WorldWideScience

Sample records for sustainable carbon-free future

  1. A Carbon-Free Energy Future

    Science.gov (United States)

    Linden, H. R.; Singer, S. F.

    2001-12-01

    It is generally agreed that hydrogen is an ideal energy source, both for transportation and for the generation of electric power. Through the use of fuel cells, hydrogen becomes a high-efficiency carbon-free power source for electromotive transport; with the help of regenerative braking, cars should be able to reach triple the current mileage. Many have visualized a distributed electric supply network with decentralized generation based on fuel cells. Fuel cells can provide high generation efficiencies by overcoming the fundamental thermodynamic limitation imposed by the Carnot cycle. Further, by using the heat energy of the high-temperature fuel cell in co-generation, one can achieve total thermal efficiencies approaching 100 percent, as compared to present-day average power-plant efficiencies of around 35 percent. In addition to reducing CO2 emissions, distributed generation based on fuel cells also eliminates the tremendous release of waste heat into the environment, the need for cooling water, and related limitations on siting. Manufacture of hydrogen remains a key problem, but there are many technical solutions that come into play whenever the cost equations permit . One can visualize both central and local hydrogen production. Initially, reforming of abundant natural gas into mixtures of 80% H2 and 20% CO2 provides a relatively low-emission source of hydrogen. Conventional fossil-fuel plants and nuclear plants can become hydrogen factories using both high-temperature topping cycles and electrolysis of water. Hydro-electric plants can manufacture hydrogen by electrolysis. Later, photovoltaic and wind farms could be set up at favorable locations around the world as hydrogen factories. If perfected, photovoltaic hydrogen production through catalysis would use solar photons most efficiently . For both wind and PV, hydrogen production solves some crucial problems: intermittency of wind and of solar radiation, storage of energy, and use of locations that are not

  2. Sustainable Futures

    Science.gov (United States)

    Sustainable Futures is a voluntary program that encourages industry to use predictive models to screen new chemicals early in the development process and offers incentives to companies subject to TSCA section 5.

  3. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  4. Sustainable development. Uncertain futures

    International Nuclear Information System (INIS)

    Leveque, Ch.; Sciama, Y.

    2005-01-01

    The last 30 years show that the human being did not dominate the Nature. After an introduction on the historical relations between the human and the environment, the authors present the different research ways (irrigation with recovery, renewable energies, new agriculture,...). They show that science is not always the enemy of the sustainable development. The third part presents the constraints that the society puts on the way of the sustainable development, which explain the limitations of the progress. (A.L.B.)

  5. Delineating a sustainable future

    International Nuclear Information System (INIS)

    Brown, Lester R

    1996-01-01

    The expression Develop Sustainable of wide use today in day is used among national political leaders and among environmentalists. The sustainable economy from the environmental point of view is that that obeys the basic principles or laws of the sustainability; principles so real as those of the aerodynamic one or those of the thermodynamic. If somebody intends, for example, to design an airplane, it will have to be adjusted to the aerodynamic principles and to print to the apparatus a certain stability degree so that it can fly. In the same way, an economic system environmentally sustainable it must respond to the balance principles if it doesn't want to be condemned to the failure. The fundamental laws or sustainability principles are as rigorous as the aerodynamic laws. The society can violate these laws in the short term; but not long term. As well as an airplane can lose height in a brief lapse without falling; the economy can violate the principles of the sustainability in the short term without collapsing. Among of the sustainability principles figure the following: long term; the extinction of species cannot exceed the evolution of the species; the soil erosion cannot exceed the soils formation; the destruction of forests cannot exceed the regeneration of the forests; the emissions of carbon cannot exceed the fixation of carbon; the fishing cannot exceed the regenerative capacity of the banks of fish and, in the human land, the morbidity cannot exceed the mortality. The author also speaks of the disappearance of species, ozone layer, stability of the climate, earth, water fertilizers and alimentary systems among others

  6. Building a sustainable future

    International Nuclear Information System (INIS)

    Ford, JoAnne

    2002-01-01

    Nuclear technology offers unique tools in the quest for sustainable development. Such technology is often the best to gather information and provide solutions that would not otherwise be possible or practical: to diagnose and treat disease, to breed better crops and fight insect pests; to assess new sources of fresh water; and to monitor pollution. While many may only think of energy, nuclear technology has a much larger role to play in human development. Where it can make a difference, the International Atomic Energy Agency (IAEA) provides support to 134 Member States for using this technology to solve the important challenges they face. Isotopes, stable and radioactive forms of chemical elements, can be used to 'label' materials under study. Since both stable and radioactive isotopes can be identified and measured using appropriate equipment, labelling is often used in diagnostic medical tests, in studies of underground sources of water, and to trace pollutants, such as heavy metals and pesticides. Stable, non-radioactive, isotopes are used in nutritional studies to trace the metabolism of vitamins and trace minerals in supplements. Other nuclear techniques use radiation which can be focussed into beams and depending on the intensity, can be used to kill cancer cells, to sterilize tissue grafts for burn victims, to sterilize food against insects or disease causing pathogens, to make insects sterile so they cannot reproduce, to induce desirable genetic changes in crops, or to scan body organs for abnormalities

  7. Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Ford, JoAnne [ed.

    2002-07-01

    Nuclear technology offers unique tools in the quest for sustainable development. Such technology is often the best to gather information and provide solutions that would not otherwise be possible or practical: to diagnose and treat disease, to breed better crops and fight insect pests; to assess new sources of fresh water; and to monitor pollution. While many may only think of energy, nuclear technology has a much larger role to play in human development. Where it can make a difference, the International Atomic Energy Agency (IAEA) provides support to 134 Member States for using this technology to solve the important challenges they face. Isotopes, stable and radioactive forms of chemical elements, can be used to 'label' materials under study. Since both stable and radioactive isotopes can be identified and measured using appropriate equipment, labelling is often used in diagnostic medical tests, in studies of underground sources of water, and to trace pollutants, such as heavy metals and pesticides. Stable, non-radioactive, isotopes are used in nutritional studies to trace the metabolism of vitamins and trace minerals in supplements. Other nuclear techniques use radiation which can be focussed into beams and depending on the intensity, can be used to kill cancer cells, to sterilize tissue grafts for burn victims, to sterilize food against insects or disease causing pathogens, to make insects sterile so they cannot reproduce, to induce desirable genetic changes in crops, or to scan body organs for abnormalities.

  8. Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles--now and in the future.

    Science.gov (United States)

    Hirose, Katsuhiko

    2010-07-28

    In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.

  9. Educating the Future of Sustainability

    Directory of Open Access Journals (Sweden)

    Gillian Bowser

    2014-02-01

    Full Text Available The future of global environmental sustainability is contingent upon educating the next generation of environmental stewards. Critical elements of training such an interdisciplinary workforce include mentoring and experiential learning in the areas of science, communication, and leadership. To keep pace with the ever changing and increasingly complex issues of global environmental sustainability, environmental educators must encourage and support the participation and training of a diverse body of students in the environmental sciences. The Rocky Mountain Sustainability and Science Network (RMSSN is a partnership of over two dozen universities, federal agencies and other organizations designed to help train the next diverse generation of interdisciplinary leaders who are prepared to address issues related to global climate change, environmental sustainability, and the management of public lands and resources using the Rocky Mountains as a laboratory and classroom. Herein, we present the RMSSN as a model for engaging students in the environmental sciences with an emphasis on understanding key elements of sustainability. Our model is based on a foundation of: (1 diversity; (2 tiered mentoring in cohorts; (3 engaging lectures coupled with field experiences on public lands; (4 long term networking; and (5 environmental internships.

  10. New Goals of Sustainable Future

    Directory of Open Access Journals (Sweden)

    Arkady Ursul

    2017-02-01

    Full Text Available This article investigates the process of transition from the Millennium Development Goals to Sustainable Development Goals (SDGs. The authors have set an objective to demonstrate that SD as a future form of development of civilization from the very beginning had a “target orientation” and from the beginning and anticipated realization and staging of the whole hierarchy of objectives needed for the establishment of an effective global governance. In the future, global development in its “anthropogenic” aspect will be to implement the goals and principles of SD, which will be updated with each new stage of the implementation of this kind of socio-natural evolution. The paper argues the position that the concept of SD should be radically transformed into a “global dimension.” Attention is drawn to the fact that Russia recognized another distant, but very important in the conceptual and theoretical perspective, global goal of “sustainable transition” — formation of the noosphere.

  11. Sustainability protects resources for future generations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the steps necessary to provide livable urban centers for future generations through sustainable development, or sustainability. To illustrate this concept, nonsustainable cities and sustainable cities are compared. Sustainable city projects for several major US cites are reviewed.

  12. Educating Professionals for Sustainable Futures

    Directory of Open Access Journals (Sweden)

    Hille Janhonen-Abruquah

    2018-02-01

    Full Text Available The recent discourse on sustainability science calls for interdisciplinary research. The home economics science approach ranges from individual actions to the involvement of communities and societies at large, and thus it can provide important perspectives on cultural sustainability. The aim of the research is to study the linkage between cultural sustainability and service sector education to support the creation of sustainable professions. In the present small-scale empirical study, the food service degree curriculum of a Finnish vocational college and teachers’ group interview data were analyzed to find how cultural sustainability is presented in the curriculum and how it is understood by teachers and integrated into teaching practices. Previous cultural sustainability research identifies four perspectives of cultural sustainability: (1 vitality of cultural traditions; (2 economic starting point; (3 diversity together with maintenance of local culture; and (4 possible influence on the balance between human actions and environment. Findings indicate that sustainability, including cultural sustainability, is integrated in the curriculum and considered important by teachers. Translating these into practice remains a challenge. The balance between human and nature was mostly understood as recycling, use of public transport, sustainable consumption, and taking trips to the nature nearby. Cultural sustainability as a concept is not well known, although themes such as multicultural issues, equality, charity, and environmental responsibility were included in teachers’ practical lessons daily. Feasts and celebrations in learning were opportunities to view cultural sustainability widely. This paper provides a way forward for the teachers to develop further their pedagogical practices.

  13. Science for a sustainable future

    CERN Multimedia

    2013-01-01

    Today we had a visit from Ban Ki-moon, Secretary-General of the United Nations. This is Mr Ban’s second visit to our laboratory, but his first since CERN was granted Observer status at the United Nations General Assembly last December. It therefore gave us our first opportunity to discuss joint initiatives already under way.   Our discussions focused on CERN’s contribution to science-related UN activities, and in particular those of the UN’s Economic and Social Council, ECOSOC, whose focus for 2013 is on leveraging science, technology, innovation and culture for a sustainable future. CERN will be taking part in ECOSOC meetings in Geneva in July, and we will be contributing on the theme of young women in science to ECOSOC’s Youth Forum on 27 March. Mr Ban and I also discussed the role of the Secretary-General’s recently established science advisory board. During his brief visit, Mr Ban became one of our first visitors to see some of the underg...

  14. Environment, energy, economy. A sustainable future

    International Nuclear Information System (INIS)

    Luise, A.; Borrello, L.; Calef, D.; Cialani, C.; Di Majo, V.; Federio, A.; Lovisolo, G.; Musmeci, F.

    1998-01-01

    This paper is organized in five parts: 1. sustainable development from global point of view; 2. global problems and international instruments; 3. sustainable management of resources in economic systems; 4. forecasting and methods: models and index; 5. future urban areas [it

  15. Farming with future: making crop protection sustainable

    NARCIS (Netherlands)

    Wijnands, F.G.

    2011-01-01

    The project Farming with future works with parties with a vested interest to promote sustainable crop protection in practice. Besides developing new knowledge, it spends a good deal of its energy in the embedding of sustainable practices within relevant organisations, businesses and agrarian

  16. Drivers of sustainable future mobility

    DEFF Research Database (Denmark)

    Sigurdardottir, Sigrun Birna

    This PhD thesis presents three complementary studies that aimed to enhance knowledge of young people’s longitudinal mobility trends and the factors influencing adolescents’ future mobility intentions. First study was an analysis of Danish national travel survey data (TU) from 1995 to 2012....... The sample consisted of young people divided into four age groups: 15-19 year old, 20-24 year old, 25-29 year old and 30-34 year old. The analysis explores the development of gender gaps for rural and urban living location. The mobility indicators analysed were; driving licence status, travel mode, distance...... is still an important subject in transportation research and future development for young people should be monitored closely. The second study was an internet based survey with the aim to explore a range of mediating factors influencing 15 year old adolescents’ intentions to commute by means of car...

  17. Sustainable values for a livable future

    International Nuclear Information System (INIS)

    McCluney, R.

    1995-01-01

    Alternative paths to the future which might produce true sustainability involve comprehensive behavior change, not only by government and business leaders but also by ordinary citizens. Individual and societal behavior is guided to a great extent by the values and beliefs underlying that behavior. A growing body of literature deals with this subject, which is called environmental ethics. From the seminal work of Thomas Berry to conference proceedings and journal articles, examinations of the moral and ethical implications of the need for changing values and behavior can be found in both the religious and secular literature. Central to much of that literature is the concept of envisioning a sustainable future. Developing, promoting, and publicizing those visions will be important in overcoming the natural fears one has of changing basic values and beliefs, thereby enabling open and public discussion of the need of a set of sustainable values for a livable future

  18. ECO-INNOVATION FOR A SUSTAINABLE FUTURE

    Directory of Open Access Journals (Sweden)

    RATIU Mariana

    2014-05-01

    Full Text Available Eco-innovation is any form of innovation resulting in or aiming at significant and demonstrable progress towards the goal of sustainable development, through reducing impacts on the environment, enhancing resilience to environmental pressures, or achieving a more efficient and responsible use of natural resources. States and governments of the world, different institutions and organizations actively involved and aware in public policies, strategies and actions, reaffirm their commitments and reassess actions in order to achieve a truly sustainable development. In the common vision and the resolutions and other documents of the United Nations Conference on Sustainable Development, Rio+20, the words "environment", "innovation", "green economy" appear very often and almost always along the same context, to achieve the objectives of the sustainable development. The objectives of EU's Europe 2020 strategy for smart, sustainable and inclusive growth, are being implemented through a number of Flagship Initiatives addressing the main challenges, like “Innovation for a sustainable Future - The Eco-innovation Action Plan (EcoAP”. Eco-innovation Observatory developed the Eco-Innovation index, the first tool to assess and illustrate eco-innovation performance across the EU Member States. Like in all fields, in textiles and leather field, eco-innovation is present and there are a lot of tools available that measure environmental damage and help manufacturers and brands become more sustainable. Eco-innovation is not just a trendy concept but a reality and a necessity nowadays, a way to achieve a sustainable future for ourselves and future generations.

  19. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T B; Nakicenovic, N; Patwardhan, A; Gomez-Echeverri, L [eds.

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  20. Towards a sustainable future of energy

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, Fidel

    1999-01-01

    The only form of having a future energy insurance is to find a road environmentally sustainable to take place and to use the energy. Their production and non alone use should be compatible with the environmental priorities of the society but rather they should be organized in such a way that they have a social consent, under the principle that so that there is economic development an economic and sure energy supply it should exist

  1. 3Ecologies: Visualizing sustainability factors and futures

    OpenAIRE

    Avila, Martin; Carpenter, John; Mazé, Ramia

    2010-01-01

    ‘3Ecologies’ makes visible factors affecting the sustainability of consumer products. Within engineering and economics, there are a variety of models for analyzing and ‘predicting’ the environmental factors such as energy, emissions and waste involved during production, consumption and disposal. We develop an expanded model, which emphasizes human impact and choices as well as potential consequences and futures. Psychological, sociological and environmental factors are mapped over time – thro...

  2. Creating a sustainable energy future for Australia

    International Nuclear Information System (INIS)

    Sonneborn, C.L.

    1995-01-01

    A joint industry approach is needed to put in place a sustainable energy system that is economically and technologically feasible. The industry sectors involved must include the renewable energy industry, energy efficiency industry and the natural gas industry. Conventional forecasts of energy futures make far less use of these industries than is economically and technically feasible. Existing forecasts make the trade off between acceptable levels of economic growth, limitation of greenhouse gases and dependence on coal and oil appear more difficult than they actually are and overlook the benefits of sustainable energy industry development. This paper outlines how national gains from carefully targeted action can exceed national losses while substantially reducing greenhouse gases and creating jobs at zero or negative costs. (author). 3 figs., 27 refs

  3. A sustainable future for the polar regions

    Energy Technology Data Exchange (ETDEWEB)

    Dalal-Clayton, Barry; Wilson, Emma

    2008-04-15

    The spectre of change is galvanising debate about the future of the poles. Climatic shifts look set to affect both profoundly. As the ice melts, new marine transport routes will open up. The exploitation of natural resources could expand significantly. Further risks include marine acidification, the migration of commercial fish species and coastal erosion. In the Arctic, traditional livelihoods could suffer. Meanwhile, national claims of sovereignty over areas of ocean floor are fuelling fears of a new 'cold war' over access to mineral resources in sensitive environments. Clearly, science alone cannot address the challenges facing the poles: a coherent strategy for sustainable development is urgently needed.

  4. A sustainable future for the polar regions

    Energy Technology Data Exchange (ETDEWEB)

    Dalal-Clayton, Barry; Wilson, Emma

    2008-04-15

    The spectre of change is galvanising debate about the future of the poles. Climatic shifts look set to affect both profoundly. As the ice melts, new marine transport routes will open up. The exploitation of natural resources could expand significantly. Further risks include marine acidification, the migration of commercial fish species and coastal erosion. In the Arctic, traditional livelihoods could suffer. Meanwhile, national claims of sovereignty over areas of ocean floor are fuelling fears of a new 'cold war' over access to mineral resources in sensitive environments. Clearly, science alone cannot address the challenges facing the poles: a coherent strategy for sustainable development is urgently needed.

  5. Sustainable development, a summit for the future

    International Nuclear Information System (INIS)

    Dessus, B.

    2002-01-01

    The Johannesburg summit, which took place at the end of the summer of 2002, was the opportunity to spread out to the large public worldwide the notion of sustainable development, a notion that remained confidential so far. It was also a good opportunity to show that the share of energy resources is a vital point for the future. The institute of energy and environment of the French-speaking world has published a huge dossier which takes stock of the overall questions raised by the summit and answered by French-speaking experts. This article reprints some large extracts of two contributions devoted to the energy and its key role in the sustainable development. The first contribution deals with the four energy stakes of the sustainable development: the energy and the fight against poverty, the mastery of energy demand, the development of renewable energy sources, and the nuclear question. The second contribution treats of the five points of the action plan of the world energy council (CME) for the implementation of a durable energy policy in developing countries. (J.S.)

  6. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  7. Healthy and sustainable diets for future generations.

    Science.gov (United States)

    Green, Hilary; Broun, Pierre; Cook, Douglas; Cooper, Karen; Drewnowski, Adam; Pollard, Duncan; Sweeney, Gary; Roulin, Anne

    2018-07-01

    Global food systems will face unprecedented challenges in the coming years. They will need to meet the nutritional needs of a growing population and feed an expanding demand for proteins. This is against a backdrop of increasing environmental challenges (water resources, climate change, soil health) and the need to improve farming livelihoods. Collaborative efforts by a variety of stakeholders are needed to ensure that future generations have access to healthy and sustainable diets. Food will play an increasingly important role in the global discourse on health. These topics were explored during Nestlé's second international conference on 'Planting Seeds for the Future of Food: The Agriculture, Nutrition and Sustainability Nexus', which took place in July 2017. This article discusses some of the key issues from the perspective of three major stakeholder groups, namely farming/agriculture, the food industry and consumers. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  8. Sustainable Future for Biodiesel in Brazil

    DEFF Research Database (Denmark)

    Dias, Maria Amélia de Paula

    This thesis aims to study alternatives to biodiesel industry in Brazil, for 2030, taking in account the sustainability dimensions, namely economic, environmental, ecological, social, national and international politics, territorial, cultural, and technological, through the development of scenarios...... for agriculture and pasture. Thus, a simulation, using linear programming models, was made in order to verify the alternatives of feedstock to produce biodiesel. It was observed that it is possible to decentralize the market, reduce land use, and regionalize production, making better use of the availability...... to identify the driving forces to develop the scenario storylines. This proposition was tested in an in-depth interview with the biodiesel market stakeholders. Based on the findings of the two approaches, the simulations and the interviews, it was possible to obtain future alternatives, where the biodiesel...

  9. Designing a Sustainable Future with Mental Models

    OpenAIRE

    Bernotat, Anke; Bertling, Jürgen; English, Christiane; Schanz, Judith

    2017-01-01

    Inspired by the question of the Club of Rome as to Design could help to translate the ubiquitous knowledge on sustainability into daily practise and Peter Senge's belief on mental models as a limiting factor to implementation of systemic insight (Senge 2006), we explored working with mental models as a sustainable design tool. We propose a definition for design uses. At the 7th Sustainable Summer School we collected general unsustainable mental models and "designed" sustainable ones. These me...

  10. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  11. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  12. Nuclear technology for a sustainable future

    International Nuclear Information System (INIS)

    2012-06-01

    The IAEA helps its Member States to use nuclear technology for a broad range of applications, from generating electricity to increasing food production, from fighting cancer to managing fresh water resources and protecting the world's seas and oceans. Despite the Fukushima Daiichi accident in March 2011, nuclear power will remain an important option for many countries. Use of nuclear power will continue to grow in the next few decades, although growth will be slower than was anticipated before the accident. The factors contributing to the continuing interest in nuclear power include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. It is up to each country to choose its optimal energy mix. The IAEA helps countries which opt for nuclear power to use it safely and securely. Every day, millions of people throughout the world benefit from the use of nuclear technology. The IAEA helps to make these benefits available to developing countries through its extensive Technical Cooperation programme. For instance, we provide assistance in areas such as human health (through our Programme of Action for Cancer Therapy), animal health (we were active partners in the successful global campaign to eradicate the deadly cattle disease rinderpest), food, water and the environment. The IAEA contributes to the development of global policies to address the energy, food, water and environmental challenges the world faces. We look forward to helping to make Rio+20 a success. This brochure provides an overview of the many ways in which nuclear technology is contributing to building the future we want.

  13. Inventions for future sustainable development in agriculture

    NARCIS (Netherlands)

    Jacobsen, E.; Beers, P.J.; Fischer, A.R.H.

    2011-01-01

    This chapter is directed to the importance of different inventions as driver for sustainable development of agriculture. Inventions are defined as radical new ideas, perspectives and technologies that hold the potential to trigger a change in sustainable agriculture. Innovation is based on one or

  14. Building a Sustainable Future: A Report on the Environmental Protection Agency's Brownfields Sustainability Pilots

    Science.gov (United States)

    This report describes each of the Brownfields Sustainability Pilots and provides findings and recommendations for future projects. It is intended for use by people, communities, organizations, and agencies helping make brownfields more sustainable.

  15. Learning Outcomes in Sustainability Education among Future Elementary School Teachers

    Science.gov (United States)

    Foley, Rider W.; Archambault, Leanna M.; Hale, Annie E.; Dong, Hsiang-Kai

    2017-01-01

    Universities and colleges around the world are exploring ways of reorganizing curricula to educate future leaders in sustainability. Preservice teachers hold tremendous potential to introduce concepts of sustainability far earlier than post-secondary education. However, there is little research of such efforts to yield changes in future elementary…

  16. A brighter future: sustainable markets for solar

    International Nuclear Information System (INIS)

    Luther, Joachim

    1997-01-01

    At the recent Solar World Congress of the International Solar Energy Society (ISES) in Taejon, Korea, delegates heard how continuing improvement of renewable energy technologies are combining with regulatory changes in energy markets to establish new opportunities for sustainable markets for solar and renewable energy. (author)

  17. Soil protection for a sustainable future

    NARCIS (Netherlands)

    O'Sullivan, L.; Bampa, F.; Knights, K.; Creamer, R.E.

    2017-01-01

    The increased recognition of the importance of soil is reflected in the UN Post-2015 Development Agenda with sustainable development goals that directly and indirectly relate to soil quality and protection. Despite a lack of legally binding legislation for soil protection, the European Commission

  18. Tracking development paths: Monitoring driving forces and the impact of carbon-free energy sources in Spain

    International Nuclear Information System (INIS)

    O’ Mahony, Tadhg; Dufour, Javier

    2015-01-01

    Highlights: • The development path of Spain is analysed using an extended Kaya identity. • Effect of carbon free energy sources separated. • Nuclear energy acted to increase emissions as it declined in share. • Renewable energy penetration recently began to reduce carbon emissions. • Future policy must address wider factors of sustainable development. - Abstract: The evolution of the national development path has gravity in determining the future emissions outcomes of all nations. Deep reductions in emissions require a focus not just on energy and mitigation policy but on factors underlying this development. The Kaya identity has been recommended to track national progress with respect to sustainability and carbon emissions in the development path. This study applies an extended Kaya identity to the energy-related carbon emissions of Spain. Implemented through a divisia index decomposition annually from 1990 to 2011, it highlights the impact of factors such as affluence and energy intensity. A marked departure from previous studies is the separation of the effects of the carbon-free energy sources; both renewables and nuclear as fundamental mitigation measures. The results show that affluence and population have acted to increase emissions and energy intensity was increasing until recent years. Fuel substitution has acted to decrease emissions but while renewable energy has reduced emissions with the increasing importance of biomass, wind and solar, the decline in share of nuclear has acted to increase emissions. Implications for the development path and policy are discussed and lessons are relevant both for industrialised and industrialising nations

  19. Sustainable supply chain management: current debate and future directions

    Directory of Open Access Journals (Sweden)

    Bruno Silvestre

    Full Text Available Abstract This paper is a research brief on sustainable supply chain management and covers some of the key elements of literature’s past debate and trends for future directions. It highlights the growth of this research area and reinforces the importance of a full consideration of all three key dimensions of sustainability when managing sustainable supply chains, i.e., the financial, environmental and social dimensions. Therefore, supply chain decision makers need to unequivocally assess the impact of their decisions on the financial, environmental and social performances of their supply chains. This paper also argues that risks and opportunities are the key drivers for supply chain decision makers to adopt sustainability within their operations, and that barriers to sustainability adoption exist. This research highlights that, depending on the focus adopted, supply chains can evolve and shift from more traditional to more sustainable approaches over time. The paper concludes with some promising avenues for future investigation.

  20. Sustainability in Australia, past, present and future

    International Nuclear Information System (INIS)

    Sligar, J.

    2001-01-01

    Over the last 50 years Australia has generally maintained adequate energy supplies to its population in an increasingly efficient and sustainable manner It has also been able to help sustain other economies in supplying energy resources of coal, gas and uranium. This provides 20% of Australia's export income, contributing to the quality of life experienced by Australians.Presently the reserve margin in the electricity power system is adequate and, with the exception of oil, ample local energy resources are available. Over the same period the doubling in energy generation efficiency has matched the population growth in NSW The same contributions by technology and population can be expected over the next 50 years. The growth in demand has however increased by a factor of about five.Sensible demand management could reduce this to a more acceptable figure over the next 50 years as shown in two possible scenarios. This, coupled with ongoing energy exports will help sustain the quality of life in this economy

  1. Bitcoin as digital money: Its growth and future sustainability

    OpenAIRE

    Pradipta Kumar SAHOO

    2017-01-01

    This paper examines the comprehensive idea about the growth and future sustainability of bitcoin as a cryptocurrency. The transaction volume of bitcoin is used as the growth of the bitcoin and the bitcoin log return is used for testing the volatility which is helpful for the future sustainability of bitcoin. The study period says that the growth of bitcoin’s transaction volume is an increasing trend as more day to day transaction is minting with the exchange of Bitcoin. The stu...

  2. The sustainable project management: A review and future possibilities

    Directory of Open Access Journals (Sweden)

    V.K. Chawla

    2018-06-01

    Full Text Available Sustainability in project operations such as financial, social and environmental sustainability is one of the most prominent issues of the present times to address. The increased focus on sus-tainable business operations has changed the viewpoint of researchers and corporate community towards the project management. Today sustainability in business operations along with sustain-ability of natural and environmental resources are of paramount significance which has further caused a huge impact on conception, planning, scheduling and execution of the project manage-ment activities. In this paper, a literature review between 1987 and 2018 on different issues af-fecting the sustainability in project management is carried out. The present study also identifies and discusses the future possibilities to apply computational procedures in order to estimate and optimize the sustainability issues in the management of projects, for example the computational evolutionary algorithms can be applied to formulate the multi-objective decision-making problem after considering critical factors of sustainability in the projects and then yielding optimized solu-tions for the formulated problem to achieve sustainability in the projects. A new integrated framework with the inclusion of feedback function for assessment of each decision and actions taken towards the sustainability of the projects is also identified and presented.

  3. Sustainability performance evaluation: Literature review and future directions.

    Science.gov (United States)

    Büyüközkan, Gülçin; Karabulut, Yağmur

    2018-07-01

    Current global economic activities are increasingly being perceived as unsustainable. Despite the high number of publications, sustainability science remains highly dispersed over diverse approaches and topics. This article aims to provide a structured overview of sustainability performance evaluation related publications and to document the current state of literature, categorize publications, analyze and link trends, as well as highlight gaps and provide research recommendations. 128 articles between 2007 and 2018 are identified. The results suggest that sustainability performance evaluation models shall be more balanced, suitable criteria and their interrelations shall be well defined and subjectivity of qualitative criteria inherent to sustainability indicators shall be considered. To address this subjectivity, group decision-making techniques and other analytical methods that can deal with uncertainty, conflicting indicators, and linguistic evaluations can be used in future works. By presenting research gaps, this review stimulates researchers to establish practically applicable sustainability performance evaluation frameworks to help assess and compare the degree of sustainability, leading to more sustainable business practices. The review is unique in defining corporate sustainability performance evaluation for the first time, exploring the gap between sustainability accounting and sustainability assessment, and coming up with a structured overview of innovative research recommendations about integrating analytical assessment methods into conceptual sustainability frameworks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Thermoelectricity for future sustainable energy technologies

    Directory of Open Access Journals (Sweden)

    Weidenkaff Anke

    2017-01-01

    Full Text Available Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  5. Strategic Sustainability Performance Plan. Discovering Sustainable Solutions to Power and Secure America’s Future

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-09-01

    Sustainability is fundamental to the Department of Energy’s research mission and operations as reflected in the Department’s Strategic Plan. Our overarching mission is to discover the solutions to power and secure America’s future.

  6. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  7. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  8. Fossil fuels in a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  9. Nuclear fuel cycle and sustainable development: strategies for the future

    International Nuclear Information System (INIS)

    Bouchard, J.

    2004-01-01

    In this presentation, the author aims to define the major role of the nuclear energy in the future, according a sustainable development scenario. The today aging park and the new Generation IV technologies are presented. The transition scenario from Pu mono-recycling in PWRs to actinide global recycling in fast neutron Gen IV systems is also developed. Closed cycles and fast reactors appear as the appropriate answer to sustainable objectives in a vision of a large expansion. (A.L.B.)

  10. Shaping a sustainable energy future for India: Management challenges

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2010-01-01

    Most of the studies on the Indian energy sector focus on the possible future scenarios of Indian energy system development without considering the management dimension to the problem-how to ensure a smooth transition to reach the desired future state. The purpose of this paper is to highlight some sector management concerns to a sustainable energy future in the country. The paper follows a deductive approach and reviews the present status and possible future energy outlooks from the existing literature. This is followed by a strategy outline to achieve long-term energy sustainability. Management challenges on the way to such a sustainable future are finally presented. The paper finds that the aspiration of becoming an economic powerhouse and the need to eradicate poverty will necessarily mean an increase in energy consumption unless a decoupling of energy and GDP growth is achieved. Consequently, the energy future of the country is eminently unsustainable. A strategy focussing on demand reduction, enhanced access, use of local resources and better management practices is proposed here. However, a sustainable path faces a number of challenges from the management and policy perspectives.

  11. Intangible heritage for sustainable future: mathematics in the paddy field

    Science.gov (United States)

    Dewanto, Stanley P.; Kusuma, Dianne A.; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje

    2017-10-01

    Mathematics, as the only general language, can describe all phenomena on earth. Mathematics not only helps us to understand these phenomena, but it also can sustain human activities, consequently ensure that the future development is sustainable. Indonesia, with high cultural diversity, should aware to have its understanding, skills, and philosophies developed by certain societies, with long histories of interaction with their natural surroundings, which will provide a foundation for locally appropriate sustainable development. This paper discussed the condition and situation on certain area in Cigugur, Indonesia, and what skills, knowledge, and concept can be transmitted, regarding simple mathematics (arithmetic). Some examples are provided.

  12. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  13. Sustainable Mobility, Future Fuels, and the Periodic Table

    Science.gov (United States)

    Wallington, Timothy J.; Anderson, James E.; Siegel, Donald J.; Tamor, Michael A.; Mueller, Sherry A.; Winkler, Sandra L.; Nielsen, Ole J.

    2013-01-01

    Providing sustainable mobility is a major challenge that will require new vehicle and fuel technologies. Alternative and future fuels are the subject of considerable research and public interest. A simple approach is presented that can be used in science education lectures at the high school or undergraduate level to provide students with an…

  14. Exploration of the Future – a Key to Sustainable Development

    Directory of Open Access Journals (Sweden)

    Vatroslav Zovko

    2013-01-01

    Full Text Available Throughout the history people were fascinated and curious about the future. The future was, and still is seen as a key for prosperous development in all aspects of the society. As such, new discipline is developed – future studies.This paper discusses the discipline of future studies and its role in the society and science. Future studies are analyzed in the context of sustainable development. It is argued that future studies and sustainable development are complementary in nature. Based on analysis of most developed countries in the world, that spend the greatest portion of their budget on research, development and science in comparison to the rest of the world, there is a conclusive link between investments in research, development and science, and the recognition of the importance of thinking about the future. Those countries started to formalize their future orientation in many respected research centres and universities through their educational programs and research. That situation poses the need for other, less well off countries, to follow up.

  15. Information report published in application of article 145 of the Regulation on the behalf of the Commission for sustainable development and land planning about the transition to carbon-free world. Nr 3305

    International Nuclear Information System (INIS)

    Chanteguet, Jean-Paul

    2015-01-01

    In a first chapter, this report proposes an overview of the world climate negotiation process within the COPs: structuring of the climate regime in Rio, a very slow process, a victory of market for quota over tax, the emergence of new climate geopolitics, and difficult climate governance. The second part outlines that the transition towards a de-carbonated world is not negotiable any longer because of the reality of climate change and of its consequences, and of a necessary alternative approach in front of an acknowledged failure. The third part highlights the different ways of a transition towards a more sustainable model by negotiation: evolution towards a new governance, a necessary transformation of the energy system, the assignment of a carbon price, to put the support to fossil energies into question again, to implement innovating financing means as a keystone of an ambitious agreement, to define more sustainable and more carbon saving policies (in urban planning, in production, in agriculture), to preserve and restore carbon sinks, and to territorialize climate again. The second part reports several hearings, and the content of the discussion within the Commission

  16. The Future of Sustainable Development: Welcome to the European Journal of Sustainable Development Research

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2017-01-01

    Full Text Available Sustainable development is an objective for humanity of crucial importance to how we develop and evolve. It is also a rapidly growing discipline that is becoming increasingly applied in numerous areas, reflecting humanity's desire to ensure its activities can be sustained into the future and do not adversely affect the ecology or environment. Sustainable development is often defined based on the 1987 statement of the World Commission on Environment and Development (i.e., the Brundtland Commission. In that milestone document, sustainable development was defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." But new definitions are being developed as the discipline expands and becomes more multidisciplinary and complex.

  17. Planning for a Sustainable Future of the Cincinnati Union Terminal

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-04-30

    The Cincinnati Museum Center invited a number of local stakeholders, political leaders, nationally and internationally recognized design professionals and the Design Team, that has been engaged to help shape the future of this remarkable resource, to work together in a Workshop that would begin to shape a truly sustainable future for both the Museum and its home, the Union Terminal, one of the most significant buildings in America. This report summarizes and highlights the discussions that took place during the Workshop and presents recommendations for shaping a direction and a framework for the future.

  18. Sustainability and Convergence: The Future of Corporate Governance Systems?

    Directory of Open Access Journals (Sweden)

    Daniela M. Salvioni

    2016-11-01

    Full Text Available In today’s world, a sustainable approach to corporate governance can be a source of competitive advantage and a long-term success factor for any firm. Sustainable governance requires that the board of directors considers economic, social and environmental expectations in an integrated way, no matter what ownership structure and formal rules of corporate governance apply to the company: this mitigates the traditional differences between insider and outsider systems of corporate governance. Previous studies failed to consider the contribution of sustainability in the process of corporate governance convergence. Therefore, the aim of this article is to fill the gap in the existing literature by means of a qualitative analysis, supporting the international debate about convergence of corporate governance systems. The article describes the evolution of outsider and insider systems in the light of the increasing importance of sustainability in the board’s decision-making and firm’s operation to satisfy the needs of all the company’s stakeholders. According to this, a qualitative content analysis developed with a directed approach completes the theoretical discussion, demonstrating that sustainability can bring de facto convergence between outsider and insider corporate governance systems. The article aims to be a theoretical starting point for future research, the findings of which could also have practical implications: the study encourages the policy makers to translate the sustainable business best practices into laws and recommendations, strengthening the mutual influence between formal and substantial convergence.

  19. Ethics and answers engineering efficiency for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.M.

    2000-07-01

    Speech on some perspectives in the USA including a few facts on energy usage; value of ethics in energy conservation; challenges for ITT to develop leadership and concepts of partnership and benefits to do everything in our power to create a sustainable environment and secure the future for generations to come. Therefore it is a good business to save energy and protect the environment.(GL)

  20. Sustainability and the future of managed floating in China

    OpenAIRE

    Švarc, Jiří

    2009-01-01

    The purpose of this thesis is to study the Balance of Payments and the Exchange Rate of the People's Republic of China, and it aims to assess whether the current performance of their Managed Floating Exchange Rate is sustainable in the future (given the equilibrium of China's Balance of Payments) and examine what effect would a Free Floating Renminbi Exchange Rate have on the Chinese economy. The work uses the method of compilation - gathering and organizing information on the development of ...

  1. Sustainability of plant-based diets: back to the future.

    Science.gov (United States)

    Sabaté, Joan; Soret, Sam

    2014-07-01

    Plant-based diets in comparison to diets rich in animal products are more sustainable because they use many fewer natural resources and are less taxing on the environment. Given the global population explosion and increase in wealth, there is an increased demand for foods of animal origin. Environmental data are rapidly accumulating on the unsustainability of current worldwide food consumption practices that are high in meat and dairy products. Natural nonrenewable resources are becoming scarce, and environmental degradation is rapidly increasing. At the current trends of food consumption and environmental changes, food security and food sustainability are on a collision course. Changing course (to avoid the collision) will require extreme downward shifts in meat and dairy consumption by large segments of the world's population. Other approaches such as food waste reduction and precision agriculture and/or other technological advances have to be simultaneously pursued; however, they are insufficient to make the global food system sustainable. For millennia, meatless diets have been advocated on the basis of values, and large segments of the world population have thrived on plant-based diets. "Going back" to plant-based diets worldwide seems to be a reasonable alternative for a sustainable future. Policies in favor of the global adoption of plant-based diets will simultaneously optimize the food supply, health, environmental, and social justice outcomes for the world's population. Implementing such nutrition policy is perhaps one of the most rational and moral paths for a sustainable future of the human race and other living creatures of the biosphere that we share. © 2014 American Society for Nutrition.

  2. Policy and advice for a sustainable energy future. The Netherlands

    International Nuclear Information System (INIS)

    Van der Werff, T.T.

    2000-01-01

    The VROM Council offered to host a workshop (27-28 October 2000) for a group of European environmental advisory bodies. This meeting is meant as a kick-off for a working group on energy and climate change. The workshop may help to develop standpoints of the advisory bodies on the basis of shared knowledge of problem perceptions and proposed solutions in other EU countries. This may increase the common denominator and thus promote common EU policies. The proposed title for this workshop is: Reconciling a sustainable energy future with the liberalisation and privatisation of the European energy market One of the participating councils from each country is expected to draft a report on the policies directed at a sustainable energy future in their respective countries. These reports should include the following elements of the national policies and relevant proposals of the councils: a brief description of the current energy supply and a lookout on sustainable development in the energy sector; .a description of the liberalisation and privatisation of the energy market, including the institutional reform (government involvement), juridical changes and realisation path and, if applicable, how the share of non fossil energy generation is enlarged; a description of how in the future a sustainable energy supply will be promoted, including (options for) policy strategies, measures and instruments; and a description of the European Union (EU) policy that is conditional for the realisation of these national policies. The VROM Council has asked CE to produce the report for the Netherlands. The report is organised as follows. Chapter 2 gives a brief description of the current Dutch energy and CO2 characteristics. Chapter 3 gives an overview of Dutch energy policy and chapter 4 an overview of Dutch climate policy. The chapters 5-7 give the views of the various councils on energy and climate policy (AER, VROMRaad, and SER). The final chapter, chapter 8, gives some suggestions for

  3. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    Full text: Nuclear energy is an established component of electricity supply worldwide (16%) and in particular in OECD (nearly a quarter). It is supported by a mature industry benefiting from extensive experience (more than 8 000 reactor years of commercial operation) and dynamic R and D programmes implemented by governments and industries. Existing nuclear power plants are competing successfully in deregulated electricity markets owing to their low marginal production costs, their technical reliability (availability factors exceeding 80% in many countries) and good safety performance. Stringent safety requirements and radiation protection regulations in place in OECD countries allow potential impacts of nuclear energy facilities on human health and the environment to remain extremely low. Furthermore, nuclear energy, a nearly carbon free source, contributes to alleviating the risk of global climate change (worldwide, GHG emissions from the energy sector are already 8% lower than they would be without nuclear energy). Issues related to high-level waste management and disposal are being addressed in comprehensive, step by step approach. Progress towards the implementation of deep geological repositories is being demonstrated (e.g., Yucca Mountain in the US, Olkiluoto in Finland) and research on innovative fuel cycles aiming at partitioning and transmutation of minor actinides is being actively pursued. Up to 2010-2020, nuclear energy will maintain its role mainly through capacity upgrade and lifetime extension of existing plants, in many cases the most cost effective means to increase power capacity and generation. Examples are provided by utility policies and decisions in a number of OECD countries (e.g., Spain, Sweden, Switzerland, UK, US). Although only few new units are being or will be built in the very near term, their construction and operation is bringing additional experience on advanced evolutionary nuclear systems and paving the way for the renaissance of

  4. Towards a sustainably certifiable futures contract for biofuels

    International Nuclear Information System (INIS)

    Mathews, John A.

    2008-01-01

    How are biofuels to be certified as produced in a sustainable and responsible fashion? In the global debate over this issue, one party to the proceedings seems rarely to be mentioned-namely the commodities exchanges through which a global biofuels market is being created. In this contribution, I propose a solution to the problem of sustainability certification through a biofuels futures contract equipped with 'proof of origin' documentation. The proposal does not call for any radical break with current practice, extending existing certification procedures with a requirement for the vendor to provide documentation, probably in barcoded form, of the history of the biofuel offered for sale, including plantation and biorefinery where the biofuel was produced and subsequent blendings it may have undergone. The proposal is thus compatible with the blending practices of large global traders, whose activities are the source of the difficulties of other approaches to certification. It is argued that if such a sustainable futures contract for bioethanol (in the first instance) were to be introduced, then it would likely trade at a premium and become the primary vehicle for North-South trade in biofuels

  5. Opportunities and challenges for a sustainable energy future.

    Science.gov (United States)

    Chu, Steven; Majumdar, Arun

    2012-08-16

    Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

  6. Sustainable sludge management - what are the challenges for the future?

    Energy Technology Data Exchange (ETDEWEB)

    Rulkens, Wim H.

    2003-07-01

    Sewage sludge is a serious problem due to the high treatment costs and the risks to environment and human health. Future sludge treatment will be progressively focused on an improved efficiency and environmental sustainability of the process. In this context a survey is given of most relevant sludge treatment options and separate treatment steps. Special attention is paid to those processes that are simultaneously focused on the elimination of the risks for environment and human health and on the recovery or beneficial use of the valuable compounds in the sludge such as organic carbon compounds, inorganic non-toxic substances, phosphorous and nitrogen containing compounds. Also, a brief assessment is given of the specific future technological developments regarding the various treatment steps. Furthermore, it is discussed how to assess the various pathways which can lead to the required developments. In such an assessment the technical and economic feasibility, the environmental sustainability, the societal acceptance and the implementation route are important factors. The optimal approach also strongly depends on the local and regional situation of concern and the relevant current and future boundary conditions. (author)

  7. Sustaining biological welfare for our future through consistent science

    Directory of Open Access Journals (Sweden)

    Shimomura Yoshihiro

    2013-01-01

    Full Text Available Abstract Physiological anthropology presently covers a very broad range of human knowledge and engineering technologies. This study reviews scientific inconsistencies within a variety of areas: sitting posture; negative air ions; oxygen inhalation; alpha brain waves induced by music and ultrasound; 1/f fluctuations; the evaluation of feelings using surface electroencephalography; Kansei; universal design; and anti-stress issues. We found that the inconsistencies within these areas indicate the importance of integrative thinking and the need to maintain the perspective on the biological benefit to humanity. Analytical science divides human physiological functions into discrete details, although individuals comprise a unified collection of whole-body functions. Such disparate considerations contribute to the misunderstanding of physiological functions and the misevaluation of positive and negative values for humankind. Research related to human health will, in future, depend on the concept of maintaining physiological functions based on consistent science and on sustaining human health to maintain biological welfare in future generations.

  8. Johnson Space Center's Role in a Sustainable Future

    Science.gov (United States)

    Ewert, Michael K.

    2004-01-01

    NASA scientists and many others are contributing to the growing knowledge of our Earth and its ecosystems. Satellites measure sea level rise, and changes in vegetation and air pollutants that travel between countries and continents. The U.S. federal government seeks to be a leader in environmental sustainability efforts through various Executive Orders and policies that save energy, reduce waste, and encourage less reliance on oil as an energy source. NASA, as an agency that is by nature focused on the future, has much to contribute to these efforts. The NASA mission is 'To understand and protect our home planet, to explore the universe and search for life, to inspire the next generation of explorers as only NASA can.' Pollution prevention, affirmative procurement and sustainable design are all programs that are under way at NASA. But more can be done. By sharing ideas and learning from other organizations as well as from the talented workforce we are a part of, JSC can improve its sustainability performance and spread the benefits to our community.

  9. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  10. Sustainable solutions: developing products and services for the future

    National Research Council Canada - National Science Library

    Charter, Martin; Tischner, Ursula

    2001-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Martin Charter, The Centre for Sustainable Design, UK, and Ursula Tischner, econcept, Germany part 1: 1. Background to Sustainable Consumption and Production...

  11. Current and future sustainable biofuels; Dagens och framtidens haallbara biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden)

    2013-07-01

    This report has been prepared as a background paper for the government study of Fossil-Free Vehicle traffic (FFF investigation). The purpose of this study is to describe and summarize the current knowledge on the production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international outlooks. The report's analysis of energy efficiency, GHG performance and production costs are based on system analysis and a life-cycle perspective. The focus is on the production chain up to produced fuel (well-to-tank). Results are based on current research and production chains and is based primarily on standardized LCA and for some systems also on industrial systems analysis.

  12. Current and future sustainable biofuels; Dagens och framtidens haallbara biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden)

    2013-07-01

    This report has been prepared as a background paper for the government study of Fossil-Free Vehicle traffic (FFF investigation). The purpose of this study is to describe and summarize the current knowledge on the production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international outlooks. The report's analysis of energy efficiency, GHG performance and production costs are based on system analysis and a life-cycle perspective. The focus is on the production chain up to produced fuel (well-to-tank). Results are based on current research and production chains and is based primarily on standardized LCA and for some systems also on industrial systems analysis.

  13. Powering the future: Blueprint for a sustainable electricity industry

    International Nuclear Information System (INIS)

    Flavin, C.; Lenssen, N.

    1997-01-01

    Long known for its vast scale and fierce resistance to change, the US power industry is poised for a sweeping transformation. Although driven by many of the same forces propelling the telecommunications revolution, the electricity industry has received only a fraction as much attention. Yet the electric industry is far larger, with a current investment per customer of $6,000--double that of the phone and cable industries combined. Moreover, unlike telecommunications, the future of the power industry will have an enormous impact on the global environment. The glimmerings of a more efficient, decentralized, and less-polluting power system are beginning to capture the interest--and even the investment dollars--of some. In this paper, the authors describe the route to a more environmentally sustainable electric industry to power the twenty-first century

  14. Applying Spatial Indicators to Support Sustainable Urban Futures

    DEFF Research Database (Denmark)

    Petrov, Laura Oana; Shahumyan, Harutyun; Williams, Brendan

    2013-01-01

    structural analysis, FRAGSTATS, and ArcGIS software packages. The developed indicators form a valuable and complementary addition to the planning and policy process due to their interdisciplinary and practical nature. They were elaborated based on discussions with scientists, policy-makers and stakeholders......Indicators are helpful tools for land use management, particularly in the context of sustainable urban development. Together with scenarios they are a key requirement in order to produce information for stakeholders and policy-makers and aid their understanding of development processes. Using...... these information products and tools, policy-makers can be given the opportunity to spatially interrogate the driving forces and the current state of urban development. Understanding how trends will develop in the future and the possible impacts of their decisions on the development process is vital...

  15. Smart City for a Sustainable Future: Is Delhi Ready?

    Directory of Open Access Journals (Sweden)

    Anindita Roy Saha

    2017-02-01

    Full Text Available Cities are the geographic nodes around which people gather for their livelihood activities. Various factors like resources, technology, education, medical innovations and environmental developments have shaped modern cities. However, with rapid urbanization and population growth, many cities are facing the problems of degradation, pollution, diseases and a poor quality of life. The major challenges before the urban growth centers have necessitated the formation of smart cities. Sustainable future of a city lies in the development of transport, infrastructure, environment, energy, ICT and people with a sustainability approach. The Government of India has launched a scheme to create hundred smart cities across the country, among which the National Capital of Delhi is a frontrunner. This paper attempts to study the existing infrastructure and facilities in Delhi in order to assess its readiness to be a smart city. It also attempts to analyze the citizens’ perception about Delhi as a smart city through a primary survey. Although there are limitations in the current scenario of economic and environmental performances and people’s perceptions, Delhi makes a strong case for becoming a smart city.

  16. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  17. Sustainable WEE management in Malaysia: present scenarios and future perspectives

    Science.gov (United States)

    Rezaul Hasan Shumon, Md; Ahmed, S.

    2013-12-01

    Technological advances have resulted development of a lot of electronic products for continuously increasing number of customers. As the customer taste and features of these products change rapidly, the life cycles have come down tremendously. Therefore, a large volume of e-wastes are now emanated every year. This scenario is very much predominant in Malaysia. On one hand e-wastes are becoming environmental hazards and affecting the ecological imbalance. On the other, these wastes are remaining still economically valuable. In Malaysia, e-waste management system is still in its nascent state. This paper describes the current status of e-waste generation and recycling and explores issues for future e-waste management system in Malaysia from sustainable point of view. As to draw some factual comparisons, this paper reviews the e-waste management system in European Union, USA, Japan, as a benchmark. Then it focuses on understanding the Malaysian culture, consumer discarding behavior, flow of the materials in recycling, e-waste management system, and presents a comparative view with the Swiss e-waste system. Sustainable issues for e-waste management in Malaysia are also presented. The response adopted so far in collection and recovery activities are covered in later phases. Finally, it investigates the barriers and challenges of e-waste system in Malaysia.

  18. Increasing Awareness of Sustainable Water Management for Future Civil Engineers

    Science.gov (United States)

    Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra

    2010-05-01

    There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is

  19. Current and future sustainable biofuels; Dagens och framtidens haallbara biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Tekniska Univ., Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden); Nystroem, Ingrid [Swedish Knowledge Centre for Renewable Transportation Fuels, Goeteborg (Sweden); CIT Industriell Energi., Goeteborg (Sweden)

    2013-09-01

    This report has been prepared as a background paper for the state investigation 'Fossil Free Vehicle Traffic'. The purpose of this study is to describe and summarize the current knowledge on production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report includes both existing and future fuel systems under development, and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report's analysis of energy efficiency, greenhouse gas performance and production costs is based on system analysis and a life-cycle perspective. The focus is on the production chain to the produced fuel (well-to-tank). Results are based on current research and commercial development of the respective chains. They are based primarily from standardized life cycle analysis and, in some production systems, also on industrial systems analysis. These two approaches have some differences in methodology, which are highlighted in the report. In the overview values and results have been compiled to make it possible to compare the results.

  20. Current and future sustainable biofuels; Dagens och framtidens haallbara biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Tekniska Univ., Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden); Nystroem, Ingrid [Swedish Knowledge Centre for Renewable Transportation Fuels, Goeteborg (Sweden); CIT Industriell Energi., Goeteborg (Sweden)

    2013-09-01

    This report has been prepared as a background paper for the state investigation 'Fossil Free Vehicle Traffic'. The purpose of this study is to describe and summarize the current knowledge on production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report includes both existing and future fuel systems under development, and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report's analysis of energy efficiency, greenhouse gas performance and production costs is based on system analysis and a life-cycle perspective. The focus is on the production chain to the produced fuel (well-to-tank). Results are based on current research and commercial development of the respective chains. They are based primarily from standardized life cycle analysis and, in some production systems, also on industrial systems analysis. These two approaches have some differences in methodology, which are highlighted in the report. In the overview values and results have been compiled to make it possible to compare the results.

  1. Sustainability - What are the Odds? Guessing the Future of our Environment, Economy, and Society

    Science.gov (United States)

    This article examines the concept of sustainability from a global perspective, describing how alternative futures might develop in the environmental, economic, and social dimensions. The alternatives to sustainability appear to be (a) a catastrophic failure of life support, econo...

  2. USGCRP's Sustained Assessment Process: Progress to date and future plans

    Science.gov (United States)

    DeAngelo, B. J.; Reidmiller, D.; Lipschultz, F.; Cloyd, E. T.

    2016-12-01

    One of the four main objectives of the U.S. Global Change Research Program's (USGCRP's) Strategic Plan is to "Conduct Sustained Assessments", which seeks to build a process that synthesizes and advances the state of scientific knowledge on global change, develops future scenarios and potential impacts, and evaluates how effectively science is being and can be used to inform and support the Nation's response to climate change. To do so, USGCRP strives to establish a standing capacity to conduct national climate assessments with sectoral and regional information to evaluate climate risks and opportunities, and to inform decision-making, especially with regard to resiliency planning and adaptation measures. Building on the success of the 3rd National Climate Assessment (NCA) (2014), we discuss the range of USGCRP activities that embody the sustained assessment concept. Special reports, such as the recent Climate and Human Health Assessment and upcoming Climate Science Special Report, fill gaps in our understanding and provide crucial building blocks for next NCA report (NCA4). To facilitate the use of consistent assumptions across NCA4, new scenario products for climate, population, and land use will be made available through initiatives such as NOAA's Climate Resilience Toolkit. NCA4 will be informed by user engagement to advance the customization of knowledge. The report will strive to advance our ability to quantify various risks, monetize certain impacts, and communicate the benefits (i.e., avoided impacts) of various mitigation pathways. NCAnet (a national network of climate-interested stakeholders) continues to grow and foster collaborations across levels of governance and within civil society. Finally, USGCRP continues to actively engage with other assessment processes, at international, state, city, and tribal levels, to exchange ideas and to facilitate the potential for "linked" assessments across spatial scales.

  3. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  4. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  5. Future Forests. Sustainable Strategies under Uncertainty and Risk

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Climate change, globalization, and increased consumption of materials and energy leads to higher pressure on forest resources. The task of intensifying forestry to produce more timber, paper, and energy, while at the same time ensuring ecosystem services, such as biodiversity and recreation, is a complex one. Difficult decisions have to be made if we are to strike a balance between these demands. These decisions have to be supported by scientifically-based land-use strategies to deal with tradeoffs on different scales. The vision of Future Forests is to take a significant step forward in this complicated task. The Program has a long-term perspective (50-100 years) and will consider changes in climate, as well as global and market development as major factors likely to have a strong influence on forest management and forest landscapes in the future. In this context, uncertainties, vulnerability, and the adaptive capacity of social-ecological systems must also be considered. The Program's promise to society is: Future Forests will create knowledge and tools to enable sustainable decisions for the future of one of our most important resources - our forests. To fulfill this promise, the Program has the ambition to constitute a platform where researchers from different disciplines, and practitioners from several sectors, can interact. The program will combine empirical research with modeling, scenario analysis, and synthesis work in order to produce excellent science and applications. Much of the multidisciplinary research performed in the Program will be done in the Component Projects. These research groups will be responsible for producing detailed, high quality scientific results that can both be incorporated into the scenarios and be directly relevant for our stakeholders. The Center for Forest System Analyses and Synthesis (ForSA) will form a unifying force in Future Forests. The main goal for this center is to develop skills in scenario analyses and to

  6. Sustaining the future: the role of nuclear power in meeting future world energy needs

    International Nuclear Information System (INIS)

    Duffey, R.; Sun, Y.

    2003-01-01

    A description is given of recently informed analyses showing the potential that nuclear power has in meeting global energy demands. For both the electricity and transportation sectors, we can quantify the beneficial effects on the environment, and we show how nuclear power deserves credit for its role in assisting future world energy, environmental and economic sustainability. The continuing expansion of the world's and Asia's energy needs, coupled with the need to reduce greenhouse gas (GHG) and other emissions, will require new approaches for large scale energy production and use. This is particularly important for China and Asia with respect to meeting both the energy demand and sustainability challenges. We show and explore the role of nuclear power for large-scale energy applications, including electricity production and hydrogen for transportation. Advanced nuclear technologies, such as those like CANDU's next generation ACR, can meet future global energy market needs, avoid emissions, and mitigate the potential for global climate change. We use the latest IPCC Scenarios out to the year 2100 as a base case, but correct them to examine the sensitivity to large scale nuclear and hydrogen fuel penetration. We show a significant impact of nuclear energy on energy market penetration, and in reducing GHGs and other emissions in the coming century, particularly in the industrial developing world and in Asia. This is achieved without needing emissions credits, as are used or needed as economic support for other sources, or for subsidies via emissions trading schemes. Nuclear power offers the relatively emissions-free means, both to provide electricity for traditional applications and, by electrolytic production of hydrogen, to extend its use deep into the transportation sector. For the published IPCC Marker Scenarios for Asia we show the reduction in GHG emissions when electrolysis using electricity from nuclear power assists the introduction of hydrogen as a fuel

  7. Sustaining IAEA Neutron Coincidence Counting: Past, Present and Future

    International Nuclear Information System (INIS)

    Longo, J.; Schaffer, K.M.; Nordquist, H.

    2015-01-01

    Los Alamos National Laboratory's IAEA Neutron Coincidence Counting (INCC) code is the standard tool for neutron coincidence counting measurements. INCC software and its' predecessors were originally implemented in the 1970s. The measurement and analysis techniques perfected in the code arise from many years of laboratory and field experience by nuclear engineers and physicists. Covering the full arc of INCC's lifecycle, we discuss the engineering approaches used for conception, original development, worldwide deployment of the stand-alone Windows application, more than a decade of sustained maintenance support, and our recent work to carry INCC successfully into future applications. We delve into the recent re-architecture of the INCC code base, an effort to create a maintainable and extensible architecture designed to preserve the existing INCC code base while adding support for new analyzes and instruments (e.g., List Mode PTR-32 and the List Mode Multiplicity Module). INCC now consists of separate modules implementing attended instrumentation control, data file processing, statistical and Pu mass calculation and analyzes, list mode counting and analyzes, reporting functions, and a database support library. Separating functional capabilities in this architecture enables better testing, isolates development risk and enables the use of INCC features in other software systems. We discuss our approach to handling divergent data and protocol support as a result of this re-architecture. INCC has complex testing requirements; we show how the testing effort was reduced by breaking the software into separate modules. This new architecture enables integration of INCC analysis into the IAEA's new Integrated Review and Analysis Programme (iRAP) data review system. iRAP is based on the respected Euratom Comprehensive Review Inspector Software Package (CRISP) software framework, and is expected to be the future data review system for IAEA and Euratom

  8. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.

    Science.gov (United States)

    Fatma, Shabih; Hameed, Amir; Noman, Muhammad; Ahmed, Temoor; Shahid, Muhammad; Tariq, Mohsin; Sohail, Imran; Tabassum, Romana

    2018-01-01

    Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of

  9. Education for Sustainability: Assessing Pathways to the Future

    Science.gov (United States)

    Huckle, John

    2014-01-01

    In this paper John Huckle reflects on the outlook of environmental education based on conferences in 1972 and 1992 regarding the lack of sustainable development being realized. Huckle points "education for sustainability" along a pathway provided by critical theory and pedagogy and uses theory to examine the nature of ecological crisis,…

  10. Can engineering solutions really provide a sustainable future?

    DEFF Research Database (Denmark)

    Boisen, Anja

    2014-01-01

    Sustainability is a word which is very often (mis)used in various public debates. In engineering, however, it is perhaps easier to define the term, then in other academic fields. We advocate the principle that only those activities, which can be sustained for at least a few centuries using known...

  11. Watershed management and sustainable development: Lessons learned and future directions

    Science.gov (United States)

    Karlyn Eckman; Hans M. Gregerson; Allen L. Lundgren

    2000-01-01

    Fundamental belief underlying the direction and content of this paper is that the paradigms of land and water management evolving into the 21st century increasingly favor a watershed focused approach. Underlying that approach is an appreciation of the processes of sustainable development and resource use. The increasing recognition that sustainable development and...

  12. Sustainability, Innovation, and the Future of Environmental Protection

    Science.gov (United States)

    2010-09-01

    Sustainability, & chemical product design Coffee decaffeination using methylene chloride Coffee decaffeination using CO2 (not a “solvent” by FDA) Coffee beans ...contin.) • Materials sustainability – Trace metals • Security of supply chain • Appropriate selection and use • Mass balance on use, reuse, and...Design • Transdisciplinary Collaboration and Integrative Systems • Innovation and Catalysis Scientific Values for the Path Forward 17 Office of

  13. The role of sustainable HORECA for sustainable lifestyles - identification of challenges and future work

    DEFF Research Database (Denmark)

    Strassner, Carola; Bügel, Susanne Gjedsted; Hertwig, Jostein

    2016-01-01

    Internationally there is increasing interest in short food supply chains and local and organic food as part of a wider concern with sustainability. This is strongly evident in both commercially oriented food service, where it is often associated with sustainable tourism endeavours, and in institu......Internationally there is increasing interest in short food supply chains and local and organic food as part of a wider concern with sustainability. This is strongly evident in both commercially oriented food service, where it is often associated with sustainable tourism endeavours...

  14. Building a More Sustainable Future for Senior Living

    Science.gov (United States)

    Scarfo, Bob

    2011-01-01

    The aging of society is an inescapable trend that some neighborhoods, municipalities, and counties are admitting needs their attention. As the extent of the changes required to become senior friendly, let alone sustainable, are being realized, many communities are experiencing pushback from voters, old-guard city and county staff, and even elected…

  15. Back to the future? Tourism, place, and sustainability

    Science.gov (United States)

    Daniel R. Williams; Susan Van Patten

    1998-01-01

    Tourism, especially rural tourism, epitomizes the problematic elements of sustainability. On the one hand, as a service industry trading on the uniqueness of a place and region, tourism is seen as more environmentally benign than industrial production, manufacturing, extractive industries, and even agriculture. When traditional resource dependent industries decline (...

  16. Sustainability Challenge for Academic Libraries: Planning for the Future

    Science.gov (United States)

    Jankowska, Maria Anna; Marcum, James W.

    2010-01-01

    There is growing concern that a variety of factors threaten the sustainability of academic libraries: developing and preserving print and digital collections, supplying and supporting rapidly changing technological and networking infrastructure, providing free services, maintaining growing costs of library buildings, and lowering libraries'…

  17. Chapter 3: Omics and the Future of Sustainable Biomaterials

    Science.gov (United States)

    Juliet D. Tang; Susan V. Diehl

    2014-01-01

    With global focus on the conversion of biomass into products, fuels, and energy, there is a strong need for information that will lead to new sustainable products, applications, and biotechnological advances. The omics approach to biology is a discovery-driven method that may deliver solutions to these overarching problems. It gives scientists the ability to obtain a...

  18. Partnership and leadership: building alliances for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Bruijn, Theo de [Twente Univ., Enschede (Netherlands); Tukker, Arnold [TNO-STB, Delft (NL)] (eds.)

    2002-03-01

    Sustainable development has become a central perspective in environmental strategies around the world. It is clear that neither governments nor businesses have the capability to bring about sustainability on their own. Therefore, collaboration has emerged as a central concept. At the same time it is obvious that someone has to take the lead in the development towards sustainability. This book focuses on different forms of collaboration emerging between various actors. The objective of the book is to more systematically explore the different roles and relationships between partnership and leadership. Basically, both partnership and leadership can be seen in a positive and negative way: for example, as far as partnership is concerned, we can assume that the path towards sustainability can be paved by parties coming together, taking some initiative collaborating. On the opposite, partnership and consensus-based decisions can be seen as an obstacle to foster radical changes in production and consumption patterns. Similarly, leadership can be seen as an obstacle to sustainable development if leaders form close circles and are not willing to share experiences with other actors; but leadership could also be considered as an important element to keep concepts and practices forward. The book holds this double perspective: explaining, mapping and analyzing different goals/formats/methods of more and less collaborative approaches, but at the same time taking a critical approach to the theme by understanding related risks, effects, prospects and corrective actions. Next to a conceptual part, the book brings together case-studies from around the world. The focus is in describing and understanding various formats of collaboration and critically evaluating its effects and prospects. A concluding chapter discusses the role of partnership and leadership in realizing various levels of environmental innovations: optimization and re-design, that usually affect only a small part of the

  19. Sustainability-open : Why every building will be sustainable in the future

    NARCIS (Netherlands)

    Coenders, J.L.

    2013-01-01

    In this paper the initiative “sustainability-open” will be introduced. The aim of the initiative is to take away one of the reasons why buildings and other objects in the built environment are often not designed in a sustainable manner: the availability of clear and insightful software to analyse

  20. UNESCO World Conference on Education for Sustainable Development: Learning Today for a Sustainable Future

    Science.gov (United States)

    Journal of Education for Sustainable Development, 2012

    2012-01-01

    The UNESCO World Conference on Education for Sustainable Development (ESD) will be co-organised in 2014 by UNESCO and the Government of Japan on the occasion of the end of the UN Decade of Education for Sustainable Development. It has the following objectives: (1) Celebrating a decade of action; (2) Reorienting education to build a better future…

  1. Future value now. Cashing sustainability in area development

    International Nuclear Information System (INIS)

    Huismans, G.; De Vaan, M.

    2011-06-01

    Several actors have an interest in the added value of a high quality of area development - and they also want to invest. In more and more places new strategies are developed to realize sustainable areas. Inspiring examples show that even within the present context much is possible. In many places in the Netherlands, targets in terms of energy, water, waste and green are operationalized and embedded in the financial business cases for area developments. [nl

  2. Energy, society and environment. Technology for a sustainable future

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-04-01

    Energy, Society and Environment examines energy and energy use, and the interactions between technology, society and the environment. The book is clearly structured to examine; Key environmental issues, and the harmful impacts of energy use; New technological solutions to environmental problems; Implementation of possible solutions, and Implications for society in developing a sustainable approach to energy use. Social processes and strategic solutions to problems are located within a clear, technological context with topical case studies. (UK)

  3. The Reflective Citizen : General Design Education for a Sustainable Future

    OpenAIRE

    Digranes, Ingvild; Fauske, Laila Belinda

    2010-01-01

    With the Norwegian 2006 curriculum, the thoughts of a global responsibility in terms of a wide understanding of sustainability was introduced in general education in Art and Design education from 1st grade through lower secondary school (6-15 years). The focus of individual expression that dominated the subject during the charismatic paradigm of self-expression has in the documents to some extent been replaced by the focus on citizenship and user participation. The introduction, o...

  4. Bridge to a sustainable future: National environmental technology strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    For the past two years the Administration has sought the views of Congress, the states, communities, industry, academia, nongovernmental organizations, and interested citizens on ways to spur the development and use of a new generation of environmental technologies. This document represents the views of thousands of individuals who participated in events around the country to help craft a national environmental technology strategy that will put us on the path to sustainable development.

  5. How to achieve a sustainable future for Europe?

    Directory of Open Access Journals (Sweden)

    Blinc Robert

    2008-01-01

    Full Text Available According to the Lisbon declaration from 2000 the goal of European Union is to become by 2010 the most competitive and dynamic knowledge-driven economy and by 2025 a sustainable knowledge society. The EU however faces some strong challenges on the road toward these goals and is evidently lagging behind both USA and Japan. Our analysis is based on six dimensions of these challenges, including the economic challenge, the demographic challenge, the scientific challenge, the challenge of higher education, the challenge of European governance and identity/system of values, and the environmental/ecotechnological challenge. We argue that if we are to provide a sustainable secure environment and prosperity for next generations, we have to act now at least with developments in particular in the direction of clean, cheap, and renewable energy sources with an emphasis on basic, curiosity driven research which through scientific breakthroughs, is the only realistic solution to solving world's energy requirements. Such an action could for example facilitate the transition from fossil fuels to solar power in a relatively short time of about two decades, and help EU achieve its declared sustainability targets.

  6. A Sustainable NATO/EU Partnership for the Future

    National Research Council Canada - National Science Library

    Pfrengle, Franz X

    2008-01-01

    A major question dealing with future security challenges of the United States and Europe will be about the relationship between both, especially through two major organizations, NATO and the European Union (EU...

  7. A TWO CENTURY HISTORY OF PACIFIC NORTHWEST SALMON: LESSONS LEARNED FOR ACHIEVING A SUSTAINABLE FUTURE

    Science.gov (United States)

    Achieving ecological sustainability is a daunting challenge. In the Pacific Northwest one of the most highly visible public policy debates concerns the future of salmon populations. Throughout the Pacific Northwest, many wild salmon stocks have declined and some have disappeare...

  8. A multi evaporator desalination system operated with thermocline energy for future sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ghaffour, NorEddine; Ng, Kim Choon

    2017-01-01

    ) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More

  9. Sustainability, the Next Generation Science Standards, and the Education of Future Teachers

    Science.gov (United States)

    Egger, Anne E.; Kastens, Kim A.; Turrin, Margaret K.

    2017-01-01

    The Next Generation Science Standards (NGSS) emphasize how human activities affect the Earth and how Earth processes impact humans, placing the concept of sustainability within the Earth and Space Sciences. We ask: how prepared are future teachers to address sustainability and systems thinking as encoded in the NGSS? And how can geoscientists…

  10. Bridges to Global Citizenship: Ecologically Sustainable Futures Utilising Children's Literature in Teacher Education

    Science.gov (United States)

    Bradbery, Debbie

    2013-01-01

    Developing an understanding of the importance of a sustainable future is vital in helping children to become "global citizens". Global citizens are those willing to take responsibility for their own actions, respect and value diversity and see themselves as contributors to a more peaceful and sustainable world. Children's…

  11. The Future of Education: Innovations Needed to Meet the Sustainable Development Goals

    Science.gov (United States)

    Pota, Vikas

    2017-01-01

    In autumn 2015, the world's governments came together to agree to 17 ambitious Sustainable Development Goals (SDGs), which promised to overcome a vast array of problems--from poverty and hunger to health and gender equality--by 2030. The UNESCO report "Education for People and Planet: Creating Sustainable Futures for All" charted the…

  12. Establishment of sustainable health science for future generations: from a hundred years ago to a hundred years in the future.

    Science.gov (United States)

    Mori, Chisato; Todaka, Emiko

    2009-01-01

    Recently, we have investigated the relationship between environment and health from a scientific perspective and developed a new academic field, "Sustainable Health Science" that will contribute to creating a healthy environment for future generations. There are three key points in Sustainable Heath Science. The first key point is "focusing on future generations"-society should improve the environment and prevent possible adverse health effects on future generations (Environmental Preventive Medicine). The second key point is the "precautious principle". The third key point is "transdisciplinary science", which means that not only medical science but also other scientific fields, such as architectural and engineering science, should be involved. Here, we introduce our recent challenging project "Chemiless Town Project", in which a model town is under construction with fewer chemicals. In the project, a trial of an education program and a health-examination system of chemical exposure is going to be conducted. In the future, we are aiming to establish health examination of exposure to chemicals of women of reproductive age so that the risk of adverse health effects to future generations will decrease and they can enjoy a better quality of life. We hope that society will accept the importance of forming a sustainable society for future generations not only with regard to chemicals but also to the whole surrounding environment. As the proverb of American native people tells us, we should live considering the effects on seven generations in the future.

  13. Breaking resilience for a sustainable future: Thoughts for the anthropocene

    DEFF Research Database (Denmark)

    Glaser, Marion; Plass-Johnson, Jeremiah Grahm; Ferse, Sebastian C. A.

    2018-01-01

    and degraded state of the coral reefs that fishers’ livelihoods depend on.We argue that,more often than not in the Anthropocene, breaking resilience has a central role in the pursuit of sustainable human-nature relations. Therefore, the link between the resilience and the transformation debates needs...... on reef fisheries in the Spermonde Island Archipelago in Indonesia, based on social and ecological studies between 2004 and 2016. We identify a number of interlocking wickedly resilient vicious cycles as predominant drivers of the impoverishment of fishing households and the overexploited, polluted...

  14. An engineering dilemma: sustainability in the eyes of future technology professionals.

    Science.gov (United States)

    Haase, S

    2013-09-01

    The ability to design technological solutions that address sustainability is considered pivotal to the future of the planet and its people. As technology professionals engineers are expected to play an important role in sustaining society. The present article aims at exploring sustainability concepts of newly enrolled engineering students in Denmark. Their understandings of sustainability and the role they ascribe to sustainability in their future professional practice is investigated by means of a critical discourse analysis including metaphor analysis and semiotic analysis. The sustainability construal is considered to delimit possible ways of dealing with the concept in practice along the engineering education pathway and in professional problem solving. Five different metaphors used by the engineering students to illustrate sustainability are identified, and their different connotative and interpretive implications are discussed. It is found that sustainability represents a dilemma to the engineering students that situates them in a tension between their technology fascination and the blame they find that technological progress bears. Their sustainability descriptions are collected as part of a survey containing among other questions one open-ended, qualitative question on sustainability. The survey covers an entire year group of Danish engineering students in the first month of their degree study.

  15. Sustainable water future with global implications: everyone's responsibility.

    Science.gov (United States)

    Kuylenstierna, J L; Bjorklund, G; Najlis, P

    1997-01-01

    The current use and management of freshwater is not sustainable in many countries and regions of the world. If current trends are maintained, about two-thirds of the world's population will face moderate to severe water stress by 2025 compared to one-third at present. This water stress will hamper economic and social development unless action is taken to deal with the emerging problems. The Comprehensive Assessment of the Freshwater Resources of the World, prepared by the UN and the Stockholm Environment Institute, calls for immediate action to prevent further deterioration of freshwater resources. Although most problems related to water quantity and quality require national and regional solutions, only a global commitment can achieve the necessary agreement on principles, as well as financial means to attain sustainability. Due to the central and integrated role played by water in human activities, any measures taken need to incorporate a wide range of social, ecological and economic factors and needs. The Assessment thus addresses the many issues related to freshwater use, such as integrated land and water management at the watershed level, global food security, water supply and sanitation, ecosystem requirements, pollution, strengthening of major groups, and national water resource assessment capabilities and monitoring networks. Governments are urged to work towards a consensus regarding global principles and guidelines for integrated water management, and towards their implementation in local and regional water management situations. The alternative development options available to countries facing water stress, or the risk thereof, needs to be considered in all aspects of development planning.

  16. The future of animal feeding: towards sustainable precision livestock farming

    NARCIS (Netherlands)

    Hartog, den L.A.

    2011-01-01

    In the future, production will increasingly be affected by globalization of the trade in feed commodities and livestock products, competition for natural resources, particularly land and water, competition between feed, food and biofuel, and by the need to operate in a carbonconstrained economy,

  17. Environmentally sustainable agriculture and future developments of the CAP

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Christensen, Tove

    2009-01-01

    Recent reforms of the European Union’s Common Agricultural Policy (CAP) have set in motion a process of increased market orientation in the agricultural sector, a process that will be intensified by trade liberalization if an agreement is reached under the World Trade Organization (WTO). It is wi......Recent reforms of the European Union’s Common Agricultural Policy (CAP) have set in motion a process of increased market orientation in the agricultural sector, a process that will be intensified by trade liberalization if an agreement is reached under the World Trade Organization (WTO...... in the world market could increase pressure to slacken regulatory requirements on agriculture. Thus, the question of whether liberalization will hinder or promote environmentally sustainable production methods in agriculture is unresolved. This paper analyses different scenarios of agricultural policy...

  18. The future impact of ICT on environmental sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Wunnik, C. van; Rodriguez, C.; Delgado, L.; Burgelman, J.C.; Desruelle, P. [Inst. for Prospective Technological Studies, European Commission, DG-JRC (Spain)

    2004-07-01

    The Institute for Prospective Technology Studies commissioned a project to research the possible effects of ICT on a set of environmental indicators in 2020. The project adopted an innovative methodology combining qualitative scenario-building and quantitative modelling. The general conclusion was that the impact of ICT is roughly between -20 and +30%. It should therefore be taken into account by environmental policies in order to ensure that ICT applications make a positive contribution to environmental outcomes, and, at the same time, to suppress rebound effects. There are significant opportunities for improving environmental sustainability through ICTs, which can rationalise energy management in housing (or facilities), make passenger and freight transport more efficient, and enable a product-to-service shift across the economy. (orig.)

  19. The Future of Sustainable Fashion Consumption: an Empirical Investigation

    Directory of Open Access Journals (Sweden)

    Ionica Oncioiu

    2016-05-01

    Full Text Available Small online businesses around the world are facing an immense challenge: to respond to economic opportunities and, at the same time, to address increasing environmental pressures. This research deals with the consumer’s attitude and awareness towards organic clothing and it suggests that the most people are aware of some of the environmental dilemmas in fashion consumption. The data obtained from the survey were analysed using multiple linear regression, Chi-Square, ANOVA and Correlation Analysis to examine possible results that bring about the understanding of consumer knowledge, belief, perceptions and willingness to purchase organic clothes. Moreover, this paper also provides some useful recommendations for promoting organic clothing products and growing the sustainable online market for them.

  20. Regulation of water resources for sustaining global future socioeconomic development

    Science.gov (United States)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  1. Can Education for Sustainable Development Change Entrepreneurship Education to Deliver a Sustainable Future?

    Science.gov (United States)

    Strachan, Glenn

    2018-01-01

    An objective of the European Union's Entrepreneurship 2020 Action Plan is to address high levels of youth unemployment in Europe by promoting entrepreneurship. Implementing entrepreneurship education in schools, colleges and universities is one of three strategic interventions proposed by the Action Plan. Sustainable entrepreneurship is a…

  2. Sustainable de-growth: Mapping the context, criticisms and future prospects of an emergent paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Alier, Joan [Department of Economics and Economic History, Universidad Autonoma de Barcelona (Spain); Pascual, Unai [Department of Land Economy, University of Cambridge (United Kingdom); Vivien, Franck-Dominique [Department of Economics, Universite de Reims Champagne Ardenne (France); Zaccai, Edwin [Institute for Environmental Management and Land Planning, Universite Libre de Bruxelles (Belgium)

    2010-07-15

    'Sustainable de-growth' is both a concept and a social-grassroots (Northern) movement with its origins in the fields of ecological economics, social ecology, economic anthropology and environmental and social activist groups. This paper introduces the concept of sustainable de-growth by mapping some of the main intellectual influences from these fields, with special focus on the Francophone and Anglophone thinking about this emergent notion. We propose hypotheses pertaining to the appeal of sustainable de-growth, and compare it to the messages enclosed within the dominant sustainable development idea. We scrutinize the theses, contradictions, and consequences of sustainable de-growth thinking as it is currently being shaped by a heterogeneous body of literature and as it interacts with an ample and growing corpus of social movements. We also discuss possible future paths for the de-growth movement compared to the apparent weakening of the sustainable development paradigm. (author)

  3. Sustainability of future coasts and estuaries: A synthesis

    Science.gov (United States)

    Newton, Alice; Harff, Jan; You, Zai-Jin; Zhang, Hua; Wolanski, Eric

    2016-12-01

    Coasts are at the nexus of the Anthropocene, where land, marginal seas and atmosphere meet along a thin strip that is inhabited by nearly half the human population (Wolanski and Elliott, 2015). Coasts are often fringed by rich habitats such as mangroves, salt-marshes, inter-tidal mud and sand flats, seagrass meadows, kelp forests and coral reefs that provide a valuable range of ecosystem services to humans and to the adjacent marginal seas (Van den Belt and Costanza, 2011). It is the highly dynamic system that is constantly being reshaped by changing natural forces and anthropogenic activities. Coastal systems and human societies form coastal social-ecological systems that increasingly face multiple pressures, which threaten their ecological and economical sustainability. Common pressures include changes to land use and hydrology, land reclamation, coastal sand mining, harbour dredging, pollution and eutrophication, overexploitation such as overfishing, all in the context of climate change. During the 20th Century, coastal scientists studied the problems and issues arising along the coasts (Ramesh et al., 2015). Now, in the 21st Century, their focus must increasingly be about how to solve these problems and issues through better management and innovative approaches. To study these matters, two workshops were held in Yantai, P.R. China, in September 2015, hosted by the Yantai Institute of Coastal Zone Research, CAS. The outcome of these workshops is this special issue of Estuarine, Coastal and Shelf Science.

  4. Ancient Wisdom, Applied Knowledge for a Sustainable Future

    Science.gov (United States)

    Peterson, K.; Philippe, R. Elde; Dardar, T. M. Elde

    2017-12-01

    Ancient wisdom informs traditional knowledges that guide Indigenous communities on how to interact with the world. These knowledges and the ancient wisdom have been the life-giving forces that have prevented the complete genocide of Indigenous peoples, and is also the wisdom that is rejuvenating ancient ways that will take the world into a future that embraces the seventh generation philosophy.. Western scientists and agency representatives are learning from the work and wisdom of Native Americans. This presentation will share the ways in which the representatives of two Tribes along the coast of Louisiana have been helping to educate and apply their work with Western scientists.

  5. Energy scenario in India and strategy for sustainable future

    International Nuclear Information System (INIS)

    Kumar, K.; Bhagat, S.K.; Thakur, T.

    1998-01-01

    Although India has a fairly large interconnected power system among the developing countries, it accounts for tremendously high losses occurring in the system, and hence resulting in an inefficient operation. With the ever increasing cost of inflation and several other financial constraints, it is of paramount importance to maximise/optimise the continuity and quality of electric power supply at minimum investment. Also, this calls upon planning for optimum generating capacity and maintaining adequate spinning reserves. This article discusses the Indian scenario and deals with some strategic issues keeping in mind the problems concerning the future growth of the power industry. (author)

  6. Energy and human activity: Steps toward a sustainable future

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential for improving energy efficiency is enormous, but exploitation of this resource has slowed in recent years. This is regrettable for several reasons. First, not incorporating higher efficiency now often means passing up opportunities that will be more expensive or even impossible to implement in the future. This is especially true for long-lived capital, such as new buildings. Second, reduced research and development into new efficiency options will make it more difficult to accelerate the pace of efficiency improvements in the future. Finally, the flow of more efficient technologies to the non-OECD countries will be hindered by the slowdown in efficiency improvement in the OECD countries. Well-designed policies can help recapture the momentum that has been lost. Some key steps for stimulating more careful use of energy are: rationalize energy pricing and gradually internalize environmental externalities; improve present energy-using capital; implement energy-efficiency standards or agreements for new products and buildings; encourage higher energy efficiency in new products and buildings; promote international cooperation for R ampersand D technology transfer; adjust policies that encourage energy-intensive activities; and promote population restraint worldwide. 25 refs

  7. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will tend to have closed

  8. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  9. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  10. Future transportation: Lifetime considerations and framework for sustainability assessment

    International Nuclear Information System (INIS)

    Sweeting, Walter J.; Winfield, Patricia H.

    2012-01-01

    Modern society cannot exist without mobility. It is now essential to maintain access to everyday necessities, as well as being a vital part of most economies. However, our current transportation system is placing unsustainable demands on finite resources of fossil fuels, minerals and materials; change is therefore essential. Identifying rational choices is difficult because a future transport option must not only abate these demands over the entire lifetime, but do so at an affordable cost whilst maintaining acceptable levels of utility. This paper offers a framework to evaluate powertrains for whole life criteria, in order to help validate current and future developments. It supports integrated comparisons of both fuel and vehicle technology combinations for cost, energy and greenhouse gas emissions throughout a vehicles lifetime. Case studies illustrate the use of this framework. All powertrains were found to require considerable amounts of energy and emit some emissions over their whole lifetime. Significant benefits over incumbent vehicles were found to be potentially attainable through the use of alternative powertrains. However, the majority of these benefits were currently found to increase user costs, worsen the vehicle production impacts and be heavily reliant on the source of the vehicles in-use energy. - Highlight: ► Cost, energy and GHG emissions throughout a vehicle’s lifetime are evaluated. ► This paper offers a structure to evaluate powertrains for whole life criteria. ► Substantial amounts of energy and emissions were evident for all options. ► Significant environmental benefits over incumbent vehicles were found. ► In-use benefits were shown to shift impacts to other phases of a vehicle’s lifetime.

  11. Introducing future engineers to sustainable ecology problems: a case study

    Science.gov (United States)

    Filipkowski, A.

    2011-12-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and industrial design. The energy, which they consume, is increasing the greenhouse effect and the waste poisons the environment. So far, most courses on ecology are offered to specialists in environmental engineering. These courses are filled with many details. The Warsaw Academy of Computer Science, Management and Administration teaches students in the direction of management and production engineering. Upon completion, the students receive the degree of 'engineer'. Their future work will mainly concern management of different types of industrial enterprises and they will be responsible for organising it in such a way as to avoid a dangerous contribution to environmental pollution and climate change. This is why it was decided to introduce a new course entitled 'Principles of Ecology and Environmental Management'. This course is quite broad, concerning almost all technical, law and organisational aspects of the problem. The presentation is made in a spectacular way, aiming to convince students that their future activity must be environmentally friendly. It contains information about international activities in ecology, legal aspects concerning pollution, technical and information methods of monitoring and, finally, the description of 'green' solutions. Altogether, 27 hours of lectures and 15 hours of discussions and students' presentations complete the course. Details of this course are described in this paper.

  12. A future task for health-promotion research: Integration of health promotion and sustainable development.

    Science.gov (United States)

    Jelsøe, Erling; Thualagant, Nicole; Holm, Jesper; Kjærgård, Bente; Andersen, Heidi Myglegård; From, Ditte-Marie; Land, Birgit; Pedersen, Kirsten Bransholm

    2018-02-01

    Based on previous studies and reflections collected from participants in a workshop at the 8th Nordic Health Promotion Research Network conference, we reveal current tendencies and discuss future challenges for health-promotion research regarding integration of sustainable development principles. Despite obvious interfaces and interactions between the two, our contention is that strategies for health promotion are not sufficiently integrated with strategies for sustainable development and that policies aimed at solving health or sustainability problems may therefore cause new, undesired and unforeseen environmental and health problems. As illustrated in previous research and as deliberated in the above-mentioned workshop, a number of barriers are identified. These are believed to be related to historical segregation, the conceptual understandings of health promotion and sustainable development, as well as the politics and implementation of policy goals in both areas. Three focal points are proposed as important challenges to address in future research: (a) the duality of health promotion and sustainability and how it can be handled in order to enhance mutually supportive processes between them; (b) the social dimension of sustainability and how it can be strengthened in the development of strategies for health promotion and sustainable development; and (c) exploring and identifying policy approaches and strategies for integrating health promotion and sustainable development.

  13. Nuclear power for sustainable development. Current status and future prospects

    International Nuclear Information System (INIS)

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactors. By addressing many of the public health and safety risks that plagued the industry since the accidents at Three Mile Island and Chernobyl, these reactors may help break the current deadlock over nuclear power. In that case, nuclear power could make a significant contribution towards reducing greenhouse gas emissions. However, significant issues persist, fueling reservations among the public and many decision makers. Nuclear safety, disposal of radioactive wastes, and proliferation of nuclear explosives need to be addressed in an effective and credible way if the necessary public support is to be obtained. (author)

  14. New Science for a Secure and Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  15. A sustainable electricity future : a question of balance

    International Nuclear Information System (INIS)

    Bradley, F.; Hebert, B.

    2003-01-01

    The authors offered some insight into the strategic issues facing the electricity industry in Canada while also highlighting the many accomplishments of the various member companies. The future orientations were discussed. Climate change is the issue that seems to garner the most attention from media, governments and the public. The electricity industry is the only industry that possesses a concrete plan of action to address the issue of climate change, in the form of the Emissions Performance Equivalent Standard (EPES). During 2002, a Memorandum of Understanding (MOU) was signed between the Canadian Electricity Association and the Department of Fisheries and Oceans, the first of its kind. A compliance framework is now being developed. Some of the issues being worked on this year are a post-Kyoto ratification strategy, an energy efficiency initiative; a response to the Supreme Court ruling concerning pole attachments, a revised Environmental Commitment and Responsibility Program, the fifth Annual Washington Energy Forum, and an updated survey on Aboriginal relations. Several member companies provided their views, such as ATCO Electric and ATCO Power, British Columbia Hydro, Hydro One, Hydro-Quebec, Newfoundland and Labrador Hydro to name but a few. tabs., figs

  16. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    Directory of Open Access Journals (Sweden)

    Jiangang Chen

    2014-01-01

    Full Text Available With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  17. Hydraulic fracturing: paving the way for a sustainable future?

    Science.gov (United States)

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  18. Indicator based sustainability analysis of future energy situation of Santiago de Chile

    OpenAIRE

    Stelzer, Volker; Quintero, Adriana; Vargas, Luis; Paredes, Gonzalo; Simon, Sonja; Nienhaus, Kristina; Kopfmüller, Jürgen

    2014-01-01

    Up to now, the Chilean Energy system has fulfilled the energy needs of Santiago de Chile considerably well. However, development trends of the current system impose significant future risks on the energy system. A detailed sustainability analysis of the energy sector of the Metropolitan Region of Santiago de Chile was conducted, using selected energy indicators and a distance-to-target approach. Risks for the sustainable development of the energy sector are detected, such...

  19. Hydrogen role in a carbon-free energy mix

    International Nuclear Information System (INIS)

    2014-02-01

    Among the energy storage technologies under development today, there is today an increasing interest towards the hydrogen-based ones. Hydrogen generation allows to store electricity, while its combustion can supply electrical, mechanical or heat energy. The French Atomic Energy Commission (CEA) started to work on hydrogen technologies at the end of the 1990's in order to reinforce its economical interest. The development of these technologies is one of the 34 French industrial programs presented in September 2013 by the French Minister of productive recovery. This paper aims at identifying the hydrogen stakes in a carbon-free energy mix and at highlighting the remaining technological challenges to be met before reaching an industrial development level

  20. Preparation of carbon-free TEM microgrids by metal sputtering

    International Nuclear Information System (INIS)

    Janbroers, S.; Kruijff, T.R. de; Xu, Q.; Kooyman, P.J.; Zandbergen, H.W.

    2009-01-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  1. Preparation of carbon-free TEM microgrids by metal sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Janbroers, S., E-mail: stephan.janbroers@albemarle.com [Albemarle Catalysts B.V., Nieuwendammerkade 1-3, 1030 BE, Amsterdam (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruijff, T.R. de; Xu, Q. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kooyman, P.J. [DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL, Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2009-08-15

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  2. Preparation of carbon-free TEM microgrids by metal sputtering.

    Science.gov (United States)

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  3. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  4. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  5. The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems

    Directory of Open Access Journals (Sweden)

    John J. McGlone

    2013-05-01

    Full Text Available Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons. This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger. This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.

  6. The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems.

    Science.gov (United States)

    McGlone, John J

    2013-05-15

    Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons). This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger). This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.

  7. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    systems, the number of utilisation hours of power and CHP plants will have to decrease substantially due to the energy efficiency measures in combination with the inclusion of renewable energy power inputs from wind and similar resources. Consequently, no power or CHP plants exist in future sustainable......This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society...... huge construction costs with the expectation of long lifetimes. Consequently, the CCS has to operate as part of large-scale power or CHP plants with high utilisation hours for the CCS investment to come even close to being feasible. However, seen in the light of transforming to sustainable energy...

  8. Designing a Sustainable Future through Creation of North America’s only International Wildlife Refuge

    Directory of Open Access Journals (Sweden)

    Michael A. Zarull

    2010-09-01

    Full Text Available In 2001, the Detroit River International Wildlife Refuge was established based on the principles of conservation and sustainability. The refuge has grown from 49.1 ha in 2001 to over 2,300 ha in 2010. Agreement on a compelling vision for a sustainable future was necessary to rally stakeholders and move them forward together. Project examples include: lake sturgeon and common tern restoration; soft shoreline engineering; ecotourism; sustainable redevelopment of a brownfield; and indicator reporting. Key success factors include: a consensus long-term vision; a multi-stakeholder process that achieves cooperative learning; strong coupling of monitoring/research programs with management; implementing actions consistent with adaptive management; measuring and celebrating successes; quantifying benefits; building capacity; and developing the next generation of sustainability practitioners and entrepreneurs.

  9. A future task for Health Promotion research: Integration of Health Promotion and sustainable development

    DEFF Research Database (Denmark)

    Jelsøe, Erling; Thualagant, Nicole; Holm, Jesper

    2018-01-01

    Based on previous studies and reflections collected from participants in a workshop at the 8th Nordic Health Promotion Research Network conference, we reveal current tendencies and discuss future challenges for health promotion research regarding integration of sustainable development principles....... Despite obvious interfaces and interactions between the two, our contention is that strategies for health promotion are not sufficiently integrated with strategies for sustainable development and that policies aimed at solving health or sustainability problems may therefore cause new, undesired...... and unforeseen environmental and health problems. As illustrated in previous research and as deliberated in the above-mentioned workshop, a number of barriers are identified: these are believed to be related to historical segregation, the conceptual understandings of health promotion and sustainable development...

  10. City Blueprints: Baseline Assessments of Sustainable Water Management in 11 Cities of the Future

    NARCIS (Netherlands)

    van Leeuwen, C.J.

    2013-01-01

    The necessity of Urban Water Cycle Services (UWCS) adapting to future stresses calls for changes that take sustainability into account. Megatrends (e.g. population growth, water scarcity, pollution and climate change) pose urgent water challenges in cities. In a previous paper, a set of indicators,

  11. Simulated Sustainable Societies: Students' Reflections on Creating Future Cities in Computer Games

    Science.gov (United States)

    Nilsson, Elisabet M.; Jakobsson, Anders

    2011-01-01

    The empirical study, in this article, involved 42 students (ages 14-15), who used the urban simulation computer game SimCity 4 to create models of sustainable future cities. The aim was to explore in what ways the simulated "real" worlds provided by this game could be a potential facilitator for science learning contexts. The topic investigated is…

  12. New science for global sustainability? The institutionalisation of knowledge co-production in Future Earth

    NARCIS (Netherlands)

    van der Hel, S.C.

    2016-01-01

    In the context of complex and unprecedented issues of global change, calls for new modes of knowledge production that are better equipped to address urgent challenges of global sustainability are increasingly frequent. This paper presents a case study of the new major research programme “Future

  13. Not just lumber--Using wood in the sustainable future of materials, chemicals, and fuels

    Science.gov (United States)

    Joseph E. Jakes; Xavier Arzola; Richard Bergman; Peter Ciesielski; Christopher G. Hunt; Nima Rahbar; Mandla Tshabalala; Alex C. Wiedenhoeft; Samuel L. Zelinka

    2016-01-01

    Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of...

  14. Mapping a sustainable future: Community learning in dialogue at the science-society interface

    Science.gov (United States)

    Barth, Matthias; Lang, Daniel J.; Luthardt, Philip; Vilsmaier, Ulli

    2017-12-01

    In 2015, the German Federal Ministry of Education and Research (BMBF) announced that the Science Year 2015 would focus on the "City of the Future". It called for innovative projects from cities and communities in Germany dedicated to exploring future options and scenarios for sustainable development. Among the successful respondents was the city of Lüneburg, located in the north of Germany, which was awarded funding to establish a community learning project to envision a sustainable future ("City of the Future Lüneburg 2030+"). What made Lüneburg's approach unique was that the city itself initiated the project and invited a broad range of stakeholders to participate in a community learning process for sustainable development. The authors of this article use the project as a blueprint for sustainable city development. Presenting a reflexive case study, they report on the process and outcomes of the project and investigate community learning processes amongst different stakeholders as an opportunity for transformative social learning. They discuss outputs and outcomes (intended as well as unintended) in relation to the specific starting points of the project to provide a context-sensitive yet rich narrative of the case and to overcome typical criticisms of case studies in the field.

  15. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  16. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  17. The Integrate Student Portal: Online Resources to Prepare Students for the Workforce of a Sustainable Future

    Science.gov (United States)

    Bruckner, M. Z.; Manduca, C. A.; Egger, A. E.; Macdonald, H.

    2014-12-01

    The InTeGrate Student Portal is a suite of web pages that utilize InTeGrate resources to support student success by providing undergraduates with tools and information necessary to be proactive in their career choices and development. Drawn from various InTeGrate workshops and programming, the Portal organizes these resources to illuminate a variety of career opportunities and pathways to both traditional and non-traditional jobs that support a sustainable future. Informed from a variety of sources including employers, practitioners, faculty, students, reports, and articles, the pages explore five facets: (1) sustainability across the disciplines, (2) workforce preparation, (3) professional communication, (4) teaching and teaching careers, and (5) the future of green research and technology. The first three facets explore how sustainability is integrated across disciplines and how sustainability and 'green' jobs are available in a wide range of traditional and non-traditional workplaces within and beyond science. They provide students guidance in preparing for this sustainability workforce, including where to learn about jobs and how to pursue them, advice for strengthening their job applications, and how to build a set of skills that employers seek. This advice encompasses classroom skills as well as those acquired and strengthened as part of extracurricular or workplace experiences. The fourth facet, aimed at teaching assistants with little or no experience as well as at students who are interested in pursuing teaching as a career, provides information and resources about teaching. The fifth facet explores future directions of technology and the need for innovations in the workforce of the future to address sustainability issues. We seek your input and invite you to explore the Portal at: serc.carleton.edu/integrate/students/

  18. A review of China’s approaches toward a sustainable energy future: the period since 1990

    DEFF Research Database (Denmark)

    Zhu, Xianli; Zhuang, Guiyang; Xiong, Na

    2014-01-01

    policy-making in China, as well as to other developing countries facing similar challenges. This article gives a brief overview and assessment of the Chinese approaches toward ensuring a sustainable future. It starts with a description of the challenges facing China in securing universal, clean......China’s rapid economic growth in the past few decades has been accompanied by huge increases in energy demand. The Chinese energy sector faces the multiple challenges of mobilizing huge investment to keep energy supplies in line with increases in demand, securing international oil and gas supplies...... to meet the widening gap between domestic demand and supply, and reducing environmental pollution and greenhouse gas emissions. Identifying China’s approaches toward ensuring a sustainable energy future in the last two decades and assessing their effectiveness can be of great value to the future of energy...

  19. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  20. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  1. Perspective on the French closed fuel cycle: Open towards energy future and sustainability

    International Nuclear Information System (INIS)

    Tinturier, Bernard; Debes, Michel; Delbecq, Jean-Michel

    2006-01-01

    Energy sustainability and nuclear energy nowadays are far reaching issues with many implications and as a consequence, any long term sustainable strategy needs to be flexible. In France, nuclear energy (427 TWh in 2004, 80% of national electricity production) is a major asset for clean electricity production and for meeting Kyoto protocol objective in France. The decision to build a future EPR reactor in France has been taken. Regarding back end and fuel cycle, the current reprocessing and recycling strategy, with the existing industrial system (Cogema La Hague and Melox), has proven to be reliable and efficient. It enables to meet sustainability requirements, now and in the long run: ensuring a good management of high level waste through vitrification, reducing the amount of nuclear spent fuel in interim storage, recycling valuable nuclear material (Pu), keeping the possibility to use Pu concentrated in MOX spent fuel to start FBR in the future. To maintain this possibility for the far future, EDF considers that the Generation IV program is of major importance in order to develop future fast reactors able to use plutonium and to ensure a full utilization of uranium resource, while optimizing high level waste management. EDF strategy is to keep the nuclear option open in the future, with a two-steps approach for the renewal of the current nuclear fleet: first, around 2020, with the launching of generation III reactors like EPR, and second, depending on the energy demand, launching of Generation IV systems, around 2040 or beyond. To meet this energy prospect, R and D efforts must be devoted to fast breeder reactors (sodium cooled, which benefits already from industrial experience, and gas cooled, under consideration for R and D). Globally, this strategy is open to future progress and optimisation as needed to meet long term energy sustainability. It appears the necessity of a good consistency between all the components of the nuclear system: reactors, fuel cycle

  2. Spatial Optimization of Future Urban Development with Regards to Climate Risk and Sustainability Objectives.

    Science.gov (United States)

    Caparros-Midwood, Daniel; Barr, Stuart; Dawson, Richard

    2017-11-01

    Future development in cities needs to manage increasing populations, climate-related risks, and sustainable development objectives such as reducing greenhouse gas emissions. Planners therefore face a challenge of multidimensional, spatial optimization in order to balance potential tradeoffs and maximize synergies between risks and other objectives. To address this, a spatial optimization framework has been developed. This uses a spatially implemented genetic algorithm to generate a set of Pareto-optimal results that provide planners with the best set of trade-off spatial plans for six risk and sustainability objectives: (i) minimize heat risks, (ii) minimize flooding risks, (iii) minimize transport travel costs to minimize associated emissions, (iv) maximize brownfield development, (v) minimize urban sprawl, and (vi) prevent development of greenspace. The framework is applied to Greater London (U.K.) and shown to generate spatial development strategies that are optimal for specific objectives and differ significantly from the existing development strategies. In addition, the analysis reveals tradeoffs between different risks as well as between risk and sustainability objectives. While increases in heat or flood risk can be avoided, there are no strategies that do not increase at least one of these. Tradeoffs between risk and other sustainability objectives can be more severe, for example, minimizing heat risk is only possible if future development is allowed to sprawl significantly. The results highlight the importance of spatial structure in modulating risks and other sustainability objectives. However, not all planning objectives are suited to quantified optimization and so the results should form part of an evidence base to improve the delivery of risk and sustainability management in future urban development. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  3. Sustainability of UK shale gas in comparison with other electricity options: Current situation and future scenarios.

    Science.gov (United States)

    Cooper, Jasmin; Stamford, Laurence; Azapagic, Adisa

    2018-04-01

    Many countries are considering exploitation of shale gas but its overall sustainability is currently unclear. Previous studies focused mainly on environmental aspects of shale gas, largely in the US, with scant information on socio-economic aspects. To address this knowledge gap, this paper integrates for the first time environmental, economic and social aspects of shale gas to evaluate its overall sustainability. The focus is on the UK which is on the cusp of developing a shale gas industry. Shale gas is compared to other electricity options for the current situation and future scenarios up to the year 2030 to investigate whether it can contribute towards a more sustainable electricity mix in the UK. The results obtained through multi-criteria decision analysis suggest that, when equal importance is assumed for each of the three sustainability aspects shale gas ranks seventh out of nine electricity options, with wind and solar PV being the best and coal the worst options. However, it outranks biomass and hydropower. Changing the importance of the sustainability aspects widely, the ranking of shale gas ranges between fourth and eighth. For shale gas to become the most sustainable option of those assessed, large improvements would be needed, including a 329-fold reduction in environmental impacts and 16 times higher employment, along with simultaneous large changes (up to 10,000 times) in the importance assigned to each criterion. Similar changes would be needed if it were to be comparable to conventional or liquefied natural gas, biomass, nuclear or hydropower. The results also suggest that a future electricity mix (2030) would be more sustainable with a lower rather than a higher share of shale gas. These results serve to inform UK policy makers, industry and non-governmental organisations. They will also be of interest to other countries considering exploitation of shale gas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.

    Science.gov (United States)

    Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G

    2018-01-01

    Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive

  5. Pressure tube reactors and a sustainable energy future: the ultra development path

    International Nuclear Information System (INIS)

    Duffey, R.

    2008-01-01

    Nuclear energy must be made available, freely and readily, to help meet world energy needs, concerns over energy price and security of supply, and alleviating the uncertainties over potential climate change. The perspective offered here is a model for others to consider, adopting and adapting using whatever elements fit their own strategies and needs. The underlying philosophy is to retain flexibility in the reactor development, deployment and fuel cycle, while ensuring the principle that customer, energy market, safety, non-proliferation and sustainability needs are all addressed. Canada is the world's largest exporter of uranium, providing about one-third of the world supply for nuclear power reactors. Pressure tube reactors (PTRs), of which CANDU is a prime example, have a major role to play in a sustainable energy future. The inherent fuel cycle flexibility of the PTR offers many technical, resource and sustainability, and economic advantages over other reactor technologies and is the subject of this paper. The design evolution and development intent is to be consistent with improved or enhanced safety, licensing and operating limits, global proliferation concerns, and waste stream reduction, thus enabling sustainable energy futures. The limits are simply those placed by safety, economics and resource availability. (author)

  6. Pressure tube reactors and a sustainable energy future: the ultra development path

    International Nuclear Information System (INIS)

    Duffey, R.

    2008-01-01

    Nuclear energy must be made available, freely and readily, to help meet world energy needs, concerns over energy price and security of supply, and alleviating the uncertainties over potential climate change. The perspective offered here is a model for others to consider, adopting and adapting using whatever elements fit their own strategies and needs. The underlying philosophy is to retain flexibility in the reactor development, deployment and fuel cycle, while ensuring the principle that customer, energy market, safety, non-proliferation and sustainability needs are all addressed. Canada is the world's largest exporter of uranium, providing about one-third of the world supply for nuclear power reactors. Pressure tube reactors (PTRs), of which CANDU, is a prime example, have a major role to play in a sustainable energy future. The inherent fuel cycle flexibility of the PTR offers many technical, resource and sustainability and economic advantages over other reactor technologies and is the subject of this paper. The design evolution and development intent is to be consistent with improved or enhanced safety, licensing and operating limits, global proliferation concerns, and waste stream reduction, thus enabling sustainable energy futures. The limits are simply those placed by safety, economics and resource availability. (author)

  7. Future Deltas Utrecht University research focus area: towards sustainable management of sinking deltas

    Science.gov (United States)

    Stouthamer, E.; van Asselen, S.

    2015-11-01

    Deltas are increasingly under pressure from human impact and climate change. To deal with these pressures that threat future delta functioning, we need to understand interactions between physical, biological, chemical and social processes in deltas. This requires an integrated approach, in which knowledge on natural system functioning is combined with knowledge on spatial planning, land and water governance and legislative frameworks. In the research focus area Future Deltas of Utrecht University an interdisciplinary team from different research groups therefore works together. This allows developing integrated sustainable and resilient delta management strategies, which is urgently needed to prevent loss of vital delta services.

  8. Chinese villages and their sustainable future: the European Union-China-Research Project "SUCCESS".

    Science.gov (United States)

    Dumreicher, Heidi

    2008-04-01

    China has 800,000 villages-one person out of seven on the globe is living in a Chinese rural settlement. Yet the global discussions about the situation in China is currently characterised by a disproportionate focus on the development of towns and until now circumstances have generally been neglected in the rural areas, where 70% of the Chinese population is still living. Within the 5 years of the SUCCESS project research, this set of actual problems has been considered and analysed under the principle of sustainability: "What to maintain?" "What to change?" were the overall research questions asked in the SUCCESS project; the researchers were looking for answers under a sustainability regime, respecting the need to raise the quality of life in the villages. Several interweaving processes were used to achieve results: the inter-disciplinary research process between many areas of expertise, the trans-disciplinary process between the researchers and the Chinese villagers, and a negotiation process that made the connection between these two processes. The introduction describes the basic sustainability definition that was orienting the whole study. The innovation lays mostly in the methodology: the inter-disciplinary research co-operation related to practice and to involving the affected communities is needed to manage the significant and growing imbalances between urban and rural areas regarding their sustainability. In the transdisciplinary work, the project developed "village future sentences" that describe the local outcome of the research as one step towards better theoretical understanding of the mechanisms that could lead to a sustainable future, and they also managed to start sustainability processes in the case study sites. The integrated approach of the project helped generating future scenarios for these villages covering all aspects of their development, including urban design issues. Out of these scenarios, the villages developed small projects that could

  9. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  10. A critical knowledge pathway to a sustainable future in an urbanizing planet

    Science.gov (United States)

    Romero-Lankao, P.

    2014-12-01

    The pace and scale of contemporary urbanization is a defining feature of the Anthropocene, which characterizes the dominance of human influence on the global environment. Although urban areas occupy less than three percent of the global land surface, they have global-scale impacts on natural resources, social dynamics, human wellbeing and the environment. The global environmental changes already underway are profound and in some ways irreversible. Altogether, these have serious implications for future human and environmental health, and social wellbeing. Despite considerable research and policy attention to cities, efforts are strongly needed towards integration that builds upon this and facilitates intensive interactions among disciplines in developing new perspectives, theory and methods for understanding urbanizations and urban systems as they drive and are affected by global environmental change, and for exploring options to achieve sustainability and resilience in an urbanizing world. I will present initial outcomes from a 2014 NSF/Future Earth-funded activity to develop a co-designed and interdisciplinary urban initiative within the Future Earth framework. The complexity of urban systems and the global sustainability challenges we face require inter- and trans-disciplinary research approaches that adopt a contextual approach to finding solutions. I will synthesize perspectives spanning multiple urban research and practice communities from workshops that took place over 2014 including the 2104 UGEC Conference, where emphasis was given to exploring: knowledge gaps and key urban research and socially-relevant questions moving forward; major challenges and opportunities for developing conceptual and methodological frameworks that support the global transformation to sustainability in the context of an urbanizing planet; operational mechanisms that must be in place for a successful interdisciplinary urban project that fits within Future Earth.

  11. Towards a new world: The contributions of nuclear energy to a sustainable future

    International Nuclear Information System (INIS)

    Duffey, R. B.; Miller, A. I.; Fehrenbach, P. J.; Kuran, S.; Tregunno, D.; Suppiah, S.

    2007-01-01

    Over the last few years, the world has seen growing concern about the sustainability of the Planet when supplying increasing energy use. The major issues are: increased energy prices in the world markets; growing energy demand in emerging economies; security and stability of oil and gas supply; potentially adverse climate change due to carbon-based emissions; and the need to deploy economic, sustainable and reliable alternates. Large undefined 'wedges' of alternate energy technologies are needed. In light of these major difficulties, there is renewed interest and need for a greater role for nuclear energy as a safe, sustainable and economic energy contributor. The shift has been, from being viewed by some as politically discounted, to being accepted as absolutely globally essential. We have carefully considered, and systematically, extensively and technically analyzed the contributions that nuclear energy can and should make to a globally sustainable energy future. These include restraining emissions, providing safe and secure power, operating synergistically with other sources, and being both socially and fiscally attractive. Therefore, we quantify in this paper the major contributions: a) The reduction in climate change potential and the global impact of future nuclear energy deployment through emissions reduction, using established analysis tools which varying the plausible future penetration and scale of nuclear energy. b) The minimization of economic costs and the maximization of global benefits, including investment requirements, carbon price implications, competitive market penetration, and effect of variable daily pricing. c) The introduction of fuel switching, including base-load nuclear energy synergistically enabling both hydrogen production and the introduction of significant wind power. d) The management and reduction of waste streams, utilizing intelligent designs and fuel cycles that optimize fuel resource use and minimize emissions, waste disposal

  12. First Conference on African Youth Nuclear Summit 2017: Nuclear for a Sustainable Future

    International Nuclear Information System (INIS)

    2017-03-01

    Kenyan Young Generation in Nuclear (KYGN) hosted the inaugural African Youth Nuclear Summit, dubbed AYNS2017 that took place on the 27th to 30th March, 2017, Nairobi, Kenya. The participants were drawn from academia, research and development institutes, radiation services providers, health institutions, nuclear facilities and regulatory bodies. They shared experiences, exchanged ideas and built networks on issues related to safe application of nuclear science and technology. The theme of the summit was ''Nuclear for a Sustainable future'', which centered on three thematic areas: Nuclear powering Africa, Radiation Protection and safety culture; and application of nuclear science and technology for a sustainable future. The Director General, World Nuclear Association who pointed out that nuclear energy had made a major contribution to world energy output and was set to increase by two and half time by 2040. The importance of nuclear science and technology for a sustainable socio-economic development in Africa shared and highlight on many areas IAEA has helped member states in improving the life of its populations. The main activities of project 60 whose focus is to strengthen the nuclear security culture in East and Central Africa through improved regulation, training, capacity and awareness were highlighted

  13. Building a Sustainable Energy Future for Africa - Acting Now and Together

    Energy Technology Data Exchange (ETDEWEB)

    Fall, L.

    2007-07-01

    The key energy challenges Africa is facing are: low level of access to commercial energy, low per capita energy consumption, weak development of energy infrastructure and lack of investment and financing for energy projects. Addressing these challenges is critical for sustainable economic and social development, and assured access to secure, affordable and reliable energy. In spite of these daunting challenges, Africa is well endowed in energy resources, but these resources are largely untapped and concentrated in a few countries. In addition, there are numerous 'rooms' for opportunities that could be seized concretely to overcome the main obstacles to the Sustainable Energy Development of the Continent. Thus, right actions must be taken to overcome these obstacles, including: financing the huge needed investments, technological development, private-public partnerships, energy market reform and effective regulation, sound and sustainable energy policies, and economic and social measures. Subsequently, from priority areas, the related stakeholders should 'act now' and 'act together', through effective collaboration and partnership and making proper alliances, to initiate effective and concrete actions to support Africa aspirations in order to build a Sustainable Energy Future for Africa, in a cost-effective and timely manner. (auth)

  14. Transformative Learning for a Sustainable Future: An Exploration of Pedagogies for Change at an Alternative College

    Directory of Open Access Journals (Sweden)

    Joanna Blake

    2013-12-01

    Full Text Available Educators and policy makers have long recognised the central role that education can play in creating a more sustainable and equitable world. Yet some question whether current processes across mainstream higher education prepare learners sufficiently to graduate with the capabilities or motivation to shape and create a future that is life-sustaining. This paper presents findings from a qualitative research project carried out by Plymouth University in association with Schumacher College, Devon, UK. Schumacher College is an alternative, civil society college, owned by the Dartington Hall Trust that claims to provide transformative learning opportunities within a broad context of sustainability. The study explored the nature and application of transformative learning as a pedagogical approach to advance change towards sustainability. If learners claimed transformational learning experiences, the research asked whether, and to what extent, this transformation could be attributed to the pedagogies employed at the College. The paper begins by setting out the broad background to the relationship between marginal and mainstream educational settings, and definitions and theoretical underpinnings of transformative learning, and then leads into the research design and findings. The potential for transformative pedagogies to be applied to and employed within the wider higher education (HE sector is then discussed, and the overall findings and conclusions are presented.

  15. Local Institutional Development and Organizational Change for Advancing Sustainable Urban Water Futures

    Science.gov (United States)

    Brown, Rebekah R.

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  16. The sustainability, a relevant approach for defining the road-map for future nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, C.; Bourg, S.; Grandjean, S. [CEA Centre de Macoule, Nuclear Energy Division, Radiochemistry and Processes Department, BP11, F-30207 Bagnols sur Ceze (France); Boullis, B. [CEA Centre de Saclay, Nuclear Energy Division, Innovation and Industrial Support Division, F-91191 Gif-sur-Yvette (France)

    2016-07-01

    Developing sustainable energy systems is a key driver for mitigating the global climate change in the framework of COP21 conference commitments. Nuclear energy is strongly concerned by such a perspective and we have developed a thorough approach to define relevant objectives to fulfill in order to meet such a requirement. On this basis nuclear energy systems need to be improved to increase the preservation of uranium natural resource and reduce their environmental footprints. It requires in both cases increasing energetic material recycling based first on the current LWR reactor fleet, in the future on SFR which would allow a much more efficient use of neutrons to consume uranium and produce energy. Furthermore, such reactor type would also allow minor actinides recycling, which would significantly reduce the ultimate waste toxicity and lifetime, and the repository footprint. In this perspective, recycling the actinides is clearly the cornerstone of any sustainable nuclear fuel cycle.

  17. The sustainability, a relevant approach for defining the road-map for future nuclear fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, C.; Bourg, S.; Grandjean, S.; Boullis, B.

    2016-01-01

    Developing sustainable energy systems is a key driver for mitigating the global climate change in the framework of COP21 conference commitments. Nuclear energy is strongly concerned by such a perspective and we have developed a thorough approach to define relevant objectives to fulfill in order to meet such a requirement. On this basis nuclear energy systems need to be improved to increase the preservation of uranium natural resource and reduce their environmental footprints. It requires in both cases increasing energetic material recycling based first on the current LWR reactor fleet, in the future on SFR which would allow a much more efficient use of neutrons to consume uranium and produce energy. Furthermore, such reactor type would also allow minor actinides recycling, which would significantly reduce the ultimate waste toxicity and lifetime, and the repository footprint. In this perspective, recycling the actinides is clearly the cornerstone of any sustainable nuclear fuel cycle

  18. Simulated Sustainable Societies: Students' Reflections on Creating Future Cities in Computer Games

    Science.gov (United States)

    Nilsson, Elisabet M.; Jakobsson, Anders

    2011-02-01

    The empirical study, in this article, involved 42 students (ages 14-15), who used the urban simulation computer game SimCity 4 to create models of sustainable future cities. The aim was to explore in what ways the simulated "real" worlds provided by this game could be a potential facilitator for science learning contexts. The topic investigated is in what way interactions in this gaming environment, and reflections about these interactions, can form a context where the students deal with real world problems, and where they can contextualise and apply their scientific knowledge. Focus group interviews and video recordings were used to gather data on students' reflections on their cities, and on sustainable development. The findings indicate that SimCity 4 actually contributes to creating meaningful educational situations in science classrooms, and that computer games can constitute an important artefact that may facilitate contextualisation and make students' use of science concepts and theories more explicit.

  19. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  20. Africa energy future: Alternative scenarios and their implications for sustainable development strategies

    International Nuclear Information System (INIS)

    Ouedraogo, Nadia S.

    2017-01-01

    The long-term forecasting of energy supply and demand is of prime importance in Africa due to the steady increase in energy requirements, the non-availability of sufficient resources, the high dependence on fossil-fuels to meet these requirements, and the global concerns over the energy-induced environmental issues. This paper is concerned with modelling possible future paths for Africa's energy future and the related emissions. Future energy demand is forecasted based on socio-economic variables such as gross domestic product, income per capita, population, and urbanisation. The Long-range Energy Alternative Planning System (LEAP) modelling framework is employed to analyse and project energy demand and the related emissions under alternative strategies for the period of 2010–2040. Results of scenarios including business-as-usual (BAU) policies, moderate energy access and accelerate energy access policies, renewable energies promotion and energy efficiency policies and their environmental implications are provided. The study provides some policy insights and identifies synergies and trade-offs relating to the potential for energy policies to promote universal energy access, enable a transition to renewable energy, and mitigate climate change for a sustainable development. - Highlights: • Possible future paths for Africa's energy future and the related emissions are modelled. • Scenarios using an adaptation of Schwartz's scenario approach, under LEAP are developed. • Under the current energy policies, the universal access to modern energy will not be met by 2030. • Policies to accelerate the changes in energy structure are required for sustainable development. • Investing in Energy efficient strategies has emerged as one of the best solution.

  1. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    Science.gov (United States)

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  2. Transitioning to a sustainable and prosperous future - Argentina's energy outlook 2010 to 2100

    Energy Technology Data Exchange (ETDEWEB)

    Chimale, Noelia Denisse; Acosta, Gustavo Fabian

    2010-09-15

    Developing countries are presented with deeper challenges to grow their economies in order to achieve the quality of life their populations deserve. Energy is a key driver to this development; however, how to use it properly and in a sustainable manner will be the cornerstone to accomplish their objectives, if responsibility and care for the future generations are concerned. Unless our current dependence on fossil fuels is overcome, this change is not likely to be practicable. Hence, a transition path is outlined in this paper as an example of what can be achieved in a determined and proactive way.

  3. Book Review: "The Road to Sustainability, GDP and Future Generations" Pulselli et al, WIT Press, Southhampton, UK 197p 2008

    Science.gov (United States)

    “The Road to Sustainability, GDP and future generations” by Pulselli, F.M., Bastianoni, S., Marchettini, N. Tiezzi, E. was reviewed upon request by the journal’s editor. Briefly, this book presents the authors’ perspective on the complex and important topic of sustainability. Su...

  4. Road safety in a globalised and more sustainable world: current issues and future challenges.

    Science.gov (United States)

    Daniels, Stijn; Risser, Ralf

    2014-01-01

    Although many countries have had considerable success in reducing traffic injuries over recent decades, there are still some fundamental problems in this area. At the same time, there is increasing focus on road safety research and policy development in the context of globalisation, sustainability, liveability and health. This special section presents a selection of papers that were presented at the annual ICTCT workshop held on the 8th and 9th of November 2012 in Hasselt, Belgium, and accepted for publication in Accident Analysis and Prevention following the journal's reviewing procedure. The aim of the ICTCT workshop was to analyse road safety facts, data and visions for the future in the wider context of current issues and future challenges in road safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Turning points towards sustainability: integrative science and policy for novel (but real landscape futures

    Directory of Open Access Journals (Sweden)

    David J. Brunckhorst

    2004-09-01

    Full Text Available Non-metropolitan landscapes are the major theatre of interactions where large-scale alteration occurs precipitated by local to global forces of economic, social and environmental change. However, these regional landscape effects are critical also to local natural resource and social sustainability, ecosystem health through to larger scales of biospheric functioning. The institutions contributing pressures and responses consequently shape future landscapes and in turn influence how social systems, resource users, governments and policy makers perceive those landscapes and their future. These are, in essence, complex social-ecological systems intertwined in a multitude of ways at many spatial scales across time. Over time, the cycles of complex social-ecological systems also reach crossroads, which might be crisis points at which future options are no longer available (possibly because of resource degradation or loss, or turning points where opportunities arise when it is easier to change direction towards more sustainable activities. This paper provides some examples of interdisciplinary research that has provided a holistic integration through close engagement with residents and communities or through deliberately implementing integrative high-risk ‘on-ground’ experimental models to ‘learn by doing’. In the final analysis, each project has characteristically, however, sought to integrate through spatial (if not temporal synthesis, policy analysis and (new or changed institutional arrangements that are relevant locally and corporately, as well as at broader levels of government and geography. This has provided transferable outcomes that can contribute real options and adaptive capacity for suitable positive futures.

  6. Sustainable energy development: The present (2011) situation and possible paths to the future

    International Nuclear Information System (INIS)

    Lior, Noam

    2012-01-01

    This invited keynote paper is the most recent among similar reviews published by the author, update to year 2011. In a format similar to that in past reviews, recent estimates and forecasts of the conventional fossil fuel resources and their reserve/production ratio, nuclear power, and renewable energy potential, and energy uses are surveyed. A brief discussion of the status, sustainability (economic, environmental and social impact), and prospects of fossil, nuclear and renewable energy use, and of power generation is presented. Beyond the general review, the paper focuses this year on some of the many important areas that deserve more attention: (1) the recently emerging game-changing developments of postponement of “peak oil”, nuclear power future following the disaster in Japan, and effects of the recent global economy downturn of global sustainability, (2) the potential and impacts of electric cars (3) the often neglected energy status and promising potential of Africa. Some ways to resolve the problem of the availability, cost, and sustainability of energy resources alongside the rapidly rising demand are discussed. The author’s view of the promising energy R and D areas, their potential, foreseen improvements and their time scale, and last year’s trends in government funding are presented.

  7. Sustaining PICA for Future NASA Robotic Science Missions Including NF-4 and Discovery

    Science.gov (United States)

    Stackpoole, Mairead; Venkatapathy, Ethiraj; Violette, Steve

    2018-01-01

    Phenolic Impregnated Carbon Ablator (PICA), invented in the mid 1990's, is a low-density ablative thermal protection material proven capable of meeting sample return mission needs from the moon, asteroids, comets and other unrestricted class V destinations as well as for Mars. Its low density and efficient performance characteristics have proven effective for use from Discovery to Flag-ship class missions. It is important that NASA maintain this thermal protection material capability and ensure its availability for future NASA use. The rayon based carbon precursor raw material used in PICA preform manufacturing has experienced multiple supply chain issues and required replacement and requalification at least twice in the past 25 years and a third substitution is now needed. The carbon precursor replacement challenge is twofold - the first involves finding a long-term replacement for the current rayon and the second is to assess its future availability periodically to ensure it is sustainable and be alerted if additional replacement efforts need to be initiated. This paper reviews current PICA sustainability activities to identify a rayon replacement and to establish that the capability of the new PICA derived from an alternative precursor is in family with previous versions.

  8. A multi evaporator desalination system operated with thermocline energy for future sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    All existing commercial seawater desalination processes, i.e. thermally-driven and membrane-based reverse osmosis (RO), are operated with universal performance ratios (UPR) varying up to 105, whilst the UPR for an ideal or thermodynamic limit (TL) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More innovative desalination methods must be sought to meet the needs of future sustainable desalination and these methods should attain an upper UPR bound of about 25 to 30% of the TL. In this paper, we examined the efficacy of a multi-effect distillation (MED) system operated with thermocline energy from the sea; a proven desalination technology that can exploit the narrow temperature gradient of 20°C all year round created between the warm surface seawater and the cold-seawater at depths of about 300–600m. Such a seawater thermocline (ST)-driven MED system, simply called the ST-MED process, has the potential to achieve up to 2 folds improvement in desalination efficiency over the existing methods, attaining about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the ST-MED is truly a “green desalination” method of low global warming potential, best suited for tropical coastal shores having bathymetry depths of 300m or more.

  9. COMPANION ANIMALS SYMPOSIUM: Future aspects and perceptions of companion animal nutrition and sustainability.

    Science.gov (United States)

    Deng, P; Swanson, K S

    2015-03-01

    Companion animals play an important role in our lives and are now considered to be and treated as family members in a majority of households in the United States. Because of the high number of pets that now exist, an increasingly stronger pet-human bond, and the importance placed on health and longevity, the pet food industry has realized steady growth over the last few decades. Despite past successes and opportunities that exist in the future, there are also challenges that must be considered. This review will present a brief overview of the current pet food industry and address some of the key issues moving forward. In regards to companion animal research, recent advances and future needs in the areas of canine and feline metabolism, aging, clinical disease, and the gut microbiome using molecular and high-throughput assays; chemical, in vitro, and in vivo testing of feed ingredients; and innovative pet food processing methods is discussed. Training the future workforce for the pet food industry is also of great importance. Recent trends on student demographics and their species and careers of interest, changing animal science department curricula, and technology's impact on instruction are provided. Finally, the sustainability of the pet food industry is discussed. Focus was primarily placed on the disconnect that exists between opinions and trends of consumers and the nutrient recommendations for dogs and cats, the desire for increasing use of animal-based and human-grade products, the overfeeding of pets and the pet obesity crisis, and the issues that involve the evaluation of primary vs. secondary products in terms of sustainability. Moving forward, the pet food industry will need to anticipate and address challenges that arise, especially those pertaining to consumer expectations, the regulatory environment, and sustainability. Given the already strong and increasingly dynamic market for pet foods and supplies, an academic environment primed to supply a

  10. Nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2002-01-01

    A central goal of sustainable development is to maintain or increase the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and, when safely handled, has little impact on ecosystems. Energy is essential for sustainable development. With continuing population and economic growth, and increasing needs in the developing world, substantially greater energy demand is a given, even taking into account continuing and accelerated energy efficiency and intensity improvements. Today, nuclear power is mostly utilized in industrialized countries that have the necessary technological, institutional and financial resources. Many of the industrialized countries that are able and willing to use nuclear power are also large energy consumers. Nuclear power currently generates 16% of the world's electricity. It produces virtually no sulfur dioxide, particulates, nitrogen oxides, volatile organic compounds or greenhouse gases. Globally, nuclear power currently avoids approximately 600 million tonnes of carbon emissions annually, about the same as hydropower. The 600 MtC avoided by nuclear power equals 8% of current global greenhouse gases emissions. In the OECD countries, nuclear power has for 35 years accounted for most of the reduction in the carbon intensity per unit of delivered energy. Existing operating nuclear power plants (NPPs) for which initial capital investments are largely depreciated are also often the most cost-effective way to reduce carbon emissions from electricity generation. In fact in the United States in 2000, NPPs were the most cost-effective way to generate electricity, irrespective of avoided carbon emissions. In other countries the advantages of existing nuclear generating stations are also increasingly recognized. Interest

  11. Requirements on future energy supply. Analysis on the demand of future power plant capacity and strategy for a sustainable power utilization in Germany

    International Nuclear Information System (INIS)

    2003-08-01

    This strategy paper was drawn up with a view to maximum ecological compatibility of pwer plant modernization and sustainable power generation and use. The first part of the paper analyzes the power plants to be decommissioned on a medium-term basis and - against the background of several different scenarios for future power demand - an estimate of power plant capacities required by 2020. The second part describes the goals and concrete requirements of sustainable energy use. In the final part, the available instruments are presented, and those instruments are recommended that will be best suited for making power demand and supply efficient, sustainable and environment-friend.y [de

  12. USAF Logistics Process Optimization Study for the Aircraft Asset Sustainment Process. Volume 3. Future to be Asset Sustainment Process Model

    National Research Council Canada - National Science Library

    Adamson, Anthony

    1998-01-01

    .... It is published as three separate volumes. Volume I, USAF Logistics Process Optimization Study for the Aircraft Asset Sustainment Process -- Phase II Report, discusses the result and cost/benefit analysis of testing three initiatives...

  13. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    Directory of Open Access Journals (Sweden)

    Maeve Henchion

    2017-07-01

    Full Text Available A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of

  14. Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer

    Science.gov (United States)

    Kampe, Thomas U.; Good, William S.

    2017-09-01

    NASA's Sustainable Land Imaging (SLI) program, managed through the Earth Science Technology Office, aims to develop technologies that will provide future Landsat-like measurements. SLI aims to develop a new generation of smaller, more capable, less costly payloads that meet or exceed current imaging capabilities. One projects funded by this program is Ball's Compact Hyperspectral Prism Spectrometer (CHPS), a visible-to-shortwave imaging spectrometer that provides legacy Landsat data products as well as hyperspectral coverage suitable for a broad range of land science products. CHPS exhibits extremely low straylight and accommodates full aperture, full optical path calibration needed to ensure the high radiometric accuracy demanded by SLI measurement objectives. Low polarization sensitivity in visible to near-infrared bands facilitates coastal water science as first demonstrated by the exceptional performance of the Operational Land Imager. Our goal is to mature CHPS imaging spectrometer technology for infusion into the SLI program. Our effort builds on technology development initiated by Ball IRAD investment and includes laboratory and airborne demonstration, data distribution to science collaborators, and maturation of technology for spaceborne demonstration. CHPS is a three year program with expected exiting technology readiness of TRL-6. The 2013 NRC report Landsat and Beyond: Sustaining and Enhancing the Nations Land Imaging Program recommended that the nation should "maintain a sustained, space-based, land-imaging program, while ensuring the continuity of 42-years of multispectral information." We are confident that CHPS provides a path to achieve this goal while enabling new science measurements and significantly reducing the cost, size, and volume of the VSWIR instrument.

  15. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    Science.gov (United States)

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh

    2017-01-01

    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure

  16. Future-Oriented Dairy Farmers’ Willingness to Participate in a Sustainability Standard: Evidence from an Empirical Study in Germany

    Directory of Open Access Journals (Sweden)

    Henrike Luhmann

    2016-07-01

    Full Text Available As a major agricultural subsector, milk production plays an important role in the EU 28. Political decisions such as the abolition of the milk quota system in 2015, highly volatile milk prices, high bargaining power of retailers and fierce international competition have led to challenges for both farmers and dairies and have created a need to improve competitiveness. Furthermore, the dairy sector is increasingly subject to societal demands for higher animal welfare and ecological standards. The concept of sustainability in the form of a production standard can be seen as a means for both dairy farmers and dairies to gain competitive advantages and meet stakeholders’ demands. Farmers’ willingness to participate in a sustainability standard is a key factor for its successful implementation. One attractive target group for such a standard are future-oriented farmers who plan to stay in dairy farming in the long run. This study, therefore, focuses on future-oriented dairy farmers and investigates their willingness to participate in a comprehensive sustainability standard. A hierarchical agglomerative cluster analysis is conducted to identify different groups based on their willingness to participate. 211 farmers can be categorized into three different clusters: ‘halfhearted sustainability proponents’, ‘highly dedicated sustainability proponents’ and ‘profit-oriented sustainability refusers’. Further analysis provides insights into the determinants of farmers’ willingness to participate in a sustainability standard. The results of this study provide manifold starting points for deriving managerial implications for the successful implementation of sustainability standards in European dairy farming

  17. Local Power -- Global Connections: linking the world to a sustainable future through decentralized energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Brent, Richard; Sweet, David

    2007-07-01

    Various international dynamics are converging to increase the attractiveness of decentralized energy as a complement to existing centralized energy infrastructures. Decentralized energy (DE) technologies, including onsite renewables, high efficiency cogeneration and industrial energy recycling, offer considerable benefits to those seeking working alternatives to emerging challenges in the energy sector. DE is ideally suited to provide clean affordable energy to areas where modern energy services are currently lacking. Having smaller generators close to where energy is required ensures a safe, reliable and secure energy supply when the energy is required. Furthermore, because DE is a much cleaner alternative than conventional central power plants and the energy provided comes at a much smaller price tag DE is an increasingly acceptable alternative both in the developed and developing world. DE is sure to play a key role in any plan to build a sustainable energy future. (auth)

  18. Climate Science for a Sustainable Energy Future Test Bed and Data Infrastructure Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Van Dam, Kerstin Kleese [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shipman, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-04

    The collaborative Climate Science for a Sustainable Energy Future (CSSEF) project started in July 2011 with the goal of accelerating the development of climate model components (i.e., atmosphere, ocean and sea ice, and land surface) and enhancing their predictive capabilities while incorporating uncertainty quantification (UQ). This effort required accessing and converting observational data sets into specialized model testing and verification data sets and building a model development test bed, where model components and sub-models can be rapidly evaluated. CSSEF’s prototype test bed demonstrated, how an integrated testbed could eliminate tedious activities associated with model development and evaluation, by providing the capability to constantly compare model output—where scientists store, acquire, reformat, regrid, and analyze data sets one-by-one—to observational measurements in a controlled test bed.

  19. FS-OpenSecurity: A Taxonomic Modeling of Security Threats in SDN for Future Sustainable Computing

    Directory of Open Access Journals (Sweden)

    Yunsick Sung

    2016-09-01

    Full Text Available Software Defined Networking (SDN has brought many changes in terms of the interaction processes between systems and humans. It has become the key enabler of software defined architecture, which allows enterprises to build a highly agile Information Technology (IT infrastructure. For Future Sustainability Computing (FSC, SDN needs to deliver on many information technology commitments—more automation, simplified design, increased agility, policy-based management, and network management bond to more liberal IT workflow systems. To address the sustainability problems, SDN needs to provide greater collaboration and tighter integration with networks, servers, and security teams that will have an impact on how enterprises design, plan, deploy and manage networks. In this paper, we propose FS-OpenSecurity, which is a new and pragmatic security architecture model. It consists of two novel methodologies, Software Defined Orchestrator (SDO and SQUEAK, which offer a robust and secure architecture. The secure architecture is required for protection from diverse threats. Usually, security administrators need to handle each threat individually. However, handling threats automatically by adapting to the threat landscape is a critical demand. Therefore, the architecture must handle defensive processes automatically that are collaboratively based on intelligent external and internal information.

  20. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    Energy Technology Data Exchange (ETDEWEB)

    none, none; Tuchman, Nancy [Institute of Environmental Sustainability (IES), Chicago, IL (United States)

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  1. Knowledge Management - A Necessity For The Training Of Future Specialists Of The Sustainable Entreprises

    Science.gov (United States)

    Rotaru, Ionela Magdalena

    2015-09-01

    The world we are living in is shaped by what is a reality for years already: globalisation of economy. The lack of borders makes the impact that technology has on society to be a major one. The virtual world so accessible today is not just about new markets, access to cheaper work force, work online but also fierce competition. The common denominator of most efforts in the area of industry is performance. Limits continuously moving willingness to pay for products that delineate the performance delivered be the same range. Here too we can see the role of the education. For example, Landes shows that both knowledge and know-how are the ones that determine how well off societies are. The education of engineers is therefore critical to every nation to ensure the prosperity of its citizens. This paper here intends to approach the educational process of the engineering specific area of knowledge from the management perspective. The training process becomes sustainable in accordance with the requirements of the future: trained specialists for sustainable enterprises.

  2. Present practice and future prospect of rooftop farming in Dhaka city: A step towards urban sustainability

    Directory of Open Access Journals (Sweden)

    Mastura Safayet

    2017-12-01

    Full Text Available Dhaka, the capital of Bangladesh is one of the most populated megacity in the world and the population growth in this city is extremely high. To support growing food demand of increasing population, food supply should be secure and sustainable. On the other hand, with the pace of urbanization built-up areas are increasing; hence supply of roof space is also increasing. Rooftop farming can provide solution to increased food demand and also can promote a sustainable and livable city. Local fresh and safe food can be ensured through roof gardens in Dhaka city. The aim of the study is to explore the present practice and challenges of rooftop farming that was encountered by practitioners. Mirpur and Mohammadpur areas have been selected as study areas. Two practitioners are interviewed and 60 non-practitioners are surveyed. Results show that rooftop farming can support environment by improving air quality, reducing carbon in the atmosphere and can benefit society by reducing storm water management cost. One of the significant findings from the non-practitioner survey is that maximum people are willing to practice rooftop farming and want to provide at least 50% of roof space for rooftop farming. Finally some recommendations have been suggested to improve rooftop farming practice and encourage more people to practice rooftop farming in future.

  3. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    Science.gov (United States)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  4. The advent of canine performance science: offering a sustainable future for working dogs.

    Science.gov (United States)

    Cobb, Mia; Branson, Nick; McGreevy, Paul; Lill, Alan; Bennett, Pauleen

    2015-01-01

    Working and sporting dogs provide an essential contribution to many industries worldwide. The common development, maintenance and disposal of working and sporting dogs can be considered in the same way as other animal production systems. The process of 'production' involves genetic selection, puppy rearing, recruitment and assessment, training, housing and handling, handler education, health and working life end-point management. At present, inefficiencies throughout the production process result in a high failure rate of dogs attaining operational status. This level of wastage would be condemned in other animal production industries for economic reasons and has significant implications for dog welfare, as well as public perceptions of dog-based industries. Standards of acceptable animal use are changing and some historically common uses of animals are no longer publicly acceptable, especially where harm is caused for purposes deemed trivial, or where alternatives exist. Public scrutiny of animal use appears likely to increase and extend to all roles of animals, including working and sporting dogs. Production system processes therefore need to be transparent, traceable and ethically acceptable for animal use to be sustainable into the future. Evidence-based approaches already inform best practice in fields as diverse as agriculture and human athletic performance. This article introduces the nascent discipline of canine performance science, which aims to facilitate optimal product quality and production efficiency, while also assuring evidence-based increments in dog welfare through a process of research and development. Our thesis is that the model of canine performance science offers an objective, transparent and traceable opportunity for industry development in line with community expectations and underpins a sustainable future for working dogs. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  6. Fit for the Future? A New Approach in the Debate about What Makes Healthcare Systems Really Sustainable

    Directory of Open Access Journals (Sweden)

    Matthias Fischer

    2014-12-01

    Full Text Available As healthcare systems face enormous challenges, sustainability is seen as a crucial requirement for making them fit for the future. However, there is no consensus with regard to either the definition of the term or the factors that characterize a “sustainable healthcare system”. Therefore, the aim of this article is twofold. First, it gives examples of the existing literature about sustainable healthcare systems and analyzes this literature with regard to its understanding of sustainability and the strengths and weaknesses of the different approaches. The article then identifies crucial factors for sustainable healthcare systems, and the result, a conceptual framework consisting of five distinct and interacting factors, can be seen as a starting point for further research.

  7. Current and future sustainable biofuels - Summary; Dagens och framtidens haallbara biodrivmedel - Sammanfattning

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Tekniska Univ., Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden); Nystroem, Ingrid [Swedish Knowledge Centre for Renewable Transportation Fuels, Goeteborg (Sweden); CIT Industriell Energi., Goeteborg (Sweden)

    2013-09-01

    This report has been prepared as a background paper for the state investigation 'Fossil Free Vehicle Traffic'. The purpose of this study is to describe and summarize the current knowledge on production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report includes both existing and future fuel systems under development, and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report's analysis of energy efficiency, greenhouse gas performance and production costs is based on system analysis and a life-cycle perspective. The focus is on the production chain to the produced fuel (well-to-tank). Results are based on current research and commercial development of the respective chains. They are based primarily from standardized life cycle analysis and, in some production systems, also on industrial systems analysis. These two approaches have some differences in methodology, which are highlighted in the report. In the overview values and results have been compiled to make it possible to compare the results.

  8. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    Science.gov (United States)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and

  9. Procuring a Sustainable Future: An Action Learning Approach to the Development and Modelling of Ethical and Sustainable Procurement Practices

    Science.gov (United States)

    Boak, George; Watt, Peter; Gold, Jeff; Devins, David; Garvey, Robert

    2016-01-01

    This paper contributes to an understanding of the processes by which organisational actors learn how to affect positive and sustainable social change in their local region through action learning, action research and appreciative inquiry. The paper is based on a critically reflective account of key findings from an ongoing action research project,…

  10. Resource potential of bamboo, challenges and future directions towards sustainable management and utilization in Ethiopia

    Directory of Open Access Journals (Sweden)

    Getachew Desalegn

    2014-08-01

    Full Text Available Aim of study: Bamboo, the fastest growing and high yielding perennial plant of the world has more than 1500 species and 1500 versatile socio-economic uses and ecological services. Ethiopia has two indigenous bamboo species namely Yushania alpina and Oxytenantheria abyssinica, covering about one million ha with a wide distribution. The objective of this paper is to highlight the potential of bamboo resources, challenges including biodeterioration damage, opportunities and future research directions towards its sustainable management and rational utilization.Area of study: Bamboo resources of EthiopiaMaterial and Methods: Reconnaissance survey was done to some parts of the bamboo growing potential areas in Ethiopia besides the literature review. Main results: The bamboo resource, despite its socio-economic and environmental benefits, currently, in most areas has been under high pressure due to land use changes, bamboo mass- flowering, poor processing with low value addition, and damage by biodeteriorating agents (termites, beetles and fungi. The preservative tests on Ethiopian bamboos revealed low natural durability and highlighted the paramount importance of appropriate protection measures such as Tanalith and vehicles used motor oil to increase durability, service life and rational utilization of bamboo-based products and structures as potential alternative construction and furniture material.Research highlights: Therefore, integrated research and development interventions involving different propagation and managements techniques, harvesting season, processing, value addition including proper seasoning and preservation technologies and marketing are recommended to fill the information and technological gaps on sustainable management and rational utilization of this fast growing and multipurpose bamboo resources in Ethiopia.Key words: Bamboo; challenges; management; socio-economic and environmental significance; utilization.

  11. On the sustainability of inland fisheries: Finding a future for the forgotten

    Science.gov (United States)

    Cooke, Steven J.; Allison, Edward H.; Beard, Douglas; Arlinghaus, Robert; Arthington, Angela; Bartley, Devin; Cowx, Ian G.; Fuentevilla, Carlos; Léonard, Nancy J.; Lorenzen, Kai; Lynch, Abigail; Nguyen, Vivian M.; Youn, So-Jung; Tayor, William W.; Welcomme, Robin

    2016-01-01

    -making frameworks, enhancing their value and sustainability for the future.

  12. Server Operation and Virtualization to Save Energy and Cost in Future Sustainable Computing

    Directory of Open Access Journals (Sweden)

    Jun-Ho Huh

    2018-06-01

    % compared to existing network equipment. The technique proposed in this study is expected to be a foundation technology for future sustainability computing.

  13. Future market sustainable water management and nanotechnology; Zukunftsmarkt Nachhaltige Wasserwirtschaft und Nanotechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Wolfgang; Bachmann, Gerd; Grimm, Vera; Schug, Hartmut; Zweck, Axel [VDI Technologiezentrum GmbH, Duesseldorf (Germany); Marscheider-Weidemann, Frank [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2007-12-15

    This case study on nanotechnology with a focus on sustainable water management was done within the scope of the research project ''Future markets - innovative environmental policy in important fields of action''. Nanotechnology is a broad cross-cutting technology with a multitude of process and technology platforms. Nanotechnologies can contribute to preventing water pollution (e. g. by substituting water polluting processes) or removing this (e. g. nanomaterials/ membranes in wastewater treatment) and can be used to monitor water quality (e. g. nanosensors). Water plays a key role in nutrition and health, in agriculture (irrigation) and as a solvent in industrial processes. A globally sustainable supply of drinking water and industrial water is seen as one of the main challenges of the next decades. The world water supply market is predicted to be more than 400 billion US-$ (2010), in which membrane technologies will play a key role. The rapid development of nanotechnologies is reflected in the constant growth in the number of nanotechnology patents and publications. New types of filtration membranes and nanomaterials for the catalytic, adsorptive or magnetic-separation purification of wastewater constitute an important segment; some marketable products have already been developed in this field. In the long term, convergence in the fields of electronics, biotechnology, nanotechnology and microsystems will offer new perspectives and applications, in sustainable water management as well. Germany has high technological competence in membrane and nanofiltration technology, mostly based on the strength of its basic research, which can serve as a good basis from which to tap foreign markets. The USA is the leader in the field of nanotechnology and in water management applications. Starting points for policy measures are the initiation and implementation of innovationsupporting measures for the further development of these technologies -particularly

  14. Future Earth -- New Approaches to address Climate Change and Sustainability in the MENA Region

    Science.gov (United States)

    Lange, Manfred; Abu Alhaija, Rana

    2016-04-01

    Interactions and feedbacks between rapidly increasing multiple pressures on water, energy and food security drive social-ecological systems at multiple scales towards critical thresholds in countries of the Eastern Mediterranean, the Middle East and North Africa (MENA Region). These pressures, including climate change, the growing demand on resources and resource degradation, urbanization and globalization, cause unprecedented challenges for countries and communities in the region. Responding to these challenges requires integrated science and a closer relationship with policy makers and stakeholders. Future Earth has been designed to respond to these urgent needs. In order to pursue such objectives, Future Earth is becoming the host organization for some 23 programs that were previously run under four global environmental change programmes, DIVERSITAS, the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme (IHDP) and the World Climate Research Programme (WCRP). Some further projects arose out of the Earth System Science Partnership (ESSP). It thus brings together a wide spectrum of expertise and knowledge that will be instrumental in tackling urgent problems in the MENA region and the wider Mediterranean Basin. Future Earth is being administered by a globally distributed secretariat that also includes a series of Regional Centers, which will be the nuclei for the development of new regional networks. The Cyprus Institute in Nicosia, Cyprus (CyI; www.cyi.ac.cy) is hosting the Regional Center for the MENA Region. The CyI is a non-profit research and post-graduate education institution with a strong scientific and technological orientation and a distinctive regional, Eastern Mediterranean scope. Cyprus at the crossroads of three continents and open to all nations in the region provides excellent conditions for advancing the research agenda of Future Earth in the MENA Region. Given the recent and ongoing major political

  15. Current State and Future Prospects of Education for Sustainable Development (ESD) in Japan

    Science.gov (United States)

    Tanaka, Haruhiko

    2017-01-01

    The UN Decade of Education for Sustainable Development (ESD) ran from 2005 to 2014. This study concerns the concepts of Sustainable Development (SD) and ESD. The term "sustainable development" was coined by the Brundtland Commission in 1987 as the key word in integrating environment and development. SD achieved international consensus at…

  16. Futures

    DEFF Research Database (Denmark)

    Pedersen, Michael Haldrup

    2017-01-01

    Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores the potenti......Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores...... the potentials of speculative thinking in relation to design and social and cultural studies, arguing that both offer valuable insights for creating a speculative space for new emergent criticalities challenging current assumptions of the relations between power and design. It does so by tracing out discussions...... of ‘futurity’ and ‘futuring’ in design as well as social and cultural studies. Firstly, by discussing futurist and speculative approaches in design thinking; secondly by engaging with ideas of scenario thinking and utopianism in current social and cultural studies; and thirdly by showing how the articulation...

  17. Future-Proofed Energy Design Approaches for Achieving Low-Energy Homes: Enhancing the Code for Sustainable Homes

    Directory of Open Access Journals (Sweden)

    Maria Christina Georgiadou

    2014-09-01

    Full Text Available Under the label “future-proofing”, this paper examines the temporal component of sustainable construction as an unexplored, yet fundamental ingredient in the delivery of low-energy domestic buildings. The overarching aim is to explore the integration of future-proofed design approaches into current mainstream construction practice in the UK, focusing on the example of the Code for Sustainable Homes (CSH tool. Regulation has been the most significant driver for achieving the 2016 zero-carbon target; however, there is a gap between the appeal for future-proofing and the lack of effective implementation by building professionals. Even though the CSH was introduced as the leading tool to drive the “step-change” required for achieving zero-carbon new homes by 2016 and the single national standard to encourage energy performance beyond current statutory minima, it lacks assessment criteria that explicitly promote a futures perspective. Based on an established conceptual model of future-proofing, 14 interviews with building practitioners in the UK were conducted to identify the “feasible” and “reasonably feasible” future-proofed design approaches with the potential to enhance the “Energy and CO2 Emissions” category of the CSH. The findings are categorised under three key aspects; namely: coverage of sustainability issues; adopting lifecycle thinking; and accommodating risks and uncertainties and seek to inform industry practice and policy-making in relation to building energy performance.

  18. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    Science.gov (United States)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and

  19. Correlations between energy economy and housing market prices in the EU-impacts on future sustainability

    Directory of Open Access Journals (Sweden)

    Maassen Maria Alexandra

    2017-07-01

    Full Text Available The global economic system is facing multiple challenges in terms of social development, technology and innovation, as well as sustainability needs. As a result, the value of existing assets is changing globally depending on the scarcity, necessity and effects on the business field leading to increased prices of traditional sources of energy and increased competition in the economic field. Thus, the EU energy market has progressed in reducing its dependence on external energy sourcing, by increasing production of renewable energy, such as wind or solar, as well as by further integration of the electric grid. Based on the Pearson coefficient this article intends to research the correlations between the economic, energy and house prices in recent years and the future possible impacts depending on their evolution. For example, gas prices in the past decade increasing household costs in most countries due to the dependence on third parties for energy, lead to the need of increasing the share of renewable energy in total energy consumption, which have consequently decreased electricity prices since 2008. However, this development has still not solved the additional costs issue of households due to the new technologies implemented although wind and solar energy receive in general low margins. Such energy issues, as well as the increased housing prices after the financial crisis in 2008 have caused on their own an additional burden on the economy and households spending income in the next years following.

  20. Urban Growth Dynamics in Perth, Western Australia: Using Applied Remote Sensing for Sustainable Future Planning

    Directory of Open Access Journals (Sweden)

    Andrew MacLachlan

    2017-01-01

    Full Text Available Earth observation data can provide valuable assessments for monitoring the spatial extent of (unsustainable urban growth of the world’s cities to better inform planning policy in reducing associated economic, social and environmental costs. Western Australia has witnessed rapid economic expansion since the turn of the century founded upon extensive natural resource extraction. Thus, Perth, the state capital of Western Australia, has encountered significant population and urban growth in response to the booming state economy. However, the recent economic slowdown resulted in the largest decrease in natural resource values that Western Australia has ever experienced. Here, we present multi-temporal urban expansion statistics from 1990 to 2015 for Perth, derived from Landsat imagery. Current urban estimates used for future development plans and progress monitoring of infill and density targets are based upon aggregated census data and metrics unrepresentative of actual land cover change, underestimating overall urban area. Earth observation provides a temporally consistent methodology, identifying areal urban area at higher spatial and temporal resolution than current estimates. Our results indicate that the spatial extent of the Perth Metropolitan Region has increased 45% between 1990 and 2015, over 320 km2. We highlight the applicability of earth observation data in accurately quantifying urban area for sustainable targeted planning practices.

  1. The hydrogen economy for a sustainable future and the potential contribution of nuclear power

    International Nuclear Information System (INIS)

    Hardy, C.

    2003-01-01

    The Hydrogen Economy encompasses the production of hydrogen using a wide range of energy sources, its storage and distribution as an economic and universal energy carrier, and its end use by industry and individuals with negligible emission of pollutants and greenhouse gases. Hydrogen is an energy carrier not a primary energy source, just like electricity is an energy carrier. The advantages of hydrogen as a means of storage and distribution of energy, and the methods of production of hydrogen, are reviewed. Energy sources for hydrogen production include fossil fuels, renewables, hydropower and nuclear power. Hydrogen has many applications in industry, for residential use and for transport by air, land and sea. Fuel cells are showing great promise for conversion of hydrogen into electricity and their development and current status are discussed. Non-energy uses of hydrogen and the safety aspects of hydrogen are also considered. It is concluded that the Hydrogen Economy, especially if coupled to renewable and nuclear energy sources, is a technically viable and economic way of achieving greater energy diversity and security and a sustainable future in this century

  2. Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-01-01

    Full Text Available The sustainable energy consumption in northeast Asia has a huge impact on regional stability and economic growth, which gives price volatility research in the energy market both theoretical value and practical application. We select China’s fuel oil futures market as a research subject and use recurrence interval analysis to investigate the price volatility pattern in different thresholds. We utilize the stretched exponential function to fit the pattern of the recurrence intervals of price fluctuations and find that the probability density functions of the recurrence intervals in different thresholds do not show the scaling behavior. Then the conditional probability density function and detrended fluctuation analysis prove that there is short-term and long-term correlation. Last, we use a hazard function to introduce the recurrence intervals into the (value at risk VaR calculation and establish a functional relationship between the mean recurrence interval and the threshold. Following this result, we also shed light on policy discussion for hedgers and government.

  3. Restoration metropole XXI, as a problem solving between old potential to the future sustainability of values

    Science.gov (United States)

    Indra, M.

    2018-03-01

    Cinema Metropole XXI is one of the heritage buildings located in the heart of Menteng area, with “art deco” architecture. The appereance of this building is very beautiful and very impressed from other buildings, become strong Icon around the Menteng neighborhood. In 2010 the building was bought by Cinema 21, where the physical condition is very messy and looks slum. The emergence of modern shopping and entertainment centers are also complete with cinema facilities are more comfortable and complete, While the atmosphere of this old cinema is considered uncomfortable for visitors, so slowly abandoned by customers. The status of the cultural heritage inherent in this building becomes an obstacle by owners to renew this building, until the cinema closes in some time. The loss of the long-standing potential of cultural heritage buildings due to the transformation of urban development is an important issue in this paper, this case study is the author’s experience in regenerating the future potential at this heritage building. This writing is done by Descriptive Analysis method from various reference approaches and theory of cultural heritage values involved in the restoration of Metropole XXI cinema. The conclusions of this paper find a real solution to problem solving for the sustainability of this building.

  4. Investing in Professional Development: Building and Sustaining a Viable 4-H Youth Workforce for the Future

    Directory of Open Access Journals (Sweden)

    Kirk A. Astroth

    2008-09-01

    Full Text Available Positive youth development outcomes are influenced by a competent, highly trained work force that enjoys their work with young people. The youth work field has struggled with how to keep and motivate front line youth workers given the heavy workloads, low pay, lack of recognition and irregular time demands to compete with family responsibilities. Professional development is a key strategy for retaining and motivating youth workers. A model of professional development called the Western 4-H Institute has been developed and held now for two sessions. Results from participants indicate that this strategy can have a positive influence on job satisfaction, competencies, and retention. In fact, only 10 percent of participants had left during the intervening 5 years, and job satisfaction had increased significantly over time. Organizational loyalty among participants is not high, but with early career professionals, they may still be trying to find their niche. A regional training model has shown itself to be effective in supporting 4-H youth professionals and is building a sustainable workforce for the future.

  5. Future sustainability forecasting by exchange markets: basic theory and an application.

    Science.gov (United States)

    Malyshkina, Nataliya; Niemeier, Deb

    2010-12-01

    Setting sustainability targets and evaluating systems progress are of great importance nowadays due to threats to the human society, to economic development and to ecosystems, posed by unsustainable human activities. This research establishes a probabilistic theoretical approach based on market expectations reflected in prices of publicly traded securities to estimate the time horizon until the appearance of new technologies related to replacement of nonrenewable resources, for example, crude oil and oil products. To assess time T when technological innovations are likely to appear, we apply advanced pricing equations, based on a stochastic discount factor to those traded securities whose future cash flows critically depend on appearance of such innovations. In a simple approximation of the proposed approach applied to replacement of crude oil and oil products, we obtain T ≈ (P(0)(oil)/C(0))·ln (Δ·P(0)(oil)/P(0)(alt)), where P(0)(oil) and P(0)(alt) are the current aggregate market capitalizations of oil and alternative-energy companies, C(0) is the annual aggregate dividends that oil companies pay to their shareholders at the present, and Δ is the fraction of the oil (oil products) replaced at time T. This formula gives T ≈ 131 years for replacement of gasoline and diesel. The proposed market-expectations approach may allow policymakers to effectively develop policies and plan for long-term changes.

  6. Seeing the World Anew: Educating for a Just and Sustainable Future--New Perspectives for a Catholic Curriculum

    Science.gov (United States)

    Riley, Maria; Danner-McDonald, Kerry

    2013-01-01

    This article uses three value constructs, Catholic social thought (CST), feminist political economy (FPE) and ecological economics (Eco-Econ) to critique current mainstream economics. Insights from these values open a way to seeing and creating a just, sustainable future. Within this value framework we propose the integration of these themes in…

  7. Forest Science and forest policy in Europe, Africa, and the Middle East: Building Bridges to a sustainable future

    Science.gov (United States)

    Richard W. Guldin; Niels Elers Koch; John A. Parrotta; Christian Gamborg; Bo J. Thorsen

    2004-01-01

    Making forest policies that help bridge from the current situation to a sustainable future requires sound scientific information. Too often, scientific information is available, yet policy makers do not use it. At a workshop in Denmark, attendees reviewed case studies where forest science influenced forest policies and identified six major reasons for success. Three...

  8. The quantification of environmental indicators for sustainability assessment of future electricity supply options

    International Nuclear Information System (INIS)

    Simons, A.; Bauer, Ch.; Heck, T.

    2011-02-01

    Within the project NEEDS (New Energy Externalities Development for Sustainability) a range of criteria and indicators were defined according to the widely recognised 'three pillar' interpretation of sustainable development in order to assess future electricity generating technologies including their associated fuel cycles. The basic characteristics of the 26 technologies were defined as being appropriate in 2050 according to 'realistic/optimistic' development scenarios. The potential environmental impacts of each technology were assessed by initially determining the various criteria necessary to describe the range of significant impact areas. These criteria were then expressed and measured by one or more quantifiable indicators which were calculated using Life Cycle Inventories established earlier in the project. This report contributed to Research Stream RS2b of the project by quantifying and comparing the results of these indicators for each of the four countries used in the assessment: France, Germany, Switzerland and Italy. The environmental assessment showed that the nuclear technologies cause relatively very low impacts according to most of the indicators. The Generation IV, European Fast Reactor, has significant advantages over the European Pressurised Reactor but the availabilities of the two reactors will be quite different. Whereas the first examples of the EPR are already under construction, the design finalisation of the EFR is not yet complete meaning that the first plant is not expected to be constructed before 2040. An overarching and clear distinction between the fossil fueled technologies was less possible and the application of carbon capture and storage, whilst showing large reductions in greenhouse gas emissions, was shown to be counteracted in a number of other indicators. The integration of solid fuel gasification prior to combustion also showed both benefits and disadvantages. For most indicators, the natural gas combined cycle options

  9. Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Nuri Cihat Onat

    2017-04-01

    Full Text Available Tracking the environmental impacts of production, use, and disposal of products (e.g., goods, and services have been an important issue in the global economy. Although Life Cycle Assessment (LCA is a widely applied method to track these environmental impacts and support policies, it has certain limitations and an isolated way of evaluating the environmental impacts with no consideration of social and economic impacts and mechanisms. To overcome the limits of current LCA, three mechanisms have been proposed in the literature: (1 broadening the indicators by including social and economic indicators in addition to the environmental impacts; (2 broadening the scope of analysis from product-level assessment to national and global levels; (3 deepening the assessment by inclusion of more mechanisms to account for interrelations among the system elements, uncertainty analysis, stakeholder involvement, etc. With these developments, LCA has been evolving into a new framework called Life Cycle Sustainability Assessment (LCSA. Practical application of LCSA requires integration of various methods, tools, and disciplines. In this study, a comprehensive literature review is conducted to investigate recent developments, current challenges, and future perspectives in the LCSA literature. According to the review, a high number (40% of LCSA studies are from the environmental science discipline, while contributions from other disciplines such as economics (3% and social sciences (9% are very low. On broadening the scope of analysis, 58% of the studies are product-level works, while 37% quantified the impacts at national level and achieved an economy-wide analysis, and only 5% of the studies were able to quantify the global impacts of products using LCSA framework. Furthermore, current applications of LCSA have not considered the rebound effects, feedback mechanisms, and interrelations of the system of interest sufficiently. To address these challenges, we present a

  10. Effect of Boron on the Hot Ductility of Resulfurized Low-Carbon Free-Cutting Steel

    Science.gov (United States)

    Liu, Hai-tao; Chen, Wei-qing

    2015-09-01

    The hot ductility of resulfurized low-carbon free-cutting steel with boron additives is studied in the temperature range 850 - 1200°C with the help of a Gleeble-1500 thermomechanical simulator. The introduction of boron increases hot ductility, especially at 900 - 1050°C. In the single-phase austenitic region, this effect is caused by segregation of boron over grain boundaries, acceleration of dynamic recrystallization, and solid-solution softening of deformed austenite.

  11. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    Science.gov (United States)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  12. Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ang, Li; Ng, Kim Choon

    2018-01-01

    The energy, water, and environment nexus is a crucial factor when considering the future development of desalination plants or industry in water-stressed economies. The new generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increases around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available heat-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as an increase in water production can be expected. The advent of MED with AD cycles, or simply called the MED-AD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-stream at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60°C and 80°C. In this chapter, the authors have reported their pioneered research on aspects of AD and related hybrid MED-AD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concepts, the authors examine the cost apportionment of fuel cost by the quality or exergy of the working steam for such cogeneration configurations.

  13. A climatic and environmental protection strategy, the road toward a sustainable future

    International Nuclear Information System (INIS)

    Bach, W.

    1994-01-01

    This editorial essay conveys a clear message: The overuse of our fossil fuel resources especially in the North, and the overpopulation in many parts of the South, result in an unacceptable stress to Earth. This manifests itself in some of the most serious threats to mankind, such as global climatic change, environmental degradation, food shortage, hunger, poverty, and migration. It is the purpose of this editorial essay to make a contribution toward a reduction of some of these threats, notably those from climatic change. Specifically, the paper presents a tractable climatic and environmental protection strategy which is designed to give concrete answers to such seemingly simple questions as: What has to be done? (This depends e.g. on the concentration stabilization objective of the Rio Climate Convention, and the global warming ceiling of the Enquete-Commission of the German Parliament). By whom does it have to be done? (This addresses the secret of a successful protection strategy which involves a fair burden sharing among the world's countries). When does it have to be done? (This discusses the problem of setting tractable, i.e. differentiated and binding emission targets). How can it be done? (This relates to individual countries, states, and municipalities. It is demonstrated for Germany how her commitment of a 25 to 30% CO 2 reduction by 2005 can be achieved). Moreover, the question is addressed: How many people and how much fossil fuel use can our planet stand? The major result is that without self-restraint climate and ecosystem cannot be maintained, because it is incompatible with trends in the wasteful fossil fuel use in the North and strong population growth in the South. Finally, a plea is made to share responsibility on the road toward a sustainable future. 32 refs., 4 tabs

  14. Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-05-03

    The energy, water, and environment nexus is a crucial factor when considering the future development of desalination plants or industry in water-stressed economies. The new generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increases around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available heat-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as an increase in water production can be expected. The advent of MED with AD cycles, or simply called the MED-AD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-stream at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60°C and 80°C. In this chapter, the authors have reported their pioneered research on aspects of AD and related hybrid MED-AD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concepts, the authors examine the cost apportionment of fuel cost by the quality or exergy of the working steam for such cogeneration configurations.

  15. The traditional knowledge and the sustainable development - A distant world as much in the past as in the future

    International Nuclear Information System (INIS)

    Carmona Maya, Sergio Ivan

    2000-01-01

    In this text, is discussed about of the traditional knowledge and the sustainable development. The central invitation is to meditate about the consistency of a speech that manipulates the call traditional knowledge as an instrument of legitimating of a development system that seeks to fill the current necessities as the sustainable, by means of the use of the natural resources in a careful way, technique, rational and balanced, for not to deteriorate them or to drain them, without committing the capacity that the future generations can satisfy their own necessities

  16. Porous carbon-free SnSb anodes for high-performance Na-ion batteries

    Science.gov (United States)

    Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min

    2018-05-01

    A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.

  17. Transnational Higher Education and Sustainable Development: Current Initiatives and Future Prospects

    Science.gov (United States)

    Koehn, Peter H.

    2012-01-01

    Tertiary educational institutions increasingly are relied upon for sustainable development initiatives. This policy research note analyzes newly available data regarding seven key dimensions of 295 transnational sustainable development projects involving US universities. Comparative regional analysis of the projects profiled in the APLU/AAU…

  18. Protecting the Future: the Role of School Education in Sustainable Development--An Indian Case Study

    Science.gov (United States)

    Bangay, Colin

    2016-01-01

    This paper explores the potential contribution of education to sustainable development. Drawing on recent evidence it argues that education could play a stronger role--a position reinforced by the new sustainable development goals (SDGs). However, securing this contribution will have to be achieved in an era where educational delivery will be…

  19. Sustainability governance of chains and networks: a review and future outlook

    NARCIS (Netherlands)

    Bush, S.R.; Oosterveer, P.J.M.; Bailey, M.L.; Mol, A.P.J.

    2015-01-01

    This paper reviews the extent to which sustainability governance has been integrated into the literature on sustainable chains and networks. The analysis brings together four main approaches to chains and network studies – supply chain management (SCM), global commodity chains (GCC), global value

  20. Education for a Sustainable Future: A Resource for Curriculum Developers, Teachers, and Administrators.

    Science.gov (United States)

    Manitoba Dept. of Education and Training, Winnipeg. School Programs Div.

    This document, on social, environmental, and economic sustainability, is a resource for teachers, administrators, and curriculum developers. The increasing human population on the earth directs attention to sustainability, which was not a problem until the industrial revolution. This book uses an interdisciplinary approach and provides assistance…

  1. Sustainable protein technology : an evaluation on the STW Protein programme and an outlook for the future

    NARCIS (Netherlands)

    Voudouris, Panagiotis; Tamayo Tenorio, Angelica; Lesschen, Jan Peter; Kyriakopoulou, Konstantina; Sanders, Johan P.M.; Goot, van der Atze Jan; Bruins, Marieke E.

    2017-01-01

    In 2013 a new STW research programme was started on sustainable protein recovery. This STW Protein Programme consisted of five sustainable protein technology projects, which aimed at developing innovative methods to extract proteins from plant leaves, microalgae and insects to meet the increasing

  2. Carbon-free production of 2-deoxy-scyllo-inosose (DOI) in cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Watanabe, Satoru; Ozawa, Hiroaki; Kato, Hiroaki; Nimura-Matsune, Kaori; Hirayama, Toshifumi; Kudo, Fumitaka; Eguchi, Tadashi; Kakinuma, Katsumi; Yoshikawa, Hirofumi

    2018-01-01

    Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.

  3. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  4. Indicator report. Danmark's national strategy for sustainable development: a shared future - balanced development

    International Nuclear Information System (INIS)

    2002-08-01

    The Danish vision of sustainable development is based on eight objectives and principles: 1) The welfare society must be developed and economic growth must be decoupled from environmental impacts. 2) There must be a safe and healthy environment for everyone, and we must maintain a high level of protection. 3) We must secure a high degree of bio-diversity and protect ecosystems. 4) Resources must be used more efficiently. 5) We must take action at an international level 6) Environmental considerations must be taken into account in all sectors. 7) The market must support sustainable development. 8) Sustainable development is a shared responsibility and we must measure progress. (au)

  5. "Education in Sustainable Architecture for the future - For a joint climate action!"

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann; Eriksen, Kaare; Petersen, Mads Dines

    2009-01-01

    approaches designing buildings. When using this IDP method designing sustainable buildings we can bring down the energy use in the building with a considerable amount. The IDP focuses on combining the architectural approach with engineering parameters in order to achieve a more holistic approach...... to sustainable environmental architecture. The goal is to reduce the use of energy for heating and cooling and thereby bringing down the emission of CO2 by reducing the amount of fossil fuel consumed by the built environment already in the early stages of the design process. Since 2005 the Master of Science...... Sustainable Architecture from the master program and discusses barriers and benefits from that approach....

  6. Planning for sustainable tourism in southern Pulau Banggi: an assessment of biophysical conditions and their implications for future tourism development.

    Science.gov (United States)

    Teh, Lydia; Cabanban, Annadel S

    2007-12-01

    A priori assessments of a site's biophysical and socio-economic capacity for accommodating tourism are less common than tourism impact studies. A priori evaluations can provide a contextual understanding of ecological, economic and socio-cultural forces, which shape the prospects for sustainable tourism development at the host destination, and can avert adverse impacts of tourism. We conduct an a priori assessment of the biophysical environment of Pulau Banggi, in the Malaysian state of Sabah for sustainable tourism development. We characterise baseline conditions of the island's marine biodiversity, seasonality, and infrastructure. We then evaluate how existing biophysical conditions will influence options for sustainable tourism development. In particular, we suggest conditions, if there are any, which constitute a limit to future tourism development in terms of compatibility for recreation and resilience to visitor impacts. We find that the biggest constraint is the lack of adequate water and sanitation infrastructure. Blast fishing, although occurring less than once per hour, can potentially destroy the major attraction for tourists. We conclude that while Pulau Banggi possesses natural qualities that are attractive for ecotourism, financial and institutional support must be made available to provide facilities and services that will enable local participation in environmental protection and enhance prospects for future sustainable tourism.

  7. Virginia Sustainable Travel Choices : Effects of Land Use and Location on Current and Future Travel Options

    Science.gov (United States)

    2015-06-01

    Diverse states like Virginia, with a mix of urban, suburban, and rural environments and transportation systems, cannot rely on a single approach to increasing transportation sustainability, but require an understanding of what has worked and what mig...

  8. The U.S.-German Bilateral Working Group (BGW): Collaborative Research For A Sustainable Future

    Science.gov (United States)

    Since 1990, the United States and Germany have worked bilaterally to identify, understand, and apply innovative technologies and policies for remediation and sustainable revitalization of contaminated sites in each country. Over a period of 15 years (= three Phases) remarkable b...

  9. Engineering for Sustainable Development - An obligatory Skill of the Future Engineer

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Alting, Leo; Molin, Christine

    2003-01-01

    , Bruxelles (Belgium). Department of Manufacturing Engineering and Management hosted a mini-tutorial on Courses and Curricula in Sustainable Development and Environmental Management at the Technical University of Denmark. The procedings comprise papers from universities and institutions in many countries...

  10. Securing a sustainable future through a new global contract between rich and poor

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2009-01-01

    Full Text Available Global sustainable development depends on the capacity of natural, social and economic systems to adapt to external stimuli. However, building this adaptive capacity in the developing world context of Sub-Sahara Africa will require substantial...

  11. Palm oil - towards a sustainable future? : Challanges and opportunites for the Swedish food industry

    OpenAIRE

    Nilsson, Sara

    2013-01-01

    The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and health issues. The food industry also competes with increasing palm oil demands from the energy sector. This case study identifies and analyzes different perspectives regarding sustainable palm oil as a food commodity in Sweden through interviews with palm oil experts in different businesses and organizations. This study focuses on ho...

  12. A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View

    OpenAIRE

    Gill, Sukhpal Singh; Buyya, Rajkumar

    2017-01-01

    The cloud computing paradigm offers on-demand services over the Internet and supports a wide variety of applications. With the recent growth of Internet of Things (IoT) based applications the usage of cloud services is increasing exponentially. The next generation of cloud computing must be energy-efficient and sustainable to fulfill the end-user requirements which are changing dynamically. Presently, cloud providers are facing challenges to ensure the energy efficiency and sustainability of ...

  13. Identifying future research directions for biodiversity, ecosystem services and sustainability: perspectives from early-career researchers

    OpenAIRE

    Hossain, S.; Pogue, S.J.; Trenchard, L.; Oudenhoven, van, A.P.E.; Washbourne, C-L.; Muiruri, E.W.; Tomczyk, A.M.; García-Llorente, M.; Hale, R.; Hevia, V.; Adams, T.; Tavallali, L.; De, Bell S.; Pye, M.; Resende, F.

    2017-01-01

    We aimed to identify priority research questions in the field of biodiversity, ecosystem services and sustainability (BESS), based on a workshop held during the NRG BESS Conference for Early Career Researchers on BESS, and to compare these to existing horizon scanning exercises. This work highlights the need for improved data availability through collaboration and knowledge exchange, which, in turn, can support the integrated valuation and sustainable management of ecosystems in response to g...

  14. Nature's powerhouse. Innovative technologies for a more sustainable future; Kraftwerk Natur. Innovative Technologien fuer mehr Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-09-01

    Across the globe, our hunger for energy continues to grow. Yet climate change and dwindling fossil fuel supplies are forcing us to rethink our energy policy and turn increasingly to renewable resources. Achieving a sustainable energy mix and eco-friendly mobility options demands innovative technologies. And that is where Linde's gas and plant engineering specialists come in, developing efficient processes and providing crucial momentum for a greener future. (orig.)

  15. Healthy and sustainable diets: Community concern about the effect of the future food environments and support for government regulating sustainable food supplies in Western Australia.

    Science.gov (United States)

    Harray, Amelia J; Meng, Xingqiong; Kerr, Deborah A; Pollard, Christina M

    2018-06-01

    To determine the level of community concern about future food supplies and perception of the importance placed on government regulation over the supply of environmentally friendly food and identify dietary and other factors associated with these beliefs in Western Australia. Data from the 2009 and 2012 Nutrition Monitoring Survey Series computer-assisted telephone interviews were pooled. Level of concern about the effect of the environment on future food supplies and importance of government regulating the supply of environmentally friendly food were measured. Multivariate regression analysed potential associations with sociodemographic variables, dietary health consciousness, weight status and self-reported intake of eight foods consistent with a sustainable diet. Western Australia. Community-dwelling adults aged 18-64 years (n = 2832). Seventy nine per cent of Western Australians were 'quite' or 'very' concerned about the effect of the environment on future food supplies. Respondents who paid less attention to the health aspects of their diet were less likely than those who were health conscious ('quite' or 'very' concerned) (OR = 0.53, 95% CI [0.35, 0.8] and 0.38 [0.17, 0.81] respectively). The majority of respondents (85.3%) thought it was 'quite' or 'very' important that government had regulatory control over an environmentally friendly food supply. Females were more likely than males to rate regulatory control as 'quite' or 'very' important' (OR = 1.63, 95% CI [1.09, 2.44], p = .02). Multiple regression modeling found that no other factors predicted concern or importance. There is a high level of community concern about the impact of the environment on future food supplies and most people believe it is important that the government regulates the issue. These attitudes dominate regardless of sociodemographic characteristics, weight status or sustainable dietary behaviours. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The IAEA, nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2001-01-01

    In the framework of one of the fundamental objectives of the IAEA mandate to enhance the contribution of nuclear technologies towards meeting the needs of Member States, the present status, all the aspects, and the future of nuclear power are reviewed. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and when safely handled has little impact on ecosystems. This means that it could meet the central goal of sustainable development, considering that it covers maintaining or increasing the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems

  17. The Impact of Sustainability Practices on Corporate Financial Performance: Literature Trends and Future Research Potential

    Directory of Open Access Journals (Sweden)

    Ali Alshehhi

    2018-02-01

    Full Text Available This paper presents an analysis of the literature concerning the impact of corporate sustainability on corporate financial performance. The relationship between corporate sustainable practices and financial performance has received growing attention in research, yet a consensus remains elusive. This paper identifies developing trends and the issues that hinder conclusive consensus on that relationship. We used content analysis to examine the literature and establish the current state of research. A total of 132 papers from top-tier journals are shortlisted. We find that 78% of publications report a positive relationship between corporate sustainability and financial performance. Variations in research methodology and measurement of variables lead to the divergent views on the relationship. Furthermore, literature is slowly replacing total sustainability with narrower corporate social responsibility (CSR, which is dominated by the social dimension of sustainability, while encompassing little to nothing of environmental and economic dimensions. Studies from developing countries remain scarce. More research is needed to facilitate convergence in the understanding of the relationship between corporate sustainable practices and financial performance.

  18. Education for a Sustainable Future: Strategies of the New Hindu Religious Movements

    Directory of Open Access Journals (Sweden)

    Martin Haigh

    2010-11-01

    Full Text Available Increasingly, sustainability is conceived as a crisis of the human mind and the key challenge for pro-sustainability education is developing sufficient motivation in learners. The spiritual aspirations of religious communities contain sufficient motivational force, which may be deployed for effective sustainability education. This paper explores the approaches to sustainability and sustainability education of some internationally-oriented Hindu religious movements. These include the rural education initiatives of Gandhian Sarvodaya, which emphasizes non-harming, self-reliance and personal ethics, ISKCON, which emphasizes devotional service, P.R. Sarkar’s Ananda Marg, which emphasizes cooperative enterprise, the Tantric body re-imagined at the social scale, and Swami Vivekananda’s Sri Ramakrishna Order, which emphasizes karma yoga, spiritual development through service to the God in each human. It also describes the British Hindu contribution to the UNDP/ARC’s multi-faith sustainability initiative “Many Heavens, One Earth”; which is the “Bhumi Project” and its two main campaigns, Green Temples and Compassionate Living.

  19. Analysis of the interrelationship of energy, economy, and environment: A model of a sustainable energy future for Korea

    Science.gov (United States)

    Boo, Kyung-Jin

    The primary purpose of this dissertation is to provide the groundwork for a sustainable energy future in Korea. For this purpose, a conceptual framework of sustainable energy development was developed to provide a deeper understanding of interrelationships between energy, the economy, and the environment (E 3). Based on this theoretical work, an empirical simulation model was developed to investigate the ways in which E3 interact. This dissertation attempts to develop a unified concept of sustainable energy development by surveying multiple efforts to integrate various definitions of sustainability. Sustainable energy development should be built on the basis of three principles: ecological carrying capacity, economic efficiency, and socio-political equity. Ecological carrying capacity delineates the earth's resource constraints as well as its ability to assimilate wastes. Socio-political equity implies an equitable distribution of the benefits and costs of energy consumption and an equitable distribution of environmental burdens. Economic efficiency dictates efficient allocation of scarce resources. The simulation model is composed of three modules: an energy module, an environmental module and an economic module. Because the model is grounded on economic structural behaviorism, the dynamic nature of the current economy is effectively depicted and simulated through manipulating exogenous policy variables. This macro-economic model is used to simulate six major policy intervention scenarios. Major findings from these policy simulations were: (1) carbon taxes are the most effective means of reducing air-pollutant emissions; (2) sustainable energy development can be achieved through reinvestment of carbon taxes into energy efficiency and renewable energy programs; and (3) carbon taxes would increase a nation's welfare if reinvested in relevant areas. The policy simulation model, because it is based on neoclassical economics, has limitations such that it cannot fully

  20. The sustainability of new programs and innovations: a review of the empirical literature and recommendations for future research

    Directory of Open Access Journals (Sweden)

    Wiltsey Stirman Shannon

    2012-03-01

    Full Text Available Abstract Background The introduction of evidence-based programs and practices into healthcare settings has been the subject of an increasing amount of research in recent years. While a number of studies have examined initial implementation efforts, less research has been conducted to determine what happens beyond that point. There is increasing recognition that the extent to which new programs are sustained is influenced by many different factors and that more needs to be known about just what these factors are and how they interact. To understand the current state of the research literature on sustainability, our team took stock of what is currently known in this area and identified areas in which further research would be particularly helpful. This paper reviews the methods that have been used, the types of outcomes that have been measured and reported, findings from studies that reported long-term implementation outcomes, and factors that have been identified as potential influences on the sustained use of new practices, programs, or interventions. We conclude with recommendations and considerations for future research. Methods Two coders identified 125 studies on sustainability that met eligibility criteria. An initial coding scheme was developed based on constructs identified in previous literature on implementation. Additional codes were generated deductively. Related constructs among factors were identified by consensus and collapsed under the general categories. Studies that described the extent to which programs or innovations were sustained were also categorized and summarized. Results Although "sustainability" was the term most commonly used in the literature to refer to what happened after initial implementation, not all the studies that were reviewed actually presented working definitions of the term. Most study designs were retrospective and naturalistic. Approximately half of the studies relied on self-reports to assess

  1. The sustainability of new programs and innovations: a review of the empirical literature and recommendations for future research

    Science.gov (United States)

    2012-01-01

    Background The introduction of evidence-based programs and practices into healthcare settings has been the subject of an increasing amount of research in recent years. While a number of studies have examined initial implementation efforts, less research has been conducted to determine what happens beyond that point. There is increasing recognition that the extent to which new programs are sustained is influenced by many different factors and that more needs to be known about just what these factors are and how they interact. To understand the current state of the research literature on sustainability, our team took stock of what is currently known in this area and identified areas in which further research would be particularly helpful. This paper reviews the methods that have been used, the types of outcomes that have been measured and reported, findings from studies that reported long-term implementation outcomes, and factors that have been identified as potential influences on the sustained use of new practices, programs, or interventions. We conclude with recommendations and considerations for future research. Methods Two coders identified 125 studies on sustainability that met eligibility criteria. An initial coding scheme was developed based on constructs identified in previous literature on implementation. Additional codes were generated deductively. Related constructs among factors were identified by consensus and collapsed under the general categories. Studies that described the extent to which programs or innovations were sustained were also categorized and summarized. Results Although "sustainability" was the term most commonly used in the literature to refer to what happened after initial implementation, not all the studies that were reviewed actually presented working definitions of the term. Most study designs were retrospective and naturalistic. Approximately half of the studies relied on self-reports to assess sustainability or elements that

  2. Biomimicry: a Necessary Eco-Ethical Dimension for a Future Human Sustainability

    Directory of Open Access Journals (Sweden)

    Javier Collado-Ruano

    2015-07-01

    Full Text Available This article reflects on the concept of “global citizenship” from a transdisciplinary methodology and a biomimetic approach. A sustainable human image appears with this epistemological symbiosis, that constitutes the DNA of a genuine tool of civilizational transformation. On the one hand, the transdisciplinary methodology is opened to the multi-referential conception of the three pillars proposed by Basarab Nicolescu (2008: levels of reality, logic of the included middle, and complexity. On the other hand, the concept of biomimicry approached by Janine M. Benyus (2012 identifies nine operating principles of life in order to mimic nature in the reformulation of new sustainable human production systems with the biosphere. The aim of this study is to identify international agreements on environmental and sustainable development, to elaborate some contribution in the post-2015 eco-political-educational strategic framework led by the United Nations with the Sustainable Development Goals. With the purpose of strengthening ties between education and sustainability through symbiotic bridges between nature and culture, the work identifies the vital axises that constitute the interdependence of ecosystems to make a biomimetic application in the social, political, and educational structures of human systems. Then, this paper is an innovational research that seeks to integrate the eco-ethics as a practice in the “Global Citizenship Education” proposed for UNESCO for next decade 2015-2025.

  3. A key review on emergy analysis and assessment of biomass resources for a sustainable future

    International Nuclear Information System (INIS)

    Zhang Gaijing; Long Weiding

    2010-01-01

    The present study comprehensively reviews emergy analysis and performance evaluation of biomass energy. Biomass resources utilization technologies include (a) bioethanol production, (b) biomass for bio-oil, (c) biodiesel production, (d) straw as fuel in district heating plants, (e) electricity from Municipal Solid Waste (MSW) incineration power plant, (f) electricity from waste landfill gas. Systems diagrams of biomass, which are to conduct a critical inventory of processes, storage, and flows that are important to the system under consideration and are therefore necessary to evaluate, for biomasses are given. Emergy indicators, such as percent renewable (PR), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are shown to evaluate the environmental load and local sustainability of the biomass energy. The emergy indicators show that bio-fuels from crop are not sustainable and waste management for fuels provides an emergy recovery even lower than mining fossil fuel.

  4. Biofuels are (Not the Future! Legitimation Strategies of Sustainable Ventures in Complex Institutional Environments

    Directory of Open Access Journals (Sweden)

    Neil A. Thompson

    2018-04-01

    Full Text Available Sustainable ventures often lack legitimacy (perceived to be desirable and appropriate because various stakeholder groups use contradictory institutions (rules and norms to make their judgements, which leads to there being fewer resources available and higher failure rates. Using an institutional theory framework and a multi-case research design with 15 biofuel ventures operating in the Netherlands, this study asks how sustainable entrepreneurs attempt to gain legitimacy in these circumstances. Analysis reveals that the entrepreneurs use a combination of rhetorical, reconciliatory and institutional change strategies to obtain legitimacy from different stakeholder groups. These findings further our understanding of sustainable entrepreneurial behavior by revealing how and why different legitimation strategies are used in complex institutional environments.

  5. Choosing a sustainable future: The report of the National Commission on the Environment

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This report focuses selectively on issues and concepts that appear to have the highest priority in terms of meeting the goal of sustainable development. The US Environmental Protection Agency also is a focus, and inquiry and recommendations are limited to US policy rather than proposing global environmental policies. Issues addressed in the full report include the following: measurable environmental progress and major problem areas; importance of leadership; healthy economics and market forces; serious and long term change in how the US produces and uses energy; long range shift in auto technology for transportation using alternative sources of energy; agriculture; manufacturing; population growth; land-use planning; integration of environmental values in to policy and decisionmaking; environmental education and ethic responsibility. The commission states: Sustainable development is predicated on the recognition that economic and environmental goals are inextricably linked, and The United States must have a long-term strategy for pursuing the goal of sustainable development

  6. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future.

    Science.gov (United States)

    Huang, Hongwen

    2011-01-01

    China is one of the richest countries for plant diversity with approximately 33 000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000–5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43 502 taxa, with a total of 24 667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21st century is of

  7. Towards the sustainable energy system. The future of the transition policy for energy and environment

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.

    2006-11-01

    Inaugural speech at the occasion of the acceptance of the office for Energy Transition and Sustainable Development at the Faculty of Earth and Life Sciences of the Vrije Universiteit in Amsterdam, Netherlands, November 21, 2006. The transition policy in the Netherlands towards a sustainable energy supply system succeeded in creating a basis in the Dutch society, although at the cost of making clear choices with regard to concrete projects, new policy tools and financial means. In order to accelerate those choices the Dutch government needs to take decisive measures [nl

  8. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.

    Science.gov (United States)

    Wu, Baoshan; Zhang, Hongzhang; Zhou, Wei; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-21

    Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries.

  9. Structuring the carbon-free vehicle sector. Report of M. Louis Negre, Senator of Alpes-Maritimes

    International Nuclear Information System (INIS)

    Negre, Louis; Aussourd, Philippe

    2011-01-01

    This report studies the situation in the sector of carbon-free vehicles, and in particular electric vehicles, and its representation. It also compares the situation in France with that of the main countries involved in the same policy, particularly those who have chosen to voluntarily structure their own national sectors (Japan, Germany, Great Britain). It proposes two axes of complementary interventions to better structure this sector in the future: a more important intervention of the 'State as a strategist' with the creation of a delegation, placed directly under the authority of the government, which carries the industrial project of France, structures the sector and ensures its coherence and its durability; a reinforcement of representation bodies of the sector based on the gathering of all the actors grouped together in an associative structure, based on a renewed AVERE (Association for the development of transport and electric mobility), which would be the interface of the sector, both to the State and to other institutions and the public [fr

  10. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sustainable Biomass Potentials for Food-Feed-Fuels in the Future

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2012-01-01

    has for many years been forming the basis for the change together with wind and solar energy. These resources still contains great potentials for energy supply chains in increasing areas of Europe and the World. Biomass sustainability issues could be solved by developing the international...

  12. Community action for sustainable housing: Building a low-carbon future

    International Nuclear Information System (INIS)

    Seyfang, Gill

    2010-01-01

    This paper presents a new analytical framework of 'grassroots innovations' which views community-led initiatives for sustainable development as strategic green niches with the potential for wider transformation of mainstream society. This framework is applied to a low-carbon, low-impact, community-based sustainable housing initiative in the USA that pioneers straw bale housing techniques within a strong community-building ethos. The project is evaluated according to New Economics criteria of sustainable consumption, and is found to be successful at localising the construction supply chain, reducing ecological footprints, community-building, enabling collective action and building new institutions and systems of provision around housebuilding. However, viewing it as a strategic niche with aim to influence wider society, it is clear that it faces significant challenges in diffusing its ideas and practices beyond the niche. Its model is not necessarily suitable for scaling up or widespread replication; however, the scope for niche lessons to be adopted by mainstream builders is greater, given a supportive policy environment. Recognising the innovative nature of green niches at the policy level could lead to new approaches to governance of bottom-up community action for sustainable development.

  13. Future energy communities : How community norms shape individual adoption and acceptability of sustainable energy systems

    NARCIS (Netherlands)

    Milovanovic, Marko; Steg, Emmalina; Spears, Russell

    2013-01-01

    Most research on factors influencing the acceptability and adoption of sustainable energy systems is focused on individual-level factors such as personal norms, values, and attitudes. Some researchers have considered the effects of social factors such as descriptive and injunctive norms, but little

  14. Fisher research and the Kings River Sustainable Forest Ecosystem Project: current results and future efforts

    Science.gov (United States)

    Brian B. Boroski; Richard T. Golightly; Amie K. Mazzoni; Kimberly A. Sager

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project was initiated on the Kings River Ranger District of the Sierra National Forest, California, in 1993, with fieldwork beginning in 1994. Knowledge of the ecology of the fisher (Martes pennanti) in the Project area, and in the Sierra Nevada of California in general, is insufficient to develop...

  15. Future GHG emissions more efficiently controlled by land-use policies than by bioenergy sustainability criteria

    NARCIS (Netherlands)

    Bottcher, H.; Frank, S.; Havlik, P.; Elbersen, B.S.

    2013-01-01

    The EU Renewable Energy Directive (RED) targets, implemented to achieve climate change mitigation, affect the level of agricultural production in the EU and in the rest of the world. This article presents an impact assessment of increased biomass supply under different sustainability constraints on

  16. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, Ivan; Pedersen, Allan Schrøder

    2017-01-01

    Energy demand of a transport sector has constantly been increasing in the recent years, consuming one third of the total final energy demand in the European Union (EU) over the last decade. A transition of this sector towards sustainable one is facing many challenges in terms of suitable technolo...

  17. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  18. Investing in Our Children's Future: Building Sustainable Environmental Health Programs in Our Schools

    Science.gov (United States)

    Grevatt, Peter

    2011-01-01

    Providing safe and healthy learning environments for our children is a fundamental way to advance sustainability in our K-12 schools. However, according to reports by the Government Accountability Office, the U.S. Department of Education, the American Federation of Teachers and other organizations, many schools are in poor condition, and many have…

  19. Identifying future research directions for biodiversity, ecosystem services and sustainability : perspectives from early-career researchers

    NARCIS (Netherlands)

    Hossain, S.; Pogue, S.J.; Trenchard, L.; Oudenhoven, van A.P.E.; Washbourne, C-L.; Muiruri, E.W.; Tomczyk, A.M.; García-Llorente, M.; Hale, R.; Hevia, V.; Adams, T.; Tavallali, L.; De, Bell S.; Pye, M.; Resende, F.

    2017-01-01

    We aimed to identify priority research questions in the field of biodiversity, ecosystem services and sustainability (BESS), based on a workshop held during the NRG BESS Conference for Early Career Researchers on BESS, and to compare these to existing horizon scanning exercises. This work highlights

  20. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  1. Sustainable workplaces of the future – European Research Challenges for occupational safety and health

    NARCIS (Netherlands)

    Anonymous

    2012-01-01

    Via a consultation process, the PEROSH members identified what occupational safety and health topics the European institutes specialised in, and what they see as the major trends and future challenges in the world of work and their impact on OSH. A second part of the consultation analysed future

  2. EcoMobility. Changwon 2011 World Congress on Mobility for the Future of Sustainable Cities. A Series of Local Cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    More than 390 participants from around the world gathered in Changwon, Republic of Korea to share ideas on sustainable mobility and discuss creative solutions for the future. On the occasion of this global multi-stakeholder forum ICLEI published a series of local case stories to showcase leading visionaries for EcoMobility. These local case stories provide a deeper insight into the practices of sustainable mobility and serve as a source of inspiration for innovative transport solutions. Included are 14 outstanding examples from: Ahmedabad, India; Bologna, Italy; Bremen, Germany; Curitiba, Brazil; Freiburg, Germany; Gaevle, Sweden; Hangzhou, China; La Rochelle, France; London, UK; Lund, Sweden; Portland, USA; Seoul, Republic of Korea; Stockholm, Sweden; and Vancouver, Canada.

  3. Aligning Forces for Quality multi-stakeholder healthcare alliances: do they have a sustainable future?

    Science.gov (United States)

    Alexander, Jeffrey A; Hearld, Larry R; Wolf, Laura J; Vanderbrink, Jocelyn M

    2016-08-01

    Multi-stakeholder healthcare alliances in the Robert Wood Johnson Foundation's Aligning Forces for Quality (AF4Q) program brought together diverse stakeholders to work collaboratively to improve healthcare in their local communities. This article evaluates how well the AF4Q alliances were collectively positioned to sustain themselves as AF4Q program support ended. This analysis relied on a mixed-methods design using data from a survey of more than 700 participants in 15 of the 16 AF4Q alliances (1 alliance was unable to participate because it was in the process of closing down operations at the time of survey implementation), qualitative interviews with leaders in all 16 of the alliances, and secondary sources. Qualitative analysis of interview data and secondary sources were used to develop a classification of alliance strategic directions after the AF4Q program relative to their strategies during the AF4Q initiative. Descriptive analyses of survey data were conducted in the following areas: (1) alliance priorities for sustainability, (2) alliance positioning for sustainability, and (3) alliance challenges to sustainability. The likelihood of sustainability and the strategic direction of the former AF4Q alliances are both decidedly mixed. A substantial number of alliances are at risk because of an unclear strategic direction following the AF4Q program, poor financial support, and a lack of relevant community leadership. Some have a clear plan to continue on the path they set during the program. Others appear likely to continue to operate, but they plan to do so in a form that differs from the neutral convener multi-stakeholder model emphasized during the AF4Q program as they specialize, make a major shift in focus, develop fee-for-service products, or focus on particular stakeholder groups (ie, employers and providers). In most cases, preserving the organization itself, rather than its programmatic activities from the AF4Q program era, appeared to receive the

  4. Comparative assessment of different energy sources and their potential role in long-term sustainable energy mix

    International Nuclear Information System (INIS)

    Kagramanian, V.S.

    2001-01-01

    In the debate on sustainable energy future, the role of nuclear power is a contentious issue. Many, who are outside of the nuclear community, do not even consider nuclear, because of public concerns on nuclear safety, radioactive waste and non-proliferation issues. For example, the United Nations Development Program, in its document Energy After Rio does not suggest a specific role for nuclear power except in the most doubtful of terms. On the contrary, most nuclear organisations and related industries see nuclear power as the only mature carbon-free electricity generating option that can be deployed even on a much larger scale than today. This paper analyses the potential role of nuclear power in the context of the global sustainable energy future. The fundamental features of sustainable energy development are examined in terms of the following compatibility constraints: Demand driven compatibility; Natural resource compatibility; Environmental compatibility; Geopolitical compatibility; and Economic compatibility

  5. Research, Education and Innovation Bundling Forces towards a Sustainable European Energy Future

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    New technologies and applied innovation in the field of sustainable energy are needed in order to achieve a competitive and climate neutral Europe. As one of the first three Knowledge and Innovation Communities (KIC) of the European Institute of Innovation and Technology (EIT), KIC InnoEnergy invests in innovation projects and new educational programmes and provides business creation service with the purpose of delivering the disruptive technologies and innovations that Europe requires to meet this ambitious goal. Its stakeholders are top European players in the industry, research institutes, universities and business schools. Six regionally bundled European hubs – Barcelona/Lisbon, Grenoble, Eindhoven, Karlsruhe, Stockholm and Krakow - lead one thematic field each in sustainable energy. The thematic fields addressed range from Intelligent “Energy-efficient Residential Buildings and Cities” over “Energy from Chemical Fuels”, “Renewable Energies”, “Clean Coal Technologies” to “European Smar...

  6. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives.

    Science.gov (United States)

    Venkata Mohan, S; Nikhil, G N; Chiranjeevi, P; Nagendranatha Reddy, C; Rohit, M V; Kumar, A Naresh; Sarkar, Omprakash

    2016-09-01

    Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Engineering for Sustainable Development - an Obligatory Skill of the Future Engineer

    DEFF Research Database (Denmark)

    Alting, Leo

    2001-01-01

    , the environmental and the social/societal. The economical responsibility is handled by the well-known and accepted methods/tools/regulations, to handle the environmental responsibility good engineering methods and tools are appearing, but to handle the social/societal responsibility only fragmented and inconsistent...... elements exist. However, one thing is clear - we will have to provide our engineering students with understanding, methods and tools so that they can engineer sustainable solutions - especially engineer environmentally friendlier solutions. The Department of Manufacturing Engineering and the Institute...... for Product Development have actively taken part in the development from awareness of the environmental problems to providing methods and tools to support a sustainable development. The situation today in the education at DTU is shortly mentioned and the education at the Department of Manufacturing...

  8. Dealing with China's future population decline: a proposal for replacing low birth rates with sustainable rates.

    Science.gov (United States)

    Cao, Shixiong; Wang, Xiuqing

    2009-09-01

    Decreasing population levels due to declining birth rates are becoming a potentially serious social problem in developed and rapidly developing countries. China urgently needed to reduce birth rates so that its population would decline to a sustainable level, and the family planning policy designed to achieve this goal has largely succeeded. However, continuing to pursue this policy is leading to serious, unanticipated problems such as a shift in the country's population distribution towards the elderly and increasing difficulty supporting that elderly population. Social and political changes that promoted low birth rates and the lack of effective policies to encourage higher birth rates suggest that mitigating the consequences of the predicted population decline will depend on a revised approach based on achieving sustainable birth rates.

  9. HERITAGE-BASED SUSTAINABILITY IN PORT SAID: Classification of Styles and Future Development

    Directory of Open Access Journals (Sweden)

    Naglaa Megahed

    2014-03-01

    Full Text Available This research is an attempt to specify the attributes in Port Said's built heritage, most particularly that which was founded towards the end of 19th and early of 20th centuries. The city's development not only interacts with European and Islamic architectural characteristics but it also illustrates the story of this development within unique architectural styles. By accurate conservation policies, this built heritage cannot only be saved, but can also help to improve local residents’ quality of life. The research aims to (a outline an approach for exploring the architectural styles of Port Said; (b present the desire of communities to conserve their built heritage through the community participation and (c propose the challenges and opportunities for sustainable development. Finally, conclusions are drawn about the significance of discussing physical characteristics of built heritage together with environmental, economic and social aspects as a main concern of any sustainable development.

  10. Energy for the future - with Risoe from nuclear power to sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Jastrup, M. (ed.)

    2008-07-01

    The title of the book is inspired by Risoe's mission which, at the time of its 50th anniversary, remains uncannily close to that given to Risoe when it was inaugurated in 1958. First and foremost, then as now, Risoe is engaged in the development of tomorrow's energy technologies. In 1958, it was nuclear power. On the occasion of its 50th anniversary, Risoe is working with a palette of sustainable energy sources. (author)

  11. The future of public transport in light of solutions for sustainable transport development

    Directory of Open Access Journals (Sweden)

    Kazimierz LEJDA

    2017-06-01

    Full Text Available The paper highlights possible directions in the development of sustainable public transport solutions. When appropriately identified and implemented, such solutions can contribute to improved quality of urban life by reducing the adverse effects of transport on human health and the natural environment. The paper also raises questions about implementing pedestrian traffic zones, expanding the level of cycling, and introducing a workable parking policy, congestion charges, electromobility and intelligent systems for road traffic management in conurbations.

  12. Using InTeGrate materials to develop interdisciplinary thinking for a sustainable future

    Science.gov (United States)

    Awad, A. A.; Gilbert, L.; Iverson, E. A. R.; Manduca, C. A.; Steer, D. N.

    2017-12-01

    InTeGrate materials focus on societal grand challenges, sustainability, and interdisciplinary problems through developing geoscientific habits of mind, the use of credible data, and systems thinking. The materials are freely available 2-3 week modules and courses that allow instructors to focus on a wide variety of topics from regulating carbon emissions, changing biosphere, and storms and community resilience to environmental justice, ocean sustainability, and humans' dependence on mineral resources, integrating a variety of relevant interdisciplinary activities throughout. Presented with interdisciplinary approaches, students learn with tools to integrate engineering, policy, economics, and social aspects with the science to address the challenges. Students' ability to apply interdisciplinary approaches to address sustainability problems is made visible through the essays they write as a part of the materials assessment. InTeGrate modules have been adopted and implemented by faculty members interested in sustainability themes and innovative pedagogy, and have reached more than 50,000 students in all 50 states, Puerto Rico, India, and Micronesia. Student data were collected from 533 assessment essays in 57 undergraduate classes. The essays required students to describe a global challenge in an interdisciplinary manner through identifying scientific implications, and connecting it to economic, social and policy decisions. Students also completed a second essay assessing their systems thinking ability, a geoscience literacy exam (GLE), and demographic and attitudinal surveys. Scores for students enrolled in classes using InTeGrate materials were compared to scores from students in similar classes that did not use InteGrate materials. The InTeGrate and control groups had equivalent GLE scores and demographic characteristics. Essay scores for students in InTeGrate introductory or majors courses outperformed students in comparable level control courses as measured by

  13. Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges

    OpenAIRE

    Goletti, F.; Gruhn, P.; Yudelman, M.

    2000-01-01

    Metadata only record The challenge for agriculture over the coming decades will be to meet the world's increasing demand for food in a sustainable way. Declining soil fertility and mismanagement of plant nutrients have made this task more difficult. In their 2020 Vision discussion paper, Peter Gruhn, Francesco Goletti, and Montague Yudelman point out that as long as agriculture remains a soil-based industry, major increases in productivity are unlikely to be attained without ensuring that ...

  14. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    Science.gov (United States)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  15. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  16. Integration and Diffusion in Sustainable Development Goals: Learning from the Past, Looking into the Future

    Directory of Open Access Journals (Sweden)

    Norichika Kanie

    2014-04-01

    Full Text Available One of the next major challenges for research and policy on sustainability is setting the post-2015 Development Agenda. This challenge arises as a direct result of the formal ending of the Millennium Development Goals (MDGs in 2015 and as an outcome of the 2012 United Nations Conference on Sustainable Development (Rio+20. The post-2015 Development Agenda is expected to include two agendas: one on human well-being to advance the MDG targets and the other on planetary well-being, which requires a safe “operating space” within the Earth’s life-support system. In contrast to the MDGs, the Sustainable Development Goals (SDGs are meant to apply to both developing and developed countries and create a space for development within the stable functioning of the Earth’s systems. However, what might this all look like? For answers, this paper reviews the achievements and reflections of the MDGs to date and identifies new challenges entailed in the shift of development goals from “millennium” to “sustainable”. While most of the existing studies look at these two sets of issues separately, combining the two reveals two important features of the SDGs. First, SDGs need to integrate both human and planetary well-being in a goal, and second, goals, or sub-goals, need to be formulated at multiple levels, from global to local levels. While the MDGs represented no integrated goals, some of the existing proposals on SDGs include integrated goals. However, our analysis has shown that they do not present the vertical diffusion of goals. Considering both integration and diffusion in the architecture of SDGs is a remaining task.

  17. ECOLOGICAL PROBLEMS OF THE CAUCASUS AND THE AIMS OF MODELING OF SUSTAINABLE FUTURE OF THE REGION

    International Nuclear Information System (INIS)

    Chkhaidze, N.; Tsitskishvili, M.; Tsitskishvili, M.; Japaridze, L.

    2008-01-01

    The ecological crisis, the main alternative of the progress of modern civilization, has posed a number of problems, including educational ones, to the developing world community. In this work, the basic criteria of differentation of ecology from other natural sciences - the existence and the indissoluble unity of ''ecological triad'' are formulated; the basic problems of ecology of the Caucasus are revealed, and hence the basic aims of environmental protection for achievement of sustainable development of the region are formulated. (author)

  18. ANDRA 2009 sustainable development report: managing today to prepare the future

    International Nuclear Information System (INIS)

    2010-01-01

    After a discussion of the development of the taking into account of the sustainable development within the ANDRA (the French national agency for the management of radioactive wastes) and the activity of the ANDRA to limit its environmental footprint, this report presents the various activities of the ANDRA to anticipate these issues (by saving storage space, guaranteeing the storage reversibility of high activity and long life wastes, and keeping the memory of the storage centres), to protect the environment (by controlling waste packages, preserving the environment, and surveying health around storage centres), to cooperate with different institutions and bodies (population, local authorities, associations)

  19. Future climate change challenges to sustainable forest management in the Zambezi basin

    CSIR Research Space (South Africa)

    Muchuru, S

    2015-09-01

    Full Text Available in the drive towards sustainable forest management. Africa should strive towards continued democratization, good governance, regional cooperation and integration to harness the huge opportunities in the forest sector. Bibliography African Development Bank... forestry: a few observed trends and issues to watch Godwin Kowero opinion piece Africa’s institutional capacity to manage its forests August B. Temu a donoR’s peRspecTiVe on FoResT secToR deVelopMenT in aFRica: The case of Finnish development aid Vesa...

  20. Gated communities and urban sustainability: taking a closer look at the future

    CSIR Research Space (South Africa)

    Landman, K

    2000-08-01

    Full Text Available residents and to be detrimental to long-term urban sustainability and political stability. It could just be that the very measure that is implemented to address crime and instability after a while becomes a major source of conflict20. • Urban... impact on the quality of life in an area and on building a liveable and vibrant city. It could also lead to the formation of political pressure groups and attempts to pressurise the local government into making certain decisions. It could not only...

  1. Prediction of future urban growth using CA-Markov for urban sustainability planning of Banda Aceh, Indonesia

    Science.gov (United States)

    Achmad, A.; Irwansyah, M.; Ramli, I.

    2018-03-01

    Banda Aceh experienced rapid growth, both physically, socially, and economically, after the Tsunami that devastated it the end of December in 2004. Hence policy controls are needed to direct the pattern of urban growth to achieve sustainable development for the future. The purpose of this paper is to generate a growth model for Banda Aceh using the CA-Markov process. By knowing the changes in land use between 2005 and 2009 from the results of previous research, simulations for 2013, 2019 and 2029 using the application of Idrisi@Selva. CA-Markov models were prepared to determine the quantity of changes. The simulation results showed that, after the Tsunami, the City of Banda Aceh tended to grow towards the coast. For the control of the LUC, the Banda Aceh City government needs to prepare comprehensive and detailed maps and inventory of LUC for the city to provide basic data and information needed for monitoring and evaluation that can be done effectively and efficiently. An institution for monitoring and evaluation of the urban landscape and the LUC should be formed immediately. This institution could consist of representatives from government, academia, community leaders, the private sector and other experts. The findings from this study can be used to start the monitoring and evaluation of future urban growth. Especially for the coastal areas, the local government should immediately prepare special spatial coastal area plans to control growth in those areas and to ensure that the economic benefits from disaster mitigation and coastal protection are preserved. For the development of the city in the future, it is necessary to achieve a balance between economic development, and social welfare with environmental protection and disaster mitigation. iIt will become a big challenge to achieve sustainable development for the future.

  2. Tree Crops, a Permanent Agriculture: Concepts from the Past for a Sustainable Future

    Directory of Open Access Journals (Sweden)

    C. Reed Funk

    2013-09-01

    Full Text Available J. Russell Smith (1874–1966, a professor of geography at Columbia University, witnessed the devastation of soil erosion during his extensive travels. He first published his landmark text, Tree Crops, A Permanent Agriculture in 1929, in which he described the value of tree crops for producing food and animal feed on sloping, marginal, and rocky soils as a sustainable alternative to annual crop agriculture less suited to these lands. A cornerstone of his thesis was using wide germplasm collection and plant breeding to improve this largely underutilized and genetically unexploited group of plants to develop locally adapted, high-yielding cultivars for the many climatic zones of North America. Smith proposed an establishment of “Institutes of Mountain Agriculture” to undertake this work. For a variety of reasons, though, his ideas were not implemented to any great degree. However, our growing population’s increasing demands on natural resources and the associated environmental degradation necessitate that Smith’s ideas be revisited. In this review, his concepts, supported by modern scientific understanding and advances, are discussed and expanded upon to emphasize their largely overlooked potential to enhance world food and energy security and environmental sustainability. The discussion leads us to propose that his “institutes” be established worldwide and with an expanded scope of work.

  3. The photovoltaic industry on the path to a sustainable future--environmental and occupational health issues.

    Science.gov (United States)

    Bakhiyi, Bouchra; Labrèche, France; Zayed, Joseph

    2014-12-01

    As it supplies solar power, a priori considered harmless for the environment and human health compared with fossil fuels, the photovoltaic (PV) industry seems to contribute optimally to reduce greenhouse gas emissions and, overall, to sustainable development. However, considering the forecast for rapid growth, its use of potentially toxic substances and manufacturing processes presenting health and safety problems may jeopardize its benefits. This paper aims to establish a profile of the PV industry in order to determine current and emerging environmental and health concerns. A review of PV system life cycle assessments, in light of the current state of the industry and its developmental prospects, reveals information deficits concerning some sensitive life cycle indicators and environmental impacts, together with incomplete information on toxicological data and studies of workers' exposure to different chemical and physical hazards. Although solar panel installation is generally considered relatively safe, the occupational health concerns related to the growing number of hazardous materials handled in the PV industry warrants an all-inclusive occupational health and safety approach in order to achieve an optimal equilibrium with sustainability. To prevent eco-health problems from offsetting the benefits currently offered by the PV industry, manufacturers should cooperate actively with workers, researchers and government agencies toward improved and more transparent research, the adoption of specific and stricter regulations, the implementation of preventive risk management of occupational health and safety and, lastly, greater responsibilization toward PV systems from their design until their end of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Colored and agroecological cotton may be a sustainable solution for future textile industry

    Directory of Open Access Journals (Sweden)

    Solimar Garcia

    2015-03-01

    Full Text Available The agribusiness topics ofcolored cottonand fashion do not have any practical scientific literature published on the subject,only when the theme is treated primarily as the aim of sustainability. Colored and agroecological cotton, despite the limitation in color,could become an industrial production with less environmental, impact using less water. The aim of this study was to present the colored fiber and organic cotton, produced by small farmers in the Northeast region of Brazil, as an alternative product to promote sustainability in cotton agribusiness and the textile industry, and to identify the lack of scientific studies related to the theme. Surveys were carried out on available national literature and international database publications on the topic, and the results of research on toxic products used for the production of white cotton and textile industry were presented. Governmental incentives through funding agencies to farmers engaged in this production are suggested, in order to improve production and distribution. It is also necessary to provide the infrastructure necessary for this product to reach the global market, including in cooperation with poorer countries in order to promote changes in environmental impact worldwide in the fashion industry

  5. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    International Nuclear Information System (INIS)

    Weih, Martin; Hoeber, Stefanie; Beyer, Friderike; Fransson, Petra

    2014-01-01

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  6. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Weih, Martin, E-mail: martin.weih@slu.se; Hoeber, Stefanie; Beyer, Friderike [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Fransson, Petra [Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala (Sweden)

    2014-05-22

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  7. Ideals, practices, and future prospects of stakeholder involvement in sustainability science.

    Science.gov (United States)

    Mielke, Jahel; Vermaßen, Hannah; Ellenbeck, Saskia

    2017-12-12

    This paper evaluates current stakeholder involvement (SI) practices in science through a web-based survey among scholars and researchers engaged in sustainability or transition research. It substantiates previous conceptual work with evidence from practice by building on four ideal types of SI in science. The results give an interesting overview of the varied landscape of SI in sustainability science, ranging from the kinds of topics scientists work on with stakeholders, over scientific trade-offs that arise in the field, to improvements scientists wish for. Furthermore, the authors describe a discrepancy between scientists' ideals and practices when working with stakeholders. On the conceptual level, the data reflect that the democratic type of SI is the predominant one concerning questions on the understanding of science, the main goal, the stage of involvement in the research process, and the science-policy interface. The fact that respondents expressed agreement to several types shows they are guided by multiple and partly conflicting ideals when working with stakeholders. We thus conclude that more conceptual exchange between practitioners, as well as more qualitative research on the concepts behind practices, is needed to better understand the stakeholder-scientist nexus. Copyright © 2017 the Author(s). Published by PNAS.

  8. Sustaining a Mature Risk Management Process: Ensuring the International Space Station for a Vibrant Future

    Science.gov (United States)

    Raftery, Michael; Carter-Journet, Katrina

    2013-01-01

    The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.

  9. On the Feasibility of a Timely Transition to a More Sustainable Energy Future

    Directory of Open Access Journals (Sweden)

    Micha Tomkiewicz

    2010-01-01

    Full Text Available The paper uses the framework of the IPAT equation, as applied to CO2 emission, to decompose the various driving forces in the global energy use. Data from recent history are superimposed on projections of SRES IPCC scenarios to determine if enough sustainable capacity can be built to prevent irreversible ecological deterioration. The conclusion from the analysis is that, in agreement with the IPCC 4th report, until about 2030 there are no large differences between a sustainable scenario and the one that resembles “business as usual”. The sharp divergence that follows stems from different estimates in population growth and in the percentage of use of fossil fuels in the total energy mix. Decomposition of alternative energy options indicate that the rate of increase of alternatives such as hydroelectric and nuclear start with a relatively high base but a growth rate too short for major contribution to a timely replacement of fossil fuels while wind and solar starts from a much lower base but rate of growth, if maintained, that can satisfy a timely replacement.

  10. Need for research and development in fusion: Economical energy for a sustainable future with low environmental impact

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Moir, R.W.; Ryutov, D.D.

    1995-01-01

    Fusion, advanced fission, and solar-electric plants are the only unlimited nonfossil options for a sustainable energy future for the world. Fusion poses the only indigenous fuel reserve that will last as long as the earth itself lasts. However, continued innovation and diversity in fusion R ampersand D will be required to meet its economic goal. The long-term nature of fusion research means that the required R ampersand D investment will not come from the private sector. However, once fusion is realized commercially, the dividend for humanity will be profound in terms of the welfare of the global community. We should also not underestimate the huge potential export opportunities that would then open up for industry. Federal energy R ampersand D at nearly 1% of U.S. energy costs is prudent and justified to allow pursuit of all three primary energy options for a sustainable energy future. Multiple parallel paths are essential to ensure success. The projected timescale for significant shortfalls in world energy supply to become apparent is nearly 30 to 40 yr depending on assumptions. The time to develop fusion from near-term R ampersand D through significant commercial market penetration is at least of the same order, so its development must not be delayed. 6 refs., 2 figs

  11. Are the Planning of the Sustainable Future to be left for the chemical engineers?

    DEFF Research Database (Denmark)

    Elle, Morten

    1997-01-01

    The paper discuss the need for new ways of planning and managing the environment. Traditional spatial planning has been reduced to a question of putting colours on maps, there are a need for the planning to restrengthen it's position and gain a future in the planning of the city of tomorrow....

  12. Debating Futures in Flemish Deaf Parliament: Deaf Epistemologies, Participatory Citizenship, and Sustainable Development

    Science.gov (United States)

    De Clerck, Goedele A.M.

    2017-01-01

    More than 350 deaf/sign language community members gathered at six local deaf clubs in Flanders in 2014 to share perspectives about the future and formulate proposals for policymaking. This initiative, Flemish Deaf Parliament, serves as a platform of deliberative democracy developed through cooperation between Ghent University and the Flemish…

  13. Planning for an uncertain future: Restoration to mitigate water scarcity and sustain carbon sequestration

    Science.gov (United States)

    Steven T. Brantley; James M. Vose; David N. Wear; Larry Band

    2018-01-01

    The desired future conditions of longleaf pine (Pinus palustris) can be described by ecosystem structural characteristics as well as by the provision of ecosystem services. Although the desired structural characteristics of restored longleaf pine ecosystems have been described at length, these characteristics deserve a brief review here because...

  14. Innovative Design and Manufacture of “S” Type Carbon-Free Cars

    Directory of Open Access Journals (Sweden)

    Liu Jianwei

    2017-01-01

    Full Text Available Based on the new rules of the 4th national college students’ engineering and comprehensive training ability competition, established three-dimensional model using software UG NX, designed a kind of “S” type carbon-free,it can adapt to various poles’ distance and easy assembling and debugging.Focus on variable pitch mechanism and steering mechanism’s designing, and by motion simulation verify its rationality, the simulation analysis showed the car trajectory accords with a requirement. Finally,processed parts,assembled and debugged of the cars.Practice has proved that the design of the car conform to the requirements of the game, is reasonable, assembling outfit is convenient, easy to debug, can meet the requirements of a variety of stem from, smooth finish and get good grades.

  15. Education in Environmental Sustainable Architecture for the Future?  - For a Joint Climate Action

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann; Eriksen, Kaare; Petersen, Mads Dines

    2009-01-01

    will present a teaching method used for the Architecture specialization at the Architecture & Design education. It is tailored to deal with current societal/technological, environmental and sustainable issues. In terms of both research and teaching, Aalborg University utilizes an interdisciplinary approach......&D) as an engineering education with specialization in Architecture. Since 2005 the master has been offered in English. The curriculum is organized so that lecturers of architecture and design from the new and more aesthetically oriented Department of Architecture & Design would teach the core competencies...... and architecture in a more complex and holistic design process where the integration of both technical and aesthetic aspects is important. One of the major obstacles in today's education at A&D is the lack of tools, which allows the designers to use their knowledge about how to reduce energy consumption...

  16. “Triple Bottom Line” as “Sustainable Corporate Performance”: A Proposition for the Future

    Directory of Open Access Journals (Sweden)

    Hasan Fauzi

    2010-05-01

    Full Text Available Based upon a review of corporate performance, corporate financial performance and corporate social performance, we propose that the concept of “triple bottom line” (TBL as “sustainable corporate performance” (SCP should consist of three measurement elements, namely: (i financial, (ii social and (iii environmental. TBL as SCP is proposed to be derived from the interface between them. We also propose that the content of each of these measurement elements may vary across contexts and over time. Furthermore, TBL as SCR should be interpreted to be a relative concept that is dynamic and iterative. Continuous monitoring needs to be performed, adapting the content of the measurement elements to changes that evolve across contexts and over time in the marketplace and society. TBL as SCP may be seen as a function of time and context.

  17. Future of keeping pet reptiles and amphibians: towards integrating animal welfare, human health and environmental sustainability.

    Science.gov (United States)

    Pasmans, Frank; Bogaerts, Serge; Braeckman, Johan; Cunningham, Andrew A; Hellebuyck, Tom; Griffiths, Richard A; Sparreboom, Max; Schmidt, Benedikt R; Martel, An

    2017-10-28

    The keeping of exotic pets is currently under debate and governments of several countries are increasingly exploring the regulation, or even the banning, of exotic pet keeping. Major concerns are issues of public health and safety, animal welfare and biodiversity conservation. The keeping of reptiles and amphibians in captivity encompasses all the potential issues identified with keeping exotic pets, and many of those relating to traditional domestic pets. Within the context of risks posed by pets in general, the authors argue for the responsible and sustainable keeping of reptile and amphibian pets by private persons, based on scientific evidence and on the authors' own expertise (veterinary medicine, captive husbandry, conservation biology). © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Water resources and the historic wells of Barbuda: tradition, heritage and hope for a sustainable future

    Directory of Open Access Journals (Sweden)

    Rebecca Boger

    2014-11-01

    Full Text Available The island of Barbuda has a relatively unique history, land tenure and geography. Unlike its Caribbean counterparts, the island is not suited to large-scale agriculture due to its arid climate and relatively thin soils. Instead, the enslaved and eventually free people of Barbuda developed a complex herding ecology centered on common land ownership. As a result, carefully designed historic wells are strategically located around the island. With the challenges brought about by climate change, an interdisciplinary, international team led by the Barbuda Research Complex is investigating the state of existing water and food resources and examining how the availability and quality of water resources have influenced local cultural practices. Barbudans and international scientists are working together to improve their resilience and live more sustainably in this new era of climatic adversity.

  19. The Future of the Mississippi Delta: Shifting Baselines, Diminishing Resilience, and Growing Non-Sustainability

    Science.gov (United States)

    Day, J.

    2017-12-01

    Ecosystems and human communities of the Mississippi delta developed with predictable basin inputs, stable sea level, and as an open system with a high degree of interaction among drainage basin inputs, deltaic plain, and the coastal sea. Human activity changed altered the coast and lowered predictability. Management has become very energy intensive and dependent on cheap resources with more hard engineering and less ecological engineering. Pervasive alteration of the basin and delta and global change have altered the baseline and change is accelerating. Climate change projections include not only sea-level rise, but also more stronger hurricanes, increased large river floods, and more intense rainfall events and droughts. A sustainable Mississippi is outside of the boundaries of the current CMP.

  20. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    Science.gov (United States)

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism.

  1. RTE - Activity and sustainable development report 2012 - In line with the future

    International Nuclear Information System (INIS)

    2013-01-01

    RTE, an independent subsidiary of EDF, is the French electricity transmission system operator. It is a public service company responsible for operating, maintaining and developing the high and extra high voltage network. It guarantees the reliability and proper operation of the power network. RTE transports electricity between electricity suppliers (French and European) and consumers, whether they are electricity distributors or industrial consumers directly connected to the transmission system. The mission of RTE is to balance the electricity supply and demand in real time. This publication gathers in a single document the 2012 Activity and Sustainable development report of RTE, the Management report with the consolidated financial statements, and the Report from the chairman of the supervisory board

  2. Diversifying bio-petro fuel sources for future energy sustainability and its challenges

    Science.gov (United States)

    Othman, M. R.; Helwani, Z.; Idris, I.

    2018-04-01

    Petroleum has been important in the energy industry since 19th century when the refining of paraffin from crude oil began. The industry recently appears to be in a downtown and fragile moment despite the price of oil is slowly rising. Renewable alternatives such as biofuels have gained increasing traction while petroleum fuel seemingly concedes to bio-fuels due to the rising public concern on the environment and stricter emission regulations. To be a strategic fuel in the energy security matrix, both fossil and bio-fuels options should be considered. However, the use of bio-fuels to achieve a degree of carbon neutrality is not without challenges. Among the challenges are land development and socio-political issue, carbon neutrality due to ILUC, high 2G bio-fuel feedstock and production cost, competing technology from electric vehicles and the impending fourth industrial revolution, NOx emissions and variation in biodiesel quality. This paper briefly reviews the potential of fuels source diversification and the challenges and how they can raise up to the challenges in order to be sustainable and attractive. In order to achieve this objective, first carbon credit through carbon trading needs to continue to stabilize the energy price. Second, 1G bio-fuel needs to forgo the use of natural, peat forest, rubber estate since these are an effective carbon sink and oxygen source. Third, advanced bio-fuels with high yield, process economics and sustainability need to be innovated. Fourth, the quality and standard bio-fuel that reduces NOx emission need to be improved. Finally and most importantly, carbon capture technology needs to be deployed immediately in fossil fuel power plants.

  3. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    Science.gov (United States)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  4. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    International Nuclear Information System (INIS)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-01-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  5. Quality of Cardiac Care in Canada: Recommendations for Building a Sustainable Future.

    Science.gov (United States)

    Young, Courtney; Lambert, Laurie; Abel, James; O'Neill, Blair J

    2018-06-01

    Cardiovascular (CV) disease continues to present a significant disease and economic burden in Canada. To improve the quality of care and ensure sustainability of services, a national quality improvement initiative is required. The purpose of this analysis was to review the evidence for public reporting (PR) and external benchmarking (EB) to improve patient outcomes, and to recommend a strategy to improve CV care in Canada. To incorporate recent literature, the Canadian Cardiovascular Society (CCS) commissioned the Institute of Health Economics to provide a rapid update on the literature of PR and EB. The review showed that EB is more likely to promote positive effects, such as improved mortality, morbidity, and evidence-based clinical practice, and to limit negative effects, such as access restrictions or unintended provider behaviour associated with some forms of "top-down" PR. On the basis of these findings, this we recommend the following: (1) secure funding for the provincial collection of CV quality indicators and the creation of annual National CV Quality Reports; (2) enhance the culture of using CV quality indicator data for continuous quality improvement and opportunities for national or regional EB and sharing best practices; and (3) implement ongoing evaluation and revision of CCS clinical practice guidelines incorporating key quality indicators. This is already under way to a limited extent by the CCS with its Quality Project, but intentional, sustained support needs to be secured to enhance this ongoing effort and improve the quality of CV care for all Canadians. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  6. InTeGrate: Interdisciplinary Teaching about the Earth for a Sustainable Future

    Science.gov (United States)

    Manduca, C. A.

    2017-12-01

    InTeGrate supports integrated interdisciplinary learning about resource and environmental issues across the undergraduate curriculum to create a sustainable and just civilization. The project has developed teaching materials and examples of their use in programs and is currently engaged in a suite of activities that support use of these resources in improving undergraduate Earth education. Thirty-three sets of teaching materials supporting instruction over time periods of 2 weeks to a full semester have been developed by teams of faculty and peer-reviewed to ensure strong research-based pedagogic design and attention to five design principles: 1) address one or more grand challenges involving the Earth and society, 2) develop student ability to address interdisciplinary problems, 3) improve student understanding of the nature and methods of science and developing geoscientific habits of mind, 4) make use of authentic and credible science data to learn central concepts in the context of scientific methods of inquiry, and, 5) incorporate systems thinking. They have been tested in a wide variety of institutional and disciplinary settings and are documented with instructor notes describing adaptation for specific settings. All published materials passed a review for scientific accuracy. Sixteen program models demonstrate strategies for strengthening learning about Earth and sustainability at scales ranging from a department to an interinstitutional collaboration. These examples document the use of InTeGrate resources in the development and evaluation of these programs. A synthesis of lessons learned by these projects addresses strategies for teaching about the Earth across the curriculum. InTeGrate is currently supporting use of ideas and resources developed over the past six years of project work through a webinar series, workshops at professional society meetings, a traveling workshop program for departments and regions, a set of online learning communities and

  7. Addressing the security of a future sustainable power system: The Danish SOSPO project

    DEFF Research Database (Denmark)

    Yang, Guangya; Jóhannsson, Hjörtur; Lind, Morten

    2012-01-01

    evaluated to secure the operation from both transmission and distribution levels. The Danish SOSPO project is launched from 2012 targeting at the system security assessment in the control room for the future scenarios. Methods will be developed in this project to counteract with the future challenges......Current power systems have been undergoing in depth changes by the increasing use of renewable generations. At one hand, the grid is progressively more interconnected in order to collect the renewable generation from geographically dispersed places meanwhile reduce the risks of intermittency......; on the other, the power is increasingly generated at relative low voltage networks which in turn gives rise to new challenges in the conventional system design. The high governmental objective of greenhouse gas reduction provokes accelerating adoptation of the renewables. The effect of this has to be carefully...

  8. Strengthening Sustainability and Resiliency of a Future Force, Phase 1. FY2010-2011 Summer Study

    Science.gov (United States)

    2011-03-01

    Resiliency of a Future Force: Phase I Interim Report - 48 Please Enter Custom Water factor adjustments below: m Unit Level* (Gat/Ptisan/ Dti ...cost of mov- ing the consumables in terms of the assets required to move the commodity and the security Intra Theater Resupply: 4 Legs Army...Expeditionary Force-Logistics ResupplyDetails Legl Leg 2 Leg 3 Leg 4 Resupply Trip Legs Super FOB (Div)to Base Camp (bde) Base Camp (Bde) to FOB (Bn

  9. Range of Variability in Southern Coastal Plain Forests: Its Historical, Contemporary, and Future Role in Sustaining Biodiversity

    Directory of Open Access Journals (Sweden)

    Robert J. Mitchell

    2009-06-01

    Full Text Available Historical range of variation (HRV has been used as a conceptual tool to determine appropriate management actions to sustain or restore diversity of ecological systems. This concept has come into question for both biological and social considerations, and the southeastern United States is a good model system to test its utility. Southeastern Coastal Plain upland pine savannas and woodlands and their associated wetlands are among the most diverse communities in temperate North America, having both high levels of species richness and large numbers of endemic flora and fauna. However, this diversity is intimately linked with disturbance regimes. Maintaining frequent fire, varied in season based on changing management objectives through time, is the most important management tool for sustaining biodiversity. Moreover, the landscape has been molded by a long history of intense land use that has altered both the biological and the social landscape in which management occurs, and threatens the native diversity. Management must anticipate likely trends and adopt strategies that provide flexibility for managers to deal with the future, both socially and ecologically. In the Southeast, the most dominant trend is associated with urbanization and forest fragmentation, which results from urban sprawl. This issue joins others - fire and smoke, logging, access, in-holdings, and the uncertainty of scientific models, for example - as matters of major concern to the public. Ultimately, it is the public that eventually grants or withholds social permission to manage. We explore, here, the potential and the limitations for how history can inform future management. Rather than being used as a specific management tool, we find that one purpose for which HRV may be well suited is serving as a broad communication framework to help diverse publics understand the concept of landscape dynamics. This approach would provide the fundamental background material for

  10. Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk

    Directory of Open Access Journals (Sweden)

    McEwen Lindsey

    2016-01-01

    Full Text Available Shifts to devolved flood risk management in the UK pose questions about how the changing role of floodplain residents in community-led adaptation planning can be supported and strengthened. This paper shares insights from an interdisciplinary research project that has proposed the concept of ‘sustainable flood memory’ in the context of effective flood risk management. The research aimed to increase understanding of whether and how flood memories from the UK Summer 2007 extreme floods provide a platform for developing lay knowledges and flood resilience. The project investigated what factors link flood memory and lay knowledges of flooding, and how these connect and disconnect during and after flood events. In particular, and relation to flood governance directions, we sought to explore how such memories might play a part in individual and community resilience. The research presented here explores some key themes drawn from semi-structured interviews with floodplain residents with recent flood experiences in contrasting demographic and physical settings in the lower River Severn catchment. These include changing practices in making flood memories and materialising flood knowledge and the roles of active remembering and active forgetting.

  11. Selecting future electricity generation options in conformity with sustainable development objectives

    International Nuclear Information System (INIS)

    Juhn, P.E.; Rogner, H.-H.; Khan, A.M.; Vladu, I.F.

    2000-01-01

    The complexity facing today's energy planners and decision-makers, particularly in the electricity sector, has increased. They must take into account many elements in selecting technologies and strategies that will impact near term energy development and applications in their countries. While costs remain a key factor, tradeoffs between the demands of environmental protection and economic development will have to be made. This fact, together with the needs of many countries to define their energy and electricity programmes in a sustainable manner, has resulted in a growing interest in the application of improved data, tools and techniques for comparative assessment of different electricity generation options, particularly from an environmental and human health viewpoint. Although global emissions of greenhouse gases and other pollutants, e.g. SO 2 , NO x and particulate, must be reduced, the reality today is that these emissions are increasing and are expected to continue to increase. In examining the air pollutants, as well as water effluents and solid waste generated by electricity production, it is necessary to assess the full energy chain from fuel extraction to waste disposal, including the production of construction and auxiliary materials. The paper describes this concept and illustrates its implementation for assessing and comparing electricity generation costs, emissions, wastes and other environmental burdens from different energy sources. (author)

  12. The Sustained Influence of an Error on Future Decision-Making.

    Science.gov (United States)

    Schiffler, Björn C; Bengtsson, Sara L; Lundqvist, Daniel

    2017-01-01

    Post-error slowing (PES) is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants' response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters' role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  13. The Sustained Influence of an Error on Future Decision-Making

    Directory of Open Access Journals (Sweden)

    Björn C. Schiffler

    2017-06-01

    Full Text Available Post-error slowing (PES is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants’ response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters’ role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  14. Energy Efficiency and Renewable Energy: the key factors for a sustainable future

    Directory of Open Access Journals (Sweden)

    Wolfgang Streicher

    2018-06-01

    Full Text Available within 1.5 to 2°C until 2050 have been taken. The resolution of COP21 in Paris to keep the temperature increase well below 2°C is signed already by 172 of 197 parties (http://unfccc.int/paris_agreement/items/9485.php.One very important step to reach these goals is to develop new ideas and implement existing technologies for energy efficiency and renewable energies in a broad range. This will also bring down the costs for the energy system transformation. The limitation of renewable energies in regions with high population density will lead, on the on the one hand, to large energy distribution networks causing new economic and political dependencies between countries, and, on the other hand, to more efficient technologies and systems like energy efficient buildings (for hot and cold climates, energy efficient transportation systems like more public transportation, smaller and electric (or hydrogen driven cars, and more efficient industrial processes.Knowledge generation and distribution as done in the International Journal on Renewable Energy and Sustainable Development plays an important role for this further development.

  15. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    Science.gov (United States)

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

  16. Wild Carpathia Future Development: From Illegal Deforestation to ORV Sustainable Recreation

    Directory of Open Access Journals (Sweden)

    Mihai Voda

    2017-12-01

    Full Text Available Romanian Wild Carpathia constitutes the ultimate pristine wilderness of the old European continent. Carpathian Mountains landscape experiences and outdoor recreation represents quite unique cultural ecosystem services. The new annotations to the Forest Law are restricting any public access in the woods without authorities’ pre-approval for organised sport, leisure and tourism activities. However, off road vehicle (ORV recreation is a popular activity and a growing transparency concern of National Forest Administration Authorities that is not managed accordingly. Here we show that our ORV recreation frame model can securely allow public access and protect all Romanian mountains. Our results demonstrate how growing ORV recreation popularity can be used in an honest and open way if it is well organized and controlled. We anticipate our assay to be a starting point for a regional and national forest administration sustainable development plan. Furthermore, stopping illegal forest activities is a major target of the anti-logging movement. A well-defined assay for the ORV recreation frame model will be relevant for such developments.

  17. Human capacity and institutional development towards a sustainable energy future in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Mulugetta, Yacob [Centre for Environmental Strategy, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2008-06-15

    The overwhelming majority of Ethiopians lack access to modern energy fuels such as electricity and liquid petroleum gas, still locked into a biomass-based energy system. As such, women and children in rural areas spend long hours of productive time and labour on woodfuel collection and the urban poor spend a sizeable proportion of their income to meet their daily energy needs. Electricity, which is at the disposal of every household in Western Europe is largely restricted to the urban centres in Ethiopia, hence indicating a strong correlation between lack of access to modern energy and poverty. The paper will analyse the reasons why Ethiopia is lagging behind the rest of the developing world in setting up a sustainable energy pathway. As such, the performance and 'mind-set' of various 'agencies', i.e. higher education system, government, energy authorities, donor agencies, etc. will be reviewed. The paper refers to a range of cases in to illustrate the challenge of building the mechanisms that allow energy technologies to be successfully disseminated, supported and integrated into rural livelihoods. The paper will provide a series of observations and recommendations to ameliorate the current state-of-affairs and ways through which the various actors (community-based organisations, government at various levels and to a lesser degree, donors) can contribute towards that end. (author)

  18. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering

    Directory of Open Access Journals (Sweden)

    Ilhan Chang

    2016-03-01

    Full Text Available Soil treatment and improvement is commonly performed in the field of geotechnical engineering. Methods and materials to achieve this such as soil stabilization and mixing with cementitious binders have been utilized in engineered soil applications since the beginning of human civilization. Demand for environment-friendly and sustainable alternatives is currently rising. Since cement, the most commonly applied and effective soil treatment material, is responsible for heavy greenhouse gas emissions, alternatives such as geosynthetics, chemical polymers, geopolymers, microbial induction, and biopolymers are being actively studied. This study provides an overall review of the recent applications of biopolymers in geotechnical engineering. Biopolymers are microbially induced polymers that are high-tensile, innocuous, and eco-friendly. Soil–biopolymer interactions and related soil strengthening mechanisms are discussed in the context of recent experimental and microscopic studies. In addition, the economic feasibility of biopolymer implementation in the field is analyzed in comparison to ordinary cement, from environmental perspectives. Findings from this study demonstrate that biopolymers have strong potential to replace cement as a soil treatment material within the context of environment-friendly construction and development. Moreover, continuing research is suggested to ensure performance in terms of practical implementation, reliability, and durability of in situ biopolymer applications for geotechnical engineering purposes.

  19. From Environmental Connectedness to Sustainable Futures: Topophilia and Human Affiliation with Nature

    Directory of Open Access Journals (Sweden)

    Thomas Beery

    2015-07-01

    Full Text Available Human affiliation with nonhuman nature is an important dimension of environmental concern and support for pro-environmental attitudes. A significant theory of human connectedness with nature, the Biophilia Hypothesis, suggests that there exists a genetically based inclination for human affiliation with the biological world. Both support and challenge to the Biophilia Hypothesis are abundant in the literature of environmental psychology. One response that both challenges and builds upon the Biophilia Hypothesis is the Topophilia Hypothesis. The Topophilia Hypothesis has extended the ideas of biophilia to incorporate a broader conception of nonhuman nature and a co-evolutionary theory of genetic response and cultural learning. While the Topophilia Hypothesis is a new idea, it is built upon long-standing scholarship from humanistic geography and theories in human evolution. The Topophilia Hypothesis expands previous theory and provides a multidisciplinary consideration of how biological selection and cultural learning may have interacted during human evolution to promote adaptive mechanisms for human affiliation with nonhuman nature via specific place attachment. Support for this possible co-evolutionary foundation for place-based human affiliation with nonhuman nature is explored from multiple vantage points. We raise the question of whether this affiliation may have implications for multifunctional landscape management. Ultimately, we propose that nurturing potential topophilic tendencies may be a useful method to promote sustainable efforts at the local level with implications for the global.

  20. Science for Today's Energy Challenges: Accelerating Progress for a Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    With a growing population and energy demand in the world, there is a pressing need for research to create secure and accessible energy options with greatly reduced emissions of greenhouse gases. While we work to deploy the clean and efficient technologies that we already have--which will be urgent for the coming decades--we must also work to develop the science for the technologies of the future. This brochure gives examples of some of the most promising developments, and it provides 'snapshots' of cutting edge work of scientists in the field. The areas of greatest promise include biochemistry, nanotechnology, supraconductivity, electrophysics and computing. There are many others.

  1. A simulation study of capacity utilization to predict future capacity for manufacturing system sustainability

    Science.gov (United States)

    Rimo, Tan Hauw Sen; Chai Tin, Ong

    2017-12-01

    Capacity utilization (CU) measurement is an important task in a manufacturing system, especially in make-to-order (MTO) type manufacturing system with product customization, in predicting capacity to meet future demand. A stochastic discrete-event simulation is developed using ARENA software to determine CU and capacity gap (CG) in short run production function. This study focused on machinery breakdown and product defective rate as random variables in the simulation. The study found that the manufacturing system run in 68.01% CU and 31.99% CG. It is revealed that machinery breakdown and product defective rate have a direct relationship with CU. By improving product defective rate into zero defect, manufacturing system can improve CU up to 73.56% and CG decrease to 26.44%. While improving machinery breakdown into zero breakdowns will improve CU up to 93.99% and the CG decrease to 6.01%. This study helps operation level to study CU using “what-if” analysis in order to meet future demand in more practical and easier method by using simulation approach. Further study is recommended by including other random variables that affect CU to make the simulation closer with the real-life situation for a better decision.

  2. Comparative analysis for energy production processes (EPPs): Sustainable energy futures for Turkey

    International Nuclear Information System (INIS)

    Talinli, Ilhan; Topuz, Emel; Uygar Akbay, Mehmet

    2010-01-01

    This study presents a comparative analysis of three different energy production process (EPP) scenarios for Turkey. Main goal is to incorporate the prioritization criteria for the assessment of various energy policies for power alternatives, and evaluating these policies against these criteria. The three types of EPPs reviewed in this study are: electricity production from wind farms in the future, existing coal-based thermal power plants and planned nuclear power plants. The analytical hierarchy process (AHP) is utilized to assess the main and sub-factors of EPPs. Main factors such as economic, technical, social and environmental are assigned in first level of the AHP. The importance weights of factors are produced and priority values with realistic numbers are obtained using Fuzzy-AHP Chang's Model. Priority value for wind energy was determined as two times higher than the others when making the ultimate decision. On aggregate, importance weights of environmental (0.68) and social (0.69) factors make wind power leader. Sub-factors such as public acceptance, waste-emission and environmental impacts cause both nuclear and thermal power to have the lowest priority numbers. Additionally, the CO 2 emissions trade was determined to be a very important criterion associated with both economic and environmental factors according to Kyoto Protocol. This study concludes that Turkey's existing thermal power stations should gradually be substituted by renewable energy options according to a schedule of Turkish energy policies in future.

  3. Debating the future of comfort: environmental sustainability, energy consumption and the indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    Chappells, H.; Shove, E.

    2005-02-01

    Vast quantities of energy are consumed in heating and cooling to provide what are now regarded as acceptable standards of thermal comfort. In the UK as in a number of other countries, there is a real danger that responses in anticipation of global warming and climate change - including growing reliance on air-conditioning - will increase energy demand and CO{sub 2} emissions even further. This is an appropriate moment to reflect on the history and future of comfort, both as an idea and as a material reality. Based on interviews and discussions with UK policy makers and building practitioners involved in specifying and constructing what will become the indoor environments of the future, four possible scenarios are identified each with different implications for energy and resource consumption. By actively promoting debate about the indoor environment and associated ways of life, it may yet be possible to avoid becoming locked into social and technical trajectories that are ultimately unsustainable. The aim of this paper is to inspire and initiate just such a discussion through demonstrating that comfort is a highly negotiable socio-cultural construct. (author)

  4. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    International Nuclear Information System (INIS)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  5. Increasing Social Awareness and Professional Collaboration in Architectural Education Towards a Sustainable and Disaster - Free Future

    Directory of Open Access Journals (Sweden)

    Cengiz Özmen

    2013-12-01

    Full Text Available The aim of this study is to explore ways of increasing the social and professional awareness of students of architecture to educate a new generation of architects who are familiar with the concepts of social responsibility, professional collaboration , sustainable development and disaster mitigation. Turkey experiences a rapid social change due to the urban regeneration, population movements, environmental changes, new technologies and professional diversification. These phenomenon affect all aspects o f life. This study explores the possibilities for applying new methods of teaching in schools of architecture to train a generation of architects who will be in tune with this new, ever - changing socio - cultural environment in Turkey. A study lasting one edu cational term of 14 weeks was conducted on a group of 15 second year students of architecture. A structural design course which previously had a purely theoretical and mathematical approcah to the subject matter was altered to contain background informatio n regarding social context such as the photos, videos and narratives of earthquake affected areas of Turkey. This was done to introduce the students with the reality of the built environment and professional life in Turkey. Additionally small - scale applied projects were given as semester tasks to the students where they can experience a scaled but realistic application of the theoretical knowledge into reality. These two approaches were supplemented with theoretical knowledge to prepare the students for pro fessional life in a realistic manner. A sudden increase in student attention and participation to the course was observed both in matters concrening the professional application and social context of their architectural projects. These findings were consis tent with a previous study conducted by the author. The findings of this experimental application have resulted in a revision of the educational curriculum concerning the structural

  6. Urban Stormwater Quality: Linking Pesticide Variability To Our Sustainable Water Future

    Science.gov (United States)

    Rippy, M.; Deletic, A.; Gernjak, W.

    2015-12-01

    Climate change and global population growth demand creative, multidisciplinary, and multi-benefit approaches for sustaining adequate fresh water resources and protecting ecosystem health. Currently, a driving factor of aquatic ecosystem degradation (stormwater) is also one of the largest untapped urban freshwater resources. This suggests that ecosystem protection and potable water security might both be achieved via treating and capturing stormwater for human use (e.g., potable substitution). The viability of such a scheme, however, depends on 1) initial stormwater quality (e.g., the contaminants present and their associated human/environmental health risks), 2) the spatial and temporal variability of contaminants in stormwater, and 3) the capacity of existing technologies to treat those contaminants to fit for purpose standards. Here we present results from a four year study of urban stormwater conducted across ten catchments and four states in Australia that addresses these three issues relative to stormwater pesticides. In total, 19 pesticides were detected across all sites and times. In general, pesticide concentrations were lower than has been reported in other countries, including the United States, Canada and Europe. This is reflected in few exceedences of public health (< 1%) and aquatic ecosystem standards (0% for invertebrates and fish, < 1% for algae and plants). Interestingly, pesticide patterns were found to be stable across seasons, and years, but varied across catchments. These catchment-specific fingerprints may reflect preferential commercial product use, as they map closely to co-occurrence patterns in registered Australian products. Importantly, the presence of catchment-specific pesticide variability has clear management implications; namely, urban stormwater must be managed at the catchment level and target local contaminant suites in order to best achieve desired human use and environmental protection standards.

  7. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2009-08-15

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  8. Sustain ability, energy and climate change, future scenarios; Sostenibilidad, energia y cambio climatico, escenarios con futuro

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Beltran, D.

    2009-07-01

    The permanent social and environmental crisis and the nowadays economic and financial ones add only to the reasons for a change in the development models at all levels. The article reviews the preconditions for change at global level, the EU Agenda for Change to be reinforced and above all implemented at EU level, so that the EU can show the way and lead the Change. Also analyses the scenarios with a future for Spain, so that Spain can participate in both changes and act as a showcase , participating and even leading this third industrial revolution and obtaining the competitive advantages of the pioneers, considering in particular the potentials in renewable energy sources and the need, in any case, of a radical change in Spain's ongoing development model. (Author)

  9. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.

    Science.gov (United States)

    Xue, Yan; Mou, Zihao; Xiao, Huining

    2017-10-12

    Nanocellulose, extracted from the most abundant biomass material cellulose, has proved to be an environmentally friendly material with excellent mechanical performance owing to its unique nano-scaled structure, and has been used in a variety of applications as engineering and functional materials. The great biocompatibility and biodegradability, in particular, render nanocellulose promising in biomedical applications. In this review, the structure, treatment technology and properties of three different nanocellulose categories, i.e., nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC) and bacterial nanocellulose (BNC), are introduced and compared. The cytotoxicity, biocompatibility and frontier applications in biomedicine of the three nanocellulose categories were the focus and are detailed in each section. Future prospects concerning the cytotoxicity, applications and industrial production of nanocellulose are also discussed in the last section.

  10. Securing a port's future through Circular Economy: Experiences from the Port of Gävle in contributing to sustainability.

    Science.gov (United States)

    Carpenter, Angela; Lozano, Rodrigo; Sammalisto, Kaisu; Astner, Linda

    2018-03-01

    Ports are an important player in the world, due to their role in global production and distributions systems. They are major intermodal transport hubs, linking the sea to the land. For all ports, a key requirement for commercial and economic viability is to retain ships using them and to remain accessible to those ships. Ports need to find approaches to help them remain open. They must ensure their continued economic viability. At the same time, they face increasing pressure to become more environmentally and socially conscious. This paper examines the approach taken by the Port of Gävle, Sweden, which used contaminated dredged materials to create new land using principles of Circular Economy. The paper demonstrates that using Circular Economy principles can be a viable way of securing a port's future and contributing to its sustainability, and that of the city/region where it operates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Banking or Bankrupting: Strategies for Sustaining the Economic Future of Public Cord Blood Banks

    Science.gov (United States)

    Magalon, Jeremy; Maiers, Martin; Kurtzberg, Joanne; Navarrete, Cristina; Rubinstein, Pablo; Brown, Colin; Schramm, Catherine; Larghero, Jérome; Katsahian, Sandrine; Chabannon, Christian; Picard, Christophe; Platz, Alexander; Schmidt, Alexander; Katz, Gregory

    2015-01-01

    Background Cord blood is an important source of stem cells. However, nearly 90% of public cord blood banks have declared that they are struggling to maintain their financial sustainability and avoid bankruptcy. The objective of this study is to evaluate how characteristics of cord blood units influence their utilization, then use this information to model the economic viability and therapeutic value of different banking strategies. Methods Retrospective analysis of cord blood data registered between January 1st, 2009 and December 31st, 2011 in Bone Marrow Donor Worldwide. Data were collected from four public banks in France, Germany and the USA. Samples were eligible for inclusion in the analysis if data on cord blood and maternal HLA typing and biological characteristics after processing were available (total nucleated and CD34+ cell counts). 9,396 banked cord blood units were analyzed, of which 5,815 were Caucasian in origin. A multivariate logistic regression model assessed the influence of three parameters on the CBU utilization rate: ethnic background, total nucleated and CD34+ cell counts. From this model, we elaborated a Utilization Score reflecting the probability of transplantation for each cord blood unit. We stratified three Utilization Score thresholds representing four different banking strategies, from the least selective (scenario A) to the most selective (scenario D). We measured the cost-effectiveness ratio for each strategy by comparing performance in terms of number of transplanted cord blood units and level of financial deficit. Results When comparing inputs and outputs over three years, Scenario A represented the most extreme case as it delivered the highest therapeutic value for patients (284 CBUs transplanted) along with the highest financial deficit (USD 5.89 million). We found that scenario C resulted in 219 CBUs transplanted with a limited deficit (USD 0.98 million) that charities and public health could realistically finance over the long

  12. Banking or Bankrupting: Strategies for Sustaining the Economic Future of Public Cord Blood Banks.

    Directory of Open Access Journals (Sweden)

    Jeremy Magalon

    Full Text Available Cord blood is an important source of stem cells. However, nearly 90% of public cord blood banks have declared that they are struggling to maintain their financial sustainability and avoid bankruptcy. The objective of this study is to evaluate how characteristics of cord blood units influence their utilization, then use this information to model the economic viability and therapeutic value of different banking strategies.Retrospective analysis of cord blood data registered between January 1st, 2009 and December 31st, 2011 in Bone Marrow Donor Worldwide. Data were collected from four public banks in France, Germany and the USA. Samples were eligible for inclusion in the analysis if data on cord blood and maternal HLA typing and biological characteristics after processing were available (total nucleated and CD34+ cell counts. 9,396 banked cord blood units were analyzed, of which 5,815 were Caucasian in origin. A multivariate logistic regression model assessed the influence of three parameters on the CBU utilization rate: ethnic background, total nucleated and CD34+ cell counts. From this model, we elaborated a Utilization Score reflecting the probability of transplantation for each cord blood unit. We stratified three Utilization Score thresholds representing four different banking strategies, from the least selective (scenario A to the most selective (scenario D. We measured the cost-effectiveness ratio for each strategy by comparing performance in terms of number of transplanted cord blood units and level of financial deficit.When comparing inputs and outputs over three years, Scenario A represented the most extreme case as it delivered the highest therapeutic value for patients (284 CBUs transplanted along with the highest financial deficit (USD 5.89 million. We found that scenario C resulted in 219 CBUs transplanted with a limited deficit (USD 0.98 million that charities and public health could realistically finance over the long term. We also

  13. Banking or Bankrupting: Strategies for Sustaining the Economic Future of Public Cord Blood Banks.

    Science.gov (United States)

    Magalon, Jeremy; Maiers, Martin; Kurtzberg, Joanne; Navarrete, Cristina; Rubinstein, Pablo; Brown, Colin; Schramm, Catherine; Larghero, Jérome; Katsahian, Sandrine; Chabannon, Christian; Picard, Christophe; Platz, Alexander; Schmidt, Alexander; Katz, Gregory

    2015-01-01

    Cord blood is an important source of stem cells. However, nearly 90% of public cord blood banks have declared that they are struggling to maintain their financial sustainability and avoid bankruptcy. The objective of this study is to evaluate how characteristics of cord blood units influence their utilization, then use this information to model the economic viability and therapeutic value of different banking strategies. Retrospective analysis of cord blood data registered between January 1st, 2009 and December 31st, 2011 in Bone Marrow Donor Worldwide. Data were collected from four public banks in France, Germany and the USA. Samples were eligible for inclusion in the analysis if data on cord blood and maternal HLA typing and biological characteristics after processing were available (total nucleated and CD34+ cell counts). 9,396 banked cord blood units were analyzed, of which 5,815 were Caucasian in origin. A multivariate logistic regression model assessed the influence of three parameters on the CBU utilization rate: ethnic background, total nucleated and CD34+ cell counts. From this model, we elaborated a Utilization Score reflecting the probability of transplantation for each cord blood unit. We stratified three Utilization Score thresholds representing four different banking strategies, from the least selective (scenario A) to the most selective (scenario D). We measured the cost-effectiveness ratio for each strategy by comparing performance in terms of number of transplanted cord blood units and level of financial deficit. When comparing inputs and outputs over three years, Scenario A represented the most extreme case as it delivered the highest therapeutic value for patients (284 CBUs transplanted) along with the highest financial deficit (USD 5.89 million). We found that scenario C resulted in 219 CBUs transplanted with a limited deficit (USD 0.98 million) that charities and public health could realistically finance over the long term. We also found that

  14. Power for the future : towards a sustainable electricity system for Ontario

    International Nuclear Information System (INIS)

    Winfield, M.S.; Horne, M.; McClenaghan, T.; Peters, R.

    2004-05-01

    Ontario's electricity system has undergone major changes since 1998, when the Hydro-Electric Power Commission was divided into four separate entities, Ontario Power Generation, Hydro One, the Ontario Electricity Financial Corporation, and the Electrical Safety Authority. In addition, retail and wholesale electricity markets were introduced in 2002 under the supervision of the Ontario Energy Board. The removal from service of several nuclear generating facilities in the province led to greater reliance on coal-fired generation to meet energy demands. In 2003, the newly elected provincial government made a commitment to phase out coal-fired plants by 2007 for environmental reasons. It is estimated that all the the existing nuclear facilities will reach their projected operational lifetimes by 2018. Given the province's growing electricity demand, several options have been proposed as to how future energy needs could be met. The options range from investment into low-impact renewable energy sources such as small-scale hydro, solar, biomass and wind, to the construction of new nuclear generating facilities. The Pembina Institute and the Canadian Environmental Law Association examined the following four key issues regarding Ontario's future direction in electricity generation, transmission and distribution: (1) by how much can electricity demand be reduced through the adoption of energy efficient technologies, fuel switching, cogeneration and demand response measures, (2) how much electricity supply can be obtained from low-impact renewable energy sources, (3) how should the grid demand be met once the electricity system has maximized the technically and economically feasible contributions from energy efficiency, fuel switching, cogeneration, response management measures (RMM) and renewable energy sources, and (4) what public policies should the province adopt to maximize energy efficiency, fuel switching, cogeneration, RMM and renewable energy sources. The Canadian

  15. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?

    Directory of Open Access Journals (Sweden)

    Ariel E. Turcios

    2014-02-01

    Full Text Available Many aquaculture systems generate high amounts of wastewater containing compounds such as suspended solids, total nitrogen and total phosphorus. Today, aquaculture is imperative because fish demand is increasing. However, the load of waste is directly proportional to the fish production. Therefore, it is necessary to develop more intensive fish culture with efficient systems for wastewater treatment. A number of physical, chemical and biological methods used in conventional wastewater treatment have been applied in aquaculture systems. Constructed wetlands technology is becoming more and more important in recirculating aquaculture systems (RAS because wetlands have proven to be well-established and a cost-effective method for treating wastewater. This review gives an overview about possibilities to avoid the pollution of water resources; it focuses initially on the use of systems combining aquaculture and plants with a historical review of aquaculture and the treatment of its effluents. It discusses the present state, taking into account the load of pollutants in wastewater such as nitrates and phosphates, and finishes with recommendations to prevent or at least reduce the pollution of water resources in the future.

  16. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  17. The nuclear of the future. An asset for a sustainable development

    International Nuclear Information System (INIS)

    Pugliese, Alexandra

    2008-03-01

    After an introduction which outlines the readiness of the third generation of nuclear reactors (the EPR, European Pressurized Reactor, with its remaining fuel recycling problems), the interest of the fourth generation to come (a maximum exploitation of fuel potentialities, a solution of the waste issue), and the importance of international collaboration in researches, this publication highlights the key international strategic role held by France in the revival of nuclear energy. It also highlights the role of nuclear energy in the future energy mix, and that nuclear energy can be considered as a champion in the protection of the environment (very low CO_2 emissions). Other aspects are discussed such as the availability of resources, the good perspectives of waste management drawn by processes like transmutation, the continuous improvement of safety. Drawbacks of other energy sources are highlighted: biomass will promote non-food cropping systems, coal is very polluting and no capture-sequestration process is available, wind turbines have a too low nominal power, solar equipment is expensive and their fabrication is a polluting activity

  18. Climate change and the biosphere option: moving to a sustainable future

    International Nuclear Information System (INIS)

    Layzell, D.B.; Mitchell, H.M.

    1999-01-01

    Human activities resulting in greenhouse gas (GHG) emissions have been implicated as the primary factor forcing climate change. This evidence led to a landmark international agreement in Kyoto, (1997) committing the developed countries of the world to reductions in GHG emissions. In Canada, fossil fuel use over the past few centuries has released about 5200 Mt C into the atmosphere. An equivalent amount has probably been added as a result of deforestation and agricultural practice in this country. If we can manage our biosphere better and return even a fraction of the lost biosphere C, we can make a significant contribution to reducing Canada's current annual GHG emission. In the process, plants ( including trees) will trap the sun's energy and build an energy-rich biomass that we can learn to utilize as an energy, chemical and material resource for the future. In doing so, we will relieve the escalating demand for fossil fuels. The BIOCAP Network will be a multidisciplinary group of university, government and industry researchers dedicated to exploring the scientific, technological and policy implications of this 'biosphere option'. Canada's 'biosphere option' for GHG management is both a national opportunity and a global responsibility

  19. Concentrating solar power. Its potential contribution to a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    detail, much of what is presented in this report on the development of CSP technologies and economics will also be relevant to these alternative applications of CSP. Following a chapter summarising the policy context, the current status of CSP and associated thermal energy storage technologies are described in Chapters 3 and 4. Chapter 5 then discusses the economics of CSP, considering cost reduction potential and consequent time-frames for cost competitiveness, and the value of CSP with storage and/or auxiliary firing in electricity markets. The environmental impacts of CSP are evaluated in Chapter 6 before a review of the potential future contribution of CSP in Europe and the MENA region presented in Chapter 7. Conclusions and recommendations follow, with a bibliography of the references informing this report and annexes providing supporting detail, and a glossary of terms at Annex 2.

  20. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    Science.gov (United States)

    Hussey, Karen; Petit, Carine

    2010-05-01

    preliminary list of recommendations on how best to account for and integrate these impacts into policy and decision-making processes at various institutional levels was prepared and future research needs in the energy-water nexus were suggested as main outcomes. This presentation draws on the contributions to the COST water-energy-links exploratory workshops and the development of 12 case studies undertaken by researchers from Europe, the United States, Australia and China, which will be published in a Special Feature of Ecology and Society, mid-2010.

  1. The Future We Want: Key Issues on Sustainable Development in Higher Education after Rio and the UN Decade of Education for Sustainable Development

    Science.gov (United States)

    Leal Filho, Walter; Manolas, Evangelos; Pace, Paul

    2015-01-01

    Purpose: This paper aims to provide a description of the achievements of the United Nations (UN) Decade of Education for Sustainable Development (2005-2014) with a focus on higher education, and it describes some of the key issues which will guide sustainable development in the coming years. Design/methodology/approach: The paper initially…

  2. Energy and sustainable development. Perspectives from the Paris-based International Energy Agency

    International Nuclear Information System (INIS)

    Priddle, R.

    1999-01-01

    The G-8 leaders issued a statement expressing their commitment 'to encourage the development of energy markets' and declared that 'the greatest environmental threat of our future prosperity remains climate change and we confirm our determination to address it'. One of the options for tackling the greenhouse gas problem is to encourage substitution of carbon free fuels for conventional fossil fuels. This includes renewable energy sources and nuclear power, which has significant advantages to a society troubled by the prospect of climate change triggered by carbon emissions. Fuel supply to civil nuclear power plants is potentially, indefinitely sustainable. Uranium resources are globally widespread and could last 60 years, longer than the known reserves of oil and gas. Technological options are known for increasing the energy extracted from natural uranium. A recent IEA publication 'Nuclear Power Sustainability: Climate Change, Competition' discusses what would be necessary to make both renewable and nuclear energy sources cost-effective

  3. Analysis of Balancing Requirements in Future Sustainable and Reliable Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Frunt, J.

    2011-06-01

    This thesis elaborates on the rules for power balancing, provides a method for quantifying balancing requirements and examines the effect of future changes on balancing. Chapter 2 elaborates on system balancing and the different actors and entities in the electricity delivery system. The necessity and implementation of power balancing are explained. Also different subsequent markets (i.e., day-ahead markets, intraday markets and imbalance settlement systems) and options to trade electricity are discussed. As the research focusses mainly on the Netherlands, properties of the Dutch imbalance settlement system are analyzed. Based on this framework an in-depth analysis of imbalances and calls for balancing capacity with the corresponding prices is given. This shows the incentives to minimize the amount of imbalance in the system and to participate in the imbalance settlement system. Chapter 3 elaborates on the level of aggregation that the entities, involved in the imbalance settlement system, in electricity markets can have. Based on current market rules, incentives to either grow or shrink and by aggregating more or less entities are discussed. The level of aggregation will directly influence the functioning of the imbalance settlement system. It is shown that larger aggregations benefit more from the canceling out of imbalances. The imbalances of the Netherlands and Belgium have been aggregated to illustrate the possible benefits of aggregating multiple national imbalance settlement systems. The increased penetration of renewable generation strongly influences the planning and operation of the power system. As many renewable energy generators have a fluctuating power output, several methods are discussed in chapter 4 that can be used to classify and quantify the balancing requirements to counteract these fluctuations. Chapter 4 discusses the multiple existing classes of balancing capacity and the corresponding methods to quantify their needs. Due to the

  4. Analysis of Balancing Requirements in Future Sustainable and Reliable Power Systems

    International Nuclear Information System (INIS)

    Frunt, J.

    2011-01-01

    This thesis elaborates on the rules for power balancing, provides a method for quantifying balancing requirements and examines the effect of future changes on balancing. Chapter 2 elaborates on system balancing and the different actors and entities in the electricity delivery system. The necessity and implementation of power balancing are explained. Also different subsequent markets (i.e., day-ahead markets, intraday markets and imbalance settlement systems) and options to trade electricity are discussed. As the research focusses mainly on the Netherlands, properties of the Dutch imbalance settlement system are analyzed. Based on this framework an in-depth analysis of imbalances and calls for balancing capacity with the corresponding prices is given. This shows the incentives to minimize the amount of imbalance in the system and to participate in the imbalance settlement system. Chapter 3 elaborates on the level of aggregation that the entities, involved in the imbalance settlement system, in electricity markets can have. Based on current market rules, incentives to either grow or shrink and by aggregating more or less entities are discussed. The level of aggregation will directly influence the functioning of the imbalance settlement system. It is shown that larger aggregations benefit more from the canceling out of imbalances. The imbalances of the Netherlands and Belgium have been aggregated to illustrate the possible benefits of aggregating multiple national imbalance settlement systems. The increased penetration of renewable generation strongly influences the planning and operation of the power system. As many renewable energy generators have a fluctuating power output, several methods are discussed in chapter 4 that can be used to classify and quantify the balancing requirements to counteract these fluctuations. Chapter 4 discusses the multiple existing classes of balancing capacity and the corresponding methods to quantify their needs. Due to the

  5. Can the social market economy be a viable solution for a future sustainable development of the Romanian economy?

    Directory of Open Access Journals (Sweden)

    Strat Vasile Alecsandru

    2017-07-01

    Full Text Available Social market economy (SME is a socio-economic model which attempts to unite the freedom of a competitive market economy with social equilibrium and progress. It is seen as a “third path” besides a purely liberal market economy and an economy which is heavily regulated by the state – in the SME there is an intermediate degree of regulation. Historically, the model corresponds to the real economic policy of the German Federal Republic after the 1950s, thus it is sometimes called Rhine capitalism. According to the Treaty of Lisbon from 2007, the European Union pursues a competitive social market economy with full employment and social progress. On one hand, this model wishes to exploit the advantages of a free market economy, especially its high efficiency in the production of goods, while on the other hand it uses state intervention to correct for potential negative outcomes from market processes. Further characteristics of this model are: ensuring competition, free price formation, private property, motivating performance through profit aspirations as well as guarding personal freedoms. Last but not least, this model encompasses a strong structural policy by encouraging weaker geographical regions or industries. Therefore, it is highly probable that such a socio-economic model might be the appropriate alternative to fuel a sustainable growth of the Romanian economy. Using county level data, from the National Institute of Statistics and from the National Office of the Trade Register, for the year 2015 we show that the Romanian economy is highly polarized with a few growth poles (islands and a large number of underdeveloped units. Thus, it becomes obvious that these important disparities will hinder a future sustainable development and by consequence a clear “road-map” represented by this economic model might prove to be a viable solution for the Romanian economy.

  6. Delay Discounting as an Index of Sustainable Behavior: Devaluation of Future Air Quality and Implications for Public Health.

    Science.gov (United States)

    Berry, Meredith S; Nickerson, Norma P; Odum, Amy L

    2017-09-01

    Poor air quality and resulting annual deaths represent significant public health concerns. Recently, rapid delay discounting (the devaluation of future outcomes) of air quality has been considered a potential barrier for engaging in long term, sustainable behaviors that might help to reduce emissions (e.g., reducing private car use, societal support for clean air initiatives). Delay discounting has been shown to be predictive of real world behavior outside of laboratory settings, and therefore may offer an important framework beyond traditional variables thought to measure sustainable behavior such as importance of an environmental issue, or environmental attitudes/values, although more research is needed in this area. We examined relations between discounting of air quality, respiratory health, and monetary gains and losses. We also examined, relations between discounting and self-reported importance of air quality and respiratory health, and nature relatedness. Results showed rapid delay discounting of all outcomes across the time frames assessed, and significant positive correlations between delay discounting of air quality, respiratory health, and monetary outcomes. Steeper discounting of monetary outcomes relative to air quality and respiratory health outcomes was observed in the context of gains; however, no differences in discounting were observed across losses of monetary, air quality, and respiratory health. Replicating the sign effect, monetary outcomes were discounted more steeply than monetary losses. Importance of air quality, respiratory health and nature relatedness were significantly and positively correlated with one another, but not with degree of delay discounting of any outcome, demonstrating the need for more comprehensive measures that predict pro-environmental behaviors that might benefit individuals and public health over time. These results add to our understanding of decision-making, and demonstrate alarming rates of delay discounting of

  7. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    Science.gov (United States)

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future

  8. Sustainable Development in Higher Education: Current Practice and Future Development: A Case Study of University of Calabar-Nigeria

    Science.gov (United States)

    Ajake, Uchenna E.; Omori, Anne E.; Essien, Margaret

    2011-01-01

    The study highlighted the Nigerian Universities' new sustainable development strategies: emphasizes the role that entrepreneurship education can play in both raising awareness among young people about sustainable development and giving them the skills to put sustainable development into practice. Universities place priority on the development of…

  9. Hydrogeology and sustainable future groundwater abstraction from the Agua Verde aquifer in the Atacama Desert, northern Chile

    Science.gov (United States)

    Urrutia, Javier; Jódar, Jorge; Medina, Agustín; Herrera, Christian; Chong, Guillermo; Urqueta, Harry; Luque, José A.

    2018-03-01

    The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.

  10. Towards the next generation of climate change assessment: learning from past experiences to inform a sustainable future

    Science.gov (United States)

    Mach, K. J.; Field, C. B.

    2017-12-01

    Over decades, assessment by the Intergovernmental Panel on Climate Change and many others has bolstered understanding of the climate problem: unequivocal warming, pervasive impacts, and serious risks from continued high emissions of heat-trapping gases. Societies are increasingly responding with early actions to decarbonize energy systems and prepare for impacts. This emerging era of climate solutions creates a need for new approaches to assessment that emphasize learning from ongoing real-world experiences and that help close the gap between aspirations and the pace of progress. Against this backdrop, the presentation will take stock of recent advances and challenges in assessment, especially drawing from analysis of climate change assessment. Four assessment priorities will be considered: (1) integrating diverse evidence including quantitative and qualitative results, (2) applying rigorous expert judgment in evaluating knowledge and uncertainties, (3) exploring widely ranging futures and their connections to ongoing choices and actions, and (4) incorporating interactions among experts and decision-makers in assessment processes. Across these assessment priorities, the presentation will critique both opportunities and pitfalls, outlining possibilities for future experimentation, innovation, and learning. It will evaluate, in particular, lessons from risk-based approaches; strategies for transparently acknowledging persistent uncertainties and contested priorities; ways to minimize biases and foster creativity in expert judgments; scenario-based assessment of surprises, deep uncertainties, and decision-making implications; and opportunities for broadening the conception of expertise and engaging different decision-makers and stakeholders. Overall, these approaches can advance assessment products and processes as a basis for sustained dialogue supporting decision-making.

  11. Nuclear for Sustainable Future

    International Nuclear Information System (INIS)

    Wambani, S.

    2017-01-01

    Since 2010, Male and female Kenyan life expectancy has gone up from 55 to 57 and 56 to 59 respectively (A United Nations Population Fund report released Wednesday ( 27th Nov 2011). In Kenya, for example CT scanners have increased by over 80% in the last decade resulting in over seventy facilities. Although the benefit from a radiological procedure to the patient outweighs the potential radiation risk, the total number of patients was large and increasing. Therefore, small individual radiation risk, multiplied by the large number of patient, adds up resulting in a major public health problem that may not become clearly evident for many years under inadequate quality assurance program. Most examinations are relatively infrequent, contributing less than 5% each to the total number of x-ray examinations in Kenya. The procedures are arranged in descending order of their collective dose. In setting optimization strategy for a country, it is important that the choice of examinations be based on collective dose contribution and the frequency of the examination to maximize the overall benefit to a given population. According to Grid Radiography - Optimization of patient protection in Kenya is possible. Capacity building and developing technical capabilities in quality assurance (QA) & control (QC) is required. Networking and research data exchange of African Nuclear Scientists in developing African Standards in Nuclear Applications

  12. Building a Sustainable Future

    Science.gov (United States)

    Jones, Clyde S.; Hessler, Susan

    2010-01-01

    This poster presentation shows some of the personnel at work in the Materials and Processes Laboratory at NASA's Marshall Space Flight Center. They are shown studying materials of all kinds and the processes for manufacturing. The purpose of the poster is to inspire young people to become tomorrow's engineers, scientists, technicians or support specialist at NASA.

  13. Environmental and ecological life cycle inventories of present and future PV systems in Europe for sustainability policies

    International Nuclear Information System (INIS)

    Frankl, P.; Lombardelli, S.; Corrado, A.

    2004-01-01

    The current use of Life Cycle Inventories (LCI) for the calculation of external costs and energy system modelling and planning is limited by two main factors: 1) lack of harmonization and transparency in the methodology used in LCA studies. 2) lack of transparent and updated and database on recent and emerging PV technologies (and other renewable and distributed generation technologies). These issues have been addressed and overcome by the recent EU research project ECLIPSE. With respect to photovoltaic (PV) systems, four main PV technologies (mc-Si, sc-Si, thin film a-Si, CIS) with different applications (ground-mounted power plants, retrofit and integrated building integrated systems) and derived configurations were analyzed, for a total of 47 system configurations. Each main technology is described in a report, which presents results in detailed and transparent manner, highlighting the crucial parameters which influence LCI results. The latter confirm the low life cycle emissions level and the very high value of PV systems towards sustainable energy systems for the future. (authors)

  14. Thinking globally and acting locally in Mindanao: Supporting the delicate balance of future sustainability in South-East Asian wilderness as well as rural areas

    International Nuclear Information System (INIS)

    Richards, C

    2014-01-01

    Although models of future sustainability often talk about effectively balancing economic, social and environmental imperatives or factors, in practice this typically remains an elusive ideal. This paper explores the exemplary possibilities but also dilemmas of a proposed initiative in the resource-rich but under-developed Filippino island province of Mindanao to achieve such a delicate balance in practice. This initiative by Raintrust Sustainable Ventures' proposes to link foreign investment in agricultural development to both the social advancement of local tribal peoples and the protection of large amounts of remaining wilderness areas. Such a case study provides an exemplary basis for discussing the challenge of achieving social and environmental as well as economic domains of 'future sustainability'. The crucial supporting role of information and geospatial technologies in the Raintrust plan will also be discussed

  15. A Review of Sustainability Enhancements in the Beef Value Chain: State-of-the-Art and Recommendations for Future Improvements.

    Science.gov (United States)

    Maia de Souza, Danielle; Petre, Ruaraidh; Jackson, Fawn; Hadarits, Monica; Pogue, Sarah; Carlyle, Cameron N; Bork, Edward; McAllister, Tim

    2017-03-22

    The beef sector is working towards continually improving its sustainability in order to achieve environmentally, socially and economically desirable outcomes, all of which are of increasing concern to consumers. In this context, the Global Roundtable for Sustainable Beef (GRSB) provides guidance to advance the sustainability of the beef industry, through increased stakeholder engagement and the formation of national roundtables. Recently, the 2nd Global Conference on Sustainable Beef took place in Banff, Alberta, Canada, hosted by the GRSB and the Canadian Roundtable for Sustainable Beef. Conference attendees discussed the various initiatives that are being developed to address aspects of beef sustainability. This paper reviews the main discussions that occurred during this event, along with the key lessons learned, messages, and strategies that were proposed to improve the sustainability of the global beef industry.

  16. A Review of Sustainability Enhancements in the Beef Value Chain: State-of-the-Art and Recommendations for Future Improvements

    Directory of Open Access Journals (Sweden)

    Danielle Maia de Souza

    2017-03-01

    Full Text Available The beef sector is working towards continually improving its sustainability in order to achieve environmentally, socially and economically desirable outcomes, all of which are of increasing concern to consumers. In this context, the Global Roundtable for Sustainable Beef (GRSB provides guidance to advance the sustainability of the beef industry, through increased stakeholder engagement and the formation of national roundtables. Recently, the 2nd Global Conference on Sustainable Beef took place in Banff, Alberta, Canada, hosted by the GRSB and the Canadian Roundtable for Sustainable Beef. Conference attendees discussed the various initiatives that are being developed to address aspects of beef sustainability. This paper reviews the main discussions that occurred during this event, along with the key lessons learned, messages, and strategies that were proposed to improve the sustainability of the global beef industry.

  17. Interface Analyses Between a Case-Hardened Ingot Casting Steel and Carbon-Containing and Carbon-Free Refractories

    Science.gov (United States)

    Fruhstorfer, Jens; Dudczig, Steffen; Rudolph, Martin; Schmidt, Gert; Brachhold, Nora; Schöttler, Leandro; Rafaja, David; Aneziris, Christos G.

    2018-06-01

    Corrosion tests of carbon-free and carbon-containing refractories were performed. The carbon-free crucibles corroded, whereas the carbon-containing crucibles were negligibly attacked. On them, inclusions were attached. This study investigates melt oxygen contents, interface properties, and steel compositions with their non-metallic inclusions in order to explore the inclusion formation and deposition mechanisms. The carbon-free crucibles were based on alumina, mullite, and zirconia- and titania-doped alumina (AZT). The carbon-containing (-C) ones were alumina-C and AZT-C. Furthermore, nanoscaled carbon and alumina additives (-n) were applied in an AZT-C-n material. In the crucibles, the case-hardened steel 17CrNiMo7-6 was remelted at 1580 °C. It was observed that the melt and steel oxygen contents were higher for the tests in the carbon-free crucibles. Into these crucibles, the deoxidizing alloying elements Mn and Si diffused. Reducing contents of deoxidizing elements resulted in higher steel oxygen levels and less inclusions, mainly of the inclusion group SiO2-core-MnS-shell (2.5 to 8 μ m). These developed from smaller SiO2 nuclei. The inclusion amount in the steel was highest after remelting in AZT-C-n for 30 minutes but decreased strongly with increasing remelting time (60 minutes) due to inclusions' deposition on the refractory surface. The Ti from the AZT and the nanoadditives supported inclusion growth and deposition. Other inclusion groups were alumina and calcium aluminate inclusions. Their contents were high after remelting in carbon- or AZT-containing crucibles but generally decreased during remelting. On the AZT-C-n crucible, a dense layer formed from vitreous compositions including Al, Ca, Mg, Si, and Ti. To summarize, for reducing forming inclusion amounts, mullite is recommended as refractory material. For capturing formed inclusions, AZT-C-n showed a high potential.

  18. SolEn for a Sustainable Future: Developing and Teaching a Multidisciplinary Course on Solar Energy to Further Sustainable Education in Chemistry

    Science.gov (United States)

    Pullen, Sonja; Brinkert, Katharina

    2014-01-01

    The high demand for the integration of sustainable topics into university curricula presents new challenges for the way chemistry is traditionally taught. New teaching concepts are required that consider and connect different disciplines to achieve a higher student awareness of the importance of these topics for humanity, the environment, and the…

  19. Teaching organisational change management for sustainability : designing and delivering a course at the University of Leeds to better prepare future sustainability change agents

    NARCIS (Netherlands)

    Lozano, Rodrigo; Ceulemans, Kim; Scarff Seatter, Carol

    2015-01-01

    A number of universities worldwide have created new courses and degrees or modified existing ones, as a response to the increasing interest by companies to hire sustainability literate graduates. However, many of such courses have been developed with a focus on 'hard' technocentric or managerial

  20. Future of industry. Part 4. Sustainable entrepreneurship in the Dutch construction industry. Institutional context and strategic responses

    Energy Technology Data Exchange (ETDEWEB)

    Klein Woolthuis, R; De Boer, S.

    2009-12-15

    TNO developed a methodology to identify sector specific opportunities by examining bottlenecks and drivers for sustainable innovation. Research results are presented in 4 reports: the first report explores the highly innovative chemicals sector and how it deals with opportunities and bottlenecks in sustainable innovation. The second report examines the project driven construction industry and how entrepreneurs and incumbent firms develop strategies to deal with the bottlenecks of sustainable innovation. The third report extends the second report by highlighting the role of the incumbent firms in this process, and this (fourth) report deepens the second report by illuminating the strategies of entrepreneurs in the transition to sustainable construction.

  1. Energy Revolution. A Sustainable Pathway to a Clean Energy Future for Europe. A European Energy Scenario for EU-25

    International Nuclear Information System (INIS)

    Teske, S.; Baker, C.

    2005-09-01

    Greenpeace and the Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment of the German Aerospace Center (DLR),have developed a blueprint for the EU energy supply that shows how Europe can lead the way to a sustainable pathway to a clean energy future. The Greenpeace energy revolution scenario demonstrates that phasing out nuclear power and massively reducing CO2-emissions is possible. The scenario comes close to a fossil fuels phase-out by aiming for a 80% CO2 emissions reduction by 2050.The pathway in this scenario achieves this phase-out in a relatively short time-frame without using technological options (such as 'clean coal') that are ultimately dead ends, deflecting resources from the real solutions offered by renewable energy. Whilst there are many technical options that will allow us to meet short-term EU Kyoto targets (-8% GHG by 2010), these may have limited long-term potential. The Greenpeace Energy Revolution Scenario shows that in the long run, renewable energy will be cheaper than conventional energy sources and reduce EU's dependence from world market prices from imported fossil and nuclear fuels.The rapid growth of renewable energy technologies will lead to a large investment in new technologies.This dynamic market growth will result in a shift of employment opportunities from conventional energy-related industries to new occupational fields in the renewable energy industry. Renewable energy is expected to provide about 700,000 jobs in the field of electricity generation from renewable energy sources by 2010

  2. Enabling Sustainable Agro-Food Futures: Exploring Fault Lines and Synergies Between the Integrated Territorial Paradigm, Rural Eco-Economy and Circular Economy

    DEFF Research Database (Denmark)

    Kristensen, Dan Kristian; Kjeldsen, Chris; Thorsøe, Martin Hvarregaard

    2016-01-01

    What kind of futures does agro-food imaginaries enable and who can get involved in the making of agro-food futures? In this respect, what can the increasingly influential idea of circular economy potentially offer in terms of enabling more sustainable agrofood futures? We approach this task...... important contributions in relation to studies of alternative food networks and the “quality” turn. These research agendas have challenged the current logic of the food system in terms of offering alternative visions of future development. We highlight two examples from the literature—the eco......-economy and the integrated territorial agri-food paradigm—that develop broader frameworks for rethinking the future of the agro-food system and which have distinguished themselves in contrast to the industrialized and globalized conventional food system. We find that with respect to reorienting and reconfiguring economic...

  3. Towards our Common Future: Comparative Assessment of the Sustainable Development Strategies of the European Union, the Mediterranean and Slovenia

    Directory of Open Access Journals (Sweden)

    Tomaz DEŽELAN

    2014-11-01

    Full Text Available This paper assesses three sustainable de- velopment strategies – the European Union’s Sustainable Development Strategy in its revised version, the Mediterranean Strategy for Sustain- able Development and Slovenia’s Development Strategy – according to the level of sustainability these strategies provide. Deriving from three di- verse sustainable development regimes, select- ed strategies are scrutinised for the presence of the five general principles of effective sustainable development strategies promoted by the United Nations and the Organization for Economic Co- operation and Development. Building on George and Kirkpatrick’s (2006 framework for analysis, we concentrate on principles of strategic planning and sustainable development, and a coordinated set of measures to ensure their implementation. The results reveal that the major differences be- tween the assessed strategies are present in the sophistication of the theoretical bases and the integration of three main pillars of sustainable development (i.e. environmental, economic and social. In general, the assessed strategies re- flect a high degree of inclusiveness of a variety of interests. However, there is a common weak- ness among them in terms of implementation, be it in the provision of adequate resources, the guarantee of adequate implementing capacity of the institutions designated for implementation or the precise definition of the institutional frame- work responsible for the implementation of the strategy.

  4. A Review of Sustainability Enhancements in the Beef Value Chain: State-of-the-Art and Recommendations for Future Improvements

    Science.gov (United States)

    Maia de Souza, Danielle; Petre, Ruaraidh; Jackson, Fawn; Hadarits, Monica; Pogue, Sarah; Carlyle, Cameron N.; Bork, Edward; McAllister, Tim

    2017-01-01

    Simple Summary To better address consumer concerns, the beef sector is working on strategies to enhance the sustainability of all aspects of the beef supply chain. Among these strategies are (1) the development of science-based frameworks and indicators capable of measuring progress at all stages of beef production; (2) the engagement of different stakeholders along the beef supply chain at regional and global levels; and (3) the improvement of communication among stakeholders and transparency towards consumers. Progress on these three fronts was presented during the 2nd Global Conference on Sustainable Beef, hosted by the Global and Canadian Roundtables for Sustainable Beef. During the event, there was a clear understanding that the beef industry is substantially advancing efforts to continuously improve its sustainability, both at regional and global levels, by developing assessment frameworks and indicators to measure progress. However, it is also clear that the beef sector has a need to more clearly define the concept of beef sustainability, strengthen cooperation and exchange of information among national roundtables for sustainable beef, as well as improve the flow of information along the supply chain. An improved transparency in the beef sector will help consumers make more informed decisions about food products. Abstract The beef sector is working towards continually improving its sustainability in order to achieve environmentally, socially and economically desirable outcomes, all of which are of increasing concern to consumers. In this context, the Global Roundtable for Sustainable Beef (GRSB) provides guidance to advance the sustainability of the beef industry, through increased stakeholder engagement and the formation of national roundtables. Recently, the 2nd Global Conference on Sustainable Beef took place in Banff, Alberta, Canada, hosted by the GRSB and the Canadian Roundtable for Sustainable Beef. Conference attendees discussed the various

  5. Analysing the past and exploring the future of sustainable biomass. Participatory stakeholder dialogue and technological innovation systems research

    NARCIS (Netherlands)

    Breukers, S.; Hisschemöller, M.; Cuppen, E.; Suurs, R.

    2014-01-01

    This paper explores the potential of combining technological innovation systems research with a participatory stakeholder dialogue, using empirical material from a dialogue on the options of sustainable biomass in the Netherlands and several historical studies into the emerging Dutch biomass

  6. Sustainability of socio-hydro system with changing value and preference to an uncertain future climate and economic conditions.

    Science.gov (United States)

    Roobavannan, Mahendran; Kandasamy, Jaya; Vigneswaran, Saravanamuththu; Sivapalan, Murugesu

    2016-04-01

    Water-human systems are coupled and display co-evolutionary dynamics influenced by society's values and preference. This has been observed in the Murrumbidgee basin, Australia where water usage initially focused on agriculture production and until mid-1990's favoured agriculture. This turned around as society became more concerned about the degradation of ecosystems and ultimately water was reallocated back towards the environment. This new water management adversely impacted the agriculture sector and created economic stress in the basin. The basin communities were able to transform and cope with water allocation favouring the environment through sectoral transformation facilitated by movement of capital in a free economy, supported by appropriate strategies and funding. This was helped by the adaptive capacity of people through reemployment in other economic sectors of the basin economy, unemployment for a period of time and migration out of the basin, and crop diversification. This study looks to the future and focuses on how water managers could be informed and prepare for un-foreseen issues coming out of societies changing values and preferences and emerging as different systems in the basin interact with each other at different times and speed. The issues of this type that concern the Murray Darling Basin Authority include a renewed focus and priority on food production due to food scarcity; increased impact and frequency of natural disasters (eg. climate change); regional economic diversification due to the growth of peri-urban development in the basin; institutional capacity for water reform due to new political paradigms (eg. new water sharing plans); and improvement in science and technology (eg. farm practices, water efficiency, water reuse). To undertake this, the study uses a coupled socio-hydrological dynamical system that model the major drivers of changing economic conditions, society values and preference, climatic condition and science and

  7. Sustainable Transition

    DEFF Research Database (Denmark)

    Hansen, Ole Erik; Søndergård, Bent

    2014-01-01

    of agendas/vision, technologies, actors and institutions in the emergent design of an urban mobility system based on an electric car sharing system. Why. Designing for sustainability is a fundamental challenge for future design practices; designers have to obtain an ability to contribute to sustainable...

  8. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  9. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO_4

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Cíntora-Juárez, Daniel; Pérez-Vicente, Carlos; Tirado, José L.; Ahmad, Shahzada; Gerbaldi, Claudio

    2016-01-01

    Highlights: • Carbonate free truly quasi-solid-state polymer electrolytes for lithium batteries. • Simple and easy up scalable preparation by solvent free thermal curing. • LiFePO_4 cathode engineered by PEDOT:PSS interphase at the current collector. • Direct polymerization over the engineered electrode surface in one pot. • Stable lithium polymer cells operating in a wide temperature range. - Abstract: Stable and safe functioning of a Li-ion battery is the demand of modern generation. Herein, we are demonstrating the application of an in-situ free radical polymerisation process (thermal curing) to fabricate a polymer electrolyte that possesses mechanical robustness, high thermal stability, improved interfacial and ion transport characteristics along with stable cycling at ambient conditions. The polymer electrolyte is obtained by direct polymerization over the electrode surface in one pot starting from a reactive mixture comprising an ethylene oxide-based dimethacrylic oligomer (BDM), dimethyl polyethylene glycol (DPG) and lithium salt. Furthermore, an engineered cathode is used, comprising a LiFePO_4/PEDOT:PSS interface at the current collector that improves the material utilization at high rates and mitigates the corrosive effects of LiTFSI on aluminium current collector. The lithium cell resulting from the newly elaborated multiphase assembly of the composite cathode with the DPG-based carbonate-free polymer electrolyte film exhibits excellent reversibility upon prolonged cycling at ambient as well as elevated temperatures, which is found to be superior compared to previous reports on uncoated electrodes with polymer electrolytes.

  10. Life cycle assessment and sustainable engineering in the context of near net shape grown components: striving towards a sustainable way of future production.

    Science.gov (United States)

    Kämpfer, Christoph; Seiler, Thomas-Benjamin; Beger, Anna-Lena; Jacobs, Georg; Löwer, Manuel; Moser, Franziska; Reimer, Julia; Trautz, Martin; Usadel, Björn; Wormit, Alexandra; Hollert, Henner

    2017-01-01

    Technical product harvesting (TEPHA) is a newly developing interdisciplinary approach in which bio-based production is investigated from a technical and ecological perspective. Society's demand for ecologically produced and sustainably operable goods is a key driver for the substitution of conventional materials like metals or plastics through bio-based alternatives. Technical product harvesting of near net shape grown components describes the use of suitable biomass for the production of technical products through influencing the natural shape of plants during their growth period. The use of natural materials may show positive effects on the amount of non-renewable resource consumption. This also increases the product recyclability at the end of its life cycle. Furthermore, through the near net shape growth of biomass, production steps can be reduced. As a consequence such approaches may save energy and the needed resources like crude oil, coal or gas. The derived near net shape grown components are not only considered beneficial from an environmental point of view. They can also have mechanical advantages through an intrinsic topology optimization in contrast to common natural materials, which are influenced in their shape after harvesting. In order to prove these benefits a comprehensive, interdisciplinary scientific strategy is needed. Here, both mechanical investigations and life cycle assessment as a method of environmental evaluation are used.

  11. Is an environmentally sustainable future for the European Community compatible with continued growth - carbon dioxide and the management of greed

    International Nuclear Information System (INIS)

    Slesser, M.

    1993-01-01

    The search for sustainability creates moral and economic dilemmas for politicians seeking to match public aspirations with environmental integrity. The paper explores a method for computing the longer term outcome of policies, considering the case of the European Community as a single economy and taking the specific problem of carbon dioxide

  12. Education, Globalization and Sustainable Futures: Struggles Over Educational Aims and Purposes in a Period of Environmental and Ecological Challenge.

    Science.gov (United States)

    Farrell, R. V.; Papagiannis, George

    This study examines the advocacy of education for sustainability in a contemporary world driven by the powerful forces of globalization and development. A brief overview of the current ecological crisis in the world is presented, and concerns about environmental degradation, social injustice, and social inequalities are discussed. The vision of…

  13. Enabling a sustainable and prosperous future through science and innovation in the bioeconomy at Agriculture and Agri-Food Canada.

    Science.gov (United States)

    Sarkar, Sara F; Poon, Jacquelyne S; Lepage, Etienne; Bilecki, Lori; Girard, Benoit

    2018-01-25

    Science and innovation are important components underpinning the agricultural and agri-food system in Canada. Canada's vast geographical area presents diverse, regionally specific requirements in addition to the 21st century agricultural challenges facing the overall sector. As the broader needs of the agricultural landscape have evolved and will continue to do so in the next few decades, there is a trend in place to transition towards a sustainable bioeconomy, contributing to reducing greenhouse gas emission and our dependency on non-renewable resources. We highlight some of the key policy drivers on an overarching national scale and those specific to agricultural research and innovation that are critical to fostering a supportive environment for innovation and a sustainable bioeconomy. As well, we delineate some major challenges and opportunities facing agriculture in Canada, including climate change, sustainable agriculture, clean technologies, and agricultural productivity, and some scientific initiatives currently underway to tackle these challenges. The use of various technologies and scientific efforts, such as Next Generation Sequencing, metagenomics analysis, satellite image analysis and mapping of soil moisture, and value-added bioproduct development will accelerate scientific development and innovation and its contribution to a sustainable and prosperous bioeconomy. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. National workshop on forest productivity & technology: cooperative research to support a sustainable & competitive future - progress and strategy

    Science.gov (United States)

    Eric D. Vance

    2010-01-01

    The Agenda 2020 Program is a partnership among government agencies, the forest products industry, and academia to develop technology capable of enhancing forest productivity, sustaining environmental values, increasing energy efficiency, and improving the economic competitiveness of the United States forest sector. In November 2006, the USDA Forest Service, in...

  15. R&D Campus as space for regional sustainable development : (un)productive factors and future needs for innovation

    NARCIS (Netherlands)

    Marlies Bedeker; Ilse van den Donker; J.H. Lappia

    2012-01-01

    Contemporary economical problems require new innovative solutions. The potential role of higher education (HE) as a change agent for regional sustainable development is investigated. Stakeholders from firms, education and government within an R&D Campus form Innovation Teams and Communities of

  16. INCORPORATING RESILIENCE INTO LAW AND POLICY: A case for preserving a natural resource legacy and promoting a sustainable future

    Science.gov (United States)

    The concept of sustainability has been widely embraced by society and in environmental law and policy as a measure to ensure a heritage of economic viability, social equity, and environmental stewardship. In a large number of statutes, Congress and many state legislatures have be...

  17. Divergent Evolution in Education for Sustainable Development Policy in the United Kingdom: Current Status, Best Practice, and Opportunities for the Future

    Directory of Open Access Journals (Sweden)

    William Scott

    2013-04-01

    Full Text Available This paper discusses the current status of all aspects of education for sustainable development (ESD across the United Kingdom (UK, drawing on evidence from its political jurisdictions (England, Northern Ireland, Scotland and Wales, and setting out some characteristics of best practice. The paper analyzes current barriers to progress, and outlines future opportunities for enhancing the core role of education and learning in the pursuit of a more sustainable future. Although effective ESD exists at all levels, and in most learning contexts across the UK, with good teaching and enhanced learner outcomes, the authors argue that a wider adoption of ESD would result from the development of a strategic framework which puts it at the core of the education policy agenda in every jurisdiction. This would provide much needed coherence, direction and impetus to existing initiatives, scale up and build on existing good practice, and prevent unnecessary duplication of effort and resources. The absence of an overarching UK strategy for sustainable development that sets out a clear vision about the contribution learning can make to its goals is a major barrier to progress. This strategy needs to be coupled with the establishment of a pan-UK forum for overseeing the promotion, implementation and evaluation of ESD.

  18. A challenge in future transportation research and planning: paper presented at the Conference "Energy Technologies for a Sustainable Future", Paul Scherrer Institute, Villigen, 24.11.2000

    OpenAIRE

    Keller, Peter

    2000-01-01

    To understand the future challenge for transportation research and planning, we must make a clear distinction between “mobility” and “transportation”. Mobility is understood to be the ca- pability or possibility of changing position within a specific system (space, society, economy, etc.). On the other hand “transportation” is “spatial mobility”, that is the capability or possibility of changing position within a spatial system (change of location, overcoming of space by peo- ple, goods, ener...

  19. "A Future for Fisheries?" Setting of a Field-based Class for Evaluation of Aquaculture and Fisheries Sustainability

    Science.gov (United States)

    Macko, Stephen; O'Connell, Matthew

    2016-04-01

    For the first time in 2015, aquaculture yields approximately equaled global wild capture fisheries. Are either of these levels of production sustainable? This course explored the limitations of both sources of fishery landings and included legal limitations, environmental concerns and technological problems and adaptations. It made use of visits to aquaculture facilities, government laboratories like NOAA , as well as large fish distribution centers like J.J. McDowell's Seafood (Jessup, MD), and included presentations by experts on legalities including the Law of the Sea. In addition, short day-long trips to "ocean-related" locations were also used to supplement the experience and included speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and National Zoo) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local grocery stores, or larger city markets in Washington, Baltimore and Virginia Beach, enhance the exposure to productivity in the ocean, and viability of the fisheries sustainability. Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. This new approach to such a course supplement addresses the requests by utilizing local resources and short field trips for a limited number of students to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time

  20. Sustainable consumption

    DEFF Research Database (Denmark)

    Prothero, Andrea; Dobscha, Susan; Freund, Jim

    2011-01-01

    This essay explores sustainable consumption and considers possible roles for marketing and consumer researchers and public policy makers in addressing the many sustainability challenges that pervade our planet. Future research approaches to this interdisciplinary topic need to be comprehensive...... and systematic and will benefit from a variety of different perspectives. There are a number of opportunities for future research, and three areas are explored in detail. First, the essay considers the inconsistency between the attitudes and behaviors of consumers with respect to sustainability; next, the agenda...... is broadened to explore the role of individual citizens in society; and finally, a macro institutional approach to fostering sustainability is explored. Each of these areas is examined in detail and possible research avenues and public policy initiatives are considered within each of these separate...

  1. Stabilizing Sustainability

    DEFF Research Database (Denmark)

    Reitan Andersen, Kirsti

    The publication of the Brundtland Report in 1987 put the topic of sustainable development on the political and corporate agenda. Defining sustainable development as “a development that meets the needs of the future without compromising the ability of future generations to meet their own needs......” (WCED, 1987, p. 43), the Report also put a positive spin on the issue of sustainability by upholding capitalist beliefs in the possibility of infinite growth in a world of finite resources. While growth has delivered benefits, however, it has done so unequally and unsustainably. This thesis focuses...... on the textile and fashion industry, one of the world’s most polluting industries and an industry to some degree notorious for leading the ‘race to the bottom’ in global labour standards. Despite being faced with increasing demands to practise sustainability, most textile and fashion companies continue to fail...

  2. The potential of public engagement in sustainable waste management: designing the future for biosolids in New Zealand.

    Science.gov (United States)

    Goven, Joanna; Lisa Langer, E R

    2009-02-01

    Strategies for beneficial use of biosolids in New Zealand and elsewhere are currently focused primarily on land application. The long-term success of these and other strategies is dependent not only on technical factors, but also on their environmental, economic, social and cultural sustainability. This paper briefly reviews the situation with respect to biosolids management in New Zealand, where land application is not yet widespread; the rise in public opposition to land application in the United States; and the biosolids industry's approach to public engagement. We argue that, at least until recently, the industry has misinterpreted the nature and meaning of public opposition and thus substituted public relations for public engagement. We argue that genuine public engagement is necessary and that its purpose cannot be to gain public acceptance for an already-decided-upon strategy. It therefore calls for humility among biosolids managers, including a willingness to open up the framing of 'the problem', to acknowledge areas of uncertainty, and to recognise the role of values in 'technical' decision-making. We then present and analyse an example of the use of the scenario workshop process for public participation in biosolids management policy in Christchurch, New Zealand, and conclude that scenario workshops and related methods represent an opportunity to enhance sustainable waste management when certain conditions are met.

  3. Planning for the future, towards a sustainable design and landuse of an ancient flooded military defence line

    NARCIS (Netherlands)

    Vervloet, J.A.J.; Nijman, J.H.; Somsen, A.J.

    2005-01-01

    In a time of increasing pressure and increasing demands on space a critical view is needed in order to preserve our cultural heritage. Mere preservation or restoration is not an approach that assures the survival of heritage in the future. In The Netherlands a new approach is being developed by

  4. The ideal form of transdisciplinary research as seen from the perspective of sustainability science, considering the future development of IATSS

    Directory of Open Access Journals (Sweden)

    Kazuhiko Takeuchi

    2014-07-01

    Considering the future development of IATSS, I suggest promoting strategic participation at related international events, and building institutional links with existing networks. Rather than serving as a specialist journal, IATSS Research should look at traffic safety in a broad sense, and discuss visions for transportation societies as well as concrete research findings.

  5. Living both well and sustainably: a review of the literature, with some reflections on future research, interventions and policy

    Science.gov (United States)

    Kasser, Tim

    2017-05-01

    The idea that human well-being (WB) can be supported and even enhanced by using, producing, buying, selling and consuming less `stuff' is anathema to many living under consumer capitalism. Yet a growing research literature actually finds that frequent engagement in pro-ecological behaviours (PEBs) is positively correlated with personal WB. This paper reviews data relevant to three possible explanations for the apparent compatibility of PEBs and WB: (i) engaging in PEBs leads to psychological need satisfaction, which in turn causes WB; (ii) being in a good mood causes people to engage in more prosocial behaviours, including PEBs; and (iii) personal characteristics and lifestyles such as intrinsic values, mindfulness and voluntary simplicity cause both PEBs and WB. Because each explanation has some empirical support, I close by reflecting on some relevant interventions and policies that could strengthen each of these three pathways and thereby promote living both well and sustainably. This article is part of the themed issue 'Material demand reduction'.

  6. Can We Avoid a Sick Fiscal Future? The Non-Sustainability of Health-Care Spending with an Aging Population

    Directory of Open Access Journals (Sweden)

    J.C. Herbert Emery

    2012-10-01

    Full Text Available Funding for Canadian public health care has long relied on a “pay-as-you-go” funding model: for the most part, government pays for health costs each year from taxes collected in that fiscal year with effectively nothing put aside for projected rising health-care costs in the future. But the future of Canadian public health care is going to get more expensive as the relatively large cohort of baby boomers reaches retirement age. As they exit the work force, and enter the ages at which Canadians use the health-care system more, a smaller population of younger workers is going to be left paying the growing health-care costs of older Canadians. If Canadians intend to preserve a publicly funded medicare system that offers a similar level of service in the future as it does today, under the pay-as-you-go model, eventually peak taxes for Canadians born after 1988 will end up twice as high as the peak taxes that the oldest baby boomers paid. The “payas-you-go” model has become like a Ponzi scheme, where those who got in early enough make out nicely, while those who arrive late stand to suffer a serious financial blow. This should concern both Canadians who value a comprehensive public health system as well as Canadians who value competitive tax rates: There is no reason to be certain that future taxpayers will blithely accept having their taxes substantially increased to finance health care for another, older generation that did not pay for a significant portion of its own health care. If the burden proves too high for the taxpaying public to accept, that could well jeopardize Canada’s health-care system as we know it. If Canadians intend to preserve their iconic public health system, and are unprepared to unjustly overburden future generations with the tax bill left by their parents and grandparents, provincial governments must make strong and rapid efforts to reform the health system. They must find more cost-efficient ways of managing

  7. FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    Science.gov (United States)

    Helbing, D.; Bishop, S.; Conte, R.; Lukowicz, P.; McCarthy, J. B.

    2012-11-01

    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. The financial crisis, international wars, global terror, the spreading of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing serious challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the complex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technology (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly networked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21st century. FuturICT could indeed become one of the most

  8. Pasundan Delivery Services (PT. Wahana Bumi Raya) Business Strategy Formulation and Implementation to Create Sustain Future Competition

    OpenAIRE

    Haryanto, Iman; Wandebori, Harimukti

    2012-01-01

    Pasundan Delivery Services (PDS) is the delivery services provider using motorcycle provide solutions for visitors and Bandung citizens to effective and efficient their valuable time, run its costumer order through smartphone and social media, lucrative demand leads PDS to formulate its strategy to reach more costumers among existing competitors to win the competition in and as the leader the future. Formulation of strategic management involving small team discussion group as the management o...

  9. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung; Faber, Hendrik; Zhao, Kui; Wang, Qingxiao; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.

    2013-01-01

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <

  10. Mode of the Past or Promise for the Future? Cycling in China and the Sustainability Challenge, 1955–Present

    Directory of Open Access Journals (Sweden)

    Ruth Oldenziel

    2017-12-01

    Full Text Available Since the 1950s, cycling policy in China has gone through three phases: from active encouragement (1955–1994 and systematic discouragement (1994–2008 to neglect and ambivalence (since the 2010s. Parallel to the expansion of automobility, the country has been unique in its development of innovations in electric-powered two-wheelers and a vibrant e-cycling practice since the 1980s. Electric bikes have given over 300 million low-status commuters and peddlers access to jobs and housing, even though planners have dismissed them as a problematic ›floating population‹ and remnants of the past. Given China’s current urban sustainable mobility challenges and ambition to become the world’s first ›Ecological Civilization‹ (2013, China’s bicycle industry, e-vehicle manufacturers, and the e-commerce sector may offer an alternative to the US-based ›car civilization‹ if ecological (e-cycles and social (low-status workers sustainability are brought into one analytical frame. *** Seit den 1950er-Jahren hat die chinesische Fahrrad-Politik drei Phasen durchlaufen: von aktiver Förderung (1955–1994 über systematische Behinderung (1994–2008 bis zu Vernachlässigung und Ambivalenz (ab etwa 2010. Parallel zur Expansion der Autoindustrie und des Autoverkehrs seit den 1980er-Jahren hat die besondere Entwicklung Chinas – die dynamische Innovation bei Fahrrädern und Motorrollern mit Elektroantrieb – für über 300 Millionen Pendler aus unteren Schichten und Kleinhändler einen besseren Zugang zu Arbeits- und Wohnmöglichkeiten geschaffen. Zwar haben Stadt- und Verkehrsplaner solche sozialen Gruppen oft als problematische Überbleibsel der Vergangenheit gesehen. Doch in Anbetracht der Herausforderungen für nachhaltige urbane Mobilitätskonzepte, vor denen China steht, und dem 2013 formulierten Anspruch des Landes, die weltweit erste »ökologische Zivilisation« zu werden, bieten die Fahrradindustrie und die Elektromobilität m

  11. Alternative long term strategies for sustainable development: Rapidly increasing electricity consumption in Asian countries and future role of nuclear energy

    International Nuclear Information System (INIS)

    Sagawa, N.

    1997-01-01

    Many people in the world express the concern that global warming will become an increasingly serious problem. A rapid increase in population and demand for energy in the Asian region must be discussed in this context. Despite the forecast of an increase in demand for energy, the Asian region is short of oil and natural gas resources. In addition, only less energy can be supplied by renewable energy sources in the Asian region than in the other regions because of high population density. Nuclear energy is an important energy resource for fulfilling the future increasing energy demand in the Asian region and for contributing to the suppression of carbon dioxide emissions. In the Asian region alone, however, we cannot rely limitlessly on LWR which does not use plutonium. According to a scenario analysis, the total capacity of nuclear power plants in the Asian region would reach large scale and the cumulative amount of demand for natural uranium will increase to about 5 million tons in the Asian region alone. Just the nuclear power plants of this scale in Asia alone will rapidly consume the world's cheap natural uranium resources if we rely only on natural uranium. In the Asian region, few countries have embarked on nuclear power generation and the capacity of equipment is still small. Currently, however, many plans for nuclear power generation are being designed. Many Asian countries obviously consider nuclear power generation as a valid option. Many potential policies must be examined in the light of future uncertainty. In the future, both renewable energy and nuclear energy must be resorted to. When nuclear energy is utilized, the use of plutonium and FBR in the Asian region must be taken into account in order to attain continual growth and development. (author)

  12. Use of science to guide city planning policy and practice: how to achieve healthy and sustainable future cities.

    Science.gov (United States)

    Sallis, James F; Bull, Fiona; Burdett, Ricky; Frank, Lawrence D; Griffiths, Peter; Giles-Corti, Billie; Stevenson, Mark

    2016-12-10

    Land-use and transport policies contribute to worldwide epidemics of injuries and non-communicable diseases through traffic exposure, noise, air pollution, social isolation, low physical activity, and sedentary behaviours. Motorised transport is a major cause of the greenhouse gas emissions that are threatening human health. Urban and transport planning and urban design policies in many cities do not reflect the accumulating evidence that, if policies would take health effects into account, they could benefit a wide range of common health problems. Enhanced research translation to increase the influence of health research on urban and transport planning decisions could address many global health problems. This paper illustrates the potential for such change by presenting conceptual models and case studies of research translation applied to urban and transport planning and urban design. The primary recommendation of this paper is for cities to actively pursue compact and mixed-use urban designs that encourage a transport modal shift away from private motor vehicles towards walking, cycling, and public transport. This Series concludes by urging a systematic approach to city design to enhance health and sustainability through active transport and a move towards new urban mobility. Such an approach promises to be a powerful strategy for improvements in population health on a permanent basis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Living both well and sustainably: a review of the literature, with some reflections on future research, interventions and policy.

    Science.gov (United States)

    Kasser, Tim

    2017-06-13

    The idea that human well-being (WB) can be supported and even enhanced by using, producing, buying, selling and consuming less 'stuff' is anathema to many living under consumer capitalism. Yet a growing research literature actually finds that frequent engagement in pro-ecological behaviours (PEBs) is positively correlated with personal WB. This paper reviews data relevant to three possible explanations for the apparent compatibility of PEBs and WB: (i) engaging in PEBs leads to psychological need satisfaction, which in turn causes WB; (ii) being in a good mood causes people to engage in more prosocial behaviours, including PEBs; and (iii) personal characteristics and lifestyles such as intrinsic values, mindfulness and voluntary simplicity cause both PEBs and WB. Because each explanation has some empirical support, I close by reflecting on some relevant interventions and policies that could strengthen each of these three pathways and thereby promote living both well and sustainably.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  14. GEODESIGN AND SIMULATION OF TWO AUSTRALIAN COMMUNITIES 2016–2050: WHAT DOES THE FUTURE HOLD ARE THEY SUSTAINABLE OR NOT?

    Directory of Open Access Journals (Sweden)

    M. Herron

    2015-01-01

    Full Text Available This paper demonstrates the ability of visualization and simulation techniques to aid, and simulate current and future directions in coastal planning. Two communities examined are the coastal city of Hobsons Bay on Port Phillip Bay within the Melbourne metropolitan region and the coastal rural town of Apollo Bay, in Australia, are interrogated through a progression of projections and simulated forecasts from 2014 to 2050. The purpose is to comprehend their growth risks as it relates to their coastal edges and land use planning mechanisms in addressing these changes. The analysis uses Geographic Information Systems (GIS associated with planning application software, and the paper offers recommendations in progressing this inquiry.

  15. Sustainable development. First part

    International Nuclear Information System (INIS)

    Colombo, U.; Lanzavecchia, G.; Berrini, M; Zambrini, M.; Bologna, G.; Carraro, C.; Hinterberger, F.; Mastino, G.; Federico, A.; Gaudioso, D.; Luise, A.; Mauro, F.; Padovani, L.; Federico, A.

    1998-01-01

    This paper summarizes a collective effort and represents the second edition of: Environment, energy, economy: a sustainable future. In this work are reported various interventions on sustainable development problem [it

  16. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    Science.gov (United States)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  17. What A Long Strange Trip It's Been: Lessons Learned From NASA EOS, LTER, NEON, CZO And On To The Future With Sustainable Research Networks

    Science.gov (United States)

    Williams, M. W.

    2014-12-01

    The traditional, small-scale, incremental approach to environmental science is changing as researchers embrace a more integrated and multi-disciplinary approach to understanding how our natural systems work today and how they may respond in the future to forcings such as climate change. In situ networks are evolving in response to these challenges so as to provide the appropriate measurements to develop high-resolution spatial and temporal data sets across a wide range of platforms from microbial measurements to remote sensing. These large programs provide a unique set of challenges when compared to more traditional programs. Here I provide insights learned from my participation in a number of large programs, including NASA EOS, LTER, CZO, NEON, and WSC and how those experiences in environmental science can help us move forward towards more applied applications of environmental science, including sustainability initiatives. I'll chat about the importance of managerial and management skills, which most of us scientists prefer to avoid. I'll also chat about making decisions about what long-term measurements to make and when to stop. Data management is still the weakest part of environmental networks; what needs to be done. We have learned that these networks provide an important knowledge base that can lead to informed decisions leading to environmental, energy, social and cultural sustainability.

  18. Highly Stable and Active Pt/Nb-TiO2 Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shuhui Sun

    2012-01-01

    Full Text Available The current materials used in proton exchange membrane fuel cells (PEMFCs are not sufficiently durable for commercial deployment. One of the major challenges lies in the development of an inexpensive, efficient, and highly durable and active electrocatalyst. Here a new type of carbon-free Pt/Nb-TiO2 electrocatalyst has been reported. Mesoporous Nb-TiO2 hollow spheres were synthesized by the sol-gel method using polystyrene (PS sphere templates. Pt nanoparticles (NPs were then deposited onto mesoporous Nb-TiO2 hollow spheres via a simple wet-chemical route in aqueous solution, without the need for surfactants or potentiostats. The growth densities of Pt NPs on Nb-TiO2 supports could be easily modulated by simply adjusting the experimental parameters. Electrochemical studies of Pt/Nb-TiO2 show much enhanced activity and stability than commercial E-TEK Pt/C catalyst. PtNP/Nb-TiO2 is a promising new cathode catalyst for PEMFC applications.

  19. Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries.

    Science.gov (United States)

    Xiao, Ying; Hwang, Jang-Yeon; Sun, Yang-Kook

    2017-11-15

    Numerous materials have been considered as promising electrode materials for rechargeable batteries; however, developing efficient materials to achieving good cycling performance and high volumetric energy capacity simultaneously remains a great challenge. Considering the appealing properties of iron sulfides, which include low cost, high theoretical capacity, and favorable electrochemical conversion mechanism, in this work, we demonstrate the feasibility of carbon-free microscale Fe 1-x S as high-efficiency anode materials for rechargeable batteries by designing hierarchical intertexture architecture. The as-prepared intertexture Fe 1-x S microspheres constructed from nanoscale units take advantage of both the long cycle life of nanoscale units and the high tap density (1.13 g cm -3 ) of the micro-intertexture Fe 1-x S. As a result, high capacities of 1089.2 mA h g -1 (1230.8 mA h cm -3 ) and 624.7 mA h g -1 (705.9 mA h cm -3 ) were obtained after 100 cycles at 1 A g -1 in Li-ion and Na-ion batteries, respectively, demonstrating one of the best performances for iron sulfide-based electrodes. Even after deep cycling at 20 A g -1 , satisfactory capacities could be retained. Related results promote the practical application of metal sulfides as high-capacity electrodes with high rate capability for next-generation rechargeable batteries.

  20. Quantitative analysis of inclusions in low carbon free cutting steel using small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Oba, Yojiro; Koppoju, Suresh; Ohnuma, Masato; Kinjo, Yuki; Tomota, Yo; Morooka, Satoshi; Suzuki, Jun-ichi; Yamaguchi, Daisuke; Koizumi, Satoshi; Sato, Masugu; Shiraga, Tetsuo

    2012-01-01

    The microstructure of inclusions in low carbon free cutting steel without lead addition was investigated using small-angle X-ray scattering (SAXS) coupled with small-angle neutron scattering (SANS). The two-dimensional (2D) SAXS pattern shows clear scattering due to inclusions composed of large elongated particles aligned along the rolling direction, and small isotropic particles. From a comparison of the simulated and experimental 2D SAXS patterns, the shapes of the inclusions are regarded as ellipsoid for the larger inclusions and spherical for the smaller inclusions. The length of the minor axis in the large inclusion is 6.9 μm, while the diameter of the small inclusion is 0.50 μm. The aspect ratio of the large inclusion is estimated to be 3.8 in the lower q region, and is reduced slightly to 3.5 in the higher q region from the azimuthal plots. The results of an alloy contrast variation (ACV) analysis using both the SAXS and SANS data indicate that the chemical composition of the inclusions is almost NaCl-type manganese sulfide, and that the amount of iron sulfide is low. The volume fractions are 1.4% for the large inclusions and 0.2% for the small inclusions. This is consistent with the area fraction estimated using an optical microscope, and indicates that nearly all of the sulfur in the steel sample forms the manganese sulfide inclusions. (author)

  1. Sustainable Soesterkwartier

    NARCIS (Netherlands)

    Abrahams, H.; Goosen, H.; Jong, de F.; Sickmann, J.; Prins, D.

    2010-01-01

    The municipality of Amersfoort wants to construct an endurable and sustainable eco-town in the Soesterkwartier neighbourhood, by taking future climate change into account. The impact of climate change at the location of the proposed eco-town was studied by a literature review.

  2. Education for sustainable development

    DEFF Research Database (Denmark)

    Breiting, Søren

    2009-01-01

     An introduction to the idea of sustainable development (SD) and education for sustainable development (ESD) with reference to the international Decade for Education for Sustainable Development . The chapter includes a focus on conflicting interests between present and future generations related ...... to the use of natural resources and other matters, and how that kind of issues can be dealt with in education as ESD....... An introduction to the idea of sustainable development (SD) and education for sustainable development (ESD) with reference to the international Decade for Education for Sustainable Development . The chapter includes a focus on conflicting interests between present and future generations related...

  3. Mapping alternative energy paths for taiwan to reach a sustainable future: An application of the leap model

    Science.gov (United States)

    Chen, Wei-Ming

    Energy is the backbone of modern life which is highly related to national security, economic growth, and environmental protection. For Taiwan, a region having limited conventional energy resources but constructing economies and societies with high energy intensity, energy became the throat of national security and development. This dissertation explores energy solutions for Taiwan by constructing a sustainable and comprehensive energy planning framework (SCENE) and by simulating alternative energy pathways on the horizon to 2030. The Long-range Energy Alternatives Planning system (LEAP) is used as a platform for the energy simulation. The study models three scenarios based on the E4 (energy -- environment -- economic -- equity) perspectives. Three scenarios refer to the business-as-usual scenario (BAU), the government target scenario (GOV), and the renewable and efficiency scenario (REEE). The simulation results indicate that the most promising scenario for Taiwan is the REEE scenario, which aims to save 48.7 million tonnes of oil equivalent (Mtoe) of final energy consumption. It avoids USD 11.1 billion on electricity expenditure in final demand sectors. In addition, the cost of the REEE path is the lowest among all scenarios before 2020 in the electricity generation sector. In terms of global warming potential (GWP), the REEE scenario could reduce 35 percent of the GWP in the demand sectors, the lowest greenhouse gases emission in relation to all other scenarios. Based on lowest energy consumption, competitive cost, and least harm to the environment, the REEE scenario is the best option to achieve intergenerational equity. This dissertation proposes that promoting energy efficiency and utilizing renewable energy is the best strategy for Taiwan. For efficiency improvement, great energy saving potentials do exist in Taiwan so that Taiwan needs more ambitious targets, policies, and implementation mechanisms for energy efficiency enhancement to slow down and decrease

  4. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  5. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  6. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J.; Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ (United Kingdom); Howey, D. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom)

    2010-01-15

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV. (author)

  7. Sustaining and growing the rural nursing and midwifery workforce: understanding the issues and isolating directions for the future.

    Science.gov (United States)

    Francis, Karen L; Mills, Jane E

    2011-01-01

    Nurses and midwives represent the largest group of health professionals in the Australian health care system. In rural environments nurses and midwives make up a greater proportion of the health workforce than in urban settings, which makes their role in service provision even more significant. The role and scope of these nurses and midwives' practice is by necessity more generalist than specialist, which results in disciplinary strengths and weaknesses. As generalist health professionals they work in diverse settings such as public hospitals, multi-purpose services, community health, aged care and in non-government and private for profit and no-profit organisations including general practices. Their scope of practice covers prevention, intervention and rehabilitation and is lifespan inclusive. Rural nurses and midwives are older than their metropolitan based counterparts, work part-time and traditionally have limited access to professional development often due to ineffective locum relief programs. Workplace inflexibility, access to acceptable housing and partner employment are factors cited as inhibitors to growing this workforces. The future of the rural nursing and midwifery workforce will only be secured if Government invests to a greater degree in both education and training and the development of a nationally agreed remuneration scale that allows for part-time work.

  8. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability

    KAUST Repository

    Ghaffour, Noreddine

    2013-01-01

    , improvements in process design and materials, and the use of hybrid systems have contributed to cost reduction as well as reduction in energy consumption. The development of new and emerging low-energy desalination technologies, such as adsorption desalination, will have an impact on cost variation estimation in the future. © 2012 Elsevier B.V.

  9. Gas, a decisive pillar of the sustainable future of the world: Contribution of the gas industry to fight against climate change and for sustainable development. LPG: a beneficial solution for the environment

    International Nuclear Information System (INIS)

    Le Gourrierec, Meline

    2015-01-01

    Gas has a crucial role to play in developing energy that is less carbon-intensive and more respectful of the environment. Recognised as being the cleanest fossil energy, its use in different sectors of activity leads to a significant reduction in greenhouse gas emissions. In addition, gas contributes to the development of renewable energies and becomes itself renewable through biomethane production. The development of this green gas based on a circular economy has opened up new prospects for the use of gas in all parts of the world. The 21. Conference of the Parties of the Framework Convention of the United Nations, that will be held in Paris from 30 November to 11 December 2015 (COP21) is a decisive step in the negotiation of the future international agreement on the climate that will enter in force in 2020. The target is ambitious: restricting the global warming below the critical threshold of 2 deg. C by 2100. Aware of the climate challenge and the essential role of all the economic actors, the gas industry has embarked on a series of measures contributing to keeping to this global target and facilitating sustainable development through access to energy that is less carbon-intensive and more respectful of the environment. Changing from a solid fuel to a liquid or gaseous fuel provides modern domestic energy with beneficial effects on the environment and on the quality of life. The World LPG Association has the ambition that a billion people making this transition

  10. Preferences on policy options for ensuring the financial sustainability of health care services in the future: results of a stakeholder survey.

    Science.gov (United States)

    Tordrup, David; Angelis, Aris; Kanavos, Panos

    2013-12-01

    Universal access to health care in most western European countries has been a given for many decades; however, macroeconomic developments and increased pressure on health care budgets could mean the status quo cannot be maintained. As populations age, a declining proportion of economically active citizens are being required to support a larger burden of health and social care, while increasing availability of novel technologies for extending and improving life continues to push health care costs upwards. With health expenditure continuing to rise as a proportion of national income, concerns are raised about the current and future financial sustainability of Organisation for Economic Co-Operation and Development (OECD) health care systems. Against this backdrop, a discussion about options to fund health care in the future, including whether to raise additional health care finance (and the ways to do so), reallocate resources and/or ration services becomes very pertinent. This study elicits preferences among a group of key stakeholders (payers, providers, government, academia and health-related industry) on the issue of health care financial sustainability and the future funding of health care services, with a view to understanding the different degrees of acceptability between policy interventions and future funding options as well as their feasibility. We invited 842 individuals from academia, other research organisations (eg. think tanks), national health services, providers, health insurance organisations, government representatives and health-related industry and related advisory stakeholders to participate in an online survey collecting preferences on a variety of revenue-generating mechanisms and cost/demand reducing policies. Respondents represented the 28 EU member states as well as Norway, Iceland, Switzerland, Australia, Russian Federation, Canada and New Zealand. We received 494 responses to our survey from all stakeholder groups. Across all groups, the

  11. Sustainable Energy Future - Nordic Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    This invited paper first outlines the methodologies applied in analysing the energy savings potentials, as applied to a Nordic and a European case study. Afterwards are shown results for how a high quality of life can be achieved with an energy consumption only a small fraction of the present in ...... in Europe. The energy policy in Denmark since 1973 is outlined, including the activities and the roles of NGOs. Finally are described some of the difficulties of implementing energy saving policies, especially in combination with increasing liberalization of the energy market....

  12. Solar radiation and street temperature as function of street orientation. An analysis of the status quo and simulation of future scenarios towards sustainability in Bahrain

    Science.gov (United States)

    Silva, Joao Pinelo

    2017-11-01

    This paper discusses the contribution of street orientation towards the development of a comfortable microclimate for pedestrians in Bahrain. Increasing walkability is a global agenda to address issues such as a) transportation, b) energy consumption, c) health, and d) air pollution, all of which are topics of the sustainability agenda. Thermal comfort is one of the pre-requisites for walkability. In warm climates, this is a challenging goal. Street design is paramount for pedestrian comfort in warm climates. The roles of street orientation and aspect ratio are of particular importance as they determine the intake of solar radiation into the urban canyon. We investigate the state of affairs in Bahrain, by measuring the frequency with which the street orientations E-W, N-S, NE-SW, and NW-SE, currently occur. Research suggests that the street orientation E-W presents the lesser performance for mitigating the effects of heat gain. The ideal grid orientation would, therefore, be N-S, and NE-SW - NW-SE, avoiding street segments with E-W orientation. A countrywide analysis shows that E-W orientation accounts for the highest overall street length with 37%. The second most frequent orientation is N-S (29%), the best performer. NW-SE and NE-SW both have frequencies of only 17%. Preference for a street grid with N-S, NW-SE, and NE-SW orientation would improve the thermal performance of streets and provide a continuous network of a comfortable pedestrian environment. We simulate two future scenarios based on avoiding new E-W streets, or not. We measure their potential reduction in thermal gain and conclude that a simple policy could reduce solar exposition in 40%.

  13. U.S. Geological Survey assessment of global potash production and resources—A significant advancement for global development and a sustainable future.

    Science.gov (United States)

    Cocker, Mark D.; Orris, Greta J.; Wynn, Jeff

    2016-01-01

    During the past 15 yr, the global requirement for fertilizers has grown considerably, mainly due to demand by a larger and wealthier world population for more and higher-quality food. The demand and price for potash as a primary fertilizer ingredient have increased in tandem, because of the necessity to increase the quantity and quality of food production on the decreasing amount of available arable land. The primary sources of potash are evaporates, which occur mainly in marine salt basins and a few brine-bearing continental basins. World potash resources are large, but distribution is inequitable and not presently developed in countries where population and food requirements are large and increasing. There is no known substitute for potash in fertilizer, so knowledge of the world’s potash resources is critical for a sustainable future. The U.S. Geological Survey recently completed a global assessment of evaporite-hosted potash resources, which included a geographic information system–based inventory of known potash resources. This assessment included permissive areas or tracts for undiscovered resources at a scale of 1:1,000,000. Assessments of undiscovered potash resources were conducted for a number of the world’s evaporite-hosted potash basins. The data collected provide a major advance in our knowledge of global potash resources that did not exist prior to this study. The two databases include: (1) potash deposits and occurrences, and (2) potash tracts (basins that contain these deposits and occurrences and potentially undiscovered potash deposits). Data available include geology, mineralogy, grade, tonnage, depth, thickness, areal extent, and structure, as well as numerous pertinent references.

  14. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    Science.gov (United States)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous

  15. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung

    2013-06-25

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <180°C. Because of its low temperature requirements the method allows processing of high-performance transistors onto temperature sensitive substrates such as plastic. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Handbook of sustainable engineering

    CERN Document Server

    Lee, Kun-Mo

    2013-01-01

    "The efficient utilization of energy, sustainable use of natural resources, and large-scale adoption of sustainable technologies is the key to a sustainable future. The Handbook of Sustainable Engineering provides tools that will help us achieve these goals". Nobel Prize Winner Dr. R.K. Pauchauri, Chairman, UN Intergovernmental Panel on Climate Change As global society confronts the challenges of diminishing resources, ecological degradation, and climate change, engineers play a crucial role designing and building technologies and products that fulfil our needs for utility and sustainability. The Handbook of Sustainable Engineering equips readers with the context and the best practices derived from both academic research and practical examples of successful implementations of sustainable technical solutions. The handbook’s content revolves around the two themes, new ways of thinking and new business models, including sustainable production, products, service systems and consumption while addressing key asse...

  17. LCA and Sustainability

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bjørn, Anders

    2018-01-01

    LCA is often presented as a sustainability assessment tool. This chapter analyses the relationship between LCA and sustainability. This is done by first outlining the history of the sustainability concept, which gained momentum with the Brundtland Commission’s report ‘Our Common Future report...... is then demonstrated, and the strategy of LCA to achieving environmental protection, namely to guide the reduction of environmental impacts per delivery of a function, is explained. The attempt to broaden the scope of LCA, beyond environmental protection, by so-called life cycle sustainability assessment (LCSA......) is outlined. Finally, the limitations of LCA in guiding a sustainable development are discussed....

  18. Sustainability makes ready for the future. Utilization of the energy, environmental protection; Nachhaltigkeit macht fit fuer die Zukunft. Energie nutzen, Umwelt schuetzen

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Markus; Jungbluth, Andreas; Petry, David; Mueller, Bernd

    2010-09-15

    Needless to say, that sustainability corresponds to the preservation of development opportunities and livelihood opportunities as well as to save the competitiveness of our country. In addition to this, the sustainability is the answer to the challenges of the globalisation, demographic change, worldwide climate changes and the shortage of energy sources. Under this aspect, the brochure under consideration contains the following contributions: (1) Discovery of energy: fundamentals and sources; (2) Utilization of energy: climate-friendly concepts; (3) Energy conservation: Environmental protection by means of efficiency; (4) Energy exploration: Innovations for a sustainable development.

  19. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  20. Sustainable the future energy in its application in the architecture: reality and evolution, application practices and investigation; El futuro sostenible energetico en su aplicacion en la arquitectura: realidad y evolucion, aplicacion practica e investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pena, V.

    2008-07-01

    The personal professional experience is described, in matter of application of sustainable power plants in the architecture, the present one as base of reflection and analysis for which really it interests, the future; of the possible most colloquial forms; since although one treats in this event, between professionals with common interest I specify; its aim is to contribute al future sustainable del planted and its true final addresses, the citizens. In the daily work in matter of renewable energies in construction, they appear very different options form design and execution until arriving al final result; like in other questions of the life; but in this case, the incipient been present of the question, technique, norm, formative, of awareness and promotion, together with the complexity del made constructive (design, technology, urbanism, surroundings); complica its application and development. (Author)

  1. Sustainable Sizing.

    Science.gov (United States)

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  2. Sustainability and uncertainty

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2007-01-01

    The widely used concept of sustainability is seldom precisely defined, and its clarification involves making up one's mind about a range of difficult questions. One line of research (bottom-up) takes sustaining a system over time as its starting point and then infers prescriptions from...... this requirement. Another line (top-down) takes an economical interpretation of the Brundtland Commission's suggestion that the present generation's needsatisfaction should not compromise the need-satisfaction of future generations as its starting point. It then measures sustainability at the level of society...... a clarified ethical goal, disagreements can arise. At present we do not know what substitutions will be possible in the future. This uncertainty clearly affects the prescriptions that follow from the measure of sustainability. Consequently, decisions about how to make future agriculture sustainable...

  3. Towards a Sustainable Architecture

    OpenAIRE

    Patuel Chust, Pascual

    2014-01-01

    The growing awareness of the importance of ecology in the last decades has led many architects to rethink their construction proposals to make them more respectful of the environment and sustainability. The present article analyzes the legislation, conferences and international declarations (Earth Summit, Declaration of Interdependence for a Sustainable Future, Introduction to Sustainable Design) that have advocated the practice of a more ecological architecture. Also examined ...

  4. Sustainable economic structures

    NARCIS (Netherlands)

    Dellink, R.B.; Bennis, M.; Verbruggen, H.

    1999-01-01

    The paper introduces four scenarios for sustainable economic structures in the Netherlands for 2030. The aim of this paper is to provide possible answers to what a sustainable future might look like in terms of alternative economic structures. To this end, an empirical economy-ecology model is

  5. Leading Sustainability in Schools

    Science.gov (United States)

    Carr, Katie

    2016-01-01

    What is the role of schools, and more specifically school leadership, in the transition to a sustainable future for humankind? What different forms of leadership are needed to enable this role? The challenges are huge and complex and for those of us engaged in promoting sustainability learning, it is clear that the issue has never been more…

  6. Fur and Sustainability

    DEFF Research Database (Denmark)

    Skjold, Else; Csaba, Fabian

    2016-01-01

    This paper explores the notion of deeper luxury, which insists that 'real' luxury should involve sustainable practices in the production and consumption of luxury goods. It traces historical and recent developments in the field of fur, to understand the implications, uncertainties and ambiguities...... of luxury’s confrontation with sustainability. Considering fur in relation to future standards for luxury products, we raise questions about moral problematisation and justification of luxury in terms of sustainability. We first examine the encounter of luxury with sustainability and explain...... the significance of the notion of ‘deeper luxury’. After taking stock of the impact of sustainability on luxury and various directions in which sustainable luxury is evolving, we discuss concepts of sustainable development in relation to the history of moral problematisation of luxury. This leads to the case...

  7. The sustainable company: new challenges and strategies for more sustainability

    Directory of Open Access Journals (Sweden)

    Victor DANCIU

    2013-09-01

    Full Text Available The sustainability becomes a model of development only if countries, industries, businesses and citizens become sustainable. The contribution of the business to a promising future should come from a fully integrated sustainability in its DNA and strategies.This paper focuses on the needed sustainable strategies for scaling up the contribution of the companies to sustainable development in the future. At the beginning, we analyze the main theoretical points of view on sustainability. Then, we explain how companies could achieve the sustainability by following the steps of a difficult process and the present performances in sustainability of large companies around the world. Finally, we suggest four strategies that businesses could design and implement in order to scaling up their sustainability in the future.The research has two important conclusions on sustainability in business. One is that the sustainability pays off if it is integrated in the DNA of the companies. The other conclusion says that the companies will succeed to make the needed transformation for achieving a better sustainability in the future only if they design and perform strategies focused on improving sustainability.

  8. Sustainability Science Needs Sustainable Data!

    Science.gov (United States)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Sustainability science (SS) is an 'emerging field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life support systems' (Kates, 2011; Clark, 2007). Bettencourt & Kaur (2011) identified more than 20,000 scientific papers published on SS topics since the 1980s with more than 35,000 distinct authors. They estimated that the field is currently growing exponentially, with the number of authors doubling approximately every 8 years. These scholars are undoubtedly using and generating a vast quantity and variety of data and information for both SS research and applications. Unfortunately we know little about what data the SS community is actually using, and whether or not the data that SS scholars generate are being preserved for future use. Moreover, since much SS research is conducted by cross-disciplinary, multi-institutional teams, often scattered around the world, there could well be increased risks of data loss, reduced data quality, inadequate documentation, and poor long-term access and usability. Capabilities and processes therefore need to be established today to support continual, reliable, and efficient preservation of and access to SS data in the future, especially so that they can be reused in conjunction with future data and for new studies not conceived in the original data collection activities. Today's long-term data stewardship challenges include establishing sustainable data governance to facilitate continuing management, selecting data to ensure that limited resources are focused on high priority SS data holdings, securing sufficient rights to allow unforeseen uses, and preparing data to enable use by future communities whose specific research and information needs are not yet known. Adopting sustainable models for archival

  9. Smart Sustainable Islands VS Smart Sustainable Cities

    Science.gov (United States)

    Pantazis, D. N.; Moussas, V. C.; Murgante, B.; Daverona, A. C.; Stratakis, P.; Vlissidis, N.; Kavadias, A.; Economou, D.; Santimpantakis, K.; Karathanasis, B.; Kyriakopoulou, V.; Gadolou, E.

    2017-09-01

    This paper has several aims: a) the presentation of a critical analysis of the terms "smart sustainable cities" and "smart sustainable islands" b) the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors) which concern the insular municipalities c) the creation of an island's smartification and sustainability index d) the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e) the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies.

  10. Direct and indirect land use changes issues in European sustainability initiatives: State-of-the-art, open issues and future developments

    International Nuclear Information System (INIS)

    Van Stappen, Florence; Brose, Isabelle; Schenkel, Yves

    2011-01-01

    Facing climate change and growing energy prices, the use of bioenergy is continuously increasing in order to diminish greenhouse gas emissions, secure energy supply and create employment in rural areas. Because the production of biomass or biofuels, wherever it takes place, comes along with externalities, positive or negative, the need for biomass and bioenergy sustainability criteria is more than ever felt. Research on sustainability criteria and certification systems has started through several national and international initiatives. Considering the benefits of an increased use of bioenergy but also the urge for limiting potential negative environmental and socio-economic impacts, the aim of these initiatives was to make the first move regarding bioenergy sustainability, while waiting for the European legislation to regulate this crucial issue. Land use changes, whether direct or indirect, are one of the most important consequences of bioenergy production. While direct land use changes are more easily assessed locally, indirect land use changes exceed the company level and need to be considered at a global scale. Methodologies for dealing with direct and indirect land use changes are proposed among others in the European, Dutch, British and German sustainability initiatives. This paper aims at presenting and comparing those four European initiatives, with a focus on their propositions for direct and indirect land use changes assessment. Key issues are discussed and recommendations are made for steps to overcome identified difficulties in accurately assessing the effects of indirect land use change due to bioenergy production.

  11. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  12. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.

    Science.gov (United States)

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  13. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  14. Action Research for Sustainability

    DEFF Research Database (Denmark)

    Egmose, Jonas

    on urban sustainability the need to move towards sustainability at societal level is conceptualised as a democratic challenge questioning the way we live on planet earth. By understanding sustainability as an immanent and emergent ability of ecological and social life, continuously to renew itself without...... with a greater say in the future of urban sustainability research, the work shows how action research can make important methodological contributions to processes of social learning between citizens and scientists by enabling free spaces in peoples everyday life and within academia, where aspects...

  15. Action Research for Sustainability

    DEFF Research Database (Denmark)

    Egmose, Jonas

    by analysing processes of social learning. The book addresses the need to move towards sustainability at societal level as a democratic challenge questioning the way we live on planet earth. By conceptualising sustain-ability as an immanent and emergent ability of ecological and social life, continuously...... to provide local citizens with a greater say in the future of urban sustainability research, this book shows how action research can make important methodological contributions to processes of social learning between citizens and scientists by enabling free spaces in peoples everyday life and within academia...

  16. Direct synthesis of pure single-crystalline Magnéli phase Ti8O15 nanowires as conductive carbon-free materials for electrocatalysis

    Science.gov (United States)

    He, Chunyong; Chang, Shiyong; Huang, Xiangdong; Wang, Qingquan; Mei, Ao; Shen, Pei Kang

    2015-02-01

    The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts.The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts. Electronic supplementary information (ESI) available: Additional data for the characterization and experimental details see DOI: 10.1039/c4nr05806b

  17. Mitigating Pollution of Hazardous Materials from WEEE of China: Portfolio Selection for a sustainable future based on Multi-Criteria Decision Making

    DEFF Research Database (Denmark)

    An, Da; Yang, Yu; Chai, Xilong

    2015-01-01

    In order to solve the environmental contaminations and human health problems caused by the inappropriate treatment of waste electrical and electronic equipment (WEEE) in China, sustainable e-waste treatment has emerged in China's WEEE recycling industry. This study aims to develop a multi......-criteria decision making method by integrating interval Analytic Hierarchy Process and interval VIKOR method for China's stakeholders to select the most efficacious portfolio for solving the severe problems caused by the informal e-waste recycling and promote the development of China's WEEE recycling industry...... in a sustainable approach. An illustrative case in Guiyu has been studied by the developed method, and the results show that the portfolio of supporting the informal peddlers for legal transition, investing on infrastructure for WEEE recycling, training and education on China's residents, and restricting...

  18. Concepts for the town of the future. Sustainability criteria as a tool of design; Konzepte fuer die Stadt der Zukunft. Nachhaltigkeitskriterien als Entwurfswerkzeug

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Maik W. [Schaller Architekten BDA RIBA, Stuttgart (Germany)

    2011-07-01

    Whether land use, local storms or migration - the effects of global urbanization make the integration of urban systems in national sustainable development strategies inevitable. While comprehensive, holistic evaluations already are possible by means of appropriate methods, it is still missing in the transfer in manageable planning tools. How these tools could look like, how they influence the evolution of the design process and also generate form, space and structure, all this is shown by the project New Hanza City in Latvia.

  19. A New Agenda for Sustainability

    DEFF Research Database (Denmark)

    Aagaard Nielsen, Kurt

    Two decades after the Brundtland Commission's Report "Our Common Future" adopted the concept of 'sustainable development', this book provides a renewal of the concept exploring the potential for new practices and fields for those involved in sustainability activity. The book addresses a number...... on sustainability. The material dealt with in the book offers a wide variety of perspectives on sustainability and reflects the importance of interdisciplinary and transdiciplinary work in the field. Suggesting targets for future analytical and political efforts in achieving global sustainability, this book offers...

  20. Corporate Social Responsibility: A Framework for The Sustainable Future Of Enlarged Europe / Kurumsal Sosyal Sorumluluk: Genişleyen Avrupa'nin Sürdürülebilir Geleceği İçin Bir Çerçeve

    OpenAIRE

    Türker, Duygu; Altuntaş, Ceren

    2013-01-01

    Abstract Sustainable development has provided a significant conceptual approach for the solutions of problems on the triangle of industrialization, urbanization, and population increase. In order to advance the current and future welfare of its members, European Union (EU) has worked to build its development model on the principles of sustainability. The involvement of business organizations to this process is viewed critical to achieve the overarching sustainability principle. However the ad...

  1. Sustainability; Sustentabilidade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This chapter analyses the production chain of ethanol, considering the impacts on the quality of the air, water supplies, soil occupation and biodiversity, and the efforts for the soil preservation. It is pointed out the activities of the production cycle and use of bio ethanol due to great uncertainties as far the environmental impacts is concerning and that will deserve more attention in future evaluations. At same time, the chapter highlights another activities where the present acknowledge is sufficient to assure the control and/or prediction of consequences of the desired intervention on the environment media to accommodate the sugar and ethanol production expansion. The consideration is not conservative but to promote the sustainable development.

  2. Continuing to Build a Community Consensus on the Future of Human Space Flight: Report of the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV)

    Science.gov (United States)

    Thronson, Harley A.; Baker, John; Beaty, David; Carberry, Chris; Craig, Mark; Davis, Richard M.; Drake, Bret G.; Cassady, Joseph; Hays, Lindsay; Hoffman, Stephen J.; hide

    2016-01-01

    To continue to build broadly based consensus on the future of human space exploration, the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV), organized by Explore Mars, Inc. and the American Astronautical Society, was held at the Double Tree Inn in Monrovia, CA., December 68, 2016. Approximately 60 invited professionals from the industrial and commercial sectors, academia, and NASA, along with international colleagues, participated in the workshop. These individuals were chosen to be representative of the breadth of interests in astronaut and robotic Mars exploration.

  3. Sustainable Food & Sustainable Economics

    OpenAIRE

    Alvarez, Mavis Dora

    2012-01-01

    Cuba today is immersed in a very intense process of perfecting its agricultural production structures with the goal of making them more efficient and sustainable in their economic administration and in their social and environmental management. Agricultural cooperatives in Cuba have the responsibility of producing on 73% of the country's farmland. Their contributions are decisive to developing agricultural production and to ensuring more and better food for the population, in addition to redu...

  4. The Transformation of Agricultural Development towards a Sustainable Future from an Evolutionary View on the Chinese Loess Plateau: A Case Study of Fuxian County

    Directory of Open Access Journals (Sweden)

    Yanjun Guo

    2014-06-01

    Full Text Available The Loess Plateau in China receives lots of attention from around the world. The expansion of bad agricultural practices for hundreds of years aggravated the soil erosion on the Loess Plateau, however, and a lot of efforts were and are being made to reduce the serious soil erosion as well as regional poverty. Agricultural development of the Loess Plateau is still confronted with intricate challenges such as food concerns, environment concerns, and regional poverty. The strategy of development towards sustainability offers a possible and important way to face the challenges. This study tried to develop a holistic “variation-selection-replication-retention” model to analyze the transformation of agricultural development from an evolutionary view which is generally integrative. It is indicated that policies should be lively and vibrant organisms full of innovations owning to ever-changing environment in the evolutionary view. Under this analytical framework, one possible path from serious soil erosion region to region with sustainable agriculture could be recognized in the case study of Fuxian County: serious soil erosion regions → regions with poor production conditions → production-optimized regions → regions with developed agriculture → regions with sustainable agriculture. Diversified integrative development is suggested due to regional differences and the possible developing order in Fuxian County. State-subsidized “Grain for Green” policy and diversified land use are necessary for the transformation of serious soil erosion regions which are usually trapped in regional poverty. To the transformation of regions with poor production conditions, a state-subsidized “production optimization” policy and diversified land use deserve to be considered, due to regional poverty in regions with poor production conditions. Agricultural scale operation is priority for the transformation of production-optimized regions towards

  5. Abstracts of the Canadian Society for Civil Engineering annual conference including the general conference, the 1. international structural specialty conference, the 1. international construction specialty conference, and the 1. specialty conference on disaster mitigation : towards a sustainable future

    International Nuclear Information System (INIS)

    El-Badry, M.; Loov, R.E.; Ruwanpura, J.; El-Hacha, R.; Kroman, J.; Rankin, J.

    2006-01-01

    This conference provided a forum for national and international practicing engineers, researchers and technical experts to discuss sustainable solutions to infrastructure development. Discussions focused on recent developments in new technologies for building more economic and sustainable infrastructure, while improving the safety of buildings, bridges, roads, water supply and sewage treatment systems. The conference was held in conjunction with associated specialty conferences, including a first international structures specialty conference, a first international construction specialty conference, and a first specialty conference on disaster mitigation. This book of abstracts highlights all the specialty conferences and accompanies a CD-ROM that has the full text of all the papers. Manuscripts of the full papers submitted to the specialty conferences were peer-reviewed by international scientific committees. The general conference provided a forum to learn about new technologies and future directions in various areas of civil engineering. It included a special theme session on sustainable development and a special session on innovation and information technology. Other technical sessions focused on topics such as civil engineering history and education; infrastructure management and renewal; asset management; risk assessment and management; engineering materials and mechanics; environmental engineering and science; hydrotechnical engineering; cold region engineering; and, transportation engineering. The general conference featured 88 presentations, of which 15 have been catalogued separately for inclusion in this database

  6. Driving the future. Volkswagen Group's solutions for sustainable mobility; Die Zukunft fest im Blick. Nachhaltige Mobilitaetskonzepte im Volkswagen Konzern

    Energy Technology Data Exchange (ETDEWEB)

    Winterkorn, Martin [Volkswagen AG (Germany)

    2013-08-01

    Sustainable mobility must remain the automotive industry's top priority, even when the economic outlook changes. The Volkswagen Group is strongly committed to its ecological responsibilities and is working hard to reduce the CO{sub 2} emissions of its European fleet of new cars to 95 g/km by 2020. To do so, it is adopting a diverse strategy to enhance and improve the whole range of drive trains: from highly efficient TSI and TDI engines to natural-gas drive systems, from the plug-in hybrid to pure electric-drive systems. As far as the established technologies are concerned, there is still considerable potential to improve efficiency. For example, Volkswagen is currently working on a high-performance diesel engine and a new 10-speed dual-clutch gearbox. As far as alternative drive systems are concerned, the plug-in hybrid has the best change of market success in the medium term. Overall, the key to the success of sustainable mobility solutions is to focus on the customers and their needs. Because it is essential that customers accept the new technologies and, more importantly, are prepared to pay an adequate price for them. Cars such as the Golf BlueMotion, the Audi A3 e-tron, the Porsche Panamera E-Hybrid, and the Volkswagen eco up., which is powered by natural gas, all send a clear message: Automobiles must remain something that fascinates people, no matter which type of drive system they have. (orig.)

  7. Sustainable electricity supply of the future. Costs and benefits of a transformation to 100% renewable energies; Nachhaltige Stromversorgung der Zukunft. Kosten und Nutzen einer Transformation hin zu 100% erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Andreas; Luenenbuerger, Benjamin; Osiek, Dirk

    2012-08-15

    In the brochure under conideration, the Federal Environment Agency (Dessau-Rosslau, Federal Republic of Germany) reports on a sustainable electricity supply in the future. The costs and benefits of the transformation to 100% renewable energy sources are considered. The Federal Environment Agency concludes: A sustainable power supply requires the transition to a fully renewable energy supply. A full supply of electricity from renewable sources by 2050 is feasible technically. Thereby electricity from wind power and solar energy may play a central role in any ambitious expansion scenarios. The cost of power generation from renewable energy already are sunk. This trend will continue. Since the conventional power generation is more expensive in the future, renewable energy pays off more and more. Environmentally harmful subsidies and the lack of consideration of the social costs caused by the fossil and nuclear power generation massively distort the competition at the expense of renewable energy. The transformation of the energy system is worthwhile macroeconomically. The promotion of renewable energies avoids social follow-up costs caused by environmental damages and health related harms. Jobs are created. The regional value added is increased. It also improves the competitiveness of the fast-growing world markets for renewable energy technologies.

  8. Fur and sustainability

    DEFF Research Database (Denmark)

    Skjold, Else; Ræbild, Ulla; Tanderup, Sisse

    2016-01-01

    interviews and observations at the premises of Kopenhagen Fur, as well as with stakeholders and collaborate partners in Denmark and in China. The definition of sustainability in the report must be seen as related to Design School Kolding's research umbrella of Sustainable Futures - a term chosen to unite...... practices around retail and communication (by Else Skjold, PhD in user studies and business management). On the basis of these four sub-projects, the report concludes the following: Currently, fur is placed very centrally in the moral debates around sustainability, as fur farming highligts environmental...... sustainability within the garment sector at large, and to define its own unique position for the future. With a departure in the the four sub-projects, the report lists a line of recommendations for how it would be possible to develop and revitalise traditional and current practices around fur design...

  9. Sustainable construction and housing. A needs based approach for the future; Nachhaltiges Bauen und Wohnen. Ein Beduerfnisfeld fuer die Zukunft gestalten

    Energy Technology Data Exchange (ETDEWEB)

    Vallenthin, Mark; Paffrath, Simone; Bolland, Til (comps.)

    2010-05-15

    Our way of constructing our buildings, our life-style, our housing patterns, as well as our mobility habits, increasingly place stress on the environment and endanger the basis of existence of many living creatures on this planet. Mankind can carry on ignoring the limits of tolerance of their natural environment. However, they must then learn to cope with increasing damage caused by natural catastrophes to which they have contributed. Our extensive use of raw materials pushes the limits as well. Peak-Oil will soon be reached, although the demand for oil will continue to increase strongly. Therefore, we have to dismiss our wasteful technologies, architecture, living standards and housing patterns, established during the 'fossil age'. Construction, development, use, modernisation and repair of buildings and infrastructure take up an unacceptably large amount of surface area and cause a major part of the demand for energy and raw materials in Germany. There are excellent and worthwhile alternatives to the common and familiar habits, patterns and designs. This brochure indicates how sustainable alternatives can be found in the construction and housing sector. A compilation of alternatives - the so-called 'Sustainability scenario' - provides an excellent overview of the amazingly wide spectrum we have to satisfy our housing requirements at a high level and - at the same time - wasting considerably less natural resources. The supposed measures follow the principles 'Return from greenfield to central urban areas' and 'Rather improve the fabric of existing buildings than construct new ones'. The first principle also links to other measures for a mobility less depending on oil and less harmful to our climate. Politicians, leaders of the construction and housing industry, architects, home owners and tenants can positively shape the presented spectrum. By abolishing the home building subsidy and by promoting the energy saving

  10. PATHWAYS TO SUSTAINABLE BANKING MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Dragan (Santamarian Oana Raluca

    2012-12-01

    Full Text Available This paper describes one of the major challenges of the future: the sustainable development of the society. Sustainability is now increasingly recognized as central to the growth of emerging market economies. For the banking sector, this represents both a demand for greater social and environmental responsibility as well as a new landscape of business opportunity. Several years ago, the main part of the banks did not consider the social and environmental problems relevant for their operations. Recently, the banks began to realize the major impact of the sustainable development over the way of ulterior development of the society and, implicitly over the way of creating of the banking value in the future. In this context, the development of a banking management system, based on sustainable principles represents one of the provocations of these days.Starting from literature in the sustainable banking management field in this paper are presented several relevant issues related to risk management in the context of sustainable banking financing: the need to implement the sustainable management principles in financial and banking industry; the role of banks in sustainable development of society; social and environmental risk management policies, events that have shaped the role of the banking sector in sustainable development; international standards regarding sustainable banking management such us: Equator Principles for sustainable investment projects’ financing or GRI principles for sustainable reporting. Furthermore, we developed a practical case study related to the implementation of sustainable banking management at Bank of America.

  11. The need for sustainability and alignment of future support for National Immunization Technical Advisory Groups (NITAGs) in low and middle-income countries.

    Science.gov (United States)

    Howard, Natasha; Bell, Sadie; Walls, Helen; Blanchard, Laurence; Brenzel, Logan; Jit, Mark; Mounier-Jack, Sandra

    2018-02-22

    National Immunisation Technical Advisory Groups (NITAGs) provide independent guidance to health ministries to support evidence-based and nationally relevant immunisation decisions. We examined NITAGs' value, sustainability, and need for support in low and middle-income countries, drawing from a mixed-methods study including 130 global and national-level key informant interviews. NITAGs were particularly valued for providing independent and nationally owned evidence-based decision-making (EBDM), but needed to be integrated within national processes to effectively balance independence and influence. Participants agreed that most NITAGs, being relatively new, would need developmental and strengthening support for at least a decade. While national governments could support NITAG functioning, external support is likely needed for requisite capacity building. This might come from Gavi mechanisms and WHO, but would require alignment among stakeholders to be effective.

  12. Interpreting sustainable development

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Over the past decade, the term" sustainable development"has emerged as the principal concept in the development field. The concept emerged in the 1970s and was first promoted in the international environmental and development communities with the publication of the " world conservation strategy"(1980). It was popularized by the Brundtland report, " Our common future"(1987). The Brundtland Commission defined sustainable development as " development which meets the needs of the present, without compromising the sustainability of future generation to meet their own needs". The Earth Summit(1992) established "sustainable development" as the most important policy of the 21st century. Since then, the relationship between development and environment has been widely discussed and sustainabale development is now an important part of the vocabulary of environmental policy research and analysis. In this paper, we begin by tracing the evolution of the concept of sustainable development. Definitions of sustainable development in ecology, economics and sociology are then explored and discussed. This paper also examine the contribution that a broadly-based concept of sustainable development can make: as a goal, an attitude and as a guiding principle for integrating economic development and environmental protection.

  13. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.

    Science.gov (United States)

    Khan, Muhammad Imran; Shin, Jin Hyuk; Kim, Jong Deog

    2018-03-05

    Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO 2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

  14. The status of health librarianship and libraries in the Republic of Ireland (SHELLI): a mixed methods review to inform future strategy and sustainability.

    Science.gov (United States)

    Harrison, Janet; Creaser, Claire; Greenwood, Helen

    2013-06-01

    This paper summarises the main points of a review of the Status of Health Librarianship & Libraries in Ireland (SHELLI). The review was commissioned to gain a broad understanding of what was happening in practice in Ireland; acquire knowledge about international best practice, and to inform strategic plans to develop and sustain health libraries and librarianship in Ireland. A Mixed Methods approach was used: a literature review; an online survey distributed to health librarians; Semi structured interviews with key stakeholders; a focus group drawing participants from the survey. All evidence was triangulated. New roles for health librarians needed development and the changing educational needs of health librarians warranted attention. Increased collaboration across institutional boundaries needed more consideration, especially in relation to access to e-resources. Marketing of library services was crucial. Irish health library standards, needed to be updated and enforced and a proper evidence base established. The literature provided a number of examples of potentially useful initiatives. A strategic plan of action was drawn up in three areas: (i) to identify champions and promote visibility of health service libraries, (ii) to establish a body of evidence and (iii) to support service development and staff mentoring. © 2013 The authors. Health Information and Libraries Journal © 2013 Health Libraries Group.

  15. Solar radiation and street temperature as function of street orientation. An analysis of the status quo and simulation of future scenarios towards sustainability in Bahrain

    Directory of Open Access Journals (Sweden)

    Silva Joao Pinelo

    2017-01-01

    A countrywide analysis shows that E-W orientation accounts for the highest overall street length with 37%. The second most frequent orientation is N-S (29%, the best performer. NW-SE and NE-SW both have frequencies of only 17%. Preference for a street grid with N-S, NW-SE, and NE-SW orientation would improve the thermal performance of streets and provide a continuous network of a comfortable pedestrian environment. We simulate two future scenarios based on avoiding new E-W streets, or not. We measure their potential reduction in thermal gain and conclude that a simple policy could reduce solar exposition in 40%.

  16. Sustainable Marketing

    NARCIS (Netherlands)

    Dam, van Y.K.

    2017-01-01

    In this article, three different conceptions of sustainable marketing are discussed and compared. These different conceptions are referred to as social, green, and critical sustainable marketing. Social sustainable marketing follows the logic of demand-driven marketing management and places the

  17. How important are current energy mix choices on future sustainability? Case study: Belgium and Spain-projections towards 2020-2030

    International Nuclear Information System (INIS)

    Foidart, F.; Oliver-Sola, J.; Gasol, C.M.; Gabarrell, X.; Rieradevall, J.

    2010-01-01

    Despite recent consumption decrease due to recession, European electricity sector is struggling to reach ambitious targets for reductions of greenhouse gas emissions. Our objective is to carry out a macro analysis of the energy mix in two European countries: Belgium and Spain. Life Cycle Assessments are carried for 2005 as well as for seven possible referenced scenarios to reach EU and also national legal objectives at the horizon 2020 and 2030. Ambitious renewable energy sources' deployment plans can decrease impacts on the environment significantly as those sources replace polluting traditional sources, such as coal/lignite, oil or gas. When concentrating on projections for the future in Spain, results show that a mix with little coal and oil replaced by up to 54% of RES-E energy sources could bring environmental benefits with CO 2 emissions equivalent around 0.2 kg per kWh produced (compared with 0.54 kg in 2005). In Belgium, all future scenarios presented include more coal and gas with a limited share of RES-E; those mixes present more environmental harmful impacts (up to 0.56 kg CO 2 equivalent). This is why RES-E deployment is crucial as long as it is part of an electricity mix with reduced quantities of traditional fossil fuels.

  18. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks.

    Science.gov (United States)

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-02-01

    The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.

  19. Sustainability dilemmas in emerging economies

    Directory of Open Access Journals (Sweden)

    Rama K. Jayanti

    2014-06-01

    Full Text Available Increasing evidence of climate change is forcing businesses to play an active role in reducing sustainability burdens and preserving resources for future generations. Extant research on sustainability has an exclusive focus on developed countries with stringent environmental regulations and activist scrutiny. Emerging markets present interesting dilemmas since rapid mass urbanisation aimed at raising standards of living poses concomitant threats to environmental health. This round table aimed to showcase best practices in sustainability within the Indian business context. Insights from the discussion regarding sustainability dilemmas provide a fertile ground for bench marking global sustainability best practices.

  20. Sustainability in Fashion Business Operations

    Directory of Open Access Journals (Sweden)

    Tsan-Ming Choi

    2015-11-01

    Full Text Available Under the global trend of sustainability, many companies selling fashion products have to reshape their operational strategies. Over the past few years, we have witnessed many fashion companies going green by re-engineering their business processes and establishing their formal sustainability programs. Many important topics, such as closed-loop supply chain management, corporate social responsibility, and economic sustainability, are all related to sustainable fashion business operations management. This paper provides a brief review of these critical topics, introduces the special issue, and proposes future research areas to achieve sustainable operations management in the fashion business.

  1. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  2. Sustaining the Landscape: A Method for Comparing Current and Desired Future Conditions of Forest Ecosystems in the North Cumberland Plateau and Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Druckenbrod, D.L.

    2004-12-22

    This project initiates an integrated-landscape conservation approach within the Northern Cumberlands Project Area in Tennessee and Kentucky. The mixed mesophytic forests within the Cumberland Plateau and Mountains are among the most diverse in North America; however, these forests have been impacted by and remain threatened from changes in land use across this landscape. The integrated-landscape conservation approach presented in this report outlines a sequence of six conservation steps. This report considers the first three of these steps in two, successive stages. Stage 1 compares desired future conditions (DFCs) and current prevailing conditions (CPCs) at the landscape-scale utilizing remote sensing imagery, remnant forests, and descriptions of historical forest types within the Cumberland Plateau. Subsequently, Stage 2 compares DFCs and CPCs for at-risk forest types identified in Stage 1 utilizing structural, compositional, or functional attributes from USFS Forest Inventory and Analysis data. Ecological indicators will be developed from each stage that express the gaps between these two realizations of the landscape. The results from these first three steps will directly contribute to the final three steps of the integrated-landscape conservation approach by providing guidance for the generation of new conservation strategies in the Northern Cumberland Plateau and Mountains.

  3. Diversification of the energy mix and renewable energy sources in Slovenia for ensuring sustainable, competitive and secure energy in the future

    Energy Technology Data Exchange (ETDEWEB)

    Podlogar, Sasa; Raner, Damjana; Zebeljan, Djordje

    2007-07-01

    The European Union is facing major challenges in the energy field - growing import dependency, the need for substantial investment and lack of competitive energy market. It has adopted binding legislation and non-binding recommendations, but they do not suffice. The latest Green paper identifies diversification of energy mix as one of the key areas, where further action is needed, if Europe is to overcome this crisis. Renewable energy is recognised as a relevant factor in improving security of energy supply, since it increases the share of indigenous energy and thus provides a more balanced and diversified energy mix. Slovenia's energy mix includes 11 % of renewables. In our electricity mix the share of renewables is higher, 27,6 %.The estimations show that by 2015 13,3 % of primary energy use will come from renewable sources. Our current strategy in the field of renewable energy sources is to increase their share in overall energy balance sheet to 12 % in 2010 and to increase their share in electricity production to 33,6 % in 2010. But Slovenia will have to take into account new ambitious targets the European Commission recommended recently, while trying to determine the optimally balanced diversification of energy sources in the future. (auth)

  4. Building a sustainable clinical academic workforce to meet the future healthcare needs of Australia and New Zealand: report from the first summit meeting.

    Science.gov (United States)

    Windsor, J; Searle, J; Hanney, R; Chapman, A; Grigg, M; Choong, P; Mackay, A; Smithers, B M; Churchill, J A; Carney, S; Smith, J A; Wainer, Z; Talley, N J; Gladman, M A

    2015-09-01

    The delivery of healthcare that meets the requirements for quality, safety and cost-effectiveness relies on a well-trained medical workforce, including clinical academics whose career includes a specific commitment to research, education and/or leadership. In 2011, the Medical Deans of Australia and New Zealand published a review on the clinical academic workforce and recommended the development of an integrated training pathway for clinical academics. A bi-national Summit on Clinical Academic Training was recently convened to bring together all relevant stakeholders to determine how best to do this. An important part understood the lessons learnt from the UK experience after 10 years since the introduction of an integrated training pathway. The outcome of the summit was to endorse strongly the recommendations of the medical deans. A steering committee has been established to identify further stakeholders, solicit more information from stakeholder organisations, convene a follow-up summit meeting in late 2015, recruit pilot host institutions and engage the government and future funders. © 2015 Royal Australasian College of Physicians.

  5. Toward a Validated Competence Framework for Sustainable Entrepreneurship

    NARCIS (Netherlands)

    Ploum, L.J.L.; Blok, V.; Lans, T.; Omta, S.W.F.

    2018-01-01

    Knowledge, skills, and attitudes to manage sustainable development have become significant components of different career paths. Previous research has explored which competencies are needed for future change agents in the field of sustainable development. Sustainable entrepreneurship can be seen as

  6. Toward a Validated Competence Framework for Sustainable Entrepreneurship

    NARCIS (Netherlands)

    Ploum, L.J.L.; Blok, V.; Lans, T.; Omta, S.W.F.

    2017-01-01

    Knowledge, skills, and attitudes to manage sustainable development have become significant components of different career paths. Previous research has explored which competencies are needed for future change agents in the field of sustainable development. Sustainable entrepreneurship can be seen as

  7. Using Sustainability Metrics and Indicators to Design Sustainable Supply Chains

    Science.gov (United States)

    Sustainability is widely associated with the statement from the World Commission on Environment and Development, 1987: “… development that meets the needs of the present without compromising the ability of future generations to meet their own needs…” Hence, sustainability is abo...

  8. Packaging for Sustainability

    CERN Document Server

    Lewis, Helen; Fitzpatrick, Leanne

    2012-01-01

    The packaging industry is under pressure from regulators, customers and other stakeholders to improve packaging’s sustainability by reducing its environmental and societal impacts. This is a considerable challenge because of the complex interactions between products and their packaging, and the many roles that packaging plays in the supply chain. Packaging for Sustainability is a concise and readable handbook for practitioners who are trying to implement sustainability strategies for packaging. Industry case studies are used throughout the book to illustrate possible applications and scenarios. Packaging for Sustainability draws on the expertise of researchers and industry practitioners to provide information on business benefits, environmental issues and priorities, environmental evaluation tools, design for environment, marketing strategies, and challenges for the future.

  9. Energy and Sustainable Development

    International Nuclear Information System (INIS)

    2013-01-01

    None of the eight Millennium Development Goals (MDGs) adopted by the United Nations in 2000 directly addressed energy, although for nearly all of them - from eradicating poverty and hunger to improving education and health - progress has depended on greater access to modern energy. Thirteen years later, energy is being given more attention. The target date for the MDGs is 2015, and in 2012 the UN began deliberations to develop sustainable development goals to guide support for sustainable development beyond 2015. The Future We Want, the outcome document of the 2012 United Nations Conference on Sustainable Development (also known as Rio+20) gives energy a central role: ''We recognize the critical role that energy plays in the development process, as access to sustainable modern energy services contributes to poverty eradication, saves lives, improves health and helps provide for basic human needs''

  10. Sustainable growth in Europe

    International Nuclear Information System (INIS)

    Andreini, P.

    1993-01-01

    The measures till now adopted did not stop environmental deterioration in Europe and the growth of economic activities in the future will make the situation more and more heavy. The European Communities (EEC) Cabinet launched a long term program for a sustainable growth in Europe, which could conciliate economic needs with environmental protection. This paper presents the first part of the program

  11. Sustainable Use of Electricity

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    An overview is presented of the need for keeping electricity consumption low, including a suggested definition of sustainable development. Specific attention is devoted to present and future electricity production´s contribution to the environmental problems. Prognoses are shown from before any...

  12. SMART SUSTAINABLE ISLANDS VS SMART SUSTAINABLE CITIES

    Directory of Open Access Journals (Sweden)

    D. N. Pantazis

    2017-09-01

    Full Text Available This paper has several aims: a the presentation of a critical analysis of the terms “smart sustainable cities” and “smart sustainable islands” b the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors which concern the insular municipalities c the creation of an island’s smartification and sustainability index d the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies.

  13. A framework for sustainable interorganizational business model

    OpenAIRE

    Neupane, Ganesh Prasad; Haugland, Sven A.

    2016-01-01

    Drawing on literature on business model innovations and sustainability, this paper develops a framework for sustainable interorganizational business models. The aim of the framework is to enhance the sustainability of firms’ business models by enabling firms to create future value by taking into account environmental, social and economic factors. The paper discusses two themes: (1) application of the term sustainability to business model innovation, and (2) implications of integrating sustain...

  14. Sustainability in nursing: a concept analysis

    Science.gov (United States)

    Anåker, Anna; Elf, Marie

    2014-01-01

    Aim The aim of this study was to describe, explore and explain the concept of sustainability in nursing. Background Although researchers in nursing and medicine have emphasised the issue of sustainability and health, the concept of sustainability in nursing is undefined and poorly researched. A need exists for theoretical and empirical studies of sustainability in nursing. Design Concept analysis as developed by Walker and Avant. Method Data were derived from dictionaries, international healthcare organisations and literature searches in the CINAHL and MEDLINE databases. Inclusive years for the search ranged from 1990 to 2012. A total of fourteen articles were found that referred to sustainability in nursing. Results Sustainability in nursing involves six defining attributes: ecology, environment, future, globalism, holism and maintenance. Antecedents of sustainability require climate change, environmental impact and awareness, confidence in the future, responsibility and a willingness to change. Consequences of sustainability in nursing include education in the areas of ecology, environment and sustainable development as well as sustainability as a part of nursing academic programs and in the description of the academic subject of nursing. Sustainability should also be part of national and international healthcare organisations. The concept was clarified herein by giving it a definition. Conclusion Sustainability in nursing was explored and found to contribute to sustainable development, with the ultimate goal of maintaining an environment that does not harm current and future generations′ opportunities for good health. This concept analysis provides recommendations for the healthcare sector to incorporate sustainability and provides recommendations for future research. PMID:24602178

  15. International trends on sustainable energy Issues

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2007-01-01

    At the U.N. Commission on Sustainable Development (CSD), the role of nuclear power for a carbon free emission supply of energy is now being recognized although with certain reticence or opposition. Such recognition is taking place at the current cycle of discussions devoted to sustainable energy, industrial development, atmospheric pollution and climate change issues. This paper focuses on the arguments and facts provided during CSD deliberations for considering nuclear energy as a valid option: all available energy sources will need to be considered for an adjustment to a world that requires much less carbon liberation to the environment; in the transportation sector, actions need to be urgently implemented for promoting cleaner fuels and more efficient vehicles; massive reduction of greenhouse gas emissions must be urgently implemented in order to mitigate the impacts of global warming; sustainable energy solutions for developed economies are not always adequate in developing countries; the development evolution requires specifically tailored solutions to conditions of large annual growth-rates of energy demand. Consequently, nuclear power will provide the answer to many of these problems. (Author)

  16. Sustainable Disruptions

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Kjær, Lykke Bloch

    2016-01-01

    Since 2012 the Sustainable Disruptions (SD) project at the Laboratory for Sustainability at Design School Kolding (DK) has developed and tested a set of design thinking tools, specifically targeting the barriers to economically, socially, and environmentally sustainable business development....... The tools have been applied in practice in collaboration with 11 small and medium sized companies (SMEs). The study investigates these approaches to further understand how design thinking can contribute to sustainable transition in a business context. The study and the findings are relevant to organizations...... invested in the issue of sustainable business development, in particular the leaders and employees of SMEs, but also to design education seeking new ways to consciously handle and teach the complexity inherent in sustainable transformation. Findings indicate that the SD design thinking approach contributes...

  17. Computational sustainability

    CERN Document Server

    Kersting, Kristian; Morik, Katharina

    2016-01-01

    The book at hand gives an overview of the state of the art research in Computational Sustainability as well as case studies of different application scenarios. This covers topics such as renewable energy supply, energy storage and e-mobility, efficiency in data centers and networks, sustainable food and water supply, sustainable health, industrial production and quality, etc. The book describes computational methods and possible application scenarios.

  18. Sustainability in Project Management Competences

    NARCIS (Netherlands)

    Ron Schipper; Gilbert Gilbert Silvius

    2012-01-01

    Sustainability is one of the most important challenges of our time. How can we develop prosperity, without compromising the life of future generations? Companies are integrating ideas of sustainability in their marketing, corporate communication, annual reports and in their actions. The concept of

  19. Sustainable Universities

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2011-01-01

    Declarations on Sustainability in Higher Education (SHE) can be viewed as a piece of international regulation. Over the past 30 years research at universities has produced convincing data to warn about deterioration of the environment, resource scarcity and the need for sustainability. This in turn....... Declarations tend to have impact on three trends. Firstly, there is emerging international consensus on the university’s role and function in relation to sustainable development; secondly, the emergence of national legislation, and thirdly, an emerging international competition to be leader in sustainable...

  20. Education for sustainable development. Just do it : guide to designing education for sustainable development

    NARCIS (Netherlands)

    Frijters, S.

    Sustainable development has become a crucial part of our modern society and our education. Sustainability is a complex concept. After all, what is considered sustainable to us now may not necessarily be so in the future. We need to continually review our judgments with regards to sustainability.