WorldWideScience

Sample records for sustainable construction composite

  1. Sustainable construction: Composite use of tyres and ash in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.; Chang, S.R. [University of Glamorgan, Pontypridd (United Kingdom). Faculty of Advanced Technology

    2009-01-15

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  2. Design of rapid hardening engineered cementitious composites for sustainable construction

    Directory of Open Access Journals (Sweden)

    Marushchak Uliana

    2017-12-01

    Full Text Available This paper deals with design of environmentally friendly Rapid Hardening Engineered Cementitious Composite (RHECC nanomodified with ultrafine mineral additives, polycarboxylate ether based superplasticizer, calcium hydrosilicate nanoparticles and dispersal reinforced by fibers. The incremental coefficient of surface activity was proposed in order to estimation of ultrafine supplementary materials (fly ash, methakaolin, microsilica efficiency. A characterization of RHECC’s compressive and flexural properties at different ages is reported in this paper. Early compressive strength of ECC is 45-50 MPa, standard strength – 84-95 MPa and parameter Rc2/Rc28 – 65–70%. The microstructure of the cement matrix and RHECC was investigated. The use of ultrafine mineral supplementary materials provides reinforcement of structure on micro- and nanoscale level (cementing matrix due to formation of sub-microreinforcing hydrate phase as AFt- and C-S-H phases in unclinker part of cement matrix, resulting in the phenomena of “self-reinforcement” on the microstructure level. Designed RHECC may be regarded as lower brittle since the crack resistance coefficient is higher comparison to conventional fine grain concrete.

  3. Design of rapid hardening engineered cementitious composites for sustainable construction

    Science.gov (United States)

    Marushchak, Uliana; Sanytsky, Myroslav; Sydor, Nazar

    2017-12-01

    This paper deals with design of environmentally friendly Rapid Hardening Engineered Cementitious Composite (RHECC) nanomodified with ultrafine mineral additives, polycarboxylate ether based superplasticizer, calcium hydrosilicate nanoparticles and dispersal reinforced by fibers. The incremental coefficient of surface activity was proposed in order to estimation of ultrafine supplementary materials (fly ash, methakaolin, microsilica) efficiency. A characterization of RHECC's compressive and flexural properties at different ages is reported in this paper. Early compressive strength of ECC is 45-50 MPa, standard strength - 84-95 MPa and parameter Rc2/Rc28 - 65-70%. The microstructure of the cement matrix and RHECC was investigated. The use of ultrafine mineral supplementary materials provides reinforcement of structure on micro- and nanoscale level (cementing matrix) due to formation of sub-microreinforcing hydrate phase as AFt- and C-S-H phases in unclinker part of cement matrix, resulting in the phenomena of "self-reinforcement" on the microstructure level. Designed RHECC may be regarded as lower brittle since the crack resistance coefficient is higher comparison to conventional fine grain concrete.

  4. Changes in bacteria composition and efficiency of constructed wetlands under sustained overloads: A modeling experiment.

    Science.gov (United States)

    Boano, F; Rizzo, A; Samsó, R; García, J; Revelli, R; Ridolfi, L

    2018-01-15

    The average organic and hydraulic loads that Constructed Wetlands (CWs) receive are key parameters for their adequate long-term functioning. However, over their lifespan they will inevitably be subject to either episodic or sustained overloadings. Despite that the consequences of sustained overloading are well known (e.g., clogging), the threshold of overloads that these systems can tolerate is difficult to determine. Moreover, the mechanisms that might sustain the buffering capacity (i.e., the reduction of peaks in nutrient load) during overloads are not well understood. The aim of this work is to evaluate the effect of sudden but sustained organic and hydraulic overloads on the general functioning of CWs. To that end, the mathematical model BIO_PORE was used to simulate five different scenarios, based on the features and operation conditions of a pilot CW system: a control simulation representing the average loads; 2 simulations representing +10% and +30% sustained organic overloads; one simulation representing a sustained +30% hydraulic overload; and one simulation with sustained organic and hydraulic overloads of +15% each. Different model outputs (e.g., total bacterial biomass and its spatial distribution, effluent concentrations) were compared among different simulations to evaluate the effects of such operation changes. Results reveal that overloads determine a temporary decrease in removal efficiency before microbial biomass adapts to the new conditions and COD removal efficiency is recovered. Increasing organic overloads cause stronger temporary decreases in COD removal efficiency compared to increasing hydraulic loads. The pace at which clogging develops increases by 10% for each 10% increase on the organic load. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Industrialization for sustainable construction?

    NARCIS (Netherlands)

    Egmond - de Wilde De Ligny, van E.L.C.; Barrett, P; Amaratunga, D.; Haigh, R; Keraminiyage, K.; Pathirage, C

    2010-01-01

    Sustainable construction (SuCo), which genesis dates in the early 1990’s, advocates the creation and operation of a quality and healthy built environment based on resource efficiency, life cycle economics and ecological principles. (Kibert, 2003). Currently the Construction Industry does not meet

  6. Sustainability Base Construction Update

    Science.gov (United States)

    Mewhinney, Michael

    2012-01-01

    Construction of the new Sustainability Base Collaborative support facility, expected to become the highest performing building in the federal government continues at NASA's Ames Research Center, Moffet Field, Calif. The new building is designed to achieve a platinum rating under the leadership in Energy and Environment Design (LEED) new construction standards for environmentally sustainable construction developed by the U. S. Green Building Council, Washington, D. C. When completed by the end of 2011, the $20.6 million building will feature near zero net energy consumption, use 90 percent less potable water than conventionally build buildings of equivalent size, and will result in reduced building maintenance costs.

  7. Nanotechnologies for sustainable construction

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Andersen, Maj Munch

    2009-01-01

    This chapter aims to highlight key aspects and recent trends in the development and application of nanotechnology to facilitate sustainable construction, use and demolition of buildings and infrastructure structures, ‘nanoconstruction’. Nanotechnology is not a technology but a very diverse...

  8. Sustainable construction: construction and demolition waste reconsidered.

    Science.gov (United States)

    del Río Merino, Mercedes; Izquierdo Gracia, Pilar; Weis Azevedo, Isabel Salto

    2010-02-01

    Construction activity in Europe has increased substantially in the past decade. Likewise, there has also been a commensurate rise in the generation of construction and demolition waste (C&DW). This, together with the fact that in many European countries the rate of recycling and reuse of C&DW is still quite low has engendered a serious environmental problem and a motivation to develop strategies and management plans to solve it. Due to its composition, there is a significant potential to reuse and/or recycle C&DW, and thereby, contribute to improving the sustainability of construction and development, but practical procedures are not yet widely known or practiced in the construction industry. This article (a) summarizes the different applications that are presently practiced to optimize the recovery and/or application of C&DW for reuse, and (b) proposes various measures and strategies to improve the processing of this waste. The authors suggest that to enhance environmental effectiveness, a conscious and comprehensive C&DW management plan should be implemented in each jurisdiction. More precisely, this study presents a holistic approach towards C&DW management, through which environmental benefits can be achieved through the application of new construction methods that can contribute to sustainable growth.

  9. Nanotechnologies for sustainable construction

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Andersen, Maj Munch

    2009-01-01

    This chapter aims to highlight key aspects and recent trends in the development and application of nanotechnology to facilitate sustainable construction, use and demolition of buildings and infrastructure structures, ‘nanoconstruction’. Nanotechnology is not a technology but a very diverse...... technological field which covers many aspects. The chapter therefore seeks to provide a framework for addressing relevant issues of green nanoconstruction and to bring an overview and illustrative examples of current early developments....

  10. Sustainable development and construction industry in Malaysia

    Directory of Open Access Journals (Sweden)

    Suliman L. Kh. M.

    2009-12-01

    Full Text Available Sustainable construction is a way for the building and infrastructure industry to move towards achieving sustainable development, taking into account environmental, socioeconomic and cultural issues. Differing approaches and differing economic markets lead to different priorities. This paper presents the construction scenario of Malaysia and the developments in sustainable construction taking place in this country. Barriers to the implementation of sustainable construction are discussed. A list of recommendation was proposed to drive sustainable construction in this country. In conclusion, the status of sustainable construction in Malaysia is still in its infancy. The lack of awareness, training and education, ineffective procurement systems, existing public policies and regulatory frameworks are among the major barriers for sustainable construction in Malaysia. Besides the needs for capacities, technologies and tools, total and ardent commitment by all players in the construction sectors including the governments and the public atlarge are required in order to achieve sustainable construction in Malaysia.

  11. Assessing the sustainable construction of large construction companies in Malaysia

    Science.gov (United States)

    Adewale, Bamgbade Jibril; Mohammed, Kamaruddeen Ahmed; Nasrun, Mohd Nawi Mohd

    2016-08-01

    Considering the increasing concerns for the consideration of sustainability issues in construction project delivery within the construction industry, this paper assesses the extent of sustainable construction among Malaysian large contractors, in order to ascertain the level of the industry's impacts on both the environment and the society. Sustainable construction explains the construction industry's responsibility to efficiently utilise the finite resources while also reducing construction impacts on both humans and the environment throughout the phases of construction. This study used proportionate stratified random sampling to conduct a field study with a sample of 172 contractors out of the 708 administered questionnaires. Data were collected from large contractors in the eleven states of peninsular Malaysia. Using the five-level rating scale (which include: 1= Very Low; 2= Low; 3= Moderate; 4= High; 5= Very High) to describe the level of sustainable construction of Malaysian contractors based on previous studies, statistical analysis reveals that environmental, social and economic sustainability of Malaysian large contractors are high.

  12. Sustainable Management of Construction and Demolition Materials

    Science.gov (United States)

    This web page discusses how to sustainably manage construction and demolition materials, Information covers, what they are, and how builders, construction crews, demolition teams,and deign practitioners can divert C&D from landfills.

  13. Sustainable construction in remote cold regions.

    Science.gov (United States)

    2015-12-01

    The goal of this project was to identify sustainable construction techniques appropriate for remote and cold regions, some of which apply to : operations and maintenance as well. The vast body of literature regarding green construction in warm region...

  14. Sustainable Entrepreneurship in the Dutch Construction Industry

    NARCIS (Netherlands)

    Klein Woolthuis, R.J.A.

    2010-01-01

    This article discusses the strategies that sustainable entrepreneurs use to interact with their environment in the Dutch construction industry. The Dutch construction industry is under great pressure to move towards sustainability, and entrepreneurs are believed to be able to play a large role in

  15. Sustainable entrepreneurship in the Dutch construction industry

    NARCIS (Netherlands)

    Klein Woolthuis, R.J.A.

    2010-01-01

    This article discusses the strategies that sustainable entrepreneurs use to interact with their environment in the Dutch construction industry. The Dutch construction industry is under great pressure to move towards sustainability, and entrepreneurs are believed to be able to play a large role in

  16. Sustainability in the UK construction minerals industry

    OpenAIRE

    Mitchell, Clive

    2015-01-01

    Sustainability in the UK construction minerals industry Clive Mitchell, Industrial Minerals Specialist, British Geological Survey, Nottingham, UK Email: Sustainability is not just about environmental protection it also concerns biodiversity, community relations, competence, employment, geodiversity, health and safety, resource efficiency, restoration and stakeholder accountability. The UK construction minerals industry aims to supply essential materials in a sustainabl...

  17. Constructional and Conceptual Composition

    Science.gov (United States)

    Dodge, Ellen Kirsten

    2010-01-01

    Goldberg's (1995) recognition that, in addition to various word-level constructions, sentences also instantiate meaningful argument structure constructions enables a non-polysemy-based analysis of various verb 'alternations' (Levin 1993). In such an analysis, meaning variations associated with the use of the same verb in different argument…

  18. Sustainable Construction Risk Perceptions in the Kuwaiti Construction Industry

    Directory of Open Access Journals (Sweden)

    Dalya Ismael

    2018-06-01

    Full Text Available Sustainable construction is fundamentally different than traditional construction because it requires whole systems thinking, early collaboration across stakeholders, and core principles like reducing resource consumption, eliminating toxins, and applying life cycle costing. Construction professionals unfamiliar with this mindset and approach may perceive sustainable construction as risky. One of the global regions in need of more sustainable construction is the Middle Eastern and North African (MENA region. The MENA region is one of the fastest developing in the world. However, it is the slowest one in implementing sustainable construction practices. Kuwait, in particular, contributes 53% more carbon emissions per capita than the United States. To understand how the Kuwaiti construction industry perceives risks associated with more sustainable construction, a survey was developed with 52 risk elements in which 131 industry professionals responded. The results indicate that industry professionals perceive a lack of public awareness as the risk element with the highest probability of occurrence. The risk element with the highest possible negative impact on future projects is designers’ and contractors’ inexperience with sustainable construction. Other risks were found to include a high initial cost for materials and overall project costs. Educational interventions, changes in risk allocation, and behavioral science to reframe upfront costs as long-term savings are offered as possible solutions.

  19. Environmentally Friendly Sustainable Housing Construction ...

    African Journals Online (AJOL)

    The major steps include 5 star standards in the state of Victoria, with rebates for sustainable products including solar hot water system, photovoltaic panels, rainwater tanks, grey water tanks and insulation. In addition phasing out of incandescent light bulbs is also encouraged. A number of house energy rating tools have ...

  20. Sustainable material selection for construction industry

    DEFF Research Database (Denmark)

    Govindan, Kannan; Shankar, Madan; Kannan, Devika

    2016-01-01

    a hybrid multi criteria decision making (MCDM) methodology with a specific examination of the UAE. The indicators collected from existing literatures were used in evaluation of sustainable construction materials with the assistance of construction sector-based respondents. The proposed framework...

  1. European Sustainable Construction Regulation : Homogeneity and Attention

    NARCIS (Netherlands)

    Van der Heijden, J.; Van Bueren, E.M.

    2011-01-01

    Understanding the negative impact of the construction industry and the built environment on the ecological environment, the European Commission (EC) aims to harmonise and improve sustainable construction regulatory frameworks in Member States of the European Union. This paper discusses the topics of

  2. Sustainable construction in rural Guatemala.

    Science.gov (United States)

    Temple, Ericka K; Rose, Elizabeth

    2011-11-01

    Waste management is a significant problem in Guatemala, as elsewhere in the developing world. The inappropriate disposal of solid waste produces pollution and places the environment and human health at risk. Environmental risk factors, including inadequate disposal of solid waste, are implicated in 25-30% of disease worldwide with children bearing a disproportionate burden of those diseases. Therefore, economic development which reduces inappropriate disposal of waste and affords economic opportunities may help reduce the global burden of disease on children. In the indigenous highlands of central Guatemala, a community supported non-profit organisation called Long Way Home (http://www.longwayhomeinc.org) is employing alternative construction techniques to build a vocational school complex. The construction of the school from waste materials demonstrates the use and principles of re-purposing materials, helps clean the environment and affords further educational and vocational opportunities. This article will outline the health problems inherent in an indigenous area of a developing country and will offer an alternative solution to reverse environmental risk factors associated with solid waste pollution and also actively improve child health.

  3. Sustainable Transition of Housing and Construction

    DEFF Research Database (Denmark)

    This book presents recent research into sustainable transition of housing and construction through contributions from researchers and knowledge providers that have worked with change processes within housing and construction. The contributors represent different research and development...... environments, each with their own tradition and with a number of different research projects behind them in the field. Their common ground is that they have researched and analyzed construction, dwellings and housing areas with a view to energy-, environment- and climate-oriented transition of the housing...... and construction sector, with a focus on either political, socio-cultural, technical or design challenges. The contributions thus represent both technological, architectural, sociological and political aspects of the Danish housing and construction field. The aim of the book has not been to add another book...

  4. Sustainable Entrepreneurship in the Dutch Construction Industry

    Directory of Open Access Journals (Sweden)

    Rosalinde J.A. Klein Woolthuis

    2010-02-01

    Full Text Available This article discusses the strategies that sustainable entrepreneurs use to interact with their environment in the Dutch construction industry. The Dutch construction industry is under great pressure to move towards sustainability, and entrepreneurs are believed to be able to play a large role in this transition by introducing new products and new business practices. But how can entrepreneurs prosper in an environment that is not geared up towards such a change? And which strategies do they use to bend conditions in their favor? In this article we make use of the Market and System Failure Framework to analyze the pressures that entrepreneurs are confronted with when introducing sustainable innovations. We recognize that these pressures can be seen as bottlenecks, but that market and system failures can also create entrepreneurial opportunities. We interviewed 16 entrepreneurs in the Dutch construction industry to determine the influences they experienced from their environment and the strategies they use to deal with these. We conclude that we can distinguish between system building and following entrepreneurs, where the former aims to build a new system to challenge the old one, whereas the latter rather makes use of existing structures to build a business. We find that both strategies can be successful and that overall, the entrepreneurs confirm the belief that sustainability on people, planet and transparency aspects, can contribute very well to the long term profitability of the businesses the entrepreneurs are running. These in-depth insights into the influences from the context on the one hand, and the entrepreneurs’ strategic reactions on the other hand, contribute to our understanding of the interactions between entrepreneurs and the system context. This can help us to more effectively stimulate and support innovating entrepreneurs to contribute to the transition towards sustainability.

  5. Construction sustainability with adobe bricks type elements

    Directory of Open Access Journals (Sweden)

    Andreea Hegyi

    2016-06-01

    Full Text Available Sustainability is a criterion defined in the 80, which is essential in all fields of current activity. At the moment, it can not talk about development without being taken into account sustainability criteria. It presents the ensuring for an harmonious development, in line with current needs, without to endanger the possibility to develop and satisfy the needs of future generations. The buildings of adobe bricks-type elements ensure successfully the conditions imposed by this criterion. This type of construction ensures the responsible use of renewable natural resources, the possibility of reuse and recycling of materials, contributes to environmental protection and to pollution reduction, to energy saving and it provides a cleaner and healthier living environment. Not least, the buildings of this type are accessible in terms of cost and can contribute to the development of other fields such as eco-tourism.

  6. Construction Managers’ Perception of the Factors Affecting Sustainability in Construction Projects

    OpenAIRE

    Reza Taheriattar; Morvarid Farzanehrafat

    2014-01-01

    Sustainable construction is a comprehensive concept which requires long-term planning. Moreover, construction managers play a key role in leading, planning and scheduling of a construction project. As a result, sustainability of construction projects can be affected by construction managers’ decisions. In addition, for greater development of sustainable construction, affecting factors should firstly be notified. Therefore, it seems necessary to investigate construction managers’ perception of...

  7. European good practice in composite floor construction

    NARCIS (Netherlands)

    Brekelmans, J.W.P.M.; Daniels, B.J.; Stark, J.W.B.; Darwin, David; Buckner, C.D.

    1992-01-01

    Previous European experience, research and design for composite slabs with profiled steel decking are discussed. Present efforts to harmonize composite slab design and good construction practice are presented. Future European developments, for the next five years, are postulated.

  8. Sustainable house construction and green financing. Explanation for 'green mortgages'

    International Nuclear Information System (INIS)

    1997-05-01

    The Dutch government finances the sustainable construction of new houses by means of so-called 'green loans'. Extra costs for the construction of a sustainable house are compensated by a lower interest rate for a green loan. In this brochure it is explained when green financing of house construction is possible and how to apply for such loans

  9. Implementation of sustainability in bridge design, construction and maintenance.

    Science.gov (United States)

    2012-12-01

    The focus of this research is to develop a framework for more sustainable design and construction : processes for new bridges, and sustainable maintenance practices for existing bridges. The framework : includes a green rating system for bridges. The...

  10. Greenroads : a sustainability performance metric for roadway design and construction.

    Science.gov (United States)

    2009-11-01

    Greenroads is a performance metric for quantifying sustainable practices associated with roadway design and construction. Sustainability is defined as having seven key components: ecology, equity, economy, extent, expectations, experience and exposur...

  11. The influence of the type of lime on the hygric behaviour and bio-receptivity of hemp lime composites used for rendering applications in sustainable new construction and repair works.

    Science.gov (United States)

    Arizzi, Anna; Brümmer, Monika; Martín-Sanchez, Inés; Cultrone, Giuseppe; Viles, Heather

    2015-01-01

    The benefits of using sustainable building materials are linked not only to the adoption of manufacturing processes that entail reduced pollution, CO2 emissions and energy consumption, but also to the onset of improved performance in the building. In particular, hemp-lime composite shows low shrinkage and high thermal and acoustic insulating properties. However, this material also shows a great ability to absorb water, an aspect that can turn out to be negative for the long-term durability of the building. For this reason, the hygric properties of hemp-based composites need to be studied to ensure the correct use of this material in construction and repair works. The water absorption, drying and transpirability of hemp composites made with aerial (in the form of dry powder and putty) and hydraulic limes were investigated here and related to the microbial growth induced by the water movements within the material. Results show that hemp-natural hydraulic lime mixes exhibit the highest transpirability and drying rate, the lowest water absorption by immersion and capillary uptake and the least intense microbial attack and chromatic change. A microscopical study of the hemp shives also related their great ability to absorb water to the near-irreversible swelling of their structure under dry-wet conditions.

  12. Formation of optimal construction fleet composition

    Science.gov (United States)

    Tuskaeva, Zalina

    2017-10-01

    Machinery supply and its rational use in construction processes considerably determine the final product of construction organizations. Therefore, the problem of defining the type size composition of the construction fleet as one of the lowest material-intensive productions, is of a particular importance.

  13. European standards for composite construction

    NARCIS (Netherlands)

    Stark, J.W.B.

    2000-01-01

    The European Standards Organisation (CEN) has planned to develop a complete set of harmonized European building standards. This set includes standards for composite steel and concrete buildings and bridges. The Eurocodes, being the design standards, form part of this total system of European

  14. An Index to Measure Sustainability of a Business Project in the Construction Industry: Lithuanian Case

    Directory of Open Access Journals (Sweden)

    Nomeda Dobrovolskienė

    2015-12-01

    Full Text Available The continuous growth of the world population, resource scarcity and the threat of climate change pose numerous environmental and social problems to the world. Therefore, much hope is put in the concept of sustainability. Companies are increasingly coming under strong global pressure to incorporate sustainability considerations into their project decision-making process. Business projects in the construction industry are among the most important, as this sector is one of the largest sectors and of major importance for the national economy and therefore has a huge impact on the environment and society. Thus, we have to explore ways to integrate sustainability into the management of those projects. This paper presents a composite sustainability index of a project (CSIP which has been created following a review of existing literature and a pilot research study. A pilot research study was conducted in the Lithuanian construction industry between January 2015 and June 2015. Sustainability criteria were chosen and grouped on the basis of the analysis of the literature and different standards relating to sustainability applicable in the construction industry. A survey was used to select and rank the most important sustainability criteria. The index was constructed using multi-criteria decision-making methods. The results of the pilot study revealed that practitioners in the Lithuanian construction sector attach most importance to 15 sustainability criteria. A composite sustainability index of a project combining all these criteria may be useful in assessing the sustainability of a business project and making decisions regarding project portfolio selection and financial resource allocation. When addressing the issue of financial resource allocation in a project portfolio, the decision-maker could take into account not only the project’s return and risk, but also its sustainability. The understanding of this study should enable companies to execute

  15. CONSTRUCTING A GENERAL SUSTAINABLE SYSTEMS THEORY

    Science.gov (United States)

    Sustainability atracts enormous interest in the minds of the public and the scientific and engineering community because it holds the promise of a long-term solution to environmental problems. Sustainability, however, is mathematically loosely defined. There is no widely accepted...

  16. Benchmarking Sustainability Practices Use throughout Industrial Construction Project Delivery

    Directory of Open Access Journals (Sweden)

    Sungmin Yun

    2017-06-01

    Full Text Available Despite the efforts for sustainability studies in building and infrastructure construction, the sustainability issues in industrial construction remain understudied. Further, few studies evaluate sustainability and benchmark sustainability issues in industrial construction from a management perspective. This study presents a phase-based benchmarking framework for evaluating sustainability practices use focusing on industrial facilities project. Based on the framework, this study quantifies and assesses sustainability practices use, and further sorts the results by project phase and major project characteristics, including project type, project nature, and project delivery method. The results show that sustainability practices were implemented higher in the construction and startup phases relative to other phases, with a very broad range. An assessment by project type and project nature showed significant differences in sustainability practices use, but no significant difference in practices use by project delivery method. This study contributes to providing a benchmarking method for sustainability practices in industrial facilities projects at the project phase level. This study also discusses and provides an application of phase-based benchmarking for sustainability in industrial construction.

  17. A framework of performance criteria defining sustainable construction technologies

    International Nuclear Information System (INIS)

    Sturges, W.G.

    1992-01-01

    As our global culture encounters accelerating rates of resource depletion, environmental degradation, and societal inequality, it increasingly needs tools to rate building systems by environmental and socioeconomic criteria. By investigating light frame structural systems based on principles of ecological design, it is possible to not only identify the structures' potential impacts on the health of their site and larger community, but also to establish a framework of performance criteria for comparatively evaluating a variety of construction technologies. This paper summarizes the development and application of such a framework, based upon the ecosystems and culture of the Pacific Northwest's Cascadia Bioregion. The framework has been comparatively applied to solid-sawn lumber, trusses, and composite wood I-joists. These three framing technologies together represent traditional, contemporary, and progressive structural systems. Their individual and collective performance, based upon the application of the hypothesized criteria, offer insights into what might be a more ideal framing system of the sustainable future

  18. Seeking sustainability in the construction sector: opportunities within impact assessment and sustainable public procurement

    OpenAIRE

    Uttam, Kedar

    2014-01-01

    Growing concerns regarding sustainability have led the construction sector to adopt various policy instruments for reducing the impacts caused by construction activities. One such policy instrument includes impact assessment, which enables the construction sector to evaluate the environmental consequences of proposed developments at project (environmental impact assessment) and strategic (strategic environmental assessment) level. In recent years, the construction sector has also adopted gree...

  19. Sustainable Innovation in the Dutch Construction Industry

    NARCIS (Netherlands)

    D. (Damon) Hassanpur Golriz; H.J. (Henk) Schout; dr. MBA S.J.M. (Saskia) Harkema

    2010-01-01

    Since the film of Al Gore An inconvenient truth, sustainability stands high on the national agenda of most countries. Concern for the environment is one of the main reasons in combination with opportunities to innovate. In general, innovation and entrepreneurship are important in the realm of

  20. Constructing Sociotechnical Transitions Toward Sustainable Agriculture

    NARCIS (Netherlands)

    Charao Marques, F.; Kessler Dal Soglio, F.; Ploeg, van der J.D.

    2010-01-01

    This paper provides an analysis of knowledge generation and ‘novelty production’ into new social arrangements within a sociotechnical transition scenario. The purpose is to contribute to the debate about convergences between creativity, learning and collective action for enhancing the sustainability

  1. The Employer Perspective on Sustainable Employability in the Construction Industry

    NARCIS (Netherlands)

    Tonnon, Susanne C; van der Veen, Rozan; Westerman, Marjan J; Robroek, Suzan J W; van der Ploeg, Hidde P; Van Der Beek, Allard J.; Proper, Karin I.

    OBJECTIVE: To determine the measures employers in the construction industry take to promote sustainable employability, the barriers and facilitators that influence implementation and employer needs. METHODS: Questionnaire among 499 employers and interviews with 17 employers. RESULTS: Employers

  2. Understanding green and sustainable construction in Lagos, Nigeria ...

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management. Journal Home ... Journal Home > Vol 8, No 1 (2015) >. Log in or ... Understanding green and sustainable construction in Lagos, Nigeria: Principles, attributes and framework.

  3. Sustainable construction building performance simulation and asset and maintenance management

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research works that highlight best practice solutions, case studies and practical advice on the implementation of sustainable construction techniques. It includes a set of new developments in the field of building performance simulation, building sustainability assessment, sustainable management, asset and maintenance management and service-life prediction. Accordingly, the book will appeal to a broad readership of professionals, scientists, students, practitioners, lecturers and other interested parties.

  4. Composites and Construction: Yesterday, today and tomorrow

    Directory of Open Access Journals (Sweden)

    Manso, J.

    1997-12-01

    Full Text Available We will try to give a idea about the possibilities of the Composites Materials in the Construction area, examining their applications since along time. We will begin by the integral closing the building, based in the panel sandwich concept. Immediately we will comment a new material, the COMPOSTEEL, a hybrid product made of composites plus steel, indicated to the structural country. Next, we will study the "Continuous Frame" oriented also at the structural area. Finally, we will finish with two ideas:
    a The composites solving the seism phenomenon. b The composites as a ceiling to big areas.

    We will try to give a idea about the possibilities of the Composites Materials in the Construction area, examining their applications since along time. We will begin by the integral closing the building, based in the panel sandwich concept. Immediately we will comment a new material, the COMPOSTEEL, a hybrid product made of composites plus steel, indicated to the structural country. Next, we will study the "Continuous Frame" oriented also at the structural area. Finally, we will finish with two ideas:
    a The composites solving the seism phenomenon. b The composites as a ceiling to big areas.

  5. The case of sustainability assurance: constructing a new assurance service

    NARCIS (Netherlands)

    O'Dwyer, B.

    2011-01-01

    This paper presents an in-depth longitudinal case study examining the processes through which practitioners in two Big 4 professional services firms have attempted to construct sustainability assurance (independent assurance on sustainability reports). Power’s (1996, 1997, 1999, 2003) theorization

  6. Identification of Key Indicators for Sustainable Construction Materials

    Directory of Open Access Journals (Sweden)

    Humphrey Danso

    2018-01-01

    Full Text Available Studies on sustainable construction materials are on the rise with their environmental, social, and economic benefits. This study identifies the key indicators for measuring sustainable construction materials. The design used for the study was that of a survey which relied on a questionnaire with five-point Likert scale to generate data for the analysis. For this purpose, 25 indicators from the three dimensions (environmental, social, and economic identified from the literature were presented to the respondents in a structured questionnaire, and responses were collected and analysed using SPSS. The study identified three key environmental indicators for measuring sustainable construction materials, and these indicators are human toxicity, climate change, and solid waste. Furthermore, adaptability, thermal comfort, local resources, and housing for all were identified as the four key social indicators for sustainable construction materials. In addition, maintenance cost, operational cost, initial cost, long-term savings, and life span were found to be the five key economic indicators for measuring sustainable construction materials. The study therefore suggests that these twelve indicators should be considered in future studies that seek to measure sustainable construction materials.

  7. Mathematical model of innovative sustainability “green” construction object

    Directory of Open Access Journals (Sweden)

    Slesarev Michail

    2016-01-01

    Full Text Available The paper addresses the issue of finding sustainability of “green” innovative processes in interaction between construction activities and the environment. The problem of today’s construction science is stated as comprehensive integration and automation of natural and artificial intellects within systems that ensure environmental safety of construction based on innovative sustainability of “green” technologies in the life environment, and “green” innovative products. The suggested solution to the problem should formalize sustainability models and methods for interpretation of optimization mathematical modeling problems respective to problems of environmental-based innovative process management, adapted to construction of “green” objects, “green” construction technologies, “green” innovative materials and structures.

  8. DRIVING SUSTAINABLE INNOVATION IN CONSTRUCTION COMPANIES

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Koch, Christian

    2011-01-01

    By adopting a theoretical framework from strategic niche management research (SNM) this paper presents an analysis of the innovation system of the Danish Construction industry. Theories within SNM look upon innovation in a sector as a socio-technical phenomenon and identify three levels of socio...... for innovation in the construction industry. By bridging SNM with business development activities through an adapted version of Ansoffs growth matrix, companies continuously and consciously can develop a competitive advantage by targeting new and existing markets with new or existing competencies...

  9. Sustainable Use of Tepetate Composite in Earthen Structure

    Directory of Open Access Journals (Sweden)

    T. López-Lara

    2013-01-01

    Full Text Available One of the best indicators for construction sustainability is the use of earthy local materials which are completely recyclables and savers of energy during their life cycle. Tepetate is an underestimated earth-natural material, vast and economic, used only in a compacted form in backfills for layers of low resistance in pavements and platforms of buildings. This volcanic soil, named in different ways in several countries, is found in the central region of Mexico. Its resistance as compacted material is very low, of the order of 0.08 MPa. In this work, an improved sustainable-tepetate composite, using CaOH, is presented. This research includes the determination of mechanical properties as well as the physicochemical characterization of the sustainable-tepetate composite behavior. It can be concluded that the strength of the proposed composite increases significantly, immediately after treatment and with time. X-Ray Diffraction shows that all the mineralogical phases prevail in the natural tepetate and only a new phase appeared (calcite, which increases with time. This and the reaction of CaOH with clay content are very likely associated with the continuous strength increase of the composite.

  10. Sustainable construction - the standard for all public building?

    Energy Technology Data Exchange (ETDEWEB)

    Handyside, R. [Richard Handyside Construction Resources (United Kingdom)

    2002-01-01

    This article argues for the need for foresight and planning to achieve sustainable development in the construction of public buildings. Reasons why sustainable development fails are highlighted, and the key factors that go to make a development sustainable are listed and involve the choice and layout of the site, site services, the fitting of spaces to the required purpose, the arrangement of rooms to achieve maximum use of natural light, heat and air, and the choice of construction materials and finishes. The balancing of short and long-term costs, and the use of life-cycle costs in every project are discussed.

  11. Design and Construction Documents Associated with N232, Sustainability Base

    Science.gov (United States)

    Zornetzer, Steven F.; Schuler, Raymond F.; Grymes, Rosalind A.

    2014-01-01

    This request comprehensively covers documents associated with the design and construction of Sustainability Base, N232. The intent of this project specifically envisioned broad dissemination of these materials to others undertaking the design and construction of high-performing energy- and resource-efficient buildings in comparable climate zones.

  12. Sustainable (Re)Construction : The Potential of the Renovation Market

    NARCIS (Netherlands)

    Usanov, A.; Chivot, E.

    2013-01-01

    The Sustainable Urban (Re)Construction Briefing argues that renovation is going to play an increasingly important role in the overall construction market – for several reasons. One of them is the urgency of climate change mitigation. Europe has a large stock of buildings, which together contribute

  13. Value engineering awareness study for sustainable construction in Malaysia

    International Nuclear Information System (INIS)

    Fathoni U; Zakaria C M; Rohayu C O

    2013-01-01

    Construction process has often been described as a highly complex process because of the number of disciplines involved during the conceptual, design and construction stage. With the emergence of latest technology and concern for environment, increasing attention in construction industry is given on sustainability. Balance in quality and sustainability has become a major challenge to the construction industry. This paper presents a study that has conducted to determine the acceptance and application of Value Engineering (VE) and Life Cycle Cost Analysis (LCCA) in Malaysia construction industry. A set of questionnaire have distributed to different practitioners in construction industry and the result has reflect the fact that the application of VE and LCCA are still very low.

  14. Stakeholder Engagement: Achieving Sustainability in the Construction Sector

    Directory of Open Access Journals (Sweden)

    Damian Fearon

    2013-02-01

    Full Text Available Achieving sustainability-related targets in construction projects is increasingly becoming a key performance driver. Yet sustainability is a complex concept in projects and there are many diverse stakeholders. Some stakeholders are generally recognized as important, i.e., the client and main contractor, yet there are others not always perceived as such and whose absence from the decision-making processes may result in a failure to address sustainability issues. Hence there is a need for a systematic approach to engage with stakeholders with high salience in relation to sustainability. This paper reports the results of an exploratory study involving interviews with construction project practitioners that are involved in sustainability in some way. Data were collected from the practitioners in terms of the processes for engaging with stakeholders to deliver sustainability. The data suggests six steps to a stakeholder engagement process: (i identification; (ii relating stakeholders to different sustainability-related targets; (iii prioritization; (iv managing; (v measuring performance; and (vi putting targets into action. The results suggest that understanding the different sustainability agendas of stakeholders and measuring their performance using key performance indicators are important stages to be emphasized in any stakeholder engagement process to achieve sustainability-related goals.

  15. Y-12 Sustainable Design Principles for Building Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. G.

    2008-11-01

    B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

  16. Vegetable Fibers for Composite Materials In Constructive Sector

    Science.gov (United States)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  17. Cost Based Value Stream Mapping as a Sustainable Construction Tool for Underground Pipeline Construction Projects

    Directory of Open Access Journals (Sweden)

    Murat Gunduz

    2017-11-01

    Full Text Available This paper deals with application of Value Stream Mapping (VSM as a sustainable construction tool on a real construction project of installation of underground pipelines. VSM was adapted to reduce the high percentage of non-value-added activities and time wastes during each construction stage and the paper searched for an effective way to consider the cost for studied construction of underground pipeline. This paper is unique in its way that it adopts cost implementation of VSM to improve the productivity in underground pipeline projects. The data was observed and collected from site during construction, indicating the cycle time, value added and non-value added of each construction stage. The current state was built based on these details. This was an eye-opening exercise and a process management tool as a trigger for improvement. After the current state assessment, a future state is attempted by Value Stream Mapping tool balancing the resources using a Line of Balance (LOB technique. Moreover, a sustainable cost estimation model was developed during current state and future state to calculate the cost of underground pipeline construction. The result shows a cost reduction of 20.8% between current and future states. This reflects the importance of the cost based Value Stream Mapping in construction as a sustainable measurement tool. This new tool could be utilized in construction industry to add the sustainability and effective cost management.

  18. Incentive Model Based on Cooperative Relationship in Sustainable Construction Projects

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2017-07-01

    Full Text Available Considering the cooperative relationship between owners and contractors in sustainable construction projects, as well as the synergistic effects created by cooperative behaviors, a cooperative incentive model was developed using game theory. The model was formulated and analyzed under both non-moral hazard and moral hazard situations. Then, a numerical simulation and example were proposed to verify the conclusions derived from the model. The results showed that the synergistic effect increases the input intensity of one party’s resource transfer into the increase of marginal utility of the other party, thus the owner and contractor are willing to enhance their levels of effort. One party’s optimal benefit allocation coefficient is positively affected by its own output efficiency, and negatively affected by the other party’s output efficiency. The effort level and expected benefits of the owner and contractor can be improved by enhancing the cooperative relationship between the two parties, as well as enhancing the net benefits of a sustainable construction project. The synergistic effect cannot lower the negative effect of moral hazard behaviors during the implementation of sustainable construction projects. Conversely, the higher levels of the cooperative relationship, the wider the gaps amongst the optimal values under both non-moral hazard and moral hazard situations for the levels of effort, expected benefits and net project benefits. Since few studies to date have emphasized the effects of cooperative relationship on sustainable construction projects, this study constructed a game-based incentive model to bridge the gaps. This study contributes significant theoretical and practical insights into the management of cooperation amongst stakeholders, and into the enhancement of the overall benefits of sustainable construction projects.

  19. Schools That Sustain: Lessening the Environmental Impact of New Construction.

    Science.gov (United States)

    Peele, Katherine N.; Malone, Sara

    2002-01-01

    Discusses sustainable school design and its benefits to the environment, offering examples of illustrative schools. Provides suggestions on site selection (such as using smaller sites and recycling existing buildings), sharing facilities with the community, and construction elements that improve environmental impact (such as flexibility,…

  20. [Chemistry for sustainable construction: 20 years of progress].

    Science.gov (United States)

    Leoni, R

    2012-01-01

    Sustainable development is based on three pillars, economic, social and environmental development. Sustainable products can be developed only by companies that grow on these pillars, but in building sustainability is often identified only with the reduction of dangerous synthetic substances. From this point of view, the efforts of the construction chemicals industry have focused on reducing emissions, dust and volatile organic compounds (VOCs), replacing, if technically possible, the most dangerous components, such as formaldehyde, phthalates, and chlorinated or aromatic solvents, and developing water-borne products with very low VOC emissions. Differences in the definition of VOC and in the methods of measurement of emissions, however, make it difficult to choose the safest product and grows in the construction industry the need to reference trusted standards and product certifications to guarantee users. At present, products labeled "bio", "eco" or "solvent free" do not necessarily mean safe products.

  1. Construction of wavelets with composite dilations

    International Nuclear Information System (INIS)

    Wu Guochang; Li Zhiqiang; Cheng Zhengxing

    2009-01-01

    In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.

  2. Benchmarks for sustainable construction: A contribution to develop a standard

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M. [Swiss Federal Labs. for Materials Testing and Research (EMPA), Centre for Energy and Sustainability in Buildings (ZEN), Duebendorf (Switzerland); Althaus, H.-J. [Swiss Federal Labs. for Materials Testing and Research (EMPA), Technology and Society Lab. (TSL), Duebendorf (Switzerland); Haas, A. [Swiss Federal Labs. for Materials Testing and Research (EMPA), Lab. for Energy Systems/Building Equipment, Duebendorf (Switzerland)

    2005-11-15

    Sustainability has been enshrined as a goal of society to ensure that the satisfaction of present needs does not compromise the ability of future generations to meet their own needs. It is thus a social objective, achievable only where all areas of society co-operate in fulfilling the associated demands. Ecological sustainability is, in turn, a basic prerequisite for sustainable economic and social development. The first step in formulating an effective response to this challenge, focused solely on the environmental issues, entails a quantification of the contribution required from the various areas of human activity for the achievement of sustainable development. Without binding sub-targets for the different sectors, it will be all but impossible to move systematically towards a sustainable society. These benchmarks for sustainable construction therefore set out to define the requirements to be met by buildings and structures in contributing to the achievement of a sustainable society. The permissible impact of buildings, in terms of energy demand and pollutant loads, during construction, maintenance and operation is determined. The analysis focuses on identifying the permissible levels of loads based on the specific energy consumption per m{sup 2} and year for heating, hot water, electricity and construction. A conscious attempt is made to combine existing methods with the general political consensus by taking account of: The ecological scarcity method [G. Brand, A. Scheidegger, O. Schwank, A. Braunschweig, Bewertung in Okobilanzen mit der Methode der okologischen Knappheit (Life cycle analysis using ecological scarcity method), Environmental Publication no. 297, Swiss Agency for the Environment, Forests and Landscape (SAEFL), 1997] used to define critical pollutant loads; The limitation of greenhouse gas emissions specified by the intergovernmental panel on climate change (IPCC) [Intergovernmental Panel on Climate Change, Climate Change 2001, IPCC Third

  3. Sustainable Construction Industry in Cambodia: Awareness, Drivers and Barriers

    Directory of Open Access Journals (Sweden)

    Serdar Durdyev

    2018-02-01

    Full Text Available Although sustainability is of utmost importance, anecdotal evidence suggests that the concept is not adequately implemented in many developing countries. This paper investigates industry stakeholders’ awareness of the current state of, factors driving, and barriers hindering the adoption of sustainable construction (SC in Cambodia. Using an empirical questionnaire survey targeting local construction professionals, respondents were invited to rate their level of awareness, knowledge and understanding of SC, as well as to rate the level of importance of 31 drivers and 10 barriers identified from the seminal literature. The data set was subjected to the relative importance index method. The results suggest that the industry-wide adoption of SC practices is poor, which is believed to be due to a lack of awareness and knowledge, and reluctance to adopt new sustainable technologies. Furthermore, more efforts must be put into the selection of more durable materials for the extension of buildings’ lives and to minimize material consumption, as well as to develop energy-efficient buildings with minimal environmental impact and a healthy indoor environment, so that the ability of future generations to meet their own needs will not be compromised. The outcomes of this study have enriched knowledge about the current state of, drivers of, and barriers to sustainable construction in a typical developing economy. Although the outcomes of this study were a short scoping exercise, it has formed a significant base for future SC work within Cambodia.

  4. Role of coal combustion products in sustainable construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Siddique, R.; Vaniker, S. [University of Wisconsin-Milwaukee, Milwaukee, WI (USA). UWM Center for Products Utilization, College of Engineering and Applied Science

    2003-07-01

    The paper describes various coal combustion products, CCPs produced in the process of power generation. These include fly ash, bottom ash, boiler slag and flue gas desulfurization products. Typical test protocol used for testing, analysis and evaluation of CCPs, as well as the current best recycling use options for these materials are discussed. Materials, productions, properties, and potential applications in the manufacture of emerging materials for sustainable construction, as well as environmental impact are also briefly discussed. 47 refs., 16 figs., 8 tabs.

  5. Design Solutions for Sustainable Construction of Pre Engineered Steel Buildings

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Saleem

    2018-05-01

    Full Text Available Sustainable construction of ecofriendly infrastructure has been the priority of worldwide researchers. The induction of modern technology in the steel manufacturing industry has enabled designers to get the desired control over the steel section shapes and profiles resulting in efficient use of construction material and manufacturing energy required to produce these materials. The current research study is focused on the optimization of steel building costs with the use of pre-engineered building construction technology. Construction of conventional steel buildings (CSB incorporates the use of hot rolled sections, which have uniform cross-section throughout the length. However, pre-engineered steel buildings (PEB utilize steel sections, which are tailored and profiled based on the required loading effects. In this research study, the performance of PEB steel frames in terms of optimum use of steel sections and its comparison with the conventional steel building is presented in detail. A series of PEB and CSB steel frames is selected and subjected to various loading conditions. Frames were analyzed using Finite Element Based analysis tool and design was performed using American Institute of Steel Construction design specifications. Comparison of the frames has been established in terms of frame weights, lateral displacements (sway and vertical displacements (deflection of the frames. The results have clearly indicated that PEB steel frames are not only the most economical solution due to lesser weight of construction but also have shown better performance compared to CSB frames.

  6. A Global Review of Sustainable Construction Project Financing: Policies, Practices, and Research Efforts

    Directory of Open Access Journals (Sweden)

    Ming Shan

    2017-12-01

    Full Text Available Despite the increasing investment in sustainable development over the past decade, a systematic review of sustainable construction project financing is lacking. The objectives of this paper are to conduct a systematic review to examine the policies, practices, and research efforts in the area of sustainable construction project financing, and to explore the potential opportunities for the future research. To achieve these goals, this paper first reviewed the sustainable construction project financing practices implemented by four representative developed economies including the United Kingdom, the United States, Singapore, and Australia. Then, this paper reviewed the efforts and initiatives launched by three international organizations including the United Nations, the Organization for Economic Co-operation and Development, and International Finance Corporation. After that, this paper reviewed the research efforts of sustainable construction project financing published in peer-review journals and books. This paper identified four major research themes within this area, which are the review of financial stakeholders and market of sustainable construction, benefits and barriers to sustainable construction project financing, financial vehicles for sustainable construction projects, innovative models and mechanisms for sustainable construction project financing. Additionally, this paper revealed five directions for the future research of sustainable construction project financing, which are the identification of financial issues in sustainable construction projects, the investigation of financial vehicles for sustainable construction projects in terms of their strengths, limitations, and performances, the examination of critical drivers for implementing sustainable construction project financing, the development of a knowledge-based decision support system for implementing sustainable construction financing, and the development of best practices for

  7. A Dutch public-private strategy for innovation in sustainable construction

    NARCIS (Netherlands)

    Bossink, B.A.G.

    2002-01-01

    Influenced by the sustainable construction policy of the authorities, organizations in The Netherlands are developing, designing and building sustainable areas and objects. The actions of the authorities, authority-related organizations and commercial organizations in the Dutch construction industry

  8. Why 'Sustainable Development' Is Often Neither: A Constructive Critique

    Directory of Open Access Journals (Sweden)

    Alexander Lautensach

    2013-05-01

    Full Text Available Efforts and programs toward aiding sustainable development in less affluent countries are primarily driven by the moral imperative to relieve and to prevent suffering. This utilitarian principle has provided the moral basis for humanitarian intervention and development aid initiatives worldwide for the past decades. It takes a short term perspective which shapes the initiatives in characteristic ways. While most development aid programs succeed in their goals to relieve hunger and poverty in ad hoc situations, their success in the long term seems increasingly questionable, which throws doubt on the claims that such efforts qualify as sustainable development. This paper aims to test such shortfall and to find some explanations for it. We assessed the economic development in the world’s ten least affluent countries by comparing their ecological footprints with their biocapacities. This ratio, and how it changes over time, indicates how sustainable the development of a country or region is, and whether it risks ecological overshoot. Our results confirm our earlier findings on South-East Asia, namely that poor countries tend to have the advantage of greater sustainability. We also examined the impact that the major development aid programs in those countries are likely to have on the ratio of footprint over capacity. Most development aid tends to increase that ratio, by boosting footprints without adequately increasing biocapacity. One conceptual explanation for this shortfall on sustainability lies in the Conventional Development Paradigm, an ideological construct that provides the rationales for most development aid programs. According to the literature, it rests on unjustified assumptions about economic growth and on the externalisation of losses in natural capital. It also rests on a simplistic version of utilitarianism, usually summed up in the principle of  ‘the greatest good for the greatest number’. We suggest that a more realistic

  9. Sustainable Design and Construction of the Fernald Preserve Visitors Center

    International Nuclear Information System (INIS)

    Powell, J.; Sizemore, M.; Cornils, K.

    2009-01-01

    In September 2008, the Fernald Preserve Visitors Center was awarded the platinum certification level by the US Green Building Council (USGBC), the highest level achievable under the Leadership in Energy and Environmental Design New Construction and Major Renovations (LEED-NC) rating system. The Visitors Center, which is maintained and operated under the direction of the U.S. Department of Energy (DOE) Office of Legacy Management, is the first building in Ohio, the second DOE building and one of approximately 100 buildings worldwide to achieve platinum certification. As a sustainable building, the Visitors Center includes a ground source heat pump, a bio-treatment wetland system, recycled construction materials, native and no-irrigation plants and numerous other components to reduce energy, electricity, and water consumption and to lessen the building's impact on the environment. The building's conceptual design was originally developed by the University of Cincinnati's College of Design, Architecture, Art and Planning (DAAP), with input from the community, and the building was designed and built by the Megen Construction Company-glaserworks team, under the direction of S.M. Stoller, Corporation, the Legacy Management contractor for the Fernald Preserve and the DOE Office of Legacy Management. The project required a committed effort by all members of the project team. This is the first sustainable building constructed as part of the cleanup of the environmental legacy of the Cold War. The Visitors Center's exhibits, reading room, and programs will help to educate the community about the Fernald Preserve's environmental legacy and show how our decisions affect the environment. (authors)

  10. Sustainability: Actuality and necessity in the construction sector in Colombia

    International Nuclear Information System (INIS)

    Acevedo Agudelo, Harlem; Vasquez Hernandez, Alejandro; Ramirez Cardona, Diego Alejandro

    2012-01-01

    The construction industry, a part of being essential to achieve the society development, is also one of the main generators of solid waste and pollution, and it is also responsible for a great part of the landscape transformation and the energy usage. These are enough reasons for the industry not to be indifferent to the actual environmental problematic. This paper, which is intended for academic and professional community generally, presents a diagnosis about the current state of construction in Colombia regarding the environmental impact that it generates. To this end, it exposes the Colombian construction industry framed-related to its environmental impact, and documents, chronologically, the practices and strategies that have been used to reduce the negative impact on the environment throughout the time until nowadays. Finally, this document presents a survey result applied to a representative sample of constructive firms of the Valle de Aburra, Antioquia, where several aspects, regarding the concept of sustainable building and the environmental actions that the firm carries out, were inquired.

  11. Mathematical Methods of Managing Economic Sustainability of the Construction Company

    Science.gov (United States)

    Kostuchenko, Vasiliy; Zdanov, Andrej; Rodionov, Anatolij

    2017-10-01

    This article presents a long-term research in developing innovative mathematical techniques of managing the contractor’s economic sustainability proven by some experimental studies. The article aims at presenting some practical results of applying these techniques to the scientific community. This research presents a description of some applied mathematical models, views, and some results of their practical application in the applied field for the purposes of evaluating operational sustainability and minimizing losses in the process of managing the company. The authors have put the technology they have developed to practical use, and the article presents the results of such application. The authors have put the developed technology to practical use. Company management also means the management of power consumption, which is highly vital both for the construction and maintenance of buildings and structures. The articles also dwell on some possible improvements of managing energy consumption within the framework of the general management of company’s economic sustainability, because these phenomena have a tight organic interdependence. The authors continue researching this direction in order to improve the production efficiency of the proposed technologies as well as to eliminate some drawbacks they have spotted.

  12. Quality function deployment for buildable and sustainable construction

    CERN Document Server

    Natee, Singhaputtangkul; Teo, Evelyn A L

    2016-01-01

    This book focuses on the implementation of Quality Function Deployment (QFD) in the construction industry as a tool to help building designers arrive at optimal decisions for external envelope systems with sustainable and buildable design goals. In particular, the book integrates special features into the conventional QFD tool to enhance its performance. These features include a fuzzy multi-criteria decision-making method, fuzzy consensus scheme, and Knowledge Management System (KMS). This integration results in a more robust decision support tool, known as the Knowledge-based Decision Support System QFD (KBDSS-QFD) tool. As an example, the KBDSS-QFD tool is used for the assessment of building envelope materials and designs for high-rise residential buildings in Singapore in the early design stage. The book provides the reader with a conceptual framework for understanding the development of the KBDSS-QFD tool. The framework is presented in a generalized form in order to benefit building professionals, decisio...

  13. A European Sustainable Tourism Labels proposal using a composite indicator

    Energy Technology Data Exchange (ETDEWEB)

    Blancas, Francisco Javier, E-mail: fjblaper@upo.es [Department of Economics, Quantitative Methods and Economic History, Pablo de Olavide University, Carretera de Utrera Km 1, 41013 Seville (Spain); Lozano-Oyola, Macarena, E-mail: mlozoyo@upo.es [Department of Economics, Quantitative Methods and Economic History, Pablo de Olavide University, Carretera de Utrera Km 1, 41013 Seville (Spain); González, Mercedes, E-mail: m_gonzalez@uma.es [Department of Applied Economics (Mathematics), Malaga University, Campus El Ejido, 29071 Málaga (Spain)

    2015-09-15

    The tourism sector in Europe faces important challenges which it must deal with to promote its future development. In this context, the European Commission considers that two key issues must be addressed. On the one hand, a better base of socio-economic knowledge about tourism and its relationship with the environment is needed, and, on the other hand, it is necessary to improve the image of European areas as quality sustainable tourism destinations. In this paper we present analytical tools that cover these needs. Specifically, we define a system of sustainable tourism indicators and we obtain a composite indicator incorporating weights quantified using a panel of experts. Employing the values of this global indicator as a basis, we define a Sustainable Tourism Country-Brand Ranking which assesses the perception of each country-brand depending on its degree of sustainability, and a system of sustainable tourism labels which reward the management carried out. - Highlights: • We define a system of indicators to improve the knowledge about sustainable tourism. • We obtain composite indicators based on expert knowledge. • The Sustainable Tourism Country-Brand Ranking would improve the image of destinations. • We define a Sustainable Tourism Labels System to assess country-brands. • The conclusions of the empirical analysis can be extrapolated to other tourist areas.

  14. A European Sustainable Tourism Labels proposal using a composite indicator

    International Nuclear Information System (INIS)

    Blancas, Francisco Javier; Lozano-Oyola, Macarena; González, Mercedes

    2015-01-01

    The tourism sector in Europe faces important challenges which it must deal with to promote its future development. In this context, the European Commission considers that two key issues must be addressed. On the one hand, a better base of socio-economic knowledge about tourism and its relationship with the environment is needed, and, on the other hand, it is necessary to improve the image of European areas as quality sustainable tourism destinations. In this paper we present analytical tools that cover these needs. Specifically, we define a system of sustainable tourism indicators and we obtain a composite indicator incorporating weights quantified using a panel of experts. Employing the values of this global indicator as a basis, we define a Sustainable Tourism Country-Brand Ranking which assesses the perception of each country-brand depending on its degree of sustainability, and a system of sustainable tourism labels which reward the management carried out. - Highlights: • We define a system of indicators to improve the knowledge about sustainable tourism. • We obtain composite indicators based on expert knowledge. • The Sustainable Tourism Country-Brand Ranking would improve the image of destinations. • We define a Sustainable Tourism Labels System to assess country-brands. • The conclusions of the empirical analysis can be extrapolated to other tourist areas

  15. A Resilience Engineering Approach for Sustainable Safety in Green Construction

    Directory of Open Access Journals (Sweden)

    Lucio V. Rosa

    2017-12-01

    Full Text Available Sustainable construction is a complex endeavour, involving various stakeholders and resulting in situations that are incompletely described or underspecified. Traditional risk assessment methods require a detailed description of the system and safety, focusing on undesirable outcomes, losses, incidents and accidents. Developing this principle, this research describes a new way to deal with risk assessment in the green construction industry using a resilience engineering method based on the functional resonanceanalysis method and analytic hierarchy process methodologies. The functional resonance analysis method defines a systemic framework to model complex systems based on combinations of function variabilities during normal work. Therefore, to quantify the outcomes for risk assessment, this method was used together with the analytic hierarchy process in a case study during the modernisation work on the Maracanã stadium in Rio de Janeiro. The results of this case study demonstrate that the combined utilisation of the functional resonance analysis method and analytic hierarchy process can be utilised to recognise situations where developments could potentially be without control, which enables this to be used as a basis for performing indicators or a monitoring system. Furthermore, this combined technique can be used to assess and quantify the performance variabilities that may lead to occupational or environmental accidents, and provide new recommendations about how work processes should function, minimising production losses, incidents and accidents.

  16. Action for sustainability: preparing an African plan for sustainable building and construction

    CSIR Research Space (South Africa)

    Du Plessis, C

    2005-09-01

    Full Text Available and ecological principles” (cited in Bourdeau, 1999). Other definitions include: “Sustainable construction, in its own processes and products during their service life, aims at minimizing the use of energy and emissions 6 that are harmful for environment... with meeting the special needs of Africa. The Declaration set a number of goals for achieving a world without want, including a significant improvement in the lives of at least 100 million slum dwellers, as well as the provision of clean water and improved...

  17. Construction loads experienced by plastic composite ties.

    Science.gov (United States)

    2014-07-01

    Damage to plastic composite ties during handling and track installation has been reported by a number of railroads. Results from : a survey conducted to identify specific handling issues were used to develop field and laboratory tests to measure the ...

  18. Implementation of sustainable and green design and construction practices for bridges.

    Science.gov (United States)

    2012-12-01

    The focus of this research is to develop a framework for more sustainable design and construction : processes for new bridges, and sustainable maintenance practices for existing bridges. The framework : includes a green rating system for bridges. The...

  19. Advanced wood- and bio-composites : enhanced performance and sustainability

    Science.gov (United States)

    Jerrold E. Winandy

    2006-01-01

    Use of wood-based-composites technology to create value-added commodities and traditional construction materials is generally accepted worldwide. Engineered wood- and lignocellulosic-composite technologies allow users to add considerable value to a diverse number of wood- and lignocellulosic feedstocks including small-diameter timber, fast plantation-grown timber,...

  20. Deflection hardening of sustainable fiber–cement composites

    OpenAIRE

    Lima, P. R. L.; Santos, D. O. J.; Fontes, C. M. A.; Barros, Joaquim A. O.; Toledo Filho, R. D.

    2016-01-01

    In the present study sisal fiber–cement composites reinforced with 4% and 6% of short fibers were developed and their physical–mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding fly ash and metakaolin, and the natural aggregate was substituted by 10% and 20% of recycled concrete aggregate. Flat sheets were cast in a self-compacted cement matrix and bending tests were performed ...

  1. Technology Paths in Energy-Efficient and Sustainable Construction

    DEFF Research Database (Denmark)

    Holm, Jesper; Lund Sørensen, Runa Cecilie

    2015-01-01

    Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing......Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing...

  2. Human resource management in the construction industry – Sustainability competencies

    OpenAIRE

    Renard Yung Jhien Siew

    2014-01-01

    While environmental sustainability has been the subject of much debate in the last decade, it was not until recently that attention started to shift towards human resource management as an enabler for sustainability.  Yet, this is still a relatively under researched area.  Much is still unknown about the role of an individual worker in contributing towards sustainable development.  This paper addresses the gap by proposing a framework to measure sustainability competencies of employees within...

  3. 10 CFR 435.6 - Sustainable principles for siting, design and construction. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sustainable principles for siting, design and construction. [Reserved] 435.6 Section 435.6 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS...-Rise Residential Buildings. § 435.6 Sustainable principles for siting, design and construction...

  4. 10 CFR 433.6 - Sustainable principles for siting, design and construction. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sustainable principles for siting, design and construction. [Reserved] 433.6 Section 433.6 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS... BUILDINGS § 433.6 Sustainable principles for siting, design and construction. [Reserved] ...

  5. Physicochemical, Mineralogical and Microscopic Evaluation of Sustainable Bricks Manufactured with Construction Wastes

    Directory of Open Access Journals (Sweden)

    Armando Aguilar-Penagos

    2017-09-01

    Full Text Available At an international level, enormous volumes of construction and demolition wastes are generated: 170 million tons/year in the USA, 500 million tons/year in the European Union (EU and 12 million tons/year in Mexico. Alternative uses for these heterogeneous materials, such as the manufacture of sustainable bricks, are potential solutions to this growing environmental issue. Based on previous studies, and in compliance with Mexican standards, four different types of secondary materials were utilized in the composition of a sustainable brick matrix. Temperature and solar radiation used for drying purposes were determined, as well as weight loss, resistance and initial maximum absorption. In order to characterize the resulting matrix, observations were made with a scanning electron microscope, and the chemical composition of the samples was determined by detecting basic compounds using mapping through SEM-EDS microanalysis, connected to the SEM unit. Finally, thermogravimetric analyses were performed to correlate mechanical and chemical behavior, and resistance to high temperatures of the mixtures. The results obtained showed that all-in-one (AiO is the most appropriate material for brick manufacturing, Opuntia ficus-indica mucilage improves physical properties, such as increased compressive strength and reduced water absorption, while wood residues, clay minerals and illite enhance mechanical properties.

  6. Sustainable hemp-based composites for the building industry application

    Science.gov (United States)

    Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola

    2017-07-01

    Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.

  7. Construction of composite indices in presence of outliers

    OpenAIRE

    Mishra, SK

    2008-01-01

    Effects of outliers on mean, standard deviation and Pearson’s correlation coefficient are well known. The Principal Components analysis uses Pearson’s product moment correlation coefficients to construct composite indices from indicator variables and hence may be very sensitive to effects of outliers in data. Median, mean deviation and Bradley’s coefficient of absolute correlation are less susceptible to effects of outliers. This paper proposes a method to obtain composite indices by maximiza...

  8. Algorithm of constructing hybrid effective modules for elastic isotropic composites

    Science.gov (United States)

    Svetashkov, A. A.; Miciński, J.; Kupriyanov, N. A.; Barashkov, V. N.; Lushnikov, A. V.

    2017-02-01

    The algorithm of constructing of new effective elastic characteristics of two-component composites based on the superposition of the models of Reiss and Voigt, Hashin and Strikman, as well as models of the geometric average for effective modules. These effective characteristics are inside forks Voigt and Reiss. Additionally, the calculations of the stress-strain state of composite structures with new effective characteristics give more accurate prediction than classical models do.

  9. Critical Analysis on Construction Workforce Sustainability in Developed Economy

    OpenAIRE

    Sing, Michael; Tam, Vivian; Fung, Ivan; Liu, Henry

    2017-01-01

    The construction industry in the developed economy has suffered a shortage of workforce which triggers project cost escalation and project delay and suppresses the whole economy. This paper aims to explore the perceptions of the general public and construction workers towards workforce shortage in the Hong Kong construction industry and identifies the critical factors affecting their intention to join the industry. Triangulation approach was adopted in this study and a street survey was condu...

  10. A review on utilization of textile composites in transportation towards sustainability

    Science.gov (United States)

    Aly, Nermin M.

    2017-10-01

    Transportation industry is rapidly developing owing to its size and importance which affects on various aspects of life. It includes all the transport means that facilitate mobility of people or goods either by air, land or sea like aircrafts, automotives, ships, trains, etc. The utilization of textiles in this industry is increasing as a result of moving towards achieving sustainability and enhancing performance, comfort and safety. Through substituting heavier materials with textiles of high performance specifications and textile reinforced composites to reduce weight, fuel consumption and CO2 emissions. Composite materials can fulfil the demands for sustainability in the transportation sector through using renewable, recycled and lightweight materials, considering the requirements of each category of transport vehicles. Textiles used in reinforcing composites are diverse including fibers, yarns or fabric preforms such as woven, nonwoven, knitted, braided which varies from 2D to complex 3D structures. This paper presents a brief review on the utilization of textiles in reinforcing composites for various transportation applications to achieve sustainability. Also, discussing the influence of textiles structural parameters like fiber material properties, fabric production technique and construction on their mechanical behaviour. Focusing on researches findings in this area and highlighting some prospects for further developments domestically.

  11. Durable and Sustainable Road Constructions for Developing Countries

    NARCIS (Netherlands)

    Molenaar, A.A.A.

    2013-01-01

    This paper discusses the possibilities to build durable and sustainable pavement structures in developing countries. Attention will be paid to geometric design aspects which have a significant effect on pavement life. Following this attention will be paid to the importance of controlling wheel loads

  12. Methodology to Estimate the Quantity, Composition, and Management of Construction and Demolition Debris in the United States

    Science.gov (United States)

    This report, Methodology to Estimate the Quantity, Composition and Management of Construction and Demolition Debris in the US, was developed to expand access to data on CDD in the US and to support research on CDD and sustainable materials management. Since past US EPA CDD estima...

  13. Sustainable consumption and production strategy for South African construction products

    CSIR Research Space (South Africa)

    Ampofo-Anti, NL

    2009-06-01

    Full Text Available The adoption of green building principles and the rollout of energy efficiency regulations for buildings are not sufficient to align the environmental performance of South African construction products with the requirements for environmental...

  14. Environment-friendly sustainable construction of houses; Duurzaam bouwen kan milieuvriendelijker

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G. [Onderzoeksinstituut OTB, Technische Universiteit Delft, Delft (Netherlands)

    2003-02-01

    An overview is given of the most important results of a study on the environmental effects of sustainable construction of residential buildings. [Dutch] Een overzicht wordt gegeven van de belangrijkste resultaten van een onderzoek naar de milieuvriendelijkheid van duurzaam bouwen.

  15. An investigation of sustainable and recyclable composites for structural applications

    Science.gov (United States)

    Moller, Johannes Paul

    Motivated by the need for more sustainable materials in general and the issues concerning the life cycle of wind turbine blades in particular, the focus of this research work is to better understand what is needed to create high-performance bio-epoxy composites, and to explore their repair and recycling. To further these ends, glass fiber reinforced composites were manufactured using an epoxidized linseed oil (ELO) based matrix cured with various anhydride curatives and catalysts. Based on mechanical properties measurements of these materials, ELO cured with methyltetrahydrophthalic anhydride (MTHPA) and catalyzed with 2-ethyl-4-methylimidazole (2E4MI) yielded the best performance among all fou iulations tested, and avoided the void foiniation issues associated with the use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst. In addition to the mechanical characterization of the composite, the applicability and processability of a range of bio-epoxy formulations was evaluated in the context of for vacuum-assisted resin transfer molding (VARTM). In particular, a new methodology for assessing the infusability of a resin was developed and the bioepoxy formulations were demonstrated to be more amenable to resin infusion than a conventional control. Having demonstrated the potential for bio-based resins to produce more sustainable high-performance composites, further studies were carried out to address end-of-life issues. Here different approaches for healing and recycling of epoxy vitrimers (epoxies rendered reworkable by the inclusion of a transesterification catalyst) and their composites were introduced and proof-of-concept experiments were performed. By exposing a fractured glass fiber epoxy vitrimer composite to elevated temperatures and pressure for times on the order often minutes, a healing efficiency of 55% was achieved. Additionally, two different recycling approaches were explored. First, mechnical recycling (grinding followed by reconsolidation via

  16. Drivers militating against the pricing of sustainable construction materials: The Ghanaian quantity surveyors perspective

    Directory of Open Access Journals (Sweden)

    Ernest Kissi

    2018-06-01

    Full Text Available Sustainability has in recent times attained much acceptance as a result of its positive impact on the environment, social and economic issues. Nevertheless, in developing countries, the price of sustainable construction materials are too high. The aim of the study was to examine drivers militating against the pricing of sustainable construction materials. Through an in-depth review of literature as well as an interview survey, questionnaire was designed and administered to practicing quantity surveyors. Data generated from the survey was analysed using Principal Component Analysis which resulted four main drivers. These included: awareness challenge (AC, sustainability measurement tools challenge (SMTC, economic challenge (EC, and information challenge (IC. The study offers useful lessons on sustainable practices that pricing experts in the construction industry can draw on when pricing.The need for this study cannot be doubted since the consciousness of such challenges will help in resolving issues associated with pricing of sustainable construction materials. Keywords: Drivers, Militating, Pricing, Sustainable construction materials, Ghanaian

  17. Sustainable construction : towards a strategic approach to construction material management for waste reduction

    OpenAIRE

    Abarca Guerrero, L.; Scheublin, F.J.M.; Egmond - de Wilde De Ligny, van, E.L.C.; Lambert, A.J.D.

    2008-01-01

    The construction sector plays a key role in shaping and developing the built environment. It also has an undisputed and significant impact on it due to the amounts of materials extracted and produced as waste. The construction industry has emphasized to recycling construction waste (CW), however, relatively less emphasis has been paid on construction waste minimization. CW reduction can be achieved through changes in design concepts, material and construction methods selection and material ma...

  18. Constructing Indicators for Measuring Provincial Sustainable Development Index in Vietnam

    Science.gov (United States)

    Truong, Van Canh; Lisowski, Andrzej

    2018-03-01

    Sustainable development is zeitgeist of our age. It is one kind of development that in this trajectory humanity can create a stable and developed socio-economic foundations, conserve environment and therefore able to continue for a long time. Using indicators is one of the best ways to monitor and measure the progress toward sustainable development. In this paper we have proposed the way to create indicators for measuring provincial sustainable development index in Vietnam. We firstly made a framework of elements for economic, social and environmental component and compiled a list of indicators of 20 national and international agencies in the world. We then applied the SMART framework (Specific, Measurable, Achievable, Relevant, and Time-related) to choose indicators which will be relevant for Vietnam and put them back to the elements. We then have 39 relevant indicators with 12 indicators for economy, 17 indicators for social and 10 indicators for environmental component. Finally, we have established the way to determine the worst and best value for each indicator from available data for countries in the world.

  19. Sustainable Construction Industry Development and Green Buildings: A Case of Latvia

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Vanags, J.

    2018-02-01

    Nowadays, more and more attention is being paid to the country's economy, construction industry and real estate market's sustainable development and to the studies related to these issues. The aim of the research is to analyse significant aspects of sustainable development of construction activities and real estate market, with particular focus on environmental aspects of construction or the role of green buildings. The research includes an integrated approach of construction industry analysis and analysis of real estate operations area. Scientific and practical solutions and recommendations will enable the industry participants to be introduced to the main sustainable aspects of construction industry development, which, in their turn, can improve the overall performance of the industry in the long term.

  20. Sustainable Construction Industry Development and Green Buildings: A Case of Latvia

    Directory of Open Access Journals (Sweden)

    Kauskale L.

    2018-02-01

    Full Text Available Nowadays, more and more attention is being paid to the country's economy, construction industry and real estate market's sustainable development and to the studies related to these issues. The aim of the research is to analyse significant aspects of sustainable development of construction activities and real estate market, with particular focus on environmental aspects of construction or the role of green buildings. The research includes an integrated approach of construction industry analysis and analysis of real estate operations area. Scientific and practical solutions and recommendations will enable the industry participants to be introduced to the main sustainable aspects of construction industry development, which, in their turn, can improve the overall performance of the industry in the long term.

  1. Environmental certifications: contribution to sustainability in construction in Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa de Conto

    2017-11-01

    Full Text Available The growth of industrial activities contributed to the emergence of debates, theories and studies on the environmental risks and their relationship with industry. In this context, the construction industry, as a generator of large environmental impacts, has been the focus of studies on important events and global conventions. Therefore, the development of seals and environmental certifications as a means of mitigating the impacts of the construction production chain has been growing. The methodology used for the development of this work was documentary research. As a result, the study examined the main certifications and seals used in Brazil and their accession in the country.

  2. Environmentally Sustainable Construction Products and Materials – Assessment of release

    DEFF Research Database (Denmark)

    Wahlström, Margareta; Laine-Yliijoki, Jutta; Järnström, helena

    The construction sector consumes yearly about half of all natural resourcesextracted in Europe and their transformation into building products has huge energy demands. Therefore the focus of today’s environmental policy is on the building end-of-life scenarios and material efficiency. Here waste...... hardly any construction product is designed keeping recycling/reuse in mind, the “Design for theEnvironment” -concept is one of the key steps towards increased recycling and reuse and thereby towards minimal environmental impacts. This project has been carried out by VTT with cooperation with the Danish...

  3. Towards Sustainable Construction: Life Cycle Assessment of Railway Bridges

    DEFF Research Database (Denmark)

    Du, Guangli

    Since last few decades, the increased pressure from the environmental issues of natural resource depletion, global warming and air pollution have posed a great challenge worldwide. Among all the industrial fields, bridge infrastructures and their belonged construction sector contribute to a wide...

  4. Self-Sustaining Ethnic Minority Women: Constructing Their Identities

    NARCIS (Netherlands)

    Pio, E.; Essers, C.

    2014-01-01

    Embraced by their ethnicity and gender many migrant women have negotiated their own spaces in the host country. Yet, much of the literature on migrant women focuses on those who are struggling to make ends meet with low levels of education and how this defines the construction of the Other. We

  5. Sustainable closure of construction materials quarries in Cuba

    Directory of Open Access Journals (Sweden)

    Julio Montero-Matos

    2017-10-01

    Full Text Available The inclusion of effective mine closure plans in the exploitation project is the way to compensate for the harmful effect of this activity. Based on a diagnosis carried out in 11 sites in operation, belonging to the company Canteras, a methodology was designed with a systemic and integral approach that consists of five stages and allows the execution of quarry closures in a sustainable manner. The Delphi method was applied to select the criteria that directly affect the sustainable closure of quarries in such a way that it considers the essential postulates of the Cuban Economic Model (MEC. The proposed methodology represents a contribution to the planning and design of the mining closure in Cuban non-metallic deposits to guarantee the reduction of the environmental impacts caused during its operation and the reduction, to the lesser extent possible, of negative socio-economic effects for the workers and the community located in the area of influence of the quarries. Currently applied in the quarry of San José, in Mayabeque province.

  6. Sustainable construction : towards a strategic approach to construction material management for waste reduction

    NARCIS (Netherlands)

    Abarca Guerrero, L.; Scheublin, F.J.M.; Egmond - de Wilde De Ligny, van E.L.C.; Lambert, A.J.D.

    2008-01-01

    The construction sector plays a key role in shaping and developing the built environment. It also has an undisputed and significant impact on it due to the amounts of materials extracted and produced as waste. The construction industry has emphasized to recycling construction waste (CW), however,

  7. How Standards Enable the Emergence of Sustainable Construction as a New Organizational Field

    DEFF Research Database (Denmark)

    Boxenbaum, Eva; Georg, Susse; Reijonen, Satu

    This paper examines the role of standards in the emergence of new fields. We analyzed the current formation of sustainable construction as a new field within the Danish construction sector. Data were derived from four qualitative studies on mandatory and voluntary standards pertaining to sustaina...

  8. Procurement of non-incremental sustainable technology innovations : entrepreneurial firms supplying the New Zealand construction industry

    NARCIS (Netherlands)

    Staal, Anne; Tookey, John

    Traditionally construction industries in New Zealand and abroad have a low track record for successful sustainable innovations. This has a negative impact on private and government spending, and on quality, society and the environment. This conceptual paper posits that the construction industry

  9. Drivers of Change in Construction Training: How Significant Is the Sustainability Agenda?

    Science.gov (United States)

    Fien, John; Winfree, Tomi

    2014-01-01

    The construction industry is contributing to the sustainability agenda through numerous strategies to improve energy efficiency in the design, materials, and operating conditions of buildings. However, this is only one driver of change in the construction sector. This article, which takes Australia as a case study, shows that many other drivers…

  10. Evaluating construction projects of hotels based on environmental sustainability with MCDM framework

    Directory of Open Access Journals (Sweden)

    Sarfaraz Hashemkhani Zolfani

    2018-03-01

    Full Text Available Environmental issues have got incredible attention among daily life activities. Sustainability penetrated in all society practices specially construction industry due to its substantial impact on the environment. Monitoring and controlling architectural project contains a decision problem with multi-varieties analysis. This study aimed to evaluate construction projects of hotels regarding environmental sustainability. To this end, a hybrid Multiple Criteria Decision Making (MCDM model is proposed. Step‐wise Weight Assessment Ratio Analysis (SWARA and Complex proportional assessment (COPRAS compose a unified framework. A private construction project is supposed as a case study. The project is based on establishing a five star hotel in Tehran, Iran. In this research SWARA produces criteria weights and COPRAS will rank decision alternatives. This study can be a strategic route for other similar researches in other fields. Keywords: Architecture projects, Sustainability, Environmental sustainability, SWARA, COPRAS

  11. Improving the Healthiness of Sustainable Construction: Example of Polyvinyl Chloride (PVC

    Directory of Open Access Journals (Sweden)

    Emina Kristina Petrović

    2018-02-01

    Full Text Available With the increasing emphasis on sustainable construction, it has become important to better understand the impacts of common materials. This is especially paramount with the introduction of the United Nations (UN Sustainable Development Goals (SDGs which call for more comprehensive evaluations, adding many aspects of social consideration to the issues of environmental sustainability, including human health. Polyvinyl chloride (PVC/vinyl can be seen as a material with potential for significant adverse effects on a multiplicity of levels, and the construction industry is its single most significant consumer. This article presents a transdisciplinary review of adverse health impacts associated with PVC showing a number of issues: some that could be eliminated through design, but also some which appear inherent to the material itself and therefore unavoidable. The totality of issues revealed in relation to PVC presents a compelling case for a call for complete elimination of use of this material in sustainable construction.

  12. Sustainability Criteria for Planning, Constructing, and Operating Contingency Bases

    Science.gov (United States)

    2012-05-22

    common PREREQ 1 Walkable Streets yes Planning, Desi gn, Construction, OaM Medium use areas. Plan careft,j!y to accommodate simftar functions in the...apjly the specific LEED·ND criteria. Pay special attention to roads that connect LSA ~ife support areas) to common Walkable Streets yes Planning... Walkable Streets  Intent: ►To promote transportation efficiency. ►To promote walking by providing: • Safe •Appealing •Comfortable street

  13. Approach to the regulation in spain for sustain-able constructions and eco-efficient solutions

    OpenAIRE

    Castilla Guerra, Jerónimo; Agudo Martínez, Andrés; Mercader-Moyano, Pilar (Coordinador)

    2017-01-01

    Is there any law related to sustainable buildings and eco-efficient solutions in Spain? How harmful effects on the environment caused by the building industry are regulated? The emergence of concepts such as sustainability or eco-efficiency in the mid-twentieth century has caused a deep impact in the building industry, changing traditional techniques, systems and procedures that have promoted research for the use of materials more efficient. All aimed at lessening the harmful ...

  14. Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood

    Directory of Open Access Journals (Sweden)

    Jozef Švajlenka

    2018-01-01

    Full Text Available Recent developments in the construction industry have brought more efficient and sustainable technologies, technological procedures, and materials. An example of this are modern methods of construction, which offer larger production volumes with a higher quality and shorter procurement time. The goal of those methods is to improve construction sustainability through quality improvement, customer satisfaction, shortened construction time, and reduced environmental impact. The main goal of this research is to demonstrate, by means of theoretical assumptions, surveys, and analyses, the sustainability of modern methods of construction based on wood. The work focuses on identifying the user criteria for construction sustainability. Selected user criteria of construction sustainability are applied in a socio-economic survey whose purpose is to determine how users perceive the efficiency of selected construction systems. We evaluate certain user parameters in the context of sustainability by relying on the users of buildings (family houses which have already been built and compare the results with declared design parameters.

  15. Life cycle uses of concrete for more sustainable construction

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, A. [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    2001-07-01

    This paper examined ways in which the environmental burdens of construction in general and concrete production in particular can be reduced. Aggregates for concrete production include sand, gravel and stone. They account for most (80 per cent) of the materials used in the United States. This paper argued that given the fact that environmental concerns are an important social issue, the issue of natural resource conservation should be addressed. Some of the life-cycle assessments and comparative design issues associated with concrete construction were summarized. The author presented the example that often the initial cost of a new pavement application may indicate a lower environmental impact than an equivalent design when asphalt is used over reinforced concrete. However, annualized impacts may result in comparable environmental assessments. The same is true for bridge girders, reinforced concrete also seems to be a better environmental choice than steel. This paper also described end-of-life options that involve the use of waste products and recycled products in concrete and other materials to reduce the overall environmental impacts of a product or facility. This paper was divided into several sections entitled: life cycle assessments; life cycle inventory assessment of concretes and asphalt pavements; and, life cycle inventory assessment of concrete and steel bridge girders. 16 refs., 4 tabs.

  16. Turning construction of a sustainable community into business; Kestaevaen yhdyskunnan rakentaminen. Naekoekulmia ja liiketoimintamahdollisuuksia

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, T.; Nissinen, K.; Moettoenen, V.; Vainio, S. [VTT Technical Research Centre of Finland, Espoo (Finland); Herrala, M.; Haapasalo, H. [Univ. of Oulu (Finland)

    2012-09-15

    The aim of the project was to increase understanding about what a sustainable community is like and how one can be built. The report describes briefly the theoretical backgrounds of all three dimensions sustainability and presents assessment methods as well as tests two of them on Hiukkavaara, Oulu. The crucial decisions regarding building a sustainable community are made already before planning starts during goal setting. Zoning, planning and construction for their part meet set goals. During the life cycle, the use phase has a decisive influence especially on the dimension of socially and ecologically sustainable development. The built environment may either waste or generate energy during the life cycle. In principle, socially sustainable development is considered more of a process than an achieved status. If successful, it increases the status and value of an area which is part of economically sustainable development. The aspects of sustainable development are not separate but merge with each other. Considering the viewpoint of sustainable development in construction creates new and expands existing business opportunities at all phases of the building process. In addition to life-cycle projects suitable for large companies with riskbearing capacity, or building of novel networks, sustainable construction offers opportunities also for small, local companies. In the design of a one- and two-family house dominated residential area the value chain from general design to finished residential area is long time-wise. Thus, in the early phase it is important to retain the possibility to make changes instead of meeting exact client needs. A concrete example of that is the improvement of the energy efficiency of one- and two-family houses which calls into question the profitability of building a district heating system. The value chains of construction must be able to develop solutions for the changing operating environment. Uses must be found for buildings throughout

  17. The relationship between motivations of architectural designers and environmentally sustainable construction design

    OpenAIRE

    Murtagh, N. M.; Roberts, A.; Hind, R.

    2016-01-01

    Research on sustainability in construction design has tended to focus on technological, institutional and economic drivers but there has been little change in the industry. Social scientific approaches offer insights on the lack of progress. However, few previous studies have investigated psychological factors despite the pivotal role of the individual professional decision-maker. The aim was to understand what personal motivations drive architectural designers to pursue sustainable design in...

  18. Preference Construction Processes for Renewable Energies: Assessing the Influence of Sustainability Information and Decision Support Methods

    Directory of Open Access Journals (Sweden)

    Kiyotada Hayashi

    2016-11-01

    Full Text Available Sustainability information and decision support can be two important driving forces for making sustainable transitions in society. However, not enough knowledge is available on the effectiveness of these two factors. Here, we conducted an experimental study to support the hypotheses that acquisition of sustainability information and use of decision support methods consistently construct preferences for renewable power generation technologies that use solar power, wind power, small-scale hydroelectric power, geothermal power, wood biomass, or biogas as energy sources. The sustainability information was prepared using a renewable energy-focused input-output model of Japan and contained life cycle greenhouse gas emissions, electricity generation costs, and job creation. We measured rank-ordered preferences in the following four steps in experimental workshops conducted for municipal officials: provision of (1 energy-source names; (2 sustainability information; (3 additional explanation of public value; and (4 knowledge and techniques about multi-attribute value functions. The degree of changes in preference orders was evaluated using Spearman’s rank correlation coefficient. The consistency of rank-ordered preferences among participants was determined by using the maximum eigenvalue for the coefficient matrix. The results show: (1 the individual preferences evolved drastically in response to the sustainability information and the decision support method; and (2 the rank-ordered preferences were more consistent during the preference construction processes. These results indicate that provision of sustainability information, coupled with decision support methods, is effective for decision making regarding renewable energies.

  19. Exploring the Applications of Bio-Eco Architecture for Sustainable Design and Construction process

    OpenAIRE

    M. M. Naguib; M. A. M. Hanafi

    2013-01-01

    It has been commonly noted that the main perception of nature influenced forms isbasically aesthetic while little concern is given to the importance of inspiring from naturein the construction and structural performance of buildings as well as in the naturalecological architectural solutions, thus, this paper will focus on bio-inspired architectureapproach which embraces the eco-friendly practices of sustainable construction, the useof natural materials and the energy conservation by mimickin...

  20. Creating sustainability : the social construction of the market for organic products

    NARCIS (Netherlands)

    Miele, M.

    2001-01-01

    Creating Sustainability: The Social Construction of the Market for Organic Products

    Chapter N. 1: Reflections on globalisation

    This chapter starts with some reflection on the concept of globalisation and reviews the literature

  1. Agenda 21 for sustainable construction in developing countries: a discussion document

    CSIR Research Space (South Africa)

    International Council for Research and Innovation in Building and Construction, CIB

    2002-01-01

    Full Text Available 21 formulated at the Earth Summit in Rio and is published as a contribution to the Johannesburg World Summit on Sustainable Development. The aim of this document is to provide a research and development agenda and strategy for action for construction...

  2. Specific character of sustainable innovative development of transport construction in self-regulation conditions

    Science.gov (United States)

    Gumba, Khuta; Belyaeva, Svetlana

    2017-10-01

    The providing of sustainable development is impossible without activating the innovative activity of backbone economical sectors, in particular of transport construction. The system of self-regulation of activities is a specific feature of the transport industry development. The authors carried out the correlation analysis of innovative activity of construction enterprises, which proved the necessity of improving the normative and technical documents. The authors proposed and calculated the index of the legislation stability in the industry. The article suggests recommendations on the activation of innovative development in construction industry basing on the results of the modeling.

  3. A Multi-Objective Trade-Off Model in Sustainable Construction Projects

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2017-10-01

    Full Text Available Based on the consideration of the relative importance of sustainability-related objectives and the inherent nature of sustainable construction projects, this study proposes that the contractor can balance the levels of efforts and resources used to improve the overall project sustainability. A multi-objective trade-off model using game theory was established and verified through simulation and numerical example under a moral hazard situation. Results indicate that effort levels of the contractor on sustainability-related objectives are positively related to the outcome coefficient while negatively to the coefficients of effort cost of the relevant objectives. High levels of the relative importance of sustainability-related objectives contribute to high levels of effort of the contractor. With the variation in effort levels and the coefficient of benefit allocation, the project net benefit increases before declining. The function of project benefit has a marked peak value, with an inverted “U” shape. An equilibrium always exists as for the given relative importance and coefficients of the effort costs of sustainability-related objectives. Under this condition, the owner may offer the contractor a less intense incentive and motivate the contractor reasonably arranging input resources. The coefficient of benefit allocation is affected by the contractor characteristic factors and the project characteristic factors. The owner should balance these two types of factors and select the most appropriate incentive mechanism to improve the project benefit. Meanwhile, the contractor can balance the relative importance of the objectives and arrange the appropriate levels of effort and resources to achieve a sustainability-related objective. Very few studies have emphasized the effects of the relative importance of sustainability-related objectives on the benefits of sustainable construction projects. This study therefore builds a multi-objective trade

  4. From Julius Caesar to Sustainable Composite Materials: A Passage through Port Caisson Technology

    Directory of Open Access Journals (Sweden)

    Eduardo Cejuela

    2018-04-01

    Full Text Available The breakwater construction technique using floating concrete caissons is well-known nowadays as a widespread system. Yet do we really know its origin? Since Julius Caesar used this technology in Brindisi (Italy up to the Normandy landings in June 1944, not only has this technology been developed, but it has been a key item in several moments in history. Its development has almost always been driven by military requirements. The greatest changes have not been conceptual but point occurring, backed by the materials used. Parallelisms can be clearly seen in each new stage: timber, opus caementitium (Roman concrete, iron and concrete… However, nowadays, achieving a more sustainable world constitutes a major challenge, to which the construction of caissons breakwaters must contribute as a field of application of new eco-friendly materials. This research work provides a general overview from the origins of caissons until our time. It will make better known the changes that took place in the system and their adaptation to new materials, and will help in clarifying the future in developing technology towards composite sustainable materials and special concrete. If we understand the past, it will be easier to define the future.

  5. SUSTAINABILITY ASSESSMENT IN URBAN PLANNING. A CHALLENGE FOR A METHODOLOGICAL CONSTRUCTION: MONTREAL AS CASE STUDY

    Directory of Open Access Journals (Sweden)

    María de Lourdes Flores Lucero

    2014-09-01

    Full Text Available In this paper we describe the methodological process for the qualitative evaluation of the concept of sustainability and its application in the island of Montreal. At the same time we present our theoretical approach and the main results issued of the assessment. We take as analytical tools the Montreal Urban Plan of 2004 and the Strategic Plan for Sustainable Development 2005. We conclude with two main points, first, that the theoretical and pragmatic aspects of urban sustainability in Montreal have been treated in an organic, complex, dynamic and flexible way, allowing social participation and the inclusion of the values of all stakeholders, which are both key elements to follow the path towards sustainability; and secondly, that the approach to an object with such features requires the construction of complex, organic and methodological processes.

  6. Resource management for sustainable development : The application of a methodology to support resource management for the adequate application of Construction Systems to enhance sustainability in the lower income dwelling construction industry in Costa Rica

    NARCIS (Netherlands)

    Egmond - de Wilde De Ligny, van E.L.C.; Erkelens, P.A.; Jonge, de S.; Vliet, van A.A.M.

    2000-01-01

    This paper describes the results of the application of a methodology to support resource management for the enhancement of sustainability in the construction industry. Particular emphasis is given to the sustainability of manufacturing and application of construction systems for low income housing

  7. Identifying Sustainable Wood Sources for the Construction Industry: A Case Study

    Directory of Open Access Journals (Sweden)

    Shenghan Li

    2018-01-01

    Full Text Available Wood is generally considered as a sustainable construction material. However, there are not sufficient wood resources in many countries or regions, especially those short of land resources. These countries and regions have to import wood from overseas. Therefore, it is imperative to determine how to choose sustainable importing sources in order to improve the sustainability performance of using wood in construction. This study compares the sustainability performance of wood imported from different regions by considering wood harvesting, manufacture, and transportation. A framework accounting energy consumption and CO2 emissions is developed for sustainability assessment. The results show that importing wood from Canada, Australia, and New Zealand to Taiwan demands a relatively lower amount of energy than from other regions. Specifically, importing wood from Canada (West demands the lowest amount of energy (2095 MJ/m3, while importing wood form Brazil consumes the highest amount of energy (5356 MJ/m3. In addition, findings showed that the CO2 emissions generated from importing wood from Sweden are significant lower than those from other regions, although the energy consumed during the importing process is relatively high. The study also revealed that the wood manufacturing process and marine transportation contribute to the most energy consumption and CO2 emissions among all importing processes analysed from most of studied regions.

  8. Influence of chemical composition of civil construction waste in the cement paste

    International Nuclear Information System (INIS)

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C.

    2009-01-01

    The construction and demolition waste when disposed inappropriately might cause serious public health problems. Its reutilization focusing on the development of new products using simple production techniques, assuring a new product life cycle and not damaging the environment is inserted in sustainable concept. The aim of this work was identifying the characteristics of types of waste generated in a residential reform (glassy ceramic and fill dirt leftovers) verifying separately its influence on cement pastes mechanical behavior. Cement pastes + wastes were prepared in 25% and 50% proportions with an approximately 0,35 water/cement relation and, glue time determination, water absorption, resistance to compression and X-ray fluorescence assays were taken. The results indicate that the chemical composition of the waste causes changes in the behavior of cement pastes, reflecting on their resistance to compression. (author)

  9. How Standards Enable the Creation of Sustainable Construction as a New Category

    DEFF Research Database (Denmark)

    Boxenbaum, Eva; Georg, Susse; Garza de Linde, Gabriela Lucía

    This paper examines the role of standards in creating new categories. More specifically, we analyzed the formation of sustainable construction as a new category of organizational activity. Data were derived from four qualitative studies on mandatory regulation and voluntary guidelines pertaining....../practices, the category becomes consolidated and legitimated, which helps to mobilize yet others to take similar actions, thus, underscoring the category’s characteristics. We conclude with implications for organizational research on category formation as well as implications for the practice of sustainable construction....... or characteristics of associated technologies and practices based on the development of calculative devices and material exemplars, and 3) generate boundaries around a distinct group of organizations that becomes associated with the emergent category. As more organizations adopt the standardized technologies...

  10. Environment of sustainable job in construction: the interface risk and right to health

    Directory of Open Access Journals (Sweden)

    Nilton Cesar Flores

    2016-04-01

    Full Text Available This study analyzes the right to health in the middle of construction work environment, through risk perspective, prevention, sustainability and public policy, with an emphasis on activity that exposes the worker to solar radiation and, therefore, implies a means not sustainable environment. The analysis will focus on the environmental risk arising from exposure to radiation and its legal effects. In this context of risk, prevention is essential to the realization of the right to health in the workplace, and the extension of the right to health is the result of a constitutional reading for a sustainable environment, particularly from the art. 196 and art. 7, item XXII, which refers to prevention in the working environment. In this context, public policies show up as a guarantor instrument of disease prevention and the implementation of the right to health in the workplace. For this study, we use the theory of social systems as a theoretical framework

  11. Sustainability of fiber reinforced laminate and honeycomb composites in manufacturing industries

    Science.gov (United States)

    Asmatulu, Eylem; Alonayni, Abdullah; Alamir, Mohammed; Rahman, Muhammad M.

    2018-03-01

    Fiber reinforced polymer (FRP) composites provide a lot of benefits, including strength-to-weight ratio / light weight, superior mechanical properties, low maintenance, prolonged service life, as well as corrosion, fatigue and creep resistance. However, sustainability of the FRP composites have not been studied in detail in terms of long term productions in various industries, such as aerospace, wind energy, automotive and defense. Carbon fibers are relatively expensive because of the energy intensive production systems, and lack of easy production options, which forces many companies to recycle and reuse the FRP composites in the same or different manufacturing industries. This study mainly deals with two important issues, including the disposal of composite wastes generated during the manufacturing of composite parts, and the disposal of the products at the end of their useful life. It is believed that the carbon fibers in the used composites will have still high mechanical strengths to use in different composite manufacturing after its end of life. The major manufacturing costs come from the labor and raw materials, so using the recycled carbon fibers will make sustainable composite productions in other industries. This paper presents the current status and outlook of the FRP composite recycling and re-manufacturing techniques in the same or different industries. A future vision of the FRP composites will be investigated with sustainability point of views. This study will also mention about the sustainability issues in laminate and honeycomb composites, new product design and developments and potential applications in different manufacturing industries.

  12. Construction projects using alternative materials: a framework to assess their sustainability.

    OpenAIRE

    Fevre-Gautier , Anne-Lise; Beylot , Antoine; Vaxelaire , Stéphane; Michel , Pascale; Brullot , Sabrina; Lannou , Grégory; Stoos , Marion

    2012-01-01

    The increasing use of alternative materials and local solutions for construction projects raises questions about success conditions and criteria for the economic feasibility and global sustainability of such projects. Among others, how can design conditions - especially regarding the decision process - determine their success? We will present the results of a two-years project conducted from February 2010 to March 2012 in collaboration with ADEME (French agency of environment and energy contr...

  13. Mix design and mechanical performance of geopolymer binder for sustainable construction and building material

    Science.gov (United States)

    Saeli, Manfredi; Novais, Rui M.; Seabra, Maria Paula; Labrincha, João A.

    2017-11-01

    Sustainability in construction is a major concern worldwide, due to the huge volume of materials and energy consumed by this sector. Associated supplementing industries (e.g. Portland cement production) constitute a significant source of CO2 emissions and global warming. Valorisation and reuse of industrial wastes and by-products make geopolymers a solid and sustainable via to be followed as a valid alternative to Portland cement. In this work the mix design of a green fly ash-based geopolymer is evaluated as an environmentally friendly construction material. In the pursuit of sustainability, wastes from a regional kraft pulp industry are exploited for the material processing. Furthermore, a simple, reproducible, and low-cost manufacture is used. The mix design is hence optimised in order to improve the desirable mechanical performance of the material intended for structural applications in construction. Tests indicate that geopolymers may efficiently substitute the ordinary Portland cement as a mortar/concrete binder. Furthermore, valorisation and reuse of wastes in geopolymers is a suboptimal way of gaining financial surplus for the involved industrial players, while contributes for the implementation of a desirable circular economy.

  14. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs

    DEFF Research Database (Denmark)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov

    2013-01-01

    /DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles.......e. more sustainable cell growth was induced by the DS released from the core-shell composite microparticles comprising Alg/CS/DS particles. After seeding fibroblasts onto the composite microparticles, excellent cell adhesion was observed, and a successful assembly of the cell-scaffold constructs...... was induced within 7 days. Therefore, the present study demonstrates a novel strategy for fabrication of core-shell composite microparticles comprising additional particulate drug carriers in the core, which provides controlled delivery of DS and favorable cell biocompatibility; an approach to potentially...

  15. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation.

    Science.gov (United States)

    Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang; Fan, Jinlin; Liu, Hai

    2015-01-01

    Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. ENSURING OF SUSTAINABILITY OF SMALL ENTERPRISES OF CONSTRUCTION SPHERE ON THE BASIS OF SMALL BUSINESS ADVANTAGES

    Directory of Open Access Journals (Sweden)

    Silka Dmitriy Nikolaevich

    2017-05-01

    Full Text Available Economic sustainability of any organization, including small organizations of investment and construction sector, has a complex and ambiguous concept. Sustainable development of organization is a continuous process of permanent dynamic changes in which there is a close consistency between such integral elements as: efficient use of resources, scientific and technical development of organization, implementation of various innovations in production process, improving of staff competence, and institutional changes. They all are aimed at optimization of existing and future potential of organization, satisfaction of needs and achievement of set strategic objectives. Under conditions of instability of market economy, the achievement of effective sustainable development of enterprise and its integration into the existing organization management becomes one of the most important tasks. The article offers to perform a comparative analysis within the framework of projections, with the purpose of identifying of “threats” by external factors and “advantages” by internal factors. This will help to identify the most serious “threats” as well as the most powerful “advantages” for further development of strategy for improving of sustainability of small enterprises of the investment and construction industry. It is also assumed that there is a possibility of use of small business advantages with the aim of reducing of negative effect of “threats” by external factors by way of targeting of these advantages. Analysis of “threats” by external factors and “advantages” by internal factors demonstrated that each aggregate of “threats” can be opposed to the aggregate of “advantages” within the corresponding projection. If the growth of small enterprise characteristics is smooth enough it can be said of sustainable development of this enterprise.

  17. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Directory of Open Access Journals (Sweden)

    Duszyński Remigiusz

    2017-12-01

    Full Text Available The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  18. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Science.gov (United States)

    Duszyński, Remigiusz; Duszyńska, Angelika; Cantré, Stefan

    2017-12-01

    The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  19. Future of industry. Part 4. Sustainable entrepreneurship in the Dutch construction industry. Institutional context and strategic responses

    Energy Technology Data Exchange (ETDEWEB)

    Klein Woolthuis, R; De Boer, S.

    2009-12-15

    TNO developed a methodology to identify sector specific opportunities by examining bottlenecks and drivers for sustainable innovation. Research results are presented in 4 reports: the first report explores the highly innovative chemicals sector and how it deals with opportunities and bottlenecks in sustainable innovation. The second report examines the project driven construction industry and how entrepreneurs and incumbent firms develop strategies to deal with the bottlenecks of sustainable innovation. The third report extends the second report by highlighting the role of the incumbent firms in this process, and this (fourth) report deepens the second report by illuminating the strategies of entrepreneurs in the transition to sustainable construction.

  20. A photogrammetric methodology for estimating construction and demolition waste composition

    International Nuclear Information System (INIS)

    Heck, H.H.; Reinhart, D.R.; Townsend, T.; Seibert, S.; Medeiros, S.; Cochran, K.; Chakrabarti, S.

    2002-01-01

    Manual sorting of construction, demolition, and renovation (C and D) waste is difficult and costly. A photogrammetric method has been developed to analyze the composition of C and D waste that eliminates the need for physical contact with the waste. The only field data collected is the weight and volume of the solid waste in the storage container and a photograph of each side of the waste pile, after it is dumped on the tipping floor. The methodology was developed and calibrated based on manual sorting studies at three different landfills in Florida, where the contents of twenty roll-off containers filled with C and D waste were sorted. The component classifications used were wood, concrete, paper products, drywall, metals, insulation, roofing, plastic, flooring, municipal solid waste, land-clearing waste, and other waste. Photographs of each side of the waste pile were taken with a digital camera and the pictures were analyzed on a computer using Photoshop software. Photoshop was used to divide the picture into eighty cells composed of ten columns and eight rows. The component distribution of each cell was estimated and results were summed to get a component distribution for the pile. Two types of distribution factors were developed that allow the component volumes and weights to be estimated. One set of distribution factors was developed to correct the volume distributions and the second set was developed to correct the weight distributions. The bulk density of each of the waste components were determined and used to convert waste volumes to weights. (author)

  1. A photogrammetric methodology for estimating construction and demolition waste composition

    Energy Technology Data Exchange (ETDEWEB)

    Heck, H.H. [Florida Inst. of Technology, Dept. of divil Engineering, Melbourne, Florida (United States); Reinhart, D.R.; Townsend, T.; Seibert, S.; Medeiros, S.; Cochran, K.; Chakrabarti, S

    2002-06-15

    Manual sorting of construction, demolition, and renovation (C and D) waste is difficult and costly. A photogrammetric method has been developed to analyze the composition of C and D waste that eliminates the need for physical contact with the waste. The only field data collected is the weight and volume of the solid waste in the storage container and a photograph of each side of the waste pile, after it is dumped on the tipping floor. The methodology was developed and calibrated based on manual sorting studies at three different landfills in Florida, where the contents of twenty roll-off containers filled with C and D waste were sorted. The component classifications used were wood, concrete, paper products, drywall, metals, insulation, roofing, plastic, flooring, municipal solid waste, land-clearing waste, and other waste. Photographs of each side of the waste pile were taken with a digital camera and the pictures were analyzed on a computer using Photoshop software. Photoshop was used to divide the picture into eighty cells composed of ten columns and eight rows. The component distribution of each cell was estimated and results were summed to get a component distribution for the pile. Two types of distribution factors were developed that allow the component volumes and weights to be estimated. One set of distribution factors was developed to correct the volume distributions and the second set was developed to correct the weight distributions. The bulk density of each of the waste components were determined and used to convert waste volumes to weights. (author)

  2. Construction of sustainability indicators for Nuclear Area Innovation and Research Institutes in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone Fonseca

    2017-01-01

    The dissertation consists of a construction of appropriate sustainability indicators for nuclear area innovation and research institutes in Brazil. In order to do so, the results of the construction process, as well as, the perception of the population that resides in the area surrounding this type of institute are presented and discussed. As reference for this case study, the Nuclear Technology Development Center (CDTN) was chosen. It is located in Pampulha, more specifically, on the campus of the Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil. One of the methodological processes present in this research is the Delphi method, because it is the most used in the construction of indicators. Its application in this work allowed obtaining the of specialist group opinions collected through a questionnaire. Initially, sixty-nine sustainability indicators were considered. They were distributed among the environmental, economic, socio cultural and institutional dimensions, some of which were obtained through lists of indicators pointed by literature review. Other indicators were built through discussions with groups from the nuclear, environmental, economic and socio cultural areas. Among the set of indicators investigated, twenty-six were selected as being the most relevant. A questionnaire was then applied to one hundred and twenty individuals living in the vicinity of the CDTN. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed, as well as, indicators of the same dimensions were varied. However, the opinion of the population and the opinion of the experts had similar results. Finally, this study is the first proposal for the nuclear sector to construct this kind of indicator that takes into account the evaluation of experts and the opinion of the community that resides around these institutions. (author)

  3. Sustainable Construction Supply Chains through Synchronized Production Planning and Control in Engineer-to-Order Enterprises

    Directory of Open Access Journals (Sweden)

    Patrick Dallasega

    2017-10-01

    Full Text Available Sustainability in the supply chain is becoming more and more important for industrial enterprises in different sectors. This research article focuses on construction supply chains (CSCs in the Engineer-to-Order (ETO industry, where every product is almost unique based on specific customer needs and requirements. The development of methods and approaches for more sustainable supply chain management in construction is becoming even more important. Engineering, fabrication of parts and their installation on-site are not always well synchronized in ETO supply chains. The results of such supply chains are long lead times, inefficient material transport and high and uncontrolled levels of work-in-progress (WIP. This article describes a conceptual approach to synchronize demand on-site with supply in manufacturing using the CONstant Work In Progress (ConWIP concept from Lean Management to achieve Just-in-Time (JIT supply. As a result, sustainable supply chains in ETO enterprises, with optimizations from an economic, ecological and social point of view, can be designed. The approach has been validated in an industrial case study.

  4. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  5. "Earthen constructions" - towards creating a sustainable habitat by minimising the ecological footprint

    Directory of Open Access Journals (Sweden)

    Aparna Das

    2008-12-01

    Full Text Available Sustenance of the human race has put an immense pressure on our planet Earth in terms of sustainability of natural resources. The greenhouse effect and the ozone hole are the two most threatening effects of pollution. Constructions of buildings as well as materials contribute to a large percentage to this pollution. Again every material used in the building industry has its source in the Earth. In general the low energy materials will be least polluting. The conventionally used building materials like bricks, cement, steel, timber, plastics, glass etc. usually involve huge transportation costs and also manufacturing processes which are detriment al to the environment. On the other hand the demand for new buildings as well as the cost of building construction is growing a tremendous pace. We have to search for alternative materials which are energy efficient, environment friendly and economical like our traditional building materials - mud walls and thatch roofs. Of all the alternatives available to us which lead the way to sustainability, building with earth has been an ancient and accepted practice among communities all over the world. It is estimated that the construction and the operation of buildings is responsible for around half of all glob al C02 emissions, thereby contributing the largest single source attributable to climate change. Earthen construction has been, is and will continue to be a reality. Stabilised rammed earth walls can be used as a building integrated source of passive cooling technique. A huge population in Indi a lives in the rural areas where there has been a growing trend in shifting towards brick and concrete constructions in search for social status. Even a small percentage can lead to massive increase in glob l C02 emissions if the trend is not checked at this point. This papers looks into the current scenario and hence the corresponding responsibility on architects, planners and policy makers to bring in

  6. Construction cost prediction model for conventional and sustainable college buildings in North America

    Directory of Open Access Journals (Sweden)

    Othman Subhi Alshamrani

    2017-03-01

    Full Text Available The literature lacks in initial cost prediction models for college buildings, especially comparing costs of sustainable and conventional buildings. A multi-regression model was developed for conceptual initial cost estimation of conventional and sustainable college buildings in North America. RS Means was used to estimate the national average of construction costs for 2014, which was subsequently utilized to develop the model. The model could predict the initial cost per square feet with two structure types made of steel and concrete. The other predictor variables were building area, number of floors and floor height. The model was developed in three major stages, such as preliminary diagnostics on data quality, model development and validation. The developed model was successfully tested and validated with real-time data.

  7. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition

    Science.gov (United States)

    Stutz, Aaron J.

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323

  8. The Building sector commitment to promote the sustainability of construction products: a common European approach for the Environmental Product Performances

    Directory of Open Access Journals (Sweden)

    Caterina Gargari

    2013-05-01

    Full Text Available The industry of construction products plays an important role in Europe in promoting the sustainability of the built environment in a life cycle perspective. Within the framework of the European initiatives for a sustainable competitiveness, manufacturers are interested in promoting a life cycle approach along the building chain. However both, institutions and building operators, in general still have to go a long way on designing and applying a sustainable and competitive industrial policy. This paper aims to describe the European background, the regulatory framework, identifying gaps and the actions to be undertaken to promote a market for sustainable products and sustainable buildings. In particular this paper deals with the assessment and communication of the environmental performance of construction products between the operators in the building chain, as a prerequisite for the sustainability of the built environment, and outlines the strategies to implement a proper evaluation and communication process.

  9. Damage Tolerance of Resin Transfer Molded Composite Sandwich Constructions

    National Research Council Canada - National Science Library

    Vaidya, U

    1999-01-01

    .... The sandwich composite concepts considered in this study possessed the feasibility to improve the transverse stiffness, provide enhanced damage resistance/tolerance to impact and functionality...

  10. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    Science.gov (United States)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  11. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  12. Characteristic of Adaptability - one of basic categories of the social aspect of sustainable housing construction

    Science.gov (United States)

    Orłowski, Z.; Radziejowska, A.; Orłowski, M.

    2017-10-01

    In the article the authors consider one of the basic aspects of sustainable construction regarding the social utility of a building. According to standard PN-EN 16309+A1:2014-12 during evaluating the social aspect should be assessed six categories: accessibility, adaptability, comfort and health, neighborhood, maintenance, safety and security. The authors present the evaluation criteria witch should be taken into account in the assessment of the second of them. Adaptability has been divided into three categories: The buidling’s ability to accomodate the change of user requirements, The buidling’s ability to accomodate technical changes, The buidling’s ability to accomodate the change of use. Each subcategory has been further elaborated by the criteria for which authors present proposal for the scale of assessments. The authors present a part of a work to construct a method for assessing the social characteristics of the residential buildings.

  13. Utilization of Palm Oil Fuel Ash and Rice Husks in Unfired Bricks for Sustainable Construction Materials Development

    Directory of Open Access Journals (Sweden)

    Saleh A.M

    2014-01-01

    Full Text Available The production of sustainable construction component could prevent and control the pollution and environmental degradation in Malaysia. This is a key area in Malaysia’s Green Strategies (Ministry of Science, Technology and the environment, 2002. This paper reports on the laboratory investigation to establish the potential of utilizing Palm Oil Fuel Ash (POFA and Rice Husk (RH in developing green construction components. Malaysian Palm Oil Council (MPOC reported that currently Malaysia’s contribution to world palm oil production is 39% and has taken 44% of world exports. Consequently it will increase the POFA production in palm oil manufacturing and this waste sometimes dispose in open area near the factory. On the other hand Malaysia also producing more 300k hectares of paddy production, thus rice husk is also a concern as an agricultural waste. The research objective is to study on the potential of utilizing of agricultural waste in developing of green bricks. This research involved laboratory investigations. In this research 2% - 10% of POFA and 1% - 5% RH were used in the mix composition of the brick’s weight. Addition of POFA was aimed to reduce the cement usage and RH was added to reduce sand in the bricks. The bricks were manually pressed in Materials Laboratory in Faculty of Architecture, Planning and Surveying, UiTM Shah Alam. The result showed that the addition of POFA and RH are able to reduce the density but in contrast the compressive strength were decrease compare to the control unit.

  14. Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2012-10-01

    Full Text Available Prefabricated engineered solid wood panel construction systems can sequester and store CO2. Modular cross-laminated timber (CLT, also called cross-lam panels form the basis of low-carbon, engineered construction systems using solid wood panels that can be used to build residential infill developments of 10 storeys or higher. Multi-apartment buildings of 4 to 10 storeys constructed entirely in timber, such as recently in Europe, are innovative, but their social and cultural acceptance in Australia and North America is at this stage still uncertain. Future commercial utilisation is only possible if there is a user acceptance. The author is part of a research team that aims to study two problems: first models of urban infill; then focus on how the use of the CLT systems can play an important role in facilitating a more livable city with better models of infill housing. Wood is an important contemporary building resource due to its low embodied energy and unique attributes. The potential of prefabricated engineered solid wood panel systems, such as CLT, as a sustainable building material and system is only just being realised around the globe. Since timber is one of the few materials that has the capacity to store carbon in large quantities over a long period of time, solid wood panel construction offers the opportunity of carbon engineering, to turn buildings into ‘carbon sinks’. Thus some of the historically negative environmental impact of urban development and construction can be turned around with CLT construction on brownfield sites.

  15. How to use composite indicator and linear programming model for determine sustainable tourism.

    Science.gov (United States)

    Ziaabadi, Maryam; Malakootian, Mohammad; Zare Mehrjerdi, Mohammad Reza; Jalaee, Seied Abdolmajid; Mehrabi Boshrabadi, Hosein

    2017-01-01

    The tourism industry which is one of the most dynamic economic activities in today's world plays a significant role in the sustainable development. Therefore, in addition to paying attention to tourism, sustainable tourism must be taken into huge account; otherwise, the environment and its health will be damaged irreparably. To determine the level of sustainability in this study, indicators of sustainable tourism were first presented in three environmental health, economic and social aspects. Then, the levels of sustainable tourism and environmental sustainability were practically measured in different cities of Kerman Province using a composite indicator, a linear programming model, Delphi method and the questionnaire technique. Finally, the study cities (tourist attractions) were ranked. Result of this study showed that unfortunately the tourism opportunities were not used appropriately in these cities and tourist destinations, and that environmental aspect (health and environmental sustainability) had very bad situations compared to social and economic aspects. In other words, environmental health had the lowest levels of sustainability. The environment is a place for all human activities like tourism, social and economic issues; therefore, its stability and health is of great importance. Thus, it is necessary to pay more attention to sustainability of activities, management and environmental health in planning sustainable development in regional and national policy.

  16. Country Selection Model for Sustainable Construction Businesses Using Hybrid of Objective and Subjective Information

    Directory of Open Access Journals (Sweden)

    Kang-Wook Lee

    2017-05-01

    Full Text Available An important issue for international businesses and academia is selecting countries in which to expand in order to achieve entrepreneurial sustainability. This study develops a country selection model for sustainable construction businesses using both objective and subjective information. The objective information consists of 14 variables related to country risk and project performance in 32 countries over 25 years. This hybrid model applies subjective weighting from industrial experts to objective information using a fuzzy LinPreRa-based Analytic Hierarchy Process. The hybrid model yields a more accurate country selection compared to a purely objective information-based model in experienced countries. Interestingly, the hybrid model provides some different predictions with only subjective opinions in unexperienced countries, which implies that expert opinion is not always reliable. In addition, feedback from five experts in top international companies is used to validate the model’s completeness, effectiveness, generality, and applicability. The model is expected to aid decision makers in selecting better candidate countries that lead to sustainable business success.

  17. Project-Based Market Competition and Policy Implications for Sustainable Developments in Building and Construction Sectors

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2015-11-01

    Full Text Available Building and construction sectors are significant contributors to the global economy, but their energy consumption necessitates greater commitment to sustainable developments. There is therefore a growing demand for green innovation in the form of cleaner production and policies to meet the modern requirements of sustainability. However, the nature in which public work is undertaken is in an environment of project-based market competition, whereby contractors routinely bid for contracts under specific project awarding systems, and variations are accompanied with the unique scope of individual projects before the final goods or services are delivered. A comprehensive understanding of the characteristics and contractors’ behavior in systems could help to identify the leverage points of policies. This paper proposes a system dynamics model, with quantitative analysis and simulations, to demonstrate the problems of a system with different project awarding systems and ineffective market performance. The framework of market efficiency and performance measures has been proposed to evaluate the project-based competition mechanism. Managerial policy implications for market efficiency and sustainable developments can thus be systematically discussed and compared through iterative computer simulations and scenario analysis.

  18. Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management

    DEFF Research Database (Denmark)

    Wandahl, Søren; Ussing, Lene Faber

    2013-01-01

    Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other manufactu......Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other...... manufacturing industries. An important question, then, is how well these two highly relevant areas can go hand in hand. By means of comparing the main ideas and drivers behind sustainability and industrialization, respectively, common threads, possible synergies and evident barriers are put forward...... in this discussion paper. The main method is a review to track past merits in the two domains and to detect knowledge gaps that have research potential. A strategic research agenda focusing on energy-efficient construction management is outlined showing the need for future focus on combining industrialization...

  19. National and International Standardization (International Organization for Standardization and European Committee for Standardization Relevant for Sustainability in Construction

    Directory of Open Access Journals (Sweden)

    Renata Morbiducci

    2010-12-01

    Full Text Available Sustainability in construction has a short history in terms of principles, standardizations and applications. From the Brundtland Report “Our Common Future”, a new vision of the resource deficits, climate impacts and the social responsibility gave growth to the idea of sustainability also in design and construction. Consequently, in around 2000, the international and national organizations for standardization started to develop standards for the application of sustainable principles. This paper gives an overview of existing and planned standards, and examples on how to use them as a framework for the development of methods and tools for assessment.

  20. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    OpenAIRE

    Cuizhen Xue; Aiqin Shen; Yinchuan Guo; Tianqin He

    2016-01-01

    The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, ...

  1. Embodied Niche Construction in the Hominin Lineage: Semiotic Structure and Sustained Attention in Human Embodied Cognition

    Directory of Open Access Journals (Sweden)

    Aaron Jonas Stutz

    2014-08-01

    Full Text Available Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  2. Advanced composite alloys for constructional parts of robots

    Science.gov (United States)

    Issin, D. K.; Zholdubayeva, Zh D.; Neshina, Y. G.; Alkina, A. D.; Khuangan, N.; Rahimova, G. M.

    2018-05-01

    In recent years all over the world special attention has been paid to the development and implementation of nanostructured materials possessing unique properties and opening fascinating prospects for the development of technical progress in various fields of human activities. A special place can be given to the development of service robots, the market of which is actively developing. There is problem associated mainly with the lack of heat-strengthened alloys which consists in low thermal stability of the alloy properties under the conditions of elevated variable temperatures and loads. The article presents studies to assess the effect of composition, the amounts of refractory nanoscale particles and methods for their introduction into the melt on the structure and properties in nanostructured composite aluminum alloys. The powders of metals, alloys, as well as silicon carbide and aluminum oxide were used to produce the nanostructured powder composite materials. As a result of the research, NPCM compositions containing micro-size particles of transition metals that are carriers of nanosized reinforcing particles and initiators of the formation of an intermetallide of endogenous origin in a melt.

  3. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Hu, Zhen; Liu, Hai

    2015-10-01

    Constructed wetlands (CWs) have been used as an alternative to conventional technologies for wastewater treatment for more than five decades. Recently, the use of various modified CWs to improve treatment performance has also been reported in the literature. However, the available knowledge on various CW technologies considering the intensified and reliable removal of pollutants is still limited. Hence, this paper aims to provide an overview of the current development of CW strategies and techniques for enhanced wastewater treatment. Basic information on configurations and characteristics of different innovations was summarized. Then, overall treatment performance of those systems and their shortcomings were further discussed. Lastly, future perspectives were also identified for specialists to design more effective and sustainable CWs. This information is used to inspire some novel intensifying methodologies, and benefit the successful applications of potential CW technologies.

  4. Construction of a business model to assure financial sustainability of biobanks.

    Science.gov (United States)

    Warth, Rainer; Perren, Aurel

    2014-12-01

    Biobank-suisse (BBS) is a collaborative network of biobanks in Switzerland. Since 2005, the network has worked with biobank managers towards a Swiss biobanking platform that harmonizes structures and procedures. The work with biobank managers has shown that long-term, sustainable financing is difficult to obtain. In this report, three typical biobank business models are identified and their characteristics analyzed. Five forces analysis was used to understand the competitive environment of biobanks. Data provided by OECD was used for financial estimations. The model was constructed using the business model canvas tool. The business models identified feature financing influenced by the economic situation and the research budgets in a given country. Overall, the competitive environment for biobanks is positive. The bargaining power with the buyer is negative since price setting and demand prediction is difficult. In Switzerland, the healthcare industry collects approximately 5600 U.S. dollars per person and year. If each Swiss citizen paid 0.1% (or 5 U.S. dollars) of this amount to Swiss biobanks, 45 million U.S. dollars could be collected. This compares to the approximately 10 million U.S. dollars made available for cohort studies, longitudinal studies, and pathology biobanks through science funding. With the same approach, Germany, the United States, Canada, France, and the United Kingdom could collect 361, 2634, 154, 264, and 221 million U.S. dollars, respectively. In Switzerland and in other countries, an annual fee less than 5 U.S. dollars per person is sufficient to provide biobanks with sustainable financing. This inspired us to construct a business model that not only includes the academic and industrial research sectors as customer segment, but also includes the population. The revenues would be collected as fees by the healthcare system. In Italy and Germany, a small share of healthcare spending is already used to finance selected clinical trials. The legal

  5. Sustainability assessment, rating systems and historical buildings Case study: Rehabilitated construction in a university site

    Directory of Open Access Journals (Sweden)

    Sadrykia Somayeh

    2016-01-01

    Full Text Available This paper explores the relationship between the indicators and different factors that “rating systems for green projects” concentrates on, and principles and factors considered in the rehabilitation of historical buildings. In recent years, different methods and systems concerned and improved for assessing environmental sustainability. LEED (Leadership in Energy and Environmental Design and BREEAM (Building Research Establishment (BRE Environmental Assessment Method are two most commonly used rating systems, established in U.S and UK. These systems comprise some categories and different factors to achieve environmentally responsible design. Firstly, this study focuses on the list of rating systems indicators and criteria. Secondly this paper investigates a historical rehabilitated building in the site of Tabriz Art University, as a case study and has tried to compile its green design elements. Finally, this work intends to compare mentioned elements with indicators and factors of building rating systems. Findings of the study revealed that “Materials and Resources”, “indoor environmental quality” and also “Sustainable Sites” ,the most significant indicator of rating systems, had major and important role in the rehabilitation of the building. Beyond this materials’ life cycle was considerable in construction.

  6. Research on Ecological Civilization Construction and Environmental Sustainable Development in the New Era

    Science.gov (United States)

    Xiang-chao, Pan

    2018-05-01

    After the 19th National Congress of the Communist Party of China, the Socialism with Chinese Characteristics entered a new era. However, the contradiction between China’s economic and social development and the sustainable development of environment is still outstanding. That is mainly due to the fact that China pays some attention to the economic development but neglects the ecological protection to a certain extent. In the report of the 19th National Congress of the Communist Party of China, it is clearly proposed that it is necessary to adhere to the harmonious coexistence between man and nature, and to establish the concept of green development firmly, focusing on solving the problem of the environmental pollution and destruction and other outstanding issues, and strengthening the construction of the ecological environment supervision system, and the legal guarantee of the construction of ecological civilization. Only by adhering to the concept of ecological civilization in the new era can we finally realize the fundamental improvement of ecological environment.

  7. A model for constructing sustainability assessment framework - focus on regional industrial land redevelopment

    NARCIS (Netherlands)

    Wang, T.; Han, Q.; de Vries, B.

    2014-01-01

    Sustainable development has become a critical issue for land use planning and management since the 1980s. Various sustainability assessment systems have been used to evaluate and promote sustainability in different scales. However, many literatures suggested that a sustainability assessment system

  8. Construction Projects Assessment Based on the Sustainable Development Criteria by an Integrated Fuzzy AHP and Improved GRA Model

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Hatefi

    2018-03-01

    Full Text Available Due to the increasing population and earth pollution, managing construction and infrastructure projects with less damage to the environment and less pollution is very important. Sustainable development aims at reducing damage to the environment, making projects economical, and increasing comfort and social justice. This study proposes fuzzy analytic hierarchy process (AHP and improved grey relational analysis (GRA to assess construction projects based on the sustainable development criteria. For doing so, sustainable development criteria are first identified in economic, social, and environmental dimensions using literature review, and are then customized for urban construction projects using experts’ opinions. After designing questionnaires and collecting data, fuzzy AHP is used for determining the importance of sustainable development criteria and their subcriteria. Then, improved GRA is employed for assessing six recreational, commercial, and official centers in Isfahan regarding the weights of criteria and subcriteria. The proposed fuzzy AHP-improved GRA help us to prioritize construction projects based on the sustainable development criteria. The results of applying fuzzy AHP show that the weights of economic, social, and environmental criteria are equal to 0.330, 0.321, and 0.349, respectively, which are close to each other. This means that the importance of all three aspects of sustainability is almost equal to each other. Furthermore, “Having profits for the society”, “Increasing social justice”, and “Adherence to environmental policies” are identified as the most important indicators of sustainable development in terms of economic, social, and environmental aspects, respectively. Finally, the results of employing improved GRA determine Negin Chaharbagh recreational and commercial complex as the best project.

  9. [Construction and evaluation of the tissue engineered nerve of bFGF-PLGA sustained release microspheres].

    Science.gov (United States)

    Wang, Guanglin; Lin, Wei; Gao, Weiqiang; Xiao, Yuhua; Dong, Changchao

    2008-12-01

    To study the outcomes of nerve defect repair with the tissue engineered nerve, which is composed of the complex of SCs, 30% ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable poly (D, L-lactic acid) (PDLLA) catheters. SCs were cultured and purified from the sciatic nerves of 1-day-old neonatal SD rats. The 1st passage cells were compounded with bFGF-PLGA sustained release microspheres and ECM gel, and then were injected into permeable PDLLA catheters with PLGA microfilaments inside. In this way, the tissue engineered nerve was constructed. Sixty SD rats were included. The model of 15-mm sciatic nerve defects was made, and then the rats were randomly divided into 5 groups, with 12 rats in each. In group A, autograft was adopted. In group B, the blank PDLLA catheters with PBS inside were used. In group C, PDLLA catheters, with PLGA microfilaments and 30% ECM gel inside, were used. In group D, PDLLA catheters, with PLGA microfilaments, SCs and 30% ECM gel inside, were used. In group E, the tissue engineered nerve was applied. After the operation, observation was made for general conditions of the rats. The sciatic function index (SFI) analysis was performed at 12, 16, 20 and 24 weeks after the operation, respectively. Electrophysiological detection and histological observation were performed at 12 and 24 weeks after the operation, respectively. All rats survived to the end of the experiment. At 12 and 16 weeks after the operation, group E was significantly different from group B in SFI (P fibers in group E were significantly differents from those in groups A, B and C (P fibers in group E were smaller than those in group A (P fibers in group E was significantly different from those in groups A, B, C (P fibers in group E were bigger than those in groups B and C (P < 0.05). The tissue engineered nerve with the complex of SCs, ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable PDLLA catheters promote

  10. Sustained swimming improves fish dietary nutrient assimilation efficiency and body composition of juvenile Brycon amazonicus

    Directory of Open Access Journals (Sweden)

    Gustavo Alberto Arbeláez-Rojas

    Full Text Available ABSTRACT Sustained swimming (SS usually promotes beneficial effects in growth and feed conversion of fishes. Although feed efficiency is improves at moderate water velocity, more information is required to determine the contributions of this factor on growth and body composition. Body composition and efficiency responses to the use of nutrients were determined in juvenile matrinxa Brycon amazonicus (Spix and Agassiz, 1829 fed with two dietary amounts of protein, 28 or 38% of crude protein (CP, and subjected to sustained swimming at a constant speed of 1.5 body lengths s−1 (BL s−1 or let to free swimming. The fish body composition under SS and fed with 28% of dietary protein showed 22% of increased in bulk protein and a 26% of decrease in water content in the white muscle. Red muscle depicted 70% less water content and a 10% more lipid. Nutrient retention was enhanced in fish subjected to SS and a higher gain of ethereal extract sustained was observed in the white muscle of exercised fish fed with 38% CP. The interaction between swimming and dietary protein resulted in a larger bulk of lipid in red muscle. Fish fed with 28% CP under SS at 1.5 BL s−1 presented the best utilization of dietary nutrients and body composition. Thus, this fish farming procedure is proposed as a promising management strategy for rearing matrinxa.

  11. The road to Sustainable Value: the path-dependent construction of sustainable innovation as sociomaterial practices in the car industry

    NARCIS (Netherlands)

    van Osch, W.; Avital, M.; Thatchenkery, T.; Cooperrider, D.L.; Avital, M.

    2010-01-01

    Sustainable innovation is not only about the design of radical "green" technologies, it is also about generating social and institutional support that complement and reinforce the adoption and diffusion of these technologies at large. Hence, treating the ecologically hazardous nature of the

  12. Procurement of non-incremental sustainable technology innovations : the case of small entrepreneurial firms supplying New Zealand construction & building industry

    NARCIS (Netherlands)

    Dr. Mark P. Mobach; Jeff Seadon; Anne Staal; John Tookey; Gert Walhof

    2014-01-01

    Abstract.Traditionally, the construction industry in New Zealand and in other countries has seen a low productivity and a low track record for successful innovations (Fairweather, 2010). The industry also lags in sustainability (e.g. Nemry, 2008) when seen from a broader or lifecycle perspective.

  13. Land-use evaluation for sustainable construction in a protected area: A case of Sara mountain national park.

    Science.gov (United States)

    Ristić, Vladica; Maksin, Marija; Nenković-Riznić, Marina; Basarić, Jelena

    2018-01-15

    The process of making decisions on sustainable development and construction begins in spatial and urban planning when defining the suitability of using land for sustainable construction in a protected area (PA) and its immediate and regional surroundings. The aim of this research is to propose and assess a model for evaluating land-use suitability for sustainable construction in a PA and its surroundings. The methodological approach of Multi-Criteria Decision Analysis was used in the formation of this model and adapted for the research; it was combined with the adapted Analytical hierarchy process and the Delphi process, and supported by a geographical information system (GIS) within the framework of ESRI ArcGIS software - Spatial analyst. The model is applied to the case study of Sara mountain National Park in Kosovo. The result of the model is a "map of integrated assessment of land-use suitability for sustainable construction in a PA for the natural factor". Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Procurement of non-incremental sustainable technology innovations : the case of small entrepreneurial firms supplying New Zealand construction & building industry

    NARCIS (Netherlands)

    Staal, Anne; Tookey, John; Seadon, Jeff; Walhof, Gert; Mobach, Mark; Mbachu, Jasper

    2014-01-01

    Traditionally, the construction industry in New Zealand and in other countries has seen a low productivity and a low track record for successful innovations (Fairweather, 2010). The industry also lags in sustainability (e.g. Nemry, 2008) when seen from a broader or lifecycle perspective. This has a

  15. Impact resistance of sustainable construction material using light weight oil palm shells reinforced geogrid concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Mustapha, K N; Birima, A H; Sidek, L M; Rashid, M A; Malik, G; Zarroq, O S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete slab with geogrid reinforcement of 300mm × 300mm size with 20mm, 30mm and 40 mm thick casted with different geogrid orientation and boundary conditions subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance the slab thickness, boundary conditions and geogrid reinforcement orientation. Test results indicate that the used of the geogrid reinforcement increased the impact resistance under service (first) limit crack up to 5.9 times and at ultimate limit crack up to 20.1 times against the control sample (without geogrid). A good linear relationship has been established between first and ultimate crack resistance against the slab thickness. The orientation of the geogrid has minor significant to the crack resistance of the OPS concrete slab. OPS geogrid reinforced slab has a good crack resistance properties that can be utilized as a sustainable impact resistance construction materials.

  16. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  17. JHR. A high performance MTR under construction for a sustainable nuclear energy

    International Nuclear Information System (INIS)

    Iracane, Daniel; Cordier, Pierre-Yves

    2009-01-01

    The Access to an up-to-date Material Testing Reactor (MTR) is essential to support a sustainable nuclear energy, meeting industry and public needs, and keeping a high level of scientific expertise. This includes services to existing and coming reactor technologies for major stakes such as safety and competitiveness, lifetime management, operation optimization, development of innovative structural material and fuel required for future systems (innovative Gen III, Gen IV, fusion...), etc. The JHR copes with this context. Design phase has been completed by the end of 2005 and JHR is now under construction. Start of operation is scheduled in 2014. As a new MTR taking benefit of a large available worldwide experience, JHR offers new major experimental capability that will be presented. JHR will be operated within an international users' consortium that will guarantee effective and cost-effective operation. This innovative way to operate a MTR, as a user-facility for the benefit of industry and public bodies, will be presented. (author)

  18. Model to Assess the Quality of Magmatic Rocks for Reliable and Sustainable Constructions

    Directory of Open Access Journals (Sweden)

    Mihaela Toderaş

    2017-10-01

    Full Text Available Geomechanical assessment of rocks requires knowledge of phenomena that occur under the influence of internal and external factors at a macroscopic or microscopic scale, when rocks are submitted to different actions. To elucidate the quantitative and qualitative geomechanical behavior of rocks, knowing their geological and physical–mechanical characteristics becomes an imperative. Mineralogical, petrographical and chemical analyses provided an opportunity to identify 15 types of igneous rocks (gabbro, diabases, granites, diorites, rhyolites, andesites, and basalts, divided into plutonic and volcanic rocks. In turn, these have been grouped into acidic, neutral (intermediate and basic magmatites. A new ranking method is proposed, based on considering the rock characteristics as indicators of quantitative assessment, and the grading system, by given points, allowing the rocks framing in admissibility classes. The paper is structured into two parts, experimental and interpretation of experimental data, showing the methodology to assess the quality of igneous rocks analyzed, and the results of theoretical and experimental research carried out on the analyzed rock types. The proposed method constitutes an appropriate instrument for assessment and verification of the requirements regarding the quality of rocks used for sustainable construction.

  19. Principles of sustainable development of the territory and priorities of architectural and urban construction activity

    Science.gov (United States)

    Dontsov, Dmitry; Yushkova, Natalia

    2017-01-01

    The paper is aimed at detecting conceptual conflicts within the architectural and urban construction activity (AUCA), defining their reasons and substantiating ways to decrease adverse effects they caused. Methods of causes and effects analyses are used, as well as evolutional and comparative analyses. They allow defining the laws to form activity model in modern environment, whose elements are ranked. Relevance of the paper is based on defining scientific and theoretical grounds of necessity to improve methodology of AUCA via its adaption to the imperatives of state management. System analyses enabled to prove practicability of considering factors of institution environment for reorganization of the model of AUCA, which provide the fullest implementation of sustainable development principles. It was proved that territorial planning is not only the leading type of AUCA, but also integrator for functioning structures of state management within planning of social and economic development. As main result of the paper consist in detection of the perspective ways for evolution of modern methodology due to increasing interdisciplinary aspect leading to the qualitative renewal of territorial management principles.

  20. Limitations of implementing sustainable construction principles in the conventional South African design approach

    CSIR Research Space (South Africa)

    Sebake, TN

    2008-06-01

    Full Text Available professionals, particularly by architects, in the implementation of sustainability principles in the development of building projects. The aim of the paper is to highlight the limitations of introducing sustainability aspects into the existing South African...

  1. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  2. An evaluation of the composition of soil cement bricks with construction and demolition waste - doi: 10.4025/actascitechnol.v33i2.9377

    Directory of Open Access Journals (Sweden)

    Antonio Anderson da Silva Segantini

    2011-04-01

    Full Text Available Sustainable development requires the existence of a production network that includes the reuse of construction waste for new materials. Current analysis investigates an optimal soil-cement composition made up of construction and demolition waste for the manufacture of pressed bricks. Soil-cement bricks were manufactured from construction and demolition wastes (CDW, A-4 classified fine sandy soil and cement CP II Z 32. Laboratory tests, comprising test compaction, optimum water content and maximum dry specific weight, consistency limits, grain size distribution and linear shrinkage, were made to characterize the materials researched. Compressive strength and absorption tests were also undertaken in different combinations of composition. Results showed that the application of CDW improved soil-cement qualities and reduced shrinkage of the material used.

  3. Rapid Construction of Fe-Co-Ni Composition-Phase Map by Combinatorial Materials Chip Approach.

    Science.gov (United States)

    Xing, Hui; Zhao, Bingbing; Wang, Yujie; Zhang, Xiaoyi; Ren, Yang; Yan, Ningning; Gao, Tieren; Li, Jindong; Zhang, Lanting; Wang, Hong

    2018-03-12

    One hundred nanometer thick Fe-Co-Ni material chips were prepared and isothermally annealed at 500, 600, and 700 °C, respectively. Pixel-by-pixel composition and structural mapping was performed by microbeam X-ray at synchrotron light source. Diffraction images were recorded at a rate of 1 pattern/s. The XRD patterns were automatically processed, phase-identified, and categorized by hierarchical clustering algorithm to construct the composition-phase map. The resulting maps are consistent with corresponding isothermal sections reported in the ASM Alloy Phase Diagram Database, verifying the effectiveness of the present approach in phase diagram construction.

  4. Holistic Facial Composite Construction and Subsequent Lineup Identification Accuracy: Comparing Adults and Children.

    Science.gov (United States)

    Davis, Josh P; Thorniley, Sarah; Gibson, Stuart; Solomon, Chris

    2016-01-01

    When the police have no suspect, they may ask an eyewitness to construct a facial composite of that suspect from memory. Faces are primarily processed holistically, and recently developed computerized holistic facial composite systems (e.g., EFIT-V) have been designed to match these processes. The reported research compared children aged 6-11 years with adults on their ability to construct a recognizable EFIT-V composite. Adult constructor's EFIT-Vs received significantly higher composite-suspect likeness ratings from assessors than children's, although there were some notable exceptions. In comparison to adults, the child constructors also overestimated the composite-suspect likeness of their own EFIT-Vs. In a second phase, there were no differences between adult controls and constructors in correct identification rates from video lineups. However, correct suspect identification rates by child constructors were lower than those of child controls, suggesting that a child's memory for the suspect can be adversely influenced by composite construction. Nevertheless, all child constructors coped with the demands of the EFIT-V system, and the implications for research, theory, and the criminal justice system practice are discussed.

  5. Green public procurement – legal base and instruments supporting sustainable development in the construction industry in Poland

    Directory of Open Access Journals (Sweden)

    Kozik Renata

    2016-01-01

    Full Text Available In the respect of value, public procurement in the construction industry belongs to one of the largest ones in the domestic market. Therefore, green procurement for construction works should become the center of attention of public authorities in a broad sense, due to its scale and importance for the sustainable development. The authorities and contracting entities who spend public money should have the opportunity to apply such legal articles and instruments that allow them to both optimize public expenditures and consider the environmental factor, such as decreasing carbon emission. To make the idea of sustainable development a reality as European Union’s the most vital aim, EU law is implemented in Poland. Local authorities’ duty is to appropriately shape their policies and use the vital instrument of sustainable development, namely green public procurement. This paper presents a comparative analysis of legal regulations to illustrate the actual Polish and EU laws concerning the construction industry. Even though the generally applicable law allows to implement the idea of sustainable development efficiently, local self-government units in their regional policies do not report any need for specific solutions, or they do so only occasionally.

  6. Comprehensive Sustainability Evaluation of High-Speed Railway (HSR Construction Projects Based on Unascertained Measure and Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yongzhi Chang

    2018-02-01

    Full Text Available This paper aims to evaluate the sustainability of high-speed railway (HSR construction projects in a comprehensive manner. To this end, the author established an index system, involving 4 primary indices, 9 secondary indices, and 32 tertiary indices. The analytic hierarchy process (AHP and the unascertained measure were introduced to calculate the weights of these indices. Then, the index system was applied to evaluate the sustainability of the China’s Harbin-Dalian Passenger Dedicated Line (PDL. The results show that the Harbin-Dalian PDL project achieved good results in terms of process, economic benefit, impact, and sustainability, and will bring long-term benefits in the fields of tourism, economy, and transport capacity, as well as many other fields. In spite of its good overall sustainability, the project needs to further increase its economic benefits and reduce its negative environmental impact. For this purpose, it is necessary to adopt the management mode of “separation between network and transportation” and apply noise prevention measures like noise barriers, tunnels, and overhead viaducts. This research lays a solid basis for the sustainability evaluation of HSR construction projects, and simplifies the modelling process for designers of HSR.

  7. Effective grouping for energy and performance: Construction of adaptive, sustainable, and maintainable data storage

    Science.gov (United States)

    Essary, David S.

    The performance gap between processors and storage systems has been increasingly critical over the years. Yet the performance disparity remains, and further, storage energy consumption is rapidly becoming a new critical problem. While smarter caching and predictive techniques do much to alleviate this disparity, the problem persists, and data storage remains a growing contributor to latency and energy consumption. Attempts have been made at data layout maintenance, or intelligent physical placement of data, yet in practice, basic heuristics remain predominant. Problems that early studies sought to solve via layout strategies were proven to be NP-Hard, and data layout maintenance today remains more art than science. With unknown potential and a domain inherently full of uncertainty, layout maintenance persists as an area largely untapped by modern systems. But uncertainty in workloads does not imply randomness; access patterns have exhibited repeatable, stable behavior. Predictive information can be gathered, analyzed, and exploited to improve data layouts. Our goal is a dynamic, robust, sustainable predictive engine, aimed at improving existing layouts by replicating data at the storage device level. We present a comprehensive discussion of the design and construction of such a predictive engine, including workload evaluation, where we present and evaluate classical workloads as well as our own highly detailed traces collected over an extended period. We demonstrate significant gains through an initial static grouping mechanism, and compare against an optimal grouping method of our own construction, and further show significant improvement over competing techniques. We also explore and illustrate the challenges faced when moving from static to dynamic (i.e. online) grouping, and provide motivation and solutions for addressing these challenges. These challenges include metadata storage, appropriate predictive collocation, online performance, and physical placement

  8. Designing of the chemical composition of steels basing on the hardenability of constructional steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    2003-01-01

    The paper presents the original method of modelling of the relationships between chemical composition of alloy constructional steel and its hardenability, employing neural networks. Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. (author)

  9. Studies on sustainability of simulated constructed wetland system for treatment of urban waste: Design and operation.

    Science.gov (United States)

    Upadhyay, A K; Bankoti, N S; Rai, U N

    2016-03-15

    New system configurations and wide range of treatability make constructed wetland (CW) as an eco-sustainable on-site approach of waste management. Keeping this view into consideration, a novel configured three-stage simulated CW was designed to study its performance efficiency and relative importance of plants and substrate in purification processes. Two species of submerged plant i.e., Potamogeton crispus and Hydrilla verticillata were selected for this study. After 6 months of establishment, operation and maintenance of simulated wetland, enhanced reduction in physicochemical parameters was observed, which was maximum in the planted CW. The percentage removal (%) of the pollutants in three-stage mesocosms was; conductivity (60.42%), TDS (67.27%), TSS (86.10%), BOD (87.81%), NO3-N (81.28%) and PO4-P (83.54%) at 72 h of retention time. Submerged macrophyte used in simulated wetlands showed a significant time dependent accumulation of toxic metals (p ≤ 0.05). P. crispus accumulated the highest Mn (86.36 μg g(-1) dw) in its tissue followed by Cr (54.16 μg g(-1) dw), Pb (31.56 μg g(-1) dw), Zn (28.06 μg g(-1) dw) and Cu (25.76 μg g(-1) dw), respectively. In the case of H. verticillata, it was Zn (45.29), Mn (42.64), Pb (22.62), Cu (18.09) and Cr (16.31 μg g(-1) dw). Thus, results suggest that the application of simulated CW tackles the water pollution problem more efficiently and could be exploited in small community level as alternative and cost effective tools of phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Data-driven weights and restrictions in the construction of composite indicators

    Directory of Open Access Journals (Sweden)

    Ana Perišić

    2015-03-01

    Full Text Available Composite indicators are increasingly recognized as a useful tool in policy analysis and public communication. However, if poorly constructed, they can send misleading policy messages. Perhaps the most difficult aspect of constructing a composite indicator is choosing weights for the components. The categorization of Croatian territorial units for development policy is based on the value of the composite indicator called the development index. The main goal of this paper is to propose an empirical approach for weight selection. In order to generate the set of non-subjective weights, principal component analysis and linear programming methods have been applied. An application of data envelopment analysis to the field of composite indicators, known as the Benefit-of-the-Doubt approach, has been demonstrated subject to proportional sub-indicator share restrictions. Additionally, the Monte Carlo simulation of weights was conducted, and confidence intervals for the values of the development index were estimated. Owing to the fact that the examined weighting schemes have resulted in the different categorization of territorial units, use of unit-specific weights and incorporating uncertainty in the construction of a composite indicator looks promising for further work.

  11. An introduction to constructed wetlands (reed beds) sustainable low cost wastewater treatment plants

    International Nuclear Information System (INIS)

    Ahmad, M.I.

    2005-01-01

    because it is essentially simple, cheap and sustainable. Because they achieve a natural balance, well designed reed bed systems will more or less look after themselves. They do not need much power, they do not need any chemicals, they need very little maintenance, and the water leaving such a system can be very clean - certainly clean enough to pass the National Water Quality Standards. A well designed reed bed system needs both aquatic plants and special water movement. The main plants used is still the Common reed (Pragmatism karaka - Nari), Cattail (Typha australis - Dab) and Vetiver grass (Khus). Almost all these aquatic plants are available in natural wetlands, along rivers, canals, water courses, and water logged areas in Pakistan. The constructed wetlands (Reed Beds) utilize horizontal flow system, vertical flow system or combination of both. The horizontal system includes 'free water surface (FWS)' wetlands and 'vegetated submerged bed (VSB)' wetlands. The vertical system invariably uses VSB system. The required land area depends on the wastewater flow. However, in the rural setting, the horizontal system requires about 1.0 square meter / person (or population equivalent in case of an industry) and the vertical system even less than that. A working reed bed system can be designed as a public area like a park with water cascades, bridges, shallow pools with fish, and small islands for birds. There is no smell. no flies. no noise, no chemicals. and no machines. The only regular maintenance work is harvesting the reeds once a year and occasional weeding (without poisons) There is potential for the combination of reed beds with a methane process in which the bulk of sludge is removed by settlement and fed to a methane digester to produce energy, and the supernatant is then cleaned with reed beds. This may becomes a practical solution for systems in urban areas. In flat areas like large towns can be split up into segments, each served by a separate reed bed system

  12. Reduction of construction period by development and applying of advanced turbine generator foundation as composite structure

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Fuyama, Hiroyuki; Kameda, Ichiro; Fukunaga, Yuuji; Umetada, Isao; Magoshi, Ryutaro

    1999-01-01

    Mitsubishi Heavy Industries developed a composite steel-concrete beam for constructing elevated horizontal beams for turbine-generator foundations. This system was used at the company's Verification Test Plant at the Takasago Machinery Works. Composite steel-concrete beams are made from U-shaped steel casings that acts as a temporarily formwork and are permanently used as major concrete beam reinforcement. Prefabricated U-shaped steel casings must be placed on top of vertical concrete columns. After steel casings are positioned and secured, concrete is filled. This technique cuts one month from construction time and simplifies required temporary work such as falsework and formwork. This paper details the results of practical research on design and construction as they relate to required strength and vibration. (author)

  13. Construction of low-cost, Mod-OA wood composite wind turbine blades

    Science.gov (United States)

    Lark, R. F.

    1983-01-01

    Two sixty-foot, low-cost, wood composite blades for service on 200 kW Mod-OA wind turbines were constructed. The blades were constructed of epoxy resin-bonded Douglas fir veneers for the leading edge sections, and paper honeycombcored, birch plywood faced panels for the afterbody sections. The blades were joined to the wind turbine hub by epoxy resin-bonded steel load take-off studs embedded into the root end of the blades. The blades were installed on the 200 kW Mod-OA wind turbine facility at Kahuku, Hawaii, The blades completed nearly 8,000 hours of operation over an 18 month period at an average power of 150 kW prior to replacement with another set of wood composite blades. The blades were replaced because of a corrosion failure of the steel shank on one stud. Inspections showed that the wood composite structure remained in excellent condition.

  14. Sustainable design, construction and living in the information age; Nachhaltiges Planen, Bauen und Wohnen im Informationszeitalter

    Energy Technology Data Exchange (ETDEWEB)

    Bretthauser, G.; Dietze, S.; Haefele, K.H.; Isele, J.; Jaekel, J.

    2001-06-01

    The present study addresses the topic of sustainable design, construction and living in the information age. The focus - according to the institute's fields of activity and competence - rests on the contribution of information and automation technology. The study is based on extensive inquiries and brings together the experience of the authors and preliminary investigations results. Its objective is to analyse state of the art technology, trends and to then draw conclusions for our own R and D projects. The general conditions for future ''building and living'' are presented under the aspect of sustainability. Admittedly, important problems of the social, economic and ecological dimensions of sustainable ''building and living'' are only touched within the scope of this study. The analysis of the state of the art concentrates on three fields, the application of information technology in the design phase, the automated manufacturing and construction and home automation. Generally, it can be stated that information and automation technology bears great potential for innovations in the area of ''building and living''. Main trends in the field of design include the development of product model standards and the use of digital building models in all phases of the life cycle. In the field of manufacturing an orientation towards utilization of prefabricated building components, which can be produced on automated facilities, is observed. The field of home automation is characterized by very dynamic development. Emphasis lies on the informational integration of all technical appliances in the home and the development of new services and functionality on this basis. Starting from this analysis our own R and D activities are proposed within a common frame formed by the vision of the FZK house. These activities comprise investigations and development of a product model for the FZK house, for a factory producing

  15. Sustainable earth-based vs. conventional construction systems in the Mediterranean climate: Experimental analysis of thermal performance

    Science.gov (United States)

    Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.

    2017-10-01

    The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.

  16. The chemometric study of limestone physico-chemical properties and thermal behavior for application in construction composites

    Directory of Open Access Journals (Sweden)

    Radulović Dragan

    2017-01-01

    Full Text Available The limestone, as an economically sustainable and easily available basic raw material, is frequently utilized in the building industry for resolving of the environmental protection issues. The limestone is incorporated in a cementitious system either by grinding with cement clinker, or by blending with the binder during concrete production. The employing of powdery limestone as partial cement replacement gives the construction composites with properties comparable to that of conventional concrete. The study of limestone thermal behavior and its chemistry is crucial for the prognosis of the designed composites properties. In this work, the instrumental techniques (atomic emission spectroscopy, differential thermal and thermo-gravimetric analysis, Fourier transform infrared spectroscopy and the Principal component analysis were employed to discriminate and classify 22 limestone types. The PCA statistical method, as a means of spectra and experimental data fingerprinting, grouped the samples in a multi-dimensional factor space producing four graphical prognosis - one for each instrumental method. DTA/TG peak values varied the most in a short range between 830-870°C, while FTIR spectra showed the highest diversity in the 867-887 cm-1 and 1237-1647 cm-1 ranges. This research was governed by an idea to reveal whether it is possible to differentiate various limestone types and to predict the possibility of their employment in construction composites on the basis of the results of instrumental and mathematical analyses. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON 172057, III 45008, TR 31055, TR 34006, and TR 34013

  17. Wood constructions. Energy eficient, sustainable, practically proven; Holzbau Konstruktionen. Energieeffizient, nachhaltig, praxisgerecht

    Energy Technology Data Exchange (ETDEWEB)

    Lueckmann, Rudolf

    2012-07-01

    The book 'Wood constructions' provides standardized and practically proven designs, all necessary information on building physics, fire protection and additional specialized knowledge for energy efficient renovations and construction details in wood construction. The main topics of this book are: Fundamentals, timber-frame structures, wood preservation, thermal insulation, sound insulation, fire protection, energy-efficient timber buildings, timber construction systems, rehabilitation of timber structures, relevant regulations and standards.

  18. Risk Evaluation of a UHV Power Transmission Construction Project Based on a Cloud Model and FCE Method for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-03-01

    Full Text Available In order to achieve the sustainable development of energy, Ultra High Voltage (UHV power transmission construction projects are being established in China currently. Their high-tech nature, the massive amount of money involved, and the need for multi-agent collaboration as well as complex construction environments bring many challenges and risks. Risk management, therefore, is critical to reduce the risks and realize sustainable development of projects. Unfortunately, many traditional risk assessment methods may not perform well due to the great uncertainty and randomness inherent in UHV power construction projects. This paper, therefore, proposes a risk evaluation index system and a hybrid risk evaluation model to evaluate the risk of UHV projects and find out the key risk factors. This model based on a cloud model and fuzzy comprehensive evaluation (FCE method combines the superiority of the cloud model for reflecting randomness and discreteness with the advantages of the fuzzy comprehensive evaluation method in handling uncertain and vague issues. For the sake of proving our framework, an empirical study of “Zhejiang-Fuzhou” UHV power transmission construction project is presented. As key contributions, we find the risk of this project lies at a “middle” to “high” level and closer to a “middle” level; the “management risk” and “social risk” are identified as the most important risk factors requiring more attention; and some risk control recommendations are proposed. This article demonstrates the value of our approach in risk identification, which seeks to improve the risk control level and the sustainable development of UHV power transmission construction projects.

  19. Nonlinear Stability Analysis of a Composite Girder Cable-Stayed Bridge with Three Pylons during Construction

    Directory of Open Access Journals (Sweden)

    Xiaoguang Deng

    2015-01-01

    Full Text Available Based on the nonlinear stability analysis method, the 3D nonlinear finite element model of a composite girder cable-stayed bridge with three pylons is established to research the effect of factors including geometric nonlinearity, material nonlinearity, static wind load, and unbalanced construction load on the structural stability during construction. Besides, the structural nonlinear stability in different construction schemes and the determination of temporary pier position are also studied. The nonlinear stability safety factors are calculated to demonstrate the rationality and safety of construction schemes. The results show that the nonlinear stability safety factors of this bridge during construction meet the design requirement and the minimum value occurs in the maximum double cantilever stage. Besides, the nonlinear stability of the structure in the side of edge-pylon meets the design requirement in the two construction schemes. Furthermore, the temporary pier can improve the structure stability, effectively, and the actual position is reasonable. In addition, the local buckling of steel girder occurs earlier than overall instability under load in some cable tension stages. Finally, static wind load and the unbalanced construction load should be considered in the stability analysis for the adverse impact.

  20. Possibility of using waste tire composites reinforced with rice straw as construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Lee, Young-Kyu; Kim, Hyun-Joong; Jeon, Jin-Yong; Kang, Chun-Won

    2004-10-01

    Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.

  1. Determination of sustainable values for the parameters of the construction of residential buildings

    Science.gov (United States)

    Grigoreva, Larisa; Grigoryev, Vladimir

    2018-03-01

    For the formation of programs for housing construction and planning of capital investments, when developing the strategic planning companies by construction companies, the norms or calculated indicators of the duration of the construction of high-rise residential buildings and multifunctional complexes are mandatory. Determination of stable values of the parameters for the high-rise construction residential buildings provides an opportunity to establish a reasonable duration of construction at the planning and design stages of residential complexes, taking into account the influence of market conditions factors. The concept of the formation of enlarged models for the high-rise construction residential buildings is based on a real mapping in time and space of the most significant redistribution with their organizational and technological interconnection - the preparatory period, the underground part, the above-ground part, external engineering networks, landscaping. The total duration of the construction of a residential building, depending on the duration of each redistribution and the degree of their overlapping, can be determined by one of the proposed four options. At the same time, a unified approach to determining the overall duration of construction on the basis of the provisions of a streamlined construction organization with the testing of results on the example of high-rise residential buildings of the typical I-155B series was developed, and the coefficients for combining the work and the main redevelopment of the building were determined.

  2. Determination of sustainable values for the parameters of the construction of residential buildings

    Directory of Open Access Journals (Sweden)

    Grigoreva Larisa

    2018-01-01

    Full Text Available For the formation of programs for housing construction and planning of capital investments, when developing the strategic planning companies by construction companies, the norms or calculated indicators of the duration of the construction of high-rise residential buildings and multifunctional complexes are mandatory. Determination of stable values of the parameters for the high-rise construction residential buildings provides an opportunity to establish a reasonable duration of construction at the planning and design stages of residential complexes, taking into account the influence of market conditions factors. The concept of the formation of enlarged models for the high-rise construction residential buildings is based on a real mapping in time and space of the most significant redistribution with their organizational and technological interconnection - the preparatory period, the underground part, the above-ground part, external engineering networks, landscaping. The total duration of the construction of a residential building, depending on the duration of each redistribution and the degree of their overlapping, can be determined by one of the proposed four options. At the same time, a unified approach to determining the overall duration of construction on the basis of the provisions of a streamlined construction organization with the testing of results on the example of high-rise residential buildings of the typical I-155B series was developed, and the coefficients for combining the work and the main redevelopment of the building were determined.

  3. Labour input in construction of composite structures of the Balakovo NPP reactor compartment

    International Nuclear Information System (INIS)

    Alasyuk, G.Ya.

    1988-01-01

    Technical-economical results achieved when constructing the Balakovo NPP second unit reactor compartment structures are presented. The obtained data analysis shows that in the case of building the walls of non-sealed reactor compartment section in the form of composite structures the major part of labour input requirements (54-59%) falls at works on production and mounting of these structures, performed at auxiliary plants. Labour input for works performed the construction (unit-cell and space frame mounting, preparation of units for concreting, joint sealing, concrete placement) make up 41-46%, and labour input for enlarged unit-cell mounting make up 8%. Labour input per 1 m 3 of the wall structure with 0.6 and 0.9 m thicness in the monolith option are respectively by 19 an 23% higher than the same indices for composite

  4. Application of natural fibre composites in construction: a research case study

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2007-05-01

    Full Text Available properties. BACKGROUND In a report dated March 2005 (PDP TH/2004/20) the use of agricultural crops (animal and plant), recycled materials and industrial wastes as a material source for developing construction products was investigated (van Wyk 2005... materials (based on straw, hemp, cotton, flax, sisal and sugar cane fibres), paints, floor coverings, geotextiles, thatch, biopolymers and bio composites including board products, and starches for packaging. However, the report suggested...

  5. Students' qualification in environmental and sustainability education—epistemic gaps or composites of critical thinking?

    Science.gov (United States)

    Hasslöf, Helen; Lundegård, Iann; Malmberg, Claes

    2016-01-01

    In an 'age of measurement' where students' qualification is a hot topic on the political agenda, it is of interest to ask what the function of qualification might implicate in relation to a complex issue as Education for Sustainable Development (ESD) and what function environmental and sustainability issues serve in science education. This paper deals with how secondary and upper secondary teachers in discussions with colleagues articulate qualification in relation to educational aims of ESD. With inspiration from discourse theory, the teachers' articulations of qualification are analysed and put in relation to other functions of education (qualification, socialisation and subjectification). The results of this study show three discourses of qualification: scientific reasoning, awareness of complexity and to be critical. The discourse of 'qualification as to be critical' is articulated as a composite of differing epistemological views. In this discourse, the teachers undulate between rationalistic epistemological views and postmodern views, in a pragmatic way, to articulate a discourse of critical thinking which serves as a reflecting tool to bring about different ways of valuing issues of sustainability, which reformulates 'matter of facts' towards 'matter of concerns'

  6. The role of underground construction for the mobility, quality of life and economic and social sustainability of urban regions

    Directory of Open Access Journals (Sweden)

    Manuel Luís Tender

    Full Text Available Abstract Tunnelling has been used for several purposes for thousands of years. In the coming years the world's population will increase in the urban areas. So, the urban centres will have to adapt, in order to guarantee that their future population will have the necessary and sustainable growth. Due to the constraints for surface construction, also connected to environmental issues, this population growth will imply a greater use of the underground. With this optimal growth, the population of the cities will have better mobility, quality of life, and economic and social sustainability. In a first phase, this report will present a historic approach to tunnelling and its foreseeable future. Afterwards, we will present some considerations on the three factors which tunnelling impacts: mobility, quality of life and social sustainability. As a case study, we will analyse the 2nd phase of the construction of the Marão Tunnel (TDM - the longest ever built in the Iberian Peninsula- and describe the options made regarding each of those factors. In this case study, the options implemented made it possible to successfully execute the works. For the industry, this work is important because it describes a successful management of the aspects under analysis.

  7. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.

    Science.gov (United States)

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-01

    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Construction of a Solidarity Sustainability Concept Theoretical Contributions to the Reach of Socio-Environmentalism

    Directory of Open Access Journals (Sweden)

    Heloise Siqueira Garcia

    2016-12-01

    Full Text Available The article has as general objective to draw up considerations about the concept of sustainability having as its apparatus its intimate connection with solidarity, so that the studies traced are presented as theoretical contributions to socio-environmentalism. In this context, the following specific objectives were listed: analyze the main aspects of Sustainability, focusing on the social dimension; to study Solidarity in its historical and conceptual aspects; and to understand the close correlation between both categories. In the methodology was adopted the inductive method, having been applied the techniques of the referent, category, operational concepts, bibliographical research and file.

  9. Categorial compositionality II: universal constructions and a general theory of (quasi-systematicity in human cognition.

    Directory of Open Access Journals (Sweden)

    Steven Phillips

    2011-08-01

    Full Text Available A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1 syntactically compositional representations; and (2 processes that are sensitive to--compatible with--their structure. Classical compositionality, however, does not explain why these two components must be compatible; they are only compatible by the ad hoc assumption (convention of employing the same mode of (concatenative compositionality (e.g., prefix/postfix, where a relation symbol is always prepended/appended to the symbols for the related entities. Architectures employing mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions, using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most languages, where the domain includes some but not all possible combinations of constituents. The central category-theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our purposes. An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-systematicity is a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in adjunctions.

  10. Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.

    Science.gov (United States)

    Phillips, Steven; Wilson, William H

    2011-08-01

    A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour) must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1) syntactically compositional representations; and (2) processes that are sensitive to--compatible with--their structure. Classical compositionality, however, does not explain why these two components must be compatible; they are only compatible by the ad hoc assumption (convention) of employing the same mode of (concatenative) compositionality (e.g., prefix/postfix, where a relation symbol is always prepended/appended to the symbols for the related entities). Architectures employing mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions, using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most languages), where the domain includes some but not all possible combinations of constituents. The central category-theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our purposes). An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-)systematicity is a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in adjunctions.

  11. Planning, architecture, seismic, construction and energy-related criteria for sustainable spatial development in the Danube Delta Biosphere Reserve area

    Directory of Open Access Journals (Sweden)

    Vasile Meiţă

    2014-09-01

    Full Text Available The Danube Delta Biosphere Reserve represents a complex of ecosystems embedding a biome that had been included on UNESCO World Heritage list due to its global environmental importance. The outstanding natural diversity, including ecosystems, habitats and species situated at the top of European and International conservation lists, is mixed with an equally rich and important cultural (ethnic and religious diversity of the human communities inhabiting the area. According to the guidelines of the Man and the Biosphere Programme of UNESCO, the biosphere reserves including human settlements should be managed such that they could constitute an example for what sustainable development means. Starting from the spatial dimension added to the traditional socioeconomic, ecological and cultural pillars of sustainable development, the paper examines planning, architecture, seismic, construction and energy-related criteria that could substantiate a sustainable development model applicable to the Danube Delta, and counter the effects of clime change in the area. The results suggest that the traditional practices of the inhabitants could offer sustainable solutions and help preserving the natural and cultural diversity of the region.

  12. Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance

    Directory of Open Access Journals (Sweden)

    Agnese Attanasio

    2018-02-01

    Full Text Available There is a growing interest in the construction sector in the use of sustainable binders as an alternative to ordinary Portland cement, the production of which is highly impacting on the environment, due to high carbon dioxide emissions and energy consumption. Alkali-activated binders, especially those resulting from low-cost industrial by-products, such as coal fly ash or metallurgical slag, represent a sustainable option for cement replacement, though their use is more challenging, due to some technological issues related to workability or curing conditions. This paper presents sustainable alkali-activated mortars cured in room conditions and based on metakaolin, fly ash, and furnace slag (both by-products resulting from local sources and relevant blends, aiming at their real scale application in the building sector. The effect of binder composition—gradually adjusted taking into consideration technical and environmental aspects (use of industrial by-products in place of natural materials in the view of resources saving—on the performance (workability, compressive strength of different mortar formulations, is discussed in detail. Some guidelines for the design of cement-free binders are given, taking into consideration the effect of each investigated alumino-silicate component. The technical feasibility to produce the mortars with standard procedures and equipment, the curing in room conditions, the promising results achieved in terms of workability and mechanical performance (from 20.0 MPa up to 52.0 MPa, confirm the potential of such materials for practical applications (masonry mortars of class M20 and Md. The cement-free binders resulting from this study can be used as reference for the development of mortars and concrete formulations for sustainable building materials production.

  13. Study on the construction of Guangdong coastal zone sustainable development decision support system

    Science.gov (United States)

    Xiong, Yong-zhu; Zhang, Mei-ying; Xia, Bin; Zhang, Zheng-dong

    2008-10-01

    Coastal zones in Guangdong province are increasingly facing an ecological, economic and social pressure due to the increasing economic utilization and human activities in these regions worldwide, which is threatening the sustainable development of human being. How to take effective measurements and adopt integrated management to ensure sustainable development in these areas is ever becoming a focus that attracts close attentions to the governmental and academic sectors recently. It is important to resolve the problem to establish an advanced decision support system for the coastal zone sustainable development to help scientific decision-making and carry out integrated coastal zone management. This paper mainly introduces the general framework of Guangdong coastal zone sustainable development decision support system (GDCZSDDSS), including its requirements, general objectives, function and structure, and key technologies etc. After expounding the basic concept and requirements of GDCZSDDSS, the paper discusses generally the three-tier architecture and six kinds of functional modules, and lays a particular emphasis on the crucial role of such key technologies as GIS, RS and GPS (3S), spatial metadata and data warehouse etc., and discusses the methods of the GCZSDDSS integration, which aims at offering a whole solution for realization of the GCZSDDSS ultimately.

  14. Performance assessment for sustainable construction: lest we forget about the client

    NARCIS (Netherlands)

    Gyadu-Asiedu, W.; Scheublin, F.J.M.; Egmond - de Wilde De Ligny, van E.L.C.; Braganca, L.; Pinheiro, M.; Jalali, S.; Mateus, R.; Amoeda, R.; Correia Guedes, M.

    2007-01-01

    Sustainability of the built environment is receiving much attention in recent times, mainly because the concept is inextricably linked with several key global issues e.g. economic, environmental, housing etc. An important aspect of these has to do with the assessment of the performance of the

  15. Strategies of employees in the construction industry to increase their sustainable employability

    NARCIS (Netherlands)

    Tonnon, Susanne C; van der Veen, Rozan; de Kruif, Anja Th C M; Robroek, Suzan J W; van der Ploeg, Hidde P; Proper, Karin I; van der Beek, Allard J

    2018-01-01

    BACKGROUND: The aging work force makes sustainable employability (SE) of workers a priority. However, it is unknown to what extent employees use implemented SE measures. OBJECTIVE: To determine the utilization of 1) SE measures offered by employers, 2) employee SE strategies, and 3) to identify

  16. On Governance, Embedding and Marketing: Reflections on the Construction of Alternative Sustainable Food Networks

    NARCIS (Netherlands)

    Roep, D.; Wiskerke, J.S.C.

    2012-01-01

    Based on the reconstruction of the development of 14 food supply chain initiatives in 7 European countries, we developed a conceptual framework that demonstrates that the process of increasing the sustainability of food supply chains is rooted in strategic choices regarding governance, embedding,

  17. Researchers' Positions and Construction of Curricula of Education for Sustainable Development in France

    Science.gov (United States)

    Barthes, Angela; Lange, Jean-Marc

    2018-01-01

    The article sets the international context for the development of a curriculum of education for sustainable development and shows the directions being taken in the Francophone community. Building on a significant number of studies carried out in France, we constitute a typology of the positions of French-speaking researchers involved in those…

  18. Time to propagate green building construction concept for saving precious resources sustainable development

    International Nuclear Information System (INIS)

    Ali, Z.

    2005-01-01

    At present, we are constructing houses and buildings without giving any consideration to consumption of resources at the time of construction and consumption of resources for the use of such houses or buildings. ; Although green is our color but we are doing little about green building. Time has now come to propagate Green Building Construction Concepts in order to save our precious resources. The paper deals with dire need of awareness about conservation of water, conservation of energy, use of local materials, use of natural materials, etc. (author)

  19. Appropriate and sustainable wastewater management in developing countries by the use of constructed wetlands

    DEFF Research Database (Denmark)

    Brix, Hans; Koottatep, Thammarat; Fryd, Ole

    2010-01-01

    Constructed wetland systems for wastewater management may have great potential in developing countries as robust and decentralized solution. A case study from Koh Phi Phi island in Thailand where a constructed wetland systems was established after the destructions by the tsunami in 2004...... is described. The project includes a wastewater collection system for the main business area of the island, a pumping station, a multistage constructed wetland system, and a system for reuse of treated wastewater. The wastewater is treated to meet the Thai effluent standards for total suspended solids......, the system is only partly a success, mainly because no key-person or key-authority took responsibility for managing the system....

  20. Sustainable use of oil sands for geotechnical construction and road building

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2011-02-01

    Full Text Available This symposium provides a forum for exchange of ideas on current research nationally and internationally on the use of industrial byproducts and other recycled materials in geotechnical construction. A key objective is to identify new opportunities...

  1. Assessment on the sustainable use of alternative construction materials as a substitute to natural aggregates

    CSIR Research Space (South Africa)

    George, Theresa B

    2016-08-01

    Full Text Available , and identifies potential construction materials such as glass, slags and recycled asphalt pavement (RAP) that are locally available as alternative aggregate materials to virgin aggregates. An economic cost analysis conducted indicated that it is more cost...

  2. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  3. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Faruq, E-mail: fmohammad@ksu.edu.sa [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Arfin, Tanvir, E-mail: t_arfin@neeri.res.in [Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020 (India); Al-Lohedan, Hamad A. [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2017-02-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO{sub 4}) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV–Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52 nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl > NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO{sub 4} material also observed to be decreased in the order K{sup +} > Na{sup +} and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO{sub 4} matrix, as the material can release up to 87% of its total loaded drug over a 90 min period. Finally, the

  4. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    International Nuclear Information System (INIS)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2017-01-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO 4 ) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV–Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52 nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl > NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO 4 material also observed to be decreased in the order K + > Na + and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO 4 matrix, as the material can release up to 87% of its total loaded drug over a 90 min period. Finally, the cell viability and

  5. The Construction of a Sustainable Development in Times of Climate Change

    OpenAIRE

    Brandstedt, Eric

    2013-01-01

    This dissertation is a contribution to the debate about ‘climate justice’, i.e. a call for a just and feasible distribution of responsibility for addressing climate change. The main argument is a proposal for a cautious, practicable, and necessary step in the right direction: given the set of theoretical and practical obstacles to climate justice, we must begin by making contemporary development practices sustainable. In times of climate change, this is done by recognising and responding to t...

  6. The Social Construction of the Responsible Corporate Citizen: Sustainability Reports of the Global Automotive Firms

    OpenAIRE

    Shinkle, George; Spencer, J. William

    2008-01-01

    The constitutive meanings of responsible corporate environmental citizenship are to be found in global discourses. We use Gubrium and Holstein‘s framework on interpretive practice to study the Corporate Sustainability Reports of multinational automotive companies regarding global warming. We observe three common themes – recognizing the issue of greenhouse gases, acknowledging stakeholders, and being role models for society. However, these themes take on unique meanings vis-à-vis each corpora...

  7. On Governance, Embedding and Marketing: Reflections on the Construction of Alternative Sustainable Food Networks

    OpenAIRE

    Roep, Dirk; Wiskerke, Johannes S. C.

    2010-01-01

    Based on the reconstruction of the development of 14 food supply chain initiatives in 7 European countries, we developed a conceptual framework that demonstrates that the process of increasing the sustainability of food supply chains is rooted in strategic choices regarding governance, embedding, and marketing and in the coordination of these three dimensions that are inextricably interrelated. The framework also shows that when seeking to further develop an initiative (e.g., through scaling ...

  8. Potentials and obstacles in the construction of sustainable lands in the state of Santa Catarina.

    Directory of Open Access Journals (Sweden)

    Paulo Freire Vieira

    2009-10-01

    Full Text Available Marked by the creative and endogenous value that is placed on local resources, the development trajectory in the state of Santa Catarina has combined the wealth that is part of the cultural heritage of European development, the advantages of small-scale agricultural property and the search for flexibility in the face of the pressures and the opportunities exercised by the dynamics of the Brazilian economy as a whole. A number of elements - small-scale production in all its forms, the low intensity of government intervention, collective entrepreneurship and the value that is placed on labor productivity - have all had an important role relative to other Brazilian states, with collective action aimed at local development. Nonetheless, as early as the 1980s this trajectory began to show signs of exhaustion, thus necessitating careful current analysis of i the limits of the model which has come to be known as the Santa Catarina state model of development and ii the terrain formaneuvering that has been created, within the current scenario of economic and cultural globalization, for the definition of alternative public policies inspired in principals of sustainable rural development. This article is an attempt to meet this demand, presenting a synthesis of the partial results reached through a joint French-Brazilian research project financed by the CAPES-CONFECUB Agreement. The text provides an exploratory contribution for our understanding of the challenges that surround the definition of a new style of development for the state. Furthermore, it identifies a range of emerging initiatives that can serve as a point of reference for plans for rural sustainable development for the next few years. Keywords: Sustainable land development, public policies, Santa Catarina, sustainable rural lands.

  9. Seismic Performance of Composite Shear Walls Constructed Using Recycled Aggregate Concrete and Different Expandable Polystyrene Configurations

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-03-01

    Full Text Available The seismic performance of recycled aggregate concrete (RAC composite shear walls with different expandable polystyrene (EPS configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC protective layer (EPS modules as the external insulation layer, and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.

  10. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  11. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  12. Optimization of Structural Design for Sustainable Construction of Transmission Tower Based on Topographical Algorithm

    International Nuclear Information System (INIS)

    Muda, Zakaria Che; Thiruchelvam, Sivadass; Mustapha, Kamal Nasharuddin; Omar, Rohayu Che; Usman, Fathoni; Alam, Md Ashrafu

    2013-01-01

    Optimization of transmission tower structures is traditionally based on either optimization of members sizes with fixed topographical shape or based on structural analysis modelling strategies without taking cognizance of fabrication and constructability issue facing the contractors . This paper look into an integrated optimum design approach strategies whereby size, shape and topology are combined together with the fabrication issues in the construction of the transmission tower. The topographical algorithm is based on changing the inclination degree of the legs of the tower at first with optimum individual members sizing and later rationalized member sizes are performed through member groupings for the ease fabrication and construction of the transmission tower. The optimum weight using topographical algorithm obtained for the transmission tower is 10,924 kg for singular members and 18,430 kg for element grouping at 10° inclination angle.

  13. Measuring environmental sustainability in agriculture: A composite environmental impact index approach.

    Science.gov (United States)

    Sabiha, Noor-E; Salim, Ruhul; Rahman, Sanzidur; Rola-Rubzen, Maria Fay

    2016-01-15

    The present study develops a composite environmental impact index (CEII) to evaluate the extent of environmental degradation in agriculture after successfully validating its flexibility, applicability and relevance as a tool. The CEII tool is then applied to empirically measure the extent of environmental impacts of High Yield Variety (HYV) rice cultivation in three districts of north-western Bangladesh for a single crop year (October, 2012-September, 2013). Results reveal that 27 to 69 per cent of the theoretical maximum level of environmental damage is created due to HYV rice cultivation with significant regional variations in the CEII scores, implying that policy interventions are required in environmentally critical areas in order to sustain agriculture in Bangladesh. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Structural and Mechanical Characterization of Sustainable Composites Based on Recycled and Stabilized Fly Ash

    Directory of Open Access Journals (Sweden)

    Stefano Besco

    2014-08-01

    Full Text Available This paper reports the results on the use of an innovative inert, based on stabilized fly ash from municipal solid waste incineration as a filler for polypropylene. The starting material, which contains large quantities of leachable Pb and Zn, was stabilized by means of an innovative process using rice husk ash as a waste silica source, together with other fly ashes, such as coal fly ash and flue gas desulfurization residues. The use of all waste materials to obtain a new filler makes the proposed technology extremely sustainable and competitive. The new composites, obtained by using the stabilized material as a filler for polypropylene, were characterized and their mechanical properties were also investigated. A comparison with a traditional polypropylene and calcium carbonate based compound was also done. This research activity was realized in the frame of the COSMOS-RICE project, financed by the EU Commission.

  15. Rio 2016 sustainable construction commitments lead to new developments in recycled aggregate concrete

    NARCIS (Netherlands)

    Toledo Filho, R.D.; Koenders, E.A.B.; Pepe, M.; Cordeiro, G.C.; Fairbairn, E.; Martinelli, E.

    2013-01-01

    The Brazilian construction industry is committed to delivering the venues and infrastructure of the Rio 2016 Olympic and Paralympic Games with zero increase in carbon dioxide emissions, reduced consumption of raw materials, increased use of renewable materials and 100% local recycling of

  16. The need and means for sustainable use of wood in the Tanzanian construction industry.

    NARCIS (Netherlands)

    Mufuruki, T.S.; Scheublin, F.J.M.; Egmond - de Wilde De Ligny, van E.L.C.; Braganca, L.; Pinheiro, M.; Jalali, S.; Mateus, R.; Amoeda, R.; Correia Guedes, M.

    2007-01-01

    Pronounced increase in construction activities in Tanzania has a corresponding utilization of wood products. This adds to the already aggravated situation by wood harvest for fuel; manufacturing and forest clearance for agricultural purposes. In most cases exploitation of wood is done to fulfil the

  17. Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls

    Directory of Open Access Journals (Sweden)

    Rishi Gupta

    2014-01-01

    Full Text Available Use of local materials can reduce the hauling of construction materials over long distances, thus reducing the greenhouse gas emissions associated with transporting such materials. Use of locally available soils (earth for construction of walls has been used in many parts of the world. Owing to the thermal mass of these walls and the potential to have insulation embedded in the wall section has brought this construction material/technology at the forefront in recent years. However, the mechanical properties of the rammed earth and the parameters required for design of steel reinforced walls are not fully understood. In this paper, the author presents a case study where full-scale walls were constructed using rammed earth to understand the effect of two different types of shear detailing on the structural performance of the walls. The mechanical properties of the material essential for design such as compressive strength of the material including effect of coring on the strength, pull out strength of different rebar diameters, flexural performance and out-of-plane bending on walls was studied. These results are presented in this case study.

  18. Exploring transitions towards sustainable construction : The case of near-zero energy buildings in the Netherlands

    NARCIS (Netherlands)

    Rosales-Carreón, Jesús; García-Díaz, César

    2015-01-01

    This paper examines the use of qualitative information in the construction of an agent- based model in order to study the growth of near-Zero Energy Buildings (nZEB's) in the Netherlands through the innovation systems perspective. Drawing on desktop research and semi-structured interviews, this

  19. Sustainable wall construction and exterior insulation retrofit technology process and structure

    Science.gov (United States)

    Vohra, Arun

    2000-01-01

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  20. The integration of “building information modeling” (BIM in sustainable architecture and construction education: case study in Pristina University

    Directory of Open Access Journals (Sweden)

    Violeta Nushi

    2017-10-01

    Full Text Available After a comparative review of articles published for used types of “Building Information Modeling” (BIM software, this study provides a wider understanding and critical reflection on integration and synthesis of BIM developments into Kosovo education system in order to provide important guidance to academic researchers, students, and practitioners. As the effectiveness of BIM has been widely accepted in the worldwide “Architecture, Engineering, Construction” (AEC industry, there is an urgent need to establish a synergy between BIM educated and practitioners in Kosovo likewise. This necessarily leads towards finding more intensive and suitable approaches and tools, for an integrated solution through the education system; in particular, to offer worldwide BIM's practices into sustainable AEC education programs, curricula and/or courses. Virtually, the most of the Technical Faculties within universities of Kosovo pretermit viability of BIM in teaching strategy and plan to overcome the barriers to integration of BIM into the curriculum. Through conducted questionnaire to students was surveyed the current state of BIM integration at higher education curricula of Sustainable Architecture and Construction (SAC programs. Based upon their answers, came out the recommendation to increase the appraiser's knowledge for BIM in curricula, followed up by new sustainable didactical concepts and awareness, which will energize the commencement of BIM into SAC programs and establish graduates, equipped with the necessary knowledge and skills for BIM software before they get promoted in professional calling.

  1. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  2. Construction of EMSC-islet co-localizing composites for xenogeneic porcine islet transplantation.

    Science.gov (United States)

    Kim, Jung-Sik; Chung, Hyunwoo; Byun, Nari; Kang, Seong-Jun; Lee, Sunho; Shin, Jun-Seop; Park, Chung-Gyu

    2018-03-04

    Pancreatic islet transplantation is an ultimate solution for treating patients with type 1 diabetes (T1D). The pig is an ideal donor of islets for replacing scarce human islets. Besides immunological hurdles, non-immunological hurdles including fragmentation and delayed engraftment of porcine islets need solutions to succeed in porcine islet xenotransplantation. In this study, we suggest a simple but effective modality, a cell/islet co-localizing composite, to overcome these challenges. Endothelial-like mesenchymal stem cells (EMSCs), differentiated from bone-marrow derived mouse mesenchymal stem cells (MSCs), and MSCs evenly coated the surface of porcine islets (>85%) through optimized culture conditions. Both MSCs and EMSCs significantly reduced the fragmentation of porcine islets and increased the islet masses, designated as islet equivalents (IEQs). In fibrin in vitro and in vivo angiogenesis analysis, constructed EMSC-islet composites showed higher angiogenic potentials than naked islets, MSC-islet composites, or human endothelial cell-islet composites. This novel delivery method of porcine islets may have beneficial effects on the engraftment of transplanted islets by prevention of fragmentation and enhancement of revascularization. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. On Governance, Embedding and Marketing: Reflections on the Construction of Alternative Sustainable Food Networks.

    Science.gov (United States)

    Roep, Dirk; Wiskerke, Johannes S C

    Based on the reconstruction of the development of 14 food supply chain initiatives in 7 European countries, we developed a conceptual framework that demonstrates that the process of increasing the sustainability of food supply chains is rooted in strategic choices regarding governance , embedding, and marketing and in the coordination of these three dimensions that are inextricably interrelated. The framework also shows that when seeking to further develop an initiative (e.g., through scaling up or product diversification) these interrelations need continuous rebalancing. We argue that the framework can serve different purposes: it can be used as an analytical tool by researchers studying food supply chain dynamics, as a policy tool by policymakers that want to support the development of sustainable food supply chains, and as a reflexive tool by practitioners and their advisors to help them to position themselves, develop a clear strategy, find the right allies, develop their skills, and build the capacities that they need. In this paper, we elaborate upon the latter function of the framework and illustrate this briefly with empirical evidence from three of the initiatives that we studied.

  4. Modeling the sustainable development of innovation in transport construction based on the communication approach

    Science.gov (United States)

    Revunova, Svetlana; Vlasenko, Vyacheslav; Bukreev, Anatoly

    2017-10-01

    The article proposes the models of innovative activity development, which is driven by the formation of “points of innovation-driven growth”. The models are based on the analysis of the current state and dynamics of innovative development of construction enterprises in the transport sector and take into account a number of essential organizational and economic changes in management. The authors substantiate implementing such development models as an organizational innovation that has a communication genesis. The use of the communication approach to the formation of “points of innovation-driven growth” allowed the authors to apply the mathematical tools of the graph theory in order to activate the innovative activity of the transport industry in the region. As a result, the authors have proposed models that allow constructing an optimal mechanism for the formation of “points of innovation-driven growth”.

  5. [Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats].

    Science.gov (United States)

    Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming

    2016-03-01

    To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.

  6. A Communitarian Approach to Constructing Accountability and Strategies for Sustainable Abstract Development

    Directory of Open Access Journals (Sweden)

    Murugesh Arunachalam

    2007-12-01

    formulating strategies for sustainable development of the Taupo District in New Zealand. Alternating between our pre-understanding and the empirical data, a process known as “fusion of horizons” (Gadamer, 1975 in philosophical hermeneutics, is a means by which theories can be developed. This interpretive study indicates that meaning of accountability can be extended beyond a narrow conventional sense portraying accountability as a process of providing an account. Accountability also involves other dimensions such as moral responsibility, cooperative enquiry, information sharing, transparency and joint responsibility. From a communitarian perspective these dimensions of accountability emphasise the centrality of community and communal values. Accountability for environmental and social issues extends beyond the domain of corporations, and involves community participation.

  7. Climatic change, cientific consensus and mediatic construction. The paradigm of the communication for the sustainable development

    Directory of Open Access Journals (Sweden)

    Dr. Bernando Díaz Nosty, nosty@infoamerica.org

    2009-01-01

    Full Text Available The climatic change, the global warming and the sustainable development are concepts integrated in the agenda setting of the media that reveal preoccupations and alert in the scientific consensus. Nevertheless, the reflections of the information about these aspects reveal deficiency in the constructivist techniques of journalism, moreover things that have to do with politics, economic and cultural interest. This article has to do with the evolution and tendencies of the informative flow in relation to climatic change as well as dissonances between scientific and media messages. It also has to do with the growing interest of the communication studies, especially in the Anglo-Saxon world about the environmental crisis up to the point to suggest the development of a flowing oriented to journalistic communication and sustainable innovation.El cambio climático, el calentamiento global y la sostenibilidad son conceptos integrados en la agenda de los medios, que reflejan preocupaciones y alertas amparadas en un amplio consenso científico. No obstante, el reflejo de la información sobre estos aspectos revela carencias en las técnicas constructivas del periodismo, además de aquellas que responden a cruces de intereses políticos, económicos y culturales. En este artículo se refiere la evolución y tendencias de los flujos informativos relativos al cambio climático, así como a las disonancias entre los mensajes científico y el mediático. También, se hace hincapié en el creciente interés de los estudios de comunicación, especialmente en el mundo anglosajón, sobre la crisis medioambiental, hasta el punto de sugerir el desarrollo de una corriente orientada a la comunicación periodística y la innovación sostenible.

  8. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  9. Stimulating a Sustainable Construction through Holistic BIM Adoption: The Root Causes of Recurring Low BIM Adoption in Malaysia

    Science.gov (United States)

    Mamter, S.; Abdul-Aziz, AR; Mamat, ME

    2017-06-01

    Fostering the Building Information Modelling (BIM) implementation is one of Malaysia sustainable strategies towards greener construction. Hence, the Eleventh Malaysia plan focuses on transforming construction industry through the increase of technology adoption in order to enhance construction productivity. Therefore, there is a growing and urgent demand to provide BIM competent. However, a significant number of parties are reluctant to develop and invest in BIM due to unsolved root causes. Scholars have identified barriers relating to the infancy stage of BIM adoption in Malaysia. Unfortunately, there is a lack of study to explore deeper the root causes of recurring for the barriers anticipate the low BIM adoption. This paper attempts to delve into the initiatives of BIM stake players in fostering BIM adoption and to determine the root causes of recurring barriers due to low BIM adoption. The study adopted the semi-structured interviews which involved BIM stake players as a sample population. From the findings, authors revealed four root causes of recurring barriers; absence of BIM policy and BIM compulsion, poor holistic readiness, software integration competition strategy, and reluctant in sharing knowledge. The findings espoused here are preliminary and more results are expected to emerge as the research progresses.

  10. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  11. Using Ecotech Architecture as an Effective Tool for Sustainability in Construction Industry

    Directory of Open Access Journals (Sweden)

    A. S. Mozhdegani

    2017-10-01

    Full Text Available Ecotech architecture can be used as an effective strategy to minimize energy consumption and enhance the satisfaction of construction industry beneficiaries in the Middle East. The use of ecotech principles has been employed in different parts of the world. However, following a universal approach is not possible as local conditions are always to be considered Applications and examples of ecotech architecture are investigated in this paper. A proposed building design for the Cheetgar region in Tehran is also briefly demonstrated. A further insight on Masdar city in Abhu Dabi is provided. An overall discussion is made and key conclusions are drawn.

  12. Identification of patent in incentivizing innovation for sustainability in the construction industry

    Science.gov (United States)

    Zakaria, Sharifah Akmam Syed; Sadullah, Ahmad Farhan Mohd; Majid, Taksiah A.; Ghazali, Farid Ezanee Mohamed

    2017-07-01

    The increasing trend of research and innovation developments in the field of construction industry and their impacts on the national economy have raised much attention in the recent years. In this respect, through the relationship that exists between innovation and patent protection means that the education system of civil engineering has to gear itself to provide a sense of direction to facilitate future civil engineers to meet the challenges through innovation. The aim of this paper is to examine the educational experience and inclination of civil engineering students at Universiti Sains Malaysia in terms of their educational readiness to invent and innovate based on patents' exploration. Specifically, this paper presents research evidence using a quantitative method through questionnaire surveys in determining the dimension of patent information usage for innovation purposes, with attention to the hierarchy of each usage aspect and outcome measures reported. Results of this study revealed that majority of the participants have a "simplistic and superficial" ideas of patents identification as a source of innovation. Although a fair number of participants have relatively good knowledge of patents and innovation, lack of practical exposure and experience in construction industry are still a problem frequently encountered in the preparation to invent and innovate based on patents' exploration. It is recommended that the research model is tested using a greater number of research participants.

  13. Strength of normal sections of NPP composite monolithic constructions with ribbed reinforced panels

    International Nuclear Information System (INIS)

    Klyashitskij, V.I.; Kirillov, A.P.

    1980-01-01

    Strength characteristics and recommendations on designing composite-monolytic structures of NPP with ribbed reinforced panels are considered. Ribbed reinforced panel consists of a system of cross ribs joined with a comparatively thin (25 mm thick) plate. The investigations were carried on using models representing columns symmetrically reinforced with reinforced panels with a low percent of reinforcing. The monolithic structures consisting of ribbed reinforced panels and cast concrete for making monoliths as well as monolithic having analogous strength characteristics of extended and compressed zones have similar strengths. It is shown that calculation of supporting power of composite-monolithic structures is performed according to techniques developed for monolithic structures. Necessity of structural transverse fittings no longer arises in case of corresponding calculational substitution of stability of compressed parts of fittings. Supporting power of a structure decreases not more than by 10% in the presence of cracks in the reinforced panels of the compressed zone. Application of composite-monolithic structures during the construction of the Kursk, Smolensk and Chernobylskaya NPPs permitted to decrease labour content and reduce periods of accomplishment of these works which saves over 6 million roubles

  14. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility.

    Science.gov (United States)

    He, Meng; Wang, Zhenggang; Cao, Yan; Zhao, Yanteng; Duan, Bo; Chen, Yun; Xu, Min; Zhang, Lina

    2014-09-08

    High strength chitin/poly(vinyl alcohol) (PVA) composite hydrogels (RCP) were constructed by adding PVA into chitin dissolved in a NaOH/urea aqueous solution, and then by cross-linking with epichlorohydrin (ECH) and freezing-thawing process. The RCP hydrogels were characterized by field emission scanning electron microscopy, FTIR, differential scanning calorimetry, solid-state (13)C NMR, wide-angle X-ray diffraction, and compressive test. The results revealed that the repeated freezing/thawing cycles induced the bicrosslinked networks consisted of chitin and PVA crystals in the composite gels. Interestingly, a jellyfish gel-like structure occurred in the RCP75 gel with 25 wt % PVA content in which the amorphous and crystalline PVA were immobilized tightly in the chitin matrix through hydrogen bonding interaction. The freezing/thawing cycles played an important role in the formation of the layered porous PVA networks and the tight combining of PVA with the pore wall of chitin. The mechanical properties of RCP75 were much higher than the other RCP gels, and the compressive strength was 20× higher than that of pure chitin gels, as a result of broadly dispersing stress caused by the orderly multilayered networks. Furthermore, the cell culture tests indicated that the chitin/PVA composite hydrogels exhibited excellent biocompatibility and safety, showing potential applications in the field of tissue engineering.

  15. Strategies of employees in the construction industry to increase their sustainable employability.

    Science.gov (United States)

    Tonnon, Susanne C; van der Veen, Rozan; de Kruif, Anja Th C M; Robroek, Suzan J W; van der Ploeg, Hidde P; Proper, Karin I; van der Beek, Allard J

    2018-01-01

    The aging work force makes sustainable employability (SE) of workers a priority. However, it is unknown to what extent employees use implemented SE measures. To determine the utilization of 1) SE measures offered by employers, 2) employee SE strategies, and 3) to identify barriers and facilitators of SE strategies. Survey data were collected among 731 blue collar and 879 white collar workers to determine the utilization of employer SE measures. Focus groups were held with 16 blue collar and 17 white collar workers to identify employee SE strategies and their barriers and facilitators. Utilization of employer SE measures was highest for personal development measures. Strategies applied by blue collar workers included using equipment, suggesting improvements of their working conditions, and seeking promotion to a less physically demanding job. White collar workers named engaging in leisure time physical activity and seeking an adequate work-life balance. Implementation of these strategies was influenced by employee awareness and self-efficacy, the accessibility and costs and benefits of the strategy, management support and company culture. Usage of employer SE measures was generally low and recommendations are given for both blue and white collar workers to improve SE strategies.

  16. Sustainable Tourism Experiences in Ecuador; Implementing knowledge’ Social Construction process in a rural community

    Directory of Open Access Journals (Sweden)

    Johanna Rodriguez

    2018-04-01

    Full Text Available This work aims to socialize a successful experience for Social Knowledge Construction in the field of Environmental Literacy. This work takes place at the rural Afro-Ecuadorian community “San Miguel”, located in Ecuador, South America. The participants are 35 women and men, who installed a communitarian tourism project with the support of national and international rural development programs in 2005. However, any study had been executed in the location to determine the impacts on the natural and cultural heritage, since the touristic project began; in consequence, the community has not information to take decisions about their entrepreneurship. This work applied the ethnographic social research method and the techniques of semi-structured interview and community surveys to collect data. It was applied the Model of Echavarren for Assessing the Tourism Impacts on Natural and Cultural Resources. The results show that the economical contribution from the touristic project is still low but, necessary in the community. There are no relevant impacts on the natural and cultural heritage. However, an Environmental Literacy Plan based on Mendonça and the Social Knowledge Construction approach is introduced by the authors to strengthen local people environmental behavior. This plan can be adapted and applied in other communities. It is concluded that environmental literacy plans can be more efficient when are applied as transversal topics during formal and informal communitarian activities. This community members respect their agreement for keeping their natural and cultural resources for the enjoying of the future generations; even when, this represents a limited economic retribution.

  17. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  18. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.

    Science.gov (United States)

    Luo, Pei; Liu, Feng; Zhang, Shunan; Li, Hongfang; Yao, Ran; Jiang, Qianwen; Xiao, Runlin; Wu, Jinshui

    2018-06-01

    A series of three-stage pilot-scale surface flow constructed wetlands (CWs) planted with Myriophyllum aquaticum were fed with three strengths of lagoon-pretreated swine wastewater to study nitrogen (N) removal and recovery under sustainable plant harvesting management. The CWs had mean removal efficiency of 87.7-97.9% for NH 4 + -N and 85.4-96.1% for total N (TN). The recovered TN mass via multiple harvests of M. aquaticum was greatest (120-222 g N m -2  yr -1 ) when TN concentrations were 21.8-282 mg L -1 . The harvested TN mass accounted for 0.85-100% of the total removal in the different CW units. Based on mass balance estimation, plant uptake, sediment storage, and microbial removal accounted for 13.0-55.0%, 4.9-8.0%, and 33.0-67.5% of TN loading mass, respectively. The results of this study confirm that M. aquaticum is appropriate for the removal and recovery of nutrients in CW systems designed for treating swine wastewater in conjunction with sustainable plant harvesting strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Construction of the Classification and Grading Index System of Cultivated Land Based on the Viewpoint of Sustainable Development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to objectively and reasonably evaluate the actual and potential value of cultivated land, both social and ecological values are introduced into the classification and grading index system of cultivated land based on the viewpoint of sustainable development, after considering the natural and economic values of cultivated land. Index system construction of the sustainable utilization of cultivated land should follow the principles of economic viability, social acceptability, and ecological protection. Classification of cultivated land should take into account the soil fertility of cultivated land. Then, grading of cultivated land is carried out from the practical productivity (or potential productivity) of cultivated land. According to the existing classification index system of cultivated land, the soil, natural and environmental factors in plains, mountains and hills are mainly modified in the classification index system of cultivated land. And index systems for the cultivated land classification in plains, mountains and hills are set up. The grading index system of cultivated land is established based on the economic viability (economic value), social acceptability (social value) and protection of cultivated land (ecological value). Quantitative expression of cultivated land grading index is also carried out.

  20. Epicrystal modification of construction composites of different purpose with application of granulated nanostructured aggregate

    Directory of Open Access Journals (Sweden)

    STROKOVA Valeria Valerievna

    2016-10-01

    Full Text Available The paper shows that the volume impregnation of the concrete matrix in case of using granular nanostructured aggregate is an example of several anthropogenic metasomatosis such as phase replacement with the change of the chemical composition, as well as formation of new paragenesises, transformation of characteristics of final material. It is shown the impregnation of concrete with modifying solution results in microstructure impaction and homogenization; grain surface is covered with micro- and nano-sized new formations with different morphology. Considering the relevance of researches related to the development of new lightweight concrete aggregates and modification of traditionally used aggregates application of nanostructured granular aggregate for the implementation epicrystal modification of lightweight concrete based on inorganic binders is proposed. It allows creating composite macroporous structure with joint modification of the matrix on nano- and microlevel. Also, in view of increase in number of researches devoted to alkali-activated silicate and aluminosilicate systems for application as individually and as modifiers for increasing of hydrophobic properties of building materials, the possibility of creating a fine-grained concrete with low water absorption by the introduction of hydrophobic additives into the composition of granular nanostructured aggregate is demonstrated. During the steam treatment the fluids from solutions of sodium polysilicates and hydrophobic additives are form at the core of the granular aggregate with its later migration through the shell of the granules and spreading in the volume of the concrete matrix. Improving of performance characteristics presented construction composites for various purposes is defined by the infiltrational metasomatic transformation of crystalline matrix with the activated functional systems, obtained during the thermal activation of granulated nanostructured aggregate.

  1. Sustained Dye Release Using Poly(urea-urethane)/Cellulose Nanocrystal Composite Microcapsules.

    Science.gov (United States)

    Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P

    2017-02-14

    The aim of this study is to develop methods to reinforce polymeric microspheres with cellulose nanocrystals (CNCs) to make eco-friendly microcapsules for a variety of applications such as medicines, perfumes, nutrients, pesticides, and phase change materials. Surface hydrophobization treatments for CNCs were performed by grafting poly(lactic acid) oligomers and fatty acids (FAs) to enhance the dispersion of nanoparticles in the polymeric shell. Then, a straightforward process is demonstrated to design sustained release microcapsules by the incorporation of the modified CNCs (mCNCs) in the shell structure. The combination of the mCNC dispersion with subsequent interfacial polyurea (PU) to form composite capsules as well as their morphology, composition, mechanical properties, and release rates were examined in this study. The PU microcapsules embedded with the mCNC were characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The morphologies of the microcapsules were characterized by optical microscopy (OM) and scanning electron microscope (SEM). The rupture stress and failure behavior of the microcapsules were determined through single-capsule compression tests. Oil-soluble Sudan II dye solution in mineral oil was utilized as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency was measured spectroscopically. The release rates of the encapsulated dye from the microcapsules were examined spectroscopically by both ethanol and 2-ethyl-1-hexanol medium at room temperature. The concentration of released dye was determined by using UV-vis absorption spectrometry (UV-vis). The mCNC embedded poly(urea-urethane) capsules have strong and dense walls, which function as excellent barriers against leakage due to their extended diffusion path length and ensure enough mechanical strength from rupture for handling or postprocessing.

  2. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    Energy Technology Data Exchange (ETDEWEB)

    Stadel, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Drexel Univ., Philadelphia, PA (United States); Gursel, Petek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  3. Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs

    Directory of Open Access Journals (Sweden)

    E. Zea Escamilla

    2015-09-01

    Full Text Available This data article presents the life cycle inventories of 20 transitional shelter solutions. The data was gathered from the reports 8 shelter designs [1]; 10 post-disaster shelter designs [2]; the environmental impact of brick production outside of Europe [3]; and the optimization of bamboo-based post-disaster housing units for tropical and subtropical regions using LCA methodologies [4]. These reports include bill of quantities, plans, performance analysis, and lifespan of the studied shelters. The data from these reports was used to develop the Life Cycle Inventories (LCI. All the amounts were converted from their original units (length, volume and amount into mass (kg units and the transport distance into ton×km. These LCIs represent the production phases of each shelter and the transportation distances for the construction materials. Two types of distances were included, local (road and international (freight ship, which were estimated based on the area of the country of study. Furthermore, the digital visualization of the shelters is presented for each of the 20 designs. Moreover, this data article presents a summary of the results for the categories Environment, Cost and Risk and the contribution to the environmental impact from the different building components of each shelter. These results are related to the article “Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs”[5

  4. Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs.

    Science.gov (United States)

    Zea Escamilla, E; Habert, G

    2015-09-01

    This data article presents the life cycle inventories of 20 transitional shelter solutions. The data was gathered from the reports 8 shelter designs [1]; 10 post-disaster shelter designs [2]; the environmental impact of brick production outside of Europe [3]; and the optimization of bamboo-based post-disaster housing units for tropical and subtropical regions using LCA methodologies [4]. These reports include bill of quantities, plans, performance analysis, and lifespan of the studied shelters. The data from these reports was used to develop the Life Cycle Inventories (LCI). All the amounts were converted from their original units (length, volume and amount) into mass (kg) units and the transport distance into ton×km. These LCIs represent the production phases of each shelter and the transportation distances for the construction materials. Two types of distances were included, local (road) and international (freight ship), which were estimated based on the area of the country of study. Furthermore, the digital visualization of the shelters is presented for each of the 20 designs. Moreover, this data article presents a summary of the results for the categories Environment, Cost and Risk and the contribution to the environmental impact from the different building components of each shelter. These results are related to the article "Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs"[5].

  5. Constructing a scale of the coalification of fossilized organic matter based on data of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Uspenskii, V A; Radchenko, O A; Smirnova, N B

    1981-03-01

    The All-Union Petroleum Research Geological Survey Institute conducted research in connection with building a scale of pure coalification. It consisted in collecting data on the characteristics of humus and humoid components in humus coals. Coals from the Donbass were selected because in their coalification two distinct genetic lines are apparent which differ in lipid content. Coals of various rank from other basins were also used in the study. The median characteristics including element composition, products of semicoking and proportions of humus-humoid and lipid components are presented in a table. The characteristics of the humus-humoid components for coals at various stages of coalification are presented in a further table. The ratio of carbon to semicoke is lower for higher stages of coalification. The second table gives a sufficiently even and regular picture of changing parameter values for the humus-humoid portion of the humus coals to be useful in constructing a coalification scale. (3 refs.) (In Russian)

  6. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production.

    Science.gov (United States)

    Lima, Marisa A; Gomez, Leonardo D; Steele-King, Clare G; Simister, Rachael; Bernardinelli, Oigres D; Carvalho, Marcelo A; Rezende, Camila A; Labate, Carlos A; Deazevedo, Eduardo R; McQueen-Mason, Simon J; Polikarpov, Igor

    2014-01-18

    The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by

  7. Comparison of Flood Vulnerability Assessments to Climate Change by Construction Frameworks for a Composite Indicator

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2018-03-01

    Full Text Available As extreme weather conditions due to climate change can cause deadly flood damages all around the world, a role of the flood vulnerability assessment has become recognized as one of the preemptive measures in nonstructural flood mitigation strategies. Although the flood vulnerability is most commonly assessed by a composite indicator compiled from multidimensional phenomena and multiple conflicting criteria associated with floods, directly or indirectly, it has been often overlooked that the construction frameworks and processes can have a significant influence on the flood vulnerability indicator outcomes. This study has, therefore, compared the flood vulnerability ranking orders for the 54 administrative districts in the Nakdong River Watershed of the Korean Peninsula, ranked from composite indicators by different frameworks and multi-attribute utility functions for combining the three assessment components, such as exposure, sensitivity, and coping, presented in the IPCC Third Assessment Report. The results show that the different aggregation components and utility functions under the same proxy variable system can lead to larger volatility of flood vulnerability rankings than expected. It is concluded that the vulnerability indicator needs to be derived from all three assessment components by a multiplicative utility function for a desirable flood vulnerability assessment to climate change.

  8. A constructive nonlinear array (CNA) method for barely visible impact detection in composite materials

    Science.gov (United States)

    Malfense Fierro, Gian Piero; Meo, Michele

    2017-04-01

    Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).

  9. Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making.

    Science.gov (United States)

    Di Maria, Andrea; Eyckmans, Johan; Van Acker, Karel

    2018-05-01

    Urgent solutions are needed in Europe to deal with construction and demolition waste (CDW). EU policy has contributed to significantly reducing the amount of CDW going to landfill, but most of the effort has been put in downcycling practices. Therefore, further policies are needed to stimulate high-quality recycling of CDW. The present paper presents a combined life cycle assessment (LCA) and life cycle costing (LCC) methodologies to analyse the environmental and the economic drivers in four alternative CDW end-of-life scenarios in the region of Flanders, in Belgium. The four analysed alternatives are (i) landfilling, (ii) downcycling, (iii) advanced recycling and (iv) recycling after selective demolition. LCA results show that landiflling is the scenario having the highest environmental impacts in terms of person equivalent (PE), followed by downcycling and recycling (-36%) and recycling after selective demolition (-59%). The decrease in environmental impacts is mostly due to the avoided landfilling of CDW and the recovery of materials from selective demolition. LCC results indicate that landfilling is the scenario bearing the highest total economic costs. This is due to the high landfill tax in Flanders. The recycling after selective demolition bears the second highest cost. The increase of high-quality CDW recycling can significantly reduce the overall environmental impact of the system. Implementing a high landfill tax, increasing the gate fee to the recycling plant, and boosting the sales price of recycled aggregates are the most effective drivers to facilitate a transition towards a more sustainable CDW management system. The paper demonstrates that the combined LCA and LCC results can highlight the environmental and economic drivers in CDW management. The results of the combined analysis can help policymakers to promote the aspects contributing to sustainability and to limit the ones creating a barrier. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Assessing Sustainability in Developing Country Contexts: The Applicability of Green Building Rating Systems to Building Design and Construction in Madagascar and Tanzania

    OpenAIRE

    Ozolins, Peter Charles

    2010-01-01

    Buildings have significant and complex impacts both in their construction and in their use. Green building rating systems have been developed and promoted in more economically-advanced countries to offer guidelines to reduce negative impacts and to promote sustainable practices of building construction and operations. The green building rating system called Leadership in Energy and Environmental Design (LEED), established in 1995 by the U.S. Green Building Council, is increasingly accepted as...

  11. Complex solution of problem of all-season construction of roads and pipelines on universal composite pontoon units

    Science.gov (United States)

    Ryabkov, A. V.; Stafeeva, N. A.; Ivanov, V. A.; Zakuraev, A. F.

    2018-05-01

    A complex construction consisting of a universal floating pontoon road for laying pipelines in automatic mode on its body all year round and in any weather for Siberia and the Far North has been designed. A new method is proposed for the construction of pipelines on pontoon modules, which are made of composite materials. Pontoons made of composite materials for bedding pipelines with track-forming guides for automated wheeled transport, pipelayer, are designed. The proposed system eliminates the construction of a road along the route, ensures the buoyancy and smoothness of the self-propelled automated stacker in the form of a "centipede", which has a number of significant advantages in the construction and operation of the entire complex in the swamp and watered areas without overburden.

  12. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control.

    Science.gov (United States)

    Bianchi, F J J A; Booij, C J H; Tscharntke, T

    2006-07-22

    Agricultural intensification has resulted in a simplification of agricultural landscapes by the expansion of agricultural land, enlargement of field size and removal of non-crop habitat. These changes are considered to be an important cause of the rapid decline in farmland biodiversity, with the remaining biodiversity concentrated in field edges and non-crop habitats. The simplification of landscape composition and the decline of biodiversity may affect the functioning of natural pest control because non-crop habitats provide requisites for a broad spectrum of natural enemies, and the exchange of natural enemies between crop and non-crop habitats is likely to be diminished in landscapes dominated by arable cropland. In this review, we test the hypothesis that natural pest control is enhanced in complex patchy landscapes with a high proportion of non-crop habitats as compared to simple large-scale landscapes with little associated non-crop habitat. In 74% and 45% of the studies reviewed, respectively, natural enemy populations were higher and pest pressure lower in complex landscapes versus simple landscapes. Landscape-driven pest suppression may result in lower crop injury, although this has rarely been documented. Enhanced natural enemy activity was associated with herbaceous habitats in 80% of the cases (e.g. fallows, field margins), and somewhat less often with wooded habitats (71%) and landscape patchiness (70%). The similar contributions of these landscape factors suggest that all are equally important in enhancing natural enemy populations. We conclude that diversified landscapes hold most potential for the conservation of biodiversity and sustaining the pest control function.

  13. Influence of chemical composition of civil construction waste in the cement paste; Influencia da composicao quimica dos residuos da construcao civil a pasta de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C., E-mail: valeria@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2009-07-01

    The construction and demolition waste when disposed inappropriately might cause serious public health problems. Its reutilization focusing on the development of new products using simple production techniques, assuring a new product life cycle and not damaging the environment is inserted in sustainable concept. The aim of this work was identifying the characteristics of types of waste generated in a residential reform (glassy ceramic and fill dirt leftovers) verifying separately its influence on cement pastes mechanical behavior. Cement pastes + wastes were prepared in 25% and 50% proportions with an approximately 0,35 water/cement relation and, glue time determination, water absorption, resistance to compression and X-ray fluorescence assays were taken. The results indicate that the chemical composition of the waste causes changes in the behavior of cement pastes, reflecting on their resistance to compression. (author)

  14. Evaluation System sustainable building of the Federal State. Evidence of sustainability criteria for the new construction of office and administration buildings; Bewertungssystem Nachhaltiges Bauen des Bundes. Nachweis der Nachhaltigkeitskriterien fuer den Neubau von Buero- und Verwaltungsgebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Kerz, Nicolas; Rietz, Andreas [Bundesinstitut fuer Bau-, Stadt- und Raumforschung (BBSR), Berlin (Germany)

    2011-07-01

    Numerous research projects funded by the Federal Ministry of Transport, Building and Urban Development (Berlin, Federal Republic of Germany) are the essential basis for the emergence of a systematic sustainability assessment. After two years of cooperation with the German Sustainable Building Council (Stuttgart, Federal Republic of Germany) a scientifically substantiated and design based process of evaluation for the construction of administrative buildings was available. On the basis of a practical testing the system of evaluating of sustainability was refined to a ''rating system for sustainable building''. The contribution under consideration reports on the structure and methodology of this evaluation system as well as on working materials and tools for planning and evaluation.

  15. Oasis Sudcalifornianos: Biocultural landscapes with high adaptability to aridity and potential for the construction of local sustainability

    Directory of Open Access Journals (Sweden)

    Martha Micheline Cariño Olivera

    2017-09-01

    Full Text Available In this article, we use an environmental history approach to analyze the origin and development of oases; complex socio-ecological systems where the humid and dry zones are complemented, as an adaptive strategy to aridity and scarcity. Through participant observation and documentary research we propose the concept of oasesness to explain the bio-cultural synthesis that originated when local ecological knowledge of the Baja California Sur merged with the overarching global culture of the oasis. Until the middle of the 20th century oases were central places in the peninsular economy. Ever since, they have declined to the point of becoming endangered spaces. This would be a regretful loss for two main reasons: because of its historical value and because of the implications that the loss of this knowledge would have towards the construction of local sustainability. We conclude by laying out the blueprints for an intervention that will enable to protect and recover the bio-cultural heritage of the Baja California oases.

  16. Nanotechnologies for sustainable construction

    NARCIS (Netherlands)

    Lazaro Garcia, A.; Yu, Q.; Brouwers, H.J.H.; Khatib, J.M.

    2016-01-01

    Nanotechnology has been gaining popularity among the industrial sector and researchers in the last decades. The number of products containing nanomaterials that enter the market has also increased rapidly, and this trend is going to be even more pronounced in the coming years. The total value of

  17. Sustainable advanced construction technologies

    CSIR Research Space (South Africa)

    Kuchena, JC

    2009-11-01

    Full Text Available techniques that are the backbone of industries such as the car manufacturing industry. Modular houses are designed and prefabricated away from site and assembled like Lego prinzips. Eco-Materials are also redefined and transformed with set standards...

  18. Building Design & Construction - Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-11-01

    Offers a brief history of green building; presents the results of a specially commissioned survey; and analyzes the chief trends, issues, and published research, based on interviews with dozens of experts and participants in green building.

  19. Students' Qualification in Environmental and Sustainability Education--Epistemic Gaps or Composites of Critical Thinking?

    Science.gov (United States)

    Hasslöf, Helen; Lundegård, Iann; Malmberg, Claes

    2016-01-01

    In an "age of measurement" where students' "qualification" is a hot topic on the political agenda, it is of interest to ask what the "function of qualification" might implicate in relation to a complex issue as Education for Sustainable Development (ESD) and what function environmental and sustainability issues serve…

  20. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  1. Construction of a Composite Hospital Admission Index Using the Aggregated Weights of Criteria

    International Nuclear Information System (INIS)

    Nor Hasliza Mat Desa; Abdul Aziz Jemain; Maznah Mat Kasim

    2015-01-01

    The issue of age difference in hospital admission should be given special attention since it affects the structure of hospital care and treatments. Patients of different age groups should be given different priority in service provision. Due to crucial time and limited resources, health care managers need to make wise decisions in identifying priorities in age of admission. This paper aimed to propose a construction of a daily composite hospital admission index (CHAI) as an indicator that captures relevant information about the overall performance of hospital admission over time. It involves five different age groups of total patients admitted to seven major public hospitals in the Klang Valley, Malaysia for respiratory and cardiovascular diseases for a period of three years, 2008 - 2010. The criteria weights were predetermined by aggregating the subjective weight based on rank ordered centroid (ROC) method and objective weight based on entropy - kernel method. The highest and lowest scores of CHAI were marked, while the groups of patients were prioritized according to the criteria weight ranking orders. (author)

  2. Technician Dave Brown installs a drilling template during construction of the all-composite left win

    Science.gov (United States)

    2002-01-01

    Technician Dave Brown installs a drilling template during construction of the all-composite left wing of NASA's Altair aircraft at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  3. Asymptotical construction of a fully coupled, Reissner–Mindlin model for piezoelectric composite plates

    International Nuclear Information System (INIS)

    Liao Lin; Yu Wenbin

    2008-01-01

    The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model

  4. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C-3 species

    NARCIS (Netherlands)

    Poorter, H; VanBerkel, Y; Baxter, R; DenHertog, J; Dijkstra, P; Gifford, RM; Griffin, KL; Roumet, C; Roy, J

    We determined the proximate chemical composition as well as the construction costs of leaves of 27 species, grown at ambient and at a twice-ambient partial pressure of atmospheric CO2, These species comprised wild and agricultural herbaceous plants as well as tree seedlings, Both average responses

  5. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species

    NARCIS (Netherlands)

    Poorter, H.; Berkel, Y. van; Baxter, B.; Hertog, J. den; Dijkstra, P.; Gifford, R.M.; Griffin, K.L.; Roumet, C.; Roy, J.; Wong, S.C.

    1997-01-01

    We determined the proximate chemical composition as well as the construction costs of leaves of 27 species, grown at ambient and at a twice-ambient partial pressure of atmospheric CO₂. These species comprised wild and agricultural herbaceous plants as well as tree seedlings. Both average

  6. Prestressing Concrete with CFRP Composites for Sustainability and Corrosion-Free Applications

    Directory of Open Access Journals (Sweden)

    Belarbi A.

    2018-01-01

    Full Text Available Advancement in material science has enabled the engineers to enhance the strength and long-term behavior of concrete structures. The conventional approach is to use steel for prestressed bridge girders. Despite having good ductility and strength, beams prestressed with steel are susceptible to corrosion when subjected to environmental exposure. The corrosion of the prestressing steel reduces load carrying capacity of the prestressed member and result in catastrophic failures. In the last decades, more durable composite materials such as Aramid Fiber Reinforced Polymer (AFRP, Glass Fiber Reinforced Polymer (GFRP and Carbon Fiber Reinforced Polymer (CFRP have been implemented in concrete structures as a solution to this problem. Among these materials, CFRP stands out as a primary prestressing reinforcement, which has the potential to replace steel and provide corrosion free prestressed bridge girders. Despite its promise, prestressing CFRP has not frequently been used for bridge construction worldwide. The major contributing factor to the lack of advancement of this promising technology in the United States (U.S. is the lack of comprehensive design specifications. Apart from a limited number of guides, manuals, and commentaries, there is currently no standard or comprehensive design guideline available to bridge engineers in the U.S. for the design of concrete structures prestressed with CFRP systems. The main goal is to develop design guidelines in AASHTO-LRFD format for concrete bridge girders with prestressing CFRP materials. The guidelines are intended to address the limitation in current AASHTO-LRFD Bridge Design Specifications which is applicable for prestressed bridge girders with steel strands. To accomplish this goal, some of the critical parameters that affect the design and long-term behavior of prestressed concrete bridge girders with prestressing CFRP systems are identified and included in the research work. This paper presents

  7. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    Science.gov (United States)

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    Science.gov (United States)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  9. Sustainable Bio-Aggregate-Based Composites Containing Hemp Hurds and Alternative Binder

    Directory of Open Access Journals (Sweden)

    Nadezda Stevulova

    2018-02-01

    Full Text Available This experimental study was focused on the application of a surface-modified hemp- hurds aggregate into composites using an alternative binder of MgO-cement. This paper presents the results of the comparative study of the parameters (chemical and physico-chemical modification, and hardening time affecting the physical (density, thermal conductivity coefficient and water-absorption behavior and mechanical properties (compressive strength of the bio-aggregate-based composite. A test of the parameters of the bio-composite samples showed some differences, which were determined by the chemical and surface properties of the modified filler, and which affected the mechanisms of hardening. The bulk density values of the hemp hurd composites hardened for 28 days place this material in the lightweight category of composites. The values of water absorption and the thermal conductivity coefficient of bio-composites decreased, and the strength parameter increased with an increase in the hardening time. The lower values of compressive strength, water absorption, and thermal conductivity coefficient (except for the ethylenediaminetetraacetic-acid-treated filler were observed in composites based on fillers chemically treated with NaOH and Ca(OH2 compared to referential composites (based on original hemp hurds. This is related to changes in the chemical composition of hemp hurds after chemical modification. The composites with ultrasound-treated hemp hurds had the greatest strengths at each hardening time. This is related to pulping the bundles of fibers and forming a larger surface area for bonding in the matrix.

  10. Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-01-01

    Full Text Available The electric power industry is of great significance in promoting social and economic development and improving people’s living standards. Power grid construction is a necessary part of infrastructure construction, whose sustainability plays an important role in economic development, environmental protection and social progress. In order to effectively evaluate the sustainability of power grid construction projects, in this paper, we first identified 17 criteria from four dimensions including economy, technology, society and environment to establish the evaluation criteria system. After that, the grey incidence analysis was used to modify the traditional Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS, which made it possible to evaluate the sustainability of electric power construction projects based on visual angle of similarity and nearness. Then, in order to simplify the procedure of experts scoring and computation, on the basis of evaluation results of the improved TOPSIS, the model using Modified Fly Optimization Algorithm (MFOA to optimize the Least Square Support Vector Machine (LSSVM was established. Finally, a numerical example was given to demonstrate the effectiveness of the proposed model.

  11. Construction and design of CO2-laser amplifiers with self-sustained and electron-beam-controlled gas discharge

    International Nuclear Information System (INIS)

    Schmid, W.E.

    1975-08-01

    Following a description of the fundamentals and of the manner of functioning of CO 2 lasers, a theoretical and experimental investigation is performed to see whether the self-sustained or the non-self-sustained gas discharge is suitable for an amplifier in a CO 2 high-power laser system. The measured results show that the excitation by non-self-sustained gas discharge is more advantageous for amplifiers. The reasons are given. (GG/LH) [de

  12. Nanoindentation Characterization of a Ternary Clay-Based Composite Used in Ancient Chinese Construction

    Directory of Open Access Journals (Sweden)

    Dongwei Hou

    2016-10-01

    Full Text Available Ternary clay-based composite material (TCC, composed of lime, clay and sand, and usually modified with sticky rice and other organic compounds as additives, was widely used historically in Chinese construction and buildings due to its high mechanical performance. In this study, to gain an insight into the micromechanical mechanism of this cementitious material, the nanomechanical properties and volume fraction of mechanically different phases of the binder matrix are derived from the analysis of grid nanoindentation tests. Results show that there are five distinct mechanical phases, where the calcium silicate hydrate (C-S-H and geopolymer present in the binder matrix are almost identical to those produced in ordinary Portland cement (OPC and alkali-activated fly-ash geopolymer materials in nano-mechanical performance. The nano-mechanical behavior of calcite produced by the carbonation of lime in this binder is close to the calcite porous outer part of some sea urchin shells. Compared to OPC, the C-S-H contained in the TCC has a relatively lower ratio of indentation modulus to indentation hardness, implying a relatively lower resistance to material fracture. However, the geopolymer and calcite, at nearly the same volume content as the C-S-H, help to enhance the strength and durability of the TCC by their higher energy resistance capacity or higher strength compared to the C-S-H. Rediscovering of TCC offers a potential way to improve modern concrete’s strength and durability through synergy of multi-binders and the addition of organic materials if TCC can be advanced in terms of its workability and hardening rate.

  13. Evaluation of poly(2-ethyl-2-oxazoline) containing copolymer networks of varied composition as sustained metoprolol tartrate delivery systems.

    Science.gov (United States)

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-08-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. Swelling kinetics of SCNs in various media was followed, and the conditions for effective MT loading were specified. MT-loaded SCNs with drug content up to 80 wt.% were produced. The release kinetics of metoprolol tartrate from the systems was studied and it was shown that the conetworks of different structure and composition are able to sustain the metoprolol tartrate release without additional excipients.

  14. The Construction of an Environmental Management Model Based on Sustainability Indicators on a Higher Education Institution in Mexico

    Science.gov (United States)

    Nieblas-Ortiz, Efrain C.; Arcos-Vega, José L.; Sevilla-García, Juan J.

    2017-01-01

    Without depreciating the importance of environmental regulations directed to university environmental managements systems in this country, nowadays, the instruments of international importance like the Sustainable Development Goals or ONU's 2030 Agenda; as well as those of domestic nature, like sustainability indicators proposed by the Mexican…

  15. Building for a post-fossil era. Sustainable construction and operation of buildings; Bauen fuer die nachfossile Aera. Nachhaltiges Bauen und Betreiben von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Klaus [HL Beratungs- und Beteiligungs GmbH, Muenchen (Germany)

    2009-07-01

    The challenges of the 21st century will mostly be the result of the exploding world population, i.e. increasing instability because of the unequal distribution of wealth, fights over raw materials that are getting scarce, and the destruction of our natural resources. Increasingly, decision-makers are getting aware of the problems. This has consequences also for the process of building construction. For example, sustainability will be given greater attention in projecting and operation of buildings. (orig.)

  16. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC

    Directory of Open Access Journals (Sweden)

    Seok-Joon Jang

    2014-02-01

    Full Text Available This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.

  17. A revolutionary approach to composite construction and flight management systems for small, general aviation airplanes

    Science.gov (United States)

    Roskam, Jan; Wenninger, ED

    1992-01-01

    The design studies for two composite general aviation airplanes are presented. The main consideration for both of the designs was to avoid the typical 'metal replacement' philosophy that has hindered the widespread use of composites in general aviation aircraft. The first design is for a low wing aircraft based on the Smith Aircraft Corporation GT-3 Global Trainer. The second aircraft is a composite version of the Cessna 152. The project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in aeronautics. The results obtained from the Fall semester of 1991 and the Spring semester of 1992 are presented.

  18. The method of modelling of relationships between hardenability and chemical composition of the constructional alloy steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    1998-01-01

    Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. The practical usability of the models developed is presented. (author)

  19. Layer-by-Layer technique employed to construct multitask interfaces in polymer composites

    Directory of Open Access Journals (Sweden)

    Luísa Sá Vitorino

    Full Text Available Abstract The properties of glass fiber-reinforced polymer composites are closely related to the fiber-matrix interface. Interfacial treatments to improve mechanical properties are usually limited to enhance interfacial adhesion. In this work, Layer-by-Layer (LbL technique was introduced to build a novel interface in polymer composites. Different numbers of bilayers of poly(diallyldimethylammonium chloride and poly(sodium 4-styrenesulfonate with carbon nanotubes were deposited through LbL on the surface of woven glass fibers (GFs. Polypropylene composites containing the modified GFs were prepared by compression molding. Thermogravimetric analysis, scanning electron microscopy and Raman spectroscopy proved that multilayers of polymers with carbon nanotubes could be deposited on GFs surface. Mechanical tests on composites with modified GFs revealed an increase in Flexural Modulus and toughness. The overall results attested that the LbL technique can be used to design interfaces with different compositions to perform diverse tasks, such as to improve the stiffness of composites and to encapsulate active nanocomponents.

  20. Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics

    International Nuclear Information System (INIS)

    Kuddusi, Luetfullah; Denton, Jesse C.

    2007-01-01

    The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated

  1. Sustainable binders for concrete: A structured approach from waste screening to binder composition development

    NARCIS (Netherlands)

    Vinai, R.; Panagiotopoulou, C.; Soutsos, M.; Taxiarchou, M.; Zervaki, M.; Valcke, S.L.A.; Ligero, V.C.; Couto, S.; Gupta, A.; Pipilikaki, P.; Alvarez, I.L.; Coelho, D.; Branquinho, J.

    2015-01-01

    Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland

  2. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features

    Science.gov (United States)

    Bastos, Guillermo; Patiño-Barbeito, Faustino; Patiño-Cambeiro, Faustino; Armesto, Julia

    2016-01-01

    For more than a century, several inclusions have been mixed with Portland cement—nowadays the most-consumed construction material worldwide—to improve both the strength and durability required for construction. The present paper describes the different families of inclusions that can be combined with cement matrix and reviews the achievements reported to date regarding mechanical performance, as well as two other innovative functionalities of growing importance: reducing the high carbon footprint of Portland cement, and obtaining new smart features. Nanomaterials stand out in the production of such advanced features, allowing the construction of smart or multi-functional structures by means of thermal- and strain-sensing, and photocatalytic properties. The first self-cleaning concretes (photocatalytic) have reached the markets. In this sense, it is expected that smart concretes will be commercialized to address specialized needs in construction and architecture. Conversely, other inclusions that enhance strength or reduce the environmental impact remain in the research stage, in spite of the promising results reported in these issues. Despite the fact that such functionalities are especially profitable in the case of massive cement consumption, the shift from the deeply established Portland cement to green cements still has to overcome economic, institutional, and technical barriers. PMID:28774091

  3. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Šupová, Monika; Klapková, E.; Horný, L.; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, R.; Veselý, J.; Chlup, H.; Denk, František

    2016-01-01

    Roč. 105, č. 3 (2016), 1288-1294 ISSN 0022-3549 R&D Projects: GA TA ČR(CZ) TA04010330 Institutional support: RVO:67985891 Keywords : anti-infectives * HPLC * coating * controlled release * degradation products * drug delivery systems * nanoparticles * pharmacokinetics * polymeric drug delivery systems Subject RIV: JI - Composite Materials Impact factor: 2.713, year: 2016

  4. “I WILL SURVIVE” A Construct Validation Study on the Measurement of Sustainable Employability Using Different Age Conceptualizations

    Directory of Open Access Journals (Sweden)

    Pascale M. Le Blanc

    2017-09-01

    Full Text Available Though the importance of sustainable employability throughout people's working life is undisputed, up till now only one attempt for a conceptual definition has been made (van der Klink et al., 2016. Following the suggestions to further refine and improve this definition recently put forward by Fleuren et al. (2016, we propose an approach to sustainable employability that is based on the Ability-Motivation-Opportunity (AMO framework, and incorporates three indicators: the ability, the motivation, and the opportunity to continue working, respectively. As sustainable employability is considered to be an important aspect of successful aging at work, this study used four different conceptualizations of aging at work to set up convergent and divergent validity of our operationalization of sustainable employability: calendar age, organizational age (job and organizational tenure, functional age (work ability, and life-span age (partner and children. We formulated several hypotheses that were tested by analyzing data from an online survey among 180 employees from Dutch public service organizations who filled out a questionnaire on different age concepts, and their ability, motivation, and opportunity to continue working. Multiple regression analyses were performed, and results showed that the four conceptualizations of aging were differently related to the three indicators of sustainable employability. Life-span age, in terms of having children, had the strongest negative relationship with the ability to continue working, organizational age (i.e., organizational tenure had the strongest negative relationship with the motivation to continue working, and functional age had the strongest negative relationship with the opportunity to continue working. Moreover, functional age was significantly negatively related to the other two indicators of sustainable employability too, while life-span age appeared to enhance the ability and motivation to continue

  5. Construction of a composite cable stayed bridge. Karnali river bridge in Nepal. Gosei shachokyo no kensetsu. Karnali kawa kyoryo

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Nakamura, K.; Shimodoi, H.; Amako, M.; Miyoshi, S.; Haruta, M.; Okada, S.; Kuroki, S. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1994-07-20

    The present report reports the construction of Karnali River Bridge in Nepal by Kawasaki Heavy Industries, Ltd. The present bridge is a composite cable stayed bridge, two-spanned with a main span length of 325m and side span length of 175m. Having an about 125m-high single tower, it is 11.3m in breadth and 3m in main truss height. The main truss is supported by both faces of 30 cables per face, i.e., 60 cables. (Each of both main and side spans has 15 cables per face.) The design and construction are described with the following their itemization: design (bending moment properties in the erected system, composite structure of main truss and stress analysis at the time of erection). Wind resisting measures (measures for the wind resistant stability at the time of erection of both tower and main truss cantilever). Fabrication and transportation of steel structural members. Fabrication of precast floor plates (concrete mixing, and fabrication and curing of floor plates). Construction of tower foundation (tremie concrete and air concrete). Erection of upper structures (erection of tower, both main and side spans, and accuracy management). 14 figs., 4 tabs.

  6. Application of Composite Structures in Bridge Engineering. Problems of Construction Process and Strength Analysis

    Science.gov (United States)

    Flaga, Kazimierz; Furtak, Kazimierz

    2015-03-01

    Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life). The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.

  7. “I WILL SURVIVE” A Construct Validation Study on the Measurement of Sustainable Employability Using Different Age Conceptualizations

    NARCIS (Netherlands)

    Blanc, P.M. le; Heijden, B.I.J.M. van der; Vuuren, T. van; LeBlanc, P.M.

    2017-01-01

    Though the importance of sustainable employability throughout people's working life is undisputed, up till now only one attempt for a conceptual definition has been made (van der Klink et al., 2016). Following the suggestions to further refine and improve this definition recently put forward by

  8. Sustainable construction and housing. A needs based approach for the future; Nachhaltiges Bauen und Wohnen. Ein Beduerfnisfeld fuer die Zukunft gestalten

    Energy Technology Data Exchange (ETDEWEB)

    Vallenthin, Mark; Paffrath, Simone; Bolland, Til (comps.)

    2010-05-15

    Our way of constructing our buildings, our life-style, our housing patterns, as well as our mobility habits, increasingly place stress on the environment and endanger the basis of existence of many living creatures on this planet. Mankind can carry on ignoring the limits of tolerance of their natural environment. However, they must then learn to cope with increasing damage caused by natural catastrophes to which they have contributed. Our extensive use of raw materials pushes the limits as well. Peak-Oil will soon be reached, although the demand for oil will continue to increase strongly. Therefore, we have to dismiss our wasteful technologies, architecture, living standards and housing patterns, established during the 'fossil age'. Construction, development, use, modernisation and repair of buildings and infrastructure take up an unacceptably large amount of surface area and cause a major part of the demand for energy and raw materials in Germany. There are excellent and worthwhile alternatives to the common and familiar habits, patterns and designs. This brochure indicates how sustainable alternatives can be found in the construction and housing sector. A compilation of alternatives - the so-called 'Sustainability scenario' - provides an excellent overview of the amazingly wide spectrum we have to satisfy our housing requirements at a high level and - at the same time - wasting considerably less natural resources. The supposed measures follow the principles 'Return from greenfield to central urban areas' and 'Rather improve the fabric of existing buildings than construct new ones'. The first principle also links to other measures for a mobility less depending on oil and less harmful to our climate. Politicians, leaders of the construction and housing industry, architects, home owners and tenants can positively shape the presented spectrum. By abolishing the home building subsidy and by promoting the energy saving

  9. A new composite decision support framework for strategic and sustainable transport appraisals

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; Salling, Kim Bang

    2015-01-01

    . The proposed framework is based on the use of cost-benefit analysis featuring feasibility risk assessment in combination with multi-criteria decision analysis and is supported by the concept of decision conferencing. The framework is applied for a transport related case study dealing with the complex decision....... The outcome of the case study demonstrates the decision making framework as a valuable decision support system (DSS), and it is concluded that appraisals of transport projects can be effectively supported by the use of the DSS. Finally, perspectives of the future modelling work are given.......This paper concerns the development of a new decision support framework for the appraisal of transport infrastructure projects. In such appraisals there will often be a need for including both conventional transport impacts as well as criteria of a more strategic and/or sustainable character...

  10. Construction and testing of simple airfoils to demonstrate structural design, materials choice, and composite concepts

    Science.gov (United States)

    Bunnell, L. Roy; Piippo, Steven W.

    1993-01-01

    The objective of this educational exercise is to have students build and evaluate simple wing structures, and in doing so, learn about materials choices and lightweight construction methods. A list of equipment and supplies and the procedure for the experiment are presented.

  11. Method for forming nuclear fuel containers of a composite construction and the product thereof

    International Nuclear Information System (INIS)

    Cheng, B.-C.; Rosenbaum, H.S.; Armijo, J.S.

    1981-01-01

    An improved method of producing a composite nuclear fuel container is described which comprises a casing or fuel sheath of zirconium or its alloy with a lining cladding of deposited copper superimposed over the inside surface of the zirconium or alloy and a layer of oxide of the zirconium or alloy formed on the inside surface of the casing or sheath. (U.K.)

  12. Composition through Construction: A Less Teacher-Directed Approach (EJ Update).

    Science.gov (United States)

    Tabachnick, Vicki

    1992-01-01

    Questions traditional composition techniques and their effects on student thinking and problem solving. Demonstrates how one high school English teacher responded to these classroom issues by reading relevant research and supplementing it with a study conducted on her own students. (HB)

  13. Nitrite sensing composite systems based on a core-shell emissive-superamagnetic structure: Construction, characterization and sensing behavior

    Science.gov (United States)

    Yang, Yan; Liu, Liang; Zha, Jianhua; Yuan, Ningyi

    2017-04-01

    Two recyclable nitrite sensing composite samples were designed and constructed through a core-shell structure, with Fe3O4 nanoparticles as core, silica molecular sieve MCM-41 as shell and two rhodamine derivatives as chemosensors, respectively. These samples and their structure were identified with their electron microscopy images, N2 adsorption/desorption isotherms, magnetic response, IR spectra and thermogravimetric analysis. Their nitrite sensing behavior was discussed based on emission intensity quenching, their limit of detection was found as low as 1.2 μM. Further analysis suggested a static sensing mechanism between nitrite and chemosensors through an additive reaction between NO+ and chemosensors. After finishing their nitrite sensing, these composite samples and their emission could be recycled and recovered by sulphamic acid.

  14. Development of a Bamboo-Based Composite as a Sustainable Green Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Holmes, John W.; Brøndsted, Povl; Sørensen, Bent F.

    2009-01-01

    Bamboo has many engineering and environmental attributes that make it an attractive material for utilization in wind turbine blades. This paper examines the mechanical properties of a novel bamboo-poplar epoxy laminate which is being developed for wind turbine blades. Information provided...... in this paper includes an overview of the laminate construction and initial data for the monotonic tensile and compressive stress-strain behavior and tension-tension fatigue life of panels formed by hot-pressing. In addition, a discussion of fracture resistance of the bamboo-poplar laminate, under Mode I...

  15. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 4B : material & construction specifications : final report.

    Science.gov (United States)

    2015-07-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4B, Materials and Construction Specifications. : This technical report...

  16. Study of the effect of composition and construction of material on sub-bandage pressure during dynamic loading of a limb in vitro.

    Science.gov (United States)

    Kumar, Bipin; Das, Apurba; Alagirusamy, R

    2013-01-01

    Internal stress in a compression bandage wrapped over a limb in vitro is expected to reduce over time because of fatigue which may occur due to repetitive and prolonged variations in the extension of the bandage during posture change and exercise. This phenomenon may cause significant variation in the sub-bandage pressure over time. To examine the effect of composition and construction of material on the sub-bandage pressure variation over time in the dynamic state of a limb in the laboratory. Yarns comprising fibers of polyester, viscose, cotton and elastomeric yarn were used to prepare different knitted bandage samples having varying thread densities in the structure. A leg-segment prototype was used for the measurement of the interface pressure over a mannequin limb to analyse different bandages under similar dynamic conditions. The pressure drop in the dynamic state of the mannequin limb was greater than that in the static state. The mean pressure drop in 2 h in the dynamic state was greater by >30% for bandages made of pure cotton or viscose yarns than for bandages having elastomeric yarns in their structure. At the same applied tension, increasing the number of yarns per unit length in the bandage structure resulted in a smaller drop in pressure in the dynamic mode. Elastomeric yarn improves the elasticity and fatigue resistance of the bandage. Therefore, these yarns should be used in bandages to obtain sustained compression effects under dynamic conditions.

  17. Dataset of the use of tannin of néré (parkia-biglobosa as a solution for the sustainability of the soil constructions in West Africa

    Directory of Open Access Journals (Sweden)

    Sinko Banakinao

    2016-09-01

    Full Text Available Soil is the main material of construction in African rural areas. Sustainability of construction with soil is a thorny problem to any builder. Finding ways to improve the durability of soil is not only essential but also salutary for the African rural community that mostly lives in soil-built houses that are very often short-lived. The present data assessed the resistance to simple compression and the resistance to bad weather by simulating rainfall alternations through a test of cycles of alternate watering and drying of blocks built from four types of different soils without binder, along with blocks built from the same soils. Keywords: Parkia-biglobosa, Bipinnateleaves, Mimosaceae

  18. A proposal for improving sustainability practice through the implementations of reuse and recycle technique in Malaysian construction industry

    Science.gov (United States)

    Osman, Wan Nadzri; Nawi, Mohd Nasrun Mohd; Saad, Rohaizah; Anuar, Herman Shah; Ibrahim, Siti Halipah

    2016-08-01

    Construction and demolition waste is often seen as the major contributor to the solid waste stream that is going to landfill, hence, making it the area of focus for improvement. In the construction industry, reuse and recycle principles have been promoted in order to reduce waste and protect the environment. Construction and demolition waste including demolished concrete, bricks and masonry, wood and other materials such as dry wall, glass, insulation, roofing, wire, pipe, rock and soil constitute a significant component of the total waste. Without proper reuse and recycle policies, these construction and demolition wastes would quickly fill all the remaining landfill space, which has already been growing in scarce around this region. Based on the feedback received, on average, a third of respondents said they currently have a lotto benefit from the use of reduce and reuse. In addition, they also agreed that the existing policies help and support the min carrying out the reduce and reuse practices. Respondents also agreed that other stakeholders in the construction industry currently have an excellent awareness in term of implementation of the reduce and reuse in their practices.

  19. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    International Nuclear Information System (INIS)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing

    2017-01-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  20. Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity.

    Science.gov (United States)

    Pan, Guiran; Yao, Yimin; Zeng, Xiaoliang; Sun, Jiajia; Hu, Jiantao; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-09-27

    Inspired by the microstructures of naturally layered and highly oriented materials, such as natural nacre, we report a thermally conductive polymer composite that consists of epoxy resin and Al 2 O 3 platelets deposited with silver nanoparticles (AgNPs). Owing to their unique two-dimensional structure, Al 2 O 3 platelets are stacked together via a hot-pressing technique, resulting in a brick-and-mortar structure, which is similar to the one of natural nacre. Moreover, the AgNPs deposited on the surfaces of the Al 2 O 3 platelets act as bridges that link the adjacent Al 2 O 3 platelets due to the reduced melting point of the AgNPs. As a result, the polymer composite with 50 wt % filler achieves a maximum thermal conductivity of 6.71 W m -1 K -1 . In addition, the small addition of AgNPs (0.6 wt %) minimally affects the electrical insulation of the composites. Our bioinspired approach will find uses in the design and fabrication of thermally conductive materials for thermal management in modern electronics.

  1. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing, E-mail: hbdeng@whu.edu.cn

    2017-03-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  2. Constructing nanoporous carbon nanotubes/Bi2Te3 composite for synchronous regulation of the electrical and thermal performances

    Science.gov (United States)

    Zhang, Qihao; Xu, Leilei; Zhou, Zhenxing; Wang, Lianjun; Jiang, Wan; Chen, Lidong

    2017-02-01

    Porous nanograined thermoelectric materials exhibit low thermal conductivity due to scattering of phonons by pores, which are favorable for thermoelectric applications. However, the benefit is not large enough to overcome the deficiency in the electrical performance. Herein, an approach is presented to reduce the thermal conductivity and synchronously enhance the electrical conductivity through constructing a nanoporous thermoelectric composite. Carbon nanotubes (CNTs) are truncated and homogeneously dispersed within the Bi2Te3 matrix by a cryogenic grinding (CG) technique for the first time, which efficiently suppress the Bi2Te3 grain growth and create nanopores with the size ranging from dozens to hundreds of nanometers. The lattice thermal conductivity is substantially decreased by broad wavelength phonon scattering resulting from nanopores, increased grain boundaries, and newly formed interfaces. Meanwhile, the electrical conductivity is improved due to the enhanced carrier mobility, which may originate from the bridging effect between the Bi2Te3 grains and CNTs. The maximum ZT is improved by almost a factor of 2 due to the simultaneous optimization of electrical and thermal performances. Our study demonstrates the superiority of constructing a bulk thermoelectric composite with nanopores by the uniform dispersion of CNTs through a CG technique for enhanced thermoelectric properties, which provides a wider approach to thermoelectric nanostructure engineering.

  3. Composition of Cu/Al system constructed by means of dynamic atomic deposition

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2011-01-01

    Rutherford backscattering and RUMP simulation programme have been applied to investigate composition of Cu/Al system prepared using dynamic atomic deposition process when deposition of Cu thin film on Al substrate was assisted with 6 keV Ar + ions irradiation. It is estimated that thin ( ~15 nm) surface layer consists of ~50 at.% Cu, ~10 at.% Ar, ~4 at.% O and the remaining is Al. Dynamic deposition of Cu on Al substrate is accompanied with radiation enhanced diffusion of Cu, O, Ar atoms in substrate and out diffusion of Al atoms in deposited Cu coating. (authors)

  4. Fiber-reinforced plastic composites. Possibilities and limitations of applications as machine-construction materials

    Science.gov (United States)

    Ophey, Lothar

    1988-01-01

    The use of fiber-reinforced composite structural materials in engineering applications is discussed in a survey of currently available technology and future prospects. The ongoing rapid growth in the use of these materials is described, and the criteria to be applied in selecting base materials, lamination schemes, fasteners, and processing methods are examined in detail and illustrated with graphs, diagrams, flow charts, and drawings. A description of a sample application (comparing the properties of steel, CFRP, SiC-reinforced Al, CFRP/steel, and CFRP/Al automobile piston rods) is included.

  5. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles.

    Science.gov (United States)

    Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu

    2018-04-04

    Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

  6. Composition and leaching of construction and demolition waste: inorganic elements and organic compounds.

    Science.gov (United States)

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2014-07-15

    Thirty-three samples of construction and demolition waste collected at 11 recycling facilities in Denmark were characterised in terms of total content and leaching of inorganic elements and presence of the persistent organic pollutants PCBs and PAHs. Samples included (i) "clean" (i.e. unmixed) concrete waste, (ii) mixed masonry and concrete, (iii) asphalt and (iv) freshly cast concrete cores; both old and newly generated construction and demolition waste was included. PCBs and PAHs were detected in all samples, generally in non-critical concentrations. Overall, PAHs were comparable to background levels in urban environments. "Old" and "new" concrete samples indicated different PCB congener profiles and the presence of PCB even in new concrete suggested that background levels in raw materials may be an issue. Significant variability in total content of trace elements, even more pronounced for leaching, was observed indicating that the number of analysed samples may be critical in relation to decisions regarding management and utilisation of the materials. Higher leaching of chromium, sulphate and chloride were observed for masonry-containing and partly carbonated samples, indicating that source segregation and management practices may be important. Generally, leaching was in compliance with available leaching limits, except for selenium, and in some cases chromium, sulphate and antimony. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  8. Carbon Nanotubes/Gold Nanoparticles Composite Film for the Construction of a Novel Amperometric Choline Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2011-01-01

    Full Text Available This study develops a facile method to fabricate a novel choline biosensor based on multiwalled carbon nanotubes (MWCNTs and gold nanoparticles (AuNPs. Chitosan, a natural biocompatible polymer, was used to solubilize MWCNTs for constructing the aqueous Chit-MWCNTs solution. Then Chit-MWCNTs were first dropped on the surface of a cleaned platinum electrode. Finally, a thiolated silica sol containing AuNPs and choline oxidase (ChOx was immobilized on the surface of the Chit-MWCNTs-modified electrode. The MWCNTs/AuNPs/Pt electrode showed excellent electrocatalytic activity for choline. The resulting choline biosensor showed high sensitivity of choline (3.56 μA/mM, and wide linear range from 0.05 to 0.8 mM with the detection limit of 15 μM. In addition, good reproducibility and stability were obtained.

  9. Composition and leaching of construction and demolition waste: Inorganic elements and organic compounds

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard

    2014-01-01

    Thirty-three samples of construction and demolition waste collected at 11 recycling facilities in Denmark were characterised in terms of total content and leaching of inorganic elements and presence of the persistent organic pollutants PCBs and PAHs. Samples included (i) "clean" (i.e. unmixed...... for leaching, was observed indicating that the number of analysed samples may be critical in relation to decisions regarding management and utilisation of the materials. Higher leaching of chromium, sulphate and chloride were observed for masonry-containing and partly carbonated samples, indicating that source...... segregation and management practices may be important. Generally, leaching was in compliance with available leaching limits, except for selenium, and in some cases chromium, sulphate and antimony. © 2014 Elsevier B.V....

  10. Graphene-gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor.

    Science.gov (United States)

    Sabury, Sina; Kazemi, Sayed Habib; Sharif, Farhad

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene-gold nanocomposite (PRGO-AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO-AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV-Vis spectroscopy were used to confirm formation of graphene and graphene-gold composite. Then, the electrochemical behavior of PRGO-AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO-AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06μM and 15.04mAmM(-1), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients

    KAUST Repository

    Yip, Ngai Yin

    2011-05-15

    Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m-2 h-1 bar-1, B = 0.88 L m-2 h-1) is projected to achieve the highest potential peak power density of 10.0 W/m2 for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m-2 h-1) suffered from a lower water permeability (A = 1.74 L m-2 h-1 bar-1) and would yield a lower peak power density of 6.1 W/m2, while membranes with a higher permeability and lower selectivity (A = 7.55 L m-2 h-1 bar-1, B = 5.45 L m-2 h-1) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m2. © 2011 American Chemical Society.

  12. Energy efficiency through design and sustainable construction of houses located in the Mexican Caribbean; Eficiencia Energetica a traves del diseno y construccion sostenible de viviendas ubicadas en el Caribe Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Bojorquez, I. B.; Perez, M. S.; Aguilar, J. A.

    2008-07-01

    Public policies focused to the Environment conservation and, low power consumption construction systems, are some of the Housing Sustainable Construction bases in an urban setting. This work approach to the analysis of the correlation power efficiency-design in the social housing located in the tropical-humid climate characteristic of the Mexican Caribbean, like starting point to define the recommendations of a Sustainable construction in this sector. the legal aspects were considered on sustainable construction and some experiences of investigation in the subject were reviewed. Also an exercise for the calculation of thermal gain was made as it bases of this analysis. This exercise is part of the project in process, that will define the recommendations of design for energy saving in the social housing. (Author)

  13. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    Science.gov (United States)

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were debris landfills are suggested.

  14. Neighborhood differences in social capital: a compositional artifact or a contextual construct?

    Science.gov (United States)

    Subramanian, S V; Lochner, Kimberly A; Kawachi, Ichiro

    2003-03-01

    Assessment of social capital at the neighborhood level is often based on aggregating individual perceptions of trust and reciprocity. Individual perceptions, meanwhile, are influenced through a range of individual attributes. This paper examines the socioeconomic and demographic attributes that systematically correlate with individual perception of social capital and determines the extent to which such attributes account for neighborhood differences in social capital. Using improved multilevel modeling procedures, we ascertain the extent to which differences in social capital perception can be ascribed to true neighborhood-level variations. The analysis is based on the 1994-95 Community Survey of the Project on Human Development in Chicago Neighborhoods (PHDCN). The response measure is based on survey respondent's perceptions of whether people in their neighborhood can be trusted. The results suggest that even after accounting for individual demographic (age, sex, race, marital status) and socioeconomic characteristics (income, education), significant neighborhood differences remain in individual perceptions of trust, substantiating the notion of social capital as a true contextual construct.

  15. Graphene–gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sabury, Sina [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Sharif, Farhad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene–gold nanocomposite (PRGO–AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO–AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV–Vis spectroscopy were used to confirm formation of graphene and graphene–gold composite. Then, the electrochemical behavior of PRGO–AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO–AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06 μM and 15.04 mA mM{sup −1}, respectively. - Highlights: • PGRO–AuNPs modified electrode employed as a reliable scaffold for GODx immobilization. • AuNPs prevent stacking PRGO layers, thus improve the electrochemical behavior of biosensor. • GODx electron transfer was improved because of good interaction with PRGO–AuNP scaffold. • PRGO–AuNP/GODx modified biosensor showed excellent sensitivity towards glucose.

  16. Construction of order mesoporous (Eu–La)/ZnO composite material and its luminescent characters

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Na; Liu, Yu; Li, Zi-Wei [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Yu, Hui, E-mail: yh2001101@163.com [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Bai, Hao-tian [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Xia, Long, E-mail: xialong_aron@163.com [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Feng, Da-wei [Changchun University of Science and Technology Science Park, Changchun 130022 (China); Guangdong College of Business and Technology, Zhaoqing 526020 (China); Zhang, Hong-bo; Dong, Xiang-ting; Wang, Tian-yang; Han, Ji; Wu, Rong-yi; Zhang, Qi [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2016-09-15

    For the first time, the order mesoporous zinc oxide was synthesized by a soft template synthesis method. The Eu and La phosphate were introduced into the prepared mesoporous zinc oxide by the high temperature solid phase method, and got the mesoporous rare earth/zinc oxide composite materials. The luminescence characters of the materials were studied. The influences of La to Eu luminescent properties had been studied, and the optimum proportion of Eu and La was discussed. The influences of La and Eu to ZnO luminescence properties were also been studied. La phosphate had the large influence to Eu luminescent. ZnO had a strong emission peak at 469 nm, which overlapped with the {sup 7}F{sub 0}–{sup 5}D{sub 2} transition excitation peak of Eu at 465 nm. It indicated that the effective energy transfer happened between ZnO and Eu, which strongly enhanced the luminescence intensity of Eu. At the same time, the Eu and La phosphates could regulate the defect density of ZnO, which could regulate the luminescent intensity of ZnO, and realized the adjustment of luminescent color between green and red light.

  17. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials

    Science.gov (United States)

    Sharma, A. V.

    1980-01-01

    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  18. The Impossible Sustainability of the Bay of Brest? Fifty Years of Ecosystem Changes, Interdisciplinary Knowledge Construction and Key Questions at the Science-Policy-Community Interface

    Directory of Open Access Journals (Sweden)

    Olivier Ragueneau

    2018-04-01

    Full Text Available In this contribution, the study of the Bay of Brest ecosystem changes over the past 50 years is used to explore the construction of interdisciplinary knowledge and raise key questions that now need to be tackled at the science-policy-communities interface. The Bay of Brest is subject to a combination of several aspects of global change, including excessive nutrient inputs from watersheds and the proliferation of invasive species. These perturbations strongly interact, affecting positively or negatively the ecosystem functioning, with important impacts on human activities. We first relate a cascade of events over these five decades, linking farming activities, nitrogen, and silicon biogeochemical cycles, hydrodynamics of the Bay, the proliferation of an exotic benthic suspension feeder, the development of the Great scallop fisheries and the high biodiversity in maerl beds. The cascade leads to today's situation where toxic phytoplankton blooms become recurrent in the Bay, preventing the fishery of the great scallop and forcing the fishermen community to switch pray and alter the maerl habitat and the benthic biodiversity it hosts, despite the many scientific alerts and the protection of this habitat. In the second section, we relate the construction of the interdisciplinary knowledge without which scientists would never have been able to describe these changes in the Bay. Interdisciplinarity construction is described, first among natural sciences (NS and then, between natural sciences and human and social sciences (HSS. We finally ask key questions at the science-policy interface regarding this unsustainable trend of the Bay: How is this possible, despite decades of joint work between scientists and fishermen? Is adaptive co-management a sufficient condition for a sustainable management of an ecosystem? How do the different groups (i.e., farmers, fishermen, scientists, environmentalists, with their diverse interests, take charge of this situation

  19. THE INFLUENCE OF PRIOR EXPERIENCE ON THE CONSTRUCTION OF SCORING CRITERIA FOR ESL COMPOSITIONS: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    M. Usman Erdosy

    2001-12-01

    Full Text Available Before a principled explanation of variability in raters' judgements of ESL compositions can be offered, the process of constructing scoring criteria and the manner in which prior experience enters this process must be analyzed. Therefore, utilizing protocol and intewiew data collected in the context of a comparative study, a case study will describe how one experienced rater dealt with the following operations while assessing a corpus of 60 TOEFL essays: establishing the purpose of assessment, developing a reading strategy to deal with a corpus of essays, and collecting context-specific information. Within each operation, the influence of background variables such as teaching and assessment experience will be examined, particularly on determining what type of information to collect, and on articulating expectations concerning test takers, test scores and the textual qualities of essays. The results of the study will be used to specific directions for future research into explaining inter-rater variability.

  20. Multi-layer concept for containments in an integrated construction method by using steel composite building block modules

    International Nuclear Information System (INIS)

    Friedrich, F.

    1987-01-01

    Containments consisting of steel modules have been developed as an alternative design and solution to the double shell containments comprising two separate structures. The combination of different reinforcement layers of steel plates and round reinforcing bars in one cross section provides a high loadbearing capacity. The multiple utilization of the steel plates in the composite section as formwork in the construction state and as reinforcement and liner in the operation or damage/failure states, respectively, yields a number of advantages. The main effect is being achieved due to the high degree of prefabrication and completion (finishing) of the steel modules and the reduction of expenditure on the job site connected with same. (orig.)

  1. Composition of Radioactive Aerosols in the Shelter Construction of the Chernobyl Nuclear Power Plant in 2000-2015

    Science.gov (United States)

    Ogorodnikov, B. I.

    2018-06-01

    The results of the physicochemical studies of radioactive aerosols inside and outside the Shelter construction at the Arch construction stage of the Chernobyl Nuclear Power Plant (ChNPP) in 2000-2015 were presented. The dominant isotopes were shown to be cesium, strontium, americium, plutonium, and uranium. They are carried by disperse particles of 2-7 μm. In subreactor rooms, in particular, 012/7, the composition of aerosols is affected by the erosion of the fuel-containing mass formed in 1986. Submicron cesium carrier aerosols appear as a result of evaporation and condensation during fires and welding works. Radiocesium is a well-soluble component of aerosols, while plutonium isotopes are not readily soluble components. In several rooms, the contents of radon, thoron, and their daughter products exceeded the permissible values. In April-June 2011, the intake of radionuclides from the accident at the Japanese Fukushima-1 NPP, which had AMAD of 0.5 μm, was detected and tracked using Petryanov multilayer filters. The productivity of filtration units under the dusty conditions in the exclusion zone of ChNPP and in fogs and haze was investigated. Hydrophilic prefilters with 7-10 μm fibers were recommended.

  2. Modular construction of oxide structures--compositional control of transition metal coordination environments.

    Science.gov (United States)

    Tenailleau, Christophe; Allix, Mathieu; Claridge, John B; Hervieu, Maryvonne; Thomas, Michael F; Hirst, James P; Rosseinsky, Matthew J

    2008-06-18

    The effects of reaction temperature and pO2 were investigated on a series of (Ba,Ca,Nd)FeO3-delta perovskite systems in order to isolate phases containing ordered arrangements of the distinct vacancy and cation ordering patterns identified in less compositionally complex iron oxide systems. Initial synthesis in air at high temperature yields cubic perovskite phases (I) with average iron oxidation states higher than 3; selected area electron diffraction together with diffuse features observed in the synchrotron X-ray diffraction (SXRD) patterns of these materials show evidence of small domains of short-range cation and vacancy order. Annealing these materials in nitrogen or in a sealed tube in the presence of an NiO/Ni buffer yielded the Fe(3+) phase Ca2Ba2Nd2Fe6O16 (II), closely related to Sr2LaFe3O8 but with partial cation order as well as anion order present the larger Ba cations are largely present in the 12-coordinate site between the octahedral iron layers, and Ca is largely present in 10-coordinate sites between octahedral and tetrahedral sites. Further reduction of Ca2Ba2Nd2Fe6O16 using a Zr getter yields the mixed-valence phase Ca2Ba2Nd2Fe6O15.6 (III). The structure of III was solved by maximum entropy analysis of XRD data coupled with analysis of high-temperature neutron diffraction data and refined against combined SXRD and high-Q ambient-temperature neutron data. This material crystallizes in a 20-fold perovskite super cell (Imma, a approximately square root(2 x a(p), b approximately 10 x a(p), c approximately square root(x 2a(p)) and can be visualized as an intergrowth between brownmillerite (Ca2Fe2O5) and the YBa2Fe3O8 structure. There are three distinct iron coordination environments, octahedral (O), square-pyramidal (Sp), and trigonal planar (Tp, formed by distorting the tetrahedral site in brownmillerite), which form a Sp-O-Tp-O-Sp repeat. Bond valence calculations indicate that Tp is an Fe(2+) site, while the O and Sp sites are Fe(3+). The A

  3. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 27. Biogas Construction Plan in Segoroyoso Village Yogyakarta Region

    Energy Technology Data Exchange (ETDEWEB)

    Lesmana, Surya Budi; Putra, Sri Atmaja [Muhammadiyah University of Yogyakarta, Yogyakarta (Indonesia)

    2011-10-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara (WNT) and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. To achieve the CASINDO objective seven Technical Working Groups have been established with the aim to conduct the technical activities under the various work packages and to produce the agreed deliverables. This report presents results from Technical Working Group IV on Renewable Energy project development. Its main aims were: To identify suitable non-hydro RE projects that can be developed in the province; To conduct an energy needs assessment in a selected location; To develop a business plan for a proposed solution to the identified main energy problem of the target community; To identify potential investors; To construct the project.

  4. Ingeniería sostenible: nuevos objetivos en los proyectos de construcción Sustainable engineering: new objectives for construction projects

    Directory of Open Access Journals (Sweden)

    Fernando Rodríguez

    2010-08-01

    definitely contributes to increase the human ecological footprint. The goals and requirements for the Integrated Project Management must change. The objective is no longer the achievement of a triple goal (time, costs and quality and the performance established by the developer. Nowadays there are new sustain ability goals and requirements for construction projects. Tools and development techniques are analyzed in the construction field, in order to get a construction achievement in a more sustainable way; and a methodological framework for sustainable management according to standards of Integrated Project Management is proposed.

  5. Constructed wetlands and solar-driven disinfection technologies for sustainable wastewater treatment and reclamation in rural India: SWINGS project.

    Science.gov (United States)

    Álvarez, J A; Ávila, C; Otter, P; Kilian, R; Istenič, D; Rolletschek, M; Molle, P; Khalil, N; Ameršek, I; Mishra, V K; Jorgensen, C; Garfi, A; Carvalho, P; Brix, H; Arias, C A

    2017-09-01

    SWINGS was a cooperation project between the European Union and India, aiming at implementing state of the art low-cost technologies for the treatment and reuse of domestic wastewater in rural areas of India. The largest wastewater treatment plant consists of a high-rate anaerobic system, followed by vertical and horizontal subsurface flow constructed wetlands with a treatment area of around 1,900 m 2 and a final step consisting of solar-driven anodic oxidation (AO) and ultraviolet (UV) disinfection units allowing direct reuse of the treated water. The implementation and operation of two pilot plants in north (Aligarh Muslim University, AMU) and central India (Indira Gandhi National Tribal University, IGNTU) are shown in this study. The overall performance of AMU pilot plant during the first 7 months of operation showed organic matter removal efficiencies of 87% total suspended solids, 95% 5-day biological oxygen demand (BOD 5 ) and 90% chemical oxygen demand, while Kjeldahl nitrogen removal reached 89%. The UV disinfection unit produces water for irrigation and toilet flushing with pathogenic indicator bacteria well below WHO guidelines. On the other hand, the AO disinfection unit implemented at IGNTU and operated for almost a year has been shown to produce an effluent of sufficient quality to be reused by the local population for agriculture and irrigation.

  6. Co-constructing a sustainable built environment in the Netherlands—Dynamics and opportunities in an environmental sectoral innovation system

    International Nuclear Information System (INIS)

    Faber, Albert; Hoppe, Thomas

    2013-01-01

    There is considerable scope for energy efficiency improvements to the housing stock in the Netherlands. Although, economically, there are many technological opportunities available, the Dutch built environment has difficulty to harvest this potential. This paper applies a sectoral innovation system approach to investigate this apparent paradox. This approach allows to identify and assess systemic barriers that prevent improvement in overall energy efficiency of the Dutch housing sector. Twenty-one experts were interviewed, and a qualitative data analysis was applied to identify barriers, and relate them to key dimensions in the sectoral innovation system framework. From this analysis, we identified poor regulatory design, lack of market demand, and some institutional characteristics of the construction sector as the key systemic barriers that hamper the diffusion of green energy innovations in the Dutch housing sector. - Highlights: ► Scope for energy efficiency in the Dutch built environment is high but unharvested. ► We investigate this gap with a sectoral systems of innovation approach. ► We collected data through interviews. ► We find that poor regulatory design and lack of market demand are main barriers.

  7. Measurement and evaluation of sustainable development

    International Nuclear Information System (INIS)

    Kondyli, Julia

    2010-01-01

    This paper develops a methodology to analyse, measure and evaluate sustainable development (SD). A holistic approach (systems analysis) is applied to operationalise the SD concept and an integrated approach (composite indicator construction) is adopted for the measurement of SD. The operationalisation of the SD concept is based on an in-depth systems analysis of issues associated with economic, social and environmental problems in a policy context. The composite indicator (overall sustainability index) is developed based on the three composite sub-indicators of the SD dimensions. The valuation of the SD is based both on the aggregated sub-indicators and the overall composite indicator. The methodology is used to evaluate the SD of the North Aegean islands between different temporal points. The assessment of the change in the islands' SD is based on a quartile grading scale of the overall SD composite scores.

  8. Sustainability of the Catalytic Activity of a Silica-Titania Composite (STC) for Long-Term Indoor Air Quality Control

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.

    2011-01-01

    TiO2-assisted photocatalytic oxidation (PCO) is an emerging technology for indoor air quality control and is also being evaluated as an alternative trace contaminant control technology for crew habitats in space exploration. Though there exists a vast range of literature on the development of photocatalysts and associated reactor systems, including catalyst performance and performance-influencing factors, the critical question of whether photocatalysts can sustain their initial catalytic activity over an extended period of operation has not been adequately addressed. For a catalyst to effectively serve as an air quality control product, it must be rugged enough to withstand exposure to a multitude of low concentration volatile organic compounds (VOCs) over long periods of time with minimal loss of activity. The objective of this study was to determine the functional lifetime of a promising photocatalyst - the silica-titania composite (STC) from Sol Gel Solutions, LLC in a real-world scenario. A bench-scale STC-packed annular reactor under continuous irradiation by a UV-A fluorescent black-light blue lamp ((lambda)max = 365 nm) was exposed to laboratory air continuously at an apparent contact time of 0.27 sand challenged with a known concentration of ethanol periodically to assess any changes in catalytic activity. Laboratory air was also episodically spiked with halocarbons (e.g., octafluoropropane), organosulfur compounds (e.g., sulfur hexafluoride), and organosilicons (e.g., siloxanes) to simulate accidental releases or leaks of such VOCs. Total organic carbon (TOC) loading and contaminant profiles of the laboratory air were also monitored. Changes in STC photocatalytic performance were evaluated using the ethanol mineralization rate, mineralization efficiency, and oxidation intermediate (acetaldehyde) formation. Results provide insights to any potential catalyst poisoning by trace halocarbons and organosulfur compounds.

  9. Effective Risk Management in Innovative Projects: A Case Study of the Construction of Energy-efficient, Sustainable Building of the Laboratory of Intelligent Building in Cracow

    Science.gov (United States)

    Krechowicz, Maria

    2017-10-01

    Many construction projects fail to meet deadlines or they exceed the assumed budget. This scenario is particularly common in the case of innovative projects, in which too late identification of a high risk of delays and exceeding the assumed costs makes a potentially profitable project untenable. A high risk level, far exceeding the level of risk in standard non-innovative projects, is a characteristic feature of the realization phase of innovative projects. This is associated not only with greater complexity of the design and construction phases, but also with the problems with application of new technologies and prototype solutions, lack of qualified personnel with suitable expertise in specialized areas, and with the ability to properly identify the gaps between available and required knowledge and skills. This paper discusses the process of effective risk management in innovative projects on the example of the realization phase of an innovative, energy-efficient and sustainable building of the Laboratory of Intelligent Building in Cracow - DLJM Lab, from the point of view of DORBUD S.A., its general contractor. In this paper, a new approach to risk management process for innovative construction projects is proposed. Risk management process was divided into five stages: gathering information, identification of the important unwanted events, first risk assessment, development and choice of risk reaction strategies, assessment of the residual risk after introducing risk reactions. 18 unwanted events in an innovative construction project were identified. The first risk assessment was carried out using two-parametric risk matrix, in which the probability of unwanted event occurrence and its consequences were analysed. Three levels of risks were defined: tolerable, controlled and uncontrolled. Risk reactions to each defined unwanted event were developed. The following risk reaction types were considered: risk retention, risk reduction, risk transfer and risk

  10. Effects of Diatomite–Limestone Powder Ratio on Mechanical and Anti-Deformation Properties of Sustainable Sand Asphalt Composite

    Directory of Open Access Journals (Sweden)

    Yongchun Cheng

    2018-03-01

    Full Text Available Diatomite has gained more and more interest as a new resource, since it has potential as a favorable alternative to mineral filler in the construction of asphalt pavement compared with ordinary limestone powder. In this paper, the mechanical and anti-deformation properties of sand asphalt composites with various proportions of diatomite were investigated by a uniaxial compression failure test, a uniaxial compression repeated creep test, and a low-temperature splitting test in order to determine the optimal replacement content of ordinary limestone powder. Five groups of sand asphalts with various volume ratios of diatomite to limestone (0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0 were determined by the simplex-lattice mixture design (SLD method. The results reveal that the compression strength, anti-deformation properties, and low-temperature crack resistance of sand asphalts are improved through the use of diatomite. Furthermore, the optimal ratio (0.327:0.673 of limestone to diatomite is determined by the SLD method, according to secant modulus and creep strain results.

  11. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  12. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  13. The chills as a psychological construct: content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences.

    Science.gov (United States)

    Maruskin, Laura A; Thrash, Todd M; Elliot, Andrew J

    2012-07-01

    We examined the content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences of "the chills." In Study 1, participants described what it means to get the chills. A second sample sorted all references to physical sensations based on similarity. Cluster analysis identified 4 lower order clusters (goosebumps, tingling, coldness, shivers) and 2 higher order clusters ("goosetingles," "coldshivers"). In Study 2, factor analysis of questionnaire data supported a model with lower and higher order factors that corresponded to the Study 1 clusters. Goosetingles and coldshivers were predicted by approach-related traits (e.g., extraversion) and avoidance-related traits (e.g., neuroticism), respectively. In Study 3, analysis of narrative data replicated the goosetingles-coldshivers structure. Relative to coldshivers, goosetingles involved greater awe, surprise, and enjoyment and less disgust, fear, and sadness. In Study 4, analysis of diary data extended the goosetingles-coldshivers structure to between- and within-person levels of analysis. Goosetingles involved positive affects and was elicited by approach-related stimuli, whereas coldshivers involved negative affects and was elicited by avoidance-related stimuli. In Study 5, manipulation of exposure to self-actualization and self-annihilation elicited goosetingles and coldshivers, respectively. Goosetingles and coldshivers had positive and negative effects, respectively, on interpersonal closeness. In sum, diverse forms of evidence converge to indicate that the chills encompasses distinct approach- and avoidance-related constructs. Failure to distinguish these constructs explains null and inconsistent findings in the nascent literature. Goosetingles and coldshivers are posited to serve the function of signaling that an event in the environment is pertinent to one's most deep-seated hopes or fears. PsycINFO Database Record (c) 2012 APA, all rights reserved

  14. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    Science.gov (United States)

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    Science.gov (United States)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous

  16. A novel Rapid Additive Manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails.

    Science.gov (United States)

    Felbrich, Benjamin; Wulle, Frederik; Allgaier, Christoph; Menges, Achim; Verl, Alexander; Wurst, Karl-Heinz; Nebelsick, James

    2018-01-04

    State of the art rapid additive manufacturing (RAM), specifically Fused Filament Fabrication (FFF) has gained popularity among architects, engineers and designers for quick prototyping of technical devices, rapid production of small series and even construction scale fabrication of architectural elements. The spectrum of producible shapes and the resolution of detail, however, are determined and constrained by the layer-based nature of the fabrication process. These aspects significantly limit FFF-based approaches for the prefabrication and in-situ fabrication of freeform shells at the architectural scale. Snails exhibit a shell building process that suggests ways to overcome these limits. They produce a soft, pliable proteinaceous film - the periostracum - which later hardens and serves, among other functions, as a form-giving surface for an inner calcium carbonate layer. Snail shell formation behavior is interpreted from a technical point of view to extract potentially useful aspects for a biomimetic transfer. A RAM concept for continuous extrusion of thin free form composite shells inspired by the snail shell formation is presented. © 2018 IOP Publishing Ltd.

  17. Sustainable Soesterkwartier

    NARCIS (Netherlands)

    Abrahams, H.; Goosen, H.; Jong, de F.; Sickmann, J.; Prins, D.

    2010-01-01

    The municipality of Amersfoort wants to construct an endurable and sustainable eco-town in the Soesterkwartier neighbourhood, by taking future climate change into account. The impact of climate change at the location of the proposed eco-town was studied by a literature review.

  18. Rational Design of Si@SiO2/C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Shen, Dazhi; Huang, Chaofan; Gan, Lihui; Liu, Jian; Gong, Zhengliang; Long, Minnan

    2018-03-07

    In this work, we propose a novel and facile route for the rational design of Si@SiO 2 /C anode materials by using sustainable and environment-friendly cellulose as a carbon resource. To simultaneously obtain a SiO 2 layer and a carbon scaffold, a specially designed homogeneous cellulose solution and commercial Si nanopowder are used as the starting materials, and the cellulose/Si composite is directly assembled by an in situ regenerating method. Subsequently, Si@SiO 2 /C composite is obtained after carbonization. As expected, Si@SiO 2 is homogeneously encapsulated in the cellulose-derived carbon network. The obtained Si@SiO 2 /C composite shows a high reversible capacity of 1071 mA h g -1 at a current density of 420 mA g -1 and 70% capacity retention after 200 cycles. This novel, sustainable, and effective design is a promising approach to obtain high-performance and cost-effective composite anodes for practical applications.

  19. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  20. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  1. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  2. Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Nitin [Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Khanna, Kunal [Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Sardesai, Varda S. [National Institute of Research in Reproductive Health, Mumbai 400012 (India); Singh, Atul K. [Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Temgire, Mayur; Kalita, Mridula Phukan [Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Kadam, Sachin S. [Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Krishna Institute of Medical Sciences, Malkapur, Karad 415539, Dist. Satara, Maharashtra (India); Soni, Vivek P. [Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Bhartiya, Deepa [National Institute of Research in Reproductive Health, Mumbai 400012 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India); Wadhwani Research Center for Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India)

    2016-12-01

    Bioactive 3D composites play an important role in advanced biomaterial design to provide molecular coupling and improve integrity with the cellular environment of the native bone. In the present study, a hybrid lyophilized polymer composite blend of anionic charged sodium salt of carboxymethyl chitin and gelatin (CMCh{sub Na}-GEL) reinforced with nano-rod agglomerated hydroxyapatite (nHA) has been developed with enhanced biocompatibility and tunable elasticity. The scaffolds have an open, uniform and interconnected porous structure with an average pore diameter of 157 ± 30 μm and 89.47 + 0.03% with four dimensional X-ray. The aspect ratio of ellipsoidal pores decrease from 4.4 to 1.2 with increase in gelatin concentration; and from 2.14 to 1.93 with decrease in gelling temperature. The samples were resilient with elastic stain at 1.2 MPa of stress also decreased from 0.33 to 0.23 with increase in gelatin concentration. The crosslinker HMDI (hexamethylene diisocyanate) yielded more resilient samples at 1.2 MPa in comparison to glutaraldehyde. Increased crosslinking time from 2 to 4 h in continuous compression cycle show no improvement in maximum elastic stain of 1.2 MPa stress. This surface elasticity of the scaffold enables the capacity of these materials for adherent self renewal and cultivation of the NTERA-2 cL.D1 (NT2/D1), pluripotent embryonal carcinoma cell with biomechanical surface, as is shown here. Proliferation with MG-63, ALP activity and Alizarin red mineralization assay on optimized scaffold demonstrated ***p < 0.001 between different time points thus showing its potential for bone healing. In pre-clinical study histological bone response of the scaffold construct displayed improved activity of bone regeneration in comparison to self healing of control groups (sham) up to week 07 after implantation in rabbit tibia critical-size defect. Therefore, this nHA-CMCh{sub Na}-GEL scaffold composite exhibits inherent and efficient physicochemical, mechanical

  3. Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization

    International Nuclear Information System (INIS)

    Sagar, Nitin; Khanna, Kunal; Sardesai, Varda S.; Singh, Atul K.; Temgire, Mayur; Kalita, Mridula Phukan; Kadam, Sachin S.; Soni, Vivek P.; Bhartiya, Deepa; Bellare, Jayesh R.

    2016-01-01

    Bioactive 3D composites play an important role in advanced biomaterial design to provide molecular coupling and improve integrity with the cellular environment of the native bone. In the present study, a hybrid lyophilized polymer composite blend of anionic charged sodium salt of carboxymethyl chitin and gelatin (CMCh Na -GEL) reinforced with nano-rod agglomerated hydroxyapatite (nHA) has been developed with enhanced biocompatibility and tunable elasticity. The scaffolds have an open, uniform and interconnected porous structure with an average pore diameter of 157 ± 30 μm and 89.47 + 0.03% with four dimensional X-ray. The aspect ratio of ellipsoidal pores decrease from 4.4 to 1.2 with increase in gelatin concentration; and from 2.14 to 1.93 with decrease in gelling temperature. The samples were resilient with elastic stain at 1.2 MPa of stress also decreased from 0.33 to 0.23 with increase in gelatin concentration. The crosslinker HMDI (hexamethylene diisocyanate) yielded more resilient samples at 1.2 MPa in comparison to glutaraldehyde. Increased crosslinking time from 2 to 4 h in continuous compression cycle show no improvement in maximum elastic stain of 1.2 MPa stress. This surface elasticity of the scaffold enables the capacity of these materials for adherent self renewal and cultivation of the NTERA-2 cL.D1 (NT2/D1), pluripotent embryonal carcinoma cell with biomechanical surface, as is shown here. Proliferation with MG-63, ALP activity and Alizarin red mineralization assay on optimized scaffold demonstrated ***p < 0.001 between different time points thus showing its potential for bone healing. In pre-clinical study histological bone response of the scaffold construct displayed improved activity of bone regeneration in comparison to self healing of control groups (sham) up to week 07 after implantation in rabbit tibia critical-size defect. Therefore, this nHA-CMCh Na -GEL scaffold composite exhibits inherent and efficient physicochemical, mechanical and

  4. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques

    Directory of Open Access Journals (Sweden)

    MD Ohiduzzaman

    2016-08-01

    Full Text Available Noise pollution due to highway traffic has drawn the attention of transportation agencies worldwide. Noise pollution is an irritant to residents, especially in urban areas near roads with high traffic volume. In addition to its adverse effects on the quality of life, traffic noise can induce stress that could lead to sleep disturbance and anxiety. Traditionally, noise barrier walls have been used for highways to mitigate traffic noise. However, using barrier walls as a noise abatement measure has proven to be very expensive. In addition to the cost, noise barrier walls are not always effective because they must break the line of sight to work properly, which is not always possible in case of intersections or driveways. Therefore, researchers especially from Europe and USA have been very proactive to reduce the noise at source. A number of research studies show traffic noise can be reduced by using an alternative surface type or changing texture of the pavement while complying with other requirements of sustainability, i.e., safety, structural durability, construction and maintenance costs. This paper presents a comprehensive review of the research conducted on this subject. A review of the tire-pavement noise generation and amplification mechanism, various traffic noise measurement methods and correlation among these methods, in addition to the abatement techniques used by various agencies to reduce pavement noise, is also presented.

  5. On certain development aspects of an ipsas-based system-target approach to evaluation of net asset sustainability level projects in high-rise construction

    Directory of Open Access Journals (Sweden)

    Kazaryan Ruben

    2018-01-01

    Full Text Available Problems of accounting and reporting of net assets and the procedure of their formation taking into account the specifics of the economic and legal status of property of a non-commercial autonomous institution are some of the most controversial in the accounting for entities of the public sector. The study focuses on justification of accounting rules for net assets of public sector entities. The methods used in the study are as follows: comparison, synthesis, analysis, logical approach, and system approach. The article examines legal aspects and specifics of recognition of assets of public sector entities in accordance with IPSAS standards (International Public Sector Accounting Standards are a set of accounting standards issued by IPSASB (Council for International Financial Reporting Standards for Public Sector Organizations used by state-owned enterprises worldwide in preparation of financial statements as of the 31st of August, 2015. The most crucial factor in the modeling of key performance indicators of the system-target approach to estimation of the sustainability level of net assets on the basis of IPSAS is a multicriterial evaluation of the basic management strategy for quality system elements used in operational and strategic planning projects operations in high-rise construction. We offer an alternative evaluation of assets due to be returned to the right holder (the state controller in the event of liquidation of a public sector entity.

  6. On certain development aspects of an ipsas-based system-target approach to evaluation of net asset sustainability level projects in high-rise construction

    Science.gov (United States)

    Kazaryan, Ruben

    2018-03-01

    Problems of accounting and reporting of net assets and the procedure of their formation taking into account the specifics of the economic and legal status of property of a non-commercial autonomous institution are some of the most controversial in the accounting for entities of the public sector. The study focuses on justification of accounting rules for net assets of public sector entities. The methods used in the study are as follows: comparison, synthesis, analysis, logical approach, and system approach. The article examines legal aspects and specifics of recognition of assets of public sector entities in accordance with IPSAS standards (International Public Sector Accounting Standards are a set of accounting standards issued by IPSASB (Council for International Financial Reporting Standards for Public Sector Organizations) used by state-owned enterprises worldwide in preparation of financial statements as of the 31st of August, 2015. The most crucial factor in the modeling of key performance indicators of the system-target approach to estimation of the sustainability level of net assets on the basis of IPSAS is a multicriterial evaluation of the basic management strategy for quality system elements used in operational and strategic planning projects operations in high-rise construction. We offer an alternative evaluation of assets due to be returned to the right holder (the state controller) in the event of liquidation of a public sector entity.

  7. A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Peipei Huo

    2018-01-01

    Full Text Available Based on its unique features including 2D planar geometry, high specific surface area and electron conductivity, graphene has been intensively studied as oxygen reduction reaction (ORR electrocatalyst and supercapacitor material. On the one hand, graphene possesses standalone electrocatalytic activity. It can also provide a good support for combining with other materials to generate graphene-based electrocatalysts, where the catalyst-support structure improves the stability and performance of electrocatalysts for ORR. On the other hand, graphene itself and its derivatives demonstrate a promising electrochemical capability as supercapacitors including electric double-layer capacitors (EDLCs and pseudosupercapacitors. A hybrid supercapacitor (HS is underlined and the advantages are elaborated. Graphene endows many materials that are capable of faradaic redox reactions with an outstanding pseudocapacitance behavior. In addition, the characteristics of graphene-based composite are also utilized in many respects to provide a porous 3D structure, formulate a novel supercapacitor with innovative design, and construct a flexible and tailorable device. In this review, we will present an overview of the use of graphene-based composites for sustainable energy conversion and storage.

  8. Novel Sustainable Composites Based on Poly(hydroxybutyrate-co-hydroxyvalerate and Seagrass Beach-CAST Fibers: Performance and Degradability in Marine Environments

    Directory of Open Access Journals (Sweden)

    Maurizia Seggiani

    2018-05-01

    Full Text Available In order to produce sustainable, bio-based and highly biodegradable materials, composites based on poly(hydroxybutyrate-co-hydroxyvalerate (PHBV and fibers of Posidonia oceanica (PO, a dominant Mediterranean seagrass, were produced by simple melt mixing and characterized in terms of thermal stability, morphology and rheological/mechanical properties. In view of their potential application in marine environments, degradation of the developed composites was evaluated under simulated and real marine environmental conditions for 1 year. Using 10 wt % of acetyl tributyl citrate (ATBC as a plasticizer, smooth processing was achieved for up to 30 wt % of PO fibers, despite the reduction of the melt fluidity observed with increasing fiber loading. The tensile modulus slightly increased (from 2 to 2.4 GPa while the tensile strength and the elongation decreased (from 23.6 to 21.5 MPa and from 3.2 to 1.9%, respectively by increasing the PO fiber content from 0 to 30 wt %. Interestingly, the impact resistance of the composites increased with the increasing of the PO content: the Charpy’s impact energy increased from 3.6 (without fiber to 4.4 kJ/m2 for the composite with 30 wt %. The results of the aerobic biodegradation under simulated marine conditions showed that the presence of PO fibers favored the physical disintegration of the composite increasing the biodegradation rate of the polymeric matrix: after 216 days, the composite with 20 wt % PO fibers showed a biodegradability of about 30% compared to 20% of the composite without fibers. Under real marine conditions, the specimens containing PO fibers showed higher weight losses and deterioration of tensile properties compared to those without fibers. Presumably, biodegradation occurred after colonization of the specimen, and the specimens with 20 wt % PO fibers showed well-developed biofilm consisting of bacteria and fungi on the surface after only 3 months of incubation in marine sediments, unlike the

  9. Novel Sustainable Composites Based on Poly(hydroxybutyrate-co-hydroxyvalerate) and Seagrass Beach-CAST Fibers: Performance and Degradability in Marine Environments

    Science.gov (United States)

    Mallegni, Norma; Stefanelli, Eleonora; Rossi, Alessia

    2018-01-01

    In order to produce sustainable, bio-based and highly biodegradable materials, composites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and fibers of Posidonia oceanica (PO), a dominant Mediterranean seagrass, were produced by simple melt mixing and characterized in terms of thermal stability, morphology and rheological/mechanical properties. In view of their potential application in marine environments, degradation of the developed composites was evaluated under simulated and real marine environmental conditions for 1 year. Using 10 wt % of acetyl tributyl citrate (ATBC) as a plasticizer, smooth processing was achieved for up to 30 wt % of PO fibers, despite the reduction of the melt fluidity observed with increasing fiber loading. The tensile modulus slightly increased (from 2 to 2.4 GPa) while the tensile strength and the elongation decreased (from 23.6 to 21.5 MPa and from 3.2 to 1.9%, respectively) by increasing the PO fiber content from 0 to 30 wt %. Interestingly, the impact resistance of the composites increased with the increasing of the PO content: the Charpy’s impact energy increased from 3.6 (without fiber) to 4.4 kJ/m2 for the composite with 30 wt %. The results of the aerobic biodegradation under simulated marine conditions showed that the presence of PO fibers favored the physical disintegration of the composite increasing the biodegradation rate of the polymeric matrix: after 216 days, the composite with 20 wt % PO fibers showed a biodegradability of about 30% compared to 20% of the composite without fibers. Under real marine conditions, the specimens containing PO fibers showed higher weight losses and deterioration of tensile properties compared to those without fibers. Presumably, biodegradation occurred after colonization of the specimen, and the specimens with 20 wt % PO fibers showed well-developed biofilm consisting of bacteria and fungi on the surface after only 3 months of incubation in marine sediments, unlike the no

  10. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  11. Merits and challenges of career adaptability as a tool towards sustainable careers

    NARCIS (Netherlands)

    Buyken, M.B.W.; Klehe, U.-C.; Zikic, J.; van Vianen, A.E.M.; de Vos, A.; van der Heijden, B.I.J.M.

    2015-01-01

    The chapter discusses how career adaptability can be valuable in constructing sustainable careers. Still, the concept faces a number of challenges and unresolved issues. First, we address the conceptualization of career adaptability as a composite construct and argue in particular that the component

  12. Technical application of Fuzzy logic in the construction of an energy sustainability index; Aplicacao das tecnicas de logica fuzzi na construcao de um indice de sustentabilidade energetica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Francisco Carlos B. dos; Carneiro, Alvaro Luiz Guimaraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo - SP (Brazil)], E-mails: fcarlos@usp.br, carneiro@ipen.br

    2010-11-15

    Aggregation tools database and subsequent interpretation are the most challenge in the area of sustainability This task becomes very complex due to correlation of topics that comprise the dimensions that form the basis of the concept of sustainable development. The technique known as Fuzzy Logic or Fuzzy Logic is a powerful tool to capture information on vacancies, which is often the only information available in the area of sustainability. (author)

  13. A comparative study on the properties of graphene oxide and activated carbon based sustainable wood starch composites.

    Science.gov (United States)

    Baishya, Prasanta; Maji, Tarun Kumar

    2018-08-01

    Activated carbon (AC) prepared from Jatropha curcas and graphene oxide (GO) were employed in the preparation of natural polymer based wood starch composites (WSC) through the solution blending technique using water as a solvent. In this study, methyl methacrylate (MMA) was grafted onto the starch polymer and this MMA grafted starch (MMA-g-starch) was cross-linked with the cheap soft wood flour using the citric acid as cross-linker and water as a solvent in the whole process. The prepared GO and AC were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and Raman study. The interaction of GO and AC, with MMA-g-starch, citric acid and wood were studied by FTIR, XRD and SEM analysis. The GO and AC treated composites exhibited outstanding mechanical properties, thermal stability and fire resistance properties. The tensile strength of the composites increased by 178% and 200% with addition of 2 phr AC and GO respectively compared to untreated composites. A significant enhancement in water resistance properties of GO and AC treated composites was also attained. The study showed that the properties of the composites containing AC prepared from the seeds of Jatropha curcas was quite comparable with the composites reinforced with GO. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  15. Towards More Sustainable Material Formulations: A Comparative Assessment of PA11-SGW Flexural Performance versus Oil-Based Composites

    Directory of Open Access Journals (Sweden)

    Helena Oliver-Ortega

    2018-04-01

    Full Text Available The replacement of commodity polyolefin, reinforced with glass fiber (GF, by greener alternatives has been a topic of research in recent years. Cellulose fibers have shown, under certain conditions, enough tensile capacities to replace GF, achieving competitive mechanical properties. However, if the objective is the production of environmentally friendlier composites, it is necessary to replace oil-derived polymer matrices by bio-based or biodegradable ones, depending on the application. Polyamide 11 (PA11 is a totally bio-based polyamide that can be reinforced with cellulosic fibers. Composites based on this polymer have demonstrated enough tensile strength, as well as stiffness, to replace GF-reinforced polypropylene (PP. However, flexural properties are of high interest for engineering applications. Due to the specific character of short-fiber-reinforced composites, significant differences are expected between the tensile and flexural properties. These differences encourage the study of the flexural properties of a material prior to the design or development of a new product. Despite the importance of the flexural strength, there are few works devoted to its study in the case of PA11-based composites. In this work, an in-depth study of the flexural strength of PA11 composites, reinforced with Stoneground wood (SGW from softwood, is presented. Additionally, the results are compared with those of PP-based composites. The results showed that the SGW fibers had lower strengthening capacity reinforcing PA11 than PP. Moreover, the flexural strength of PA11-SGW composites was similar to that of PP-GF composites.

  16. Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems

    OpenAIRE

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-01-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron ...

  17. A composition for protection the stylobate in high-rise construction from the harmful effects of car exhaust gases

    Science.gov (United States)

    Sokolova, Irina

    2018-03-01

    In large cities, high-rise buildings are usually located along highways with heavy traffic. The study was carried out with the aim of creating a material for protection the stylobate of a high-rise building from the harmful effects of car exhaust gases. A polymer-silicate composition based on schungite and schungisite components is proposed. The composition has the properties of a wall material resistant to the corrosive environment of car exhaust gases. The results of the composition studies are presented. The possibility of increase the durability of exterior slabs for stylobate walls of high-rise buildings is substantiated, provided the proposed material is applied.

  18. Revolution in airplane construction? Grob G110: The first modern fiber glass composition airplane shortly before its maiden flight

    Science.gov (United States)

    Dorpinghaus, R.

    1982-01-01

    A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.

  19. A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Kim, Jimin; Lee, Minhyun; Jeong, Kwangbok

    2015-01-01

    Highlights: • This study reviews the state-of-the-art in “energy” as well as “building”. • Building’s dynamic energy performance should be managed in the built environments. • This study summarizes recent progress in the building’s dynamic energy performance. • The major phases can be categorized into monitoring, diagnosing, and retrofitting. • This study proposes the specific future development directions and challenges by phase. - Abstract: According to a press release, the building sector accounts for about 40% of the global primary energy consumption. Energy savings can be achieved in the building sector by improving the building’s dynamic energy performance in terms of sustainable construction management in the urban-based built environments (referred to as an “Urban Organism”). This study implements the concept of “dynamic approach” to reflect the unexpected changes in the climate and energy environments as well as in the energy policies and technologies. Research in this area is very significant for the future of the building, energy, and environmental industries around the world. However, there is a lack of studies from the perspective of the dynamic approach and the system integration, and thus, this study is designed to fill the research gap. This study highlights the state-of-the-art in the major phases for a building’s dynamic energy performance (i.e., monitoring, diagnosing, and retrofitting phases), focusing on the operation and maintenance phase. This study covers a wide range of research works and provides various illustrative examples of the monitoring, diagnosing, and retrofitting of a building’s dynamic energy performance. Finally, this study proposes the specific future developments and challenges by phase and suggests the future direction of system integration for the development of a carbon-integrated management system as a large complex system. It is expected that researchers and practitioners can

  20. Hybrid structure in civil engineering construction. Composite types of steel and concrete; Doboku bun`ya ni okeru fukugo kozo. Kozai to concrete no ittai keishiki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [JR Railway Technical Research Inst. Tokyo (Japan)

    1995-03-30

    In connection with hybrid structures in civil engineering construction, classification and application of composite types of steel and concrete are discussed. H steel embedded beam is a composite beam in which the H shape steel of the main beam is connected to rolled or welded H shape steel using cross beams. Composite structure columns are grouped into the composite column and the steel pipe concrete column. SRC piers are often adopted from the viewpoints of constraints for execution of works and vibration proof. Steel and concrete hybrid structure is a kind of structural system in which various kinds of materials such as steel, RC, or PC members are connected. The cable stayed bridge utilizes characteristics of steel and concrete effectively. For the piers of municipal expressway viaducts, there are executed cases of mixed structures which have RC, SRC columns for T shape piers and S structure for the bridges. SRC structure and composite columns are adopted often for structures of subway stations. 7 refs., 7 figs.

  1. The relation between the adoption of sustainable measures and the composition of an environmental assessment tool for buildings

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos

    2009-01-01

    Owing to a general perception of resource efficiency and due to the fact that the construction industry is traditionally a large user of natural resources, the necessity to design buildings with a low environmental impact is increasing. In the last decade many tools were developed to calculate the

  2. Report on Childhood Obesity in China (8): Effects and Sustainability of Physical Activity Intervention on Body Composition of Chinese Youth

    NARCIS (Netherlands)

    Li, Y.P.; Hu, X.Q.; Schouten, E.G.; Liu, A.L.; Du, S.M.; Li, L.Z.; Cui, Z.H.; Wang, D.; Kok, F.J.; Hu, F.B.; Ma, G.S.

    2010-01-01

    Objectives To determine whether a large-scale physical activity intervention could affect body composition in primary school students in Beijing, China. Methods The study design was one-year cluster randomized controlled trial of physical activity intervention (20 min of daily exercise in the

  3. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  4. Sustainability of Social Housing in Asia: A Holistic Multi-Perspective Development Process for Bamboo-Based Construction in the Philippines

    Directory of Open Access Journals (Sweden)

    Corinna Salzer

    2016-02-01

    Full Text Available This paper highlights the need for a more inclusive and sustainable development of social housing in rapidly developing countries of Asia, Latin America, and Africa. At the example of the Philippines, a multi-perspective development process for a bamboo-based building system is developed. Sustainability Assessment Criteria are defined through literature review, field observations and interviews with three stakeholder clusters: (1 Builders and users of traditional bamboo houses in the Philippines; (2 Stakeholders involved in using forest products for housing in other countries around the world; and (3 Stakeholders in the field of social housing in the Philippines. Through coding and sorting of data in a qualitative content analysis, 15 sustainability assessment criteria are identified clustered into the dimensions society, ecology, economy, governance, and technology. Guided by the sustainability criteria and four implementation strategies: (A Research about and (B Implementation of the building technology; (C Participation and Capacity Building of Stakeholders; and (D Sustainable Supply Chains, a strategic roadmap was created naming, in total, 28 action items. Through segmentation of the complex problem into these action items, the paper identifies one-dimensional methods leading to measurable, quantitative endpoints. In this way, qualitative stakeholder data is translated into quantitative methods, forming a pathway for a holistic assessment of the building technologies. A mid-point, multi-criteria, or pareto decision-making method comparing the 28 endpoints of the alternative to currently practiced conventional solutions is suggested as subject for further research. This framework paper is a contribution to how sustainable building practices can become more inclusive,  incorporating the building stock of low-income dwellers. It bridges the gap between theoretical approach and practical applications of sustainability and underlines the

  5. Hybrid-Plus in lightweight construction? Metal-plastic composites; Hybrid-Plus in Struktur-Leichtbauweise? Metall-Kunststoffverbund

    Energy Technology Data Exchange (ETDEWEB)

    Michel, P [Rehau AG und Co., Rehau (Germany)

    2008-07-01

    New dimensions in lightweight structures construction are expected from an advanced technology that produces one hundred percent positively bonded plastic-metal bonds with highly interesting features. The example of a car boot cover is presented to illustrate the technology. (orig.)

  6. [Construction of research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier].

    Science.gov (United States)

    Sun, E; Xu, Feng-Juan; Zhang, Zhen-Hai; Wei, Ying-Jie; Tan, Xiao-Bin; Cheng, Xu-Dong; Jia, Xiao-Bin

    2014-02-01

    Based on practice of Epimedium processing mechanism for many years and integrated multidisciplinary theory and technology, this paper initially constructs the research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier, which to form an innovative research mode of the " chemical composition changes-biological transformation-metabolism in vitro and in vivo-intestinal absorption-pharmacokinetic combined pharmacodynamic-pharmacodynamic mechanism". Combined with specific examples of Epimedium and other Chinese herbal medicine processing mechanism, this paper also discusses the academic thoughts, research methods and key technologies of this research system, which will be conducive to systematically reveal the modem scientific connotation of traditional Chinese medicine processing, and enrich the theory of Chinese herbal medicine processing.

  7. Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries

    International Nuclear Information System (INIS)

    Tang, H.; Xia, X.H.; Zhang, Y.J.; Tong, Y.Y.; Wang, X.L.; Gu, C.D.; Tu, J.P.

    2015-01-01

    Construction of high-capacity anode is highly important for the development of next-generation high-performance lithium ion batteries (LIBs). Herein we fabricate Si/Ag nanowires/reduced graphene oxide (Si/Ag NWs/rGO) integrated composite film by introducing binary conductive networks (Ag NWs and rGO) into Si active materials with the help of a facile vacuum-filtration method. Active Si nanoparticles are homogeneously encapsulated by binary Ag NWs-rGO conductive network, in which Ag NWs are interwoven among the rGO sheets. The electrochemical properties of the integrated Si/Ag NWs/rGO composite film are thoroughly characterized as anode of LIBs. Compared to the Si/rGO composite film, the integrated Si/Ag NWs/rGO composite film exhibits enhanced electrochemical performances with higher capacity, better high-rate capability and cycling stability (1269 mAh g"−"1 at 50 mA g"−"1 up to 50 cycles). The binary conductive network plays a positive role in the enhancement of performance due to its faster ion/electron transfer, and better anti-structure degradation caused by volume expansion during the cycling process.

  8. QOL models constructed for the community-dwelling elderly with ikigai (purpose in life) as a composition factor, and the effect of habitual exercise.

    Science.gov (United States)

    Demura, Shinichi; Kobayashi, Hidetsugu; Kitabayashi, Tamotsu

    2005-09-01

    The purpose of this study was to construct QOL models for the elderly that included ikigai as a composition factor and to clarify differences in two kinds of models, one constructed for the elderly with habitual exercise and the other for those without it. The subjects were 1,566 healthy community-dwelling independent people aged 60 years or more (752 males, 814 females). First, the ratio of subjects with ikigai was calculated. The ratios of subjects with different kinds of objects of ikigai were also calculated. Next, structural equation models (SEM) were constructed on the basis of social, physical, and mental QOL and ikigai. Fits of the models were evaluated. To examine whether the presence or absence of habitual exercise caused any difference in the QOL model, subjects were divided into 4 groups according to whether they were male or female and whether they had or did not have an exercise habit. Multi-population group simultaneous analysis was then performed among the four groups. More than 85% of the subjects had objects of ikigai. Ikigai is an important factor for comprehending the QOL of the elderly. It was possible to construct QOL models for the elderly with ikigai as a composition factor. The effect of physical QOL on mental QOL was negligible in females irrespective of whether they had an exercise habit. The effect of social QOL on mental QOL was profound in aged females with an exercise habit. The effect of the living situation on mental QOL was profound in aged females without an exercise habit. The effect of mental QOL on ikigai was more marked in subjects without an exercise habit than in those with an exercise habit.

  9. Evaluation of environmental sustainability in the construction and management of buildings in Mexico; Evaluacion de la sustentabilidad ambiental en la construccion y administracion de edificios en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    De Buen Rodriguez, Odon [Energia, Tecnologia y Educacion, S.C., ENTE, S.C. (Mexico)

    2010-12-15

    The purpose of the present work is to establish a methodology for assessing the sustainability of buildings in Mexico, which can be standardized and comparable with the rest of North America. For this purpose three building assessment systems in North America were first analyzed: (a) Leadership in Energy and Environmental Design (LEED), (b) Living Building Challenge (LBC); and (c) Energy Star for Buildings. In addition, the analysis included Spain's Green Building Council (GBCe), to have a different comparison point with the North American systems. The analysis of the four systems suggests the use of the Energy Star system due to the following reasons: 1) For all systems, the Energy Star system is the basis for comparison in terms of energy consumption and therefore emissions of greenhouse gases, 2) It is the system requiring the simplest description of the building (construction surface, occupancy and energy consumption) and does not require (unlike other systems) data on the location of the buildings, 3) For the LEED, LBC and GBCe systems, the evaluation must be performed by professionals accredited, while for the Energy Star certification is less restrictive A database of public buildings, managed by the Comision Nacional para el Uso Eficiente de la Energia (CONUEE), was used. It integrates a significant number of office buildings occupied by departments and agencies of the federal government in Mexico. This database holds information on annual energy consumption and area occupied. Such database was complemented with available information on Degree Day data provided by the Asociacion de Empresas para el Ahorro de Energia en la Edificacion (AEAEE); it allowed to include information on weather in the same terms as the proposed methodology by Energy Star system. From the analysis, some suggestions are presented below. First, it is suggested to strengthen the collection and integration of information related to commercial buildings in Mexico to implement a fully

  10. Evaluation of environmental sustainability in the construction and management of buildings in Mexico; Evaluacion de la sustentabilidad ambiental en la construccion y administracion de edificios en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    De Buen Rodriguez, Odon [Energia, Tecnologia y Educacion, S.C., ENTE, S.C. (Mexico)

    2010-12-15

    The purpose of the present work is to establish a methodology for assessing the sustainability of buildings in Mexico, which can be standardized and comparable with the rest of North America. For this purpose three building assessment systems in North America were first analyzed: (a) Leadership in Energy and Environmental Design (LEED), (b) Living Building Challenge (LBC); and (c) Energy Star for Buildings. In addition, the analysis included Spain's Green Building Council (GBCe), to have a different comparison point with the North American systems. The analysis of the four systems suggests the use of the Energy Star system due to the following reasons: 1) For all systems, the Energy Star system is the basis for comparison in terms of energy consumption and therefore emissions of greenhouse gases, 2) It is the system requiring the simplest description of the building (construction surface, occupancy and energy consumption) and does not require (unlike other systems) data on the location of the buildings, 3) For the LEED, LBC and GBCe systems, the evaluation must be performed by professionals accredited, while for the Energy Star certification is less restrictive A database of public buildings, managed by the Comision Nacional para el Uso Eficiente de la Energia (CONUEE), was used. It integrates a significant number of office buildings occupied by departments and agencies of the federal government in Mexico. This database holds information on annual energy consumption and area occupied. Such database was complemented with available information on Degree Day data provided by the Asociacion de Empresas para el Ahorro de Energia en la Edificacion (AEAEE); it allowed to include information on weather in the same terms as the proposed methodology by Energy Star system. From the analysis, some suggestions are presented below. First, it is suggested to strengthen the collection and integration of information related to commercial buildings in Mexico to implement a

  11. Weight and cost analysis of large wind turbine rotors constructed from conventional materials and from advanced composite materials

    Energy Technology Data Exchange (ETDEWEB)

    van Holten, Th

    1982-07-01

    Cost calculations and cost analyses of the blades and the (teetering) hubs of large wind turbines. The blades are of different shapes, construction and materials (aluminium, steel and glass reinforced plastics). Teetering hubs are heavy and complicated steel constructions, necessary to minimize material fatigue. In large wind turbines with a diameter of 60 to 100 m or even more the rotor mass (hubs and blades together) may vary from 46,000 to 216,000 kg. Costs are estimated to be DFL. 16/kg, both for teetering hubs and/or blades made of glass reinforced plastics. Due to lack of experience and of exact knowledge of the loads appearing during operation under field conditions the uncertainty factor may be 10% to 15%.

  12. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction

    Science.gov (United States)

    Weisburg, W. G.; Giovannoni, S. J.; Woese, C. R.

    1989-01-01

    Through comparative analysis of 16S ribosomal RNA sequences, it can be shown that two seemingly dissimilar types of eubacteria Deinococcus and the ubiquitous hot spring organism Thermus are distantly but specifically related to one another. This confirms an earlier report based upon 16S rRNA oligonucleotide cataloging studies (Hensel et al., 1986). Their two lineages form a distinctive grouping within the eubacteria that deserved the taxonomic status of a phylum. The (partial) sequence of T. aquaticus rRNA appears relatively close to those of other thermophilic eubacteria. e.g. Thermotoga maritima and Thermomicrobium roseum. However, this closeness does not reflect a true evolutionary closeness; rather it is due to a "thermophilic convergence", the result of unusually high G+C composition in the rRNAs of thermophilic bacteria. Unless such compositional biases are taken into account, the branching order and root of phylogenetic trees can be incorrectly inferred.

  13. The application of the zeolyte powder for the construction of the dense composite membranes for the carbon-dioxide separation

    Directory of Open Access Journals (Sweden)

    Nedeljković Dragutin M.

    2015-01-01

    Full Text Available The main task of the work is to construct the polymeric membrane that could be used for the waste gases treatment. For this purpose, membrane must have high permeability for the carbon dioxide and low permeability of the other gases commonly present in waste gases (hydrogen, oxygen, nitrogen and methane. The constructed membranes were of a dense type, based on a solubility/diffusivity mechanism. In order to enchase the permeability of carbon dioxide, four different zeolytes were added, and in order to improve mechanical stability two different additives were tested. Three zeolytes were with the 3-dimensional pores (ZSM5; Faujasite Linde type A and one was with the 1-dimensional pores (Linde type L. As an additive, n-tetradecyldimethylamonium bromide - n-C14TMABr was tested. The aim of an additive was to provide good wetting of a highly electrically charged zeolyte particle by the hydrophobic polymer chains. The other examined additive was dimethylaminopyridine (DMAP which should improve the solubility of carbon dioxide due to its alkali properties. The best results in carbon dioxide/hydrogen selectivity and permeability were obtained with the membrane constructed with PEBAX 1657 and surface treated zeolyte. The obtained permeability of carbon dioxide was 128 Barrer, and the carbon dioxide/hydrogen selectivity was 9.7.

  14. Based on Cu as framework constructed nanoporous CuO/Cu composites by a dealloy method for sodium-ion battery anode

    Science.gov (United States)

    Zheng, Tian; Li, Guangda; Li, Deming; Meng, Xiangeng

    2018-05-01

    Nanoporous CuO/Cu composites with a continuous channel structure were fabricated through a corroding Cu-Al alloy process. The width of the continuous channels was about 20 50 nm. Nanoporous structure could effectively sustain the volume expansion during the Na+ insertion/extraction process and shorten the Na+ diffusion length as well, which thus helps improve the Na+ storage performance. Moreover, the nanoporous structure can improve the contact area between the electrolyte and the electrode, leading to an increment in the number of Na+ insertion/extraction sites. When used as the anode for sodium-ion batteries, the CuO/Cu exhibited an initial capacity of 580 mAh g-1, and the capacity is maintained at 200 mAh g-1 after 200 cycles at a current density of 500 mA g-1.

  15. Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nieves Iglesias

    2018-04-01

    Full Text Available The present work deals with the synthesis of micro-structured biomaterials based on chitosan (CTS for their applications as biocompatible carriers of drugs and bioactive compounds. Twelve dispersions were prepared by means of functional cross-linking with tricarballylic acid (TCA; they were characterized by Fourier transform infrared spectroscopy (FT-IR, modulated temperature differential scanning calorimetry (MTDSC and scanning electron microscopy (SEM, and their rheological properties were studied. To the best of the authors’ knowledge, no study has been carried out on the influence of CTS concentration, degree of cross-linking and drug loading on chitosan hydrogels for drug delivery systems (DDS and is investigated herein for the first time. The influence of dispersion composition (polymer concentration and degree of cross-linking revealed to exert a marked impact on its rheological properties, going from liquid-like to viscoelastic gels. The release profiles of a model drug, diclofenac sodium (DCNa, as well as their relationships with polymer concentration, drug loading and degree of cross-linking were evaluated. Similar to the findings on rheological properties, a wide range of release profiles was encountered. These formulations were found to display a well-controlled drug release strongly dependent on the formulation composition. Cumulative drug release under physiological conditions for 96 h ranged from 8% to 67%. For comparative purpose, Voltaren emulgel® from Novartis Pharmaceuticals was also investigated and the latter was the formulation with the highest cumulative drug release (85%. Some formulations showed similar spreadability values to the commercial hydrogel. The comparative study of three batches confirmed the reproducibility of the method, leading to systems particularly suitable for their use as drug carriers.

  16. Towards a Sustainable Architecture

    OpenAIRE

    Patuel Chust, Pascual

    2014-01-01

    The growing awareness of the importance of ecology in the last decades has led many architects to rethink their construction proposals to make them more respectful of the environment and sustainability. The present article analyzes the legislation, conferences and international declarations (Earth Summit, Declaration of Interdependence for a Sustainable Future, Introduction to Sustainable Design) that have advocated the practice of a more ecological architecture. Also examined ...

  17. Sustainable Design of EPA's Campus in Research Triangle Park, NC—Environmental Performance Specifications in Construction Contracts—Section 01450 Sequence of Finishes Installation

    Science.gov (United States)

    Learn more about the special construction scheduling/sequencing requirements and procedures necessary to assure achievement of designed Indoor Air Quality (IAQ) levels for the completed project required by the EPA IAQ Program.

  18. Measurement in Sustainable Building

    DEFF Research Database (Denmark)

    Hale, Lara

    2018-01-01

    Measurement is a necessary aspect of planning and constructing buildings. However, recent attempts to integrate the social dimension of sustainable building into building design and specifications demand measurement of non-technical qualities, such as well-being. The Active House Alliance, in lieu...... and continued provision of sustainable buildings to market demand....

  19. Correction of heterogeneities in the issue compositions in the construction plans optimized in radiotherapy using linear programming

    International Nuclear Information System (INIS)

    Viana, Rodrigo Sartorelo S.; Lima, Ernesto A.B.F.; Florentino, Helenice de Oliveira; Fonseca, Paulo Roberto da; Homem, Thiago Pedro Donadon

    2009-01-01

    Linear programming models are widely found in the literature addressing various aspects involved in the creation of optimized planning for radiotherapy. However, most mathematical formulations does not incorporate certain factors that are of extreme importance for the formulation of a real planning like the attenuation of the beam of radiation and heterogeneity in the composition of tissue irradiated. In this context are proposed in this paper some modifications in the formulation of a linear programming problem with the objective of making the simulation closer to the real planning for radiotherapy and thus enable a more reliable and comprehensive planning requirements. (author)

  20. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Buckley, Conor T; Meyer, Eric G; Kelly, Daniel J

    2012-02-01

    Engineering cartilaginous tissue of a scale necessary to treat defects observed clinically is a well-documented challenge in the field of cartilage tissue engineering. The objective of this study was to determine how the composition and mechanical properties of cartilaginous tissues that are engineered by using bone marrow-derived mesenchymal stem cells (MSCs) depend on the scale of the construct. Porcine bone marrow-derived MSCs were encapsulated in agarose hydrogels, and constructs of different cylindrical geometries (Ø4×1.5 mm; Ø5×3 mm; Ø6×4.5 mm; Ø8×4.5 mm) were fabricated and maintained in a chemically defined serum-free medium supplemented with transforming growth factor-β3 for 42 days. Total sulfated glycosaminoglycan (sGAG) accumulation by day 42 increased from 0.14% w/w to 0.88% w/w as the construct geometry increased from Ø4×1.5 to Ø8×4.5 mm, with collagen accumulation increasing from 0.31% w/w to 1.62% w/w. This led to an increase in the dynamic modulus from 90.81 to 327.51 kPa as the engineered tissue increased in scale from Ø4×1.5 to Ø8×4.5 mm. By decreasing the external oxygen tension from 20% to 5%, it was possible to achieve these higher levels of mechanical functionality in the smaller engineered tissues. Constructs were then sectioned into smaller subregions to quantify the spatial accumulation of extracellular matrix components, and a model of oxygen diffusion and consumption was used to predict spatial gradients in oxygen concentration throughout the construct. sGAG accumulation was always highest in regions where oxygen concentration was predicted to be lowest. In addition, as the size of the engineered construct increased, different regions of the construct preferentially supported either sGAG or collagen accumulation, thus suggesting that gradients in regulatory factors other than oxygen were playing a role in determining levels of collagen synthesis. The identification of such factors and the means to control their

  1. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment.

    Science.gov (United States)

    Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio

    2016-06-13

    During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.

  2. Report on childhood obesity in China (8): effects and sustainability of physical activity intervention on body composition of Chinese youth.

    Science.gov (United States)

    Li, Yan-Ping; Hu, Xiao-Qi; Schouten, Evert G; Liu, Ai-Ling; Du, Song-Ming; Li, Lin-Zhong; Cui, Zhao-Hui; Wang, Dong; Kok, Frans J; Hu, Frank B; Ma, Guan-Sheng

    2010-06-01

    To determine whether a large-scale physical activity intervention could affect body composition in primary school students in Beijing, China. The study design was one-year cluster randomized controlled trial of physical activity intervention (20 min of daily exercise in the classroom) with an additional year of follow-up among 4 700 students aged 8-11 years at baseline. After the one-year intervention, BMI increased by 0.56 kg/m(2) (SD 1.15) in the intervention group and by 0.72 kg/m(2) (SD 1.20) in the control group, with a mean difference of -0.15 kg/m(2) (95% CI: -0.28 to -0.02). BMI z score decreased by -0.05 (SD 0.44) in the intervention group, but increased by 0.01 (SD 0.46) in the control group, with a mean difference of -0.07 (-0.13 to -0.01). After another year of follow up, compared to the control group, children in the intervention group had significantly lower BMI (-0.13, -0.25 to -0.01), BMI z score (-0.05, -0.10 to -0.01), fat mass (-0.27 kg, -0.53 to -0.02) and percent body fat (-0.53, -1.00 to -0.05). The intervention had a more pronounced effect on weight, height, BMI, BMI z score, and body composition among obese children than among normal weight or overweight children. Compared to the control group, the intervention group had a significantly higher percentage of children who maintained or reduced their BMI z score at year 1 (P=0.008) and year 2 (P=0.04). These findings suggest that 20 min of daily moderate to vigorous physical activity during the school year is a feasible and effective way to prevent excessive gain of body weight, BMI, and body fatness in primary school students. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  3. Construction and characterization on composite electrospinning fibers doped with iridium complex owing fluorine atoms in its auxiliary ligand.

    Science.gov (United States)

    Gao, Yu-Qian; Zhang, Shimin; Wang, Pengju; Xu, Shuxia; Wu, Kun; Mou, Wanzhi

    2014-10-15

    The authors synthesized a fluorine-containing Ir(III) complex Ir(PTZ)2(HFD) and the corresponding composite electrospinning fibers PVP@Ir(PTZ)2(HFD), where PTZ, HFD and PVP stood for 2-phenylbenzo[d]thiazole, 1,1,1,5,5,5-hexafluoropentane-2,4-dione and poly(vinylpyrrolidone), respectively. The molecular structure of the Ir(III) complex was confirmed by its single crystal analysis, which suggested that Ir(PTZ)2(HFD) molecules crystallized as monoclinic system with two molecules in each unit cell. Density functional theory calculation on the crystal revealed that the onset electronic transitions possessed a mixed character of metal-to-ligand-charge-transfer (MLCT) and ligand-to-ligand-charge-transfer (LLCT). Ir(PTZ)2(HFD) was then doped into electrospinning fibers so that the photophysical comparison between bulk Ir(PTZ)2(HFD) and composite samples could be performed. It was found that both face-to-face π-π attraction in crystal and the immobilization in PVP host could improve photoluminescence performance by restraining the geometric relaxation of MLCT excited state, showing emission blue shift, longer excited state lifetime and improved photostability. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    Science.gov (United States)

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  5. Sustained Local Release of NGF from a Chitosan-Sericin Composite Scaffold for Treating Chronic Nerve Compression.

    Science.gov (United States)

    Zhang, Lei; Yang, Wen; Tao, Kaixiong; Song, Yu; Xie, Hongjian; Wang, Jian; Li, Xiaolin; Shuai, Xiaoming; Gao, Jinbo; Chang, Panpan; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-02-01

    Chronic nerve compression (CNC), a common form of peripheral nerve injury, always leads to chronic peripheral nerve pain and dysfunction. Current available treatments for CNC are ineffective as they usually aim to alleviate symptoms at the acute phase with limited capability toward restoring injured nerve function. New approaches for effective recovery of CNC injury are highly desired. Here we report for the first time a tissue-engineered approach for the repair of CNC. A genipin cross-linked chitosan-sericin 3D scaffold for delivering nerve growth factor (NGF) was designed and fabricated. This scaffold combines the advantages of both chitosan and sericin, such as high porosity, adjustable mechanical properties and swelling ratios, the ability of supporting Schwann cells growth, and improving nerve regeneration. The degradation products of the composite scaffold upregulate the mRNA levels of the genes important for facilitating nerve function recovery, including glial-derived neurotrophic factor (GDNF), early growth response 2 (EGR2), and neural cell adhesion molecule (NCAM) in Schwann cells, while down-regulating two inflammatory genes' mRNA levels in macrophages, tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β). Importantly, our tissue-engineered strategy achieves significant nerve functional recovery in a preclinical CNC animal model by decreasing neuralgia, improving nerve conduction velocity (NCV), accelerating microstructure restoration, and attenuating gastrocnemius muscles dystrophy. Together, this work suggests a promising clinical alternative for treating chronic peripheral nerve compression injury.

  6. L'impegno dell'industria delle costruzioni per promuovere la sostenibilità dei prodotti: un approccio comune europeo per le prestazioni ambientali di prodotto. The building sector commitment to promote the sustainability of construction products: a common European approach for the Environmental Product Performances

    OpenAIRE

    Caterina, Gargari; Chris, Hamans; Maria Chiara, Torricelli

    2013-01-01

    The industry of construction products plays an important role in Europe in promoting the sustainability of the built environment in a life cycle perspective. Within the framework of the European initiatives for a sustainable competitiveness, manufacturers are interested in promoting a life cycle approach along the building chain. However both, institutions and building operators, in general still have to go a long way on designing and applying a sustainable and competitive industrial policy....

  7. Implementation of sustainable processes in regional industries: recycling of metallurgical residual as a project to chance masonry used in construction in Bogotá, Colombia.

    Directory of Open Access Journals (Sweden)

    Leonardo Quijano B.

    2014-03-01

    Full Text Available Rev.esc.adm.neg This paper shows the analysis of the possibilities to implement a new process, viable from the environmental and economic point of view, which includes two regional industries within the framework of the generation of sustainable solutions for the regional economy. In it, the description of how to use residuals from the steel industry as a source to transform the masonry industry, both located in the region of Bogota.

  8. Success and fail factors in sustainable real estate renovation projects

    NARCIS (Netherlands)

    Volker, L.

    2011-01-01

    Sustainability remains an important issue for the construction industry. Yet, sustainable real estate developments are still considered as highly ambitious projects. To find out how and why sustainable renovation projects actually became sustainable we systematically evaluated 21 leading Dutch real

  9. Variance composition, measurement invariance by gender, and construct validity of the Femininity Ideology Scale-Short Form.

    Science.gov (United States)

    Levant, Ronald F; Alto, Kathleen M; McKelvey, Daniel K; Richmond, Katherine A; McDermott, Ryon C

    2017-11-01

    The current study extended prior work on the Femininity Ideology Scale (FIS), a multidimensional measure of traditional femininity ideology (TFI), in several ways. First, we conducted exploratory factor and bifactor analyses, which revealed a general TFI factor and 3 specific factors: dependence/deference, purity, and emotionality/traditional roles. Second, based on these results we developed the 12-item FIS-Short Form (FIS-SF). Third, we assessed the FIS-SF using confirmatory factor analysis on a separate sample, finding that the items loaded on the general factor and 3 specific factors as hypothesized, and that the bifactor model fit better than common factors and unidimensional models. Fourth, model-based reliability estimates tentatively support the use of raw scores to represent the general TFI factor and the emotionality/traditional roles specific factor, but the other 2 specific factors are best measured using SEM or by ipsatizing their scores. Fifth, we assessed measurement invariance across 2 gender groups, finding evidence for configural invariance for all factors, and for partial metric invariance for the specific factors. Sixth, we found evidence for the convergent construct validity of the FIS-SF general factor and the emotionality/traditional roles specific factors by examining relationships with the latent variables of several constructs in the nomological network. The results are discussed in relationship to prior literature, future research directions, applications to counseling practice, and limitations. Data (N = 1,472, 907 women, 565 men, 530 people of color) were from community and college participants who responded to an online survey. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Composite materials from forest biomass : a review of current practices, science, and technology

    Science.gov (United States)

    Roger M. Rowell

    2007-01-01

    Renewable and sustainable composite materials can be produced using forest biomass if we maintain healthy forests. Small diameter trees and other forest biomass can be processed in the forest into small solid wood pieces, sliced veneers, strands, flakes, chips, particles and fiber that can be used to make construction composite products such as glued-laminated lumber,...

  11. The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017

    Energy Technology Data Exchange (ETDEWEB)

    Thamsiriroj, T.; Murphy, J.D. [Department of Civil and Environmental Engineering, University College Cork (Ireland); Environmental Research Institute, University College Cork (Ireland)

    2011-01-15

    This paper considers biodiesel production from residues; tallow and used cooking oil (UCO). The tallow system is more complex involving two processes. The first process is rendering in which tallow (animal fat) and Meat and Bone Meal (MBM) are produced from the slaughter of cattle. MBM is assumed as a thermal energy source for cement manufacture and thus is not used for biodiesel production. The second process is biodiesel production from tallow. Three methodologies are employed to examine sustainability of the biodiesel. The no allocation approach assigns all the parasitic demands to the tallow; thus all energies required to make both MBM and tallow are associated with the tallow biodiesel. The resulting energy balance is negative. The substitution approach allocates the energy in MBM (used to produce cement) to tallow biodiesel. This results in the net energy being greater than the gross energy. The allocation by energy content method divides the parasitic demands of the rendering process between tallow and MBM by energy content. The parasitic demands of the biodiesel process are divided by energy content of the biodiesel, glycerol and K-fertiliser. For tallow biodiesel this yielded a net energy value of 38.6% of gross energy. The same method generated a net energy value of 67% for UCO biodiesel. More importantly the recommended method (allocation by energy content) generated a value of 54% greenhouse gas (GHG) emission savings for tallow and a value of 69% for UCO. Plants commencing after 2017, need to have a 60% GHG emission savings, to be considered sustainable. Thus a facility treating both feedstocks would need to treat a maximum of 60% tallow to be considered sustainable after 2017. (author)

  12. Abstracts of the Canadian Society for Civil Engineering annual conference including the general conference, the 1. international structural specialty conference, the 1. international construction specialty conference, and the 1. specialty conference on disaster mitigation : towards a sustainable future

    International Nuclear Information System (INIS)

    El-Badry, M.; Loov, R.E.; Ruwanpura, J.; El-Hacha, R.; Kroman, J.; Rankin, J.

    2006-01-01

    This conference provided a forum for national and international practicing engineers, researchers and technical experts to discuss sustainable solutions to infrastructure development. Discussions focused on recent developments in new technologies for building more economic and sustainable infrastructure, while improving the safety of buildings, bridges, roads, water supply and sewage treatment systems. The conference was held in conjunction with associated specialty conferences, including a first international structures specialty conference, a first international construction specialty conference, and a first specialty conference on disaster mitigation. This book of abstracts highlights all the specialty conferences and accompanies a CD-ROM that has the full text of all the papers. Manuscripts of the full papers submitted to the specialty conferences were peer-reviewed by international scientific committees. The general conference provided a forum to learn about new technologies and future directions in various areas of civil engineering. It included a special theme session on sustainable development and a special session on innovation and information technology. Other technical sessions focused on topics such as civil engineering history and education; infrastructure management and renewal; asset management; risk assessment and management; engineering materials and mechanics; environmental engineering and science; hydrotechnical engineering; cold region engineering; and, transportation engineering. The general conference featured 88 presentations, of which 15 have been catalogued separately for inclusion in this database

  13. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  14. Towards green construction

    International Nuclear Information System (INIS)

    Bajracharya, Bijaya B.; Shrestha, Prasanna M.

    2000-01-01

    Sustainability is the key to any development works. In the operation phase, hydro power is the most sustainable form of energy. However construction activities for the same power station are usually far from being green. The popular myth is that construction activity converts green into grey. Despite this popular myth, construction of a hydro power project in Nepal has made the project area greener than earlier during the construction phase itself. Choice of construction technology, appropriate level of environmental impact assessment, monitoring of environmental parameters along side the construction progress followed by mitigation at the right time; launching community development programmes side by side, having environmental specification in contractual documents and self-reliance to fulfill environmental obligations by contractors itself are the key factors in the environmental management within the construction activities. The main conclusions in the paper is the need to change the way to think about the project constraints

  15. Design and construction of the structure of the DEMONSTRATOR of the CALIFA detector for R3B-FAIR using carbon-fiber composites

    Directory of Open Access Journals (Sweden)

    Casarejos E.

    2014-03-01

    Full Text Available In this paper we describe the DEMONSTRATOR structures and active units (PETALs developed for the detector CALIFA of the experiment R3B - FAIR. The design is based in the CALIFA BARREL mechanical solutions, but adapted to the characteristics of the PETALs, namely in what concerns the load distribution during setup and service. The R&D program defined the materials and procedures for both producing the pieces of carbon fiber (CF composites as well as the mounting of the bundles to make an alveolar structure. The procedures also include a quality control program to ensure the dimensional properties of the CF assemblies. We are also developing the use of tomographic imaging analysis for this quality program, that will be of mayor interest in the construction of the future CALIFA CF-structure.

  16. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 27. Biogas construction plan in Jeruk Manis Village in Lombok, West Nusa Tenggara

    Energy Technology Data Exchange (ETDEWEB)

    Natsir, A. [University of Mataram, Mataram (Indonesia)

    2011-10-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara (WNT) and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. The proposed small-scale renewable energy project to be developed under the Casindo Technical Working Group IV in West Nusa Tenggara is focused on household biogas. The project will be implemented in Jeruk Manis, which has been selected as the target location for the implementation of the renewable energy project in the program Casindo. Administratively, the village of 'Jeruk Manis' is located in the district Sikur, East Lombok, West Nusa Tenggara province. The number of households eligible as the target of the program in Jeruk Manis is 63. To implement the project, the Casindo team in WNT has partnered with Hivos and its BIRU program (Biogas Rumah program or Indonesia Domestic Biogas Programme). The biogas digester construction will be conducted by BIRU Lombok, in collaboration with a construction partner organization called Yayasan Mandiri Membangun Masyarakat Sejahtera (YM3S) and managed by the Casindo project team from the Faculty of Engineering at the University of Mataram. If the project is implemented, it will bring many benefits for poor people in the target location, which are likely to be sustained for a long time. While the benefits of developing biogas in the selected low-income location are obvious and abundant, there are also many challenges. The main problem for the proposed project is finding other interested funders to support the building of household biogas, as the financial capacity of the target households is very small.

  17. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries

    International Nuclear Information System (INIS)

    Shi, Shaojun; Zhang, Ming; Deng, Tingting; Wang, Ting; Yang, Gang

    2017-01-01

    Graphical abstract: The schematic illustration of the strategy for preparations and the mechanism for the stability of structure Display Omitted -- Highlights: •A facile strategy is applied to construct flexible carbonate composite anode. •Carbon nano-fiber matrix serves as fast charge channel and efficient buffer. •High specific capacity of 958 mAh g −1 at 100 mA g −1 is obtained. •After 200 cycles at 1 A g −1 , there is not obvious capacity decline. •The mechanism for stress release is further analyzed. -- Abstract: High temperature is usually necessary for carbon modification or electrospinning to obtain flexible anode with excellent conductivity and stability. However, due to the unstable instinct of carbonate, it’s hard to obtain carbonate when any of the synthesis process undergoes high temperature treatment. Thus, a facile strategy is applied to construct binder-free flexible carbonate composite anode at low temperature with high electrochemical performances. The carbon nano-fiber matrix is first synthesized through electrospinning followed by a facile solvothermal process to in-situ grow carbonate on carbon nano-fibers to form a well combinative flexible anode. The carbon nano-fiber matrix serves not only as a fast channel for charge transfer, but also as an efficient buffer to release the stress resulting from the hysteresis of lithiation for carbonate particles during repeated charge/discharge cycles. Owing to the synergistic effect of carbon nano-fiber and the carbonate, the flexible anode exhibits high specific capacity of 958 mAh g −1 . And after 200 cycles at 1 A g −1 , no obvious capacity decline. The reaction mechanism for stress release is also well analyzed to display the merit of our strategy. It is considered as one of the most promising way to get binder-free flexible carbonate anode with remarkable properties.

  18. Application of Composite Indices for Improving Joint Detection Capabilities of Instrumented Roof Bolt Drills in Underground Mining and Construction

    Science.gov (United States)

    Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok

    2018-03-01

    Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.

  19. Concrete-polymer composite materials and their potential for construction, urban waste utilization, and nuclear waste storage

    International Nuclear Information System (INIS)

    Fowler, E.E.; Steinberg, Meyer.

    1974-01-01

    A wide range of concrete-polymer composites have been investigated by Brookhaven National Laboratory. Polymer impregnated concrete (PIC) is basically formed by drying cured conventional concrete, displacing the air from open cell void volume, diffusing low viscosity monomer (less than 10 cps) through the open cell structure, saturating the concrete with the monomer and in-situ polymerizing the monomer to polymer by most convenient means. Mainly free-radical vinyl type monomers are used. For increased thermal stability, crosslinking agents and thermosetting monomers such as styrene-trimethylol propane trimethacrylate (TMPTMA) and polyester-styrene are used. Much informations on the formation, structural properties and durability of PIC have been accumulated over past five years. U.S. Patent 3,567,496 has been issued on the production of PIC. Compressive strength can be increased from 352 kg/cm 2 of conventional concrete to 1,410 kg/cm 2 . Water absorption is reduced by 99% and the freeze-thaw resistance is remarkably improved. With high silica cement, strong basaltic aggregate, and high temperature steam curing, strength increase from 845 to over 2,630 kg/cm 2 can be obtained. A maximum of 238 kg/cm 2 tensile strength has been obtained with the steam-cured concrete. In the steam- cured concrete, polymer loading roughly around 8% by weight is obtained. Aggregates can include the urban solid waste discarded by man. Sewage and solid waste refuse-polymer concrete has been produced by using garbage as aggregate and sewage as the hydrating media for cement. The potentially important application of hydrauric cement concrete, in combination with the polymers in PIC and PC, is the storage of long-living radioactive wastes from nuclear industry. (Iwakiri, K.)

  20. Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    Science.gov (United States)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth; Gibson, John; Noret, Aurélie

    2017-11-01

    Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load) and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs) 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions), lake catchment size (which impacts the intensity of the flux change), lake volume (which impacts the range of variation), and lake G index (i.e., the percentage of groundwater that makes up total lake inflows), the latter being the dominant control on water balance conditions, as revealed by

  1. Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    Directory of Open Access Journals (Sweden)

    M. Arnoux

    2017-11-01

    Full Text Available Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions, lake catchment size (which impacts the intensity of the flux change, lake volume (which impacts the range of variation, and lake G index (i.e., the percentage of groundwater that makes up total lake inflows, the latter being the dominant control on water balance conditions, as

  2. Construction of SnO2-Graphene Composite with Half-Supported Cluster Structure as Anode toward Superior Lithium Storage Properties.

    Science.gov (United States)

    Zhu, Chengling; Chen, Zhixin; Zhu, Shenmin; Li, Yao; Pan, Hui; Meng, Xin; Imtiaz, Muhammad; Zhang, Di

    2017-06-12

    Inspired by nature, herein we designed a novel construction of SnO 2 anodes with an extremely high lithium storage performance. By utilizing small sheets of graphene oxide, the partitioned-pomegranate-like structure was constructed (SnO 2 @C@half-rGO), in which the porous clusters of SnO 2 nanoparticles are partially supported by reduced graphene oxide sheets while the rest part is exposed (half-supported), like partitioned pomegranates. When served as anode for lithium-ion batteries, SnO 2 @C@half-rGO exhibited considerably high specific capacity (1034.5 mAh g -1 after 200 cycles at 100 mA g -1 ), superior rate performance and remarkable durability (370.3 mAh g -1 after 10000 cycles at 5 A g -1 ). When coupled with graphitized porous carbon cathode for lithium-ion hybrid capacitors, the fabricated devices delivered a high energy density of 257 Wh kg -1 at ∼200 W kg -1 and maintained 79 Wh kg -1 at a super-high power density of ∼20 kW kg -1 within a wide voltage window up to 4 V. This facile and scalable approach demonstrates a new architecture for graphene-based composite for practical use in energy storage with high performance.

  3. Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy

    International Nuclear Information System (INIS)

    Zhang, Songsong; Li, Jie; Guo, Xianpeng; Liu, Lianhe; Wei, Hao; Zhang, Yingwei

    2016-01-01

    Highlights: • The fabrication of LbL multilayers used functional nanoparticles. • The film structure can be controlled in the nanoscopic range. • The constructed multilayers were transparent in the visible spectral region and presented anti-UV properties. • The multilayers presented scratch protection properties. - Abstract: Rare earth cerium oxide (ceria) nanoparticles have attracted extensive research attention due to their advantageous anti-UV and anti-scratch properties. However, a general and facile method for the fabrication of composite films using ceria and possessing these advantages is still lacking. Here, we report the fabrication of multilayers of ceria and polymeric species poly(styrene sulfonate) (PSS) and poly(diallyl-dimethyl ammonium) (PDDA) via the layer-by-layer deposition strategy. The thickness of the multilayers increased linearly with the number of bilayers, indicating accurate control of the film structure in the nanoscopic range. The constructed multilayers were transparent in the visible spectral region and at the same time presented anti-UV properties. In addition, the multilayers also presented scratch protection properties.

  4. Steel slag: a waste industrial by-product as an alternative sustainable green building material in construction applications--an attempt for solid waste management.

    Science.gov (United States)

    Pofale, Arun D; Nadeem, Mohammed

    2012-01-01

    This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.

  5. Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors

    Science.gov (United States)

    Li, Meng; He, Hanwei

    2018-05-01

    A high-performance supercapacitor both considered high power and high energy density is needed for its applications such as portable electronics and electric vehicles. Herein, we construct a high-performance ruthenium oxide/graphene (RuO2-ERG) composite directly grown on Ni foam through cyclic voltammetric deposition process. The RuO2-ERG composite with sandwich structure is achieved effectively from a mixed solution of graphene oxide and ruthenium trichloride in the -1.4 V to 1.0 V potential range at a scan rate of 5 mV s-1. The electrochemical performance is optimized by tuning the concentration of the ruthenium trichloride. This integrative RuO2-ERG composite electrode can effectively maintains the accessible surface for redox reaction and stable channels for electrolyte penetration, leading to an improved electrochemical performance. Symmetrical aqueous supercapacitors based on RuO2-ERG electrodes exhibit a wider operational voltage window of 1.5 V. The optimized RuO2-ERG electrode displays a superior specific capacitance with 89% capacitance retention upon increasing the current density by 50 times. A high energy density of 43.8 W h kg-1 at a power density of 0.75 kW kg-1 is also obtained, and as high as 39.1 W h kg-1 can be retained at a power density of 37.5 kW kg-1. In addition, the capacitance retention is still maintained at 92.8% even after 10,000 cycles. The excellent electrochemical performance, long-term cycle stability, and the ease of preparation demonstrate that this typical RuO2-ERG electrode has great potentialities to develop high-performance supercapacitors.

  6. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles.

    Science.gov (United States)

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid

    2013-10-07

    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His₆-TagGN = His₆@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His₆-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His₆-TagGN/Fe₃O₄ nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.

  7. From waste to resource: a systems-based approach to sustainable community development through equitable enterprise and agriculturally-derived polymeric composites

    Science.gov (United States)

    Teipel, Elisa

    Rural communities in developing countries are most vulnerable to the plight of requiring repeated infusions of charitable aid over time. Micro-business opportunities that effectively break the cycle of poverty in resource-rich countries in the developing world are limited. However, a strong model for global commerce can break the cycle of donor-based economic supplements and limited local economic growth. Sustainable economic development can materialize when a robust framework combines engineering with the generous investment of profits back into the community. This research presents a novel, systems-based approach to sustainable community development in which a waste-to-resource methodology catalyzes the disruption of rural poverty. The framework developed in this thesis was applied to the rural communities of Cagmanaba and Badian, Philippines. An initial assessment of these communities showed that community members are extremely poor, but they possess an abundant natural resource: coconuts. The various parts of the coconut offer excellent potential value in global commerce. Today the sale of coconut water is on the rise, and coconut oil is an established $3 billion market annually that is also growing rapidly. Since these current industries harvest only two parts of the coconut (meat and water), the 50 billion coconuts that grow annually leave behind approximately 100 billion pounds of coconut shell and husk as agricultural waste. Coconuts thus provide an opportunity to create and test a waste-to-resource model. Intensive materials analysis, research, development, and optimization proved that coconut shell, currently burned as a fuel or discarded as agricultural waste, can be manufactured into high-grade coconut shell powder (CSP), which can be a viable filler in polymeric composites. This framework was modeled and tested as a case study in a manufacturing facility known as a Community Transformation Plant (CTP) in Cagmanaba, Philippines. The CTP enables local

  8. Composite gravity and composite supergravity

    International Nuclear Information System (INIS)

    Lukierski, J.

    1982-09-01

    It is known that the composite YM H-gauge theory can be constructed from σ-fields taking values in a symmetric Riemannian space G/H. We extend such a framework to graded σ-fields taking values in supercosets. We show that from supercoset σ-fields one can construct composite gravity, and from supercoset σ-superfields the composite supergravity models. (author)

  9. Construction of an Environmentally Sustainable Development on a Modified Coastal Sand Mined and Landfill Site – Part 1. Planning and Implementation

    Directory of Open Access Journals (Sweden)

    AnneMarie Clements

    2009-06-01

    Full Text Available The Magenta Shores development fronts 2.3 km of Tuggerah Beach on a formerly sand mined and landfill site in an urban growth area on the central coast of New South Wales. To increase the natural defences against storm waves and mass sand movements, the incipient foredune was retained and the parallel beach ridge landform was re-established by mimicking natural processes. Analysis of waste and resources led to a coordinated large-scale onsite re-use, recycling and waste management program that reduced landfill, transportation and natural resource requirements. Bitou bush removed from the Coastal Protection Zone was incorporated into golf course soils to improve grass growth. Leachate in the groundwater from the former landfill was diverted away from Tuggerah Lake and re-used in golf course irrigation. Upgrade of the local sewer treatment plant and installation of a public dual pipeline servicing Magenta and the adjoining township satisfied irrigation demands and provided non-potable water for the existing and expanding urban community. The sustainability challenges of the project were met through clear identification of existing environmental risks, application of scientific research, integrated team management and stakeholders’ cooperation.

  10. Sustainability issues in civil engineering

    CERN Document Server

    Saride, Sireesh; Basha, B

    2017-01-01

    This compilation on sustainability issues in civil engineering comprises contributions from international experts who have been working in the area of sustainability in civil engineering. Many of the contributions have been presented as keynote lectures at the International Conference on Sustainable Civil Infrastructure (ICSCI) held in Hyderabad, India. The book has been divided into core themes of Sustainable Transportation Systems, Sustainable Geosystems, Sustainable Environmental and Water Resources and Sustainable Structural Systems. Use of sustainability principles in engineering has become an important component of the process of design and in this context, design and analysis approaches in civil engineering are being reexamined to incorporate the principles of sustainable designs and construction in practice. Developing economies are on the threshold of rapid infrastructure growth and there is a need to compile the developments in various branches of civil engineering and highlight the issues. It is th...

  11. Sustainable Food & Sustainable Economics

    OpenAIRE

    Alvarez, Mavis Dora

    2012-01-01

    Cuba today is immersed in a very intense process of perfecting its agricultural production structures with the goal of making them more efficient and sustainable in their economic administration and in their social and environmental management. Agricultural cooperatives in Cuba have the responsibility of producing on 73% of the country's farmland. Their contributions are decisive to developing agricultural production and to ensuring more and better food for the population, in addition to redu...

  12. Evaluation of bituminous sub-ballast manufactured at low temperatures as an alternative for the construction of more sustainable railway structures

    Directory of Open Access Journals (Sweden)

    L. Pirozzolo

    2017-07-01

    Full Text Available Hot bituminous mixtures are becoming widely used in modern railway tracks in the sub-ballast layer. The reason is that these materials allow for both an increase in bearing capacity and greater protection of the substructure respect the traditional granular sub-ballast. Despite these advantages, the fact that these materials are manufactured at a temperature of 160°C means that their application can lead to an important increase in construction costs, pollution and energy consumption. This paper aims to study the possibility of using WMA manufactured at lower temperatures, as bituminous sub-ballast, in order to save energy and reduce emissions throughout the production process, as well as diminish the global costs of this layer. To this end, this study focuses on a comparison of the mechanical behaviour of warm and hot bituminous mixtures as sub-ballast under various loading conditions. The results indicate that WMA offers mechanical behaviour that is comparable to conventional HMA.

  13. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design and construction of a cable-stayed composite girder bridge with precast RC-slabs; Purekyasuto shohan gosei keta shachokoyo no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K. [Tokyo Metropolitan Univ. (Japan). Faculty of Technology; Shimura, T.; Tachibana, Y.; Echigo, S. [Kawada Industries Inc., Tokyo (Japan)

    1995-09-20

    A report on design and execution of cable-stayed composite girder bridge with precast RC-slabs constructed first in Japan though in small scale was described. This bridge adopted steel slabs relatively low in slab height for main slab and with two boxes slab section, and was designed at an aim of being more economic and shorter in its working term in comparison with steel girder slab type, on a base of the design in a region allowable with the existing design standards. This bridge is mainly in accordance with the regulation on continuous bridge in the prescription of road bridge, and is designed for normal RC-girder selecting between girder supports to direction normal to bridge axis as usual without using specially strong concrete to the girder. And, in order to fill with the regulation on allowable tensile stress on considering effects of creep and drying shrinkage, a method adding prestress to the slabs was adopted. Furthermore, a loop-like overlap joint for cable joint for the precast girders, expansion concrete for joint portion to compose the girder with the steel slab and so forth were adopted. 12 refs., 22 figs., 5 tabs.

  15. Sustainable built environments

    CERN Document Server

    Haase, Dagmar

    2013-01-01

    Sustainable design is a collective process whereby the built environment achieves unprecedented levels of ecological balance through new and retrofit construction, with the goal of long-term viability and humanization of architecture. Focusing on the environmental context, sustainable design merges the natural, minimum resource conditioning solutions of the past (daylight, solar heat, and natural ventilation) with the innovative technologies of the present.  The desired result is an integrated “intelligent” system that supports individual control with expert negotiation for resource consciousness. International experts in the field address the fundamental questions of sustainable design and landscape management: How should the sustainability of landscapes and buildings be evaluated? Which targets have to be set and which thresholds should not be exceeded? What forms of planning and governance structures exist and to what extent do they further the goals of sustainability?  Gathering 30 peer-reviewed ent...

  16. Sustainability Marketing Commitment

    DEFF Research Database (Denmark)

    Tollin, Karin; Bech Christensen, Lars

    2017-01-01

    sustainability in marketing, processes associated with sustainability marketing commitment, drivers of sustainability marketing at the functional level of marketing, and its organizational context. Using survey data from 269 managers in marketing, covering a broad range of industries in Sweden and Denmark, we...... took a structural modelling approach to examine construct relationships, mediation, and moderation effects. Overall, the findings show that marketing capabilities associated with the innovation of new products, services, and business models constitute a strong driver to leverage sustainability......Corporate sustainability is an important strategy and value orientation for marketing, but scarce research addresses the organizational drivers and barriers to including it in companies’ marketing strategies and processes. The purpose of this study is to determine levels of commitment to corporate...

  17. Chemical composition - Sustainable aquafeeds for marine finfish: Effects of vegetable oil replacement feeds containing novel microalgal and fungal oils on growth performance of juvenile sablefish

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The concomitant replacement of fish meal and fish oil in carnivorous marine fish feeds by more sustainable terrestrial alternatives is problematic due to the limited...

  18. Lipid composition - Sustainable aquafeeds for marine finfish: Effects of vegetable oil replacement feeds containing novel microalgal and fungal oils on growth performance of juvenile sablefish

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The concomitant replacement of fish meal and fish oil in carnivorous marine fish feeds by more sustainable terrestrial alternatives is problematic due to the limited...

  19. Sustainable materials for low carbon buildings

    OpenAIRE

    B.V. Venkatarama Reddy

    2009-01-01

    This paper focuses on certain issues pertaining to energy, carbon emissions and sustainability of building construction with particular reference to the Indian construction industry. Use of sustainable natural materials in the past, related durability issues, and the implications of currently used energy-intensive materials on carbon emissions and sustainability are discussed. Some statistics on the Indian construction sector regarding materials produced in bulk quantities and the energy impl...

  20. Importance of Using Multiple Sampling Methodologies for Estimating of Fish Community Composition in Offshore Wind Power Construction Areas of the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mathias H.; Gullstroem, Martin; Oehman, Marcus C. (Dept. of Zoology, Stockholm Univ., Stockholm (Sweden)); Asplund, Maria E. (Dept. of Marine Ecology, Goeteborg Univ., Kristineberg Marine Research Station, Fiskebaeckskil (Sweden))

    2007-12-15

    In this study a visual SCUBA investigation was conducted in Utgrunden 2, an area where windmills had not yet been constructed, and where the bottom mainly consisted of mud or sand with no or a sparse number of algae or mussel beds. A wind farm at Utgrunden 2 would alter the local habitat from a predominantly sandy soft-bottom habitat to an area in which artificial reef structures that resemble hard-bottom habitats is introduced, i.e., the steel foundations and possibly boulders for scour protection. The fish community that will develop over time would be expected to change to resemble the assemblages observed at Utgrunden 1 and hence not visible using trawling and echosound sampling technique. As the goal of EIA is to assess changes, following human development visual techniques is recommended as a complement when examining the environmental effects of offshore windpower. Otherwise important ecological changes may go unnoticed. For a comprehensive understanding of the ecological effects of windfarm developments it is recommended that a combination of sampling methods is applied and that this should be defined before an investigation commences. Although it is well established in the scientific literature that different sampling methods will give different estimations of fish community composition, environmental impact assessments of offshore windpower have been incorrectly interpreted. In the interpretation of the results of such assessments it is common that the findings are extrapolated by stakeholders and media to include a larger extent of the fish populations than what was intended. Therefore, to fully understand how windpower influences fish the underwater visual census technique is here put forward as a necessary complement to more widescreening fish sampling methods (e.g., gill nets, echo-sounds, trawling)

  1. 2001 Environmental Sustainability Index (ESI)

    Data.gov (United States)

    National Aeronautics and Space Administration — The 2001 Environmental Sustainability Index (ESI) utilizes a refined methodology based on the 2000 Pilot ESI effort, to construct an index covering 122 countries...

  2. Sustainable Marketing

    NARCIS (Netherlands)

    Dam, van Y.K.

    2017-01-01

    In this article, three different conceptions of sustainable marketing are discussed and compared. These different conceptions are referred to as social, green, and critical sustainable marketing. Social sustainable marketing follows the logic of demand-driven marketing management and places the

  3. Measuring farm sustainability using data envelope analysis with principal components: the case of Wisconsin cranberry.

    Science.gov (United States)

    Dong, Fengxia; Mitchell, Paul D; Colquhoun, Jed

    2015-01-01

    Measuring farm sustainability performance is a crucial component for improving agricultural sustainability. While extensive assessments and indicators exist that reflect the different facets of agricultural sustainability, because of the relatively large number of measures and interactions among them, a composite indicator that integrates and aggregates over all variables is particularly useful. This paper describes and empirically evaluates a method for constructing a composite sustainability indicator that individually scores and ranks farm sustainability performance. The method first uses non-negative polychoric principal component analysis to reduce the number of variables, to remove correlation among variables and to transform categorical variables to continuous variables. Next the method applies common-weight data envelope analysis to these principal components to individually score each farm. The method solves weights endogenously and allows identifying important practices in sustainability evaluation. An empirical application to Wisconsin cranberry farms finds heterogeneity in sustainability practice adoption, implying that some farms could adopt relevant practices to improve the overall sustainability performance of the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluation of Sustainable Concrete Production and Construction ...

    African Journals Online (AJOL)

    AFRREV STECH: An International Journal of Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 1 (2015) >. Log in or Register to get access to full text downloads.

  5. Sustainable Disruptions

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Kjær, Lykke Bloch

    2016-01-01

    Since 2012 the Sustainable Disruptions (SD) project at the Laboratory for Sustainability at Design School Kolding (DK) has developed and tested a set of design thinking tools, specifically targeting the barriers to economically, socially, and environmentally sustainable business development....... The tools have been applied in practice in collaboration with 11 small and medium sized companies (SMEs). The study investigates these approaches to further understand how design thinking can contribute to sustainable transition in a business context. The study and the findings are relevant to organizations...... invested in the issue of sustainable business development, in particular the leaders and employees of SMEs, but also to design education seeking new ways to consciously handle and teach the complexity inherent in sustainable transformation. Findings indicate that the SD design thinking approach contributes...

  6. NaCl leached sustainable porous flexible Fe3O4 decorated RGO-polyaniline/PVDF composite for durable application against electromagnetic pollution

    Directory of Open Access Journals (Sweden)

    R. Bera

    2017-05-01

    Full Text Available To avoid the interference of electromagnetic radiation from other devices, an electronic device needs to be fabricated with flexible and light weight electromagnetic interference (EMI shielding materials with high efficiency. According, highly flexible porous poly(vinylidene fluoride (PVDF/PFR (Fe3O4 decorated polyaniline/RGO composite composite was prepared through solution blending of PVDF with pre-synthesized PFR conductive composite that involves in-situ oxidative polymerization of aniline in the presence of reduced graphene oxide (RGO using FeCl3 as oxidant. The porous morphology of the composite was created by leaching out of mixed NaCl from the composite. Polyaniline and RGO were mutually decorated by chemically in-situ synthesized ferrosoferric oxide (Fe3O4 using the Fe source of FeCl3. A homogeneous dispersion of PFR in insulated PVDF matrix resulted in a highly electrical conductive composite (PVDF-PFR material through formation of three dimensional continuous conductive networks of polyaniline-RGO in the matrix phase. The composite shows an outstanding EMI shielding effectiveness (EMI SE property due to the porous structure and the presence of conductive network and ferromagnetic Fe3O4 nanoparticles. The PVDF-PFR composite (0.5 mm thickness depicts a great permittivity and permeability value and achieve high EMI SE value (≈–28.18 dB and conductivity value of ≈1.10·10–1 S·cm–1 at very low loading (5 wt% of RGO.

  7. Computational sustainability

    CERN Document Server

    Kersting, Kristian; Morik, Katharina

    2016-01-01

    The book at hand gives an overview of the state of the art research in Computational Sustainability as well as case studies of different application scenarios. This covers topics such as renewable energy supply, energy storage and e-mobility, efficiency in data centers and networks, sustainable food and water supply, sustainable health, industrial production and quality, etc. The book describes computational methods and possible application scenarios.

  8. Sustainable building; Duurzaam bouwen

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, Ch.F. [ed.] [Interfacultair Onderzoek Centrum ' De Ecologische Stad' DIOC, Delft (Netherlands)

    1999-07-01

    A complete overview is given of starting points and targets for the sustainable construction of buildings. The notion of sustainable indicates the necessity of managing specific flows: materials, energy, water and transport (traffic). Also, the monitoring and calculation of environmental effects must be clarified by the generally accepted method of life cycle analysis. This book is for the larger part the result of research carried out at the Interdepartmental Research Centre 'The Ecological City' at the Delft University of Technology in Delft, Netherlands. refs.

  9. Adopting Sustainability in the Organization

    DEFF Research Database (Denmark)

    Frandsen, Sanne; Morsing, Mette; Vallentin, Steen

    2013-01-01

    Purpose – The purpose of this paper is to explore the relationship between sustainability adoption and internal legitimacy construction. Design/methodology/approach – The paper is designed as a critical inquiry into existing research and practice on sustainability adoption, illustrated by two...... corporate vignettes. Findings – Prior studies tend to assume that awareness raising is a sufficient means to create employee commitment and support for corporate sustainability programs, while empirical observations indicate that managerial disregard of conflicting interpretations of sustainability may...... result in the illegitimacy of such programs. Originality/value – The authors suggest that a loosely coupled approach to sustainability adoption is a productive way to understand internal legitimacy construction, as it appreciates complexity and polyphony....

  10. Sustainable Universities

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2011-01-01

    Declarations on Sustainability in Higher Education (SHE) can be viewed as a piece of international regulation. Over the past 30 years research at universities has produced convincing data to warn about deterioration of the environment, resource scarcity and the need for sustainability. This in turn....... Declarations tend to have impact on three trends. Firstly, there is emerging international consensus on the university’s role and function in relation to sustainable development; secondly, the emergence of national legislation, and thirdly, an emerging international competition to be leader in sustainable...

  11. Operations management for construction

    CERN Document Server

    March, Chris

    2009-01-01

    Students studying construction management and related subjects need to have a broad understanding of the major aspects of controlling the building processes. Operations Management for Construction is one of three textbooks (Business Organisation, Operations Management and Finance Control) written to systematically cover the field. Focusing on construction sites and operations which are challenging to run, Chris March explores issues such as the setting up of the site, the deciding of the methodology of construction, and the sequence of work and resourcing. As changing and increasing regulations affect the way sites are managed, he also considers the issues and methods of successful administering, safety, quality and environment. Finally, the contractor's responsibility to the environment, including relationships with third parties, selection of materials, waste management and sustainability is discussed. Chris March has a wealth of practical experience in the construction industry, as well as considerable exp...

  12. Sustainable Urbanization Synergy Degree Measures—A Case Study in Henan Province, China

    Directory of Open Access Journals (Sweden)

    Leilei Jiao

    2017-12-01

    Full Text Available Sustainable urbanization emphasizes properly handling the relationships between people, people and society, and people and nature in the process of urban development. However, sometimes these interactions are difficult to quantify. Through an analysis of the structure and functions of the sustainable urbanization system, this paper introduced synergetic theory and constructed a sustainable urbanization synergy system (SUSS with five subsystems; demographic change, economic development, spatial structure, environmental quality, and social development; to study the synergistic development and orderly evolution trend of the sustainable urbanization composite system. Using sustainable urbanization in Henan province as an example, a mathematical quantitative model was established to measure the subsystem order degrees and the composite system synergy degree from 2006 to 2015. The results were consistent with the actual situation and indicated that over time, sustainable urbanization in Henan developed towards a more harmonious and orderly state, though the overall synergy degree was not high. It was found that the model was a sound basis for scientific judgment and effective decision-making when seeking to coordinate sustainable urbanization.

  13. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  14. Sustainable solid-state strategy to hierarchical core-shell structured Fe 3 O 4 @graphene towards a safer and green sodium ion full battery

    KAUST Repository

    Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun

    2017-01-01

    A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can

  15. Sustainable Transition

    DEFF Research Database (Denmark)

    Hansen, Ole Erik; Søndergård, Bent

    2014-01-01

    of agendas/vision, technologies, actors and institutions in the emergent design of an urban mobility system based on an electric car sharing system. Why. Designing for sustainability is a fundamental challenge for future design practices; designers have to obtain an ability to contribute to sustainable...

  16. Sustainable transformation

    DEFF Research Database (Denmark)

    Andersen, Nicolai Bo

    This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuil...

  17. Sustainability Labeling

    NARCIS (Netherlands)

    Dam, van Y.K.

    2017-01-01

    Sustainability labeling originated from a need to protect the identity of alternative systems of food production and to increase market transparency. From the 1980s onwards sustainability labeling has changed into a policy instrument replacing direct government regulation of the food market, and a

  18. Rational construction of a 3D hierarchical NiCo2O4/PANI/MF composite foam as a high-performance electrode for asymmetric supercapacitors.

    Science.gov (United States)

    Cui, Fen; Huang, Yunpeng; Xu, Le; Zhao, Yan; Lian, Jiabiao; Bao, Jian; Li, Huaming

    2018-04-19

    A 3D hierarchical NiCo2O4/PANI/MF composite foam with a macroporous 3D skeleton, a conductive PANI coating and highly electrochemically active NiCo2O4 nanosheets is synthesized as a lightweight and low-cost electrode material. Due to the collaborative contribution of all the components, the prepared composite foam exhibits excellent capacitive performances when incorporated into an asymmetric supercapacitor.

  19. Afterschool Sustainability

    Directory of Open Access Journals (Sweden)

    Hilary D. Joyce

    2014-12-01

    Full Text Available Youth participation in quality extended learning opportunities (ELOs results in positive academic, physical, mental health, and social/emotional outcomes. Funding is essential to implementing and sustaining quality ELOs; however multiple funding barriers and challenges exist. Understanding the types of funds available for ELOs and the factors that influence sustainability is critical. Through surveys and telephone interviews of ELO providers, this descriptive study identified and examined ELO funding streams, the ways ELO providers use these funding streams, and the barriers and challenges to sustainability. ELO programs often relied on one major funding stream coupled with nutrition supports as well as in-kind resources. Barriers to sustainability included year-to-year funding, transportation costs, reducing community partnerships, and difficulty in diversifying funds. Recommendations to enhance ELO sustainability are offered, particularly in relation to overcoming the challenges to diversification of funding resources and establishing mutually supportive partnerships and collaboration.

  20. Experimental and numerical analysis of short sisal fiber-cement composites produced with recycled matrix

    OpenAIRE

    Lima, Paulo Roberto Lopes; Barros, Joaquim A. O.; Santos, Daniele Justo; Fontes, Cintia Maria; Lima, José Mário F.; Toledo Filho, Romildo

    2016-01-01

    "Published online: 02 Jan 2017" The proper use of renewable or recycled source materials can contribute significantly to reducing the environmental impact of construction industry. In this work, cement based composites reinforced with natural fibers were developed and their mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding metakaolin and the natural aggregate was substitute...

  1. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  2. Armenia's Economic Growth Sustainability

    OpenAIRE

    Hayakawa, Tatsuji

    2015-01-01

    Armenia enjoyed 15 years of uninterrupted high economic growth prior to the global financial crisis in 2009. Investment, particularly in the mining and metallurgy sectors, played a key role as a driver of economic growth. Remittances,mostly from Russia, had an effect in sustaining consumption and boosting construction. Armenia has shown some weaknesses in the external sector, due to demands for natural gas, mineral products, machinery, and equipment. Armenia's exports and FDI suffer from the ...

  3. Implementing Sustainable Development

    OpenAIRE

    Rydin, Y.

    2002-01-01

    This paper highlights the scope for making progress towards sustainable development through changes in current practices and decision-making processes that do not need international agreements. It outlines seven key areas for improving implementation, including: using monitoring and evaluation (and the information these produce) to change attitudes and behaviour; participation that involves the public constructively; better use of “soft” instruments of persuasion and communication; and ensuri...

  4. Sustainable Elastomers from Renewable Biomass.

    Science.gov (United States)

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were

  5. Construction management

    CERN Document Server

    Pellicer, Eugenio; Teixeira, José C; Moura, Helder P; Catalá, Joaquín

    2014-01-01

    The management of construction projects is a wide ranging and challenging discipline in an increasingly international industry, facing continual challenges and demands for improvements in safety, in quality and cost control, and in the avoidance of contractual disputes. Construction Management grew out of a Leonardo da Vinci project to develop a series of Common Learning Outcomes for European Managers in Construction. Financed by the European Union, the project aimed to develop a library of basic materials for developing construction management skills for use in a pan-European context. Focused exclusively on the management of the construction phase of a building project from the contractor's point of view, Construction Management covers the complete range of topics of which mastery is required by the construction management professional for the effective delivery of new construction projects. With the continued internationalisation of the construction industry, Construction Management will be required rea...

  6. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  7. Sustainable Cities

    DEFF Research Database (Denmark)

    Georg, Susse; Garza de Linde, Gabriela Lucía

    Judging from the number of communities and cities striving or claiming to be sustainable and how often eco-development is invoked as the means for urban regeneration, it appears that sustainable and eco-development have become “the leading paradigm within urban development” (Whitehead 2003....../assessment tool. The context for our study is urban regeneration in one Danish city, which had been suffering from industrial decline and which is currently investing in establishing a “sustainable city”. Based on this case study we explore how the insights and inspiration evoked in working with the tool...

  8. Construction of SnO2?Graphene Composite with Half-Supported Cluster Structure as Anode toward Superior Lithium Storage Properties

    OpenAIRE

    Zhu, Chengling; Chen, Zhixin; Zhu, Shenmin; Li, Yao; Pan, Hui; Meng, Xin; Imtiaz, Muhammad; Zhang, Di

    2017-01-01

    Inspired by nature, herein we designed a novel construction of SnO2 anodes with an extremely high lithium storage performance. By utilizing small sheets of graphene oxide, the partitioned-pomegranate-like structure was constructed (SnO2@C@half-rGO), in which the porous clusters of SnO2 nanoparticles are partially supported by reduced graphene oxide sheets while the rest part is exposed (half-supported), like partitioned pomegranates. When served as anode for lithium-ion batteries, SnO2@C@half...

  9. SUSTAINABLE AND DESIGN BUILDING PROCESSES

    Directory of Open Access Journals (Sweden)

    Silvio F. R. MOTTA

    2009-05-01

    Full Text Available The article presents a historical revision of the sustainable development and the sustainable in the constructed environment. It describes the main concepts and practices for implantation of the sustainable in the civil construction. These concepts and practices are reviewed from the perspective of the dialectic method, the general theory of systems and the theories of creative processes. These concepts are also analyzed from the perspective of quality management. The article proposes a model based on the dialectic, in which sustainability is considered an open system and a search inventive. The implantation of the sustainable in projects, companies and design processes are considered as main strategy. A vertical insertion of the sustainable in the process is proposal. In this vertical insertion, the sustainable is presents in all the phases and activities of the process. The model is organized to promote the external creative solutions to the process, through the promotion of research centers. Tools of selection of possibilities and practical are suggested, considering the characteristic dialectics proposals. The article concludes that sustainable is a cultural change in the processes, practical and management current.

  10. Sustainability in School Building Design

    Directory of Open Access Journals (Sweden)

    B. Ece ŞAHİN

    2015-03-01

    Full Text Available Sustainable construction is important for the continuation of life in a healthy world for futuregenerations; many issues affecting the quality of life such as effective use of resources, take advantage ofrenewable energy, the choice of recyclable materials that do not harm the environment and waterconservation are considered in the context of sustainable design. Implementations carried out in thisframework are regarded as valuable due to providing the consciousness of sustainability to the society.Creating the awareness of sustainability is given a great importance by educators; thus, “education forsustainability” are included from the preschool program so that children can learn the gainings of suchperspective in their early ages. In support of this concept, it is believed that education structures should bea laboratory where children can practice theoretical knowledge learned at school. In that respect, studiesneed to be considered in the context of sustainable construction are studied in this research. In the study,after a description of the importance of sustainable design as a learning mean, significant subjects such asusing natural light, heating, cooling and air-conditioning methods, wind energy, water protection andmaterial selection are analyzed in terms of designing sustainable schools. It is criticized worldwide thatstructures ground on sustainable design principles are relatively few in numbers. Despite, there is anincreasing interest to the subject in Turkey later years; a lot more steps are required in terms ofimplementation and research of the issue. Thus, the purpose of the study is to provide a supplementaryreference for school designs.

  11. Agriculture: Sustainability

    Science.gov (United States)

    Sustainability creates and maintains the conditions under which humans and nature can exist in productive harmony, that permit fulfilling the food, feed, and fiber needs of our country and the social, economic and other requirements.

  12. Sustainable consumption

    DEFF Research Database (Denmark)

    Prothero, Andrea; Dobscha, Susan; Freund, Jim

    2011-01-01

    This essay explores sustainable consumption and considers possible roles for marketing and consumer researchers and public policy makers in addressing the many sustainability challenges that pervade our planet. Future research approaches to this interdisciplinary topic need to be comprehensive...... and systematic and will benefit from a variety of different perspectives. There are a number of opportunities for future research, and three areas are explored in detail. First, the essay considers the inconsistency between the attitudes and behaviors of consumers with respect to sustainability; next, the agenda...... is broadened to explore the role of individual citizens in society; and finally, a macro institutional approach to fostering sustainability is explored. Each of these areas is examined in detail and possible research avenues and public policy initiatives are considered within each of these separate...

  13. Sustainable Futures

    Science.gov (United States)

    Sustainable Futures is a voluntary program that encourages industry to use predictive models to screen new chemicals early in the development process and offers incentives to companies subject to TSCA section 5.

  14. Sustainability reporting

    NARCIS (Netherlands)

    Kolk, A.

    2005-01-01

    This article gives an overview of developments in sustainability (also sometimes labelled corporate social responsibility) reporting. The article will first briefly indicate how accountability on social and environmental issues started, already in the 1970s when social reports were published.

  15. Sustainable transformation

    DEFF Research Database (Denmark)

    Andersen, Nicolai Bo

    This paper is about sustainable transformation with a particular focus on listed buildings. It is based on the notion that sustainability is not just a question of energy conditions, but also about the building being robust. Robust architecture means that the building can be maintained and rebuilt......, that it can be adapted to changing functional needs, and that it has an architectural and cultural value. A specific proposal for a transformation that enhances the architectural qualities and building heritage values of an existing building forms the empirical material, which is discussed using different...... theoretical lenses. It is proposed that three parameters concerning the ꞌtransformabilityꞌ of the building can contribute to a more nuanced understanding of sustainable transformation: technical aspects, programmatic requirements and narrative value. It is proposed that the concept of ꞌsustainable...

  16. Sustainable Consumption

    DEFF Research Database (Denmark)

    Røpke, Inge

    2015-01-01

    The intention of this chapter is to explore the role of consumption and consumers in relation to sustainability transition processes and wider systemic transformations. In contrast to the individualistic focus in much research on sustainable consumption, the embeddedness of consumption activities...... in wider social, economic and technological frameworks is emphasised. In particular, the chapter is inspired by practice theory and transition theory. First, various trends in consumption are outlined to highlight some of the challenges for sustainability transitions. Then, it is discussed how consumption...... patterns are shaped over time and what should be considered in sustainability strategies. While discussions on consumption often take their point of departure in the perspective of the individual and then zoom to the wider context, the present approach is the opposite. The outline starts with the basic...

  17. Stabilizing Sustainability

    DEFF Research Database (Denmark)

    Reitan Andersen, Kirsti

    The publication of the Brundtland Report in 1987 put the topic of sustainable development on the political and corporate agenda. Defining sustainable development as “a development that meets the needs of the future without compromising the ability of future generations to meet their own needs......” (WCED, 1987, p. 43), the Report also put a positive spin on the issue of sustainability by upholding capitalist beliefs in the possibility of infinite growth in a world of finite resources. While growth has delivered benefits, however, it has done so unequally and unsustainably. This thesis focuses...... on the textile and fashion industry, one of the world’s most polluting industries and an industry to some degree notorious for leading the ‘race to the bottom’ in global labour standards. Despite being faced with increasing demands to practise sustainability, most textile and fashion companies continue to fail...

  18. Seeking Sustainability

    OpenAIRE

    Clive L. Spash

    2014-01-01

    What does sustainability research do to help the environment? One might well wonder when observing the annual conference season with various academics and professors in sustainability science, ecological economics or environmental ethics driving to the airport to fly off to international meetings to discuss how bad things are getting, what should been done about it, and how time is running out for action. In fact, singling out a few academic groups is highly unfair because the link between pr...

  19. Advanced composites for windmills

    Science.gov (United States)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  20. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal : Technical Summary

    Science.gov (United States)

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  1. Local Sustainability

    International Nuclear Information System (INIS)

    Carrizosa Umana, Julio

    1998-01-01

    The current polemic about the possibilities of sustainable development has led to a renovated interest for the topic of the sustainability of the communities and the local sustainability. In front of the global sustainability whose conditions have been exposed by systemic ecologists and for macro economists, the sustainability of specific places arises in the planet whose conditions are object of study of the ecology of landscapes, of the ecological economy, of the cultural anthropology, of the environmental sociology and naturally, of the integral environmentalism. In this discussion the Colombian case charges unusual interest to be one of the few countries of Latin America, where a very dense net of municipalities exists, each one with its urban helmet and with a position and some functions defined by the political constitution of the nation. This net of municipalities and of urban helmets it also constitutes net of alternative to the current macro-cephalic situation. As well as Bogota grew, in a hundred years, of less than a hundred thousand inhabitants to six million inhabitants, each one of these municipalities contains a potential of growth that depends on the characteristics of its ecological, social, economic and politic sustainability

  2. Sustainable markets for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  3. Research, Development and Application of High Performance Earthquake Resistant Precast System as Green Construction in Indonesia

    OpenAIRE

    Nurjaman Hari; Hariandja Binsar; Suprapto Gambiro; Faizal Lutfi; Sitepu Haerul

    2017-01-01

    Sustainable construction is a topic that emerges in the world construction as a response to climate change issue. Building construction stage is a stage in sustainable development. Construction concept that confirm to the concept is referred to as green construction. Precast concrete construction is a construction system that meets green construction criteria, because applies the usage of material and construction method that optimize energy consumption and minimize environment impact during ...

  4. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  5. Usability Constructs

    DEFF Research Database (Denmark)

    Hertzum, Morten; Clemmesen, Torkil; Hornbæk, Kasper Anders Søren

    2007-01-01

    Whereas research on usability predominantly employs universal definitions of the aspects that comprise usability, people experience their use of information systems through personal constructs. Based on 48 repertory-grid interviews, this study investigates how such personal constructs are affected...... use of constructs traditionally associated with usability (e.g., easy-to-use, intuitive, and liked). Further analysis of the data is ongoing...

  6. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor

    International Nuclear Information System (INIS)

    Cui, Lili; Pu, Tao; Liu, Ying; He, Xingquan

    2013-01-01

    Graphical abstract: A novel nitrite sensor was prepared by using LBL technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The nitrite sensor shows super stability for consecutive CV testing and rather low detection limit. -- Abstract: In this paper, a novel graphene/cobalt phthalocyanine composite film was prepared by layer-by-layer (LBL) technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The surface morphology of graphene/cobalt phthalocyanine composite film was characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). It is found that graphene/cobalt phthalocyanine composite film modified GCE exhibits good catalytic activity toward the oxidation of nitrite. The oxidation current barely decreases in consecutive CV test. Furthermore, the modified GCE shows long-term stability after 70 days. The super good stability can be attributed to the immobilization and dispersion of electroactive cobalt phthalocyanine by graphene, and using A-GCE as substrate which can enhance the interaction force between GCE and electroactive cobalt phthalocyanine. The nitrite sensor shows rather low detection limit of 0.084 μM at a signal-to-noise ratio = 3 (S/N = 3)

  7. 41 CFR 102-76.50 - What is sustainable development?

    Science.gov (United States)

    2010-07-01

    ... and Construction Sustainable Development § 102-76.50 What is sustainable development? Sustainable... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is sustainable development? 102-76.50 Section 102-76.50 Public Contracts and Property Management Federal Property Management...

  8. Investigation of Sustainable Housing Criteria

    Directory of Open Access Journals (Sweden)

    roshanfekr Somayeh

    2016-01-01

    Full Text Available Recently, much attention has been paid to sustainable development in cities. The quality of human life is directly related to environmental quality. Because many people live in cities as a place of social, economic and cultural relationships, certain issues such as environmental crises, energy, air and noise pollution and traffic jams are some of the factors that can alter the quality of human life. Therefore, in order to improve the quality of human life, attention to sustainable development (or sustainability in cities is proposed. Sustainable building has a comprehensive significance that begins with the conception of negative and positive impacts on the environment. Several descriptions of sustainable or green buildings have been created; however, they all pursue one goal, which is to create sustainable urban developments and protection of the environment. The quality of indoor environments, materials, and energy consumption, water usage, the impact of building construction processes and building maintenance are some of the factors that affect the environment and sustainability. Sustainable building is an attempt to relieve the minus impacts on the environment that occur during a building’s lifetime. This research investigates the important factors that have relevance to green buildings and introduces several criteria of sustainable housing.

  9. The Aesthetics of Sustainable Design

    DEFF Research Database (Denmark)

    Folkmann, Mads Nygaard; Riisberg, Vibeke

    This paper will investigate the aesthetics of sustainable design by exploring different strategies of communicating products as being sustainable. It can be questioned how the sustainable element is present and detectable in design: Whether it is a principle of internal construction, operates...... as a strategy of emotional commitment and subsequent prolonged use through employing symbolic elements or is detectable through ‘external’ signs designating e.g. “eco design” through a specific colour palette. “Aesthetic coding” will be employed as a central concept to describe the relationship between outer...... physical manifestation and inner idea of the object in the question of how the specific meaning content can be physically manifested and reflected in a variety of ways. In this way, the expression and appearance of sustainability in design may be contested along with the notions of sustainability behind...

  10. Rational construction of Z-scheme Ag_2CrO_4/g-C_3N_4 composites with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-01-01

    Highlights: • Novel visible-light driven Ag_2CrO_4/g-C_3N_4 composites were synthesized. • Ag_2CrO_4/g-C_3N_4 exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag_2CrO_4/g-C_3N_4 composites with different contents of Ag_2CrO_4 were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C_3N_4 and Ag_2CrO_4, the Ag_2CrO_4/g-C_3N_4 composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag_2CrO_4/g-C_3N_4 composite at a theoretical weight content of 8.0% Ag_2CrO_4 for the photodegradation of MO was 0.0068 min"−"1, which was 5.7 and 4.3 times higher than that of pure g-C_3N_4 and Ag_2CrO_4, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag_2CrO_4/g-C_3N_4 interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag_2CrO_4/g-C_3N_4 composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism was proposed. This work may be useful for the rational design of new types of Z-scheme photocatalysts and provide some illuminate insights into the Z-scheme transfer mechanism for application in energy

  11. Sustainable polymers from renewable resources.

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  12. Roundtabling Sustainability

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2014-01-01

    councils’ and ‘sustainability roundtables’ and have been designed around a set of institutional features seeking to establish legitimacy, fend off possible criticism, and ‘sell’ certifications to potential users. The concept of ‘roundtabling’ emphasizes the fitting a variety of commodity...... and procedures to meet ‘good practice’ in standard setting and management. This is opening space for competing initiatives that are less democratic, quicker, and more aligned with industry interests to establish substantial presence in the market for sustainability certifications. These tend to more easily...

  13. Using GREENSCOPE for Sustainable Process Design: An Educational Opportunity

    Science.gov (United States)

    Increasing sustainability can be approached through the education of those who design, construct, and operate facilities. As chemical engineers learn elements of process systems engineering, they can be introduced to sustainability concepts. The EPA’s GREENSCOPE methodology and...

  14. Evaluation of issues around road materials for sustainable transport

    CSIR Research Space (South Africa)

    Steyn, WJVDM

    2009-07-01

    Full Text Available In addition to a number of other factors (social, economic, etc) sustainable transport requires the sustainable supply and use of construction materials. This includes the use of marginal materials, waste materials, novel / innovative materials...

  15. Multi-Criteria Sustainability Assessment of Urban Sludge Treatment Technologies

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Ren, Jingzheng

    2017-01-01

    to determine the weights of the criteria for sustainability assessment, and extension theory was used to prioritize the alternative technologies for the treatment of urban sewage sludge and grade their sustainability performances. An illustrative case including three technologies (compositing, incineration...

  16. Developing a validation for environmental sustainability

    Science.gov (United States)

    Adewale, Bamgbade Jibril; Mohammed, Kamaruddeen Ahmed; Nawi, Mohd Nasrun Mohd; Aziz, Zulkifli

    2016-08-01

    One of the agendas for addressing environmental protection in construction is to reduce impacts and make the construction activities more sustainable. This important consideration has generated several research interests within the construction industry, especially considering the construction damaging effects on the ecosystem, such as various forms of environmental pollution, resource depletion and biodiversity loss on a global scale. Using Partial Least Squares-Structural Equation Modeling technique, this study validates environmental sustainability (ES) construct in the context of large construction firms in Malaysia. A cross-sectional survey was carried out where data was collected from Malaysian large construction firms using a structured questionnaire. Results of this study revealed that business innovativeness and new technology are important in determining environmental sustainability (ES) of the Malaysian construction firms. It also established an adequate level of internal consistency reliability, convergent validity and discriminant validity for each of this study's constructs. And based on this result, it could be suggested that the indicators for organisational innovativeness dimensions (business innovativeness and new technology) are useful to measure these constructs in order to study construction firms' tendency to adopt environmental sustainability (ES) in their project execution.

  17. Construction of sustainability indicators for Nuclear Area Innovation and Research Institutes in Brazil; Construção de indicadores de sustentabilidade para institutos de pesquisa e inovação da área de tecnologia nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone Fonseca

    2017-07-01

    The dissertation consists of a construction of appropriate sustainability indicators for nuclear area innovation and research institutes in Brazil. In order to do so, the results of the construction process, as well as, the perception of the population that resides in the area surrounding this type of institute are presented and discussed. As reference for this case study, the Nuclear Technology Development Center (CDTN) was chosen. It is located in Pampulha, more specifically, on the campus of the Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil. One of the methodological processes present in this research is the Delphi method, because it is the most used in the construction of indicators. Its application in this work allowed obtaining the of specialist group opinions collected through a questionnaire. Initially, sixty-nine sustainability indicators were considered. They were distributed among the environmental, economic, socio cultural and institutional dimensions, some of which were obtained through lists of indicators pointed by literature review. Other indicators were built through discussions with groups from the nuclear, environmental, economic and socio cultural areas. Among the set of indicators investigated, twenty-six were selected as being the most relevant. A questionnaire was then applied to one hundred and twenty individuals living in the vicinity of the CDTN. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed, as well as, indicators of the same dimensions were varied. However, the opinion of the population and the opinion of the experts had similar results. Finally, this study is the first proposal for the nuclear sector to construct this kind of indicator that takes into account the evaluation of experts and the opinion of the community that resides around these institutions. (author)

  18. Construction of a non-enzymatic sensor based on the poly(o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinxiang; Wang, Meirong [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Guan, Jun [Clinical Medical College of Yangzhou University, Subei People' s Hospital of Jiangsu Province, Yangzhou 225002 (China); Wang, Chengyin, E-mail: wangcy@yzu.edu.cn [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Wang, Guoxiu [School of Mathematical and Physical Sciences, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2017-02-01

    A non-enzymatic glucose sensor, based on the silver nanoparticles (Ag-NPs)/poly (o-phenylenediamine) (PoPD) composites, is developed by the electrochemical polymerization of o-phenylenediamine and electrodeposition of silver nanoparticles on an indium tin oxide electrode. The Ag-NPs/PoPD composites are characterized by atomic force microscopy, scanning electronic microscopy and energy dispersive spectrometer. Under the optimized experimental conditions, the proposed glucose sensor demonstrates a wide linear range from 0.15 to 13 mmol L{sup −1} with a correlation coefficient of 0.998. The proposed glucose sensor can be used to detect glucose in blood sample with a satisfactory result. In addition, the proposed sensor presents the advantages, such as facile preparation, low cost, high sensitivity and fast response time. It also exhibits good anti-interference performance and stability. - Highlights: • A facile AgNPs/PoPD/ITO modified sensor was developed for the first time. • The non-enzymatic sensor can detect glucose in human blood directly with a wide detection range. • This sensor is of rapid response, low cost, high sensitivity, and long-time stability.

  19. Sustainable finance

    NARCIS (Netherlands)

    Boersma-de Jong, Margreet F.

    2012-01-01

    Presentation for Springschool of Strategy, University of Groningen, 10 October 2012. The role of CSR is to stimulate ethical behaviour, and as a result, mutual trust in society. Advantage of CSR for the company and the evolution of CSR. From CSR to Sustainable Finance: how does CSR influence

  20. Sustainable Procurement

    DEFF Research Database (Denmark)

    Telles, Pedro; Ølykke, Grith Skovgaard

    2017-01-01

    and within it how sustainable requirements have increased the level of compliance required, particularly regulatory compliance. Compliance was already present in previous EU public procurement frameworks, but its extent on Directive 2014/24/EU leads the authors to consider the current legal framework...