus to the sustainability of actual massive monocultured agricultural systems.

  8. Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials

    NARCIS (Netherlands)

    Gerssen-Gondelach, Sarah|info:eu-repo/dai/nl/355262436; Wicke, Birka|info:eu-repo/dai/nl/306645955; Faaij, Andre

    The sustainable production potential of biomass for energy and material purposes largely depends on the future availability of surplus agricultural lands made available through yield improvements in crop and livestock production. However, the rates at which yields may develop, and the influence of

  9. Sustainable deployment of QTLs conferring quantitative resistance to crops: first lessons from a stochastic model.

    Science.gov (United States)

    Bourget, Romain; Chaumont, Loïc; Durel, Charles-Eric; Sapoukhina, Natalia

    2015-05-01

    Quantitative plant disease resistance is believed to be more durable than qualitative resistance, since it exerts less selective pressure on the pathogens. However, the process of progressive pathogen adaptation to quantitative resistance is poorly understood, which makes it difficult to predict its durability or to derive principles for its sustainable deployment. Here, we study the dynamics of pathogen adaptation in response to quantitative plant resistance affecting pathogen reproduction rate and its colonizing capacity. We developed a stochastic model for the continuous evolution of a pathogen population within a quantitatively resistant host. We assumed that pathogen can adapt to a host by the progressive restoration of reproduction rate or of colonizing capacity, or of both. Our model suggests that a combination of quantitative trait loci (QTLs) affecting distinct pathogen traits was more durable if the evolution of repressed traits was antagonistic. Otherwise, quantitative resistance that depressed only pathogen reproduction was more durable. In order to decelerate the progressive pathogen adaptation, QTLs that decrease the pathogen's maximum capacity to colonize must be combined with QTLs that decrease the spore production per lesion or the infection efficiency or that increase the latent period. Our theoretical framework can help breeders to develop principles for sustainable deployment of QTLs. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Participatory Systems Modeling to Explore Sustainable ...

    Science.gov (United States)

    Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. The US EPA is applying sustainability science to address these needs. Triple Value (3V) Scoping and Modeling projects bring a systems approach to understand complex environmental problems, incorporate local knowledge, and allow decision-makers to explore policy scenarios. This leads to better understanding of feedbacks and outcomes to both human and environmental systems. The Suffolk County, NY (eastern Long Island) 3V Case uses SES interconnections to explore possible policy options and scenarios for intervention to mitigate the effects of excess nitrogen (N) loading to ground, surface, and estuarine waters. Many of the environmental impacts of N pollution negatively affect social and economic well-being and productivity. Key are loss of enjoyment and recreational use of local beach environments and loss of income and revenues from tourism and local fisheries. Stakeholders generated this Problem Statement: Suffolk County is experiencing widespread degradation to groundwater and the coastal marine environment caused by excess nitrogen. How can local stakeholders and decision makers in Suffolk County arrest and reverse this degradation, restore conditions to support a healthy thriving ecos

  11. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    Science.gov (United States)

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping.

  12. Optimal rice/colocasia cropping systems in the Ashanti, Eastern and ...

    African Journals Online (AJOL)

    The model selected the inter-cropping system as the optimal enterprise in relation to the resources available and allocated 1.2 ha for this cropping system out of the 3 ha available to the typical farm household. ... There was a binding labour constraint for the first weeding of the farming activities with a shadow price of ¢14.65.

  13. Effects of tillage and cropping systems on yield and nitrogen fixation ...

    African Journals Online (AJOL)

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on ...

  14. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang

    NARCIS (Netherlands)

    Fang, B.; Wang, G.; Berg, van den M.M.; Roetter, R.P.

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China¿s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This

  15. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  16. Systems approaches to innovation in crop protection. A systematic literature review

    NARCIS (Netherlands)

    Schut, M.; Rodenburg, J.; Klerkx, L.W.A.; Ast, van A.; Bastiaans, L.

    2014-01-01

    The objective of this paper is to explore the extent to which systems approaches to innovation are reflected in the crop protection literature and how such approaches are used. A systematic literature review is conducted to study the relation between crop protection and systems approaches to

  17. A low-cost microcontroller-based system to monitor crop temperature and water status

    Science.gov (United States)

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  18. Rice in cropping systems - Modelling transitions between flooded and non-flooded soil environments

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Suriadi, A.; Dobermann, A.; Bouman, B.A.M.; Timsina, J.

    2012-01-01

    Water shortages in many rice-growing regions, combined with growing global imperatives to increase food production, are driving research into increased water use efficiency and modified agricultural practices in rice-based cropping systems. Well-tested cropping systems models that capture

  19. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems.

    Science.gov (United States)

    Alluvione, Francesco; Halvorson, Ardell D; Del Grosso, Stephen J

    2009-01-01

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO(2)) and methane (CH(4)) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: (i) tillage intensity [no-till (NT) and conventional moldboard plow tillage (CT)] in a continuous corn rotation; (ii) N fertilization levels [0-246 kg N ha(-1) for corn (Zea mays L.); 0 and 56 kg N ha(-1) for dry bean (Phaseolus vulgaris L.); 0 and 112 kg N ha(-1) for barley (Hordeum distichon L.)]; and (iii) crop rotation under NT soil management [corn-barley (NT-CB); continuous corn (NT-CC); corn-dry bean (NT-CDb)] on CO(2) and CH(4) flux from a clay loam soil. Carbon dioxide and CH(4) fluxes were monitored one to three times per week using vented nonsteady state closed chambers. No-till reduced (14%) growing season (154 d) cumulative CO(2) emissions relative to CT (NT: 2.08 Mg CO(2)-C ha(-1); CT: 2.41 Mg CO(2)-C ha(-1)), while N fertilization had no effect. Significantly lower (18%) growing season CO(2) fluxes were found in NT-CDb than NT-CC and NT-CB (11.4, 13.2 and 13.9 kg CO(2)-C ha(-1)d(-1) respectively). Growing season CH(4) emissions were higher in NT (20.2 g CH(4) ha(-1)) than in CT (1.2 g CH(4) ha(-1)). Nitrogen fertilization and cropping rotation did not affect CH(4) flux. Implementation of NT for 7 yr with no N fertilization was not adequate for restoring the CH(4) oxidation capacity of this clay loam soil relative to CT plowed and fertilized soil.

  20. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  1. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  2. SUSTAINABILITY OF TAX SYSTEM IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Ana Patricia HOMORODEAN (CSATLOS

    2014-11-01

    Full Text Available In the context of globalization, sustainable development is the key to the development of contemporary society and future generations. Sustainability has become a key point for the debates in the political, economic, and academic environment. Therefore, today wehave reached the point when we speak of a country or company sustainability, of environmentalor agricultural sustainability, while speaking,at the same time, of fiscal policy sustainability. The purpose of this paper is to analyze the Romanian fiscal policy sustainability in terms of tax revenues. The methodology used in this research is bibliographical analysis of specialist literature and statistical analysis of data. Bibliographical analysis was used to define operating concepts: fiscal sustainability and tax revenues. Statistical analysis was used to analyze the evolution of tax revenues in Romania between2005and2013, as well as the share of tax revenues in the general consolidated budget of Romania. Statistical data were processed using Microsoft Excel and presented as evolution diagrams. The novelty and originality of the present work consist in the bibliographical study on Romanian fiscal policy sustainability, the statistical study on the evolution of tax revenues in Romania between 2005and2013, and the analysisof fiscal policy sustainability in Romania in terms of tax revenues.

  3. Crop ecology: productivity and management in agricultural systems

    National Research Council Canada - National Science Library

    Connor, D. J; Loomis, R. S; Cassman, Kenneth G

    2011-01-01

    .... This updated and thoroughly revised second edition provides in-depth coverage of the impact of environmental conditions and management on crops, resource requirements for productivity and effects on soil resources...

  4. Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda

    Science.gov (United States)

    de Ridder, Nico; de Jager, Andre; Delve, Robert J.; Bekunda, Mateete A.; Giller, Ken E.

    2010-01-01

    Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems’ sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise

  5. Increasing Nitrogen Use Efficiency of Corn in Midwestern Cropping Systems

    Directory of Open Access Journals (Sweden)

    J.L. Hatfield

    2001-01-01

    Full Text Available Nitrogen (N loss from agricultural systems raises concerns about the potential impact of farming practices on environmental quality. N is a critical input to agricultural production. However, there is little understanding of the interactions among crop water use, N application rates, and soil types. This study was designed to quantify these interactions in corn (Zea mays L. grown in production-size fields in central Iowa on the Clarion-Nicollet-Webster soil association. Seasonal water use varied by soil type and N application rate. Yield varied with N application rate, with the highest average yield obtained at 100 kg ha-1. N use efficiency (NUE decreased with increasing N application rates, having values around 50%. Water use efficiency (WUE decreased as N fertilizer rates increased. Analysis of plant growth patterns showed that in the low organic matter soils (lower water-holding capacities, potential yield was not achieved because of water deficits during the grain-filling period. Using precipitation data coupled with daily water use throughout the season, lower organic matter soils showed these soils began to drain earlier in the spring and continued to drain more water throughout the season. The low NUE in these soils together with increased drainage lead to greater N loss from these soils. Improved management decisions have shown that it is possible to couple water use patterns with N application to increase both WUE and NUE.

  6. Assessing nutritional diversity of cropping systems in African villages.

    Directory of Open Access Journals (Sweden)

    Roseline Remans

    Full Text Available BACKGROUND: In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD, has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. METHODS AND FINDINGS: Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. CONCLUSION: This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are

  7. Assessing nutritional diversity of cropping systems in African villages.

    Science.gov (United States)

    Remans, Roseline; Flynn, Dan F B; DeClerck, Fabrice; Diru, Willy; Fanzo, Jessica; Gaynor, Kaitlyn; Lambrecht, Isabel; Mudiope, Joseph; Mutuo, Patrick K; Nkhoma, Phelire; Siriri, David; Sullivan, Clare; Palm, Cheryl A

    2011-01-01

    In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD), has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are generated and strategies for future research are suggested calling for

  8. Assessment of Cropping System Diversity in the Fergana Valley Through Image Fusion of Landsat 8 and SENTINEL-1

    Science.gov (United States)

    Dimov, D.; Kuhn, J.; Conrad, C.

    2016-06-01

    In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  9. ASSESSMENT OF CROPPING SYSTEM DIVERSITY IN THE FERGANA VALLEY THROUGH IMAGE FUSION OF LANDSAT 8 AND SENTINEL-1

    Directory of Open Access Journals (Sweden)

    D. Dimov

    2016-06-01

    Full Text Available In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object´s textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  10. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    In order to supply future biorefineries there is a need to sustainably intensify the biomass production on current agricultural land. The aim of this work was to determine biomass yield and associated radiation utilisation for novel perennial grasses and annual crops in rotations optimised...... on biodiversity. The fraction of intercepted photosynthetically active radiation (fIpar), the accumulated intercepted photosynthetically active radiation (Ipar) and the radiation use efficiency (RUE) were determined from canopy radiations measured biweekly for three years. These results showed a higher annual...... conditions. The lower aboveground RUE of perennial crops than of annual crops indicates differences in photosynthesis efficiencies and partitioning of assimilates to non-harvested plant parts and calls for further breeding of the perennial crops to improve their RUE....

  11. Factors affecting soil organic matter conservation in Mediterranean hillside winter cereals-legumes cropping systems

    Directory of Open Access Journals (Sweden)

    Elisa Marraccini

    2012-09-01

    Full Text Available Soil conservation is an important issue for farming and environmental protection in Mediterranean areas. Hillside farming systems, based on winter cereals and legumes, are common in these areas and are the target of several environmental policies. Soil organic matter (SOM is widely used to assess the environmental performance of these cropping systems. Nevertheless, few studies have considered soil conservation practices in hillside systems in terms of implementing more effective agro-environmental policies for these areas. This paper compares the SOM conservation of different winter cereal based cropping systems within Mediterranean hillside crops/livestock farms. Seventeen cropping systems were characterised by on-farm surveys in the inland hilly area of Grosseto (Tuscany, Italy. For each cropping system, we performed a SOM balance, based on Hénin-Dupuis’ equation, using either local environmental databases or data from on-farm surveys. Differences between cropping systems were analysed by the Kruskal-Wallis test. On average, the cropping systems identified did not guarantee SOM conservation and varied considerably from farm to farm, however, some practices seemed to have a positive performance, e.g. cropping systems of cattle farms. According to the literature, annual SOM balance differs significantly depending on crop rotation length and longer crop rotations performed better than shorter ones. However, we found a local effect indicating that this better performance was influenced by local farmers' cooperatives, which to some extent counteracted the negative effect of crop rotation length. There were significant differences in the performance of dairy sheep and cattle farms (-1031 kg ha-1 yr-1 vs. +103 kg ha-1 yr-1, respectively. This suggests that the presence of livestock did not have the same favourable effect on soil conservation in Mediterranean systems and that this factor should be more investigated. Surprisingly, in our sample

  12. Modelling adaptation to climate change of Ecuadorian agriculture and associated water resources: uncertainties in coastal and highland cropping systems

    Science.gov (United States)

    Ruiz-Ramos, Margarita; Bastidas, Wellington; Cóndor, Amparo; Villacís, Marcos; Calderón, Marco; Herrera, Mario; Zambrano, José Luis; Lizaso, Jon; Hernández, Carlos; Rodríguez, Alfredo; Capa-Morocho, Mirian

    2016-04-01

    Climate change threatens sustainability of farms and associated water resources in Ecuador. Although the last IPCC report (AR5) provides a general framework for adaptation, , impact assessment and especially adaptation analysis should be site-specific, taking into account both biophysical and social aspects. The objective of this study is to analyse the climate change impacts and to sustainable adaptations to optimize the crop yield. Furthermore is also aimed to weave agronomical and hydrometeorological aspects, to improve the modelling of the coastal ("costa") and highland ("sierra") cropping systems in Ecuador, from the agricultural production and water resources points of view. The final aim is to support decision makers, at national and local institutions, for technological implementation of structural adaptation strategies, and to support farmers for their autonomous adaptation actions to cope with the climate change impacts and that allow equal access to resources and appropriate technologies. . A diagnosis of the current situation in terms of data availability and reliability was previously done, and the main sources of uncertainty for agricultural projections have been identified: weather data, especially precipitation projections, soil data below the upper 30 cm, and equivalent experimental protocol for ecophysiological crop field measurements. For reducing these uncertainties, several methodologies are being discussed. This study was funded by PROMETEO program from Ecuador through SENESCYT (M. Ruiz-Ramos contract), and by the project COOP-XV-25 funded by Universidad Politécnica de Madrid.

  13. Simulating Effects of Drainage Design Parameters on Optimum Crop ...

    African Journals Online (AJOL)

    Agricultural water management system aims to provide crop water requirements to sustain optimum yield. Some of the factors influencing optimum crop yield are drainage design parameters in water-logged soils. Hence, the impact of drainage design parameters on optimum crop yield was examined. Field experimentation ...

  14. Cropping systems and control of soil erosion in a Mediterranean environment

    Science.gov (United States)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  15. Stimulating transitions towards sustainable farming systems

    NARCIS (Netherlands)

    Elzen, B.; Barbier, M.; Cerf, M.; Grin, J.; Darnhofer, I.; Gibbon, D.; Dedieu, B.

    2012-01-01

    This chapter will address the dynamics of the agro-food sector in the long run and focus on how transitions to sustainability could be initiated and supported, taking into account renewal intitiatives at the farm level, organised projects, heterogeneous actors and differing interests. Sustainable

  16. CONSTRUCTING A GENERAL SUSTAINABLE SYSTEMS THEORY

    Science.gov (United States)

    Sustainability atracts enormous interest in the minds of the public and the scientific and engineering community because it holds the promise of a long-term solution to environmental problems. Sustainability, however, is mathematically loosely defined. There is no widely accepted...

  17. Practices of corporate social responsibility and sustainable systems work in Peruvian companies issuing sustainability reports

    Directory of Open Access Journals (Sweden)

    María Angela Prialé

    2015-12-01

    Full Text Available Through a literature review, this exploratory study seeks to determine whether the practices related to its colaborators, who report as part of its action responsible Peruvian companies issuing sustainability reports can be considered sustainable management practices of human resources. To this end, it was used the approach of sustainable work systems as a general approach. It was found that some of the practices of responsible management of human resources that implement the analyzed companies address the human dimensions of sustainability, although not all dimensions are considered equally or similar depth.

  18. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    Directory of Open Access Journals (Sweden)

    W. A. Timms

    2012-04-01

    Full Text Available The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, potential evapotranspiration >2000 mm yr−1 such as parts of Australia's Murray-Darling Basin (MDB. In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5, whereas deeper groundwater was less saline (290 mS m−1 with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total, and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low

  19. Agro-Forestry system in West Africa: integrating a green solution to cope with soil depletion towards agricultural sustainability

    Science.gov (United States)

    Monteiro, Filipa; Vidigal, Patricia; Romeiras, Maria Manuel; Ribeiro, Ana; Abreu, Maria Manuela; Viegas, Wanda; Catarino, Luís

    2017-04-01

    During the last decades, agriculture in West Africa has been marked by dramatic shifts with the coverage of single crops, increasing pressure over the available arable land. Yet, West African countries are still striving to achieve sustainable production at an increased scale for global market needs. Market-driven rapid intensification is often a major cause for cropland area expansion at the expense of deforestation and soil degradation, especially to export commodities in times of high prices. Cashew (Anacardium occidentale L.) is nowadays an important export-oriented crop, being produced under intensive cultivation regimes in several tropical regions. Particularly, among the main cashew production areas, West Africa is the most recent and dynamic in the world, accounting for 45% of the world cashew nuts production in 2015. Considering its global market values, several developing countries rely on cashew nuts as national economy revenues, namely in Guinea-Bissau. Considering the intensive regime of cashew production in Guinea-Bissau, and as widely recognized, intensive agriculture linked with extensification can negatively impact ecosystems, affecting natural resources availability, soil erosion and arability compromised by excessive salinity. Ultimately this will result in the disruption of carbon - nitrogen cycle, important to the agricultural ecosystem sustainability. As such, tree intercropped with legumes as cover crops, offers a sustainable management of the land area, thus creating substantial benefits both economically and environmentally, as it enhances diversification of products outputs and proving to be more sustainable than forestry and/or agricultural monocultures. Soil fertility improvement is a key entry point for achieving food security, and also increment agriculture commodities of the agro-system. Without using inorganic fertilizers, the green solution for improving soil management is to incorporate adapted multi-purpose legumes as cover crops

  20. Evaluating the Various Cropping Systems on Cd Concentrations of Different Growth Stages of Wheat

    Directory of Open Access Journals (Sweden)

    Khoshnaz Payandeh

    2017-12-01

    Full Text Available Soil contamination with heavy metals would accumulate these elements in plant tissues and decrease qualitaty and quantity of agricultural producs and thus endanger human and animal healths. Previous crop residues and rates of fertilizers applications (especially phosphorus fertilizer are the most important effective factors on accumulation of cadmium in crop tissues. Another influential factor affecting soil shrinkage is crop rotation which induces the solubility of cadmium. This research was aimed to assess the effects of conventional cropping system on cadmium concentrations in wheat at its different growth stages by using a split plot in time experiment based on completely randomized block design with three replications in the 2014-2015 growing season in Shavoor Agricultural Research Station (Khuzestan province. Main plot consisted of cropping system (rice-wheat, fallow-wheat and sub plot of growth stages at three levels (tillering, flowering and ripening. Different wheat seed cadmium concentrations due to two cropping systems were different significantly at 1% probability level. Cadmium concentration in the seeds at rice-wheat cropping system (0.31 mg.kg-1 was higher than fallow-wheat system (0.27 mg.kg-1 which is higher than World Health Organization standards. Result of analysis of variance showed that the effect of cropping systems and different growth stages of wheat on root and stem cadmium concentrations were significant at 1% probability level. Rice-wheat cropping system resulted in higher cadmium concentration in root (1.09 mg.kg-1 and stem (0.73 mg.kg-1 compared to that of the fallow-wheat cropping system. Accumulation of cadmium in stem or root at different growth stages of wheat were not significant but it was totally additive, because range of variation of cadmium concentration from planting to harvest was low.

  1. Business system: sustainable development and anticipatory systems thinking

    Directory of Open Access Journals (Sweden)

    Vojko Potočan

    2002-01-01

    Full Text Available The existence and development of humankind depends a lot upon a co-ordinated operation of all areas and levels of human activity. However, in either theory or practice we found no model of operation, which would offer a harmonized and target oriented development. A possible solution is offered by sustainable development, which tries to define and carry out common goals of humankind with a holistic harmonization of humans’ activities at all levels of their living and behaviour. Companies belong to central institutions of the modern society and essentially co–create the sustainability of society. Companies endeavour (e.g. by simulation and planning to prepare models of their goals and ways concerning their internal and external environment. On the basis of systems approach, we can define companies as business systems, which can best survive in a log-run on the basis of sustainable development. This business system’s effort can also be supported by the application of the anticipatory systems thinking, which can improve its planning methods, if it is holistic, understood as a future oriented mental activity made of its methodological approach, techniques, and modes of work. Its characteristics have a direct impact on holism of the definition of goals, on the orientation of operation, and hence on the achievement of the business system’s results.

  2. Academic Training: Toward Sustainable Energy Systems?

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es), a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED'electricity interconnection, intending to carry solar electricity fro...

  3. Academic Training: Toward Sustainable Energy Systems?

    CERN Document Server

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es) ,a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED' electricity interconnection, intending to carry solar electricity f...

  4. Scope and precision of sustainability assessment approaches to food systems

    OpenAIRE

    Christian Schader; Jan Grenz; Matthias S. Meier; Matthias Stolze

    2014-01-01

    With sustainability within food systems becoming an increasingly important issue, several approaches that claim to assess the sustainability of farms, farming systems, and supply chains have been developed. Looking more closely at these sustainability impact assessment approaches, we discerned considerable differences between them in terms of scope, the level of assessment, and the precision of indicators used for impact assessment. Our aim was to classify and analyze a range of available sus...

  5. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...... and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations....

  6. The Myth of Coexistence: Why Transgenic Crops Are Not Compatible With Agroecologically Based Systems of Production

    Science.gov (United States)

    Altieri, Miguel

    2005-01-01

    The coexistence of genetically modified (GM) crops and non-GM crops is a myth because the movement of transgenes beyond their intended destinations is a certainty, and this leads to genetic contamination of organic farms and other systems. It is unlikely that transgenes can be retracted once they have escaped, thus the damage to the purity of…

  7. Sustainable land use in Tikopia: Food production and consumption in an isolated agricultural system

    DEFF Research Database (Denmark)

    Mertz, Ole; Bruun, Thilde Bech; Fog, Bjarne

    2010-01-01

    increasingly unreliable. Local agricultural production and exploitation of marine resources are essential to sustain the population, and with few exceptions farming and fishing techniques remain unchanged. Most of the island is still farmed permanently and the intensive agricultural system has not suffered...... making, and the collection of soil samples from the major soil and garden types. The Tikopian land use system has not undergone significant changes since the 1970s; indeed the focus on self-sufficiency in food crops may have been strengthened over the past 30 years as ship arrivals have become...

  8. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    depths, pore characteristics did not differ significantly among tillage treatments. At the 12- to 16-cm depth, negative effects of reduced tillage (D and H) were recorded for total porosity and air-filled porosity at −10 kPa (that is, >30-μm pores). Generally, the use of a cover crop increased air......Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main....... The cover crop thus alleviated the effect of tillage pan compaction in all tillage treatments....

  9. Global crop production forecasting - A simulation analysis of the data system problems and their solutions

    Science.gov (United States)

    Golden, H.; Neiers, J. W.

    1978-01-01

    Alternative data systems for a global crop production forecasting system were studied with the aid of a unique simulation facility called the Data System Dynamic Simulator (DSDS). Information system requirements were determined and compared with existing and planned data systems, and deficiencies were identified and analyzed. A first step was to determine the data load for an operational global crop production forecasting system as a function of data frequency, crop types, biophases, cloud coverage, and number of satellites. The DSDS was used to correlate the interrelated influence of orbital parameters, crop calendars, and cloud conditions to generate global data loading profiles. Some of the more important conclusions and the main features of the simulation system are presented.

  10. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  11. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  12. Tapping the Potential of Neglected and Underutilized Food Crops for Sustainable Nutrition Security in the Mountains of Pakistan and Nepal

    Directory of Open Access Journals (Sweden)

    Lipy Adhikari

    2017-02-01

    Full Text Available Neglected and underutilized food crops (NUFCs have high nutritional value, but their role in achieving nutrition security is not adequately understood, and they do not feature in food and nutrition policies and programs of the countries of the Hindu-Kush Himalayan (HKH region. Drawing examples from Pakistan and Nepal, this study investigates the importance of NUFCs in achieving nutrition security in the mountains and identifies key underlying reasons for the decline in their cultivation and use. The study found that the prevalence of malnutrition is significantly higher in the mountains than nationally in both Pakistan and Nepal and identifies the decline in the cultivation and use of micronutrient-rich NUFCs as one of the key reasons for this. The deterioration of local food systems, changing food habits, lack of knowledge about the cultivation, use and nutritional value of NUFCs and lack of attention to NUFCs in programs and policies are the key reasons for the abandoning of NUFCs by mountain communities. There is an urgent need to mainstream these crops into national programs and policies and to integrate them into local food systems. This will not only improve the nutrition security of mountain areas, but also biodiversity and local mountain economies.

  13. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  14. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  15. Integrated Crop-Livestock Systems in Newly Resettled Areas of ...

    African Journals Online (AJOL)

    A semi- structured questionnaire was administered to collect information on household demography, level of education, farming history, livestock and crop management. Data were analyzed using the statistical package for the Social Sciences (SPSS) version 16. The youngest respondent was 27 while the oldest was over ...

  16. The effects of cropping systems on cassava whiteflies in Colombia ...

    African Journals Online (AJOL)

    The cassava whiteflies Aleurotrachelus socialis and Trialeurodes variabilis are outbreak pests which cause high yield losses in the Departments of Tolima and Cauca, Colombia. Studies were undertaken to examine the effects of intercopping and cassava varietal mixtures on whitefly population dynamics and related crop ...

  17. Contributions of leguminous cover crops in yam production systems ...

    African Journals Online (AJOL)

    A study was conducted from 2003 to 2005 at Umudike, South-eastern Nigeria, to evaluate ten legume cover crops for biomass production and weed suppression. There were eleven treatments which consisted of ten legume species (Mucuna pruriens utilis, Mucuna pruriens IRZ, Mucuna georgia, Mucuna veracruz, ...

  18. Contributions of leguminous cover crops in yam production systems ...

    African Journals Online (AJOL)

    Field experiments were conducted between 2003 and 2006 at Umudike, Southeastern Nigeria, to evaluate ten legume cover crops for soil fertility improvement and yam production. There were twelve treatments and consisted of ten legume species (Mucuna pruriens utilis, Mucuna pruriens IRZ, Mucuna georgia, Mucuna ...

  19. profitability of groundnut-based cropping systems among farmers in ...

    African Journals Online (AJOL)

    important food crop in the World and also the World's 4th most important source of vegetable protein (26%), and ... Research Institute for the Semi-Arid Tropics, ICRISAT,. 2001). The Food and Agriculture Organization (FAO, ..... Groundnut Pyramids in Nigeria. Can they be. Reviewed? http://www.icrisat.org.pyramidsht. Okolo ...

  20. Two intelligent spraying systems developed for tree crop production

    Science.gov (United States)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  1. Reinventing new systems of crop production in time of agro ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology ... the maintenance or restoration of the soil fertility, rotational practice (combining or mixing food and cash crops in the same field), shifting cultivation as well as the fragmentation of households in order to optimize the productivity of manpower in nuclear families.

  2. influence of cowpea genotype and sorghum-cropping system on ...

    African Journals Online (AJOL)

    DR. AMINU

    accounting for the low annual harvest of this important grain ... mainly by the harmful side effects and high costs of insecticides and their ..... the performance of mixed sorghum and cowpea. Journal of ... different management practices in eastern Uganda. African Crop ... cowpea in Africa: Their lifecycle, economic importance ...

  3. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    Science.gov (United States)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  4. Fertilization management in bean crop under organic production system

    Directory of Open Access Journals (Sweden)

    Leandro Barradas Pereira

    2015-03-01

    Full Text Available Nowadays the food production systems tend to include the sustainable management of soil and water. One of the main obstacles to the organic cultivation of common bean is the fertilization management. This study aimed to evaluate doses of organic fertilizer containing slaughterhouse residues (1.0 t ha-1, 1.5 t ha-1, 2.0 t ha-1 and 2.5 t ha-1. The experimental design was randomized blocks in a 4x2x2 factorial scheme, with 16 treatments and 4 replications. Plant dry weight; foliar diagnose; initial and final plant population; number of pods per plant, grains per plant and grains per pod; 1000-grain weight; and grain yield were evaluated. It was concluded that the methods and time of organic fertilizer application do not affect the production components and yield in common bean. The dose of 2.5 t ha-1 of organic fertilizer provided the highest common bean yield in 2012, but it did not express its maximum production capacity.

  5. Multilevel and multi-user sustainability assessment of farming systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Passel, Steven, E-mail: Steven.vanpassel@uhasselt.be [Hasselt University, Faculty of Business Economics, Centre for Environmental Sciences, Agoralaan, Building D, 3590, Diepenbeek (Belgium); University of Antwerp, Department Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Meul, Marijke [University College Ghent, Department of Biosciences and Landscape Architecture, Campus Schoonmeersen, Building C, Schoonmeersstraat 52, 9000, Gent (Belgium)

    2012-01-15

    Sustainability assessment is needed to build sustainable farming systems. A broad range of sustainability concepts, methodologies and applications already exists. They differ in level, focus, orientation, measurement, scale, presentation and intended end-users. In this paper we illustrate that a smart combination of existing methods with different levels of application can make sustainability assessment more profound, and that it can broaden the insights of different end-user groups. An overview of sustainability assessment tools on different levels and for different end-users shows the complementarities and the opportunities of using different methods. In a case-study, a combination of the sustainable value approach (SVA) and MOTIFS is used to perform a sustainability evaluation of farming systems in Flanders. SVA is used to evaluate sustainability at sector level, and is especially useful to support policy makers, while MOTIFS is used to support and guide farmers towards sustainability at farm level. The combined use of the two methods with complementary goals can widen the insights of both farmers and policy makers, without losing the particularities of the different approaches. To stimulate and support further research and applications, we propose guidelines for multilevel and multi-user sustainability assessments. - Highlights: Black-Right-Pointing-Pointer We give an overview of sustainability assessment tools for agricultural systems. Black-Right-Pointing-Pointer SVA and MOTIFS are used to evaluate the sustainability of dairy farming in Flanders. Black-Right-Pointing-Pointer Combination of methods with different levels broadens the insights of different end-user groups. Black-Right-Pointing-Pointer We propose guidelines for multilevel and multi-user sustainability assessments.

  6. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya

    Directory of Open Access Journals (Sweden)

    Kyalo Richard

    2017-11-01

    Full Text Available Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step. An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  7. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya

    Science.gov (United States)

    Richard, Kyalo; Abdel-Rahman, Elfatih M.; Subramanian, Sevgan; Nyasani, Johnson O.; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-01-01

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models. PMID:29099780

  8. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.

    Science.gov (United States)

    Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-11-03

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  9. Land system science and sustainable development of the earth system

    DEFF Research Database (Denmark)

    Verburg, Peter H.; Crossman, Neville; Ellis, Erle C.

    2015-01-01

    as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between...... distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can...... be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action....

  10. NASA's Space Launch System: Affordability for Sustainability

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  11. Adoption of bioenergy technologies for a sustainable energy system

    OpenAIRE

    Bjørnstad, Even

    2011-01-01

    A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will be an important part of this system. Changing from the current fossil-dependent energy system to a truly sustainable energy system will require fundamental changes in basic structures of society, in the technologies we utilize in the living of our lives and in the way we as citizens and consumers behave relative to energy use. ...

  12. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  13. A systems engineering approach for realizing sustainability in infrastructure projects

    OpenAIRE

    Mohamed Matar; Hesham Osman; Maged Georgy; Azza Abou-Zeid; Moheeb El-Said

    2017-01-01

    Sustainability is very quickly becoming a fundamental requirement of the construction industry as it delivers its projects; whether buildings or infrastructures. Throughout more than two decades, a plethora of modeling schemes, evaluation tools and rating systems have been introduced en route to realizing sustainable construction. Many of these, however, lack consensus on evaluation criteria, a robust scientific model that captures the logic behind their sustainability performance evaluation,...

  14. Systems and practices in sustainable consumption research

    DEFF Research Database (Denmark)

    Røpke, Inge

    The financial crisis in 2007-2008 and the subsequent economic crisis served as a wake-up call for sustainable consumption studies. The literature on consumption and environment had little focus on finance, but the crisis made it clear that financial issues are important also from an environmental...... perspective. Credit plays an important role as a driver of unsustainable consumption, and financial mechanisms contribute to the widening inequalities as well as the build-up of macroeconomic instability. Looking ahead, transformation of finance is just as important for sustainability as transformation...

  15. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture.

    Science.gov (United States)

    Bhat, Sartaj Ahmad; Singh, Sharanpreet; Singh, Jaswinder; Kumar, Sunil; Bhawana; Vig, Adarsh Pal

    2018-03-01

    Vermicompost is the final product of the vermicomposting process involving the collective action of earthworms and microbes. During this process, the waste is converted into useful manure by reducing the harmful effects of waste. Toxicity of industrial wastes is evaluated by plant bioassays viz. Allium cepa and Vicia faba test. These bioassays are sensitive and cost-effective for the monitoring of environmental contamination. The valorization potential of earthworms and their ability to detoxify heavy metals in industrial wastes is because of their strong metabolic system and involvement of earthworm gut microbes and chloragocyte cells. Most of the studies reported that the vermicompost produced from organic wastes contains higher amounts of humic substances, which plays a major role in growth of plants. The present article discusses the detoxification of industrial wastes by earthworms and the role of final vermicompost in plant growth and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality

    Directory of Open Access Journals (Sweden)

    Patrick M. Carr

    2013-07-01

    Full Text Available Organic farming has been identified as promoting soil quality even though tillage is used for weed suppression. Adopting zero tillage and other conservation tillage practices can enhance soil quality in cropping systems where synthetic agri-chemicals are relied on for crop nutrition and weed control. Attempts have been made to eliminate tillage completely when growing several field crops organically. Vegetative mulch produced by killed cover crops in organic zero tillage systems can suppress annual weeds, but large amounts are needed for adequate early season weed control. Established perennial weeds are not controlled by cover crop mulch. Integrated weed management strategies that include other cultural as well as biological and mechanical controls have potential and need to be incorporated into organic zero tillage research efforts. Market crop performance in organic zero tillage systems has been mixed because of weed, nutrient cycling, and other problems that still must be solved. Soil quality benefits have been demonstrated in comparisons between organic conservation tillage and inversion tillage systems, but studies that include zero tillage treatments are lacking. Research is needed which identifies agronomic strategies for optimum market crop performance, acceptable levels of weed suppression, and soil quality benefits following adoption of organic zero tillage.

  17. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  18. Integrated cropping systems : an answer to environmental regulations imposed on nursery stock in the Netherlands

    NARCIS (Netherlands)

    Pronk, A.A.; Challa, H.

    2000-01-01

    Government regulations in the Netherlands are increasingly constraining and sometimes even banning conventional cultivation practices in nursery stock cropping systems. As a consequence, growers face problems concerning the use of manure, fertilisers and irrigation. In this study we analysed the

  19. Consideration in selecting crops for the human-rated life support system: a linear programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  20. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  1. Elytrigia repens population dynamics under different management schemes in organic cropping systems on coarse sand

    DEFF Research Database (Denmark)

    Rasmussen, Ilse A.; Melander, Bo; Askegaard, Margrethe

    2014-01-01

    -year crop rotations including various cash crops and grass-clover leys; two rotations running during the first two courses with the one replaced with another rotation during the last course. The rotations were combined with four combinations of the treatments; with and without animal manure (‘without......Elytrigia repens is a noxious perennial weed in organic cropping systems in Scandinavia. It can easily spread in any crop type and reach unacceptable infestation levels through its proliferation from rhizome fragments. This study aimed at analyzing and quantifying the population dynamics of E....... repens recorded in a long-termed crop rotation experiment on coarse sand in Southern Denmark. The study gives an insight into the factors responsible for E. repens population changes and especially those that require particular attention to prevent outbreaks of E. repens. Data originated from three 4...

  2. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem.

    Directory of Open Access Journals (Sweden)

    Jiashu Chu

    Full Text Available The effect of cropping system on the distribution of organic carbon (OC and nitrogen (N in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0-40 cm at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0-20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the 0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm.

  3. Agroforestry systems in northern Vietnam with Tephrosia candida as an alternative to short-fallow crop rotations

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Fagerstroem, M.H. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2000-07-01

    Tephrosia candida was experimentally tested on-farm as an improved fallow species (TepFa), in hedgerows, (TepAl) and in a mulch transfer system (TepMu) in an upland rice (Oryza sativa) system on sloping land in northern Vietnam during the period 1996-1999. The objectives of this study were: (1) to investigate whether the existing monocropping (Mono) and short-fallow crop rotations (NaFa) are sustainable systems with respect to soil erosion and concomitant nutrient losses; (2) to determine whether agroforestry systems with Tephrosia (TepFa, TepAl, TepMu) can improve nutrient cycling and nutrient balances, for instance by preventing nutrient losses through erosion, as well as sustaining upland rice yields. A criteria system, including soil and nutrient losses, nutrient balances, changes of P-available pools, returns on labour and farmers' response, was used for comparing the systems tested. Only TepFa gave a positive input-output balance for both P and N. TepFa increased soil N and seemed to positively affect the release of soil labile P. However, the cost of Tephrosia seeds made the Net Present Value (NPV) of the Tephrosia fallow crop rotation system negative. TepMu increased upland rice yield by 50% compared to Mono. As a result, NPV was positive and sufficient rice for one more person could be produced per ha and year. However, the yield increase could cause a depletion of plant-available P, and the timing for pruning and mulching activities coincided with the farming activities in paddy fields. TepAl increased soil N, gave a neutral overall effect on crop yield but a negative NPV. NaFa gave a positive and highest NPV. In general, TepFa and TepMu were shown to increase crop yield per hectare with acceptable returns on labour and also to do better than Mono and NaFa with respect to preventing soil and nutrient losses through erosion. Recommendations are made for further research to focus on alternatives to maintain soil P, mechanisms of P pool reallocation and

  4. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    Directory of Open Access Journals (Sweden)

    Victor B. Ella

    2016-01-01

    Full Text Available Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Philippines. Results showed that soil organic carbon (SOC at 0- 5-cm depth for all CAPS treatments generally increased with time while SOC under the plow-based system tended to decline over time for both the high (120, 60 and 60 kg N P K ha-1 and moderate (60-30-30 kg N P K ha-1 fertility levels. The cropping system with maize + Stylosanthes guianensis in the first year followed by Stylosanthes guianensis and fallow in the second year, and the cassava + Stylosanthes guianensis exhibited the highest rate of SOC increase for high and moderate fertility levels, respectively. After one, two, and three cropping seasons, plots under CAPS had significantly higher soil residual water content (RWC than under plow-based systems. Results of this study suggest that conservation agriculture has a positive impact on soil quality, while till systems negatively impact soil characteristics.

  5. Response of soil fungi and biological processes to crop residues in no-tillage system

    Directory of Open Access Journals (Sweden)

    Priscila de Oliveira

    2016-03-01

    Full Text Available Soil management and crop rotation can directly affect the soil microbial community. This study aimed at determining soil quality indicators and soilborne fungi in a no-tillage system. A randomized blocks design, in a 3 × 2 factorial arrangement, was used. Three cover crops (palisade grass, millet and common bean provided straw and root residues to the following crops of corn and soybean. The common bean-soybean sequence provided little soil covering and higher metabolic quotient and soil basal respiration and total enzymatic activity, as well as a general increase of soilborne fungi. The principal component analysis revealed that 76.61 % of the variance can be explained by the three first components, with cover crops, soil basal respiration and metabolic quotient regarded as the main qualitative and quantitative sources of variance in the first component. Carbon from the microbial biomass was the soil quality indicator best correlated to crop yield and negatively correlated to Fusarium solani density. The Rhizoctonia solani population was correlated with higher metabolic quotient and soil total enzymatic activity and basal respiration. The palisade grass crop favored soil fungistasis and enhancement of antagonist Trichoderma spp. populations. The multivariate approach demonstrated the association of soil fungi with soil quality indicators, as well as a higher influence of cover crops on the variance observed, in comparison to cash crops.

  6. Sustainable development indicators for urban water systems: a case ...

    African Journals Online (AJOL)

    In the light of the increasing pressures on the world's freshwater resources, changes in the present and future urban water systems are called for in order to achieve sustainable development. The transformation from unsustainable practices demands tools that measure progress and can warn of future trends. Sustainable ...

  7. Business models and information systems for sustainable development

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Shishkov, Boris; Shishkov, B.B.

    Businesses are expected to explore market opportunities in the area of sustainable development, thus contributing to finding solutions aiming at sustainable quality of life. This will require adaptation and innovation of business models and information systems, with challenges of particular interest

  8. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  9. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Directory of Open Access Journals (Sweden)

    G. Wang

    2017-10-01

    Full Text Available Changes in the soil organic carbon (SOC stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1°  ×  0.1° and over a long timescale (54 years from 1961 to 2014. A widely used soil C turnover model (RothC and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive and the edaphic variable of initial SOC content (linearly negative. Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to

  10. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Science.gov (United States)

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  11. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping.

    Directory of Open Access Journals (Sweden)

    Mengyi Wang

    Full Text Available Soil sickness is a critical problem for eggplant (Solanum melongena L. under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L. on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK, eggplant relay intercropping with normal garlic (NG and eggplant relay intercropping with green garlic (GG. The major results are as follows: (1 the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2 relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg(-1, significantly higher than 61.95 mg·kg(-1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg(-1 in NG and GG, both were significantly higher than 314.84 mg·kg(-1 in CK; (3 the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4 the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production.

  12. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    2004-01-01

    The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape:

  13. Sustaining organizational culture change in health systems.

    Science.gov (United States)

    Willis, Cameron David; Saul, Jessie; Bevan, Helen; Scheirer, Mary Ann; Best, Allan; Greenhalgh, Trisha; Mannion, Russell; Cornelissen, Evelyn; Howland, David; Jenkins, Emily; Bitz, Jennifer

    2016-01-01

    The questions addressed by this review are: first, what are the guiding principles underlying efforts to stimulate sustained cultural change; second, what are the mechanisms by which these principles operate; and, finally, what are the contextual factors that influence the likelihood of these principles being effective? The paper aims to discuss these issues. The authors conducted a literature review informed by rapid realist review methodology that examined how interventions interact with contexts and mechanisms to influence the sustainability of cultural change. Reference and expert panelists assisted in refining the research questions, systematically searching published and grey literature, and helping to identify interactions between interventions, mechanisms and contexts. Six guiding principles were identified: align vision and action; make incremental changes within a comprehensive transformation strategy; foster distributed leadership; promote staff engagement; create collaborative relationships; and continuously assess and learn from change. These principles interact with contextual elements such as local power distributions, pre-existing values and beliefs and readiness to engage. Mechanisms influencing how these principles sustain cultural change include activation of a shared sense of urgency and fostering flexible levels of engagement. The principles identified in this review, along with the contexts and mechanisms that influence their effectiveness, are useful domains for policy and practice leaders to explore when grappling with cultural change. These principles are sufficiently broad to allow local flexibilities in adoption and application. This is the first study to adopt a realist approach for understanding how changes in organizational culture may be sustained. Through doing so, this review highlights the broad principles by which organizational action may be organized within enabling contextual settings.

  14. The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol

    Directory of Open Access Journals (Sweden)

    Eric W. Triplett

    2012-10-01

    Full Text Available Agricultural management alters physical and chemical soil properties, which directly affects microbial life strategies and community composition. The microbial community drives important nutrient cycling processes that can influence soil quality, cropping productivity and environmental sustainability. In this research, a long-term agricultural experiment in a subtropical Acrisol was studied in south Brazil. The plots at this site represent two tillage systems, two nitrogen fertilization regimes and three crop rotation systems. Using Illumina high-throughput sequencing of the 16S rRNA gene, the archaeal and bacterial composition was determined from phylum to species level in the different plot treatments. The relative abundance of these taxes was correlated with measured soil properties. The P, Mg, total organic carbon, total N and mineral N were significantly higher in the no-tillage system. The microbial diversity was higher in the no-tillage system at order, family, genus and species level. In addition, overall microbial composition changed significantly between conventional tillage and no-tillage systems. Anaerobic bacteria, such as clostridia, dominate in no-tilled soil as well as anaerobic methanogenic archaea, which were detected only in the no-tillage system. Microbial diversity was higher in plots in which only cereals (oat and maize were grown. Soil management influenced soil biodiversity on Acrisol by change of composition and abundance of individual species.

  15. Scope and precision of sustainability assessment approaches to food systems

    Directory of Open Access Journals (Sweden)

    Christian Schader

    2014-09-01

    Full Text Available With sustainability within food systems becoming an increasingly important issue, several approaches that claim to assess the sustainability of farms, farming systems, and supply chains have been developed. Looking more closely at these sustainability impact assessment approaches, we discerned considerable differences between them in terms of scope, the level of assessment, and the precision of indicators used for impact assessment. Our aim was to classify and analyze a range of available sustainability impact assessment approaches with respect to scope and precision. From a total of 35 sustainability assessment approaches, we selected 6 for a detailed comparison. From our analysis, we concluded that there are 3 different types of trade-offs in these approaches: between different kinds of scope, between different indicators for precision and trade-offs, and between the scope and precision. Thus, one-size-fits-all solutions, with respect to tool selection, are rarely feasible. Furthermore, as indicator selection determines the assessment results, different and inconsistent indicators can lead to contradictory assessment results that may not be comparable. To overcome these shortcomings, sustainability impact assessments should include a precise definition of the notion of "sustainability" along with a description of the methodological approach and the indicator sets and should aim for harmonization of indicators and assumptions. Global initiatives such as the Sustainability Assessment in Food and Agriculture Systems (SAFA Guidelines are a helpful step toward shedding light on the differences of these approaches and making the assessment results more comparable.

  16. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    Science.gov (United States)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility.

  17. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    Science.gov (United States)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  18. Options from life-cycle analysis for reducing greenhouse gas emissions from crop and livestock production systems

    OpenAIRE

    Wilkinson, J.M.; Audsley, Eric

    2013-01-01

    Options for reducing greenhouse gas emissions (GHGE), measured as global warming potential, in twelve crop and seven livestock systems were explored using a systems model-based life-cycle analysis of environmental burdens and resource use. Differences between crops in GHGE per kg product reflected differences in yield per hectare. Technological changes found to reduce GHGE per kg of crop were: (i) 20% decrease in total N (all crops except legumes); (ii) no-till (cereals and legumes only) and ...

  19. System Productivity and Yield of Component Crops as Affected by ...

    African Journals Online (AJOL)

    else

    dietary protein sources (CSA, 2011). Maize and bean co-existence can be considered as ... morphological features such as leaf arrangement, canopy shape and growth habit. For sustainable intensification of maize and common bean ..... Completely revised edition, D.F. Mexico. Dagne Wegary, Abaya Temesgen, Solomon ...

  20. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems.

    Science.gov (United States)

    E Birch, A Nicholas; Begg, Graham S; Squire, Geoffrey R

    2011-06-01

    Drivers behind food security and crop protection issues are discussed in relation to food losses caused by pests. Pests globally consume food estimated to feed an additional one billion people. Key drivers include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and EU pesticide withdrawals under policies relating to 91/414 EEC. IPM (Integrated Pest Management) will be compulsory for all EU agriculture by 2014 and is also being widely adopted globally. IPM offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM aims for more sustainable solutions by using complementary technologies. The applied research challenge now is to reduce selection pressure on single solution strategies, by creating additive/synergistic interactions between IPM components. IPM is compatible with organic, conventional, and GM cropping systems and is flexible, allowing regional fine-tuning. It reduces pests below economic thresholds utilizing key 'ecological services', particularly biocontrol. A recent global review demonstrates that IPM can reduce pesticide use and increase yields of most of the major crops studied. Landscape scale 'ecological engineering', together with genetic improvement of new crop varieties, will enhance the durability of pest-resistant cultivars (conventional and GM). IPM will also promote compatibility with semiochemicals, biopesticides, precision pest monitoring tools, and rapid diagnostics. These combined strategies are urgently needed and are best achieved via multi-disciplinary research, including complex spatio-temporal modelling at farm and landscape scales. Integrative and synergistic use of existing and new IPM technologies will help meet future food production needs more sustainably in developed and developing countries, in an era of reduced pesticide availability. Current IPM research gaps are

  1. Exergy and Sustainability : Insights into the Value of Exergy Analysis in Sustainability Assessment of Technological Systems

    NARCIS (Netherlands)

    Stougie, L.

    2014-01-01

    A major challenge in striving for a more sustainable society is the selection of technological systems. Given the capital intensity of industrial production plants, power generation systems and infrastructure, investment decisions create path dependencies for decades to come. It is difficult to know

  2. Assessing the environmental impacts of cropping systems and cover crops : Life cycle assessment of FAST, a long-term arable farming field experiment

    NARCIS (Netherlands)

    Prechsl, U E; Wittwer, R; van der Heijden, M.G.A.|info:eu-repo/dai/nl/240923901; Luscher, G; Jeanneret, P; Nemecek, T

    2017-01-01

    To reduce environmental impacts of cropping systems, various management strategies are being discussed. Longterm field experiments are particularly suitable to directly compare different management strategies and to perform a comprehensive impact assessment. To identify the key drivers of several

  3. Design technologies for green and sustainable computing systems

    CERN Document Server

    Ganguly, Amlan; Chakrabarty, Krishnendu

    2013-01-01

    This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high-performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking. ·         Offers readers a single-source reference for addressing the challenges of power efficiency and sustainability in embedded computing systems; ·         Provides in-depth coverage of the key underlying design technologies for green and sustainable computing; ·         Covers a wide range of topics, from chip-level design to architectures, computing systems, and networks.

  4. Dynamic management of sustainable development methods for large technical systems

    CERN Document Server

    Krishans, Zigurds; Merkuryev, Yuri; Oleinikova, Irina

    2014-01-01

    Dynamic Management of Sustainable Development presents a concise summary of the authors' research in dynamic methods analysis of technical systems development. The text illustrates mathematical methods, with a focus on practical realization and applications.

  5. Modeling and Advanced Control for Sustainable Process Systems

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  6. Crop yield network and its response to changes in climate system

    Science.gov (United States)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  7. Multi crop model climate risk country-level management design: case study on the Tanzanian maize production system

    Science.gov (United States)

    Chavez, E.

    2015-12-01

    Future climate projections indicate that a very serious consequence of post-industrial anthropogenic global warming is the likelihood of the greater frequency and intensity of extreme hydrometeorological events such as heat waves, droughts, storms, and floods. The design of national and international policies targeted at building more resilient and environmentally sustainable food systems needs to rely on access to robust and reliable data which is largely absent. In this context, the improvement of the modelling of current and future agricultural production losses using the unifying language of risk is paramount. In this study, we use a methodology that allows the integration of the current understanding of the various interacting systems of climate, agro-environment, crops, and the economy to determine short to long-term risk estimates of crop production loss, in different environmental, climate, and adaptation scenarios. This methodology is applied to Tanzania to assess optimum risk reduction and maize production increase paths in different climate scenarios. The simulations carried out use inputs from three different crop models (DSSAT, APSIM, WRSI) run in different technological scenarios and thus allowing to estimate crop model-driven risk exposure estimation bias. The results obtained also allow distinguishing different region-specific optimum climate risk reduction policies subject to historical as well as RCP2.5 and RCP8.5 climate scenarios. The region-specific risk profiles obtained provide a simple framework to determine cost-effective risk management policies for Tanzania and allow to optimally combine investments in risk reduction and risk transfer.

  8. A conceptual approach to design livestock production systems for robustness to enhance sustainability

    NARCIS (Netherlands)

    Napel, ten J.; Veen, van der A.A.; Oosting, S.J.; Groot Koerkamp, P.W.G.

    2011-01-01

    Existing approaches to enhance sustainability of livestock production systems focus on the level of sustainability indicators. Maintaining the level of sustainability in the face of perturbations, which is robustness of sustainability, is relatively unexplored. Perturbations can be classed as noise

  9. Advanced thermodynamics metrics for sustainability assessments of open engineering systems

    Directory of Open Access Journals (Sweden)

    Sekulić Dušan P.

    2006-01-01

    Full Text Available This paper offers a verification of the following hypotheses. Advanced thermodynamics metrics based on entropy generation assessments indicate the level of sustainability of transient open systems, such as in manufacturing or process industries. The indicator of sustainability may be related to particular property uniformity during materials processing. In such a case the property uniformity would indicate systems’ distance from equilibrium i.e., from the sustainable energy utilization level. This idea is applied to a selected state-of-the-art manufacturing process. The system under consideration involves thermal processing of complex aluminum structures during controlled atmosphere brazing for a near-net-shape mass production of compact heat exchangers.

  10. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Green innovation and sustainable industrial systems within sustainability and company improvement perspective

    Science.gov (United States)

    Edi Nugroho Soebandrija, Khristian

    2017-12-01

    This paper comprises discussion of Green Innovation and Sustainable Industrial Systems within Sustainability and Company Improvement Perspective of beverage manufacturing company (BMC). The stakeholder theory is the grand theory for the company improvement perspective in this paper. The data processing in this paper is conducted through software which are SEM-PLS with SmartPLS 2.0 and SPSS 19. The specified objective of this paper has focus on sustainability as one of 6 variables, in lieu of those 6 variables as the big picture. The reason behind this focus on sustainability is the fact that there are assorted challenges in sustainability that is ranging from economic, environment and company perspectives. Those challenges in sustainability include the sustainable service supply chain management and its involvement of society. The overall objective is to analyze relationship hypothesis of 6 variables, 4 of them (leadership, organizational learning, innovation, and performance) are based on Malcolm Baldrige’s performance excellence concept to achieve sustainability and competitive advantage through company-competitor and customer questionnaire, and its relation to Total Quality Management (TQM) and Quality Management System (QMS). In conclusion, the spearheaded of company improvement in this paper is in term of consumer satisfaction through 99.997% quality standards. These can be achieved by ambidexterity through exploitation and exploration innovation. Furthermore, in this paper, TQM enables to obtain popularity brand index achievement that is greater than 45.9%. Subsequently, ISO22000 of food security standard encompasses quality standard of ISO9000 and HACCP. Through the ambidexterity of exploitation and exploration (Non Standard Product Inspection) NOSPI machine, the company improvement generates the achievement of 75% automation, 99.997% quality control standard and 80% of waste reduction.

  12. Innovation in Financial Systems. The Quest For Sustainability

    OpenAIRE

    Voicu-Doroban?u Roxana

    2012-01-01

    The paper focuses on the trials and tribulations the financial systems are facing in the current economic environment, in order to increase their economic sustainability, but also improve their social sustainability. As desperate times (characterized by an endemic crisis, reaching from the financial systems into the globalized economic network) require ‘desperate measures’, there is a certain need for improvement and innovation in instruments and behaviours exhibited by the actors in a financ...

  13. The Battle Command Sustainment Support System: Initial Analysis Report

    Science.gov (United States)

    2016-09-01

    Sustainment Sustainment System Mission Command (S2MC) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...Data (214A) 6 Global Air Transportation Execution System (GATES) 6 Radio-Frequency Identification ( RFID ) Detections, Level 6, and Interrogator...information. Logistics Support Activity (LOGSA)  Frequency: 2 or 6 hr  Format: direct database link or flat file via secure file transfer

  14. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHYU ASTIKO

    2016-01-01

    Full Text Available Abstract. Astiko W, Fauzi MT, Sukartono. 2016. Mycorrhizal population on various cropping systems on sandy soil in dryland area of North Lombok, Indonesia. Nusantara Bioscience 8: 66-70. Inoculation of arbuscular mycorrhizal fungi (AMF on maize in sandy soil is expected to have positive implications for the improvement of AMF population and nutrient uptake. However, how many increases in the AMF population and nutrient uptake in the second cycle of a certain cropping system commonly cultivated by the farmers after growing their corn crop have not been examined. Since different cropping systems would indicate different increases in the populations of AMF and nutrient uptake. This study aimed to determine the population AMF and nutrient uptake on the second cropping cycle of corn-based cropping systems which utilized indigenous mycorrhizal fungi on sandy soil in dryland area of North Lombok, West Nusa Tenggara, Indonesia. For that purpose, an experiment was conducted at the Akar-Akar Village in Bayan Sub-district of North Lombok, designed according to the Randomized Complete Block Design, with four replications and six treatments of cropping cycles (P0 = corn-soybean as a control, in which the corn plants were not inoculated with AMF; P1 = corn-soybean, P2 = corn-peanut, P3 = corn-upland rice, P4 = corn-sorghum, and P5 = corn-corn, in which the first cycle corn plants were inoculated with AMF. The results indicated that the mycorrhizal populations (spore number and infection percentage were highest in the second cycle sorghum, achieving 335% and 226% respectively, which were significantly higher than those in the control. Increased uptake of N, P, K and Ca the sorghum plants at 60 DAS of the second cropping cycle reached 200%; 550%; 120% and 490% higher than in the control. The soil used in this experiment is rough-textured (sandy loam, so it is relatively low in water holding capacity and high porosity.

  15. Opportunities and challenges for harvest weed seed control in global cropping systems.

    Science.gov (United States)

    Walsh, Michael J; Broster, John C; Schwartz-Lazaro, Lauren M; Norsworthy, Jason K; Davis, Adam S; Tidemann, Breanne D; Beckie, Hugh J; Lyon, Drew J; Soni, Neeta; Neve, Paul; Bagavathiannan, Muthukumar V

    2017-11-28

    The opportunity to target weed seeds during grain harvest was established many decades ago following the introduction of mechanical harvesting and the recognition of high weed-seed retention levels at crop maturity; however, this opportunity remained largely neglected until more recently. The introduction and adoption of harvest weed seed control (HWSC) systems in Australia has been in response to widespread occurrence of herbicide-resistant weed populations. With diminishing herbicide resources and the need to maintain highly productive reduced tillage and stubble-retention practices, growers began to develop systems that targeted weed seeds during crop harvest. Research and development efforts over the past two decades have established the efficacy of HWSC systems in Australian cropping systems, where widespread adoption is now occurring. With similarly dramatic herbicide resistance issues now present across many of the world's cropping regions, it is timely for HWSC systems to be considered for inclusion in weed-management programs in these areas. This review describes HWSC systems and establishing the potential for this approach to weed control in several cropping regions. As observed in Australia, the inclusion of HWSC systems can reduce weed populations substantially reducing the potential for weed adaptation and resistance evolution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  17. Sustainable Innovation, Management Accounting and Control Systems, and International Performance

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Valeiras

    2015-03-01

    Full Text Available This study analyzes how Management Accounting and Control Systems (MACS facilitate the appropriation of the benefits of sustainable innovations in organizations. In particular, this paper examines the moderating role of different types of MACS in the relationships between sustainable innovation and international performance at an organizational level. We collected survey data from 123 Spanish and Portuguese organizations. Partial Least Square was used to analyze the data. Results show that the effect of sustainable innovations on international performance is enhanced by contemporary rather than traditional types of MACS. Overall our findings show that MACS can help managers to develop and monitor organizational activities (e.g., costumer services and distribution activities, which support the appropriation of the potential benefits from sustainable innovation. This paper responds to recent calls for in-depth studies about the organizational mechanism that may enhance the success of sustainable innovation.

  18. Integrating local knowledge with experimental research: case studies on managing cropping systems in Italy and Australia

    Directory of Open Access Journals (Sweden)

    Catherine Allan

    2013-06-01

    Full Text Available The sustainable development of agricultural systems is currently challenged by many complex agro-environmental issues. These are characterized by an incomplete understanding of the situation and the problems that arise, and the conflicting opinions that result, issues over boundaries that are often difficult to define, and controversy over the multiple goals and uncertain outcomes. Added to these characteristics, we also have the slow and often inadequate uptake and implementation of research outcomes in this complex, real world. In order to improve sustainability of agro-ecosystems, agronomic research must move away from the linear research approaches and extension practices adopted so far that have focused purely on biophysical agroecosystems. The theoretical operational space of agronomic research must be transformed by considering agronomic issues as part of a broader social-agro-ecosystem. One aspect of this transformation is the inclusion of knowledge collected on a local level with the participation of farmers on the ground. The integration of local experiential knowledge with traditional agronomic research is by necessity based on the participation of many different stakeholders and there can be no single blueprint for how best to develop and use the input received. However, agronomists and policy advisors require general guidelines drawn up from actual experience in order to accelerate positive agronomic change. We address this need through a comparative analysis of two case studies; one involves multi-stakeholder research in a cropping system in the dairy district of Arborea, Sardinia, Italy. The central question was: How can high crop production be maintained while also achieving the EU target water quality and minimizing the production costs? The second case is a multi-stakeholder soil health project from south-eastern Australia. Here the central question was: How can soil decline be prevented and reversed in this district, and soils

  19. Design and performance of a measuring system for CO2 exchange of a greenhouse crop at different light levels

    NARCIS (Netherlands)

    Körner, O.; Ooster, van 't A.; Hulsbos, M.

    2007-01-01

    At low light levels measured and in a dynamic greenhouse climate, crop photosynthesis does not match prediction by photosynthesis models. In order to address this problem, a greenhouse scale crop photosynthesis measuring system was designed to generate data that can be used to validate crop

  20. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.

    Science.gov (United States)

    Husaini, Amjad M; Tuteja, Narendra

    2013-01-01

    Biotechnological intervention in the development of crops has opened new vistas in agriculture. Central to the accomplishment of the Millennium Development Goals (MDGs), biotech-agriculture is essential in meeting these targets. Biotech crops have already made modest contributions toward ensuring food and nutrition security by reducing losses and increasing productivity, with less pesticide input. These crops could help address some of the major challenges in agriculture-based economies created by climate change. Projections of global climate change expect the concentration of greenhouse gases to increase, aridization of the environment to increase, temperature fluctuations to occur sharply and frequently, and spatial and temporal distribution of rainfall to be disturbed-all of which will increase abiotic stress-related challenges to crops. Countering these challenges and to meet the food requirement of the ever-increasing world population (expected to reach 9 billion by 2030) we need to (1) develop and use biotech crops for mitigating adverse climatic changes; (2) develop biotech crops resilient to adverse environmental conditions; and (3) address the issues/non-issues raised by NGO's and educate the masses about the benefits of biotech crops.