WorldWideScience

Sample records for sustain soil organic

  1. Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions

    Directory of Open Access Journals (Sweden)

    Kathy J. Soder

    2013-07-01

    Full Text Available In 2010, the National Organic Program implemented a rule for the US stating that pasture must be a significant source of feed in organic ruminant systems. This article will focus on how the pasture rule has impacted the management, economics and nutritional value of products derived from organic ruminant systems and the interactions of grazing cattle with pasture forages and soils. The use of synthetic fertilizers is prohibited in organic systems; therefore, producers must rely on animal manures, compost and cover crops to increase and maintain soil nitrogen content. Rotational and strip grazing are two of the most common grazing management practices utilized in grazing ruminant production systems; however, these practices are not exclusive to organic livestock producers. For dairy cattle, grazing reduces foot and leg problems common in confinement systems, but lowers milk production and exposes cows to parasites that can be difficult to treat without pharmaceuticals. Organic beef cattle may still be finished in feedlots for no more than 120 days in the US, but without growth hormones and antibiotics, gains may be reduced and illnesses increased. Grazing reduces the use of environmentally and economically costly concentrate feeds and recycles nutrients back to the soil efficiently, but lowers the rate of beef liveweight gain. Increased use of pasture can be economically, environmentally and socially sustainable if forage use efficiency is high and US consumers continue to pay a premium for organic beef and dairy products.

  2. Organic vs. organic - soil arthropods as bioindicators of ecological sustainability in greenhouse system experiment under Mediterranean conditions.

    Science.gov (United States)

    Madzaric, Suzana; Ceglie, F G; Depalo, L; Al Bitar, L; Mimiola, G; Tittarelli, F; Burgio, G

    2017-11-23

    Organic greenhouse (OGH) production is characterized by different systems and agricultural practices with diverse environmental impact. Soil arthropods are widely used as bioindicators of ecological sustainability in open field studies, while there is a lack of research on organic production for protected systems. This study assessed the soil arthropod abundance and diversity over a 2-year crop rotation in three systems of OGH production in the Mediterranean. The systems under assessment differed in soil fertility management: SUBST - a simplified system of organic production, based on an input substitution approach (use of guano and organic liquid fertilizers), AGROCOM - soil fertility mainly based on compost application and agroecological services crops (ASC) cultivation (tailored use of cover crops) as part of crop rotation, and AGROMAN - animal manure and ASC cultivation as part of crop rotation. Monitoring of soil fauna was performed by using pitfall traps and seven taxa were considered: Carabidae, Staphylinidae, Araneae, Opiliones, Isopoda, Myriapoda, and Collembola. Results demonstrated high potential of ASC cultivation as a technique for beneficial soil arthropod conservation in OGH conditions. SUBST system was dominated by Collembola in all crops, while AGROMAN and AGROCOM had more balanced relative abundance of Isopoda, Staphylinidae, and Aranea. Opiliones and Myriapoda were more affected by season, while Carabidae were poorly represented in the whole monitoring period. Despite the fact that all three production systems are in accordance with the European Union regulation on organic farming, findings of this study displayed significant differences among them and confirmed the suitability of soil arthropods as bioindicators in protected systems of organic farming.

  3. USE OF ORGANIC RESIDUES FOR THE RECOVERY OF SOIL AND ENVIRONMENTAL SUSTAINABILITY

    Directory of Open Access Journals (Sweden)

    Antonia Galvez

    2011-12-01

    Full Text Available The aim of this work was to investigate the effects of different organic residues on soil fertility and climate change, through the evaluation of soil organic matter mineralisation, greenhouse gas emission, nutrient availability and soil microbial biomass content and activity. A degraded agricultural soil was amended with three different organic residues (pig slurry digestate, rapeseed meal, and compost at three different doses (0.1, 0.25 and 0.5% w/w and incubated for 30 days at 20 ºC. During incubation, soil CO2 and N2O emissions, K2SO4 extractable organic C, N, NH4+, NO3- and P, soil microbial biomass and some enzymatic activities were determined. Results obtained showed that rapeseed meal and pig slurry are best suited to improve soil chemical and biological fertility, while compost is more appropriate for the enhancement of soil organic matter content and to promote soil C sequestration.

  4. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  5. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  6. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  7. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    Science.gov (United States)

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  8. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  9. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    management strategies, which consider the site- and field-specific parameters and agricultural machinery’s improvements, it is possible to maximize production and income, while reducing negative environmental impacts and human health issues induced by agricultural activities as well as improving food......Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  10. Sustainable Learning Organizations

    Science.gov (United States)

    Velazquez, Luis E.; Esquer, Javier; Munguia, Nora E.; Moure-Eraso, Rafael

    2011-01-01

    Purpose: The purpose of this paper is to debate how companies may better become a sustainable learning organization by offering the most used and insightful concepts of sustainability. Design/methodology/approach: Through literature review, learning organization and sustainability perspectives are explored and compared. Findings: Learning…

  11. Effect of sustainable land management practices on soil aggregation and stabilization of organic carbon in semiarid mediterranean ecosystems

    Science.gov (United States)

    Garcia-Franco, Noelia; Albaladejo, Juan; Almagro, María; Wiesmeier, Martin; Martínez-Mena, María

    2016-04-01

    Arid and semiarid regions represent about 47% of the total land area of the world (UNEP, 1992). At present, there is a priority interest for carbon (C) sequestration in drylands. These areas are considered as very fragile ecosystems with low organic carbon (OC) saturation, and potentially, high capacity for soil OC sequestration. In addition, the restoration of these areas is one of the major challenges for scientists, who will be able to identify and recommended the best land uses and sustainable land management (SLM) practices for soil conservation and mitigation of climate change in these environments. In this regard, in semiarid Mediterranean ecosystems there is an urgent need for the implementation of SLM practices regardless of land-use type (forest, agricultural and shrubland) to maintain acceptable levels of soil organic matter (SOM) and the physico-chemical protection of the OC. Long- and short-term effects of SLM practices on soil aggregation and SOC stabilization were studied in two land uses. The long-term experiment was conducted in a reforestation area with Pinus halepensis Mill., where two afforestation techniques were implemented 20 years ago: a) mechanical terracing with a single application of organic waste of urban soil refuse, and b) mechanical terracing without organic amendment. An adjacent shrubland was considered as the reference plot. The short-term experiment was conducted in a rain-fed almond (Prunus dulcis Mill., var. Ferragnes) orchard where two SLM practices were introduced 4 years ago: a) reduced tillage plus green manure, and b) no tillage. Reduced tillage was considered as the reference plot given that it is the habitual management practice. Four aggregate size classes were differentiated by sieving (large and small macroaggregates, microaggregates, and the silt plus clay fraction), and the microaggregates occluded within small macroaggregates (SMm) were isolated. In addition, different organic C fractions corresponding with active

  12. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  13. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  14. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  15. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  16. Sustainability & Organization Design

    DEFF Research Database (Denmark)

    Rasmussen, Morten Bygvraa; Obel, Børge; Kallehave, Pernille

    The global financial crisis has forced a profound rethink of the optimal form of capitalism and the relationship between business, environment and government. The current crisis has exposed systemic failures of corporate governance in administering the purpose of the firm. It has shown the failure...... of global governance to match the new dynamics and consequences of globalization. Governments are re-examining corporate accountability to society and how companies earn their license to operate. Furthermore companies are re-examining their code of conduct and leadership values. Thus, sustainability...... organization. Here we follow the Global Compact criteria. The consequences for processes, structure, and human skills and values are analyzed. In particular the analysis will investigate exploration and exploitation from a holistic perspective using the principles of requisite variety and information...

  17. Designing sustainable soils in Earth's critical zone

    Science.gov (United States)

    Banwart, Steven Allan; de Souza, Danielle Maia; Menon, Manoj; Nikolaidis, Nikolaos; Panagos, Panos; Vala Ragnardsdottir, Kristin; Rousseva, Svelta; van Gaans, Pauline

    2014-05-01

    particle aggregation dynamics and organic matter mineralization. Simulation results show that soil structure is highly dynamic and is sensitive to organic matter production and minearlisation rates as influenced by vegetation, tillage and organic carbon amendments. These results point to a step-change in the capability to design soil management and land use through computational simulation. This approach of "sustainability by design" describes the mechanistic process linkages that exist between the above-ground inputs to the CZ and the internal processes that produce soil functions. This approach provides a rational, scientific approach to selecting points of intervention with the CZ in order to design methods to mitigate soil threats and to enhance and sustain vital soil functions. Furthermore, this approach provides a successful pilot study to the use of international networks of CZOs as a planetary-scale laboratory to test the response of CZ process rates along gradients of global environmental change - and to test adaptation strategies to manage the risks arising from the CZ impacts. Acknowledgements. The authors acknowledge the substantial contributions of the entire team of investigators and funding of the SoilTrEC project (EC FP7, agreement no. 244118; www.soiltrec.eu).

  18. Targeted management of organic resources for sustainably increasing soil organic carbon: Observations and perspectives for resource use and climate adaptations in northern Ghana

    DEFF Research Database (Denmark)

    Heve, William K; Olesen, Jørgen Eivind; Chirinda, Ngonidzashe

    2016-01-01

    Since soil organic matter (SOM) buffers against impacts of climatic variability, the objective of this study was to assess on-farm distribution of SOM and propose realistic options for increasing SOM and thus the adaptation of smallholder farmers to climate change and variability in the interior...... northern savannah of Ghana. Data and information on spatial distribution of soil organic carbon (SOC), current practices that could enhance climate adaptation including management of organic resources were collected through biophysical assessments and snap community surveys. Even though homestead fields...... and residues, traditions for bush-burning and competing use of organic resources for fuels. Our findings suggest a need for effective management practices, training and awareness aimed at improving management of organic resources and, consequently, increasing SOC and resilience to climate-change-induced risks....

  19. Sustaining "the Genius of Soils"

    Science.gov (United States)

    Sposito, G.

    2011-12-01

    Soils are weathered porous earth surficial materials that exhibit an approximately vertical stratification reflecting the continual action of percolating water and living organisms. They are complex open, multicomponent, multiphase biogeochemical systems which function as both provisioning and regulatory agents in terrestrial ecosystems while influencing aquatic ecosystems through their impacts on evapotranspiration and runoff. The ability of soils to engage in their supportive ecosystem functions depends on what has been termed metaphorically as their "natural capital," the defining properties that condition soil response to biological, geological, and hydrological processes as well as human-driven activities. Natural capital must necessarily differ among soils depending on how they have developed under the five soil-forming processes, but it also can be determined by land use and by the flows of matter and energy that link the global atmosphere, biosphere, and hydrosphere. These latter two determinants have in recent decades begun to exhibit strong variability that exceeds what has been characteristic of them during the past 10 millennia of earth history, thereby raising the apocalyptic issue of whether a deleterious or even catastrophic undermining of the ability of soils to function supportively in ecosystems is in the offing. Resolving this issue will require deeper understanding of how soils perform their provisioning and regulatory functions, how they respond to land-use changes, and how they mediate the global flows of matter and energy.

  20. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  1. Relating soil biochemistry to sustainable crop production

    Science.gov (United States)

    Amino acids, amino sugars, carbohydrates, phenols, and fatty acids together comprise appreciable proportions of soil organic matter (SOM). Their cycling contribute to soil processes, including nitrogen availability, carbon sequestration and aggregation. For example, soil accumulation of phenols has ...

  2. Soil Degradation, Policy Intervention and Sustainable Agricultural Growth

    NARCIS (Netherlands)

    Sasmal, J.; Weikard, H.P.

    2013-01-01

    Sustainable agricultural growth in developing countries is jeopardized by soil degradation consequent upon intensive cultivation and use of increasing doses of chemical inputs. To pave the way to sustainable agricultural growth we develop a model that incorporates organic fertilizer into the

  3. Towards Sustainable Health Care Organizations

    Directory of Open Access Journals (Sweden)

    Mauro ROMANELLI

    2017-09-01

    Full Text Available Health care organizations have to develop a sustainable path for creating public value by seeking legitimacy for building and maintaining public trust with patients as social and economic institutions creating value and sustaining both health and wealth for people and communities within society. Health care organizations having at disposal decreasing resources and meeting increasing demands of citizens are following an unsustainable path. Designing sustainable health care systems and organizations is emerging as a strategic goal for developing the wealth of people and communities over time. Building sustainable organizations relies on valuing human resources, designing efficient and effective processes, using technology for better managing the relationships within and outside organizations. Sustainable health care organizations tend to rediscover the importance of human resource management and policies for effectively improving communication with patients and building trust-based relationships. While processes of accreditation contribute to legitimizing effectiveness and quality of health care services and efficient processes, introducing and using new information and communication technologies (ICTs and informatics helps communication leading to restore trust-based relationships between health care institutions and patients for value creation within society.

  4. Soil protection for a sustainable future

    NARCIS (Netherlands)

    O'Sullivan, L.; Bampa, F.; Knights, K.; Creamer, R.E.

    2017-01-01

    The increased recognition of the importance of soil is reflected in the UN Post-2015 Development Agenda with sustainable development goals that directly and indirectly relate to soil quality and protection. Despite a lack of legally binding legislation for soil protection, the European Commission

  5. Soils and organic sediments

    International Nuclear Information System (INIS)

    Head, M.J.

    1999-01-01

    The organic component of soils is basically made up of substances of an individual nature (fats, waxes, resins, proteins, tannic substances, and many others), and humic substances (Kononova, 1966). These are complex polymers formed from breakdown products of the chemical and biological degradation of plant and animal residues. They are dark coloured, acidic, predominantly aromatic compounds ranging in molecular weight from less than one thousand to tens of thousands (Schnitzer, 1977). They can be partitioned into three main fractions:(i) Humic acid, which is soluble in dilute alkaline solution, but can be precipitated by acidification of the alkaline extract.(ii) Fulvic acid, which is soluble in alkaline solution, but is also soluble on acidification.(iii) Humin that cannot be extracted from the soil or sediment by dilute acid or alkaline solutions. It has mostly been assumed that the humic and fulvic acid components of the soil are part of the mobile, or 'active' component, and the humin component is part of the 'passive' component. Other types of organic sediments are likely to contain chemical breakdown products of plant material, plant fragments and material brought in from outside sources. The outside material can be contemporaneous with sediment deposition, can be older material, or younger material incorporated into the sediment long after deposition. Recognition of 'foreign' material is essential for dating, but is not an easy task. Examples of separation techniques for humic and non humic components are evaluated for their efficiency

  6. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  7. Sustainable agriculture a challenge for soil microbiology

    Directory of Open Access Journals (Sweden)

    Nubia Moreno Sarmiento

    2016-01-01

    Full Text Available Soils: a solid foundation for life, was the theme of the celebration of 2015, the General Assembly of the UN, decides to declare as the International Year of Soils, considering that these are the foundation of agricultural development, the essential functions of ecosystems and food security. It is therefore a key to sustaining life on Earth element. During that year several actions that contributed to the awareness of their problems and protection of soil resources were made. One was that FAO, reviewed and published in June 2015, the World Soil Charter (originally developed in 1982. The World Soil Charter of Revised, as a preamble quote: 1. Soils are essential for life on Earth, but pressures on soil resources are reaching critical limits. Careful soil management is an essential factor of sustainable agriculture and also provides a valuable tool to regulate climate and a way to safeguard ecosystem services and biodiversity spring. 2. In the final document of the UN Conference on Sustainable Development, held in Rio de Janeiro (Brazil in June 2012, "The future we want" economic and social importance of good management is recognized land, including land, particularly its contribution to economic growth, biodiversity, sustainable agriculture, food security, poverty eradication, empowerment of women, measures to address climate change and increase water availability.

  8. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  9. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  10. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  11. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  12. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the

  13. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  14. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo

    2011-02-01

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  15. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Anna Benedetti

    2009-04-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  16. Soil quality: key for sustainable production

    Directory of Open Access Journals (Sweden)

    Stefano Mocali

    2011-02-01

    Full Text Available In the last few years several definitions of “soil quality” have been advanced, but among them the most appreciated is “the ability of soils to interact with the ecosystem in order to maintain the biological productivity, the environmental quality and to promote animal and vegetal health” as defined by Doran and Parkin in 1994. Many researchers place more emphasis on its conceptual meaning for land planning and farm management, while others consider that definition to be worth nothing in order to understand soil properties and the concept of soil quality looks like the concept of “to be suitable for”. For this reason a definition of “soil use” is needed. The food quality is characterized by several properties: the healthiness and the nutritional value, the amount of the production, the typicalness and organoleptic properties, etc.. A lot of these properties depend on environmental quality and, in particular, on soil quality. In fact soil represents the natural substrate for growth and productivity of most of the plants that live on the Hearth because they get all the essential nutritional elements from it for their own development; consequently each nutritional element present into the soil as bioavailable form for the plants is potentially destined to entry in the animal (and human food chain. In the quality process of food productive process it will be important to assure the best soil quality as possible, without any unwanted element (which will not be discussed in this note and with the right amount of fertility elements in order to guarantee the best production. In this paper the relationships between soil quality, soil biodiversity and crop sustainability will be discussed. Finally the concept of soil “biota” as nodal point for the environment regulation and the application of the indicators for soil quality will be discussed.

  17. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  18. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  19. Adopting Sustainability in the Organization

    DEFF Research Database (Denmark)

    Frandsen, Sanne; Morsing, Mette; Vallentin, Steen

    2013-01-01

    Purpose – The purpose of this paper is to explore the relationship between sustainability adoption and internal legitimacy construction. Design/methodology/approach – The paper is designed as a critical inquiry into existing research and practice on sustainability adoption, illustrated by two...... corporate vignettes. Findings – Prior studies tend to assume that awareness raising is a sufficient means to create employee commitment and support for corporate sustainability programs, while empirical observations indicate that managerial disregard of conflicting interpretations of sustainability may...... result in the illegitimacy of such programs. Originality/value – The authors suggest that a loosely coupled approach to sustainability adoption is a productive way to understand internal legitimacy construction, as it appreciates complexity and polyphony....

  20. SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.

    Science.gov (United States)

    De Deyn, G B

    2015-01-01

    Sustainable production of food, feed and fiberwarrants sustainable soil management and crop protection. The tools available to achieve this are both in the realm of the plants and of the soil, with a key role for plant-soil interactions. At the plant level we have vast knowledge of variation within plant species with respect to pests and diseases, based on which we can breed for resistance. However, given that systems evolve this resistance is bound to be temporarily, hence also other strategies are needed. Here I plea for an integrative approach for sustainable production using ecological principles. Ecology, the study of how organisms interact with their environment, teaches us that diversity promotes productivity and yield stability. These effects are thought to be governed through resource use complementarity and reduced build-up of pests and diseases both above- and belowground. In recent years especially the role of soil biotic interactions has revealed new insights in how plant diversity and productivity are related to soil biodiversity and the functions soil biota govern. In our grassland biodiversity studies we found that root feeders can promote plant diversity and succession without reducing plant community productivity, this illustrates the role of diversity to maintain productivity. Also diversity within species offers scope for sustainable production, for example through awareness of differences between plant genotypes in chemical defense compounds that can attract natural enemies of pests aboveground- and belowground thereby providing plant protection. Plant breeding can also benefit from using complementarity between plant species in the selection for new varieties, as our work demonstrated that when growing in species mixtures plant species adapt to each other over time such that their resource acquisition traits become more complementing. Finally, in a recent meta-analysis we show that earthworms can stimulate crop yield with on average 25%, but

  1. SOIL CONSERVATION TECHNIQUES IN OIL PALM CULTIVATION FOR SUSTAINABLE AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Halus Satriawan

    2017-08-01

    Full Text Available Currently, many have been concerned with the oil palm cultivation since it may also put land resources in danger and bring about environmental damage. Poor practices in managing agricultural land very often occur due to the inadequate knowledge of soil conservation. Application of soil and water conservation is to maintain the productivity of the land and to prevent further damage by considering land capability classes. This research was aimed at obtaining soil and water conservation techniques which are the most appropriate and optimal for oil palm cultivation areas based on land capability classes which can support sustainable oil palm cultivation. Several soil conservation techniques had been treated to each different class III, IV, and VI of the studied area. These treatment had been performed by a standard plot erosion. The results showed for the land capability class III, Cover plants + Manure was able to control runoff, erosion and reduce leaching of N (LSD P≤0,05, in which soil conservation produced the lowest erosion (3,73t/ha, and N leaching (0,25%. On land capability class IV, Sediment Trap + cover plants+ manure was able to control runoff, erosion and reduce organic C and P leaching (LSD P≤0,05, in which soil conservation produced the lowest runoff (127,77 m3/ha, erosion (12,38t/ha, organic C leaching (1,14 %, and P leaching (1,28 ppm. On land capability class VI, there isn’t significant effect of soil conservation, but Bench Terrace + cover plants +manure has the lowest runoff, erosion and soil nutrient leaching.

  2. Radionuclide - Soil Organic Matter Interactions

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1985-01-01

    Interactions between soil organic matter, i.e. humic and fulvic acids, and radionuclides of primary interest to shallow land burial of low activity solid waste have been reviewed and to some extent studied experimentally. The radionuclides considered in the present study comprise cesium, strontium...

  3. Organizing Open Innovation for Sustainability

    NARCIS (Netherlands)

    Ingenbleek, P.T.M.; Backus, G.B.C.

    2015-01-01

    Literature on open innovation has thus far predominantly focused on high technology contexts. Once an industry reaches the limits of a closed innovation model, open innovation may, however, also promise opportunities for sustainable development in a low-tech environment. Because in low-tech

  4. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals

    Science.gov (United States)

    Keesstra, Saskia D.; Bouma, Johan; Wallinga, Jakob; Tittonell, Pablo; Smith, Pete; Cerdà, Artemi; Montanarella, Luca; Quinton, John N.; Pachepsky, Yakov; van der Putten, Wim H.; Bardgett, Richard D.; Moolenaar, Simon; Mol, Gerben; Jansen, Boris; Fresco, Louise O.

    2016-04-01

    In this forum paper we discuss how soil scientists can help to reach the recently adopted UN Sustainable Development Goals (SDGs) in the most effective manner. Soil science, as a land-related discipline, has important links to several of the SDGs, which are demonstrated through the functions of soils and the ecosystem services that are linked to those functions (see graphical abstract in the Supplement). We explore and discuss how soil scientists can rise to the challenge both internally, in terms of our procedures and practices, and externally, in terms of our relations with colleague scientists in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the following steps to be taken by the soil science community as a whole: (i) embrace the UN SDGs, as they provide a platform that allows soil science to demonstrate its relevance for realizing a sustainable society by 2030; (ii) show the specific value of soil science: research should explicitly show how using modern soil information can improve the results of inter- and transdisciplinary studies on SDGs related to food security, water scarcity, climate change, biodiversity loss and health threats; (iii) take leadership in overarching system analysis of ecosystems, as soils and soil scientists have an integrated nature and this places soil scientists in a unique position; (iii) raise awareness of soil organic matter as a key attribute of soils to illustrate its importance for soil functions and ecosystem services; (iv) improve the transfer of knowledge through knowledge brokers with a soil background; (v) start at the basis: educational programmes are needed at all levels, starting in primary schools, and emphasizing practical, down-to-earth examples; (vi) facilitate communication with the policy arena by framing research in terms that resonate with politicians in terms of the policy cycle or by considering drivers, pressures and responses affecting impacts of land

  5. Discourse, complexity and sustainability ambiental in organizations

    Directory of Open Access Journals (Sweden)

    Clóvis Ricardo Montenegro de Lima

    2015-08-01

    Full Text Available In this article we seek to conduct an investigation into the dynamics of internalization of environmental sustainability in a productive organization of the sugarcane industry. The theoretical discussion is developed from the criticism of Jurgen Habermas to systemic functionalism of Niklas Luhmann. Also, we discuss the theme environmental public sphere and administration of environmental sustainability as a way of adapting organizations to new quality standards required and demanded by the State, Market and Society. The methodological procedures used were: interviews, document analysis and closed questionnaire application. The questionnaire used with 12 representatives of the plant has thirty (30 assertive, accompanied each of two extreme scenarios. The results show that the organization started to internalize environmental sustainability in their organizational system from a Conduct Adjustment Term, prepared by the Public Ministry State. As well as to internalize sustainable practices were adapted in different areas such as: organizational management, procurement, production management, people management and marketing management.

  6. Sustainability of organic food production: challenges and innovations.

    Science.gov (United States)

    Niggli, Urs

    2015-02-01

    The greatest challenge for agriculture is to reduce the trade-offs between productivity and long-term sustainability. Therefore, it is interesting to analyse organic agriculture which is a given set of farm practices that emphasise ecological sustainability. Organic agriculture can be characterised as being less driven by off-farm inputs and being better embedded in ecosystem functions. The literature on public goods and non-commodity outputs of organic farms is overwhelming. Most publications address the positive effects of organic farming on soil fertility, biodiversity maintenance and protection of the natural resources of soil, water and air. As a consequence of focusing on public goods, organic agriculture is less productive. Meta-analyses show that organic agriculture yields range between 0·75 and 0·8 of conventional agriculture. Best practice examples from disadvantaged sites and climate conditions show equal or, in the case of subsistence farming in Sub-Saharan Africa, higher productivity of organic agriculture. Hence, organic agriculture is likely to be a good model for productive and sustainable food production. Underfunding in R&D addressing specific bottlenecks of organic agriculture are the main cause for both crop and livestock yield gaps. Therefore, the potential for improving the performance of organic agriculture through agricultural research is huge. Although organic farming is a niche in most countries, it is at the verge of becoming mainstream in leading European countries. Consumer demand has grown over the past two decades and does not seem to be a limiting factor for the future development of organic agriculture.

  7. Strategies for sustainable woodland on contaminated soils.

    Science.gov (United States)

    Dickinson, N M

    2000-07-01

    Extensive in situ reclamation treatment technologies are appropriate for a large proportion of contaminated land in place of total removal or complete containment of soil. In this paper, initial results are presented of site descriptions, tree survival and metal uptake patterns from two field planting trials on a highly industrially contaminated site adjacent to a metal refinery and on old sanitary landfill sites. Survival rate was high in both trials but factors besides heavy metals were particularly significant. Uptake patterns of metals into foliage and woody tissues were variable, with substantial uptake in some species and clones supporting the findings of earlier pot experiments. It is argued that there is sufficient evidence to consider the use of trees in reclamation as part of a realistic, integrated, low-cost, ecologically-sound and sustainable reclamation strategy for contaminated land. This is an opportunity to bring a large number of brownfield sites into productive use, which otherwise would be prohibitively expensive to restore.

  8. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    A total of four sites distributed in different soils of Kelantan State, Malaysia was identified for the study. Soils were collected by depth interval of 0-10cm, 10-20cm and 20-30cm. The correlation of soil organic matter (SOM) content, total organic carbon (TOC) content, water content and soils texture for industrial area at ...

  9. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    Science.gov (United States)

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Monitoring soil for sustainable development and land degradation neutrality.

    Science.gov (United States)

    Tóth, Gergely; Hermann, Tamás; da Silva, Manuela Ravina; Montanarella, Luca

    2018-01-04

    The adoption of the 17 sustainable development goals (SDGs) listed in the 2030 Agenda for Sustainable Development by the United Nations urged the scientific community to generate information for planning and monitoring socioeconomic development and the underlying environmental compartments. SDGs 2, 3, 6, 11, 13, 14, and 15 have targets which commend direct consideration of soil resources. There are five groups of SDGs and assigned SDG indicators where soil plays a central role. Frameworks of soil-related sustainable development goals and related indicators which can be monitored in current monitoring schemes are proposed.

  11. Socially sustainable work organizations and systems thinking

    NARCIS (Netherlands)

    Kira, M.; Eijnatten, van F.M.

    2010-01-01

    This Research Note seeks to add to the body of knowledge concerning social sustainability in work organizations, especially within the context of new challenges and threats in contemporary, post-industrial working life. Moreover, the intention is to explore the added value of the complexity lens in

  12. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    Science.gov (United States)

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-01-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested. PMID:28773272

  13. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  14. Saving Soil for Sustainable Land Use

    Directory of Open Access Journals (Sweden)

    Carmelo M. Torre

    2017-02-01

    Full Text Available This paper experiments with some costs-benefit analyses, seeking a balance between soil-take and buildability due to land policy and management. The activities have been carried out inside the MITO lab (Lab for Multimedia Information for Territorial Objects of the Polytechnic University of Bari. Reports have been produced about the Southern Italian Apulia Region, which is rich in farmland and coastline, often invaded by construction, with a severe loss of nature, a degradation of the soil, landscape, and ecosystem services. A methodological approach to the assessment of sustainability of urban expansion related, on one hand, to “plus values” deriving from the transformation of urban fringes and, on the other hand to the analysis of the transition of land-use, with the aim of “saving soil” against urban sprawl. The loss of natural and agricultural surfaces due to the expanding artificial lands is an unsustainable character of urban development, especially in the manner in which it was carried out in past decades. We try to assess how plus value can be considered “unearned”, and to understand if the “land value recapture” can compensate for the negative environmental effects of urban expansion. We measured the transition from farmlands and natural habitat to urbanization with the support of the use of some Geographic Information Systems (GIS tools, in favor of a new artificial land cover in the region of Apulia, Southern Italy. Data have been collected at the regional scale and at the local level, producing information about land use change and increases of property values due to improvements, referring to the 258 municipalities of the region. Looking at the results of our measurements, we started an interpretation of the driving forces that favor the plus values due to the transition of land-use. Compensation, easements, recapture of plus value, and improvement are, nowadays in Italy, discussed as major land-policy tools for

  15. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe

    NARCIS (Netherlands)

    Zingore, S.; Manyame, C.; Nyamugafata, P.; Giller, K.E.

    2005-01-01

    Subsistence farmers in Africa depend largely on the soil organic matter to sustain crop productivity. Long-term changes in soil organic carbon and nitrogen were measured after woodland clearance for smallholder subsistence farming or for commercial farming. The contents of organic carbon and

  16. A framework of connections between soil and people can help improve sustainability of the food system and soil functions.

    Science.gov (United States)

    Ball, Bruce C; Hargreaves, Paul R; Watson, Christine A

    2018-04-01

    Globally soil quality and food security continue to decrease indicating that agriculture and the food system need to adapt. Improving connection to the soil by knowledge exchange can help achieve this. We propose a framework of three types of connections that allow the targeting of appropriate messages to different groups of people. Direct connection by, for example, handling soil develops soil awareness for management that can be fostered by farmers joining groups on soil-focused farming such as organic farming or no-till. Indirect connections between soil, food and ecosystem services can inform food choices and environmental awareness in the public and can be promoted by, for example, gardening, education and art. Temporal connection revealed from past usage of soil helps to bring awareness to policy workers of the need for the long-term preservation of soil quality for environmental conservation. The understanding of indirect and temporal connections can be helped by comparing them with the operations of the networks of soil organisms and porosity that sustain soil fertility and soil functions.

  17. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  18. Role of soil health in maintaining environmental sustainability of surface coal mining.

    Science.gov (United States)

    Acton, Peter M; Fox, James F; Campbell, J Elliott; Jones, Alice L; Rowe, Harold; Martin, Darren; Bryson, Sebastian

    2011-12-01

    Mountaintop coal mining (MCM) in the Southern Appalachian forest region greatly impacts both soil and aquatic ecosystems. Policy and practice currently in place emphasize water quality and soil stability but do not consider upland soil health. Here we report soil organic carbon (SOC) measurements and other soil quality indicators for reclaimed soils in the Southern Appalachian forest region to quantify the health of the soil ecosystem. The SOC sequestration rate of the MCM soils was 1.3 MgC ha(-1) yr(-1) and stocks ranged from 1.3 ± 0.9 to 20.9 ± 5.9 Mg ha(-1) and contained only 11% of the SOC of surrounding forest soils. Comparable reclaimed mining soils reported in the literature that are supportive of soil ecosystem health had SOC stocks 2.5-5 times greater than the MCM soils and sequestration rates were also 1.6-3 times greater. The high compaction associated with reclamation in this region greatly reduces both the vegetative rooting depth and infiltration of the soil and increases surface runoff, thus bypassing the ability of soil to naturally filter groundwater. In the context of environmental sustainability of MCM, it is proposed that the entire watershed ecosystem be assessed and that a revision of current policy be conducted to reflect the health of both water and soil.

  19. Monitoring soil for sustainable development and land degradation neutrality

    OpenAIRE

    Tóth, Gergely; Hermann, Tamás; da Silva, Manuela Ravina; Montanarella, Luca

    2018-01-01

    The adoption of the 17 sustainable development goals (SDGs) listed in the 2030 Agenda for Sustainable Development by the United Nations urged the scientific community to generate information for planning and monitoring socioeconomic development and the underlying environmental compartments. SDGs 2, 3, 6, 11, 13, 14, and 15 have targets which commend direct consideration of soil resources. There are five groups of SDGs and assigned SDG indicators where soil plays a central role. Frameworks of ...

  20. Sustainable remediation of mercury contaminated soils by thermal desorption.

    Science.gov (United States)

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  1. Transformation towards more sustainable soil management on Dutch arable farms

    NARCIS (Netherlands)

    Claus, Sebastien; Egdom, van Ilona; Suter, Bruno; Sarpong, Clara; Pappa, Aikaterini; Miah, Imtiaz; Luppa, Caterina; Potters, J.I.

    2017-01-01

    Currently a debate is ongoing in the Netherlands on how to increase soil sustainable management in general and specifically in short term lease. Sustainable practices may not be adopted by farmers because of an interplay between EU, national and provincial legislation, short-term land lease system,

  2. Sustainable competitive advantage for accountable care organizations.

    Science.gov (United States)

    Macfarlane, Michael Alex

    2014-01-01

    In the current period of health industry reform, accountable care organizations (ACOs) have emerged as a new model for the delivery of high-quality and cost-effective healthcare. However, few ACOs operate in direct competition with one another, and the accountable care business model has yet to present a means of continually developing new marginal value for patients and network partners. With value-based purchasing and patient consumerism strengthening as market forces, ACOs must build organizational sustainability and competitive advantage to meet the value demands set by customers and competitors. This essay proposes a strategy, adapted from the disciplines of agile software development and Lean product development, through which ACOs can engage internal and external customers in the development of new products that will provide sustainability and competitive advantage to the organization by decreasing waste in development, promoting specialized knowledge, and closely targeting customer value.

  3. Soil management practices under organic farming

    Science.gov (United States)

    Aly, Adel; Chami Ziad, Al; Hamdy, Atef

    2015-04-01

    Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Soil building practices such as crop rotations, intercropping, symbiotic associations, cover crops, organic fertilizers and minimum tillage are central to organic practices. Those practices encourage soil formation and structure and creating more stable systems. In farm nutrient and energy cycling is increased and the retentive abilities of the soil for nutrients and water are enhanced. Such management techniques also play an important role in soil erosion control. The length of time that the soil is exposed to erosive forces is decreased, soil biodiversity is increased, and nutrient losses are reduced, helping to maintain and enhance soil productivity. Organic farming as systematized and certifiable approach for agriculture, there is no surprise that it faces some challenges among both farmers and public sector. This can be clearly demonstrated particularly in the absence of the essential conditions needed to implement successfully the soil management practices like green manure and composting to improve soil fertility including crop rotation, cover cropping and reduced tillage. Those issues beside others will be fully discussed highlighting their beneficial impact on the environmental soil characteristics. Keywords: soil fertility, organic matter, plant nutrition

  4. Sustainability of organic, integrated and conventional farming systems in Tuscany

    NARCIS (Netherlands)

    Pacini, C.; Giesen, G.W.J.; Vazzana, C.; Wossink, G.A.A.

    2002-01-01

    Agricultural researchers widely recognise the importance of sustainable agricultural production systems and the need to develop appropriate methods to measure sustainability. The principal purpose of this paper is to evaluate the financial and environmental aspects of sustainability of Organic,

  5. Sustainable Organic Farming For Environmental Health A Social Development Model

    Directory of Open Access Journals (Sweden)

    Ijun Rijwan Susanto

    2015-05-01

    Full Text Available ABSTRACT In this study the researcher attempted 1 to understand the basic features of organic farming in The Paguyuban Pasundans Cianjur 2 to describe and understand how the stakeholders were are able to internalize the challenges of organic farming on their lived experiences in the community 3 to describe and understand how the stakeholders were are able to internalize and applied the values of benefits of organic farming in support of environmental health on their lived experiences in the community 4 The purpose was to describe and understand how the stakeholders who are able to articulate their ideas regarding the model of sustainable organic farming 5 The Policy Recommendation for Organic Farming. The researcher employed triangulation thorough finding that provides breadth and depth to an investigation offering researchers a more accurate picture of the phenomenon. In the implementation of triangulation researchers conducted several interviews to get saturation. After completion of the interview results are written compiled and shown to the participants to check every statement by every participant. In addition researchers also checked the relevant documents and direct observation in the field The participants of this study were the stakeholders namely 1 The leader of Paguyuban Pasundans Organic Farmer Cianjur PPOFC 2 Members of Paguyuban Pasundans Organic FarmersCianjur 3 Leader of NGO 4 Government officials of agriculture 5 Business of organic food 6 and Consumer of organic food. Generally the findings of the study revealed the following 1 PPOFC began to see the reality as the impact of modern agriculture showed in fertility problems due to contaminated soil by residues of agricultural chemicals such as chemical fertilizers and chemical pesticides. So he wants to restore the soil fertility through environmentally friendly of farming practices 2 the challenges of organic farming on their lived experiences in the community farmers did not

  6. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  7. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Science.gov (United States)

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  8. The Role of Soil Organic Matter for Maintaining Crop Yields: Evidence for a Renewed Conceptual Basis

    DEFF Research Database (Denmark)

    Schjønning, Per; Jensen, Johannes Lund; Bruun, Sander

    2018-01-01

    Soil organic carbon (SOC) is believed to play a crucial role for many soil functions and ecosystem services. Despite much research, a lower threshold of SOC for sustainable crop production has not been identified across soil types. We addressed a comprehensive dataset with yields of winter wheat...

  9. Reduced soil cultivation and organic fertilization on organic farms: effects on crop yield and soil physical traits

    Science.gov (United States)

    Surböck, Andreas; Gollner, Gabriele; Klik, Andreas; Freyer, Bernhard; Friedel, Jürgen K.

    2017-04-01

    A continuous investment in soil fertility is necessary to achieve sustainable yields in organic arable farming. Crucial factors here besides the crop rotation are organic fertilization and the soil tillage system. On this topic, an operational group (Project BIOBO*) was established in the frame of an European Innovation Partnership in 2016 consisting of organic farmers, consultants and scientists in the farming region of eastern Austria. The aim of this group is the development and testing of innovative, reduced soil cultivation, green manure and organic fertilization systems under on-farm and on-station conditions to facilitate the sharing and transfer of experience and knowledge within and outside the group. Possibilities for optimization of the farm-specific reduced soil tillage system in combination with green manuring are being studied in field trials on six organic farms. The aim is to determine, how these measures contribute to an increase in soil organic matter contents, yields and income, to an improved nitrogen and nutrient supply to the crops, as well as support soil fertility in general. Within a long-term monitoring project (MUBIL), the effects of different organic fertilization systems on plant and soil traits have been investigated since 2003, when the farm was converted to organic management. The examined organic fertilization systems, i.e. four treatments representing stockless and livestock keeping systems, differ in lucerne management and the supply of organic manure (communal compost, farmyard manure, digestate from a biogas plant). Previous results of this on-station experiment have shown an improvement of some soil properties, especially soil physical properties, since 2003 in all fertilization systems and without differences between them. The infiltration rate of rainwater has increased because of higher hydraulic conductivity. The aggregate stability has shown also positive trends, which reduces the susceptibility to soil erosion by wind and

  10. Cycling downwards - dissolved organic matter in soils

    NARCIS (Netherlands)

    Kaiser, K.; Kalbitz, K.

    2012-01-01

    Dissolved organic matter has been recognized as mobile, thus crucial to translocation of metals, pollutants but also of nutrients in soil. We present a conceptual model of the vertical movement of dissolved organic matter with soil water, which deviates from the view of a chromatographic stripping

  11. Soil biota and agriculture production in conventional and organic farming

    Science.gov (United States)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with

  12. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  13. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  14. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    Science.gov (United States)

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  15. Engineering Global Soils to Sustain Planet Earth

    OpenAIRE

    Banwart, Steven A.; Menon, Manoj

    2014-01-01

    Global soils are under intense pressure from the demographic drivers of increasing human population and\\ud wealth. During the next 40 years Earth’s human population is project to approach 10 billion with a quadrupling\\ud in the global economy, a doubling in the demand for food, a doubling in the demand for fuel, and a more than\\ud 50% increase in the demand for clean water. Can Earth’s soils keep up?

  16. Commercial plant-probiotic microorganisms for sustainable organic tomato production systems

    OpenAIRE

    Bosco, Marco; Giovannetti, Giusto; Picard, Christine; Baruffa, Elisa; Brondolo, Anna; Sabbioni, Fabio

    2007-01-01

    Selected plant-probiotic microorganisms, produced by the company CCS Aosta at a commercial scale, are being tested in the Italian Padana plain in open field conditions for their ability to provide adequate crop nutrition and to ensure durable soil fertility for organic tomato production. In this three-years-long project the QLIF-WP333 research team will investigate the potential of soil probiotics management as a tool to improve the quality of tomato fruits and the sustainability of organic t...

  17. Linking organic carbon, water content and nitrous oxide emission in a reclaimed coal mine soil

    Science.gov (United States)

    Manure-based organic amendments can restore soil quality and allow for intensive sustained biomass production on degraded lands. However the large quantities of nitrogen and organic carbon added with such amendments could create soil conditions favorable for nitrous oxide production and emissions. T...

  18. Long-term citrus organic farming strategy results in soil organic matter recovery

    Science.gov (United States)

    Novara, Agata; Pereira, Paulo; Barone, Ettore; Giménez Morera, Antonio; Keesstra, Saskia; Gristina, Luciano; Jordán, Antonio; Parras-Alcantara, Luis; Cerdà, Artemi

    2017-04-01

    ABSTRACT Soils play a key role in the Earth System (Keesstra et al., 2012; Brevick et al., 2015). Soils are a key resource for the human societies (Mol and Keesstra, 2012) and they are relevant to achieve the sustainability such as the United Nations Goals highlight (Keesstra et al., 2016). Agriculture soils, especially those under conventional tillage, are prone to organic matter mineralization, soil erosion, compaction and increase of greenhouse gases emission (Novara et al., 2011; Bruun et al., 2015; de Moraes et al., 2015; Choudhury et al., 2016; del Mar et al., 2016). The adoption of organic farming and sustainable management practices may provide a sustainable crop productivity, and in the meanwhile mitigate the negative impact of agriculture on ecosystem services benefits (Laudicina et al., 2015; Parras-Alcantara et al., 2015; 2016). The aim of this study was to examine, under field conditions, the long-term changes of soil organic matter under organic farming management in citrus orchards in Mediterranean environment and evaluate the ecosystem service on C sequestration in terms of economic benefits. The research was carried out at the Alcoleja Experimental Station located in the Cànyoles river watershed in the Eastern Spain on 45year old citrus plantation. Soil Organic Matter (SOM) content was monitored for 20 years at 6 different soil depth. The profitability of citrus plantation was estimated under conventional and organic management. Results showed that SOM in the 0-30 cm soil depth was the double after 20 years of organic farming management, ranging from 0.8 g kg-1 in 1995 to 1.5 g kg-1 in 2006. The highest SOM increase was in the top soil layer (368% of SOM increase in comparison to the initial SOM content) and decreased with soil depth. The effect of organic farming was relevant after 5 years since land management change, indicating that in Mediterranean environment the duration of long term studies should be higher than five years and proper policy

  19. Fundamentals for Organization of Sustainable Forest Use

    Directory of Open Access Journals (Sweden)

    V. A. Sokolov

    2014-02-01

    Full Text Available In order to organize sustainable forest use in Russia, suggestions and recommendations have been developed on the basis of the up-to-day paradigm of nature management and stability of progress. It is proposed to revise the method of calculating annual allowable cuts by introduction of «economical allowable cut» concept. The methods of ecological and economical accessibility of forest resources have been devised. The certain paths of reconstructing and developing forest inventory as well as direction for future research have been proposed.

  20. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    replications. In one variant the area of a plot was 300 m2. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration; the daily average is lower at no-tillage (315-1914 mmoli m-2s-1), followed by minimum tillage (318-2395 mmoli m-2s-1) and is higher in the conventional tillage (321-2480 mmol m-2s-1). An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of long-term soil fertility. By determining the humus content after 3 years, it can be observed an increasing tendency when applying the minimum tillage (the increase was up to 0.41%) and no-tillage systems tillage (the increase was up to 0.64%). Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soil without organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity, and that way it reduces the soil capacity for carbon sequestration. Acknowledgments This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change.

  1. Repeated application of organic waste affects soil organic matter composition

    DEFF Research Database (Denmark)

    Peltre, Clément; Gregorich, Edward G.; Bruun, Sander

    2017-01-01

    Land application of organic waste is an important alternative to landfilling and incineration because it helps restore soil fertility and has environmental and agronomic benefits. These benefits may be related to the biochemical composition of the waste, which can result in the accumulation...... of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...

  2. Sustainable Soil Management: Its perception and the need for policy intervention

    Science.gov (United States)

    Basch, Gottlieb; Kassam, Amir; González-Sánchez, Emilio

    2017-04-01

    As stated in the strategic objectives of the Global Soil Partnership "healthy soils and sustainable soil management are the precondition for human well-being and economic welfare and therefore play the key role for sustainable development". Although the functional properties of a healthy soil are well understood, in practice it is easily overlooked what is necessary to achieve and sustain healthy agricultural soils. This contribution intends: to discuss the concept of sustainable soil management in agricultural production with regard to soil health, and to highlight its importance in the achievement of both Sustainable Development Goals and the 4 per mille objectives, as well as for the Common Agricultural Policy (CAP). In Europe, soil and the need for its conservation and stewardship gained visibility at the beginning of this century during the discussions related to the Soil Thematic Strategy. This higher level of awareness concerning the status of Europe's soils led to the introduction of soil conservation standards into the cross-compliance mechanism within the 1st Pillar of CAP. These standards were applied through the definition of Good Agricultural and Environmental Conditions (GAECs) which are compulsory for all farmers receiving direct payments, and in the last CAP reform in 2014, through the introduction of additional Greening Measures in Pilar 1. Despite these measures and the claim of some writers that they already contributed to significantly reducing soil erosion, the EC Joint Research Centre still reports water erosion in Europe amounting to almost one billion tonnes annually. Regarding soil conservation, soil carbon stocks or the provision of additional ecosystem services, measures called for in GAEC 4 (Minimum soil cover), in GAEC 5 (Minimum land management reflecting site specific conditions to limit soil erosion), and in GAEC 6 (Maintenance of soil organic matter level through appropriate practices, …), give the impression that a lot is being

  3. Enchytraeids as indicator of soil quality in temporary organic grass-clover leys under contrasting management

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Schmelz, Rüdiger; Larsen, Thomas

    2015-01-01

    One objective in organic farming is to sustain the quality of the soil resource. Because enchytraeids are an important soil faunal component, they stand as bioindicators of soil quality. We tested this candidature in a field experiment on loamy sand soil with 1- and 4-year old grass-clover leys...... interactions among soil physical, chemical and biological properties suggest that enchytraeid abundance is not a feasible stand-alone indicator of management impacts on soil quality in temporary grass-clover leys but may candidate as one of several biological key parameters in more comprehensive soil quality...

  4. The Impact of the Quality of Coal Mine Stockpile Soils on Sustainable Vegetation Growth and Productivity

    Directory of Open Access Journals (Sweden)

    Nicky M Mushia

    2016-06-01

    Full Text Available Stockpiled soils are excavated from the ground during mining activities, and piled on the surface of the soil for rehabilitation purposes. These soils are often characterized by low organic matter (SOM content, low fertility, and poor physical, chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected at three different depths (surface, mid, and deep as well as mixed (equal proportion of surface, mid and deep from two stockpiles (named Stockpile 1: aged 10 and Stockpile 2: 20 years at the coal mine near Witbank in the Mpumalanga province of South Africa. Soils were amended with different organic and inorganic fertilizer. A 2 × 4 × 5 factorial experiment in a completely randomized blocked design with four replications was established under greenhouse conditions. A grass species (Digiteria eriantha was planted in the pots with unamended and amended soils under greenhouse conditions at 26–28 °C during the day and 16.5–18.5 °C at night. Mean values of plant height, plant cover, total fresh biomass (roots, stems and leaves, and total dry biomass were found to be higher in Stockpile 1 than in Stockpile 2 soils. Plants grown on soils with no amendments had lower mean values for major plant parameters studied. Soil amended with poultry manure and lime was found to have higher growth rate compared with soils with other soil amendments. Mixed soils had better vegetation growth than soil from other depths. Stockpiled soils in the study area cannot support vegetation growth without being amended, as evidenced by low grass growth and productivity in this study.

  5. Effects of organic versus conventional arable farming on soil structure and organic matter dynamics in a marine loam in the Netherlands

    NARCIS (Netherlands)

    Pulleman, M.M.; Jongmans, A.G.; Marinissen, J.C.Y.; Bouma, J.

    2003-01-01

    We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming

  6. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Human induced impacts on soil organic carbon in southwest Iceland

    Science.gov (United States)

    Gísladóttir, Guðrún; Erlendsson, Egill; Lal, Rattan

    2013-04-01

    The Icelandic environment has been strongly influenced by natural processes during the Holocene. Since settlement in AD 874, the introduction of grazing animals and other land use has drastically affected the natural environment. This includes the diminishing of vegetative cover, which has led to soil exposure and accelerated erosion over large areas, especially when in conjunction with harsh climate. This has specifically impacted processes and properties of volcanic soils (Andosols), which are subject to accelerated erosion by wind and water. While approximately 46% of the land surface in Iceland has sustained continuous vegetation cover, large areas have lost some or all of their soil cover formed during the postglacial era. Elsewhere, remaining soils have sparse or no vegetation cover, thus impairing soil carbon (C) sequestration. Among their multifunctional roles, soils support plant growth, increase soil biotic activity, enhance nutrient storage and strengthen the cycling of water and nutrients. In contrast, soil degradation by accelerated erosion and other processes impairs soil quality, reduces soil structure and depletes the soil organic matter (SOM) pool. Depletion of the SOM pool has also global implications because the terrestrial C pool is the third largest pool and strongly impacts the global C cycle. Erosional-depositional processes may deplete soil organic C (SOC) by erosion and increase by deposition. Some SOC-enriched sediments are redistributed over the landscape, while others are deposited in depression sites and transported into aquatic ecosystems. SOC decomposition processes are severely constrained in some environmental settings and any SOC buried under anaerobic conditions is protected against decomposition. Yet, the impact of the SOC transported by erosional processes and redistributed over the landscape is not fully understood because the variability in its turnover characteristics has not been widely studied. Thus, the fate of C

  8. Trichloroethylene (TCE) adsorption using sustainable organic mulch

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zongsu [Department of Civil Engineering, University of Toledo, Mail Stop 307, 3031 Nitschke Hall, 2801 W. Bancroft St., Toledo, OH, 43606-3390 (United States); Seo, Youngwoo, E-mail: youngwoo.seo@utoledo.edu [Department of Civil Engineering, University of Toledo, Mail Stop 307, 3031 Nitschke Hall, 2801 W. Bancroft St., Toledo, OH, 43606-3390 (United States)

    2010-09-15

    Soluble substrates (electron donors) have been commonly injected into chlorinated solvent contaminated plume to stimulate reductive dechlorination. Recently, different types of organic mulches with economic advantages and sustainable benefits have received much attention as new supporting materials that can provide long term sources of electron donors for chlorinated solvent bioremediation in engineered biowall systems. However, sorption capacities of organic mulches for chlorinated solvents have not been studied yet. In this study, the physiochemical properties of organic mulches (pine, hardwood and cypress mulches) were measured and their adsorption capacity as a potential media was elucidated. Single, binary and quaternary isotherm tests were conducted with trichloroethylene (TCE), tetrachloroethylene (PCE), trans-dichloroethylene (trans-DCE) and cis-dichloroethylene (cis-DCE). Among the three tested mulches, pine mulch showed the highest sorption capacity for the majority of the tested chemicals in single isotherm test. In binary or quaternary isotherm tests, competition among chemicals appears to diminish the differences in Q{sub e} for tested mulches. However, pine mulch also showed higher adsorption capacity for most chemicals when compared to hardwood and cypress mulches in the two isotherm tests. Based upon physicochemical properties of the three mulches, higher sorption capacity of pine mulch over hardwood and cypress mulches appears to be attributed to a higher organic carbon content and the lower polarity.

  9. Physical properties of organic soils. Chapter 5.

    Science.gov (United States)

    Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni

    2011-01-01

    Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...

  10. Soil Productive Lifespans: Rethinking Soil Sustainability for the 21st Century

    Science.gov (United States)

    Evans, Daniel

    2017-04-01

    The ability for humans to sustainably manage the natural resources on which they depend has been one of the existential challenges facing mankind since the dawn of civilisation. Given the demands from this century's unprecedented global population and the unremitting course of climatic change, that challenge has soared in intensity. Sustainability, in this context, refers to agricultural practices which meet the needs of the present without compromising the ability of future generations to meet their own needs. Ensuring sustainability is arguably of greatest importance when resources, such as soil, are non-renewable. However, there is as yet no tool to evaluate how sustainable conservation strategies are in the long-term. Up to now, many pedologists have assessed sustainability in binary terms, questioning whether management is sustainable or not. In truth, one can never determine whether a practice is ultimately sustainable because of the indefinite nature implied by "future generations". We suggest that a more useful assessment of sustainability for the 21st century should avoid binary questions and instead ask: how sustainable are soils? Indeed, how many future generations can soils provide for? Although the use of modelling is by no means a novelty for the discipline, there are very few holistic models that encompass the fluxes and dynamic relationships between both mass and quality concomitantly. We therefore propose a new conceptual framework - the Soil Productive Lifespan (SPL) - that employs empirically derived residence times of both soil mass and quality, together with pathways of environmental change, to forecast the length of time a soil profile can provide the critical functions. Although mass and quality are considered synergistically, the SPL model allows one to assess whether mass or quality alone presents the greatest limiting factor in the productive lifespans of soils. As a result, more targeted conservation strategies can be designed. Ultimately

  11. The contribution of the European Society for Soil Conservation (ESSC) to scientific knowledge, education and sustainability

    Science.gov (United States)

    Dazzi, Carmelo; Fullen, Michael A.; Costantini, Edoardo A. C.; Theocharopoulos, Sid; Rickson, Jane; Kasparinskis, Raimonds; Lo Papa, Giuseppe; Peres, Guenola; Sholten, Thomas; Kertész, Adam; Vasenev, Ivan; Dumitru, Mihail; Cornelis, Wim; Rubio, José L.

    2017-04-01

    Soil is an integral component of the global environmental system that supports the quality and diversity of terrestrial life on Earth. Therefore, it is vital to consider the processes and impacts of soil degradation on society, especially on the provision of environmental goods and services, including food security and climate change mitigation and adaptation. Scientific societies devoted to Soil Science play significant roles in promoting soil security by advancing scientific knowledge, education and environmental sustainability. The European Society for Soil Conservation (ESSC) was founded in Ghent (Belgium) on 4 November 1988 by a group of 23 researchers from several European countries. It is an interdisciplinary, non-political association with over 500 members in 56 countries. The ESSC produces and distributes a hardcopy Newsletter twice a year and maintains both a website and Facebook page: http://www.soilconservation.eu/ https://www.facebook.com/European-Society-for-Soil-Conservation-ESSC-100528363448094/ The ESSC aims to: • Support research on soil degradation, soil protection and soil and water conservation. • Provide a network for the exchange of knowledge about soil degradation processes and soil conservation research and practises. • Produce publications on major issues relating to soil degradation and soil and water conservation. • Advise regulators and policy-makers on soil issues, especially soil degradation, protection and conservation. The ESSC held its First International Congress in Silsoe (UK) in 1992. Further International Congresses were held in Munich (1996), Valencia (2000), Budapest (2004), Palermo (2007), Thessaloniki (2011) and Moscow (2015). The Eighth International Congress will be held in Lleida (Spain) in June 2017: http://www.consowalleida2017.com/ Interspersed between these international congresses, the ESSC organizes annual international conferences on specific topics. These include Imola, Italy (Biogeochemical Processes at

  12. Sustainability of three modified soil conservation methods in agriculture area

    Science.gov (United States)

    Setiawan, M. A.; Sara, F. H.; Christanto, N.; Sartohadi, J.; Samodra, G.; Widicahyono, A.; Ardiana, N.; Widiyati, C. N.; Astuti, E. M.; Martha, G. K.; Malik, R. F.; Sambodo, A. P.; Rokhmaningtyas, R. P.; Swastanto, G. A.; Gomez, C.

    2018-04-01

    Recent innovations in soil conservation methods do not present any breakthrough. Providing more attractive soil conservation methods from the farmer’s perspective is however still of critical importance. Contributing to this soil research gap we attempt to evaluate the sustainable use of three modified conservation methods, namely JALAPA (Jala Sabut Kelapa - geotextile made of coconut fibres), wood sediment trap, and polybag system compared to traditional tillage without conservation method. This research provides both qualitative and quantitative analysis on the performance of each conservation measures. Therefore, in addition to the total sediment yield value and investment cost – as quantitative analysis, we also evaluate qualitatively the indicator of soil loss, installation, maintenance, and the durability of conservation medium. Those criteria define the sustainability use of each conservation method. The results show that JALAPA is the most effective method for controlling soil loss, but it also requires the most expensive cost for installation. However, our finding confirms that geotextile is sensitive to sun heating by which the coconut fibre can become dry and shrink. Wood sediment trap is the cheapest and easiest to install; however it is easily damaged by termite. Polybag method results in the highest productivity, but requires more time during the first installation. In terms of the farmer’s perspective, soil conservation using polybag system was the most accepted technique due to its high benefits; even if it is less effective at reducing soil loss compared to JALAPA.

  13. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  14. Using soil quality indicators for monitoring sustainable forest management

    Science.gov (United States)

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  15. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    Science.gov (United States)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better understand

  16. Peatlands and potatoes; organic wetland soils in Uganda

    Science.gov (United States)

    Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo

    2017-04-01

    Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of

  17. Fitting maize into sustainable cropping systems on acid soils of the tropics

    International Nuclear Information System (INIS)

    Horst, W.J.

    2000-01-01

    One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. This paper is based mainly on on-going work within an EU-funded project combining basic research on plant adaptation mechanisms by plant physiologists, and field experimentation on acid soils in Brazil, Cameroon, Colombia and Guadeloupe by breeders, soil scientists and a agronomists. The results suggest that large genetic variability exists in adaptation of plants to acid soils. A range of morphological and physiological plant characteristics contribute to tolerance of acid soils, elucidation of which has contributed to the development of rapid techniques for screening for tolerance. Incorporation of acid-soil-tolerant species and cultivars into cropping systems contributes to improved nutrient efficiency overall, and thus reduces fertilizer needs. This may help to minimize maintenance applications of fertiliser through various pathways: (i) deeper root growth resulting in more-efficient uptake of nutrients from the sub-soil and less leaching, (ii) more biomass production resulting in less seepage and less leaching, with more intensive nutrient cycling, maintenance of higher soil organic-matter content, and, consequently, less erosion owing to better soil protection by vegetation and mulch. (author)

  18. TAX FRAMEWORK AND SUSTAINABILITY OF NONPROFIT ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Heloisa Candia Hollnagel

    2014-06-01

    Full Text Available The Third Sector entities are relevant to attend to social issues, but the advance on the application of information technology in the public sector and the convergence of databases have brought new requirements for accounting professionals. Particularly, the fiscal framework of the National Classification of Economic Activities (NACE or CNAE in Portuguese is a matter with insufficient academic approach or professional regulation. This article analyzes the impact of incorrect framework for the sustainability of social assistance entities, due to changes introduced by Law No. 12.101/2009. This exploratory study is based on literature, field research (questionnaires with 102 entities in São Paulo, analysis of the codes of NCEA National Register of Legal Entities (CNPJ and their registration in the municipal councils. Initial results indicate that most organizations have not yet found the need to registering themselves, which can make it difficult for obtaining resources and enrollment in public agencies, including negative financial impact. The theme is noteworthy to avoid risk penalty for incorrect tax reporting, therefore it is relevant for accountancy professionals of that type of organization.

  19. Effects of Spent Engine Oil Polluted Soil and Organic Amendment ...

    African Journals Online (AJOL)

    Effects of Spent Engine Oil Polluted Soil and Organic Amendment on Soil ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... of using organic fertilizer as bioremediant for spent engine oil polluted soils.

  20. Influence of Organic Manure on Organic Phosphorus Fraction in Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGYONG-SONG; NIWU-ZHONG; 等

    1993-01-01

    The transformation of organic P(Po) from organic manures in two types of soils (ultisol and entisol) and the influences of external addition of organic substance or inorganic P(Pi) on Po under the condition of the 60% maximum water capacity were investigated.The results obtained from Po fractionation experiments indicated that all the Po fractions except for the highly resistant Po fraction decreased during incubation.Application of pig feces and cow feces could largely increase each fraction of Po in the soils.Immediately after application of organic manure into the soils a large part of labile and moderately labile Po from organic manure was transferred into moderately resistant Po,which might be due to the fact that Ca-or Mg-inositol P was precipitated into Fe-inositol P.However,the availability of Po from organic manure in the soils would increase again after incubation because of the transformation of moderately labile and resistant Po fractions into labile Po fractions.Addition of cellulose or Pi into the soils showed a good effect on increasing all the Po fractions except for the highly resistant Po,and this effect was much more pronounced when cellulose was applied in combination with Pi.Therefore,in view of the effect of organic manure on improving P nutrition to plant,attention should be paid to both the Po and the organic substances from organic manure,It is suggested that application of Pi fertilizer combined with organic manure may be referred to as an effective means of protecting Pi from chemical fixation in soil.

  1. Soil Fertility Status on Organic Paddy Experiment

    Directory of Open Access Journals (Sweden)

    Mujiyo

    2015-07-01

    Full Text Available The study aims to determine fertility status of the soil after organic paddy experiments using kinds and doses of organic fertilizers. Experiment was conducted at greenhouse laboratory in Faculty of Agriculture Sebelas Maret University Surakarta. Experimental design used completely randomized design with 9 kinds of treatment was replicated 3 times. Experiments were the use of cow manure, Azolla fertilizer, Azolla inoculum and its combinations that are based on fulfilling nutrient requirements of 120 kg N ha-1. Result shows that the use of cow manure, Azolla fertilizers and Azolla inoculum had no effect on changes of soil fertility status. Soil fertility status was not significantly correlated with cow manure (0,16ns, Azolla fertilizer (0,26ns and Azolla inoculum (0,16ns. Average of final soil fertility status included fertile category, which was similar as the initial soil fertility status. Average of final soil properties of treatment but nevertheless was relatively higher than in no treatment, indicating the use of cow manure, Azolla fertilizer, Azolla inoculum and its combinations had greater impact to soil properties. Cow manure despite increased available K2O and dry grain, but it did not significantly increase the soil fertility status from fertile to very fertile. This was presumably due to the relatively short experiment period, only one planting season had not given significant effect to soil properties. Implication of this study is the use of cow manure, Azolla fertilizer, Azolla inoculum and its combinations although did not increase the soil fertility status but could maintain soil fertility status as the initial conditions before planting.

  2. Forms of organic phosphorus in wetland soils

    Science.gov (United States)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  3. The Psychology of Sustainability and Sustainable Development for Well-Being in Organizations.

    Science.gov (United States)

    Di Fabio, Annamaria

    2017-01-01

    This article discusses the contribution of the psychology of sustainability and sustainable development to well-being in organizations from a primary prevention perspective. It deals with sustainability not only in terms of the ecological, economic, and social environment but also in terms of improving the quality of life of every human being. The psychology of sustainability and sustainable development is seen as a primary prevention perspective that can foster well-being in organizations at all the different levels going from the worker, to the group, to the organization, and also to inter-organizational processes. The possibilities for further research and interventions are also discussed.

  4. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  5. Organic soil production from urban soil, spent mushroom substrate, and other additives

    Science.gov (United States)

    Pham, Nhung Thi Ha

    2017-09-01

    In recent years, spent mushroom substrate (SMS) is becoming the huge problem in environmental pollution issues from mushroom production. However, SMS is also a nutrient-rich ogranic material with available nutrients and high porosity. Therefore, the value of products made from SMS should be exploited to take full advantage of agricultural by-product, support organic agriculture development without environmental pollution. The research has built 5 experimental formulas (4 mixed formulas and 1 control formulas with only urban soil). The analysis results of soil samples from mixed formulas and the control formula witness a significant increase in moisture and OM of mixed formulas (moisture from 36-42%, OM from 5.5-6.9%) after 20 treatment days, and N-P-K contents are also improved remarkably. 60 days later, soil nutrients in mixed formulas continue to rise, with highest OM (8.679%) at CT1; N (0.154%) at CT4; K2O (0,698%) and P2O5 (0,172%) at CT3, in addition, heavy metal contents in all formulas are under standard limit. Synthetic assessment of all norms indicates that the best organic soil product comes from CT3. The pak choi planting experiments are performed show that the growth of plants cultivated on organic soil products made from mixed formulas are much better than plants are grown on initially soil, and they also have no pestilent insect. Specially, pak choi planted on organic soil from CT3 have sharp developing with excellent tolerance ability, quantity and area of leaves are high. Thus, CT3 is the most suitable formula to increase soil nutrients, to solve spent mushroom subtrate streament problems after harvest, and for sustainable agricultural development.

  6. Soil Organic Matter and Soil Productivity: Searching for the Missing Link

    Science.gov (United States)

    Felipe G. Sanchez

    1998-01-01

    Soil-organic matter (SOM) is a complex array of components including soil fauna and flora at different stages of decomposition (Berg et al., 1982). Its concentration in soils can vary from 0.5% in mineral soils to almost 100% in peat soils (Brady, 1974). Organic matter (OM) in the surface mineral soil is considered a major determinant of forest ecosystem productivity...

  7. A soil-specific agro-ecological strategy for sustainable production in Argentina farm fields

    Science.gov (United States)

    Zamora, Martin; Barbera, Agustin; Castro-Franco, Mauricio; Hansson, Alejandro; Domenech, Marisa

    2017-04-01

    The continuous increment of frequencies and doses of pesticides, glyphosate and fertilizers, the deterioration of the structure, biotic balance and fertility of soils and the ground water pollution are characteristics of the current Argentinian agricultural model. In this context, agro-ecological innovations are needed to develop a real sustainable agriculture, enhancing the food supply. Precision agriculture technologies can strengthen the expansion of agro-ecological farming in experimental farm fields. The aim of this study was to propose a soil-specific agro-ecological strategy for sustainable production at field scale focused on the use of soil sensors and digital soil mapping techniques. This strategy has been developed in 15 hectares transition agro-ecological farm field, located at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572) Argentina. The strategy included five steps: (i) to measure apparent electrical conductivity (ECa) and elevation within agro-ecological farm field; (ii) to apply a clustering method using MULTISPATI-PCA algorithm to delimitate three soil-specific zones (Z1, Z2 and Z3); (iii) to determine three soil sampling points by zone, using conditioned Latin hypercube method, in addition to elevation and ECa as auxiliary information; (iv) to collect soil samples at 2-10 cm depth in each point and to determine in laboratory: total organic carbon content (TOC), cation-exchange capacity (CEC), pH and phosphorus availability (P-Bray). In addition, soil bulk density (SBD) was measured at 0-20 cm depth. Finally, (v) according to each soil-specific zone, a management strategy was recommended. Important differences in soil properties among zones could suggest that the strategy developed was able to apply an agro ecological soil-specific practice management. pH and P-Bray were significantly (pfertilizer and also rotating plots with high stocking rate. The aim is to increase soil organic matter content and CEC. Furthermore, P content will be

  8. A multiple soil ecosystem services approach to evaluate the sustainability of reduced tillage systems

    Science.gov (United States)

    Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam

    2017-04-01

    In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that

  9. Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties

    NARCIS (Netherlands)

    Martínez-García, Laura B.; Korthals, Gerard; Brussaard, Lijbert; Jørgensen, Helene Bracht; Deyn, de Gerlinde B.

    2018-01-01

    It is well recognized that organic soil management stimulates bacterial biomass and activity and that including cover crops in the rotation increases soil organic matter (SOM). Yet, to date the relative impact of different cover crop species and organic vs. non-organic soil management on soil

  10. Total organic carbon in aggregates as a soil recovery indicator

    Science.gov (United States)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  11. SUSTAINABILITY EFFECTS OF Crotalaria juncea L. AND Crotalaria spectabilis ROTH ON SOIL FERTILITY AND SOIL CONSERVATION

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    ROTH) before flowering amounted to 368 kg N, 252 kg Ca, 96 kg K, 45 kg Mg, 30 kg P and 27 kg S ha-1. The content of Al and Fe total 2 - 3, while that of Ba, Zn, B, Cu, Na, Mn and Sr 180 - 650 g ha-1. The Co, Cd, As, Pb, Ni, Se, Cr and Mo concentration did not reach here the value of 10 g ha-1. By this means this green manures should have a vary important role in the design of rotations for sustainable agriculture. Not only do they help to retain and accumulate nitrogen and other nutrients, thus reducing leaching losses, they also maintain ground cover, protected the soil from erosion, and can make a contribution to pest and weed control. Key words: Sustainable agriculture, soil fertility, soil conservation, green manure, Crotalaria juncea L., Crotalaria spectabilis ROTH. INTRODUCTION Sustainable agriculture is defined as the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources. A sustained agricultural production can be achieved by a proper use of soil resources, which includes the maintance or the enhancement of soil fertility (Christian and Kurt 1996). The term soil fertility is cast here to encompass not only essential plant nutrients but also aspects of soil structure, including water holding capacity, soil organic matter content and biological activity that influence both the efficiency of use and sustainability of the resources. All these attributes are interrelated and contribute together to the soil potential productivity or fertility (Kádár 1992, Németh 1996). From that perspective, soil fertility can be assessed as a capital stock, which will produce interests when properly used , and yet will be eroded by a consumptive use. It is necessary to make here a clear distinction between actions aiming at the regeneration of the soil capital, i.e., "recapitalization of soil fertility" and actions, such as maintance of enhanced soil

  12. Controlled experimental soil organic matter modification for study of organic pollutant interactions in soil

    International Nuclear Information System (INIS)

    Ahmed, Ashour A.; Kühn, Oliver; Leinweber, Peter

    2012-01-01

    Interactions of organic pollutants with soil organic matter can be studied by adsorption of the pollutants on well-characterized soil samples with constant mineralogy but different organic matter compositions. Therefore, the objectives of the current study are establishing a set of different, well-characterized soil samples by systematic modifications of their organic matter content and molecular composition and prove these modifications by advanced complementary analytical techniques. Modifications were done by off-line pyrolysis and removal/addition of hot-water extracted organic fraction (HWE) from/to the original soil sample. Both pyrolysis-field ionization mass spectrometry (Py-FIMS) and synchrotron-based C- and N- X-ray absorption near-edge structure spectroscopy (XANES) were applied to investigate the composition of the soil organic matter. These complementary analytical methods in addition to elemental analysis agreed in showing the following order of organic matter contents: pyrolyzed soil < soil residue < original soil < soil + 3 HWE < soil + 6 HWE < HWE. The addition of HWE to the soil sample increases the relative proportions of carbohydrates, N-containing heterocyclic compounds and peptides, and decreases the relative proportions of phenols, lignin monomers and dimers, and lipids. The most abundant organic compound classes in the pyrolyzed sample are aromatics, aliphatic nitriles, aldehydes, five- and six-membered N-containing heterocyclic compounds, and aliphatic carboxylic acids. It can be expected that removal or addition of HWE, that mimic biomass inputs to soil or soil amendments, change the binding capacity for organic pollutants less intensively than heat impact, e.g. from vegetation burning. It will be possible to interpret kinetic data on the pollutants adsorption by these original and modified soil samples on the basis of the bond- and element-specific speciation data through C-XANES and N-XANES and the molecular-level characterization

  13. Missing links in the root-soil organic matter continuum

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a

  14. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  15. Soil organism in organic and conventional cropping systems.

    OpenAIRE

    Bettiol, Wagner; Ghini, Raquel; Galvão, José Abrahão Haddad; Ligo, Marcos Antônio Vieira; Mineiro, Jeferson Luiz de Carvalho

    2002-01-01

    Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum) and corn (Zea mays) crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. C...

  16. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  17. Education on sustainable soil management for the masses? The Soil4Life MOOC

    Science.gov (United States)

    Maroulis, Jerry; Demie, Moore; Riksen, Michel; Ritsema, Coen

    2017-04-01

    Although soil is one of our most important natural resources and the foundation for all life on Earth it remains one of the most neglected of our resources. We, in soil science know this, but what do we do to reach more people more quickly? MOOCs, 'Massive Open Online Courses', are a vehicle for offering learning to virtually unlimited audiences at little cost to the student. Could MOOCs be the format for introducing more people worldwide to the importance of soil and sustainable soil management? MOOCs have their limitations and critics. However, depending on your goals, expectations and resources, they are a means for getting information to a much broader population than is possible through conventional educational formats. Wageningen University (WU) agreed and approved the development of a MOOC on sustainable soil management entitled Soil4Life. This presentation reviews the format and results of Soil4Life, concluding with some observations and reflections about this approach to soil science education. The Soil4Life MOOC introduces the role of soil in life on earth, soil degradation, and socio-economic issues related to generating action for long-term sustainability of the many soil-related ecosystem services. The objectives of Soil4Life are to raise awareness about the many important aspects of soil and sustainable soil management, and to allow the educational materials we produced to be available for use by others. The process of creating the Soil4Life MOOC involved 18 academic staff across all WU soil-related groups plus a vital team of education and technical staff. This number of people posed various challenges. However, with clear guidelines, lots of encouragement and technical support, Soil4Life was started in late 2015 and launched on the edx platform in May 2016. Just over 5000 students from 161 countries enrolled in the first offer of the Soil4Life MOOC - a modest number for MOOCs, but not bad for soil science. The targeted audience was initially high

  18. Mapping Soil Organic Matter with Hyperspectral Imaging

    Science.gov (United States)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  19. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  20. Sustainable Enterprise Excellence and the Continuously Relevant and Responsible Organization

    DEFF Research Database (Denmark)

    Edgeman, Rick; Bøllingtoft, Anne; Eskildsen, Jacob Kjær

    2013-01-01

    Innovation and sustainability are critical to the design, activities, results, and financial viability of organizations. These support one another, with “sustainable innovation” addressing economic sustainability, and “innovating for sustainability” addressing societal and environmental...... sustainability. Both sustainable innovation and innovation for sustainability have gained traction as partial means of confronting economic, environmental and societal challenges. Although garnering footholds is promising, the growth rate of these challenges has thus far exceeded trajectory, scale, and velocity...... issues surrounding enterprise innovation and sustainability efforts and capabilities. Innovation and sustainability of the necessary trajectory, scale, and velocity are strategically integrated to deliver what we refer to as innovating sustainability. This provides an accelerated means path toward...

  1. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders; Blankinship, Joseph; Bond-Lamberty, Benjamin; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, S.M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine EO; Vargas, Rodrigo; Vergara, Sintana; Cotrufo, Francesca; Keiluweit, M.; Heckman, Katherine; Crow, Susan; Silver, Whendee; Delonge, Marcia; Nave, Lucas

    2018-02-01

    Over 75% of soil organic carbon (C) in the upper meter of earth’s terrestrial surface has been subjected to cropping, grazing, forestry, or urbanization. As a result, terrestrial C cycling cannot be studied out of land use context. Meanwhile, amendments by soil organic matter demonstrate reliable methodologies to restore and improve soils to a more productive state, therefore soil health and productivity cannot be understood without reference to soil C. Measurements for detecting changes in soil C are needed to constrain and monitor best practices and must reflect processes of C stabilization and destabilization over various timescales, soil types, and spatial scales in order to quantify C sequestration at regional to global scales. We have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil carbon and its management for sustained production and climate regulation.

  2. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  3. Mechanisms of Heavy Metal Sequestration in Soils: Plant-Microbe Interactions and Organic Matter Aging

    Energy Technology Data Exchange (ETDEWEB)

    Teresa W.-M. Fan; Richard M. Higashi; David Crowley; Andrew N. Lane: Teresa A. Cassel; Peter G. Green

    2004-12-31

    For stabilization of heavy metals at contaminated sites, the three way interaction among soil organic matter (OM)-microbes-plants, and their effect on heavy metal binding is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using a soil aging system, the humification of plant matter such as wheat straw was probed along with the effect on microbial community on soil from the former McClellan Air Force Base.

  4. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  5. Age heterogeneity of soil organic matter

    International Nuclear Information System (INIS)

    Rethemeyer, J.; Grootes, P.M.; Bruhn, F.; Andersen, N.; Nadeau, M.J.; Kramer, C.; Gleixner, G.

    2004-01-01

    Accelerator mass spectrometry (AMS) radiocarbon measurements were used to investigate the heterogeneity of organic matter in soils of agricultural long-term trial sites in Germany and Great Britain. The strong age heterogeneity of the soil organic matter (SOM) is reflected by highly variable 14 C values of different organic components, ranging from modern (>100 pMC) to 7% modern carbon (pMC). At the field experiment in Halle (Germany), located in a heavily industrialized area, an increase of 14 C content with increasing depth was observed even though the input of modern plant debris should be highest in the topsoil. This is attributed to a significant contribution of old carbon (of up to 50% in the topsoil) to SOM. As a test to exclude the old carbon contamination, more specific SOM fractions were extracted. However, even a phospholipid fraction representing viable microbial biomass that is supposed to be short-lived in SOM, shows a strong influence of old, refractory carbon, when radiocarbon dated. In contrast, 14 C data of other field trials distant from industrial areas indicate that there inputs of old carbon to the soil are lower or even absent. Such locations are more favorable to study SOM stabilization and to quantify turnover of organic carbon in soils

  6. Soil architecture and distribution of organic matter

    NARCIS (Netherlands)

    Kooistra, M.J.; Noordwijk, van M.

    1996-01-01

    The biological component of soil structure varies greatly in quality and quantity, occurs on different scales, and varies throughout the year. It is far less predictable than the physical part and human impact. The occurrence and distribution of organic matter depends on several processes, related

  7. Social network analysis of sustainable transportation organizations.

    Science.gov (United States)

    2012-07-15

    Studying how organizations communicate with each other can provide important insights into the influence, and policy success of different types of organizations. This study examines the communication networks of 121 organizations promoting sustainabl...

  8. Poultry manure effects on soil organisms

    International Nuclear Information System (INIS)

    Delgado, M.; Martin, J. V.; Miralles de Imperial, R.; Leon-Cofreces, C.; Garcia, M. C.

    2009-01-01

    A study has been made to value the effects produces on the organisms of the ground (plants, invertebrates and microorganisms), after the application of two types of poultry manure (bed wood shaving or straw) on an agricultural ground. The use doses respond to agronomic and non environmental considerations. The test was made using a terrestrial microcosms, Multi-Species Soil System (MS.3) developed in the Environment department of the INIA, tool that allows in a single test to value of joint form, the effects of organic remainders on representative organisms of the ground. (Author) 1 refs.

  9. Organic matter dynamics and N mineralization in grassland soils

    OpenAIRE

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly and can be used in soil organic matter models, iii) to develop a model that predicts the long-term dynamics of soil organic matter, iv) to develop a simple model that can be used by farmers and advi...

  10. Development of a culture of sustainability in health care organizations.

    Science.gov (United States)

    Ramirez, Bernardo; West, Daniel J; Costell, Michael M

    2013-01-01

    This paper aims to examine the concept of sustainability in health care organizations and the key managerial competencies and change management strategies needed to implant a culture of sustainability. Competencies and management development strategies needed to engrain this corporate culture of sustainability are analyzed in this document. This paper draws on the experience of the authors as health care executives and educators developing managerial competencies with interdisciplinary and international groups of executives in the last 25 years, using direct observation, interviews, discussions and bibliographic evidence. With a holistic framework for sustainability, health care managers can implement strategies for multidisciplinary teams to respond to the constant change, fine-tune operations and successfully manage quality of care. Managers can mentor students and provide in-service learning experiences that integrate knowledge, skills, and abilities. Further empirical research needs to be conducted on these interrelated innovative topics. Health care organizations around the world are under stakeholders' pressure to provide high quality, cost-effective, accessible and sustainable services. Professional organizations and health care providers can collaborate with university graduate health management education programs to prepare competent managers in all the dimensions of sustainability. The newly designated accountable care organizations represent an opportunity for managers to address the need for sustainability. Sustainability of health care organizations with the holistic approach discussed in this paper is an innovative and practical approach to quality improvement that merits further development.

  11. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  12. Invasive soil organisms and their effects on belowground processes

    Science.gov (United States)

    Erik Lilleskov; Jr. Mac A. Callaham; Richard Pouyat; Jane E. Smith; Michael Castellano; Grizelle Gonzalez; D. Jean Lodge; Rachel Arango; Frederick. Green

    2010-01-01

    Invasive species have a wide range of effects on soils and their inhabitants. By altering soils, through their direct effects on native soil organisms (including plants), and by their interaction with the aboveground environment, invasive soil organisms can have dramatic effects on the environment, the economy and human health. The most widely recognized effects...

  13. Comparative effects of organic compost and NPK fertilizer on soil ...

    African Journals Online (AJOL)

    Pre-treatment and post planting soil samples were taken for laboratory soil analysis of soil chemical properties for a comparison of the assessment of the cumulative effects of organic compost and inorganic fertilizer in improving soil fertility over a period of three years. The organic matter increased by 23.3% and 0.6% in the ...

  14. Oligotrophic bacteria and root disease suppression in organically managed soils

    NARCIS (Netherlands)

    Senechkin, I.V.

    2013-01-01

    The objective of this thesis was to obtain a better understanding of soil health in terms of microbial and chemical characteristics as well as suppression of soil borne plant pathogens. Organic soils were chosen as an appropriate model for studying soil health. Four different organic

  15. Comparing organic versus conventional soil management on soil respiration [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bence Mátyás

    2018-03-01

    Full Text Available Soil management has great potential to affect soil respiration. In this study, we investigated the effects of organic versus conventional soil management on soil respiration.  We measured the main soil physical-chemical properties from conventional and organic managed soil in Ecuador. Soil respiration was determined using alkaline absorption according to Witkamp.  Soil properties such as organic matter, nitrogen, and humidity, were comparable between conventional and organic soils in the present study, and in a further analysis there was no statically significant correlation with soil respiration. Therefore, even though organic farmers tend to apply more organic material to their fields, but this did not result in a significantly higher CO2 production in their soils in the present study.

  16. Soil Microbial Activity in Conventional and Organic Agricultural Systems

    Directory of Open Access Journals (Sweden)

    Romero F.V. Carneiro

    2009-06-01

    Full Text Available The aim of this study was to evaluate microbial activity in soils under conventional and organic agricultural system management regimes. Soil samples were collected from plots under conventional management (CNV, organic management (ORG and native vegetation (AVN. Soil microbial activity and biomass was significantly greater in ORG compared with CNV. Soil bulk density decreased three years after adoption of organic system. Soil organic carbon (SOC was higher in the ORG than in the CNV. The soil under organic agricultural system presents higher microbial activity and biomass and lower bulk density than the conventional agricultural system.

  17. Managing Knowledge And Information In The Sustainable Organization

    Science.gov (United States)

    Grecu, Valentin

    2015-09-01

    Knowledge and information management are essential for the success of organizations and bring significant competitive advantages. There has been significant investments in setting up technological platforms that support business processes and increase the efficiency of operational structure in many organizations through an efficient management of knowledge and information. This research highlights the importance of using knowledge and information management in order to increase the competitiveness of organizations and to foster the transition towards the sustainable organization, as nowadays an organization that wants to be competitive needs to be sustainable.

  18. Ecological Citizenship and Sustainable Consumption: Examining Local Organic Food Networks

    Science.gov (United States)

    Seyfang, Gill

    2006-01-01

    Sustainable consumption is gaining in currency as a new environmental policy objective. This paper presents new research findings from a mixed-method empirical study of a local organic food network to interrogate the theories of both sustainable consumption and ecological citizenship. It describes a mainstream policy model of sustainable…

  19. Aesthetic mediation of creativity, sustainability and the organization

    NARCIS (Netherlands)

    Poldner, Kim; Dentoni, Domenico; Ivanova, Olga

    2017-01-01

    The literature on sustainability often focuses on its technical side, such as in studies of life cycle assessment, supply chain management and cleaner production systems. It traditionally assumes that creativity and sustainability are two separate entities in organizations. Contrasting with this

  20. Soil mixing design methods and construction techniques for use in high organic soils.

    Science.gov (United States)

    2015-06-01

    Organic soils present a difficult challenge for roadway designers and construction due to the high : compressibility of the soil structure and the often associated high water table and moisture content. For : other soft or loose inorganic soils, stab...

  1. Soil mixing design methods and construction techniques for use in high organic soils : [summary].

    Science.gov (United States)

    2015-10-01

    The soils which serve as foundations for construction projects may be roughly classified as : inorganic or organic. Inorganic soils vary in firmness and suitability for construction. Soft : or loose inorganic soils may be stabilized using cement or s...

  2. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials

    Science.gov (United States)

    Trends in greener and sustainable process development during the past 25 years are abridged involving the use of alternate energy inputs (mechanochemistry, ultrasound- or microwave irradiation), photochemistry, and greener reaction media as applied to synthesis of organics and na...

  3. Clay-associated organic matter in kaolinitic and smectitic soils

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.

    2002-01-01

    The primary source of soil organic matter is plant debris of all kinds, such as dead roots, leaves and branches that enter into the soil and are then biologically decomposed at variable rates. Organic matter has many different important functions on a local and global scale. Soil organic matter is

  4. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  5. Cultural Patterns of Soil Understanding in Organic Agriculture

    Science.gov (United States)

    Patzel, Nikola

    2017-04-01

    Different branches of modern agriculture rely on different cultural patterns of soil understanding; and they are supported by different schools of thought in soil science with their specific values and perspectives. For example, the European branch of organic agriculture, as it developed mainly in the 20th Century, is rooted in specific cultural concepts and was supported by associated minorities, or rather marginalised tendencies, within the soil science community. Some cases: It is about the transformations of living or organic matter, linked with debates on "microbes" and "life particles", "tissues" and macromolecules in the humus-sphere. It is about the "industrialised economical-technical paradigm" versus an "organic" or "ecological paradigm" - whatever both may be. It is about the relevance respectively of the "duties" of control by power, or by relatedness and "intercourse" in agricultural human-nature interaction. It is about the male and female qualities of effective God-images - both in their "religious" as well as their "secular" representations in individuals' and society's relation with nature and when dealing with soil. In today's conceptual and strategic debates and power struggles over how to sustainably feed from the land, we see patterns similar to those from the 19th and 20th Centuries in action. But the threats they pose are not yet sufficiently realised; the opportunities they offer are not yet sufficiently fulfilled. In this presentation, using the example of cultural patterns inside organic agriculture in Europe, some cultural problems and tasks will be highlighted, to which geosciences are of course confronted, being part of human society.

  6. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  7. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  8. The impact of the quality of coal mine stockpile soils on sustainable vegetation growth and productivity

    CSIR Research Space (South Africa)

    Mushia, NM

    2016-06-01

    Full Text Available , chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected...

  9. Soil aggregation and organic carbon of Oxisols under coffee in agroforestry systems

    Directory of Open Access Journals (Sweden)

    Gabriel Pinto Guimarães

    2014-02-01

    Full Text Available Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1, organic coffee (Org1 and conventional coffee (Con1. On Farm 2, we evaluated: secondary forest (Sf2, organic coffee intercropped with inga (Org/In2, organic coffee intercropped with leucaena and inga (Org/In/Le2, organic coffee intercropped with cedar (Org/Ced2 and unshaded conventional coffee (Con2. Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2, with 20.2 g kg-1.

  10. Predicting soil particle density from clay and soil organic matter contents

    DEFF Research Database (Denmark)

    Schjønning, Per; McBride, R.A.; Keller, T.

    2017-01-01

    Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...

  11. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  12. Soil Organic Matter Erosion by Interrill Processes from Organically and Conventionally farmed Devon Soil

    Science.gov (United States)

    Armstrong, E.; Ling, A.; Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  13. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain

  14. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    Science.gov (United States)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  15. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    Science.gov (United States)

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  16. SUSTAINABLE PACKAGING SOLUTIONS FOR ORGANIC FRESH BERRIES

    Directory of Open Access Journals (Sweden)

    Elisabeta Elena TĂNASE

    2017-12-01

    Full Text Available Climate changes and particularly global warming are topics carefully treated by specialists already since decades. The most pregnant factor that influences climate change is pollution, namely the high level carbon dioxide emissions. Besides other substances used by the most of the industries (oil, charcoal, fertilizers, etc., plastics are not to be ignored when talking about pollution. Plastic waste affects animals and humans, as well as their habitat. In this respect, food industry engages in preserving the good functioning of the environment by developing and using biodegradable and bio-based resources for food packaging. The aim of this literature review was to identify the optimal sustainable packaging solution used for berries. The results of the study pointed out that the most used environmentally friendly packaging technique is the one that involves modified atmosphere. In terms of packaging materials, the literature is limited when it comes to biodegradable/bio-based solutions. However, active packaging gains popularity among researchers, considering the endless possibilities to include sustainable compounds in a biopolymer based matrix, in order to prolong the shelf-life of berries or fruits in general.

  17. Mobilization and transport of soil colloids as influenced by texture, organic matter, and structure

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad

    The thin layer of soil on the Earth’s surface has major environmental and socioeconomic impacts. The soils sustain our life and society, and do not act only as a growth medium for food, feed and fuel. Soil is an invaluable resource and the processes within it are responsible for waste disposal...... was mainly seen as an impact on soil organic carbon. Results from the column leaching experiments from three sites likewise indicate that basic soil properties, such as the clay content, were the main drivers of colloid mobilization and transport. Effects of management and cropping system seemed secondary......, purification and recharge of groundwater aquifers. Many environmental contaminants are broken down through their passage through the soil and slow percolation through the soil cleanses rainwater before it reaches the groundwater. Strongly sorbing environmental contaminants cannot be assumed to be immobile...

  18. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis

    Directory of Open Access Journals (Sweden)

    Tiffany L. Fess

    2018-01-01

    Full Text Available We are at a pivotal time in human history, as the agricultural sector undergoes consolidation coupled with increasing energy costs in the context of declining resource availability. Although organic systems are often thought of as more sustainable than conventional operations, the lack of concise and widely accepted means to measure sustainability makes coming to an agreement on this issue quite challenging. However, an accurate assessment of sustainability can be reached by dissecting the scientific underpinnings of opposing production practices and crop output between cropping systems. The purpose of this review is to provide an in-depth and comprehensive evaluation of modern global production practices and economics of organic cropping systems, as well as assess the sustainability of organic production practices through the clarification of information and analysis of recent research. Additionally, this review addresses areas where improvements can be made to help meet the needs of future organic producers, including organic-focused breeding programs and necessity of coming to a unified global stance on plant breeding technologies. By identifying management strategies that utilize practices with long-term environmental and resource efficiencies, a concerted global effort could guide the adoption of organic agriculture as a sustainable food production system.

  19. Effect of four herbicides on microbial population, soil organic matter ...

    African Journals Online (AJOL)

    The effect of four herbicides (atrazine, primeextra, paraquat and glyphosate) on soil microbial population, soil organic matter and dehydrogenase activity was assessed over a period of six weeks. Soil samples from cassava farms were treated with herbicides at company recommended rates. Soil dehydrogenase activity was ...

  20. SOMPROF: A vertically explicit soil organic matter model

    NARCIS (Netherlands)

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  1. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  2. Influence of organic components on plutonium and americium speciation in soils and soil solutions

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kimlenko, I.M.

    2003-01-01

    Group composition of humic substances of organic and mineral soils sampled in the 30-km zone of the Chernobyl accident was analyzed for studying influence of organic components on migration properties of plutonium and americium in soils and soil solutions by the method of gel-chromatography and chemical fractionation. It was ascertained that humus of organic soils binds plutonium and americium stronger than humus of mineral soils. Elevated mobility of americium compared to plutonium one stems from lower ability of the latter to from hard to solve organic and organomineral complexes, as well as from its ability to form anionic complexes in soil solutions [ru

  3. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    Science.gov (United States)

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  4. SUSTAINABLE PRODUCTION PACKAGES FOR ORGANIC TURMERIC

    OpenAIRE

    Somasundaram, Eagan; Shanthi, G.

    2014-01-01

    Turmeric (Curcuma longa L.), a perennial rhizomatous herb has been regarded as an important spice in Asian cuisine. India is called as the “Spice bowl of the world” as it produces variety of spices with quality. Though India leads in production of turmeric, but average productivity is very low due to imbalanced and suboptimal dose of chemical fertilizers, organic manure, bio – fertilizers and micronutrients (Kandiannan and Chandragiri, 2008). Since, turmeric is a nutrient responsive crop and ...

  5. Learning for Sustainability Among Faith-Based Organizations in Kenya

    Science.gov (United States)

    Moyer, Joanne M.; Sinclair, A. John; Diduck, Alan P.

    2014-08-01

    The complex and unpredictable contexts in which environmental and development work take place require an adaptable, learning approach. Faith-based organizations (FBOs) play a significant role in sustainability work around the world, and provide a unique setting in which to study learning. This paper explores individual learning for sustainability within two FBOs engaged in sustainability work in Kenya. Learning outcomes covered a broad range of areas, including the sustainability framework, environment/conservation, skills, community work, interpersonal engagement, and personal and faith development. These outcomes were acquired through embodied experience and activity, facilitation by the workplace, interpersonal interaction, personal reflection, and Bible study and worship. Grounded categories were compared to learning domains and processes described by Mezirow's transformative learning theory. The findings indicate that for learning in the sustainability field, instrumental learning and embodied learning processes are particularly important, and consequently they require greater attention in the theory when applied in this field.

  6. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  7. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  8. Soil microbiome is more heterogeneous in organic than in conventional farming system

    NARCIS (Netherlands)

    Lupatini, Manoeli; Korthals, Gerard W.; de Hollander, Mattias; Janssens, Thierry K.S.; Kuramae, Eiko E.

    2017-01-01

    Organic farming system and sustainable management of soil pathogens aim at reducing the use of agricultural chemicals in order to improve ecosystem health. Despite the essential role of microbial communities in agro-ecosystems, we still have limited understanding of the complex response of microbial

  9. Consumer perception of sustainability attributes in organic and local food.

    Science.gov (United States)

    Annunziata, Azzurra; Angela, Mariani

    2017-12-14

    Although sustainable food consumption is gaining growing importance on the international agenda, research on this subject is still quite fragmented and most studies analyse single aspects of sustainable food consumption with particular reference to environmental sustainability. In addition, the literature highlights the need to take account of the strong heterogeneity of consumers in studying sustainable behaviour. Identifying consumer segments with common profiles, needs and values is essential for developing effective communication strategies to promote sustainability in food consumption. Consumer segmentation based on the perception of the sustainability attributes of organic and local products was realized using descriptive data collected through a consumer online survey in southern Italy (Campania). K-means cluster analysis was performed to identify different consumer segments based on consumer perception of sustainable attributes in organic and local food. Results confirm the support of consumers for organic and local food as sustainable alternative in food choices even if occasional buying behaviour of these products still predominates. In addition, our results show that an egoistic approach prevails among consumers, who seem to attach more value to attributes related to quality and health than to environmental, social and economic sustainability. Segmentation proves the existence of three consumer segments that differ significantly in terms of perception of sustainability attributes: a large segment of individuals who seem more egocentric oriented, an environmental sustainability oriented segment and a small segment that includes sustainability oriented consumers. The existence of different levels of sensitivity to sustainability attributes in organic and local food among the identified segments could be duly considered by policy makers and other institutions in promoting sustainable consumption patterns. Consumers in the first cluster could be educated

  10. Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Rojas, M. [CSIC Spin-off, Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain). Evenor-Tech; Sevilla Univ. (Spain). MED Soil Research Group; Jordan, A.; Zavala, L.M. [Sevilla Univ. (Spain). MED Soil Research Group; Rosa, D. de la [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain); Abd-Elmabod, S.K. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain); National Research Centre, Cairo (Egypt). Dept. of Soil and Water Use; Anaya-Romero, M. [CSIC Spin-off, Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Seville (Spain). Evenor-Tech

    2012-07-01

    Soil C sequestration through changes in land use and management is one of the sustainable and long-term strategies to mitigate climate change. This research explores and quantifies the role of soil and land use as determinants of the ability of soils to store C along Mediterranean systems. Detailed studies of soil organic C (SOC) dynamics are necessary in order to identify factors determining fluctuations and intensity of changes. In this study, SOC contents from different soil and land use types have been investigated in Andalusia (Southern Spain). We have used soil information from different databases, as well as land use digital maps, climate databases and digital elevation models. The average SOC content for each soil control section (0-25, 25-50 and 50-75 cm) was determined and SOC stocks were calculated for each combination of soil and land use type, using soil and land cover maps. The total organic C stocks in soils of Andalusia is 415 Tg for the upper 75 cm, with average values ranging from 15.9 MgC ha{sup -1} (Solonchaks under ''arable land'') to 107.6 MgC ha{sup -1} (Fluvisols from ''wetlands''). Up to 55% of SOC accumulates in the top 25 cm of soil (229.7 Tg). This research constitutes a preliminary assessment for modelling SOC stock under scenarios of land use and climate change. (orig.)

  11. Soil as a Sustainable Resource for the Bioeconomy - BonaRes

    Science.gov (United States)

    Wollschläger, Ute; Amelung, Wulf; Brüggemann, Nicolas; Brunotte, Joachim; Gebbers, Robin; Grosch, Rita; Heinrich, Uwe; Helming, Katharina; Kiese, Ralf; Leinweber, Peter; Reinhold-Hurek, Barbara; Veldkamp, Edzo; Vogel, Hans-Jörg; Winkelmann, Traud

    2017-04-01

    Fertile soils are a fundamental resource for the production of biomass and provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for bio-based products which require preserving and - ideally - improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes which are insufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing, including SDGs. However, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management. To make soil management sustainable, we need to establish a scientific knowledge base of complex soil system processes that allows for developing models and tools to quantitatively predict the impact of a multitude of management measures on soil functions. This will finally allow for the provision of options for a site-specific, sustainable soil management. To face this challenge, the German Federal Ministry of Education and Research (BMBF) recently launched the funding program "Soil as a Sustainable Resource for the Bioeconomy - BonaRes". In a joint effort, ten collaborative projects and the coordinating BonaRes Centre are engaged to close existing knowledge gaps for a profound and systemic assessment and understanding of soil functions and their sensitivity to soil management. In BonaRes, the complete process chain of sustainable soil use in the context of a sustainable bio-economy is being addressed: from understanding of soil processes using state-of the art and

  12. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  13. Optical Properties of Airborne Soil Organic Particles

    Energy Technology Data Exchange (ETDEWEB)

    Veghte, Daniel P. [William; China, Swarup [William; Weis, Johannes [Chemical; Department; Kovarik, Libor [William; Gilles, Mary K. [Chemical; Laskin, Alexander [Department

    2017-09-27

    Recently, airborne soil organic particles (ASOP) were reported as a type of solid organic particles emitted after water droplets impacted wet soils. Chemical constituents of ASOP are macromolecules such as polysaccharides, tannins, and lignin (derived from degradation of plants and biological organisms). Optical properties of ASOP were inferred from the quantitative analysis of the electron energy-loss spectra acquired over individual particles in the transmission electron microscope. The optical constants of ASOP are further compared with those measured for laboratory generated particles composed of Suwanee River Fulvic Acid (SRFA) reference material, which was used as a laboratory surrogate of ASOP. The particle chemical compositions were analyzed using energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, and synchrotron-based scanning transmission x-ray microscopy with near edge x-ray absorption fine structure spectroscopy. ASOP and SRFA exhibit similar carbon composition, but SRFA has minor contributions of S and Na. When ASOP are heated to 350 °C their absorption increases as a result of their pyrolysis and partial volatilization of semi-volatile organic constituents. The retrieved refractive index (RI) at 532 nm of SRFA particles, ASOP, and heated ASOP were 1.22-62 0.07i, 1.29-0.07i, and 1.90-0.38i, respectively. Compared to RISRFA, RIASOP has a higher real part but similar imaginary part. These measurements of ASOP optical constants suggest that they have properties characteristic of atmospheric brown carbon and therefore their potential effects on the radiative forcing of climate need to be assessed in atmospheric models.

  14. Effect of Different Organic Wastes on Soil Propertie s and Plant Growth and Yield: a Review

    Directory of Open Access Journals (Sweden)

    Hossain M. Z.

    2017-12-01

    Full Text Available The use of organic wastes in agriculture plays a great role in recycling essential plant nutrients, sustaining soil security as well as protecting the environment from unwanted hazards. This review article deals with the effect of different kinds of organic wastes on soil properties and plant growth and yield. Municipal solid waste is mainly used as a source of nitrogen and organic matter, improving soil properties and microbial activity that are closely related to soil fertility. Biowaste and food waste increase pH, nitrogen content, cation exchange capacity, water holding capacity, and microbial biomass in soil. Sewage sludge contains various amounts of organic matter and huge amounts of plant nutrients. Manure is a common waste which improves soil properties by adding nutrients and increases microbial and enzyme activity in soil. It also reduces toxicity of some heavy metals. These organic wastes have a great positive impact on soil physical, chemical, and biological properties as well as stimulate plant growth and thus increase the yield of crops.

  15. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  16. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    Science.gov (United States)

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  17. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  18. Productivity, quality and sustainability of winter wheat underlong-term conventional and organic management in Switzerland

    DEFF Research Database (Denmark)

    Mayer, Jochen; Gunst, Lucie; Mäder, Paul

    2015-01-01

    Long-term sustainability and high resource use efficiency are major goals for high quality baking wheatproduction throughout the world. Present strategies are low input systems such as organic agriculture orimproved conventional systems (integrated). The fertilisation level and strategy, crop...... was fertilised exclusively minerally at level 2 (CONMIN)and a control remained unfertilised (NOFERT). We compared crop yields, baking quality parameters, thenitrogen use efficiency and the effect of maize and potatoes as preceding crops obtained between 2003and 2010 along with long-term soil sustainability......-bers of ears per m2and the thousand kernel weight. The apparent nitrogen use efficiency decreased withincreasing N fertilisation. Doubling the organic fertilisation in the organic systems only slightly improvedwheat grain yields but was not able to improve grain baking quality, due to low mineral N additions...

  19. Changes in soil organic matter compositrion after introduction of riparian vegetation on shores of hydroelectric reservoires (Southeast of Brazil)

    NARCIS (Netherlands)

    Alcantara, de F.A.; Buurman, P.; Curi, N.; Furtini Neto, A.E.; Lagen, van B.; Meijer, E.M.

    2004-01-01

    This work is part of a research program with the general objective of evaluating soil sustainability in areas surrounding hydroelectric reservoirs, which have been planted with riparian forest. The specific aims were: (i) to assess if and how the soil organic matter (SOM) chemical composition has

  20. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2

  1. Organic components and plutonium and americium state in soils and soil solutions

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kimlenko, I.M.

    2002-01-01

    The fraction composition of humus substances of different type soils and soil solutions have been studied. A distribution of Pu 239, 240 and Am 241 between humus substances fractions of different dispersity and mobility in soil-vegetation cover has been established. It was shown that humus of organic soils fixes plutonium and americium in soil medium in greater extent than humus of mineral soils. That leads to lower migration ability of radionuclides in organic soils. The lower ability of americium to form difficultly soluble organic and organic-mineral complexes and predomination of its anion complexes in soil solutions may be a reason of higher mobility and biological availability of americium in comparison to plutonium during soil-plant transfer (authors)

  2. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W. [Stanford Univ., Stanford, CA (United States); U.S. Geological Survey, Menlo Park, CA (United States); Hugelius, Gustaf [Stanford Univ., Stanford, CA (United States); Stockholm Univ., Stockholm (Sweden); Ahlstrom, Anders [Stanford Univ., Stanford, CA (United States); Department of Physical Geography and Ecosystem Science, Lund (Sweden); Blankinship, Joseph C. [Univ. of Arizona, Tucson, AZ (United States); Bond-Lamberty, Ben [Univ. of Maryland, College Park, MD (United States); Lawrence, Corey R. [U.S. Geological Survey, Denver, CO (United States); Loisel, Julie [Texas A & M Univ., College Station, TX (United States); Malhotra, Avni [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Robert B. [Stanford Univ., Stanford, CA (United States); Ogle, Stephen [Colorado State Univ., Fort Collins, CO (United States); Phillips, Claire [USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR (United States); Ryals, Rebecca [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Todd-Brown, Katherine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vargas, Rodrigo [Univ. of Delaware, Newark, DE (United States); Vergara, Sintana E. [Univ. of California, Berkeley, CA (United States); Cotrufo, M. Francesca [Colorado State Univ., Fort Collins, CO (United States); Keiluweit, Marco [Univ. of Massachusetts, Amherst, MA (United States); Heckman, Katherine A. [USDA Forest Service, Houghton, MI (United States); Crow, Susan E. [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Silver, Whendee L. [Univ. of California, Berkeley, CA (United States); DeLonge, Marcia [Union of Concerned Scientists, Washington, D.C. (United States); Nave, Lucas E. [Univ. of Michigan, Pellston, MI (United States)

    2017-10-05

    Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.

  3. Potential for Increasing Soil Nutrient Availability via Soil Organic Matter Improvement Using Pseudo Panel Data

    NARCIS (Netherlands)

    Chavez Clemente, M.D.; Berentsen, P.B.M.; Oenema, O.; Oude Lansink, A.G.J.M.

    2014-01-01

    Fixed and random effect models were applied to a pseudo-panel data built of soil analysis reports from tobacco farms to analyze relationships between soil characteristics like soil organic matter (SOM) and soil nitrogen (N), phosphorous (P) and potassium (K) and to explore the potential for

  4. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    Science.gov (United States)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  5. Sustainability and Competitiveness of Romanian Farms through Organic Agriculture

    Directory of Open Access Journals (Sweden)

    Mirela Ionela Aceleanu

    2016-03-01

    Full Text Available Currently, the development of any sector involves respecting the principles of sustainability, which means economic, social and environmental development. Moreover, organic farming is a very important field for ensuring sustainable development. Romania has great potential for the development of organic agriculture, especially due to the large number of available farmland and reduced use of fertilizers and other chemicals. However, the development of organic farming in Romania is in an early stage, due to the numerous problems that Romanian agriculture is still facing. Concern for the environment should be reflected at the level of production processes and consumption. As market demand influences and stimulates production, we can ask the question to what extent stimulating the consumption of organic products through green marketing can boost organic agriculture development and competitiveness of Romanian farms. Using several methods of research, such as analysis, synthesis, comparison, statistical methods and by calling on studies, reports and data series on organic farming in the EU and Romania, this paper highlights Romania's position in terms of the level of development of organic agriculture and recommends several ways to improve the outcomes obtained by Romania in the field. Moreover, based on regression equations, the trend of convergence of Romanian organic agriculture development in relation to the EU countries is analysed. The paper demonstrates that one of the measures that can be taken by Romanian farms is green marketing strategy development that can stimulate both consumption and production of organic products. Therefore, with increasing interest in the development of organic agriculture in Romania, green marketing can play an increasingly important role in promoting the benefits of consuming organic products, thus contributing to business development of organic products as well as to the development of Romanian agriculture

  6. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    Science.gov (United States)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  7. Structure and organic matter under different soil management conditions in the center of Argentina

    International Nuclear Information System (INIS)

    Bricchi, E.

    2004-01-01

    In Central Argentina, Cordoba Province, as in different parts of the world, the equilibrium state of soil under natural condition has been modified by both the replacement of natural vegetation and by tillage. With time, these two disturbing factors have led to a new soil state whose main characteristic is an important decrease of chemical, physical and biological soil functions. The degree of these changes is directly related to soil resistance according to soil genesis. The soil organic matter and the structure of the superficial profile of soil are suitable indicators mainly for physical functions. Recently, it became necessary to look for a combination of technologies leading to an energy input throughout conservation tillage systems, soil covering and agro-chemicals which tend to improve soil quality in order to obtain a sustainable production. The removal of natural vegetation and tillage systems have caused the following effects on the first centimetres of soils: A 77 to 80% loss of organic matter during a period of about 80 years. Changes in the water stable aggregates distribution. A 77% loss of large aggregates and a 55% gain of fine aggregates. Our results would indicate that the disturbance level was higher to the natural resistance of soil. The organic carbon content in the first centimetres of soil is increased when all crop stubble remains on the field and conservationist tillage is applied. Conservation tillages are more efficient in the lower position of relief, meaning the beginning of a change of organic matter tendency that would possibly tend to new equilibrium state. On the other hand, the percentage of water stable aggregates would also be increased as consequence of a higher organic carbon content

  8. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  9. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  10. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  11. Let's Break it Down: A Study of Organic Decomposition Rates in Clay Soil

    Science.gov (United States)

    Weiss, E.

    2016-12-01

    In this experiment I will be testing if temperature affects the organic decomposition rates in clay soil. I will need to be able to clean and weigh each filter paper without disrupting my data damaging or brushing off additional paper material. From there I need to be able to analyze and interpret my data to factor anything else that may affect the decomposition rates in the soil. Soil decomposers include bacteria and fungi. They obtain energy from plant and animal detritus through aerobic decomposition, which is similar to how humans break down sugar. The formula is: C6H12O6 + O2 → CO2 + H2O + energy. Besides oxygen and sugar the organisms need nutrients such as water and sustainable temperatures. Decomposition is important to us because it helps regulate soil structure, moisture, temperature, and provides nutrients to soil organisms. This matters on a global scale since decomposers release a large amount of carbon when breaking down matter, which contributes to greenhouse gasses such as carbon dioxide and methane. These greenhouse gasses affect the earth's climate. People who care about decomposition are farmers and those in agriculture, as well as environmental scientists. Even national parks might care because decomposition may affect park safety, how the park looks, and the amount of plants and wildlife. Things that can affect decomposition are the decomposers in the soil, temperature, and water or moisture. My secondary research also showed that PH and chemical composition of the soil affect the rate of decomposition.Cold or freezing temperatures can help preserve organic material in soil because it freezes the soil and moisture, making it too dense for the organic decomposers to break down the organic matter. Soil also can be preserved by drying out and being stored at 4º Celsius (or 39º Fahrenheit) for 28 days. However, soil can degrade slowly in these conditions because it is not frozen and can be oxidized.

  12. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    Michael Horsfall

    carbon (TOC) content, water content and soils texture for industrial area at Pengkalan Chepa, township of Kota ... soil erosion and geologic deposition processes (Tan et al., 2004). .... infiltration rate and consist of soils with layer that impedes ...

  13. Soil quality standards and guidelines for forest sustainability in northwestern North America

    Science.gov (United States)

    Deborah Page-Dumroese; Martin Jurgensen; William Elliot; Thomas Rice; John Nesser; Thomas Collins; Robert. Meurisse

    2000-01-01

    Soil quality standards and guidelines of the USDA Forest Service were some of the first in the world to be developed to evaluate changes in forest soil productivity and sustainability after harvesting and site preparation. International and national development of criteria and indicators for maintenance of soil productivity make it imperative to have adequate threshold...

  14. Soil Eroison, T Values, and Sustainability: A Review and Exercise.

    Science.gov (United States)

    Beach, Timothy; Gersmehl, Philip

    1993-01-01

    Reviews issues related to soil erosion and soil loss tolerance in the United States. Describes an instructional plan in which students estimate soil loses in three geographical regions using the Universal Soil Loss Equation (USLE). Recommends integrating the geography of soil erosion with broader conceptual questions in physical geography. (CFR)

  15. Uncertainty indication in soil function maps - transparent and easy-to-use information to support sustainable use of soil resources

    Science.gov (United States)

    Greiner, Lucie; Nussbaum, Madlene; Papritz, Andreas; Zimmermann, Stephan; Gubler, Andreas; Grêt-Regamey, Adrienne; Keller, Armin

    2018-05-01

    Spatial information on soil function fulfillment (SFF) is increasingly being used to inform decision-making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting biomass production based on soil properties. Such information must be reliable for informed and transparent decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by (1) indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM) that are used for soil function assessment (SFA) and (2) showing the response of different SFA methods to the propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20 × 20 m together with their uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable uncertainty indications in soil function maps are relevant to enable informed and transparent decisions on the sustainable use of soil resources.

  16. Organization-level predictors of sustained social movement participation.

    Science.gov (United States)

    Tesdahl, Eric A; Speer, Paul W

    2015-03-01

    Long-term sustained participation represents one of the most important resources available to community organizations and social movement organizations (SMOs). The participatory literature on community and SMOs has identified a host of individual-level factors that influence participation beyond initial engagement, and has more recently identified contextual factors that influence participation. This study builds upon current understandings of participation in SMOs by examining how sustained participation in movement activities is affected by two qualities of SMO settings: repertoire of organizational activity, and equality of staff contact with organization members to cultivate and facilitate individual participation. To this end, we employ multi-level regression techniques to examine longitudinal data on participation within 50 local chapters of a national congregation-based community organizing federation. We find that the conduct of organizational activities previously shown to increase levels of participation among individual persons does not necessarily lead to increases in aggregate or organization-level participation. Further, we find that conditions of unequal staff contact among organization members represent a notable drag on organization-level participation over time. Our findings suggest that organizers and organizational leaders may well see greater levels of participation in their organizations by simply re-distributing resources and opportunities more equitably within their organizations.

  17. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  18. Consumers’ Motivations Driving Organic Demand: Between Selfinterest and Sustainability

    OpenAIRE

    Monier-Dilhan, Sylvette; Berges, Fabian

    2016-01-01

    We study consumers’ motivations for buying organic food by analyzing their shopping baskets. Buying organic can be motivated by concern about sustainable development and/or self-interest (considerations related to health or product quality). Pro-social motivation is inferred from the presence of fair trade products in the consumer's basket; consumer self-interest is deduced from the presence of healthy and higher-quality products bearing special quality labels or certifications. Our results i...

  19. Soil mapping and processes modelling for sustainable land management: a review

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B

  20. Sustainability management for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  1. Sustainability management for operating organizations of research reactors

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de

    2017-01-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  2. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    Science.gov (United States)

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  3. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    Science.gov (United States)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  4. Role of Pigeonpea Cultivation on Soil Fertility and Farming System Sustainability in Ghana

    Directory of Open Access Journals (Sweden)

    S. Adjei-Nsiah

    2012-01-01

    Full Text Available The productivity of the smallholder farming system in Ghana is under threat due to soil fertility decline. Mineral fertilizer is sparingly being used by smallholder farmers because of prohibitive cost. Grain legumes such as pigeonpea can play a complementary or alternative role as a source of organic fertilizer due to its ability to enhance soil fertility. Despite its importance, the potential of pigeonpea as a soil fertility improvement crop has not been exploited to any appreciable extent and the amount of land cultivated to pigeonpea in Ghana is vey negligible. This paper synthesizes recent studies that have been carried out on pigeonpea in Ghana and discusses the role of pigeonpea cultivation in soil fertility management and its implication for farming system sustainability. The paper shows that recent field studies conducted in both the semi-deciduous forest and the forest/savanna transitional agro-ecological zones of Ghana indicate that pigeonpea/maize rotations can increase maize yield by 75–200%. Barrier to widespread adoption of pigeonpea include land tenure, market, and accessibility to early maturing and high yielding varieties. The paper concludes among other things that in order to promote the cultivation of pigeonpea in Ghana, there is the need to introduce varieties that combine early maturity with high yields and other desirable traits based on farmers preferences.

  5. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  6. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review.

    Science.gov (United States)

    Senesi, Giorgio S; Senesi, Nicola

    2016-09-28

    Soil organic carbon (OC) measurement is a crucial factor for quantifying soil C pools and inventories and monitoring the inherent temporal and spatial heterogeneity and changes of soil OC content. These are relevant issues in addressing sustainable management of terrestrial OC aiming to enhance C sequestration in soil, thus mitigating the impact of increasing CO2 concentration in the atmosphere and related effects on global climate change. Nowadays, dry combustion by an elemental analyzer or wet combustion by dichromate oxidation of the soil sample are the most recommended and commonly used methods for quantitative soil OC determination. However, the unanimously recognized uncertainties and limitations of these classical laboursome methods have prompted research efforts focusing on the development and application of more advanced and appealing techniques and methods for the measurement of soil OC in the laboratory and possibly in situ in the field. Among these laser-induced breakdown spectroscopy (LIBS) has raised the highest interest for its unique advantages. After an introduction and a highlight of the LIBS basic principles, instrumentation, methodologies and supporting chemometric methods, the main body of this review provides an historical and critical overview of the developments and results obtained up-to-now by the application of LIBS to the quantitative measurement of soil C and especially OC content. A brief critical summary of LIBS advantages and limitations/drawbacks including some final remarks and future perspectives concludes this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Global Sustainability Index: An Instrument For Assessing The Progress Towards The Sustainable Organization

    Science.gov (United States)

    Grecu, Valentin

    2015-09-01

    There is rarely an optimal solution in sustainable development but most frequently a need to build compromises between conflicting aspects such as economic, social and environmental ones and different expectations of stakeholders. Moreover, information is rarely available and precise. This paper will focus on how to use indicators to monitor sustainable development, integrating the information provided by many of them into a complex general sustainability index. Having this general indicator is essential for decision makers as it is very complicated to evaluate the performance of the organization based on multiple indicators. The objective of this paper is to find mathematical algorithms for simplifying the decision-making process by offering an instrument for the evaluation of the sustainability progress.

  8. CQESTR Simulation of Soil Organic Matter Dynamics in Long-term Agricultural Experiments across USA

    Science.gov (United States)

    Gollany, H.; Liang, Y.; Albrecht, S.; Rickman, R.; Follett, R.; Wilhelm, W.; Novak, J.

    2009-04-01

    Soil organic matter (SOM) has important chemical (supplies nutrients, buffers and adsorbs harmful chemical compounds), biological (supports the growth of microorganisms and micro fauna), and physical (improves soil structure and soil tilth, stores water, and reduces surface crusting, water runoff) functions. The loss of 20 to 50% of soil organic carbon (SOC) from USA soils after converting native prairie or forest to production agriculture is well documented. Sustainable management practices for SOC is critical for maintaining soil productivity and responsible utilization of crop residues. As crop residues are targeted for additional uses (e.g., cellulosic ethanol feedstock) developing C models that predict change in SOM over time with change in management becomes increasingly important. CQESTR, pronounced "sequester," is a process-based C balance model that relates organic residue additions, crop management and soil tillage to SOM accretion or loss. The model works on daily time-steps and can perform long-term (100-year) simulations. Soil organic matter change is computed by maintaining a soil C budget for additions, such as crop residue or added amendments like manure, and organic C losses through microbial decomposition. Our objective was to simulate SOM changes in agricultural soils under a range of soil parent materials, climate and management systems using the CQESTR model. Long-term experiments (e.g. Champaign, IL, >100 yrs; Columbia, MO, >100 yrs; Lincoln, NE, 20 yrs) under various tillage practices, organic amendments, crop rotations, and crop residue removal treatments were selected for their documented history of the long-term effects of management practice on SOM dynamics. Simulated and observed values from the sites were significantly related (r2 = 94%, P management issue. CQESTR successfully simulated a substantial decline in SOM with 90% of crop residue removal for 50 years under various rotations at Columbia, MO and Champaign, IL. An increase in SOM

  9. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  10. Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute.

    Science.gov (United States)

    Kazamias, Georgios; Roulia, Maria; Kapsimali, Ioanna; Chassapis, Konstantinos

    2017-12-01

    In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Soil organic matter regulates molybdenum storage and mobility in forests

    Science.gov (United States)

    Marks, Jade A; Perakis, Steven; King, Elizabeth K.; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  12. Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality

    Science.gov (United States)

    2004-06-30

    Elliott, E.T., 1992. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783. Dale, V.H...C.A., Elliott, E.T., 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal...1645-1650. Van Straalen, N.M. 1997. How to measure no effect. 2. Threshold effects in ecotoxicology . Environmetrics 8: 249-253. Verburg, P.S.J

  13. Sustaining without Changing: The Metabolic Rift of Certified Organic Farming

    Directory of Open Access Journals (Sweden)

    Julius Alexander McGee

    2016-01-01

    Full Text Available Many proponents of organic farming claim that it is a sustainable alternative to conventional agriculture due to its reliance on natural agro-inputs, such as manure based fertilizers and organic pesticides. However, in this analysis we argue that although particular organic farming practices clearly benefit ecosystems and human consumers, the social context in which some organic farms develop, limit the potential environmental benefits of organic agriculture. Specifically, we argue that certified organic farming’s increased reliance on agro-inputs, such as organic fertilizers and pesticides, reduces its ability to decrease global water pollution. We review recent research that demonstrates the environmental consequences of specific organic practices, as well as literature showing that global organic farming is increasing its reliance on agro-inputs, and contend that organic farming has its own metabolic rift with natural water systems similar to conventional agriculture. We use a fixed-effects panel regression model to explore how recent rises in certified organic farmland correlate to water pollution (measured as biochemical oxygen demand. Our findings indicate that increases in the proportion of organic farmland over time increases water pollution. We conclude that this may be a result of organic farms increasing their reliance on non-farm agro-inputs, such as fertilizers.

  14. Which soil tillage is better in terms of the soil organic matter and soil structure changes?

    Directory of Open Access Journals (Sweden)

    VLADIMÍR ŠIMANSKÝ

    2016-06-01

    Full Text Available This study was performed to evaluate effects of minimum (MT and conventional tillage (CT on soil organic matter and soil structure in haplic Chernozems and mollic Fluvisols. The content of soil organic carbon (Corg as well as parameters of stability and vulnerability of soil structure were quantified. The results showed that soil type had statistically significant influence on Corg. In haplic Chernozems the Corg content near the surface (0–0.1 m was significantly higher under MT (by 6% compared to CT, however, in layer 0–0.3 m under CT the average Corg content was by 16% higher than under MT. In mollic Fulvisols under MT, the average Corg content (17.5 ± 5.4 g*kg-1 was significantly less for the 0–0.3 m layer than the CT (22.7 ± 0.4 g*kg-1. In Chernozems, total content of water-stable micro-aggregates (WSAmi was higher in MT (90.8% than in CT (69.5%. In mollic Fluvisols, the average content of WSAmi was higher in CT (62.5% than in MT (53.2%. The low aggregate stability and the high structure vulnerability were reflected also due to the high contents of WSAmi in both soils. The stability of aggregates was a higher in mollic Fluvisols than in haplic Chernozems. In haplic Chernozems, better soil structure stability was under CT than MT, on the other hand, in mollic Fluvisols, the average value of coefficient of aggregate stability was lower by 32% in CT than MT.

  15. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  16. Proposal and Research Direction of Soil Mass Organic Reorganization

    Science.gov (United States)

    Zhang, Lu; Han, Jichang

    2018-01-01

    Land engineering as a new discipline has been temporarily outrageous. The proposition of soil body organic reorganization undoubtedly enriches the research content for the construction of land engineering disciplines. Soil body organic reconstruction is designed to study how to realize the ecological ecology of the land by studying the external force of nature, to study the influence of sunlight, wind and water on soil body, how to improve the soil physical structure, to further strengthen the research of biological enzymes and microbes, and promote the release and utilization of beneficial inert elements in soil body. The emerging of frontier scientific research issues with soil body organic reorganization to indicate directions for the future development of soil engineering.

  17. Application of Remote Sensing for Mapping Soil Organic Matter Content

    Directory of Open Access Journals (Sweden)

    Bangun Muljo Sukojo

    2010-10-01

    Full Text Available Information organic content is important in monitoring and managing the environment as well as doing agricultural production activities. This research tried to map soil organic content in Malang using remote sensing technology. The research uses 6 bands of data captured by Landsat TM (Thematic Mapper satellite (band 1, 2, 3, 4, 5, 7. The research focuses on pixels having Normalized Difference Soil Index (NDSI more than 0.3. Ground-truth data were collected by analysing organic content of soil samples using Black-Walkey method. The result of analysis shows that digital number of original satellite image can be used to predict soil organic matter content. The implementation of regression equation in predicting soil organic content shows that 63.18% of research area contains of organic in a moderate category.

  18. Biologically Active Organic Matter in Soils of European Russia

    Science.gov (United States)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  19. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  20. The role of soils in sustaining society and the environment

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 4 on The Role of Soils in Society and the Environment covers: - Soils and the

  1. Sustainability Strategies for Regional Health Information Organization Startups

    DEFF Research Database (Denmark)

    Winkler, Till J.; Ozturk, Pinar; Brown, Carol V.

    2016-01-01

    the population health of an underserved urban population, and an HIE capability to enable the transition to a healthcare landscape that rewards care coordination across suburban hospitals and physician practices. Conclusions: We propose two models of technology and sustainability strategies for developing bottom...... initiatives by states and regional health information organizations (HIOs). Given the high failure rates of regional U.S. HIOs in the past, our primary objective is to identify the key characteristics of HIO startups that became operational and demonstrated sustainability with non-renewable SHIECAP funding...

  2. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  3. Long-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Ouattara, B.; Somado, A.E.; Wopereis, M.C.S.; Stroosnijder, L.; Breman, H.

    2005-01-01

    Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam

  4. Soil structure and microbial activity dynamics in 20-month field-incubated organic-amended soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2014-01-01

    to determine compressive strength. During incubation, the amount of WDC depended on soil carbon content while the trends correlated with moisture content. Organic amendment only yielded modest decreases (mean of 14% across all sampling times and soils) in WDC, but it was sufficient to stimulate the microbial......Soil structure formation is essential to all soil ecosystem functions and services. This study aims to quantify changes in soil structure and microbial activity during and after field incubation and examine the effect of carbon, organic amendment and clay on aggregate characteristics. Five soils...... community (65–100% increase in FDA). Incubation led to significant macroaggregate formation (>2 mm) for all soils. Friability and strength of newly-formed aggregates were negatively correlated with clay content and carbon content, respectively. Soil workability was best for the kaolinite-rich soil...

  5. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  6. Water repellency of clay, sand and organic soils in Finland

    Directory of Open Access Journals (Sweden)

    K. RASA

    2008-12-01

    Full Text Available Water repellency (WR delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95 at the time of sampling. WR increased as follows: sand (R = 1.8-5.0 < clay (R = 2.4-10.3 < organic (R = 7.9-undefined. At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr., where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;

  7. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    OpenAIRE

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover change), Namibia also regards bush encroachment as an important form of land degradation. We collected 219 soil profiles and used Random Forest modelling to develop the soil organic carbon stock ba...

  8. Organic Matter Dynamics in Soils Regenerating from Degraded ...

    African Journals Online (AJOL)

    The area of secondary forest (SF) regenerating from degraded abandoned rubber (Hevea brasiliensis) plantation is increasing in the rainforest zone of south southern Nigeria; however, the build-up of soil organic matter following abandonment is not well understood. This study examined the build-up of soil organic matter in ...

  9. Effect of Organic Pollutants on Migration of Radionuclides in Soil

    International Nuclear Information System (INIS)

    Nasr, R.G.A.

    2012-01-01

    The aim of this thesis is to study the effect of organic pollutants on the mobility of selected heavy metal (pb 2+ ) and radionuclide ( 60 Co) in an Egyptian agricultural soil and in a clay fraction separated from the soil. The effect of presence of natural organic compounds such as humic acid is also studied

  10. (Tropical) soil organic matter modelling: problems and prospects

    NARCIS (Netherlands)

    Keulen, van H.

    2001-01-01

    Soil organic matter plays an important role in many physical, chemical and biological processes. However, the quantitative relations between the mineral and organic components of the soil and the relations with the vegetation are poorly understood. In such situations, the use of models is an

  11. Assessing the role of organic soil amendments in management of ...

    African Journals Online (AJOL)

    ... was higher in organically amended soils than the control, with the highest figures being recorded on chicken manure. This is a clear demonstration of the potential of organic amendments in triggering the natural mechanisms that regulate plant nematodes in the soil. Journal of Tropical Microbiology Vol.3 2004: 14-23 ...

  12. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  14. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    Science.gov (United States)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  15. A Conceptual Framework for Soil management and its effect on Soil Biodiversity in Organic and Low Input Farming

    OpenAIRE

    Koopmans, Dr. C.J.; Smeding, Dr. F.W.

    2008-01-01

    Learning how to manage beneficial soil biological processes may be a key step towards developing sustainable agricultural systems. We designed a conceptual framework linking soil management practices to important soil-life groups and soil fertility services like nutrient cycling, soil structure and disease suppression. We selected a necessary parameter set to gain insight between management, soil life and soil support services. The findings help to develop management practices that optimise y...

  16. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  17. Assessment of Environmental Sustainability in Health Care Organizations

    Directory of Open Access Journals (Sweden)

    María Carmen Carnero

    2015-06-01

    Full Text Available Healthcare organizations should set a standard in corporate social responsibility and encourage environmental sustainability, since protection of the environment implies the development of preventive measures in healthcare. Environmental concern has traditionally focused on manufacturing plants. However, a Health Care Organization (HCO is the only type of company which generates all existing classes of waste, and 20% is dangerous, being infectious, toxic or radioactive in nature. Despite the extensive literature analysing environmental matters, there is no objective model for assessing the environmental sustainability of HCOs in such a way that the results may be compared over time for an organization, and between different organizations, to give a comparison or benchmarking tool for HCOs. This paper presents a Multi-Criteria Decision Analysis model integrating a Fuzzy Analytic Hierarchy Process and utility theory, to evaluate environmental sustainability in HCOs. The model uses criteria assessed as a function of the number of annual treatments undertaken. The model has been tested in two HCOs of very different sizes.

  18. SUSTAINABILITY OF TURKISH GREY CATTLE IN ORGANIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Hülya HANOĞLU

    2015-08-01

    Full Text Available Beef consumption has significantly increased in the last fifty years as a response to the increase in population size, whereas the sustainability of production systems has begun to be questioned. Because the residues left in the animal feed additives used in conventional food production constitute major health problems in consumers. Therefore, an interest in organic farming methods based on natural grazing and feed production without the use of chemicals is increasing. One of the most important examples of organic beef production in Turkey is the project carried out in the villages of Ayvacık district in Çanakkale. This region has an ecological structure which does not allow an extensive production of culture cattle. The most important advantages of the Turkish grey cattle living in the pastures in the region covered with bushes are that they have less needs of shelter, they do not need supplementary feeding throughout the year and labor costs for their production for beef are low. Breeders in this region maintained a market price for their products by shifting to organic system and thus allowed the sustainable production of the Turkish grey cattle. In this study, Ayvacık Organic Beef Production Project which sets an example for the sustainability of Turkish grey cattle production by featuring its surplus values was evaluated.

  19. Effects of organic and inorganic amendments on soil erodibility

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2015-10-01

    Full Text Available The objective of the present investigation is to find out the effect of incorporating of various organic and inorganic matter sources such as lime (L, zeolit (Z, polyacrylamide (PAM and biosolid (BS on the instability index. A bulk surface (0–20 cm depth soil sample was taken from Samsun, in northern part of Turkey. Some soil properties were determined as follows; fine in texture, modarete in organic matter content, low in pH and free of alkaline problem. The soil samples were treated with the inorganic and organic materials at four different levels including the control treatments in a randomized factorial block design. The soil samples were incubated for ten weeks. After the incubation period, corn was grown in all pots. The results can be summarized as organic and inorganic matter treatments increased structure stability and decreased soil erodibility. Effectiveness of the treatments varied depending on the types and levels of organic and inorganic materials.

  20. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  1. A Case Study in Organizing for Livable and Sustainable Communities

    Directory of Open Access Journals (Sweden)

    Jerry Marx

    2015-12-01

    Full Text Available Citizens in the U.S. are making organized efforts to demand a new approach to planning urban communities, one that results in more sustainable and livable communities. The profession of social work in the U.S. once had a primary role in organizing urban residents to advocate for healthier environments in their neighborhoods. Yet, recent research documents the diminishing emphasis on community organization as an intervention method in social work. This paper offers a descriptive case study of a successful community organizing effort to promote a more livable city in Portland, Maine (USA. Data was collected by the authors using in-depth personal interviews; archival records (census data, architect models; documents (e-mails, newspaper clippings as well as direct observation of the impacted community and development site. Implications for social work practitioners and educators involved in community organization promoting healthy communities are presented.

  2. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  3. Sustainability of Rural Nonprofit Organizations: Czech Republic and Beyond

    Directory of Open Access Journals (Sweden)

    Vladislav Valentinov

    2015-07-01

    Full Text Available Sustainability of nonprofit organizations is a key concern for today’s nonprofit scholars and practitioners. Building upon the nonprofit economics literature, the present paper introduces the distinction between the demand-side and supply-side determinants of nonprofit sustainability and makes the case for the discrepancy between them. This discrepancy presents not only a generic conceptual explanation of the nonprofit sustainability problems but is also applicable to the context of the European rural nonprofit sector. Three arguments are advanced. First, the notorious implementation problems of LEADER partnerships can be explained as a manifestation of the above discrepancy. Second, and related, the rural context implies the tendency of the supply-side determinants of nonprofit sustainability to undermine the demand-side ones. Third, recent empirical findings from the Czech Republic show that this tendency does not necessarily imply the possibility of a clear classification of the demand-side and supply-side sustainability determinants. Rather, those features of rural areas and communities that significantly affect the size of the local nonprofit sector exhibit a controversial entanglement of demand-side and supply-side identities.

  4. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  5. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees.

  6. Soil health: a comparison between organically and conventionally managed arable soils in the Netherlands

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Blok, W.J.; Korthals, G.W.; Bruggen, van A.H.C.; Ariena, H.C.

    2005-01-01

    A comparative study of 13 organic and 13 neighboring conventional arable farming systems was conducted in the Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils were analyzed using a polyphasic approach combining traditional

  7. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  8. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    Science.gov (United States)

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Science.gov (United States)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C.; Bond-Lamberty, Ben; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, Stephen M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E.; Cotrufo, M. Francesca; Keiluweit, Marco; Heckman, Katherine; Crow, Susan E.; Silver, Whendee L.; DeLonge, Marcia; Nave, Lucas E.

    2018-01-01

    Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.

  10. Study on the effect of organic fertilizers on soil organic matter and enzyme activities of soil in forest nursery

    Directory of Open Access Journals (Sweden)

    Piaszczyk Wojciech

    2017-09-01

    Full Text Available The aim of the study was to assess the effects of organic fertilization on selected chemical properties of the soil and the activity of dehydrogenase and β-glucosidase in the soil of forest nursery. The main goal was to evaluate the role of organic fertilizers in carbon storage in the forest nursery soil. Sample plots were located in northern Poland in the Polanów Forest District on a forest nursery. Soil samples were collected from horizon 0–20 cm for laboratory analyzes. In soil samples pH, soil texture, and organic carbon, nitrogen, base cation contents, dehydrogenase activity and β-glucosidase activity were determined. The obtained results were used to evaluate the carbon storage. The results confirm the beneficial effect of the applied organic fertilizer on chemical properties of the soils under study and their biological activity. The applied organic fertilizers had an impact on increased accumulation of soil organic matter. In the soils investigated, there was an increase in the activity of such enzymes as dehydrogenases and β-glucosidase.

  11. Management of soil-borne diseases of organic vegetables

    Directory of Open Access Journals (Sweden)

    Shafique Hafiza Asma

    2016-07-01

    Full Text Available With the rising awareness of the adverse effects of chemical pesticides, people are looking for organically grown vegetables. Consumers are increasingly choosing organic foods due to the perception that they are healthier than those conventionally grown. Vegetable crops are vulnerable to a range of pathogenic organisms that reduce yield by killing the plant or damaging the product, thus making it unmarketable. Soil-borne diseases are among the major factors contributing to low yields of organic produce. Apart from chemical pesticides there are several methods that can be used to protect crops from soil-borne pathogens. These include the introduction of biocontrol agents against soil-borne plant pathogens, plants with therapeutic effects and organic soil amendments that stimulate antagonistic activities of microorganisms to soil-borne diseases. The decomposition of organic matter in soil also results in the accumulation of specific compounds that may be antifungal or nematicidal. With the growing interest in organic vegetables, it is necessary to find non chemical means of plant disease control. This review describes the impact of soil-borne diseases on organic vegetables and methods used for their control.

  12. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    Science.gov (United States)

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.

  13. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    DEFF Research Database (Denmark)

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    Abstract Soil application of organic waste products (OWP) can maintain or increase soil organic carbon (SOC) content, which in turn could lead to increased porosity and potentially to reduced energy use for soil tillage. Only a few studies have addressed the effect of SOC content on draught force...... for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...... tillage and tractor fuel consumption. Draught force was measured for tillage with conventional spring tillage tines, as well as bulk density, soil texture and SOC content in the CRUCIAL field experiment, Denmark in which diverse types of OWP had been applied annually for 11 years. The OWP included...

  14. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  15. Sustaining Participatory Design in the organization - Infrastructuring with Participatory Design

    DEFF Research Database (Denmark)

    Bolmsten, Johan

    Modern organizations need to be able to change to seize opportunities and meet challenges, which are ever more rapidly presenting themselves. In doing so, they need to make use of the creativity and innovations of their employees. At the same time Information Technology applications today...... are likely to take the form of complex, integrated infrastructures, supporting collaboration within and across organizations. This places requirements on the development of IT infrastructures. As the work practices within an organization change, the supporting infrastructure also needs to evolve. This Ph......D thesis is about sustaining Participatory Design in the organization to enable users to influence the development of the IT infrastructure that supports their work practices. The empirical research is based on a long-term action research study, where this researcher works as an embedded researcher...

  16. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qinghu Jiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC is an essential property for soil function, fertility and sustainability of agricultural systems. It can be measured with visible and near-infrared reflectance (VIS-NIR spectroscopy efficiently based on empirical equations and spectra data for air/oven-dried samples. However, the spectral signal is interfered with by soil moisture content (MC under in situ conditions, which will affect the accuracy of measurements and calibration transfer among different areas. This study aimed to (1 quantify the influences of MC on SOC prediction by VIS-NIR spectroscopy; and (2 explore the potentials of orthogonal signal correction (OSC and generalized least squares weighting (GLSW methods in the removal of moisture interference. Ninety-eight samples were collected from the Jianghan plain, China, and eight MCs were obtained for each sample by a rewetting process. The VIS-NIR spectra of the rewetted soil samples were measured in the laboratory. Partial least squares regression (PLSR was used to develop SOC prediction models. Specifically, three validation strategies, namely moisture level validation, transferability validation and mixed-moisture validation, were designed to test the potentials of OSC and GLSW in removing the MC effect. Results showed that all of the PLSR models generated at different moisture levels (e.g., 50–100, 250–300 g·kg−1 were moderately successful in SOC predictions (r2pre = 0.58–0.85, RPD = 1.55–2.55. These models, however, could not be transferred to soil samples with different moisture levels. OSC and GLSW methods are useful filter transformations improving model transferability. The GLSW-PLSR model (mean of r2pre = 0.77, root mean square error for prediction (RMSEP = 3.08 g·kg−1, and residual prediction deviations (RPD = 2.09 outperforms the OSC-PLSR model (mean of r2pre = 0.67, RMSEP = 3.67 g·kg−1, and RPD = 1.76 when the moisture-mixed protocol is used. Results demonstrated the use of OSC

  17. Role of soil micro-organisms in the sorption of radionuclides in organic systems

    International Nuclear Information System (INIS)

    Parekh, N.R.; Potter, E.D.; Poskitt, J.M.; Dodd, B.A.; Sanchez, A.

    2004-01-01

    Although the fraction of radionuclides linked to soil organic matter and soil microorganisms may be relatively small when compared to the amount bound to the mineral constituents, (mostly irreversibly bound), this fraction is of great importance as it remains readily exchangeable and is thus available for plant uptake. Many studies have measured the uptake of radionuclides by organic soils but the role of soil micro-organisms may have been masked by the presence of even small amounts of clay minerals occurring in these soils. We have carried out a series of experiments using a biologically active, 'mineral-free' organic soil produced under laboratory conditions, to determine the potential of soil micro-organisms to accumulate radionuclides Cs-134 and Sr-85. Biological uptake and release was differentiated from abiotic processes by comparing experimental results with inoculated and non-inoculated sterile organic material. We have investigated the role of different clay minerals, competing potassium and calcium ions, and changes in temperature on the sorption of Cs and Sr isotopes. The results from studies so far show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material, microorganisms also influence the importance of chemical factors (e.g. adsorption to clay minerals) which may play a secondary role in these highly organic systems. In further experiments we hope to define the precise role of specific soil micro-organisms in these organic systems. (author)

  18. Phytostabilisation-A Sustainable Remediation Technique for Zinc in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Padmavathiamma, Prabha [University of British Columbia, Faculty of Land and Food Systems (Canada); Li, Loretta, E-mail: lli@civil.ubc.c [University of British Columbia, Department of Civil Engineering (Canada)

    2009-08-15

    Two studies were conducted to determine a feasible and practical phytoremediation strategy for Zn-contaminated soils. The aim of the first study was to identify promising plant species capable of Zn remediation for the soils and climatic conditions of British Columbia. The purpose of the second study was to assess the effects of soil amendments in modifying the soil properties and providing the right conditions for the plants to immobilise Zn. Promising plants for phytostabilisation in the first study (Lolium perenne, Festuca rubra and Poa pratensis) were tested in the presence of soil amendments (lime, phosphate and compost, both individually and in combination) in the second study. The efficiency of treatments to stabilise Zn was based on Zn fractionation in the soil and on absorption and partitioning of Zn in plants. Maximum Zn immobilisation was achieved in the soil by a combination of lime, phosphate and compost, in conjunction with growth of P. pratensis.

  19. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    Science.gov (United States)

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  20. Organic matter and salinity modify cadmium soil (phyto)availability.

    Science.gov (United States)

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Beta particle dose rates to micro-organisms in soil

    International Nuclear Information System (INIS)

    Kabir, M.; Spiers, F.W.; Iinuma, Takeshi.

    1977-01-01

    Studies were made to estimate the beta-particle dose rates to micro-organisms of various sizes in soil. The small insects and organisms living in soil are constantly exposed to beta-radiation arising from naturally occuring radionuclides in soil as in this case no overlying tissue shields them. The technique of measuring beta-particle dose rate consisted of using of a thin plastic scintillator to measure the pulse height distribution as the beta particle traverses the scintillator. The integrated response was determined by the number and size of the photomultiplier pulses. From the data of soil analyses it was estimated that typically about 29% of the beta particles emitted per gm. of soil were contributed by the U/Ra series, 21% by the Th series and about 50% by potassium. By combining the individual spectra of these three radionuclides in the proportion found in a typical soil, a resultant spectrum was computed representing the energy distribution of the beta particles. The dose rate received by micro-organisms of different shape and size in soil was derived from the equilibrium dose rates combined with a 'Geometrical Factor' of the organisms. For small organisms, the dose rates did not vary between the spherical and cylindrical types, but in the case of larger organisms, the dose rates were found to be greater for the spherical types of the same diameter. (auth.)

  2. Corn Belt soil carbon and macronutrient budgets with projected sustainable stover harvest

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang

    2015-01-01

    Corn (Zea mays L.) stover has been identified as a prime feedstock for biofuel production in the U.S. Corn Belt because of its perceived abundance and availability, but long-term stover harvest effects on regional nutrient budgets have not been evaluated. We defined the minimum stover requirement (MSR) to maintain current soil organic carbon levels and then estimated current and future soil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) budgets for various stover harvest scenarios. Analyses for 2006 through 2010 across the entire Corn Belt indicated that currently, 28 Tg or 1.6 Mg ha−1 of stover could be sustainably harvested from 17.95 million hectares (Mha) with N, P, and K removal of 113, 26, and 47 kg ha−1, respectively, and C removal for that period was estimated to be 4.55 Mg C ha−1. Assuming continued yield increases and a planted area of 26.74 Mha in 2050, 77.4 Tg stover (or 2.4 Mg ha−1) could be sustainably harvested with N, P, and K removal of 177, 37, and 72 kg ha−1, respectively, along with C removal of ∼6.57 Mg C ha−1. Although there would be significant variation across the region, harvesting only the excess over the MSR under current fertilization rates would result in a small depletion of soil N (−5 ± 27 kg ha−1) and K (−20 ± 31 kg ha−1) and a moderate surplus of P (36 ± 18 kg ha−1). Our 2050 projections based on continuing to keep the MSR, but having higher yields indicate that soil N and K deficits would become larger, thus emphasize the importance of balancing soil nutrient supply with crop residue removal.

  3. A Review of Organic Farming for Sustainable Agriculture in Northern India

    Directory of Open Access Journals (Sweden)

    S. K. Yadav

    2013-01-01

    Full Text Available In the post independence period, the most important challenge in India has been to produce enough food for the growing population. Hence, high-yielding varieties are being used with infusion of irrigation water, fertilizers, or pesticides. This combination of high-yielding production technology has helped the country develop a food surplus as well as contributing to concerns of soil health, environmental pollution, pesticide toxicity, and sustainability of agricultural production. Scientists and policy planners are, therefore, reassessing agricultural practices which relied more on biological inputs rather than heavy usage of chemical fertilizers and pesticides. Organic farming can provide quality food without adversely affecting the soil’s health and the environment; however, a concern is whether large-scale organic farming will produce enough food for India’s large population. Certified organic products including all varieties of food products including basmati rice, pulses, honey, tea, spices, coffee, oilseeds, fruits, cereals, herbal medicines, and their value-added products are produced in India. Non edible organic products include cotton, garments, cosmetics, functional food products, body care products, and similar products. The production of these organic crops and products is reviewed with regard to sustainable agriculture in northern India.

  4. Increasing Soil Organic Matter Enhances Inherent Soil Productivity while Offsetting Fertilization Effect under a Rice Cropping System

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhao

    2016-09-01

    Full Text Available Understanding the role of soil organic matter (SOM in soil quality and subsequent crop yield and input requirements is useful for agricultural sustainability. SOM is widely considered to affect a wide range of soil properties, however, great uncertainty still remains in identifying the relationships between SOM and crop yield due to the difficulty in separating the effect of SOM from other yield-limiting factors. Based on 543 on-farm experiments, where paired treatments with and without NPK fertilizer were conducted during 2005–2009, we quantified the inherent soil productivity, fertilization effect, and their contribution to rice yield and further evaluated their relationships with SOM contents under a rice cropping system in the Sichuan Basin of China. The inherent soil productivity assessed by rice grain yield under no fertilization (Y-CK was 5.8 t/ha, on average, and contributed 70% to the 8.3 t/ha of rice yield under NPK fertilization (Y-NPK while the other 30% was from the fertilization effect (FE. No significant correlation between SOM content and Y-NPK was observed, however, SOM content positively related to Y-CK and its contribution to Y-NPK but negatively to FE and its contribution to Y-NPK, indicating an increased soil contribution but a decreased fertilizer contribution to rice yield with increasing SOM. There were significantly positive relationships between SOM and soil available N, P, and K, indicating the potential contribution of SOM to inherent soil productivity by supplying nutrients from mineralization. As a result, approaches for SOM accumulation are practical to improve the inherent soil productivity and thereafter maintain a high crop productivity with less dependence on chemical fertilizers, while fertilization recommendations need to be adjusted with the temporal and spatial SOM variation.

  5. Transnational organizing: Issue professionals in environmental sustainability networks.

    Science.gov (United States)

    Henriksen, Lasse Folke; Seabrooke, Leonard

    2016-09-01

    An ongoing question for institutional theory is how organizing occurs transnationally, where institution building occurs in a highly ambiguous environment. This article suggests that at the core of transnational organizing is competition and coordination within professional and organizational networks over who controls issues. Transnational issues are commonly organized through professional battles over how issues are treated and what tasks are involved. These professional struggles are often more important than what organization has a formal mandate over an issue. We highlight how 'issue professionals' operate in two-level professional and organizational networks to control issues. This two-level network provides the context for action in which professionals do their institutional work. The two-level network carries information about professional incentives and also norms about how issues should be treated and governed by organizations. Using network and career sequences methods, we provide a case of transnational organizing through professionals who attempt issue control and network management on transnational environmental sustainability certification. The article questions how transnational organizing happens, and how we can best identify attempts at issue control.

  6. Effects of short-chain chlorinated paraffins on soil organisms.

    Science.gov (United States)

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  7. Proceedings of the Regional Colloquium on Soil Organic Matter Studies

    International Nuclear Information System (INIS)

    Cerri, C.C.; Athie, D.; Sodrzeieski, D.

    1982-01-01

    Isotope techniques are applied to soil organic matter studies, with special emphasis to decomposition studies. The effect of N fertilizers on the development of wheat and soybean crops is studied, as well as N-fixation. 14 C and 15 N are used as tracers; 13 C/ 12 C ratios are determined in humic horizons of soils. The influence of carbon sources addition on the degradation of the pesticide carbaril in soils is evaluated. (M.A.) [pt

  8. Method for spiking soil samples with organic compounds

    DEFF Research Database (Denmark)

    Brinch, Ulla C; Ekelund, Flemming; Jacobsen, Carsten S

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either...... higher than in control soil, probably due mainly to release of predation from indigenous protozoa. In order to minimize solvent effects on indigenous soil microorganisms when spiking native soil samples with compounds having a low water solubility, we propose a common protocol in which the contaminant...... tagged with luxAB::Tn5. For both solvents, application to the whole sample resulted in severe side effects on both indigenous protozoa and bacteria. Application of dichloromethane to the whole soil volume immediately reduced the number of protozoa to below the detection limit. In one of the soils...

  9. Effect of organic amendments on quality indexes in an italian agricultural soil

    Science.gov (United States)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils

  10. Formation and Stability of Microbially Derived Soil Organic Matter

    Science.gov (United States)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  11. Gamification - Environmental and Sustainable Development Organizations Could Do More

    Science.gov (United States)

    Ziegler, C. R.; Miller, C. A.; Kilaru, V.; French, R. A.; Costanza, R.; Brookes, A.

    2013-12-01

    The use of digital games to foster sustainable development and environmental goals has grown over the last 10 years. Innovative thinking and the origins of 'serious games,' 'games for change' and 'gamification' are partly rooted in movies and science fiction. Existing games illustrate a spectrum of approaches: for example, World Food Programme's FoodForce and University of Washington's Foldit. Environmental organizations globally (e.g. US EPA) have dabbled with game development and gamification, but have only touched the tip of the iceberg, particularly when compared to the success of the commercial gaming industry. We explore: 1) the intersection of environmental organization mission statements in the context of gamification efforts , 2) some examples of existing games, from simple to complex, 3) business model approaches (e.g. game development partnerships with academia, private industry, NGOs, etc.), 4) barriers, and 5) benefits of a more concerted and technologically-advanced approach to gamification for environmental organizations.

  12. Transportation of Organs by Air: Safety, Quality, and Sustainability Criteria.

    Science.gov (United States)

    Mantecchini, L; Paganelli, F; Morabito, V; Ricci, A; Peritore, D; Trapani, S; Montemurro, A; Rizzo, A; Del Sordo, E; Gaeta, A; Rizzato, L; Nanni Costa, A

    2016-03-01

    The outcomes of organ transplantation activities are greatly affected by the ability to haul organs and medical teams quickly and safely. Organ allocation and usage criteria have greatly improved over time, whereas the same result has not been achieved so far from the transport point of view. Safety and the highest level of service and efficiency must be reached to grant transplant recipients the healthiest outcome. The Italian National Transplant Centre (CNT), in partnership with the regions and the University of Bologna, has promoted a thorough analysis of all stages of organ transportation logistics chains to produce homogeneous and shared guidelines throughout the national territory, capable of ensuring safety, reliability, and sustainability at the highest levels. The mapping of all 44 transplant centers and the pertaining airport network has been implemented. An analysis of technical requirements among organ shipping agents at both national and international level has been promoted. A national campaign of real-time monitoring of organ transport activities at all stages of the supply chain has been implemented. Parameters investigated have been hospital and region of both origin and destination, number and type of organs involved, transport type (with or without medical team), stations of arrival and departure, and shipping agents, as well as actual times of activities involved. National guidelines have been issued to select organ storage units and shipping agents on the basis of evaluation of efficiency, reliability, and equipment with reference to organ type and ischemia time. Guidelines provide EU-level standards on technical equipment of aircrafts, professional requirements of shipping agencies and cabin crew, and requirements on service provision, including pricing criteria. The introduction in the Italian legislation of guidelines issuing minimum requirements on topics such as the medical team, packaging, labeling, safety and integrity, identification

  13. Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Peltre, Clément; Bruun, Sander; Du, Changwen

    2014-01-01

    ) degradability. The objective of this study was to assess the potential of FTIR-PAS for the characterisation of the labile fraction of SOC and more classical soil parameters, such as carbon and clay content, for a range of 36 soils collected from various field experiments in Denmark. Partial least squares (PLS...... signal. This also means that it should be advantageous for soil analysis because of its highly opaque nature. However, only a limited number of studies have so far applied FTIR-PAS to soil characterization and investigation is still required into its potential to determine soil organic carbon (SOC......) regression was used to correlate the collected FTIR-PAS spectra with the proportion of soil organic carbon mineralised after 238 days of incubation at 15°C and pF 2 (C238d) taken as an indicator of the labile fraction of SOC. Results showed that it is possible to predict total organic carbon content, total...

  14. Observed effects of soil organic matter content on the microwave emissivity of soils

    International Nuclear Information System (INIS)

    O'Neill, P.E.; Jackson, T.J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, a series of field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8%, 4.0%, and 6.1%) for a range of soil moisture values. Analyses of the observed data showed only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibited the same trends and type of response as the measured data when adjusted values for the input parameters were utilized

  15. Organic matter and soil structure in the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  16. Efficient nitrogen recycling through sustainable use of organic wastes in agriculture - an Australian case study

    Science.gov (United States)

    Rigby, Hannah; Landman, Michael; Collins, David; Walton, Katrina; Penney, Nancy; Pritchard, Deborah

    2014-05-01

    The effective recycling of nutrients in treated sewage sludge (biosolids) domestic (e.g. source separated food waste), agricultural, and commercial and industrial (C&I) biowastes (e.g. food industry wastes, papermill sludge) for use on land, generally following treatment (e.g. composting, anaerobic digestion or thermal conversion technologies) as alternatives to conventional mineral fertilisers in Australia can have economic benefits, ensure food security, and close the nutrient loop. In excess of 75% of Australian agricultural soils have less than 1% organic matter (OM), and, with 40 million tonnes of solid waste per year potentially available as a source of OM, biowastes also build soil carbon (C) stocks that improve soil structure, fertility and productivity, and enhance soil ecosystem services. In recent years, the increasing cost of conventional mineral fertilisers, combined with changing weather patterns have placed additional pressure on regional and rural communities. Nitrogen (N) is generally the most limiting nutrient to crop production, and the high-energy required and GHGs associated with its manufacture mean that, additionally, it is critical to use N efficiently and recycle N resources where possible. Biosolids and biowastes have highly variable organic matter (OM) and nutrient contents, with N often present in a variety of forms only some of which are plant-available. The N value is further influenced by treatment process, storage and fundamental soil processes. The correct management of N in biowastes is essential to reduce environmental losses through leaching or runoff and negative impacts on drinking water sources and aquatic ecosystems. Gaseous N emissions also impact upon atmospheric quality and climate change. Despite the body of work to investigate N supply from biosolids, recent findings indicate that historic and current management of agricultural applications of N from biosolids and biowastes in Australia may still be inefficient leading

  17. The impact of marketing systems on soil sustainability of agriculture in developing countries : a method and an application

    NARCIS (Netherlands)

    Castaño, J.; Meulenberg, M.T.G.; Tilburg, van A.

    2005-01-01

    This article is concerned with soil-sustainability problems of agriculture in developing countries, in particular with soil erosion. The aim of our study is to develop a comprehensive model that explains the adoption of sustainable agricultural practices with respect to soil conservation. Our

  18. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning.

    Science.gov (United States)

    Huang, Rong; Lan, Muling; Liu, Jiang; Gao, Ming

    2017-12-01

    Agriculture wastes returning to soil is one of common ways to reuse crop straws in China. The returned straws are expected to improve the fertility and structural stability of soil during the degradation of straw it selves. The in situ effect of different straw (wheat, rice, maize, rape, and broad bean) applications for soil aggregate stability and soil organic carbon (SOC) distribution were studied at both dry land soil and paddy soil in this study. Wet sieving procedures were used to separate soil aggregate sizes. Aggregate stability indicators including mean weight diameter, geometric mean diameter, mean weight of specific surface area, and the fractal dimension were used to evaluate soil aggregate stability after the incubation of straws returning. Meanwhile, the variation and distribution of SOC in different-sized aggregates were further studied. Results showed that the application of straws, especially rape straw at dry land soil and rice straw at paddy soil, increased the fractions of macro-aggregate (> 0.25 mm) and micro-aggregate (0.25-0.053 mm). Suggesting the nutrients released from straw degradation promotes the growing of soil aggregates directly and indirectly. The application of different straws increased the SOC content at both soils and the SOC mainly distributed at  0.25 and 0.25-0.053 mm aggregates with dry land soil. Rape straw in dry land and rice straw in paddy field could stabilize soil aggregates and increasing SOC contents best.

  19. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  20. Existing Versus Added Soil Organic Matter in Relation to Phosphorus Availability on Lateritic Soils

    Directory of Open Access Journals (Sweden)

    Fadly Hairannoor Yusran

    2008-01-01

    Full Text Available Lateritic soils (Ultisols and Oxisols are commonly characterised by high phosphate sorbing capacity due to the type of clay and present high content of aluminium (Al and iron (Fe oxides. Addition of fresh organic matter (OM may contribute to management of these soils by releasing more bicarbonate-extractable phosphorus (BP through organic phosphorus (OP transformation, or by the soluble component of OM additions desorbing phosphate by ligand exchange. It is not known, however, whether BP results solely from addition of new OM (by either mineralisation or desorption or from transformation of inherent or pre-existing in soil. We considered that removing the existing soil OM and replacing it with an equivalent amount of new OM may help to resolve this issue, especially with respect to P transformation after OM additions. Three lateritic soils of Western Australia (including a deep regolith material with very low inherent soil OM (SOM were used, and sub-samples of the three soils were combusted (450° C to obtain soils effectively free from existing OM. A further sub-sample of the soils was not combusted. Both soil groups, receiving the same amount of organic carbon (OC, from 80 ton ha-1 biomass + soil OM or biomass equal to soil OM from peat, wheat straw (Triticum aestivum L. and lucerne hay (Medicago sativa L., were incubated for nine months. Soil bicarbonate-extractable P as well as non-extractable P (NP, measured as Total-P (TP-BP increased due to new OM application in the order lucerne hay>peat>wheat straw. The correlation between BP with soil organic carbon (SOC became more positive over time. Microbial biomass phosphorus (MBP was not well correlated with the increase of NP content and phosphatase was not related to the increase in BP. Overall, freshly applied (new OM not only contributed to the increased level of P compared with the existing OM treatment.

  1. Organic carbon stocks in the soils of Brazil

    NARCIS (Netherlands)

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial

  2. Light fraction of soil organic matter under different management ...

    African Journals Online (AJOL)

    A study on light fraction organic matter was carried out on the soil from three different management systems namely; Gmelina arborea, Tectona grandis and Leucaena leucocephala plantations in the University of Agriculture, Abeokuta Nigeria. Soil samples were collected in each of the three management site at five auger ...

  3. Soil organic matter reduces the sorption of arsenate and phosphate

    NARCIS (Netherlands)

    Verbeeck, M.; Hiemstra, T.; Thiry, Y.; Smolders, E.

    2017-01-01

    The arsenate (AsO4) and phosphate (PO4) mobility in aerobic soil is affected by soil organic matter (OM). This study was set up to quantify the interaction between OM and AsO4 with an observational, experimental and computational approach. The adsorption of

  4. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil?

    Institute of Scientific and Technical Information of China (English)

    Giovanna B.MELAS; Oriol ORTIZ; Josep M.ALACA(N)IZ

    2017-01-01

    Biochar could help to stabilize soil organic (SOM) matter,thus sequestering carbon (C) into the soil.The aim of this work was to determine an easy method i) to estimate the effects of the addition of biochar and nutrients on the organic matter (SOM)mineralization in an artificial soil,proposed by the Organization for Economic Co-operation and Development (OECD),amended with glucose and ii) to measure the amount of labile organic matter (glucose) that can be sorbed and thus be partially protected in the same soil,amended or not amended with biochar.A factorial experiment was designed to check the effects of three single factors (biochar,nutrients,and glucose) and their interactions on whole SOM mineralization.Soil samples were inoculated with a microbial inoculum and preincubated to ensure that their biological activities were not limited by a small amount of microbial biomass,and then they were incubated in the dark at 21 ℃ for 619 d.Periodical measurements of C mineralized to carbon dioxide (CO2) were carried out throughout the 619-d incubation to allow the mineralization of both active and slow organic matter pools.The amount of sorbed glucose was calculated as the difference between the total and remaining amounts of glucose added in a soil extract.Two different models,the Freundlich and Langmuir models,were selected to assess the equilibrium isotherms of glucose sorption.The CO2-C release strongly depended on the presence of nutrients only when no biochar was added to the soil.The mineralization of organic matter in the soil amended with both biochar and glucose was equal to the sum of the mineralization of the two C sources separately.Furthermore,a significant amount of glucose can be sorbed on the biochar-amended soil,suggesting the involvement of physico-chemical mechanisms in labile organic matter protection.

  5. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation

    Directory of Open Access Journals (Sweden)

    Julia E. Vidonish

    2016-12-01

    Full Text Available Thermal treatment technologies hold an important niche in the remediation of hydrocarbon-contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainability of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.

  6. Aerobic mineralization of selected organic nutrient sources for soil ...

    African Journals Online (AJOL)

    Administrator

    food synthesis (Lavelle and Spain, 2001). Multipurpose trees such .... The soil and organic nutrient resource ... treatments. Simple correlation analysis was carried out to measure ..... Germination Ecology of Two Endemic Multipurpose. Species ...

  7. Microbial Fuel Cells for Organic-Contaminated Soil Remedial Applications

    NARCIS (Netherlands)

    Li, Xiaojing; Wang, Xin; Weng, Liping; Zhou, Qixing; Li, Yongtao

    2017-01-01

    Efficient noninvasive techniques are desired for repairing organic-contaminated soils. Bioelectrochemical technology, especially microbial fuel cells (MFCs), has been widely used to promote a polluted environmental remediation approach, and applications include wastewater, sludge, sediment, and

  8. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  9. Response of organic matter quality in permafrost soils to warming

    Science.gov (United States)

    Plaza, C.; Pegoraro, E.; Schuur, E.

    2016-12-01

    Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  10. Fertilization with liquid digestate in organic farming - effects on humus balance, soil potassium contents and soil physical properties

    Science.gov (United States)

    Erhart, Eva; Siegl, Thomas; Bonell, Marion; Unterfrauner, Hans; Peticzka, Robert; Ableidinger, Christoph; Haas, Dieter; Hartl, Wilfried

    2014-05-01

    Biogas production and use of liquid digestate are subject of controversial discussion in organic farming. Using biomass from intercrops as feedstock for biogas production makes it possible to produce renewable energy without compromising food production. With liquid digestate, crops can be fertilized in a more targeted way than by incorporating intercrop biomass into the soil. For long-term sustainability in organic farming, however, this practice must not have adverse effects on soil fertility. In order to assess the effects of fertilization with liquid digestate on soil fertility, two randomised field experiments were conducted for two years on different soil types near Bruck/Leitha (Lower Austria). One experiment was set up on a calcareous chernozem with 4 % humus content, the other on a parachernozem with pH 5.9 and 2.1 % humus. Soil potassium content, both in the water-soluble fraction and in the exchangeable fraction, increased significantly at both sites. As fertilization with liquid digestate exceeded the potassium requirements of the crops by far, the proportion of potassium of the exchangeable cations increased rapidly. Soil physical properties were not influenced by digestate fertilization on the chernozem site. On the parachernozem, aggregate stability was increased by the organic matter applied via digestate. On this acidic site low in humus content, the supply of 4 t/ha organic matter, which featured a lignin content of 37 % and was relatively resistant to decomposition, had a clearly positive impact on soil physical properties. Humus balances were computed both with the 'Humuseinheiten'-method and with the site-adapted method STAND. They were calculated on the basis of equal amounts of intercrop biomass either left on the field as green manure or used for biogas production and the resulting amount of liquid digestate brought back to the field. The humus balances indicated that the humus-efficacy of the liquid digestate was equal to slightly higher

  11. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 1

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation,fertilizers, pollution and environmental quality were discussed. In the first volume of the abstracts are presented papers related to soil's physics and biology where nuclear methods of analysis were utilized

  12. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 2

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation, fertilizers, pollution and environmental quality were discussed. In the second volume of the abstracts are presented papers related to soil's fertility and plants nutrition are discussed where nuclear methods of analysis are presented

  13. Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA

    Science.gov (United States)

    Webb, Robert H.; Esque, Todd C.; Nussear, Kenneth E.; Sturm, Mark

    2013-01-01

    Rates of soil disruption from hikers and vehicle traffic are poorly known, particularly for arid landscapes. We conducted an experiment in Organ Pipe Cactus National Monument (ORPI) in western Arizona, USA, on an air-dry very fine sandy loam that is considered to be vulnerable to disruption. We created variable-pass tracks using hikers, an all-terrain vehicle (ATV), and a four-wheel drive vehicle (4WD) and measured changes in cross-track topography, penetration depth, and bulk density. Hikers (one pass = 5 hikers) increased bulk density and altered penetration depth but caused minimal surface disruption up to 100 passes; a minimum of 10 passes were required to overcome surface strength of this dry soil. Both ATV and 4WD traffic significantly disrupted the soil with one pass, creating deep ruts with increasing passes that rendered the 4WD trail impassable after 20 passes. Despite considerable soil loosening (dilation), bulk density increased in the vehicle trails, and lateral displacement created berms of loosened soil. This soil type, when dry, can sustain up to 10 passes of hikers but only one vehicle pass before significant soil disruption occurs; greater disruption is expected when soils are wet. Bulk density increased logarithmically with applied pressure from hikers, ATV, and 4WD.

  14. Scalability of Sustainable Business Models in Hybrid Organizations

    Directory of Open Access Journals (Sweden)

    Adam Jabłoński

    2016-02-01

    Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed

  15. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    Science.gov (United States)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  16. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    Directory of Open Access Journals (Sweden)

    Ima Yudha Perwira

    2016-08-01

    Full Text Available Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC and total nitrogen (TN in 427 agricultural soils. The soil bacterial biomass was generally positively correlated with TC and TN contents in the soil, but some soils had a low bacterial biomass despite containing high amounts of TC and TN. Soils of two fields (fields A and B with low bacterial biomass but high TC and TN contents were investigated. Long-term pesticide use (dichloropropane-dichloropropene and fosthiazate in field A and chloropicrin in field B appeared to have contributed to the low bacterial biomass observed in these soils. Soil from field A was treated with different organic materials and incubated for 1 month under laboratory conditions. The bacterial biomass in field A soil was enhanced in treatments containing organic materials rich in TN. Application of organic materials stimulated the growth of microorganisms with the potential to bioremediate pesticide-polluted soils.

  17. Energy Transformations of Soil Organic Matter in a Changing World

    Science.gov (United States)

    Herrmann, A. M.; Coucheney, E.; Grice, S. M.; Ritz, K.; Harris, J.

    2011-12-01

    The role of soils in governing the terrestrial carbon balance is acknowledged as being important but remains poorly understood within the context of climate change. Soils exchange energy with their surroundings and are therefore open systems thermodynamically, but little is known how energy transformations of decomposition processes are affected by temperature. Soil organic matter and the soil biomass can be conceptualised as analogous to the 'fuel' and 'biological engine' of the earth, respectively, and are pivotal in driving the belowground carbon cycle. Thermodynamic principles of soil organic matter decomposition were evaluated by means of isothermal microcalorimetry (TAM Air, TA Instruments, Sollentuna Sweden: (i) Mineral forest soils from the Flakaliden long-term nitrogen fertilisation experiment (Sweden) were amended with a range of different substrates representing structurally simple to complex, ecologically pertinent organic matter and heat signatures were determined at temperatures between 5 and 25°C. (ii) Thermodynamic and resource-use efficiencies of the biomass were determined in arable soils which received contrasting long-term management regimes with respect to organic matter and nitrogen since 1956. The work showed that (i) structurally labile components have higher activation energy and temperature dependence than structurally more complex organic components. This is, however, in contrast to the thermodynamic argument which suggests the opposite that reactions metabolising structurally complex, aromatic components have higher temperature dependence than reactions metabolising structurally more labile components. (ii) Microbial communities exposed to long-term stress by heavy metal and low pH were less thermodynamic efficient and showed a decrease in resource-use efficiency in comparison with conventional input regimes. Differences in efficiencies were mirrored in both the phenotypic and functional profiles of the communities. We will present our

  18. Organic matter and soil moisture content and double cropping with organic matter sourceplants

    OpenAIRE

    John Bako Baon; Aris Wibawa

    2005-01-01

    Double cropping of coffee with organic matter source plants is thought to increase organic matter content of soil. This study examined the effect of double cropping of coffee and organic matter source plants on soil organic matter content and yield of coffee plants. Arabica coffee trees in Andungsari Experimental Station (Bondowoso district), 1400 m asl. and climate type C; and Robusta coffee trees in Sumberasin Experimental Station (Malang district), 550 m asl. and climate type C, were used ...

  19. Soil mapping and process modeling for sustainable land use management: a brief historical review

    Science.gov (United States)

    Brevik, Eric C.; Pereira, Paulo; Muñoz-Rojas, Miriam; Miller, Bradley A.; Cerdà, Artemi; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2017-04-01

    Basic soil management goes back to the earliest days of agricultural practices, approximately 9,000 BCE. Through time humans developed soil management techniques of ever increasing complexity, including plows, contour tillage, terracing, and irrigation. Spatial soil patterns were being recognized as early as 3,000 BCE, but the first soil maps didn't appear until the 1700s and the first soil models finally arrived in the 1880s (Brevik et al., in press). The beginning of the 20th century saw an increase in standardization in many soil science methods and wide-spread soil mapping in many parts of the world, particularly in developed countries. However, the classification systems used, mapping scale, and national coverage varied considerably from country to country. Major advances were made in pedologic modeling starting in the 1940s, and in erosion modeling starting in the 1950s. In the 1970s and 1980s advances in computing power, remote and proximal sensing, geographic information systems (GIS), global positioning systems (GPS), and statistics and spatial statistics among other numerical techniques significantly enhanced our ability to map and model soils (Brevik et al., 2016). These types of advances positioned soil science to make meaningful contributions to sustainable land use management as we moved into the 21st century. References Brevik, E., Pereira, P., Muñoz-Rojas, M., Miller, B., Cerda, A., Parras-Alcantara, L., Lozano-Garcia, B. Historical perspectives on soil mapping and process modelling for sustainable land use management. In: Pereira, P., Brevik, E., Muñoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (In press). Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. 2016. Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274.

  20. Soil microbial communities as affected by organic fertilizer and sunn hemp as a cover crop in organic sweet pepper production in Puerto Rico

    Science.gov (United States)

    Organic production in Puerto Rico is at an early stage and research is needed to validate the sustainability of different management practices. This research initiated evaluation of selected soil properties including the microbial communities to evaluate the effects of Tropic sunn (Crotalaria juncea...

  1. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Goh, K.M.; Stout, J.D.; Rafter, T.A.

    1977-01-01

    Soil organic matter was extracted using the classical procedure and fractionated into humin (nonextractable), humic acid, and fulvic acid. The masses of total organic carbon in the whole soil samples and in the fractions, together with their 14 C content and 13 C/ 12 C ratios, were also determined. The following New Zealand soils were studied: a Fluvaquent, with experimental pasture plots, formed from deeply mixing subsoils of low organic carbon content; a Typic Fragiaqualf and a Typic Dystrochrept with moderately productive pastures; and an Umbric Vitrandept at two sites under native tussock and under introduced grasses of low productivity. The degree of radiocarbon enrichment of the different fractions in both topsoil and subsoil samples was examined in relation to differences in soil type, soil biological activity, and vegetation history. There was variation in the distribution and enrichment of the organic matter fractions both within the same soil type and between soil types, as well as between the topsoil and subsoil of the same soil. Differences appeared to be primarily a function of the stage of decomposition and translocation of the fractions through the soil rather than due to vegetation differences

  2. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils

    International Nuclear Information System (INIS)

    Centofanti, Tiziana; McConnell, Laura L.; Chaney, Rufus L.; Beyer, W. Nelson; Andrade, Natasha A.; Hapeman, Cathleen J.; Torrents, Alba; Nguyen, Anh; Anderson, Marya O.; Novak, Jeffrey M.

    2016-01-01

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues to Lumbricus terrestris L. relative to the unamended control soil was assessed using 4-L soil microcosms with and without plant cover in a 48-day experiment. The use of aged dairy manure compost and biosolids compost was found to be effective, especially in the planted treatments, at lowering the bioavailability factor (BAF) by 18–39%; however, BAF results for DDT in the unplanted soil treatments were unaffected or increased. The pine chip biochar utilized in this experiment was ineffective at lower the BAF of pesticides in the soil. The US EPA Soil Screening Level approach was used with our measured values. Addition of 10% of the aged dairy manure compost reduced the average hazard quotient values to below 1.0 for DDT + DDE and dieldrin. Results indicate this sustainable approach is appropriate to minimize risks to wildlife in areas of marginal organochlorine pesticide contamination. Application of this remediation approach has potential for use internationally in areas where historical pesticide contamination of soils remains a threat to wildlife populations. - Highlights: • Historical applications of organochlorine pesticides are a risk to local ecosystems. • Low cost and sustainable mitigation measures are needed to reduce risks. • Organic matter rich amendments were added to contaminated soil. • Earthworms microcosms were used to measure bioaccumulation factors. • Aged composts were most effective at mitigating risks to ecosystems. - Incorporation of aged dairy manure and biosolids compost amendments is an effective, low cost approach to mitigate risks to terrestrial wildlife from organochlorine pesticides in soils.

  3. Soil greenhouse gas emissions from afforested organic soil croplands and cutaway peatlands

    International Nuclear Information System (INIS)

    Maekiranta, P.; Hytoenen, J.; Aro, L.

    2007-01-01

    The effects of land-use and land-use change on soil greenhouse gas (GHG) fluxes are of concern due to Kyoto Protocol requirements. To quantify the soil GHG-fluxes of afforested organic soils in Finland, chamber measurements of soil CO 2 , CH 4 and N 2 O fluxes were made during the years 2002 to 2005 on twelve organic soil cropland and six cutaway peatland sites afforested 9 to 35 years ago. The annual soil CO 2 effluxes were statistically modelled using soil temperature as the driving variable and the annual CH 4 and N 2 O fluxes were estimated using the average fluxes during the measurement period. Soil CO 2 effluxes on afforested organic soil croplands varied from 207 to 539 g CO 2 -C m -2 a -1 and on cutaway peatlands from 276 to 479 g CO 2 -C m -2 a -1 . Both the afforested organic soil cropland and cutaway peatland sites acted mainly as small sinks for CH 4 ; the annual flux ranged from -0.32 to 0.61 g CH 4 -C m -2 . Afforested organic croplands emitted more N 2 O (from 0.1 to over 3.0 g N 2 O-N m -2 a -1 ) than cutaway peatland sites (from 0.01 to 0.48 g N 2 O-N m -2 a -1 ). Due to the decrease in soil CO 2 efflux, and no change in CH 4 and N 2 O fluxes, afforestation of organic croplands appears to decrease the greenhouse impact of these lands. (orig.)

  4. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  5. Measuring business performance using indicators of ecologically sustainable organizations

    Science.gov (United States)

    Snow, Charles G., Jr.; Snow, Charles C.

    2001-02-01

    The purpose of this paper is to explore the use of ecology-based performance measures as a way of augmenting the Balanced Scorecard approach to organizational performance measurement. The Balanced Scorecard, as proposed by Kaplan and Norton, focuses on four primary dimensions; financial, internal-business-process, customer, and learning and growth perspectives. Recently, many 'green' organizational theorists have developed the concept of "Ecologically Sustainable Organizations" or ESOs, a concept rooted in open systems theory. The ESO is called upon to consider resource use and conservation as a strategy for long-term viability. This paper asserts that in order to achieve ESO status, an organization must not only measure but also reward resource conservation measures. Only by adding a fifth perspective for ecological dimensions will the entity be truly motivated toward ESO status.

  6. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    Science.gov (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  7. Biomass, Bioenergy and the Sustainability of Soils and Climate: What Role for Biochar?

    Science.gov (United States)

    Sohi, Saran

    2013-04-01

    Biochar is the solid, carbon rich product of heating biomass with the exclusion of air (pyrolysis). Whereas charcoal is derived from wood, biochar is a co-product of energy capture and can derive from waste or non-waste, virgin or non-virgin biomass resources. But also, biochar is not a fuel - rather it is intended for the beneficial amendment of soil in agriculture, forestry and horticulture. This results in long-term storage of plant-derived carbon that could improve yield or efficiency of crop production, and/or mitigate trace gas emissions from the land. Life cycle analysis (LCA) shows that pyrolysis bioenergy with biochar production should offer considerably more carbon abatement than combustion, or gasification of the same feedstock. This has potential to link climate change mitigation to bioenergy and sustainable use of soil. But, in economic terms, the opportunity cost of producing biochar (reflecting the calorific value of its stored carbon) is inflated by bioenergy subsidies. This, combined with a lack of clear regulatory position and no mature pyrolysis technologies at large scale, means that pyrolysis-biochar systems (PBS) remain largely conceptual at the current time. Precise understanding of its function and an ability to predict its impact on different soils and crops with certainty, biochar should acquire a monetary value. Combining such knowledge with a system that monetizes climate change mitigation potential (such as carbon markets), could see schemes for producing and using biochar escalate - including a context for its deployment in biomass crops, or through pyrolysis of residues from other bioenergy processes. This talk explores the opportunity, challenges and risks in pursuing biochar production in various bioenergy contexts including enhanced sustainability of soil use in biomass crop production, improving the carbon balance and value chain in biofuel production, and using organic waste streams more effectively (including the processing of

  8. Value of Soil Organic Carbon in Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)

    2004-10-01

    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  9. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Anderson R. Meda

    2001-06-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.Foram conduzidos experimentos de laboratórios para avaliar os efeitos de extratos de plantas solúveis em água na acidez do solo. Os materiais de plantas foram: aveia preta, nabo, tremoço branco e azul, mucuna cinza e anã, Crotalaria spectabilis e C. breviflora, milheto, guandu, grama estrela, grama mato grosso, folhas de café, folhas de cana-de-açúcar, palhada de arroz e palhada de trigo. Foi utilizado o seguinte procedimento para o extrato da planta solúvel em água: pesar 3g de material de planta, adicionar 150 ml de água, agitar por 8h e filtrar. Os extratos de plantas foram adicionados na superfície do solo em uma coluna de PVC (1 ml min-1. Após, adicionou-se água deionizada em quantidade equivalente a três volumes de poros. Os extratos de plantas aumentaram o pH, Ca e K trocável e diminuíram Al. Nabo, aveia preta e tremoço azul foram os melhores e milheto o pior material para amenizar a acidez do solo. Nabo aumentou Al na água de drenagem. As altera

  10. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    International Nuclear Information System (INIS)

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  11. Using soil organic matter fractions as indicators of soil physical quality

    DEFF Research Database (Denmark)

    Pulido Moncada, Mansonia A.; Lozano, Z; Delgado, M

    2018-01-01

    The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM), rather than SOM per se, as indicators of soil physical quality (SPQ) based on their effect on aggregate stability (AS). Chemically extracted humic and fulvic acids (HA and FA) were...... used as chemical fractions, and heavy and light fractions (HF and LF) obtained by density separation as physical fractions. The analyses were conducted on medium-textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC), SOM fractions...... and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se. In both...

  12. Sustainable use of pig slurry, with and without treatment, as an amendment organic in almond crop

    International Nuclear Information System (INIS)

    Dominguez Oliver, S. G.; Faz Cano, A.

    2009-01-01

    This study consists in the use of different forms of slurry, as an organic fertilizer, on almond trees located in La Aljorra (Cartegena, Murcia). The slurry used comes from a farm near the area of study, which has a treatment system composed by tree parts: a phase separator, a bioreactor and 5 constructed wetlands of vertical flow. Different phases of slurry are obtained from each part of the system. The results show the reduction of most of the parameters lime salinity, BOD 5 QOD, nitrate, etc. The use of these effluents as an organic amend in different doses, supposes a sustainable way of management of these residues; at the same time it improves the soil properties and the agronomic quality of the almond tree crop. (Author) 4 refs.

  13. Organic nitrogen components in soils from southeast China*

    Science.gov (United States)

    Chen, Xian-you; Wu, Liang-huan; Cao, Xiao-chuang; Zhu, Yuan-hong

    2013-01-01

    Objective: To investigate the amounts of extractable organic nitrogen (EON), and the relationships between EON and total extractable nitrogen (TEN), especially the amino acids (AAs) adsorbed by soils, and a series of other hydrolyzed soil nitrogen indices in typical land use soil types from southeast China. Under traditional agricultural planting conditions, the functions of EON, especially AAs in the rhizosphere and in bulk soil zones were also investigated. Methods: Pot experiments were conducted using plants of pakchoi (Brassica chinensis L.) and rice (Oryza sativa L.). In the rhizosphere and bulk soil zone studies, organic nitrogen components were extracted with either distilled water, 0.5 mol/L K2SO4 or acid hydrolysis. Results: K2SO4-EON constituted more than 30% of TEN pools. K2SO4-extractable AAs accounted for 25% of EON pools and nearly 10% of TEN pools in rhizosphere soils. Overall, both K2SO4-EON and extractable AAs contents had positive correlations with TEN pools. Conclusions: EON represented a major component of TEN pools in garden and paddy soils under traditional planting conditions. Although only a small proportion of the EON was present in the form of water-extractable and K2SO4-extractable AAs, the release of AAs from soil exchangeable sites might be an important source of organic nitrogen (N) for plant growth. Our findings suggest that the content of most organic forms of N was significantly greater in rhizosphere than in bulk soil zone samples. However, it was also apparent that the TEN pool content was lower in rhizosphere than in bulk soil samples without added N. PMID:23549843

  14. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  15. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each .... (floodplain, low terrace), saline soils are now .... Apart from having a high salt content, ..... permeability and thereby promotes continuous.

  16. Greener and Sustainable Trends in Synthesis of Organics and ...

    Science.gov (United States)

    Trends in greener and sustainable process development during the past 25 years are abridged involving the use of alternate energy inputs (mechanochemistry, ultrasound- or microwave irradiation), photochemistry, and greener reaction media as applied to synthesis of organics and nanomaterials. In the organic synthesis arena, examples comprise assembly of heterocyclic compounds, coupling and a variety of other name reactions catalyzed by basic water or recyclable magnetic nanocatalysts. Generation of nanoparticles benefits from the biomimetic approaches where vitamins, sugars, and plant polyphenols, including agricultural waste residues, can serve as reducing and capping agents. Metal nanocatalysts (Pd, Au, Ag, Ni, Ru, Ce, Cu, etc.) immobilized on biodegradable supports such as cellulose and chitosan, or on recyclable magnetic ferrites via ligands, namely dopamine or glutathione, are receiving special attention. These strategic approaches attempt to address most of the Green Chemistry Principles while producing functional chemicals with utmost level of waste minimization. Feature article for celebration of 25 years of Green Chemistry on invitation from American Chemical Society (ACS) journal, ACS Sustainable Chemistry & Engineering.

  17. Predicting Soil Organic Carbon at Field Scale Using a National Soil Spectral Library

    DEFF Research Database (Denmark)

    Peng, Yi; Knadel, Maria; Gislum, René

    2013-01-01

    and the spectral library, 2718 samples) and (iii) three sub-sets selected from the spectral library. In an attempt to improve prediction accuracy, sub-sets of the soil spectral library were made using three different sample selection methods: those geographically closest (84 samples), those with the same landscape......Visible and near infrared diffuse reflectance (vis-NIR) spectroscopy is a low-cost, efficient and accurate soil analysis technique and is thus becoming increasingly popular. Soil spectral libraries are commonly constructed as the basis for estimating soil texture and properties. In this study......, partial least squares regression was used to develop models to predict the soil organic carbon (SOC) content of 35 soil samples from one field using (i) the Danish soil spectral library (2688 samples), (ii) a spiked spectral library (a combination of 30 samples selected from the local area...

  18. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  19. Assessment of Relationships between Earthworms and Soil Abiotic and Biotic Factors as a Tool in Sustainable Agricultural

    Directory of Open Access Journals (Sweden)

    Radoslava Kanianska

    2016-09-01

    Full Text Available Earthworms are a major component of soil fauna communities. They influence soil chemical, biological, and physical processes and vice versa, their abundance and diversity are influenced by natural characteristics or land management practices. There is need to establish their characteristics and relations. In this study earthworm density (ED, body biomass (EB, and diversity in relation to land use (arable land—AL, permanent grasslands—PG, management, and selected abiotic (soil chemical, physical, climate related and biotic (arthropod density and biomass, ground beetle density, carabid density indicators were analysed at seven different study sites in Slovakia. On average, the density of earthworms was nearly twice as high in PG compared to AL. Among five soil types used as arable land, Fluvisols created the most suitable conditions for earthworm abundance and biomass. We recorded a significant correlation between ED, EB and soil moisture in arable land. In permanent grasslands, the main climate related factor was soil temperature. Relationships between earthworms and some chemical properties (pH, available nutrients were observed only in arable land. Our findings indicate trophic interaction between earthworms and carabids in organically managed arable land. Comprehensive assessment of observed relationships can help in earthworm management to achieve sustainable agricultural systems.

  20. Positive Healthy Organizations: Promoting Well-Being, Meaningfulness, and Sustainability in Organizations.

    Science.gov (United States)

    Di Fabio, Annamaria

    2017-01-01

    This contribution deals with the concept of healthy organizations and starts with a definition of healthy organizations and healthy business. In healthy organizations, culture, climate, and practices create an environment conducive to employee health and safety as well as organizational effectiveness (Lowe, 2010). A healthy organization thus leads to a healthy and successful business (De Smet et al., 2007; Grawitch and Ballard, 2016), underlining the strong link between organizational profitability and workers' well-being. Starting from a positive perspective focused on success and excellence, the contribution describes how positive organizational health psychology evolved from occupational health psychology to positive occupational health psychology stressing the importance of a primary preventive approach. The focus is not on deficiency and failure but on a positive organizational attitude that proposes interventions at different levels: individual, group, organization, and inter-organization. Healthy organizations need to find the right balance between their particular situation, sector, and culture, highlighting the importance of well-being and sustainability. This contribution discusses also the sustainability of work-life projects and the meaning of work in healthy organizations, stressing the importance of recognizing, respecting, and using the meaning of work as a key for growth and success. Finally, the contribution discusses new research and intervention opportunities for healthy organizations.

  1. Decomposition of litter and soil organic matter - Can we distinguish a mechanism for soil organic matter buildup ?

    International Nuclear Information System (INIS)

    Berg, B.; Johansson, M.B.; McClaugherty, C.; Virzo de Santo, A.; Ekbohm, G.

    1995-01-01

    This synthesis paper presents a model for estimating the buildup of soil organic matter in various types of coniferous forests. The knowledge used was obtained from a well-studied forest with good litterfall data, decomposition information and validation measurements of the soil organic matter layer. By constructing a simple model for litterfall, and the information on maximum decomposition levels for litter, we could estimate the annual increase in soil organic matter and extend this to encompass stand age. The validation measurement and the estimated amount of soil organic matter differed by about 8 or 26% over a 120-yr period, depending on the litterfall model. The estimated increased storage of soil organic matter as a consequence of climate change was found to be drastic. We thus found that the soil organic matter layer would grow about four times as fast as a result of the needle component only. This estimate was based on a comparison between latitudes with a difference of 17 degrees. 35 refs, 7 figs, 3 tabs

  2. Soil organic carbon and nitrogen pools drive soil C-CO2 emissions from selected soils in Maritime Antarctica.

    Science.gov (United States)

    Pires, C V; Schaefer, C E R G; Hashigushi, A K; Thomazini, A; Filho, E I F; Mendonça, E S

    2017-10-15

    The ongoing trend of increasing air temperatures will potentially affect soil organic matter (SOM) turnover and soil C-CO 2 emissions in terrestrial ecosystems of Maritime Antarctica. The effects of SOM quality on this process remain little explored. We evaluated (i) the quantity and quality of soil organic matter and (ii) the potential of C release through CO 2 emissions in lab conditions in different soil types from Maritime Antarctica. Soil samples (0-10 and 10-20cm) were collected in Keller Peninsula and the vicinity of Arctowski station, to determine the quantity and quality of organic matter and the potential to emit CO 2 under different temperature scenarios (2, 5, 8 and 11°C) in lab. Soil organic matter mineralization is low, especially in soils with low organic C and N contents. Recalcitrant C form is predominant, especially in the passive pool, which is correlated with humic substances. Ornithogenic soils had greater C and N contents (reaching to 43.15gkg -1 and 5.22gkg -1 for total organic carbon and nitrogen, respectively). C and N were more present in the humic acid fraction. Lowest C mineralization was recorded from shallow soils on basaltic/andesites. C mineralization rates at 2°C were significant lower than at higher temperatures. Ornithogenic soils presented the lowest values of C-CO 2 mineralized by g of C. On the other hand, shallow soils on basaltic/andesites were the most sensitive sites to emit C-CO 2 by g of C. With permafrost degradation, soils on basaltic/andesites and sulfates are expected to release more C-CO 2 than ornithogenic soils. With greater clay contents, more protection was afforded to soil organic matter, with lower microbial activity and mineralization. The trend of soil temperature increases will favor C-CO 2 emissions, especially in the reduced pool of C stored and protected on permafrost, or in occasional Histosols. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. PRODUCTION AND MARKETABILITY OF CONVENTIONAL, SUSTAINABLE AND ORGANIC PRODUCED TOMATOES

    Directory of Open Access Journals (Sweden)

    Dean BAN

    2007-07-01

    Full Text Available Conventional agricultural production is denoted by high levels of chemisation, strait specialised production, high yields and low costs per production unit, however this production causes risky interventions, which could affect negatively on environment and human health Research results indicate possibilities for growing vegetables in alternative systems, less risky for environment with satisfying economic success. The aim of this research was to determine economic success of organic, sustainable and conventional production of tomato in the Mediterranean area of Republic Croatia. Bianual research was conducted during 2002/2003. During vegetation we examined parameters of growth, marketable yields and costs for materials, work and machinery which are used in economic analysis. Economical analysis of tomatoes production indicate worst results in organic production system. Loses in tomatoes organic production were consequences of two main factors: lower marketed yield and equal product price for all three production types. Lower yields in organic production were expected, therefore bad financial results were caused by mainly low market prices, which do not validate quality and food safety. Therefore financial success is preconditioned by higher market validation, which can be obtained through market analysis and product development. Consumer awareness about organic agriculture is still very weak and this point requires further attention. The link between organic agriculture and the environment/nature protection is missing too. The purchase of organic food is influenced by the level of information and knowledge of consumers with reference to these products. Doubts about the truthfulness and significance of some data were raised by main places where organic food is purchased, since an excessive greatest limitations are high prices and a low level of information to consumers. Current standard of life of most Croatian consumers does not permit them to

  4. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  5. Management options to increase soil organic matter and nitrogen availability in cultivated drylands

    International Nuclear Information System (INIS)

    Grace, P.R.

    1998-01-01

    Cropping of dryland soils in marginal regions with an emphasis on economic rather than ecological sustainability has generally led to decline in soil organic matter reserves and hence nutrient availability. Outputs commonly exceed inputs, with degradation of soil structure, reduction in infiltration and increase in runoff. Biological productivity is severely affected, leading to a vicious cycle of events usually culminating in decreased N release, excessive soil loss and ultimately desertification. Reducing the incidence of bare fallow, increasing crop-residue retention, strategic N-fertilizer application and shifting to cereal-legume rotations (as opposed to monocultures) and intercropping can slow the spiral. Simulation models such as DSSAT and SOCRATES provide suitable and easy-to-use platforms to evaluate these management strategies in terms of soil organic matter accumulation and yield performance. Through the linkage of these models to global information systems and the use of spatial-characterization software to identify zones of similarity, it is now possible to examine the transportability and risk of a particular management strategy under a wide range of climatic and soil conditions. (author)

  6. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil

    NARCIS (Netherlands)

    Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J.; Geissen, Violette

    2017-01-01

    Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but

  7. Sustainable Transformation & Effective Competency Management Practices in Nuclear Organizations

    International Nuclear Information System (INIS)

    Gardelliano, S.

    2016-01-01

    Full text: Managing essential knowledge as a strategic organizational asset is a factor of upmost relevance in today’s nuclear organizations. The author considers evident that competencies are critical carriers of knowledge. As such the use of an appropriate competency model could be the most effective way to capture the present reservoir of explicit and tacit Knowledge of specific functions or organizational areas. Besides, we could use them for new or other redesigned functions or determine the needs of specific competencies for future positions. Therefore, appropriate competency models or systems have to be developed or updated in each nuclear organization since these are fundamental for managing more effectively and efficiently the present nuclear human capital and to forecast the evolving competence required in management, technical, scientific and safety areas to continuously ensure a highly competent nuclear workforce. On the other hand, competency based management models or systems would not achieve the expected results if they are not fully designed and integrated within the strategic organizational infrastructure of the related nuclear organization. This paper is expected to provide a wider view and practical reflections on organizational transformation issues and the benefits of using an integrative competency model in the nuclear industry. Particularly, the paper give an insight of an empiric model for strategic organizational transformation processes and integrative management practices, and on how to realign strategic issues with top management processes and build organizational capacity through effective competency based management for the sustainable transformation of nuclear organizations. (author

  8. Organic fields sustain weed metacommunity dynamics in farmland landscapes.

    Science.gov (United States)

    Henckel, Laura; Börger, Luca; Meiss, Helmut; Gaba, Sabrina; Bretagnolle, Vincent

    2015-06-07

    Agro-ecosystems constitute essential habitat for many organisms. Agricultural intensification, however, has caused a strong decline of farmland biodiversity. Organic farming (OF) is often presented as a more biodiversity-friendly practice, but the generality of the beneficial effects of OF is debated as the effects appear often species- and context-dependent, and current research has highlighted the need to quantify the relative effects of local- and landscape-scale management on farmland biodiversity. Yet very few studies have investigated the landscape-level effects of OF; that is to say, how the biodiversity of a field is affected by the presence or density of organically farmed fields in the surrounding landscape. We addressed this issue using the metacommunity framework, with weed species richness in winter wheat within an intensively farmed landscape in France as model system. Controlling for the effects of local and landscape structure, we showed that OF leads to higher local weed diversity and that the presence of OF in the landscape is associated with higher local weed biodiversity also for conventionally farmed fields, and may reach a similar biodiversity level to organic fields in field margins. Based on these results, we derive indications for improving the sustainable management of farming systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    Science.gov (United States)

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  10. Tillage, crop residue, and nutrient management effects on soil organic carbon sequestration in rice-based cropping systems: a review

    Science.gov (United States)

    Sequestration of soil organic carbon (SOC) is one of the major agricultural strategies to mitigate greenhouse gas emissions, enhance food security, and improve agricultural sustainability. This paper synthesizes the much-needed state-of-knowledge on the effects of management practices, such as tilla...

  11. Accounting for microbial habitats in modeling soil organic matter dynamics

    Science.gov (United States)

    Chenu, Claire; Garnier, Patricia; Nunan, Naoise; Pot, Valérie; Raynaud, Xavier; Vieublé, Laure; Otten, Wilfred; Falconer, Ruth; Monga, Olivier

    2017-04-01

    The extreme heterogeneity of soils constituents, architecture and inhabitants at the microscopic scale is increasingly recognized. Microbial communities exist and are active in a complex 3-D physical framework of mineral and organic particles defining pores of various sizes, more or less inter-connected. This results in a frequent spatial disconnection between soil carbon, energy sources and the decomposer organisms and a variety of microhabitats that are more or less suitable for microbial growth and activity. However, current biogeochemical models account for C dynamics at the macroscale (cm, m) and consider time- and spatially averaged relationships between microbial activity and soil characteristics. Different modelling approaches have intended to account for this microscale heterogeneity, based either on considering aggregates as surrogates for microbial habitats, or pores. Innovative modelling approaches are based on an explicit representation of soil structure at the fine scale, i.e. at µm to mm scales: pore architecture and their saturation with water, localization of organic resources and of microorganisms. Three recent models are presented here, that describe the heterotrophic activity of either bacteria or fungi and are based upon different strategies to represent the complex soil pore system (Mosaic, LBios and µFun). These models allow to hierarchize factors of microbial activity in soil's heterogeneous architecture. Present limits of these approaches and challenges are presented, regarding the extensive information required on soils at the microscale and to up-scale microbial functioning from the pore to the core scale.

  12. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  13. Soil fertility management in organic greenhouses in Europe

    NARCIS (Netherlands)

    Tittatelli, Fabio; Bath, Brigitta; Ceglie, Francesco Giovanni; Garcia, M.C.; Moller, K.; Reents, H.J.; Vedie, Helene; Voogt, W.

    2016-01-01

    The management of soil fertility in organic greenhouse systems differs quite widely across Europe. The challenge is to identify and implement strategies which comply with the organic principles set out in (EC) Reg. 834/2007 and (EC) Reg. 889/2008 as well as supporting environmentally, socially and

  14. Towards integrated modelling of soil organic carbon cycling at landscape scale

    Science.gov (United States)

    Viaud, V.

    2009-04-01

    Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.

  15. Spectral band selection for classification of soil organic matter content

    Science.gov (United States)

    Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.

    1989-01-01

    This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.

  16. Engineering soil organic matter quality: Biodiesel Co-Product (BCP) stimulates exudation of nitrogenous microbial biopolymers

    Science.gov (United States)

    Redmile-Gordon, Marc A.; Evershed, Richard P.; Kuhl, Alison; Armenise, Elena; White, Rodger P.; Hirsch, Penny R.; Goulding, Keith W.T.; Brookes, Philip C.

    2015-01-01

    Biodiesel Co-Product (BCP) is a complex organic material formed during the transesterification of lipids. We investigated the effect of BCP on the extracellular microbial matrix or ‘extracellular polymeric substance’ (EPS) in soil which is suspected to be a highly influential fraction of soil organic matter (SOM). It was hypothesised that more N would be transferred to EPS in soil given BCP compared to soil given glycerol. An arable soil was amended with BCP produced from either 1) waste vegetable oils or 2) pure oilseed rape oil, and compared with soil amended with 99% pure glycerol; all were provided with 15N labelled KNO3. We compared transfer of microbially assimilated 15N into the extracellular amino acid pool, and measured concomitant production of exopolysaccharide. Following incubation, the 15N enrichment of total hydrolysable amino acids (THAAs) indicated that intracellular anabolic products had incorporated the labelled N primarily as glutamine and glutamate. A greater proportion of the amino acids in EPS were found to contain 15N than those in the THAA pool, indicating that the increase in EPS was comprised of bioproducts synthesised de novo. Moreover, BCP had increased the EPS production efficiency of the soil microbial community (μg EPS per unit ATP) up to approximately double that of glycerol, and caused transfer of 21% more 15N from soil solution into EPS-amino acids. Given the suspected value of EPS in agricultural soils, the use of BCP to stimulate exudation is an interesting tool to consider in the theme of delivering sustainable intensification. PMID:26635420

  17. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    Science.gov (United States)

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  18. Characterization of Soil Organic Matter from African Dark Earth (AfDE) Soils

    Science.gov (United States)

    Plante, A. F.; Fujiu, M.; Ohno, T.; Solomon, D.; Lehmann, J.; Fraser, J. A.; Leach, M.; Fairhead, J.

    2014-12-01

    Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. While tropical soils are typically characterized by low soil organic matter (SOM) concentrations, African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils formed through an extant but ancient soil management system. The objective of this study was to characterize the organic matter accumulated in AfDE and contrast it with non-AfDE soils. Characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) resulted in substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant, but the fertility gains in AfDE are generated by labile, more rapidly cycling pools of SOM. As a result, we characterized hot water- and pyrophosphate-extractable pools of SOM using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FT-ICR-MS). EEM/PARAFAC data suggests that AfDE samples had a greater fraction of their DOM that was more humic-like than the paired non-AfDE samples. Similarly, FT-ICR-MS analyses of extracts suggest that differences among the sites analyzed were larger than between the paired AfDE and non-AfDE extracts. Overall, in spite of substantial differences in the composition of bulk SOM, the extractable fractions appear to be relatively similar between the AfDE and non-AfDE soils.

  19. Soil use in gardens as chance to socially promote the Sustainable Development Goals

    Science.gov (United States)

    Teuber, Sandra; Kühn, Peter; Scholten, Thomas

    2017-04-01

    Gardening is a form for citizens to use the ecosystem functions of soils, while simultaneously contributing to the Sustainable Development Goals (SDG) 11, 12 and 15 of the UN. In 2016, 8.4 million people in Germany gardened several times a week and 14.2 million people worked in their garden several times a month*. Furthermore, the "Bundesverband Deutscher Gartenfreunde e.V.", an allotment gardening association, has 947.137 members that use an area of 460 km2 for gardening**. This shows that gardening is a frequent pastime for many people and thus can help achieve the SDG's. Interdisciplinary research in six gardening associations was conducted to investigate soil knowledge and soil use in Southern Germany. Questionnaires and interviews with people that chose gardening as a pastime took place in 2015 and 2016. The respondents were interviewed in the respective garden plot to also observe on-site garden management practices. The combination of sociological and ethnological approaches for investigating the soil scientific research question of soil management practices in leisure gardens is useful to start a public discourse on the importance of soil for society. The evaluation showed that soil use in gardens could contribute to the SDG's 11, 12 and 15. Goal 11 is to make cities resilient and sustainable. Soil use in form of gardening is a bottom-up approach that conserves knowledge on small-scale food production. This is important for the resilience of cities in times of crises, as has been the case during the Great Depression or the World Wars. It is closely connected to Goal 12, the sustainable consumption and production patterns. If gardening activities are sustainable in the use of fertilizers, small-scale sustainability and a resilient soil use that also protects the soil and ground water can be achieved. However, this necessitates cooperation between scientists, gardening societies and the individual gardeners on equal terms. Gardening also affects the

  20. Organic pollutants in Bavarian soils. Investigations in the framework of the 'Bavarian soil cadastre'

    International Nuclear Information System (INIS)

    Joneck, M.; Prinz, R.; Schmidt, R.

    1990-01-01

    Within the framework of the Bavarian soil cadastre, 260 soils from 90 sites throughout Bavaria were sampled for organic pollutants between 1986 and mid-1989. From the material class of the polychlorinated biphenyls (PCB), first results were introduced. The PCB total concentrations depend very strongly on soil utilization. Forest sites occupy a special position. The comparison of agricultural and forest soils with regard to pollutant concentrations is possible only with volume specific concentrations and/or a site-specific material balance. (orig.) [de

  1. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    Science.gov (United States)

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack

  2. Sustainability of Open-Source Software Organizations as Underpinning for Sustainable Interoperability on Large Scales

    Science.gov (United States)

    Fulker, D. W.; Gallagher, J. H. R.

    2015-12-01

    OPeNDAP's Hyrax data server is an open-source framework fostering interoperability via easily-deployed Web services. Compatible with solutions listed in the (PA001) session description—federation, rigid standards and brokering/mediation—the framework can support tight or loose coupling, even with dependence on community-contributed software. Hyrax is a Web-services framework with a middleware-like design and a handler-style architecture that together reduce the interoperability challenge (for N datatypes and M user contexts) to an O(N+M) problem, similar to brokering. Combined with an open-source ethos, this reduction makes Hyrax a community tool for gaining interoperability. E.g., in its response to the Big Earth Data Initiative (BEDI), NASA references OPeNDAP-based interoperability. Assuming its suitability, the question becomes: how sustainable is OPeNDAP, a small not-for-profit that produces open-source software, i.e., has no software-sales? In other words, if geoscience interoperability depends on OPeNDAP and similar organizations, are those entities in turn sustainable? Jim Collins (in Good to Great) highlights three questions that successful companies can answer (paraphrased here): What is your passion? Where is your world-class excellence? What drives your economic engine? We attempt to shed light on OPeNDAP sustainability by examining these. Passion: OPeNDAP has a focused passion for improving the effectiveness of scientific data sharing and use, as deeply-cooperative community endeavors. Excellence: OPeNDAP has few peers in remote, scientific data access. Skills include computer science with experience in data science, (operational, secure) Web services, and software design (for servers and clients, where the latter vary from Web pages to standalone apps and end-user programs). Economic Engine: OPeNDAP is an engineering services organization more than a product company, despite software being key to OPeNDAP's reputation. In essence, provision of

  3. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions

    Science.gov (United States)

    Improving soil organic matter (SOM) quality in tropical acid soils is important for increasing the sustainability of agricultural ecosystems. This research evaluated the effect of the surface application of lime and phosphogypsum on the quality and amount of SOM in a long-term crop rotation under no...

  4. Podzolisation and soil organic matter dynamics

    NARCIS (Netherlands)

    Buurman, P.; Jongmans, A.G.

    2005-01-01

    Present models of podzolisation emphasize the mobilization and precipitation of dissolved organic matter. together with Al(-silicates) and Fe. Such models cannot explain the dominance of pellet-like organic matter in most boreal podzols and in well-drained podzols outside the boreal zone, and the

  5. Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges

    OpenAIRE

    Goletti, F.; Gruhn, P.; Yudelman, M.

    2000-01-01

    Metadata only record The challenge for agriculture over the coming decades will be to meet the world's increasing demand for food in a sustainable way. Declining soil fertility and mismanagement of plant nutrients have made this task more difficult. In their 2020 Vision discussion paper, Peter Gruhn, Francesco Goletti, and Montague Yudelman point out that as long as agriculture remains a soil-based industry, major increases in productivity are unlikely to be attained without ensuring that ...

  6. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  7. Nuclear techniques in soil-plant studies for sustainable agriculture and environmental preservation. Proceedings of an international symposium held in Vienna, 17-21 October 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The papers presented at the symposium have been grouped in 8 Sessions: Recent developments in analytical methods and equipment (3 papers), Fertilizer use and management studies (8 papers), Biological nitrogen fixation in sustainable cropping systems (7 papers), Soil organic matter studies and nutrient cycling (7 papers), Water use and management studies (7 papers), Plant physiological aspects in crop production (8 papers), Environmental pollution and preservation (5 papers), Soil conservation, soil erosion and desertification (3 papers). 25 papers have been presented in a poster session. A separate abstract was prepared for each paper. Refs, figs and tabs

  8. Tillage-induced changes to soil structure and organic carbon fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Shepherd, T. G.; Saggar, S.; Ross, C. W.; Dando, J. L.; Newman, R. H.

    2001-01-01

    The effects of increasing cropping and soil compaction on aggregate stability and dry-sieved aggregate-size distribution, and their relationship to total organic C (TOC) and the major functional groups of soil organic carbon, were investigated on 5 soils of contrasting mineralogy. All soils except the allophanic soil showed a significant decline in aggregate stability under medium- to long-term cropping. Mica-rich, fine-textured mineral and humic soils showed the greatest increase in the mean weight diameter (MWD) of dry aggregates, while the oxide-rich soils, and particularly the allophanic soils, showed only a slight increase in the MWD after long-term cropping. On conversion back to pasture, the aggregate stability of the mica-rich soils increased and the MWD of the aggregate-size distribution decreased, with the humic soil showing the greatest recovery. Aggregate stability and dry aggregate-size distribution patterns show that soil resistance to structural degradation and soil resilience increased from fine-textured to coarse-textured to humic mica-rich soils to oxide-rich soils to allophanic soils. Coarse- and fine-textured mica-rich and oxide-rich soils under pasture contained medium amounts of TOC, hot-water soluble carbohydrate (WSC), and acid hydrolysable carbohydrate (AHC), all of which declined significantly under cropping. The rate of decline varied with soil type in the initial years of cropping, but was similar under medium- and long-term cropping. TOC was high in the humic mica-rich and allophanic soils, and levels did not decline appreciably under medium- and long-term cropping. 13 C-nuclear magnetic resonance evidence also indicates that all major functional groups of soil organic carbon declined under cropping, with O-alkyl C and alkyl C showing the fastest and slowest rate of decline, respectively. On conversion back to pasture, both WSC and AHC returned to levels originally present under long-term pasture. TOC recovered to original pasture

  9. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  10. Persistence of soil organic matter as an ecosystem property

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  11. Stability of volatile organics in environmental soil samples. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  12. Stability of volatile organics in environmental soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  13. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2016-04-01

    Full Text Available Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC, the soil fumigant dazomet (DAZ, the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist enhanced bio-organic fertilizer (BOF, and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F ratios, Shannon–Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  14. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    Science.gov (United States)

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soilsoilsoil+3 HWEsoil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Are Organic Standards Sufficient to Ensure Sustainable Agriculture? Lessons From New Zealand’s ARGOS and Sustainability Dashboard Projects

    OpenAIRE

    Merfield, Charles; Moller, Henrik; Manhire, Jon; Rosin, Chris; Norton, Solis; Carey, Peter; Hunt, Lesley; Reid, John; Fairweather, John; Benge, Jayson; Le Quellec, Isabelle; Campbell, Hugh; Lucock, David; Saunders, Caroline; MacLeod, Catriona

    2015-01-01

    Our review concludes that organic standards need to account for a broader set of criteria in order to retain claims to ‘sustainability’. Measurements of the ecological, economic and social outcomes from over 96 kiwifruit, sheep/beef and dairy farms in New Zealand between 2004 and 2012 by The Agricultural Research Group on Sustainability (ARGOS) project showed some enhanced ecosystem services from organic agriculture that will assist a “land-sharing” approach for sustainable land management. H...

  16. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Science.gov (United States)

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  17. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Directory of Open Access Journals (Sweden)

    G. Wang

    2017-10-01

    Full Text Available Changes in the soil organic carbon (SOC stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1°  ×  0.1° and over a long timescale (54 years from 1961 to 2014. A widely used soil C turnover model (RothC and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive and the edaphic variable of initial SOC content (linearly negative. Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to

  18. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature

    Science.gov (United States)

    Bader, Cédric; Müller, Moritz; Schulin, Rainer; Leifeld, Jens

    2018-02-01

    Organic soils comprise a large yet fragile carbon (C) store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM), typically increasing in the order forest accrual of labile crop residues. A comparison with published CO2 rates from incubated mineral soils indicated no difference in SOM decomposability between these soil classes, suggesting that accumulation of recent, labile plant materials that presumably account for most of the evolved CO2 is not systematically different between mineral and organic soils. In our data set, temperature sensitivity of decomposition (Q10 on average 2.57 ± 0.05) was the same for all land uses but lowest below 60 cm in croplands and grasslands. This, in turn, indicates a relative accumulation of recalcitrant peat in topsoils.

  19. Chemical-Structural Changes of Organic Matter in a Semi-Arid Soil After Organic Amendment

    Institute of Scientific and Technical Information of China (English)

    C.NICOL(A)S; G.MASCIANDARO; T.HERN(A)NDEZ; C.GARCIA

    2012-01-01

    A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil. The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.

  20. The Effect of Climate change on Soil Organic Matter Decomposition

    Directory of Open Access Journals (Sweden)

    TÓTH, János Attila

    2007-01-01

    Full Text Available In the last few decades the climate of Síkfkút ILTER Forest (Hungary became warmerand dryer. Due to the climate change the species composition of forest has been changing, and thetotal leaf litter production has been slightly decreasing. According to our long-term litter manipulationfield experiment, which is part of ILTER Detritus Input and Removal Treatments (DIRT Project, aftera 4-5 year treating period, at the No Litter, No Root and No Input treatments the soil organic C and Ncontent, the soil bacterial and fungal count, the soil pH, the soil enzyme activity, and soil respirationdecreased. Increased soil temperature raises soil respiration exponentially, and thus if the average soiltemperature increased by 2 oC at the dry Síkfkút site, soil respiration would increase by 22.1%. Thisincrease would be higher (29.9% at a wet site, such as Harvard Forest in the USA. Increasing soilrespiration can speed up global warming through a positive feedback mechanism.

  1. Stable isotopic constraints on global soil organic carbon turnover

    Science.gov (United States)

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  2. Sorption-desorption dynamics of radiocaesium in organic matter soils

    International Nuclear Information System (INIS)

    Valcke, E.; Cremers, A.

    1994-01-01

    A systematic study has been carried out on the radiocaesium sorption properties of 25 soils (forest, peat) covering organic matter (OM) contents in the range of 10-97%. Predictions are made for radiocaesium partitioning between micaceous Frayed Edge Sites (FES) and regular exchange sites (RES) on the basis of specific radiocaesium interception potentials of the soil and overall exchange capacity. It is shown that for soils with a very high OM content (>80%), significant fractions are present in a readily reversible form in the OM phase. In soils of low-medium OM content (<40%), only a very minor fraction is present in the OM exchange complex. Experimental findings, based on a desorption screening with a variety of desorption agents are in agreement with these predictions. On the basis of a study of sorption kinetics, some additional tools are available for identifying problem soils. In cases of very high OM content, radiocaesium adsorption is completed within hours demonstrating the involvement of the OM sites. In soils for which interception occurs in the FES, sorption continues to proceed for periods of 2-3 weeks. In conclusion, some examples are presented on radiocaesium desorption using ion exchangers as radiocaesium sinks in promoting desorption. For a peaty soil, near quantitative desorption is accomplished. For forest soils with OM contents in a range of 10-40%, fixation levels of 30-50% are demonstrated

  3. Distribution of soil organic carbon in the conterminous United States

    Science.gov (United States)

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  4. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  6. Mechanical performance and sustainability assessment of reinforced soil walls

    OpenAIRE

    Puig Damians, Ivan

    2016-01-01

    Soil reinforced retaining wall structures are materiallymore efficientthan competing construction solutions such as gravity and cantilever walls. Nevertheless, the behaviour and interactions between the com ponent materials are com plex and not fully understood. Current design methods are typically limited to simple cases with respect to material properties, geometry, and boundary conditions. Advanced numerical models using finite element and/or finite difference methods offer the possibility...

  7. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  8. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 4

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soils science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soils physics, chemical, biology, fertility, classification, nutrition, mineralogy, soils and water conservation, fertilizers, pollution and environmental quality. In the fourth volume of the abstracts were presented papers related to use of fertilizers and herbicides

  9. Organic matter loss from cultivated peat soils in Sweden

    Science.gov (United States)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  10. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  11. Soil microorganisms determine the sorption of radionuclides within organic soil systems

    International Nuclear Information System (INIS)

    Parekh, N.R.; Poskitt, J.M.; Dodd, B.A.; Potter, E.D.; Sanchez, A.

    2008-01-01

    The potential of soil microorganisms to enhance the retention of 137 Cs and 85 Sr in organic systems was assessed in a series of experiments. A biologically active, 'mineral-free', organic material, produced under laboratory conditions from leaves, was used as the uptake matrix in all experiments to minimise potential interference from competing clay minerals. Biological uptake and release were differentiated from abiotic processes by comparing the sorption of radionuclides in sterilised organic material with sterile material inoculated with soil extracts or single fungal strains. Our results show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material. The presence of soil microorganisms significantly enhanced the retention of Cs in organic systems and ∼70% of the Cs spike was strongly (irreversibly) bound (remained non-extractable) in the presence of microorganisms compared to only ∼10% in abiotic systems. Sorption of 85 Sr was not significantly influenced by the presence of soil microorganisms. A non-linear temperature response was observed for the retention in biotic systems with increased uptake at between 10 and 30 deg. C and lower retention at temperatures above or below the optimum range. The optimum temperatures for biological uptake were between 15 and 20 deg. C for Cs, and 25 and 30 deg. C for Sr. Our results indicate that single strains of soil and saprotrophic fungi make an important contribution to the sorption of Cs and Sr in organic systems, but can only account for part of the strong, irreversible binding observed in biotic systems. Single strains of soil fungi increased the amount of non-extractable 137 Cs (by ∼30%) and 85 Sr (by ∼20%) in the organic systems as compared to abiotic systems, but the major fraction of 137 Cs and 85 Sr sorbed in systems inoculated with saprotrophic fungi remained extractable

  12. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  13. GM Crops, Organic Agriculture and Breeding for Sustainability

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2014-07-01

    Full Text Available The ongoing debate about the use of genetically-modified (GM crops in agriculture has largely focused on food safety and genetic contamination issues. Given that the majority of GM crops have been produced to respond to the problem of crop yield reductions caused by diseases, insects and weeds, the paper argues that in those cases, the currently used GM crops are an unstable solution to the problem, because they represent such a strong selection pressure, that pests rapidly evolve resistance. Organic agriculture practices provide a more sustainable way of producing healthy food; however, the lower yields often associated with those practices, making the resultant healthy food more expensive, open the criticism that such practices will not be able to feed human populations. Evolutionary plant breeding offers the possibility of using the evolutionary potential of crops to our advantage by producing a continuous flow of varieties better adapted to organic systems, to climate change and to the ever changing spectrum of pests, without depending on chemical control.

  14. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    Science.gov (United States)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  15. Sequestration of carbon in soil organic matter in Senegal: an overview

    Science.gov (United States)

    Tieszen, Larry L.; Tappan, G. Gray; Toure, A.

    2004-01-01

    Sequestration of Carbon in Soil Organic Matter (SOCSOM) in Senegal is a multi-disciplinary development project planned and refined through two international workshops. The project was implemented by integrating a core of international experts in remote sensing, biogeochemical modeling, community socio-economic assessments, and carbon measurements in a fully collaborative manner with Senegal organizations, national scientists, and local knowledge and expertise. The study addresses the potential role developing countries in semi-arid areas can play in climate mitigation activities. Multiple benefits to smallholders could accrue as a result of management practices to re-establish soil carbon content lost because of land use changes or management practices that are not sustainable. The specific importance for the Sahel is because of the high vulnerability to climate change in already impoverished rural societies.

  16. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

    Directory of Open Access Journals (Sweden)

    Steven L. McGeehan

    2012-01-01

    Full Text Available Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.

  17. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    Science.gov (United States)

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  18. Sustained stimulation of soil respiration after 10 years of experimental warming

    International Nuclear Information System (INIS)

    Reth, S; Graf, W; Reichstein, M; Munch, J C

    2009-01-01

    A number of forest and grassland studies indicated that stimulation of the soil respiration by soil warming ceases after a couple of years (Luo et al 2001 Nature 413 622-5). Here we present results from a long-term soil warming lysimeter experiment in southern Germany showing sustained stimulation of soil respiration after 10 years. Moreover, both warmed and control treatments exhibited a similar temperature response of soil respiration, indicating that adaptation in terms of temperature sensitivity was absent. Carbon dioxide concentration measurements within the profiles are supporting these findings. The increased soil respiration occurred although vegetation productivity in the warmed treatment was not higher than in the control plots. These findings strongly contrast with current soil carbon modeling concepts, where carbon pools decay according to first-order kinetics, and thus a depletion of labile soil carbon pools leads to an apparent down-regulation of microbial respiration (Knorr et al 2005 Nature 433 298-301). Consequently, the potential for positive climate carbon cycle feedback may be larger than represented in current models of soil carbon turnover.

  19. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses

    NARCIS (Netherlands)

    Bender, S.F.; van der Heijden, M.G.A.|info:eu-repo/dai/nl/240923901

    2015-01-01

    Efficient resource use is a key factor for sustainable production and a necessity for meeting future global food demands. However, the factors that control resource use efficiency in agro-ecosystems are only partly understood. We investigated the influence of soil biota on nutrient leaching,

  20. Attitudes of green organizations' personnel toward genuine sustainable development

    NARCIS (Netherlands)

    Allevato, Camillo

    2017-01-01

    Layman's summary: This thesis dissertation concerns the identification of the main factors that influence attitudes towards genuine sustainable development, in order to identify strategies that will be more effective in education for quality sustainable development. In the pursuit of genuine

  1. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Long term impact of organic amendments on forest soil properties under semiarid Mediterranean climatic conditions

    Science.gov (United States)

    Hueso González, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2017-04-01

    Soil degradation affects more than 52 million ha of land in countries of the European Union (Hueso-González et al., 2016). This problema is particularly serious in Mediterranean areas, where the effects of anthropogenic activities (tillage on slopes, deforestation, and pasture production) add to problems caused by prolonged periods of drought and intense and irregular rainfall (Martínez-Murillo et al., 2016). Depending on the scale of study, soil organic carbón (SOC) dynamics in Mediterranean forests have been found to be particularly sensitive to factors related to seasonal changes in temperature and soil moisture (Casals et al., 2000; Eaton et al., 2008; Hueso-González et al., 2014). During dry periods in theMediterranean area, the lack of water entering the soil matrix reduces organic contributions to the soil (Parras-Alcántara et al., 2016). These processes lead to reduced soil fertility and soil loss (García-Orenes et al., 2010). Restoring the native vegetation is one of the most effective ways to control soil degradation in Mediterranean areas, especially in very degraded areas. In the initial months after afforestation, vegetation cover establishment and soil quality could be better sustained if the soil was amended with an external extra source of organic matter (Hueso-González et al., 2016). The goal of this study was to test the effect of various organic amendments on select soil properties over a 54-month period. Five amendments were applied in an experimental set of plots: straw mulching (SM), mulch with chipped branches of Aleppo Pine (Pinus halepensis L.; PM), sheep manure compost (SH), hydroabsorbent polymers (HP) and sewage sludge (RU). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10Mg ha-1. Soil from the afforested plots was sampled in the following: (i) spring 2012 (6 months postafforestation); (ii) spring 2013(18 months postafforestation); (iii) spring 2014 (30 months

  3. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  4. Thermal destruction of organic waste hydrophobicity for agricultural soils application.

    Science.gov (United States)

    Comino, Francisco; Aranda, Víctor; Domínguez-Vidal, Ana; Ayora-Cañada, María José

    2017-11-01

    Use of organic amendments is a good strategy for combating the growing problem of soil degradation due to deterioration of organic matter content, particularly severe in semi-arid European Mediterranean regions, while at the same time providing an opportunity for recycling organic wastes. Olive mill pomace (OMP), the main by-product of the olive oil industry, is being used increasingly in olive grove soils for this purpose. Although the positive effects of OMP amendments have been widely studied, they also have some negative effects on soil. One of the most critical is that they increase water repellency (WR) due to the presence of poorly evolved, strongly aliphatic compounds. This detrimental effect has received very little attention, although it may impair plant water availability and infiltration rates, increase erosion and lower long-term soil quality. This study proposed, for the first time, thermal treatment as an effective way of reducing WR in organic amendments (i.e. mixtures of OMP, olive tree pruning, chicken manure and spent coffee grounds) prior to their application to soil. Thermal treatment at 275 °C proved effective in removing WR, while lower temperatures (175 or 225 °C) can even increase it. Changes by thermal treatment in the characteristics of the organic amendments studied with FTIR and UV-Vis spectroscopy and thermogravimetric analysis showed that it strongly reduced the aliphatic compounds mainly responsible for their hydrophobicity, concentrated aromatic compounds and increased thermostability. Heating also reduced phytotoxicity, making all of the organic amendments usable in the field (germination index over 100%). Therefore, heating at 275 °C could be an acceptable option for removing WR from organic amendments, enhancing their quality with more stable evolved characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  6. Emergence or self-organization?: Look to the soil population.

    Science.gov (United States)

    Addiscott, Tom

    2011-07-01

    EMERGENCE IS NOT WELL DEFINED, BUT ALL EMERGENT SYSTEMS HAVE THE FOLLOWING CHARACTERISTICS: the whole is more than the sum of the parts, they show bottom-up rather top-down organization and, if biological, they involve chemical signaling. Self-organization can be understood in terms of the second and third stages of thermodynamics enabling these stages used as analogs of ecosystem functioning. The second stage system was suggested earlier to provide a useful analog of the behavior of natural and agricultural ecosystems subjected to perturbations, but for this it needs the capacity for self-organization. Considering the hierarchy of the ecosystem suggests that this self-organization is provided by the third stage, whose entropy maximization acts as an analog of that of the soil population when it releases small molecules from much larger molecules in dead plant matter. This it does as vigorously as conditions allow. Through this activity, the soil population confers self-organization at both the ecosystem and the global level. The soil population has been seen as both emergent and self-organizing, supporting the suggestion that the two concepts are are so closely linked as to be virtually interchangeable. If this idea is correct one of the characteristics of a biological emergent system seems to be the ability to confer self-organization on an ecosystem or other entity which may be larger than itself. The beehive and the termite colony are emergent systems which share this ability.

  7. The vulnerability of organic matter in Swiss forest soils

    Science.gov (United States)

    González Domínguez, Beatriz; Niklaus, Pascal A.; Studer, Mirjam S.; Hagedorn, Frank; Wacker, Lukas; Haghipour, Negar; Zimmermann, Stephan; Walthert, Lorenz; Abiven, Samuel; McIntyre, Cameron

    2017-04-01

    Soils contain more carbon than atmosphere and terrestrial vegetation combined [1], and thus are key players in the carbon cycle. With climate change, the soil organic carbon (SOC) pool is vulnerable to loss through increased CO2 emissions, which in turn can amplify changes with this carbon feedback [2]. The objective of this study is to investigate the variation of indicators of SOC vulnerability (e.g. SOC mineralisation, turnover time, bulk soil and mineralised 14C signatures) and to evaluate climate, soil and terrain variables as primary drivers. To choose the study locations we used a statistics-based approach to select a balanced combination of 54 forest sites with de-correlated drivers of SOC vulnerability (i.e. proxies for soil temperature and moisture, pH, % clay, slope gradient and orientation). Sites were selected from the forest soil database of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), which in May 2014, contained data from 1,050 soil profiles spread across Switzerland. We re-sampled soils at the 54 locations during summer 2014. With these samples we run a standardized laboratory soil incubation (i.e. 25°C; soils moisture -20kPa; sieved to ≤ 2 mm; 40 g equivalent dry mass; adjusted to 0.8 g cm-3 bulk density) and measured SOC mineralisation on days 4, 13, 30, 63, 121 and 181 by trapping the CO2 evolved from soils in sodium hydroxide traps [3]. Additionally, we measured the 14C signature of the carbon trapped during last stage of the incubation, and compare it to the 14C signature of the bulk soil. Based on the cumulative SOC mineralised, we found that despite the well-studied relationship between climate and SOC dynamics [4], temperature did not emerge as a predictor of SOC vulnerability. In parallel, moisture only had a minor role, with soils from drier sites being the most vulnerable. This indicates a possible limitation of heterotrophic activity due to water shortage. On the other hand, soil pH raised as the driver

  8. Predicting soil properties for sustainable agriculture using vis-NIR spectroscopy: a case study in northern Greece

    Science.gov (United States)

    Tsakiridis, Nikolaos L.; Tziolas, Nikolaos; Dimitrakos, Agathoklis; Galanis, Georgios; Ntonou, Eleftheria; Tsirika, Anastasia; Terzopoulou, Evangelia; Kalopesa, Eleni; Zalidis, George C.

    2017-09-01

    Soil Spectral Libraries facilitate agricultural production taking into account the principles of a low-input sustainable agriculture and provide more valuable knowledge to environmental policy makers, enabling improved decision making and effective management of natural resources in the region. In this paper, a comparison in the predictive performance of two state of the art algorithms, one linear (Partial Least Squares Regression) and one non-linear (Cubist), employed in soil spectroscopy is conducted. The comparison was carried out in a regional Soil Spectral Library developed in the Eastern Macedonia and Thrace region of Northern Greece, comprised of roughly 450 Entisol soil samples from soil horizons A (0-30 cm) and B (30-60 cm). The soil spectra were acquired in the visible - Near Infrared Red region (vis- NIR, 350nm-2500nm) using a standard protocol in the laboratory. Three soil properties, which are essential for agriculture, were analyzed and taken into account for the comparison. These were the Organic Matter, the Clay content and the concentration of nitrate-N. Additionally, three different spectral pre-processing techniques were utilized, namely the continuum removal, the absorbance transformation, and the first derivative. Following the removal of outliers using the Mahalanobis distance in the first 5 principal components of the spectra (accounting for 99.8% of the variance), a five-fold cross-validation experiment was considered for all 12 datasets. Statistical comparisons were conducted on the results, which indicate that the Cubist algorithm outperforms PLSR, while the most informative transformation is the first derivative.

  9. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  10. Handbook of soil analysis. Mineralogical, organic and inorganic methods

    Energy Technology Data Exchange (ETDEWEB)

    Pansu, M. [Centre IRD, 34 - Montpellier (France); Gautheyrou, J.

    2006-07-01

    This handbook is a reference guide for selecting and carrying out numerous methods of soil analysis. It is written in accordance with analytical standards and quality control approaches.It covers a large body of technical information including protocols, tables, formulae, spectrum models, chromatograms and additional analytical diagrams. The approaches are diverse, from the simplest tests to the most sophisticated determination methods in the physical chemistry of mineralogical and organic structures, available and total elements, soil exchange complex, pesticides and contaminants, trace elements and isotopes.As a basic reference, it will be particularly useful to scientists, engineers, technicians, professors and students, in the areas of soil science, agronomy, earth and environmental sciences as well as in related fields such as analytical chemistry, geology, hydrology, ecology, climatology, civil engineering and industrial activities associated with soil. (orig.)

  11. Management of soil physical properties of lowland puddled rice soil for sustainable food production

    International Nuclear Information System (INIS)

    Bhagat, R.M.

    2004-01-01

    About 3 billion people who rely on rice as their staple food today will have multiplied to some 4.4 billion by the middle of this century. With rice demand growing at an average rate of about 3 percent annually, 70 percent more rice has to be produced in next 30 years compared to present day production levels. More rice has to come from less favorable environments, with less water and nutrients. Agricultural population densities on Asia's rice producing lands are among the highest in the world and continue to increase at a remarkable rate. Rice has widely adapted itself: to the hot Australian and Egyptian deserts, to the cool Himalayan foothills of Nepal. Hill tribes in Southeast Asia plant it on slash-and-burned forest slopes; that's upland rice. However, low lying areas in Asia, which are subject to uncontrolled flooding, are home to more than 100 million poor farmers. Puddling or wet tillage in rice, decreases total soil porosity only slightly, but markedly changes porosity distribution with both storage and residual porosity increasing at the expanse of transmission porosity. Soil texture plays an important role in soil water retention following soil disturbance. Cracking pattern of the soils is studied after six years of different levels of regular addition of residue. Cracking pattern at a soil surface affects the hydrodynamic properties of soil. Cracking extends the soil-air interface into the soil profile and thereby may increase the moisture loss through evaporation

  12. Soil organic matter degradation and enzymatic profiles of intertidal and subaqueous soils

    Science.gov (United States)

    Ferronato, Chiara; Marinari, Sara; Bello, Diana; Vianello, Gilmo; Trasar-Cepeda, Carmen; Vittori Antisari, Livia

    2017-04-01

    The interest on intertidal and subaqueous soils has recently arisen because of the climate changes forecasts. The preservation of these habitats represents an important challenge for the future of humanity, because these systems represent an important global C sink since soil organic matter (SOM) on intertidal and subaqueous soils undergoes very slow degradation rates due to oxygen limitation. Publications on SOM cycle in saltmarshes are very scarce because of the difficulties involved on those studies i.e. the interaction of many abiotic and biotic factors (e.g., redox changes, water and bio-turbation processes, etc) and stressors (e.g., salinity and anoxia). However, saltmarshes constitute an unique natural system to observe the influence of anoxic conditions on SOM degradation, because the tide fluctuations on the soil surface allow the formation of provisionally or permanently submerged soils. With the aim to investigate the quality of SOM in subaqueous soils, triplicates of subaqueous soils (SASs), intertidal soils (ITSs) and terrestrial soils (TESs) were collected in the saltmarshes of the Baiona Lagoon (Northern Italy) and classified according to their pedogenetic horizons. The SOM quality on each soil horizon was investigated by quantifying SOM, total and water-soluble organic carbon (TOC, WSC) and microbial biomass carbon (MBC). Given the contribution of soil enzymes to the degradation of SOM, some enzymatic assays were also performed. Thereafter, soil classification and humus morpho-functional classification were used to join together similar soil profiles to facilitate the description and discussion of results. Soils were ranked as Aquent or Wassent Entisols, with an A/AC/C pedosequence. SOM, TOC and MBC were statistically higher in A than in AC and C horizons. Among the A horizons, ITSs were those showing the highest values for these parameters (11% TOC, 1.6 mg kg-1 MBC, 0.9 mg kg-1 WSC). These results, combined with the morpho-functional classification

  13. Differences in soil quality between organic and conventional farming over a maize crop season

    Science.gov (United States)

    Ferreira, Carla; Veiga, Adelcia; Puga, João; Kikuchi, Ryunosuke; Ferreira, António

    2017-04-01

    Land degradation in agricultural areas is a major concern. The large number of mechanical interventions and the amount of inputs used to assure high crop productivity, such as fertilizers and pesticides, have negative impacts on soil quality and threaten crop productivity and environmental sustainability. Organic farming is an alternative agriculture system, based on organic fertilizers, biological pest control and crop rotation, in order to mitigate soil degradation. Maize is the third most important cereal worldwide, with 2008 million tons produced in 2013 (IGN, 2016). In Portugal, 120000 ha of arable land is devoted to maize production, leading to annual yields of about 930000 ton (INE, 2015). This study investigates soil quality differences in maize farms under organic and conventional systems. The study was carried out in Coimbra Agrarian Technical School (ESAC), in central region of Portugal. ESAC campus comprises maize fields managed under conventional farming - Vagem Grande (32 ha), and organic fields - Caldeirão (12 ha), distancing 2.8 km. Vagem Grande has been intensively used for grain maize production for more than 20 years, whereas Caldeirão was converted to organic farming in 2008, and is being used to select regional maize varieties. The region has a Mediterranean climate. The maize fields have Eutric Fluvisols, with gentle slopes (analyses. Additional soil samples were also collected with soil ring samplers (137 cm3) for bulk density analyses after sowing. Surface water infiltration was also measured with tension infiltrometer (membrane of 20cm), using different tensions (0 cm, -3cm, -6 cm e -15cm). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number and diversity of earthworms were also measured at the surface (0-20cm), through extraction, and at the subsurface (>20cm), using mustard solution.

  14. Soil organic matter on citrus plantation in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    Citrus plantations in Eastern Spain are the main crop and Valencia region is the largest world exporter. The traditional plantation are located on flood irrigated areas and the new plantation are located on slopes were drip irrigation is the source of the wetting. It has been demonstrate that the citrus plantations contribute to high erosion rates on slopes (Cerdà et al., 2009b) as it is usual on agriculture land (Cerdà et al., 2009a), but when organic farming is present the soil erosion is much lower (Cerdà and Jurgensen, 2008; Cerdà et al., 2009; Cerdà and Jurgensen, 2011). This is a worldwide phenomenon (Wu et al., 2007; Wu et al., 2011; Xu et al., 2010; Xu et al., 2012a; Xu et al., 2012b), which are a key factor of the high erosion rates in rural areas (García Orenes et al., 2009: García Orenes et al., 20010; García Orenes et al., 2012; Haregewyn et al., 2013; Zhao et al., 2013). The key factor of the contrasted response of soils to the rain in citrus is the organic matter cover. This is why the Soil Erosion and Degradation Research Team developed a survey to determine the soil erosion rates on citrus orchards under different managements. A hundred of samples were collected in a citrus plantation on slope under conventional management (Chemical management), one on organic farming, one on traditional flood irrigated organic farming and one on traditional chemical flooding farm. The organic farming soils were treated with 10000 Kg ha-1 of manure yearly. The results show that the mean soil organic matter content was 1.24 %, 3.54%, 5,43% and 2.1% respectively, which show a clear impact of organic farming in the recovery of the soil organic matter. meanwhile the on the slopes and the flood-irrigated soils are Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Cerdà, A., Flanagan, D.C., le Bissonnais

  15. Where do organic chemicals found in soil systems come from

    International Nuclear Information System (INIS)

    Dragun, J.; Mason, S.A.; Barkach, J.H.

    1991-01-01

    Today's regulatory climate encourages the private sector to assess the environmental condition of their facilities. An environmental assessment often includes the collection of soil samples. Despite the trend to obtain reams of numbers to show the presence of chemicals, many misconceptions exist among environmental scientists and engineers regarding the interpretation of those numbers. The presence of organic chemicals in soil may or may not be problematic. This depends primarily upon the source. If an industrial point source is responsible for the spill or bulk release, then remedial activity usually ensues. However, if the source is not an industrial release, then remedial activity may not be required. This paper will briefly discuss the sources, other than industrial point sources, responsible for the presence of organic chemicals in soil systems

  16. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  17. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    Science.gov (United States)

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-06

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.

  18. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    Science.gov (United States)

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  19. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    Science.gov (United States)

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  20. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    NARCIS (Netherlands)

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover

  1. Evaluation of the soil organic carbon, nitrogen and available ...

    African Journals Online (AJOL)

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  2. The energetic and chemical signatures of persistent soil organic matter

    DEFF Research Database (Denmark)

    Barré, Pierre; Plante, Alain F.; Cecillon, Lauric

    2016-01-01

    A large fraction of soil organic matter (OM) resists decomposition over decades to centuries as indicated by long radiocarbon residence times, but the mechanisms responsible for the long-term (multi-decadal) persistence are debated. The current lack of mechanistic understanding limits our ability...

  3. Mechanistic modelling of the vertical soil organic matter profile

    NARCIS (Netherlands)

    Braakhekke, M.C.

    2014-01-01

    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes

  4. Storage and turnover of organic matter in soil

    Energy Technology Data Exchange (ETDEWEB)

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  5. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils

    International Nuclear Information System (INIS)

    Yang, Y.; Zhang, N.; Xue, M.; Tao, S.

    2010-01-01

    The knowledge on the distribution of hydrophobic organic contaminants in soils can provide better understanding for their fate in the environment. In the present study, the n-butanol extraction and humic fractionation were applied to investigate the impact of SOM on the distribution of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 80.5%-94.8% of the target PAHs could be extracted by n-butanol and 63.1%-94.6% of PAHs were associated with fulvic acid (FA). Concentrations of un-extracted PAHs increased significantly with the increasing soil organic matter (SOM), however, such an association was absent for the extractable fractions. The results suggested that the sequestration played a critical role in the accumulation of PAHs in soils. SOM also retarded the diffusion of PAHs into the humin fractions. It implied that sequestration in SOM was critical for PAH distribution in soils, while the properties of PAH compounds also had great influences. - Soil organic matter played an important role in the distribution of PAHs in soils through sequestration.

  6. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  7. Sustainable Agriculture Evaluation for Red Soil Hill Region of Southeast China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qi-Guo; XU Meng-Jie

    2004-01-01

    Agricultural sustainability for economic development is important and a complex issue throughout the world; however,it is difficult to synthetically evaluate its use in the policy making process. The objective of this study was to evaluate sustainable agriculture in the red soil hill region of Southeast China through a newly proposed method combining four separate sub-systems: regional population (P), resource (R), environmental (E), and socio-economic (S). This new index system was proposed to appraise synthetically the agricultural sustainability of the red soil hill region from 1988 to 1996 with a two-step method assessing: a) the agricultural sustainability in each province independently and b) the relative sustainability of each province to the whole region. The first step only provided a development trend for each province based on its original situation, while the second step provided additional information on the comparative status of each province in agricultural development to the region as a whole. Higher index scores were found for the economy and resource categories denoting improvement. However, lower scores in the environment category indicated the improvement was achieved at the cost of deteriorating ecological surroundings due to an increasing population that demanded more from the agro-ecosystem and put heavier pressures on it. Results also showed that water and soil losses in this region were the major obstacles encountered in sustainable agriculture development. The assessment results were verified when compared with results from another method. This suggested that the new assessment system was reliable and credible in evaluating agricultural sustainability on a regional scale.

  8. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    Science.gov (United States)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  9. New findings and setting the research agenda for soil and water conservation for sustainable land management

    Science.gov (United States)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  10. How the Organic Food System Supports Sustainable Diets and Translates These into Practice.

    Science.gov (United States)

    Strassner, Carola; Cavoski, Ivana; Di Cagno, Raffaella; Kahl, Johannes; Kesse-Guyot, Emmanuelle; Lairon, Denis; Lampkin, Nicolas; Løes, Anne-Kristin; Matt, Darja; Niggli, Urs; Paoletti, Flavio; Pehme, Sirli; Rembiałkowska, Ewa; Schader, Christian; Stolze, Matthias

    2015-01-01

    Organic production and consumption provide a delineated food system that can be explored for its potential contribution to sustainable diets. While organic agriculture improves the sustainability performance on the production side, critical reflections are made on how organic consumption patterns, understood as the practice of people consuming significant amounts of organic produce, may also be taken as an example for sustainable food consumption. The consumption patterns of regular organic consumers seem to be close to the sustainable diet concept of FAO. Certain organic-related measures might therefore be useful in the sustainability assessment of diets, e.g., organic production and organic consumption. Since diets play a central role in shaping food systems and food systems shape diets, the role of organic consumption emerges as an essential topic to be addressed. This role may be based on four important organic achievements: organic agriculture and food production has a definition, well-established principles, public standards, and useful metrics. By 2015, data for organic production and consumption are recorded annually from more than 160 countries, and regulations are in force in more than 80 countries or regions. The organic food system puts the land (agri-cultura) back into the diet; it is the land from which the diet in toto is shaped. Therefore, the organic food system provides essential components of a sustainable diet.

  11. How the Organic Food System Supports Sustainable Diets and Translates These into Practice

    Science.gov (United States)

    Strassner, Carola; Cavoski, Ivana; Di Cagno, Raffaella; Kahl, Johannes; Kesse-Guyot, Emmanuelle; Lairon, Denis; Lampkin, Nicolas; Løes, Anne-Kristin; Matt, Darja; Niggli, Urs; Paoletti, Flavio; Pehme, Sirli; Rembiałkowska, Ewa; Schader, Christian; Stolze, Matthias

    2015-01-01

    Organic production and consumption provide a delineated food system that can be explored for its potential contribution to sustainable diets. While organic agriculture improves the sustainability performance on the production side, critical reflections are made on how organic consumption patterns, understood as the practice of people consuming significant amounts of organic produce, may also be taken as an example for sustainable food consumption. The consumption patterns of regular organic consumers seem to be close to the sustainable diet concept of FAO. Certain organic-related measures might therefore be useful in the sustainability assessment of diets, e.g., organic production and organic consumption. Since diets play a central role in shaping food systems and food systems shape diets, the role of organic consumption emerges as an essential topic to be addressed. This role may be based on four important organic achievements: organic agriculture and food production has a definition, well-established principles, public standards, and useful metrics. By 2015, data for organic production and consumption are recorded annually from more than 160 countries, and regulations are in force in more than 80 countries or regions. The organic food system puts the land (agri-cultura) back into the diet; it is the land from which the diet in toto is shaped. Therefore, the organic food system provides essential components of a sustainable diet. PMID:26176912

  12. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2000-06-01

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  13. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    Science.gov (United States)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  14. Dissolved Organic Carbon in Leachate after Application of Granular and Liquid N-P-K Fertilizers to a Sugarcane Soil.

    Science.gov (United States)

    Pittaway, P A; Melland, A R; Antille, D L; Marchuk, S

    2018-05-01

    The progressive decline of soil organic matter (SOM) threatens the sustainability of arable cropping worldwide. Residue removal and burning, destruction of protected microsites, and the acceleration of microbial decomposition are key factors. Desorption of SOM by ammonia-based fertilizers from organomineral complexes in soil may also play a role. A urea- and molasses-based liquid fertilizer formulation and a urea-based granular formulation were applied at recommended and district practice rates, respectively, to soil leaching columns, with unfertilized columns used as controls. The chemistry of leachate collected from the columns, filled with two sandy soils differing in recent cropping history, was monitored over eight successive wet-dry drainage events. The pH, electrical conductivity, and concentration and species of N in leachate was compared with the concentration and aromaticity of dissolved organic C (DOC) to indicate if salt solutions derived from the two fertilizers extracted SOM from clay mineral sites. Cation exchange capacity and exchangeable cations in the soil were monitored at the start and end of the trial. Fertilizer application increased DOC in leachate up to 40 times above the control, but reduced aromaticity (specific ultraviolet light absorbance at 253.7 nm). Dissolved organic C was linearly proportional to leachate NH-N concentration. Exchangeable Ca and Mg in soil from fertilized columns at the end of both trials were significantly lower than in unfertilized soil, indicating that ammonium salt solutions derived from the fertilizers extracted cations and variably charged organic matter from soil mineral exchange sites. Desorption of organic matter and divalent cations from organomineral sites by ammonia-based fertilizers may be implicated in soil acidification. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Effects of Pig Manure Organic Fertilizer Application on Available Nutrient Content and Soil Aggregate Distribution in Fluvo-aquic Soil

    Directory of Open Access Journals (Sweden)

    SHI Wen-xuan

    2017-08-01

    Full Text Available This paper focuses on environmental risk caused by livestock manure disorderly discharged from integrated livestock and poultry industry. 2-year pot experiment was carried out to study the effects of pig manure organic fertilizer on fluvo-aquic soil organic carbon, available nutrient content and soil aggregate distribution, which designed in 5 levels of organic fertilizer application(0, 6.7, 13.3, 26.7, 40.0 g·kg-1 soil. The results showed that the organic carbon, alkali-hydrolyzable nitrogen, available P and available K contents in soil were enhanced with organic fertilizer application increasing, and the indicators of soil were increased significantly in second year, such as organic carbon content was 2.7%~54.0% higher than that of the first year, alkali-hydrolyzable nitrogen content was higher 6.7%~34.6%, available P content was higher 36.8%~159.5% and available K content was higher 20.3%~35.7%. There was a significant linear relationship between soil organic carbon content and external organic carbon input. Organic fertilizer application could significantly improve lettuce yield, and it had a significant effect. The soil micro-aggregate contents for 0.053~0.25 mm and 0.5 mm soil macro-aggregates were increased with organic fertilizer application increasing. Organic fertilizer application could promote soil macro-aggregates formation, when the pig manure organic fertilizer applied 40.0 g·kg-1 soil, the contents of >0.25 mm soil aggregates reached maximum, and also the mean weight diameter(MWD and geometric average diameter(GWD of soil aggregates were higher than that of other treatments, the soil agglomeration became more stronger and the soil structure became more stable.

  16. Bioavailability and biodegradation kinetics of organics in soil

    International Nuclear Information System (INIS)

    Tabak, H.H.; Govind, R.; Gao, Chao; Kim, In-soo; Lai, Lei

    1992-01-01

    As EPA begins to remediate Superfund sites using permanent treatment technologies, such as bioremediation, a fundamental understanding of the kinetics and the factors that control the rate of bioremediation will be required. Biological treatment technologies hold considerable promise for safe, economical, on-site treatment of toxic wastes. A variety of biological treatment systems designed to degrade or detoxify environmental contaminants are currently being developed and marketed. Knowledge of the kinetics of biodegradation is essential to the evaluation of the persistence of most organic pollutants in soil. Furthermore, measurement of biodegradation kinetics can provide useful insights into the favorable range of the important environmental parameters for improvement of the microbiological activity and consequently the enhancement of contaminant biodegradation. A major effort is currently underway to clean up aquifers and soils that are contaminated by organic chemicals, which has generated increased interest in the development of in situ bioremediation technologies. Although considerable data exists for rates of biodegradation in aquatic environments, there is little information on biodegradation kinetics in soil matrices, where irreversible binding to the soil phase may limit the chemicals bioavailability and ultimate degradation. Knowledge on biodegradation kinetics in soil environments can facilitate decisions on the efficacy of in situ bioremediation. 6 refs., 3 figs., 2 tabs

  17. Use of carbon-14 in soil organic matter studies

    International Nuclear Information System (INIS)

    Vimal, O.P.; Kamath, M.B.

    1974-01-01

    Despite a great deal of research work on various aspects of soil organic matter, there are many gaps in the knowledge of the process of humus formation. These limitations arise mainly from the complex and heterogenous nature of soil humus substances, analytical problems in separating the fresh and decomposable materials from the old stabilized true humus substances and the lack of a clear understanding of the chemical structure of the humic acid molecule. During recent years, the use of carbon-14 has helped to trace within soil, transformation of a number of metabolites upto the point where they turn into humus. These studies have changed the concepts of the formation and stability of soil humus substances, their colloidal chemical properties and the uptake of organomolecules by plant roots. The present paper presents a synoptic view of the use of radiocarbon in studying the kinetics of humification, nature of precursors in humic acid formation, turnover of soil organic matter and the direct effects of humus substances on plant growth. (author)

  18. CONSEQUENCES OF ORGANIC FARMING ON THE SUSTAINABLE SOCIETY - ROMANIA AND EU

    Directory of Open Access Journals (Sweden)

    BURJA CAMELIA

    2017-02-01

    Full Text Available A major trend adopted by the European Union member countries that are making efforts for sustainable development is the development of organic farming. The article studies the influences generated by the organic farming development in the EU countries, in the period 2006-2014, in terms of sustainable society. The statistical analysis is based on the use of certain variables that have a significant influence on the components of sustainable society. The identification of estimators for panelling data showed the favourable consequences of increasing the organic area for many indicators underpinning the economic, environmental and human wellbeing. The results confirm that the organic farming is a viable alternative to the conventional agriculture for raising the quality of life. The paper essentially quantifies the multiple effects of the organic farming for sustainable development and demonstrates that one of the directions to accelerate the development of the European economy on a sustainable basis is to stimulate the organic farming.

  19. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  20. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2011-05-01

    Full Text Available Precise determination of changes in organic carbon (OC stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD, and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1 time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2 the contribution of different sources of uncertainties to OC stocks; (3 the effect of OC stock calculation on mass rather than volume base for change detection; and (4 the potential use of pedotransfer functions (PTF for estimating BD in repeated inventories.

    The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD with 100 sampling points (105 ± 28 gC m−2 for the upper 10 cm of the soil than grassland and forest sites (206 ± 64 and 246 ± 64 gC m−2 for 0–10 cm, respectively. Expected general trends in soil OC indicate that changes could be detectable after 2–15 yr with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to

  1. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  2. Biochar effect on the mineralization of soil organic matter

    Directory of Open Access Journals (Sweden)

    Sander Bruun

    2012-05-01

    Full Text Available The objective of this work was to verify whether the addition of biochar to the soil affects the degradation of litter and of soil organic matter (SOM. In order to investigate the effect of biochar on the mineralization of barley straw, soil was incubated with 14C-labelled barley straw with or without unlabelled biochar. To investigate the effect of straw on the mineralization of biochar, soil was incubated with 14C-labelled biochar with or without straw. In addition, to investigate the effect of biochar on old SOM, a soil labelled by applying labelled straw 40 years ago was incubated with different levels of biochar. All experiments had a control treatment, without any soil amendment. The effect of biochar on the straw mineralization was small and nonsignificant. Without biochar, 48±0.2% of the straw carbon was mineralized within the 451 days of the experiment. In comparison, 45±1.6% of C was mineralized after biochar addition of 1.5 g kg-1. In the SOM-labelled soil, the organic matter mineralized more slowly with the increasing doses of biochar. Biochar addition at 7.7 g kg-1 reduced SOM mineralization from 6.6 to 6.3%, during the experimental period. The addition of 15.5 g kg-1 of biochar reduced the mineralized SOM to 5.7%. There is no evidence of increased degradation of either litter or SOM due to biochar addition; consequently, there is no evidence of decreased stability of SOM.

  3. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    Science.gov (United States)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    It has been demonstrated previously that hydrocarbon addition to soil provokes soil organic matter priming (Zyakun et al., 2011). It has further been shown that petroleum hydrocarbons deposit to roadside soils bound to fine mineral particles and together with vehicle spray (Mykhailova et al., 2014), and that hydrocarbon concentrations decrease to safe levels within the first 15 m from the road, reaching background concentrations at 60-100 m distance (Mykhailova et al., 2013). It was the aim of this study to (I) identify the bioavailability of different petroleum hydrocarbon fractions to degradation and to (II) identify the native (i.e. pedogenic) C fraction affected by hydrocarbon-mediated soil organic matter priming during decay. To address this aim, we collected soil samples at distances from 1 to 100 m (sampling depth 15 cm) near the Traktorostroiteley avenue and the Pushkinskaya street in Kharkov, as well as near the country road M18 near Kharkov, Ukraine. The roads have been under exploitation for several decades, so microbial adaptation to enhanced hydrocarbon levels and full expression of effects could be assumed. The following C fractions were quantified using 13C-CP/MAS-NMR: Carbohydrates, Proteins, Lignin, Aliphates, Carbonyl/Carboxyl as well as black carbon according to Nelson and Baldock (2005). Petroleum hydrocarbons were determind after hexane extraction using GC-MS and divided into a light fraction (chain-length C27, Mykhailova et al., 2013). Potential soil respiration was determined every 48 h by trapping of CO2 evolving from 20 g soil in NaOH at 20 ° C and at 60% of the maximum water holding capacity and titration after a total incubation period of 4 weeks in the lab. It was found that soil respiration positively correlated with the ratio of the light fraction to the sum of medium and heavy fractions of petroleum hydrocarbons, which indicates higher biodegradation primarily of the light petroleum hydrocarbon fraction. Further, soil respiration was

  4. Substantial soil organic carbon retention along floodplains of mountain streams

    Science.gov (United States)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  5. Lead sequestration and species redistribution during soil organic matter decomposition

    Science.gov (United States)

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  6. Land use and soil organic matter in South Africa 1: A review on spatial variability and the influence of rangeland stock production

    Directory of Open Access Journals (Sweden)

    Pearson N.S. Mnkeni

    2011-05-01

    Full Text Available Degradation of soil as a consequence of land use poses a threat to sustainable agriculture in South Africa, resulting in the need for a soil protection strategy and policy. Development of such a strategy and policy require cognisance of the extent and impact of soil degradation processes. One of the identified processes is the decline of soil organic matter, which also plays a central role in soil health or quality. The spatial variability of organic matter and the impact of grazing and burning under rangeland stock production are addressed in this first part of the review. Data from uncoordinated studies showed that South African soils have low organic matter levels. About 58% of soils contain less than 0.5% organic carbon and only 4% contain more than 2% organic carbon. Furthermore, there are large differences in organic matter content within and between soil forms, depending on climatic conditions, vegetative cover, topographical position and soil texture. A countrywide baseline study to quantify organic matter contents within and between soil forms is suggested for future reference. Degradation of rangeland because of overgrazing has resulted in significant losses of soil organic matter, mainly as a result of lower biomass production. The use of fire in rangeland management decreases soil organic matter because litter is destroyed by burning. Maintaining or increasing organic matter levels in degraded rangeland soils by preventing overgrazing and restricting burning could contribute to the restoration of degraded rangelands. This restoration is of the utmost importance because stock farming uses the majority of land in South Africa.

  7. Aggregate and soil organic carbon dynamics in South Chilean Andisols

    Directory of Open Access Journals (Sweden)

    D. Huygens

    2005-01-01

    Full Text Available Extreme sensitivity of soil organic carbon (SOC to climate and land use change warrants further research in different terrestrial ecosystems. The aim of this study was to investigate the link between aggregate and SOC dynamics in a chronosequence of three different land uses of a south Chilean Andisol: a second growth Nothofagus obliqua forest (SGFOR, a grassland (GRASS and a Pinus radiata plantation (PINUS. Total carbon content of the 0-10cm soil layer was higher for GRASS (6.7 kg C m-2 than for PINUS (4.3 kg C m-2, while TC content of SGFOR (5.8 kg C m-2 was not significantly different from either one. High extractable oxalate and pyrophosphate Al concentrations (varying from 20.3-24.4 g kg-1, and 3.9-11.1 g kg-1, respectively were found in all sites. In this study, SOC and aggregate dynamics were studied using size and density fractionation experiments of the SOC, δ13C and total carbon analysis of the different SOC fractions, and C mineralization experiments. The results showed that electrostatic sorption between and among amorphous Al components and clay minerals is mainly responsible for the formation of metal-humus-clay complexes and the stabilization of soil aggregates. The process of ligand exchange between SOC and Al would be of minor importance resulting in the absence of aggregate hierarchy in this soil type. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS (respectively 0.495, 0.266 and 0.196 g CO2-Cm-2d-1 for the top soil layer. In contrast, incubation experiments of isolated macro organic matter fractions gave opposite results, showing that the recalcitrance of the SOC decreased in another order: PINUS>SGFOR>GRASS. We deduced that electrostatic sorption processes and physical protection of SOC in soil aggregates were the main processes determining SOC stabilization. As a result, high aggregate carbon concentrations, varying from 148 till 48 g kg-1, were encountered for all land use

  8. Predicting long-term organic carbon dynamics in organically amended soils using the CQESTR model

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, Cesar; Polo, Alfredo [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Ciencias Agrarias; Gollany, Hero T. [Columbia Plateau Conservation Research Center, Pendleton, OR (United States). USDA-ARS; Baldoni, Guido; Ciavatta, Claudio [Bologna Univ. (Italy). Dept. of Agroenvironmental Sciences and Technologies

    2012-04-15

    Purpose: The CQESTR model is a process-based C model recently developed to simulate soil organic matter (SOM) dynamics and uses readily available or easily measurable input parameters. The current version of CQESTR (v. 2.0) has been validated successfully with a number of datasets from agricultural sites in North America but still needs to be tested in other geographic areas and soil types under diverse organic management systems. Materials and methods: We evaluated the predictive performance of CQESTR to simulate long-term (34 years) soil organic C (SOC) changes in a SOM-depleted European soil either unamended or amended with solid manure, liquid manure, or crop residue. Results and discussion: Measured SOC levels declined over the study period in the unamended soil, remained constant in the soil amended with crop residues, and tended to increase in the soils amended with manure, especially with solid manure. Linear regression analysis of measured SOC contents and CQESTR predictions resulted in a correlation coefficient of 0.626 (P < 0.001) and a slope and an intercept not significantly different from 1 and 0, respectively (95% confidence level). The mean squared deviation and root mean square error were relatively small. Simulated values fell within the 95% confidence interval of the measured SOC, and predicted errors were mainly associated with data scattering. Conclusions: The CQESTR model was shown to predict, with a reasonable degree of accuracy, the organic C dynamics in the soils examined. The CQESTR performance, however, could be improved by adding an additional parameter to differentiate between pre-decomposed organic amendments with varying degrees of stability. (orig.)

  9. Determination of total organic phosphorus in samples of mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1962-01-01

    Full Text Available In this paper some observations on the estimation of organic phosphorus in mineral soils are reported. The fact is emphasized that the accuracy of all the methods available is relatively poor. Usually, there are no reasons to pay attention to differences less than about 20 ppm. of organic P. Analyses performed on 345 samples of Finnish mineral soils by the extraction method of MEHTA et. al. (10 and by a simple procedure adopted by the author (successive extractions with 4 N H2SO4 and 0.5 N NaOH at room temperature in the ratio of 1 to 100 gave, on the average, equal results. It seemed to be likely that the MEHTA method removed the organic phosphorus more completely than did the less vigorous method, but in the former the partial hydrolysis of organic phosphorus compounds tends to be higher than in the latter. An attempt was made to find out whether the differences between the respective values for organic phosphorus obtained by an ignition method and the simple extraction method could be connected with any characteristics of the soil. No correlation or only a low correlation coefficient could be calculated between the difference in the results of these two methods and e. g. the pH-value, the content of clay, organic carbon, aluminium and iron soluble in Tamm’s acid oxalate, the indicator of the phosphate sorption capacity, or the »Fe-bound» inorganic phosphorus, respectively. The absolute difference tended to increase with an increase in the content of organic phosphorus. For the 250 samples of surface soils analyzed, the ignition method gave values which were, on the average, about 50 ppm. higher than the results obtained by the extraction procedure. The corresponding difference for the 120 samples from deeper layers was about 20 ppm of organic P. The author recommends, for the present, the determination of the total soil organic phosphorus as an average of the results obtained by the ignition method and the extraction method.

  10. Studying soil organic carbon in Mediterranean soils. Different techniques and the effects of land management and use, climatic and topographic conditions, organic waste addition

    Science.gov (United States)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    Soil organic carbon (SOC) is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. The ability of soil to store SOC depends to a great extent on climate and some soil properties, in addition to the cultivation system in agricultural soils. Soils in Mediterranean areas are very poor in organic matter and are exposed to progressive degradation processes. Therefore, a lot of actions are conducted to improve soil quality and hence mitigate the negative environmental and agronomic limitations of these soils. Improved cultivation systems (conversion of cropland to pastoral and forest lands, conventional tillage to conservation tillage, no manure use to regular addition of manure) have been introduced in recent years, increasing the contents in SOC and therefore, enhancing the soil quality, reducing soil erosion and degradation, improving surface water quality and increasing soil productivity. Moreover, the organic waste addition to the soils is especially useful in Mediterranean regions, where the return of organic matter to soil not only does it help soils store SOC and improve soil structure and soil fertility but also it allows to reuse a wide range of agro-industrial wastes.

  11. Sustainable stabilization of sulfate-bearing soils with expansive soil-rubber technology.

    Science.gov (United States)

    2013-03-01

    The beneficial use of scrap tire rubber mixed with expansive soils is of interest to civil engineering : applications since the swell percent and the swell pressure can be potentially reduced with no deleterious : effect to the shear strength of the ...

  12. STRATEGIES FOR ORGANIZING JOBS IN TERMS OF SUSTAINABLE DEVELOPMENT OF ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    OPREA MIHAELA CIOPI

    2014-05-01

    Full Text Available In the production process, the objectives of sustainable development are: the protecting human health and the environment, the technological restructuring and maintaining the risks under control, waste management, reducing losses. On this line, an important role have the strategies of management that aimed at better organizing of jobs, for assuring labor safety and ergonomics conditions, indicating priorities, understanding the performance indicators, better visibility of workflow and support, using the standards and increasing the visual control, providing feedback. To achieve these objectives can be successfully implemented a number of strategies such as: Kaizen, 5S and Maintenance autonomous, which will be developed in this paper

  13. Indonesian Private University Lecturer Performance Improvement Model to Improve a Sustainable Organization Performance

    Science.gov (United States)

    Suryaman

    2018-01-01

    Lecturer performance will affect the quality and carrying capacity of the sustainability of an organization, in this case the university. There are many models developed to measure the performance of teachers, but not much to discuss the influence of faculty performance itself towards sustainability of an organization. This study was conducted in…

  14. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  15. Soil Decomposition of Added Organic C in an Organic Farming System

    Science.gov (United States)

    Kpomblekou-A, Kokoasse; Sissoko, Alassane; McElhenney, Wendell

    2015-04-01

    In the United States, large quantities of poultry waste are added every year to soil under organic management. Decomposition of the added organic C releases plant nutrients, promotes soil structure, and plays a vital role in the soil food web. In organic agriculture the added C serves as the only source of nutrients for plant growth. Thus understanding the decomposition rates of such C in organic farming systems are critical in making recommendations of organic inputs to organic producers. We investigated and compared relative accumulation and decomposition of organic C in an organic farming system trial at the George Washington Carver Agricultural Experiment Station at Tuskegee, Alabama on a Marvyn sandy loam (fine-loamy, kaolinitic, thermic, Typic Kanhapludults) soil. The experimental design was a randomized complete block with four replicates and four treatments. The main plot (54' × 20') was split into three equal subplots to plant three sweet potato cultivars. The treatments included a weed (control with no cover crop, no fertilizer), crimson clover alone (CC), crimson clover plus broiler litter (BL), and crimson clover plus NPK mineral fertilizers (NPK). For five years, late in fall, the field was planted with crimson clover (Trifolium incarnatum L) that was cut with a mower and incorporated into soil the following spring. Moreover, broiler litter (4.65 Mg ha-1) or ammonium nitrate (150 kg N ha-1), triple super phosphate (120 kg P2O5 ha-1), and potassium chloride (160 kg K2O ha-1) were applied to the BL or the NPK plot and planted with sweet potato. Just before harvest, six soil samples were collected within the two middle rows of each sweet potato plot with an auger at incremental depths of 0-1, 1-2, 2-3, 3-5, 5-10, and 10-15 cm. Samples from each subplot and depth were composited and mixed in a plastic bag. The samples were sieved moist through a

  16. The contribution of Japanese Soil Science Societies to scientific knowledge, education and sustainability: Good practices in the International Year of Soils 2015 towards the International Decade of Soils.

    Science.gov (United States)

    Kosaki, Takashi; Matoh, Toru; Inubushi, Kazuyuki; Sakurai, Katsutoshi

    2017-04-01

    The soil science community in Japan includes ca. 15,000 individuals from a variety of sectors, i.e. research, education, extension, business, national and local government, practitioners, non-governmental or non-profit organizations, etc., who have mostly (multi-)membership(s) in some of the academic societies. Among those societies, the Japanese Society of Soil Science and Plant Nutrition, the Japanese Society of Soil Microbiology and the Japanese Society of Pedology played a leading role in the promotion of the International Year of Soils 2015. The activities, many of which were jointly organized and executed by the above three, can be summarized as follows; Scientific symposiums/workshops not only within the societies but together with other disciplines such as geosciences, quaternary research, biogeochemistry, ecology, biosciences, geotechnology, etc. in national as well as international gatherings, Symposiums, (mobile) exhibitions, photo contests, science cafes, talk shows, field days, agricultural fairs, edutainment programs for school children, etc. for promoting the public awareness of soil and soil science, Publication of the books and booklets on the topics of soils, soil science, soil and environment (and/or food, life, human security, etc.), targeting the moderately educated public, Articles in selected newspapers, Distribution or sale of the novelty/memorial goods and items, e.g. soil globe, logo stickers, specially brewed Sake wines, etc. Translation of "Vienna Soil Declaration" of the IUSS into Japanese language and its distribution to the public, and Scientific and action proposal and its international dispatch of "The need to reinforce soil science research and the information basis to respond to both gradual and sudden changes in our environment" together with the Science Council of Japan. Scientific forums and gatherings as symposiums and workshops with other disciplines were successful and satisfied by most of the participants. Those for the

  17. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  18. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    Science.gov (United States)

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  19. Knowledge, conservation and sustainable use of soil: physic and morphological aspects

    Directory of Open Access Journals (Sweden)

    Marcello Pagliai

    2009-10-01

    Full Text Available The main aspects of environmental degradation can be ascribed to soil (erosion, soil compaction, soil crusting, deterioration of soil structure, flooding, losses of organic matter, salinisation, onsite and offsite damages, etc. following the impact of human activities. Since agricultural conventional production systems have resulted in excessive erosion and soil degradation, there is need to control and fight such degradation. Scientific results have clearly showed that the agricultural management systems can play an important role in preventing soil degradation provide that appropriate management practices are adopted. Long-term field experiments in different types of soils have shown that alternative tillage systems, like minimum tillage, ripper subsoiling, etc., improve the soil structural quality. The continuous conventional tillage causes a decrease of soil organic matter content that is associated to a decrease of aggregate stability, leading, as a consequence, to the formation of surface crusts, with an increase of runoff and erosion risks. Other aspects of very dangerous soil degradation (erosion in the hilly environments are represented by land levelling and scraping. After levelling, slopes being prepared for plantation (in particularly vineyard are almost always characterised by the presence of large amounts of incoherent earth materials accumulated with scraper. In this vulnerable condition, a few summer storms can easily cause soil losses exceeding 500 Mg ha-1y-1. Moreover, the land levelling and the following soil loss causes drastic alteration of the landscape and loss of the cultural value of soil. Subsoil compaction is strongly under evaluated, even though the presence of a ploughpan at the lower limit of cultivation is largely widespread in the alluvial soils of the plains cultivated by monoculture and it is responsible of the frequent flooding of such plains in occasion of heavy rains concentrated in a short time (rainstorm

  20. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  1. GM organisms threaten organic systems: towards sustainability, coexistence and organic seed

    OpenAIRE

    Boelt, B.; Deleuran, L.C.; Phelps, B.

    2005-01-01

    Until now commercial genetically modified (GM) crops – soy, corn, canola and cotton - and their products have not been successfully segregated from organic or conventional non-GM production systems. Where GM crops are grown, GM contamination may be inevitable. However, physical and legal control measures imposed before the introduction of GM crops may help protect organic standards, supply chain integrity, certification and client confidence, but this is not yet fully tested. IFOAM’s approach...

  2. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe

    NARCIS (Netherlands)

    Creamer, R.C.; Hannula, S.E.; Leeuwen, van J.P.; Stone, D.; Rutgers, M.; Schmelz, R.M.; Ruiter, de P.C.; Bohse Hendriksen, N.; Bolger, T.; Bouffaud, M.L.; Buee, M.; Calvalho, F.; Costa, D.; Dirilgen, T.; Francisco, R.; Griffiths, B.S.; Griffiths, R.; Martin, F.; Martins da Silva, P.; Mendes, S.; Morais, P.V.; Pereira, C.; Philippot, L.; Plassart, P.; Redecker, D.; Römbke, J.; Sousa, J.P.; Wouterse, M.; Lemanceau, P.

    2016-01-01

    Soil organisms are considered drivers of soil ecosystem services (primary productivity, nutrient cycling, carbon cycling, water regulation) associated with sustainable agricultural production. Soil biodiversity was highlighted in the soil thematic strategy as a key component of soil quality. The

  3. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    Science.gov (United States)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  4. Use of stable isotope techniques in soil organic matter studies

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1998-01-01

    Plants differ distinctly in their C-isotopic composition. The largest differences occur between plant species with different photosynthetic pathways. C 3 - and C 4 -plants are differentiated by approximately 1.4% on the δ-scale (approx. -2.7% 13 C versus -1.3% 13 C). Modern elemental analyser - mass spectrometer combinations reach accuracies of at least 0.01% δ 13 C. Therefore, the difference between C 3 and C 4 plants is sufficient to be used for tracer studies. Several investigations of soil organic mater (SOM) turnover under field conditions were undertaken using the fact that the vegetation cover changed between C 3 and C 4 plants. The discrimination between SOM originating from indigenous vegetation (forest, C 3 ) and sugar cane (C 4 ) after 50 years of cropping introducing two SOM compartments of different stability was described. Another example is the change from prairie vegetation (C 4 ) to different C 3 -crops and the evaluation of the carbon origin at or near equilibrium. More recent studies use 15 N-labelled C 4 -plant residues or 13 C-labelled C 3 -plants to elucidate the fate of carbon and nitrogen in soils developed under C 3 -vegetation. Both in situ experiments and laboratory incubations were used to evaluate carbon and nitrogen fluxes from crop residues. Physical fractionation of bulk soil into particle sizes proved to be of advantage to follow short and long-term dynamics of crop residues within SOM. Changes in the natural abundance of 13 C and 15 N within soil profiles can elucidate leaching or mineralization of humic substances. Changes in the natural abundance of stable isotopes are also possible due to the application of organic manures, quantification, however is not easy because of the small isotopic differences between soil and manure carbon and nitrogen. 15 N labelling of soil nitrogen has been widely used in the last two decades to quantify biological nitrogen fixation. Considerable progress has been made due to the isotope dilution

  5. Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    WAHJUNI HARTATI

    2016-01-01

    Full Text Available Abstract. Hartati, Sudarmadji T. 2016. Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia. Nusantara Bioscience 8: 83-88. Post open pit mining may in most cases leave unarable and degraded lands due to heavy soil disturbances and therefore reclamation efforts of such area should be addressed on the revitalization of the soil functions for plant growth. The capability of tropical humid soils, including post open pit mining soils, to support plant growth is largely determined by their organic matter content-nutrient pool, soil aggregation, microbial activity, etc. However, soil organic matter content is, to large extent, governed by the soil clay content which is most likely permanent. This may imply that the soil texture couple with soil organic matter content could be a sound measurement to assess the recovery stages of the mined-out lands in term of soil functions for plant growth. This research was conducted in three sites of reclamation area in Berau, East Kalimantan. Soil texture varied from moderately fine (35-40% clay to fine (40-50% clay and very fine (>50% clay for the BMO, SMO and LMO sites respectively. Soil clay eluviations were found in both of SMO (8 years old revegetation and BMO (>12 years old revegetation sites but not in LMO site. Soil organic matter content ranged from very low (12 and 8 years old revegetation when the organic matter content reaching its maximum. The very fine soil texture does not show clay eluviations process until > 12 years old revegetation even containing the highest organic C content and reaches its maximum at 8-10 years old revegetation.

  6. Test procedure for determining organic matter content in soils : UV-VIS method.

    Science.gov (United States)

    2010-11-01

    The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...

  7. Implementation of the UV-VIS method to measure organic content in clay soils : technical report.

    Science.gov (United States)

    2011-05-01

    The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...

  8. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  9. Uncertainty indication in soil function maps – transparent and easy-to-use information to support sustainable use of soil resources

    Directory of Open Access Journals (Sweden)

    L. Greiner

    2018-05-01

    Full Text Available Spatial information on soil function fulfillment (SFF is increasingly being used to inform decision-making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting biomass production based on soil properties. Such information must be reliable for informed and transparent decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by (1 indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM that are used for soil function assessment (SFA and (2 showing the response of different SFA methods to the propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20 × 20 m together with their uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable uncertainty indications in soil function maps are relevant to enable informed and transparent decisions on the sustainable use of soil

  10. Fractionation and characterization of soil organic carbon during transition to organic farming

    Science.gov (United States)

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  11. Changes in diversity, biomass and abundance of soil macrofauna, Parrotio-Carpinetum forest at organic and semi-organic horizons

    Directory of Open Access Journals (Sweden)

    Masomeh Izadi

    2016-07-01

    Full Text Available Present study evaluates diversity, abundance and biomass of soil macrofauna in organic and semi-organic horizons in Parrotia persica-Carpinus betulus forest in Shast kola area. Totally 70 sample points were randomly selected from organic and semi-organic horizons then sampling was done by a rectangle 100 cm2 area. Soil macrofauna were separated from soil samples by hand sorting and using Berlese funnel then dried at 60°C for 72h and weighted in 0.001 gr. With using taxonomic classification key, thirteen macrofauna orders were identified. Most of abundance of soil macrofauna in both soil horizons were allocated to Millipedes order. Changes in diversity, abundance and biomass of macrofauna in both soil horizons were calculated. The results showed Shannon diversity index, Simpson evenness and Margalef richness indices in semi-organic horizon were more than organic horizon. Abundance and biomass of macrofauna in semi-organic horizon were more than organic horizon.

  12. Current developments in soil organic matter modeling and the expansion of model applications: a review

    International Nuclear Information System (INIS)

    Campbell, Eleanor E; Paustian, Keith

    2015-01-01

    Soil organic matter (SOM) is an important natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystem function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. We conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4) SOM dynamics in deep soil layers; and (5) SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions. (topical review)

  13. Soil organic matter status in forest soils - possible indicators for climate change induced site shifts

    Science.gov (United States)

    Koch, Nadine; Thiele-Bruhn, Sören

    2010-05-01

    The quantity and quality of soil organic matter (SOM) and SOM pools and thus the soil properties related to carbon sequestration and water retention are not constant but exhibit considerable variation through changing climate. In total changes in soil fertility and an increase in plant stress are expected. This is relevant for northwest Europe as well and may have economic and social impacts since functions of forests for wood production, groundwater recharge, soil protection and recreation might be affected. The study is done by comparative investigation of selected sites at four watersheds that represent typical forest stands in the region of Luxembourg and South West Germany. The aim is to identify SOM storage and stability in forest soils and its dependence on site properties and interaction with tree stand conditions. According to state of the art fractionation schemes functional C pools in forest soils and their stabilization mechanisms are investigated. In particular, distribution patterns are determined depending on location, tree stand and climatic conditions. Aim is to identify characteristics of SOM stability through fractionation of SOM according to density, particle size and chemical extractability and their subsequent analytical characterization. So far, reasons about the origin, composition and stabilization mechanisms underlying the different SOM pools are not fully understood. Presented are different patterns of distribution of SOM in relation to land use and site conditions, as well as similarities and differences between the different forest soils and results in addition to passive OM pool, which is mainly responsible for long-term stabilization of carbon in soils. These are aligned with selected general' soil properties such as pH, CEC and texture.

  14. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural