WorldWideScience

Sample records for sustain epigeal insect

  1. Edible Insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    This text provides an important overview of the contributions of edible insects to ecological sustainability, livelihoods, nutrition and health, food culture and food systems around the world. While insect farming for both food and feed is rapidly increasing in popularity around the world, the ro...

  2. The insect cookbook : food for a sustainable planet

    NARCIS (Netherlands)

    Huis, van A.; Gurp, van H.; Dicke, M.

    2014-01-01

    In The Insect Cookbook, two entomologists and a chef make the case for insects as a sustainable source of protein for humans and a necessary part of our future diet. They provide consumers and chefs with the essential facts about insects for culinary use, with recipes simple enough to make at home

  3. Epigeal Fauna and Soil Chemical Attributes in Grazing and Regeneration Areas

    Directory of Open Access Journals (Sweden)

    Leandro Ribeiro Nogueira

    2017-05-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the influence of natural pasture and spontaneous regeneration on soil chemical properties and epigeal fauna community using a secondary Atlantic Forest as reference. The study areas were located in Passa Vinte, Minas Gerais, Brazil. In each study area, pitfall traps were used to sample epigeal fauna in the dry and rainy seasons. Earth samples were collected at a depth of 0-5 cm in the dry and rainy seasons for analysis of chemical attributes. The pasture and regeneration areas showed an overall activity of epigeal fauna and functional groups similar to the forest area. However, the diversity evaluated by the Shannon and Pielou evenness indices and the total richness were lower than the observed in the forest. The best fertility attributes were observed in the forest and pasture areas.

  4. Sensitive indicators of side-effects of pesticides on the epigeal fauna of Arable land

    NARCIS (Netherlands)

    Everts, J.W.

    1990-01-01

    The main objective of the present study was to evaluate the possible impact of pesticides on epigeal arthropods in arable land. It was also envisaged to develop a predictive model for possible undesirable effects of pesticides on the epigeal arthropod fauna using an indicator species from

  5. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  6. SPATIAL VARIABILITY AND VITALITY OF EPIGEOUS TERMITE MOUNDS IN PASTURES OF MATO GROSSO DO SUL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Sandra Santana Lima

    2015-02-01

    Full Text Available Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2, epigeous mounds (nests were georeferenced and analyzed for height, circumference and vitality (inhabited or not. The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality, 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.

  7. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

    Science.gov (United States)

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  8. Soil Physical and Chemical Properties in Epigeal Termite Mounds in Pastures

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT We characterized soil physical and chemical properties and soil organic matter in epigeal termite mounds in pastures to evaluate the changes promoted by termites in comparison to an adjacent area. We selected seven active epigeal termite mounds in the municipality of Seropédica, state of Rio de Janeiro, Brazil. Soil samples were collected from top, center and base positions of each mound, at 0.50 and 1.50 m distance from the base of the mound. We identified individuals of the genus Embiratermes, Velocitermes, and Orthognathotermes. The humin fraction predominated over the humic and fulvic acid fractions both in mounds and adjacent soil. The amount of organic matter and the mineral fractions (mineral-associated organic carbon - MOC varied among builder species. The studied chemical attributes point to a higher concentration of nutrients in the mounds than in the adjacent soil.

  9. Do Epigeal Termite Mounds Increase the Diversity of Plant Habitats in a Tropical Rain Forest in Peninsular Malaysia?

    Science.gov (United States)

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D.

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation. PMID:21625558

  10. Epigeic spiders of the pastures of northern Wielkopolska

    Directory of Open Access Journals (Sweden)

    Woźny, Marek

    2000-10-01

    Full Text Available The fauna of epigeic spiders (Araneae occurring on three different types of pastures in northern Wielkopolska was analysed. Studies were conducted from May 1992 to October 1993. The 18,995 specimens collected were classified as belonging to 137 species and 17 families. The family Linyphiidae proved the richest in species while Lycosidae was the most abundantly in terms of number of specimens. Zoocenological analysis of spider communities showed their differentiation testifying to differences in the sites studied. The dominants were: 1 Osowo Stare (Site 1: Pardosa palustris, 2 Sycyn Dolny (Site 2: Xerolycosa miniata, P. palustris, Xysticus kochi, 3 Braczewo (Site 3: Erigone dentipalpis, P. palustris. Seasonal changes of dominance of the species at each site were established. A comparison of changes of the species’ dominances in the years 1992 and 1993 disclosed similar values of the individual dominance coefficient at the sites in Osowo Stare and Braczewo. This result indicates the occurrence of the process of stabilization of these biocenoses and a tendency to equilibrium in the environment. The least stable proved to be the site at Sycyn Dolny. Analysis of the seasonal dynamics of epigeic spider communities was also made by determining the mean number of species at each site in the two years of study. The highest number of species was noted in spring. It is interesting to note the appearance of species which are rare or very rare in Poland such as: Lepthyphantes insignis, Ostearius melanopygius, Enoplognatha mordax and Enoplognatha oelandica.

  11. Residues of sugar cane crop and its effects on the epigeic invertebrate faunaResíduos da cultura da cana-de-açúcar e seus efeitos sobre a fauna invertebrada epigéica

    Directory of Open Access Journals (Sweden)

    Júlio César Salton

    2011-08-01

    Full Text Available This study aimed to evaluate the effect of the availability of sugar cane residues on the epigeic invertebrate fauna. The evaluations were made after cane sugar harvest f, considering three levels of residues: 0% (total removal of residues from the soil surface, 50% (removal of half of the waste in the plots, the dry mass of 7.6 Mg ha-1 and 100% (keeping track of residues produced, dry mass of 16.9 Mg ha-1. A fragment of native vegetation in the region, located close to the sugar cane crop, was evaluated for comparison. The experimental plots were arranged in a randomized block design with eight replications. Each plot consisted of five rows 20 m long, were installed two pitfalls to capture the invertebrate fauna, representing sixteen traps in each treatment, totaling forty-eight throughout the experiment. The organisms were extracted manually and identified at major taxonomic groups. The highest diversity and groups richness of epigeic invertebrate fauna were observed in the cane sugar crop with the maintenance of the surface residues (100 and 50%. Moreover, complete removal of residues from the soil surface promoted a significant reduction of the soil invertebrates organisms. Soil samples were collected for evaluation of chemical attributes. The organisms of epigeic invertebrate fauna showed sensitive in detecting changes in systems, depending on the maintenance of plant residues of sugar cane.O presente estudo teve como objetivo avaliar o efeito da disponibilidade de resíduos de cana-de-açúcar sobre a fauna invertebrada epigéica. As avaliações foram realizadas após a colheita da cana-de-açúcar, considerando três níveis de resíduos: 0 % (retirada total de resíduos da superfície do solo, 50 % (retirada da metade dos resíduos nas parcelas, massa seca de 7,6 Mg ha-1 e 100 % (manutenção completa dos resíduos produzidos, massa seca de 16,9 Mg ha-1. As parcelas experimentais foram dispostas num delineamento em blocos casualizados

  12. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  13. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    Science.gov (United States)

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  14. The environmental sustainability of insects as food and feed. A review

    OpenAIRE

    Huis, van, Arnold; Oonincx, Dennis G.A.B.

    2017-01-01

    With a growing world population, increasingly demanding consumers, and a limited amount of agricultural land, there is an urgent need to find alternatives to conventional meat products. Livestock production is, moreover, a leading cause of anthropogenic-induced climate change. To mediate this, more sustainable diets are needed, with reduced meat consumption or the use of alternative protein sources. Insects are promoted as human food and animal feed worldwide. In tropical countries, edible in...

  15. Epigeic Earthworms Exert a Bottleneck Effect on Microbial Communities through Gut Associated Processes

    OpenAIRE

    Gómez-Brandón, María; Aira, Manuel; Lores, Marta; Domínguez, Jorge

    2011-01-01

    BACKGROUND: Earthworms play a critical role in organic matter decomposition because of the interactions they establish with microorganisms. The ingestion, digestion, assimilation of organic material in the gut and then casting is the first step in earthworm-microorganism interactions. The current knowledge of these direct effects is still limited for epigeic earthworm species, mainly those living in man-made environments. Here we tested whether and to what extent the earthworm Eisenia andrei ...

  16. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought

    Science.gov (United States)

    Erik A. Lilleskov; Thomas D. Bruns; Todd E. Dawson; Francisco J. Camacho

    2009-01-01

    Access to deeper soil water and water-conserving traits should reduce water stress for ectomycorrhizal fungi, permitting function during drought. Here, we explored whether epigeous fruiting of ectomycorrhizal fungi during drought was facilitated by access to deep soil water, how much water was lost from sporocarps, and how sporocarp surface to volume ratios affected...

  17. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption

    OpenAIRE

    Poma, Giulia; Cuykx, Matthias; Amato, Elvio; Calaprice, Chiara; Focant, Jean Francois; Covaci, Adrian

    2017-01-01

    Abstract: Due to the rapid increase in world population, the waste of food and resources, and non-sustainable food production practices, the use of alternative food sources is currently strongly promoted. In this perspective, insects may represent a valuable alternative to main animal food sources due to their nutritional value and sustainable production. However, edible insects may be perceived as an unappealing food source and are indeed rarely consumed in developed countries. The food safe...

  18. Potential of Insect-Derived Ingredients for Food Applications

    NARCIS (Netherlands)

    Tzompa Sosa, D.A.; Fogliano, V.

    2017-01-01

    Insects are a sustainable and efficient protein and lipid source, compared with conventional livestock. Moreover, insect proteins and lipids are highly nutritional. Therefore, insect proteins and lipids can find its place as food ingredients. The use of insect proteins and lipids as food ingredients

  19. Notes on epilithic and epigeic lichens from granite and gneiss outcrops in mountains of Makedonia, Greece, with emphasis on northern species

    DEFF Research Database (Denmark)

    Christensen, Steen

    2014-01-01

    The epilithic and epigeic lichen flora of eight localities with granite and gneiss outcrops in the mountains of Makedonia, N Greece has been investigated. Of the 46 taxa reported, seven species are new to Greece, viz.: Brodoa oroarcti­ca, Candelariella coralliza, Cetraria ericetorum, Lecanora...

  20. Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms.

    Science.gov (United States)

    Aira, Manuel; Monroy, Fernando; Domínguez, Jorge

    2009-03-15

    In soils, organic matter decomposition and stabilization largely occur as a result of microbial activity, although when present, earthworms are important drivers of the processes through their interactions with microflora which begin during organic matter digestion by earthworms. Here, we studied the effects of gut transit on the number of bacteria and the microbial activity in pig slurry, using three epigeic (Eisenia fetida, Eisenia andrei, Eudrilus eugeniae) and one anecic (Octodrilus complanatus) species of earthworm. Bacterial counts revealed that the effect of gut transit on microbes differed depending on the earthworm species. Thus, no changes in the number of bacteria were found in the gut contents of E. fetida and E. eugeniae, whereas large decreases were recorded in those of O. complanatus and E. andrei (2.7 and 1.3 times, respectively). We suggest that, unlike in the three epigeic earthworm species, microorganisms are preferentially utilized by O. complanatus to meet its nutrient requirements, because of its limited digestive capacity. Despite the decrease in bacterial numbers, there were no differences in the gut contents of the four earthworm species or undigested pig slurry in terms of dehydrogenase activity. Therefore, we suggest that after gut transit in the four earthworm species under study the potential microbial degradation of pig slurry remains unaltered.

  1. Microbiological Load of Edible Insects Found in Belgium

    OpenAIRE

    Rudy Caparros Megido; Sandrine Desmedt; Christophe Blecker; François Béra; Éric Haubruge; Taofic Alabi; Frédéric Francis

    2017-01-01

    Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crick...

  2. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption.

    Science.gov (United States)

    Poma, Giulia; Cuykx, Matthias; Amato, Elvio; Calaprice, Chiara; Focant, Jean Francois; Covaci, Adrian

    2017-02-01

    Due to the rapid increase in world population, the waste of food and resources, and non-sustainable food production practices, the use of alternative food sources is currently strongly promoted. In this perspective, insects may represent a valuable alternative to main animal food sources due to their nutritional value and sustainable production. However, edible insects may be perceived as an unappealing food source and are indeed rarely consumed in developed countries. The food safety of edible insects can thus contribute to the process of acceptance of insects as an alternative food source, changing the perception of developed countries regarding entomophagy. In the present study, the levels of organic contaminants (i.e. flame retardants, PCBs, DDT, dioxin compounds, pesticides) and metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) were investigated in composite samples of several species of edible insects (greater wax moth, migratory locust, mealworm beetle, buffalo worm) and four insect-based food items currently commercialized in Belgium. The organic chemical mass fractions were relatively low (PCBs: 27-2065 pg/g ww; OCPs: 46-368 pg/g ww; BFRs: up to 36 pg/g ww; PFRs 783-23800 pg/g ww; dioxin compounds: up to 0.25 pg WHO-TEQ/g ww) and were generally lower than those measured in common animal products. The untargeted screening analysis revealed the presence of vinyltoluene, tributylphosphate (present in 75% of the samples), and pirimiphos-methyl (identified in 50% of the samples). The levels of Cu and Zn in insects were similar to those measured in meat and fish in other studies, whereas As, Co, Cr, Pb, Sn levels were relatively low in all samples (consume these insect species with no additional hazards in comparison to the more commonly consumed animal products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  4. Edible insects are the future?

    OpenAIRE

    Huis, van, Arnold

    2016-01-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect speci...

  5. Insect (food) allergy and allergens.

    Science.gov (United States)

    de Gier, Steffie; Verhoeckx, Kitty

    2018-05-03

    Insects represent an alternative for meat and fish in satisfying the increasing demand for sustainable sources of nutrition. Approximately two billion people globally consume insects. They are particularly popular in Asia, Latin America, and Africa. Most research on insect allergy has focussed on occupational or inhalation allergy. Research on insect food safety, including allergenicity, is therefore of great importance. The objective of this review is to provide an overview of cases reporting allergy following insect ingestion, studies on food allergy to insects, proteins involved in insect allergy including cross-reactive proteins, and the possibility to alter the allergenic potential of insects by food processing and digestion. Food allergy to insects has been described for silkworm, mealworm, caterpillars, Bruchus lentis, sago worm, locust, grasshopper, cicada, bee, Clanis bilineata, and the food additive carmine, which is derived from female Dactylopius coccus insects. For cockroaches, which are also edible insects, only studies on inhalation allergy have been described. Various insect allergens have been identified including tropomyosin and arginine kinase, which are both pan-allergens known for their cross-reactivity with homologous proteins in crustaceans and house dust mite. Cross-reactivity and/or co-sensitization of insect tropomyosin and arginine kinase has been demonstrated in house dust mite and seafood (e.g. prawn, shrimp) allergic patients. In addition, many other (allergenic) species (various non-edible insects, arachnids, mites, seafoods, mammals, nematoda, trematoda, plants, and fungi) have been identified with sequence alignment analysis to show potential cross-reactivity with allergens of edible insects. It was also shown that thermal processing and digestion did not eliminate insect protein allergenicity. Although purified natural allergens are scarce and yields are low, recombinant allergens from cockroach, silkworm, and Indian mealmoth are

  6. Edible insects are the future?

    Science.gov (United States)

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.

  7. Epigênese e epigenética: as muitas vidas do vitalismo ocidental

    Directory of Open Access Journals (Sweden)

    Gláucia Silva

    Full Text Available Resumo A análise da história e dos usos contemporâneos dos termos epigênese, atribuído a Aristóteles, e epigenética, criado no século XX pelo biólogo C. H. Waddington, revela as tensões entre as perspectivas vitalistas e mecanicistas – ou epigenistas e pré-formacionistas – que têm se contraposto regularmente no seio das ciências da vida na cultura ocidental desde o século XVII. O campo demarcado pelo último termo abriga intensas discussões sobre os limites do neodarwinismo, abrindo espaço para a influência do meio na transmissão transgeracional. Essas tensões e polêmicas encontram fundo eco nas ciências humanas, por postularem diferentes pesos e implicações da herança “natural” para a vida mental, social ou cultural no desenvolvimento e efetivação da humanidade.

  8. Protein quality of insects as potential ingredients for dog and cat foods

    NARCIS (Netherlands)

    Bosch, G.; Zhang, S.; Oonincx, D.G.A.B.; Hendriks, W.H.

    2014-01-01

    Insects have been proposed as a high-quality, efficient and sustainable dietary protein source. The present study evaluated the protein quality of a selection of insect species. Insect substrates were housefly pupae, adult house cricket, yellow mealworm larvae, lesser mealworm larvae, Morio worm

  9. Insect-resistance and high-yield transgenic tobacco obtained by ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-04

    Oct 4, 2010 ... had great significance for agricultural sustained develop- ment. Significant advances have been made in insect- resistant gene cry engineering (Cui and Guo, 1998; Ni et al., 1998; Yan, 2003). Insect-resistant trangenic cotton, harbouring the modified, synthesized gene cry, has already been commercialized ...

  10. Strategies for Enhanced Crop Resistance to Insect Pests.

    Science.gov (United States)

    Douglas, Angela E

    2018-04-29

    Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

  11. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    OpenAIRE

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring futu...

  12. Edible insects are the future?

    NARCIS (Netherlands)

    Huis, van Arnold

    2016-01-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of

  13. Transforming insect biomass into consumer wellness foods: A review.

    Science.gov (United States)

    Sun-Waterhouse, Dongxiao; Waterhouse, Geoffrey I N; You, Lijun; Zhang, Jianan; Liu, Yang; Ma, Lukai; Gao, Jie; Dong, Yi

    2016-11-01

    Potential food shortages, human health challenges and environmental concerns, all thematically linked to growing and aging global populations, drive the search for alternative and sustainable food sources. Insects, which have been part of the human diet since antiquity though not currently widely consumed in Western societies, are rich in high quality proteins and nutrients and bioactives. Accordingly, insects could make a significant contribution to the global food supply chain in the future. This review explores the potential of entomophagy in an integrated global food network and focuses on practical approaches for transforming insect biomass into consumer food products. Carefully regulated breeding, rearing, harvesting and processing of insect bioresources are critical for realising the concept of "edible insects for human well-being". Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Radiocesium concentrations in epigeic earthworms at various distances from the Fukushima Nuclear Power Plant 6 months after the 2011 accident

    International Nuclear Information System (INIS)

    Hasegawa, Motohiro; Ito, Masamichi T.; Kaneko, Shinji; Kiyono, Yoshiyuki; Ikeda, Shigeto; Makino, Shun'ichi

    2013-01-01

    We investigated the concentrations of radiocesium in epigeic earthworms, litter, and soil samples collected from forests in Fukushima Prefecture 6 months after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011. Radiocesium concentrations in litter accumulated on the forest floor were higher than those in the soil (0–5 cm depth). The highest average 134+137 Cs concentrations in earthworms (approximately 19 Bq g −1 of wet weight with gut contents and 108 Bq g −1 of dry weight without gut contents) were recorded from a plot that experienced an air dose rate of 3.1 μSv h −1 , and earthworm concentrations were found to increase with litter and/or soil concentrations. Average 134 Cs and 137 Cs concentrations (with or without gut contents) were intermediate between accumulated litter and soil. Different species in the same ecological groups on the same plots had similar concentrations because of their use of the same habitats or their similar physiological characteristics. The contribution of global fallout 137 Cs to earthworms with gut contents was calculated to be very low, and most 137 Cs in earthworms was derived from the Fukushima accident. Transfer factors from accumulated litter to earthworms, based on their dry weights, ranged from 0.21 to 0.35, in agreement with previous field studies. -- Highlights: • Radiocesium concentrations in earthworms were intermediate between litter and soil. • Three earthworm species in epigeic groups had similar radiocesium concentrations. • Transfer factors from accumulated litter to earthworms ranged from 0.21 to 0.35

  15. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Science.gov (United States)

    Gómez-Brandón, María; Lores, Marta; Domínguez, Jorge

    2012-01-01

    Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested. To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus. Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community diversity and

  16. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Directory of Open Access Journals (Sweden)

    María Gómez-Brandón

    Full Text Available Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested.To address these questions we determined the microbial community structure (phospholipid fatty acid profiles and microbial activity (basal respiration and microbial growth rates of three types of animal manure (cow, horse and rabbit that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus.Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community

  17. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    Science.gov (United States)

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  18. MEIMAN: Database exploring Medicinal and Edible insects of Manipur.

    Science.gov (United States)

    Shantibala, Tourangbam; Lokeshwari, Rajkumari; Thingnam, Gourshyam; Somkuwar, Bharat Gopalrao

    2012-01-01

    We have developed MEIMAN, a unique database on medicinal and edible insects of Manipur which comprises 51 insects species collected through extensive survey and questionnaire for two years. MEIMAN provides integrated access to insect species thorough sophisticated web interface which has following capabilities a) Graphical interface of seasonality, b) Method of preparation, c) Form of use - edible and medicinal, d) habitat, e) medicinal uses, f) commercial importance and g) economic status. This database will be useful for scientific validations and updating of traditional wisdom in bioprospecting aspects. It will be useful in analyzing the insect biodiversity for the development of virgin resources and their industrialization. Further, the features will be suited for detailed investigation on potential medicinal and edible insects that make MEIMAN a powerful tool for sustainable management. The database is available for free at www.ibsd.gov.in/meiman.

  19. Food for the Future: A Study of Insects as a Protein Source

    Science.gov (United States)

    Riggs, S.

    2017-12-01

    This study is designed to gain a sustainable, organic food source containing the proper amino acids, minerals, and protein to sustain the needs of human life on Earth as the current economy and environment will not be able to equip the needs for the future. The hypotheses are if available protein is increased in an insect's diet then their nutritional value will increase to fulfill a human's daily protein requirements in one serving size or less for each species tested and if there is a higher content of protein in the insects, then food created with it will receive higher ratings. Protein supplements were added to an insect's natural diet to increase nutritional value. Protein value in the insects increased to fulfill a human's daily dietary protein requirement in a third of a serving size. Biuret and absorption spectrometry testing demonstrates this correlation. Insects increased protein in their body showing a positive correlation to the hypothesis. Week one, protein values doubled and tripled in some species, unexpectedly. After three weeks, protein still continued increasing. There was high success in increasing the protein value in the different species of insects chosen. Is there a taste difference benefit with a higher content of protein in the insects? Over 55% of participants rated the brownies with more protein higher than the control groups, and overall 88% preferred brownies with insects opposed to without, supporting the second hypothesis.

  20. A Review on the Fascinating World of Insect Resources: Reason for Thoughts

    Directory of Open Access Journals (Sweden)

    R. K. Lokeshwari

    2010-01-01

    Full Text Available Insect resources are vast and diverse due to their enormous diversity. The exploitation and utilization of insect resources is broadly classified into four different categories. The first category is the insects of industrial resources. This level includes the utilization of silk worm, honeybee, lac insect, dye insect, and aesthetic insect. The second category is the utilization of insects for edible and therapeutic purposes. Insects are high in protein and many are rich sources of vitamins and minerals. The third category is the use of insects in forensic investigation. By analyzing the stages of succession of insects at first, rough estimation of the postmortem intervals can be done. The fourth category is the insects of ecological importance. Many insect species act as potential predators and parasites of destructive pests of insect order Lepidoptera, Diptera, and Orthoptera. Insects are also used as bioindicator to assess the cumulative effects of environmental stressors such as pollutants. Despites these fascinating benefits, insect resources are often neglected in India due to lack of proper documentation, less expertise, and advance enterprises in these fields. Hence, the paper reviews the different fascinating facets of insect resources in order to explore and utilize it in a sustainable way with reference to Indian region.

  1. Use of habitat odour by host-seeking insects.

    Science.gov (United States)

    Webster, Ben; Cardé, Ring T

    2017-05-01

    Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.

  2. Insects as human food; from farm to fork.

    Science.gov (United States)

    Bessa, Leah Wilson; Pieterse, Elsje; Sigge, Gunnar; Hoffman, Louw Christiaan

    2017-12-30

    Over the course of the last few years, the consumption of insects, known as entomophagy, has sparked increasing interest amongst scientists and environmentalists as a potential solution to the inevitable global food security and sustainability issues humans will be facing in the coming years. Despite the fact that insects have been an integral part of over 2 billion people's diet worldwide, the concept of eating insects is still new to Western culture. As a result, there are many unknowns regarding insects as a food source, and this has led to a number of studies and investigations being done in recent years to create more knowledge and awareness around this new concept in the food industry. This review discusses some of the key topics and new developments published over recent years, such as the nutritional benefits, food safety concerns, functional properties, potential product concepts and the current ideas and attitudes towards insects as a food source in Western culture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Microbiological Load of Edible Insects Found in Belgium.

    Science.gov (United States)

    Caparros Megido, Rudy; Desmedt, Sandrine; Blecker, Christophe; Béra, François; Haubruge, Éric; Alabi, Taofic; Francis, Frédéric

    2017-01-13

    Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crickets from European farms and smoked termites and caterpillars from a traditional Congolese market) and to evaluate the efficiency of different processing methods (blanching for all species and freeze-drying and sterilization for European species) in reducing microorganism counts. All untreated insect samples had a total aerobic count higher than the limit for fresh minced meat (6.7 log cfu/g). Nevertheless, a species-dependent blanching step has led to a reduction of the total aerobic count under this limit, except for one caterpillar species. Freeze-drying and sterilization treatments on European species were also effective in reducing the total aerobic count. Yeast and mold counts for untreated insects were above the Good Manufacturing Practice limits for raw meat, but all treatments attained a reduction of these microorganisms under this limit. These results confirmed that fresh insects, but also smoked insects from non-European trades, need a cooking step (at least composed of a first blanching step) before consumption. Therefore, blanching timing for each studied insect species is proposed and discussed.

  4. Microbiological Load of Edible Insects Found in Belgium

    Directory of Open Access Journals (Sweden)

    Rudy Caparros Megido

    2017-01-01

    Full Text Available Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crickets from European farms and smoked termites and caterpillars from a traditional Congolese market and to evaluate the efficiency of different processing methods (blanching for all species and freeze-drying and sterilization for European species in reducing microorganism counts. All untreated insect samples had a total aerobic count higher than the limit for fresh minced meat (6.7 log cfu/g. Nevertheless, a species-dependent blanching step has led to a reduction of the total aerobic count under this limit, except for one caterpillar species. Freeze-drying and sterilization treatments on European species were also effective in reducing the total aerobic count. Yeast and mold counts for untreated insects were above the Good Manufacturing Practice limits for raw meat, but all treatments attained a reduction of these microorganisms under this limit. These results confirmed that fresh insects, but also smoked insects from non-European trades, need a cooking step (at least composed of a first blanching step before consumption. Therefore, blanching timing for each studied insect species is proposed and discussed.

  5. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Directory of Open Access Journals (Sweden)

    Charlotte L. R. Payne

    2017-02-01

    Full Text Available Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  6. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Science.gov (United States)

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems. PMID:28218635

  7. Ecosystem Services from Edible Insects in Agricultural Systems: A Review.

    Science.gov (United States)

    Payne, Charlotte L R; Van Itterbeeck, Joost

    2017-02-17

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  8. Ethical aspects of insect production for food and feed

    DEFF Research Database (Denmark)

    Gjerris, Mickey; Gamborg, Christian; Röcklinsberg, Helena

    2016-01-01

    Given a growing global human population and high pressures on resources, interest in insects as a source of protein for human food (entomophagy) and for animal feed is growing. So far, the main issues discussed have been the embedded technical challenges of scaling up the production. The use...... as protein providers in the Western food and feed production chains. We identify five areas where ethical questions are especially pertinent: environmental impact, human and animal health, human preferences and social acceptability, animal welfare and finally broader animal ethics issues. Especially...... of insects as a major human food and feed source is thought to present two major challenges: (1) how to turn insects into safe, tasty socially acceptable feed and food; and (2) how to cheaply yet sustainably produce enough insects? Entomophagy, however, as any utilisation of animals and the rest of nature...

  9. We will eat disgusting foods together – evidence of the cultural basis of Western entomophagy-disgust from an insect tasting

    DEFF Research Database (Denmark)

    Jensen, Niels Holm; Lieberoth, Andreas

    2017-01-01

    Insects are a highly sustainable and nutritional source of protein, and, thus, incorporating insects in to Western food culture would address major global challenges such as global warming, deforestation, and obesity. Consumer studies show, however, that Westerners’ willingness to eat insect...

  10. The Identification, Types, Taxonomic Orders, Biodiversity and Importance of Aquatic Insects

    OpenAIRE

    J.F.N. Abowei; B.R. Ukoroije

    2012-01-01

    The identification, types, taxonomic orders, biodiversity and importance of aquatic insects was reviewed to facilitate sustainable culture fisheries management and practice. Aquatic insects contribute significantly to fresh water ecosystems, one of many groups of organisms that, together, must be considered in the study of aquatic ecology. As such their study may be a significant part of understanding the ecological state of a given ecosystem and in gauging how that ecosystem will respond to ...

  11. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    Science.gov (United States)

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Potentiality of botanical agents for the management of post harvest insects of maize: a review.

    Science.gov (United States)

    Soujanya, P Lakshmi; Sekhar, J C; Kumar, P; Sunil, N; Prasad, Ch Vara; Mallavadhani, U V

    2016-05-01

    Natural products derived from plants are emerging as potent biorational alternatives to synthetic insecticides for the integrated management of post harvest insects of maize. In this paper, effectiveness of botanicals including plant extracts, essential oils, their isolated pure compounds, plant based nano formulations and their mode of action against storage insects have been reviewed with special reference to maize. Plant based insecticides found to be the most promising means of controlling storage insects of maize in an eco friendly and sustainable manner. This article also throws light on the commercialization of botanicals, their limitations, challenges and future trends of storage insect management.

  13. New feed ingredients: the insect opportunity.

    Science.gov (United States)

    van Raamsdonk, L W D; van der Fels-Klerx, H J; de Jong, J

    2017-08-01

    In the framework of sustainability and a circular economy, new ingredients for feed are desired and, to this end, initiatives for implementing such novel ingredients have been started. The initiatives include a range of different sources, of which insects are of particular interest. Within the European Union, generally, a new feed ingredient should comply with legal constraints in terms of 'yes, provided that' its safety commits to a range of legal limits for heavy metals, mycotoxins, pesticides, contaminants, pathogens etc. In the case of animal proteins, however, a second legal framework applies which is based on the principle 'no, unless'. This legislation for eradicating transmissible spongiform encephalopathy consists of prohibitions with a set of derogations applying to specific situations. Insects are currently considered animal proteins. The use of insect proteins is a good case to illustrate this difference between a positive, although restricted, modus and a negative modus for allowing animal proteins. This overview presents aspects in the areas of legislation, feed safety, environmental issues, efficiency and detection of the identity of insects. Use of insects as an extra step in the feed production chain costs extra energy and this results in a higher footprint. A measure for energy conversion should be used to facilitate the comparison between production systems based on cold- versus warm-blooded animals. Added value can be found by applying new commodities for rearing, including but not limited to category 2 animal by-products, catering and household waste including meat, and manure. Furthermore, monitoring of a correct use of insects is one possible approach for label control, traceability and prevention of fraud. The link between legislation and enforcement is strong. A principle called WISE (Witful, Indicative, Societal demands, Enforceable) is launched for governing the relationship between the above-mentioned aspects.

  14. Integrating insects in poultry and fish feeds in Kenya and Uganda ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    growing agricultural businesses. ... Researchers want to ensure long-term food and nutritional security by using insects as a reliable, sustainable, safe, and economical source of protein and other nutrients. ... Financement total. CAD$ 2,349,600 ...

  15. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food

    NARCIS (Netherlands)

    Tan Hui Shan, Grace; Berg, van den Eva; Stieger, Markus

    2016-01-01

    Insects are highly valued as food in many cultures but have only recently gained interest in the West as a sustainable alternative to reduce the environmental impact of meat production. Despite the growing consumer interest in insect consumption, there is still a great disparity between curious

  16. Defatting and Sonication Enhances Protein Extraction from Edible Insects.

    Science.gov (United States)

    Choi, Byoung Deug; Wong, Nathan A K; Auh, Joong-Hyuck

    2017-01-01

    Edible insects are attracting growing interest as a sustainable source of protein for addition to processed meat and dairy products. The current study investigated the optimal method for protein extraction from mealworm larvae ( Tenebrio molitor ), cricket adults ( Gryllus bimaculatus ), and silkworm pupae ( Bombyx mori ), for use in further applications. After defatting with n-hexane for up to 48 h, sonication was applied for 1-20 min and the protein yield was measured. All samples showed a total residual fat percentage below 1.36%, and a 35% to 94% improvement in protein yield (%). In conclusion, defatting with n-hexane combined with sonication improves the protein yield from insect samples.

  17. Epigénesis y validez: El papel de la embriología en el programa transcendental de Kant. (Epigenesis and validity: The role of the embriology in Kant’s transcendental program

    Directory of Open Access Journals (Sweden)

    Eugenio MOYA

    2010-01-01

    Full Text Available El artículo hace una lectura naturalizada y novedosa del transcendentalismo kantiano, a partir de la idea de epigénesis, una idea, extraída del campo embriológico, que Kant utiliza no sólo para plantear una interesantísima teoría de la evolución natural, sino también para explicar el origen y validez de los conocimientos a priori.

  18. In Vitro Iron Availability from Insects and Sirloin Beef.

    Science.gov (United States)

    Latunde-Dada, Gladys O; Yang, Wenge; Vera Aviles, Mayra

    2016-11-09

    Interest in the consumption of insects (entomophagy) as an alternative environmentally sustainable source of protein in the diet of humans has recently witnessed a surge. Knowledge of the nutrient composition and, in particular, the bioavailability of minerals from insects is currently sparse. This study evaluated the availability of Fe, Ca, Cu, Mg, Mn, and Zn from four commonly eaten insects and compared these to sirloin beef. Soluble iron from the samples was measured by inductively coupled plasma optical emission spectrometry (ICP-OES). Iron bioavailability was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Cricket and sirloin beef had comparably higher levels of Fe, Ca, and Mn than grasshopper, meal, and buffalo worms. However, iron solubility was significantly higher from the insect samples than from beef. The complementation of whole-wheat flour with insect or beef protein resulted in overall decreases in mineral content and iron solubility in the composite mixtures. Collectively, the data show that grasshopper, cricket, and mealworms contain significantly higher chemically available Ca, Cu, Mg, Mn, and Zn than sirloin. However, buffalo worms and sirloin exhibited higher iron bioavailability comparable to that of FeSO 4 . Commonly consumed insect species could be excellent sources of bioavailable iron and could provide the platform for an alternative strategy for increased mineral intake in the diets of humans.

  19. In vitro digestibility and fermentability of selected insects for dog foods

    NARCIS (Netherlands)

    Bosch, Guido; Vervoort, J. J M; Hendriks, W. H.

    2016-01-01

    Insects are considered as a sustainable protein source for future pet foods. Here we aimed to evaluate the protein quality of larvae of the black soldier fly (Hermetia illucens, BSF), housefly (Musca domestica, HF) and yellow mealworm (Tenebrio molitor, YMW) and to evaluate the fermentation

  20. The Sustainable Harvesting of Edible Insects in South Africa, with Reference to Indigenous Knowledge, African Science, Western Science and Education

    Science.gov (United States)

    Toms, Rob

    2007-01-01

    In our ongoing research on edible insects in the Limpopo Province of South Africa, we have found evidence of the unsustainable harvesting of edible insects and the food plants of certain insects. The decline in the edible insect industry, together with the need for food security provides a strong incentive to investigate possible causes of…

  1. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  2. Sterile insect technique and radiation in insect control

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  3. Dynamic of epigeous macrofauna under organic soil management in the Brazilian semi-arid regionDinâmica da macrofauna epígea sob manejo orgânico do solo no semi-árido brasileiro

    Directory of Open Access Journals (Sweden)

    Márcio Sampaio Pimentel

    2012-04-01

    Full Text Available Soil macrofauna is responsible for soil fertility through cycling of nutrients, tillage and fragmentation of organic matter, as well as through the association between groups of fauna with conserved and/or degraded pedoenvironments. Nevertheless, under the conditions of the Brazilian semi-arid region, there is little information about this resource. The objective of this study was to evaluate the epigeous macrofauna in successive cropping using previous green manure and subsequent planting of melon (Cucumis melo L. in Juazeiro county, Bahia, Brazil. Sampling dates were undertaken in November 2007 and February, April and July 2008, using traps containing 4 % formaldehyde for seven days in plots of 64 m2. Results obtained indicate that there is no difference among the treatments with mixed cover crops, and epigeous macrofauna is influenced by the time of collection. Diversity and uniformity are inversely correlated with total density of epigeous macrofauna. Diversification of plant species favors the increase of diversity and uniformity of epigeous macrofauna. Formicidae, followed by Isopoda, Coleoptera and Oligochaeta are the groups of fauna most numerous in the areas. A macrofauna do solo é responsável pela melhoria da fertilidade do solo através da ciclagem de nutrientes, revolvimento e fragmentação da matéria orgânica, como também, pela associação entre grupos de fauna com pedoambientes conservados e/ou degradados. No entanto, nas condições de semi-árido brasileiro pouca informação se tem a respeito deste recurso. Neste sentido, na região do sub-médio do Rio São Francisco, pólo de desenvolvimento da agricultura irrigada objetivou-se avaliar a macrofauna epígea em sucessão cultural utilizando prévia adubação verde e subseqüente plantio de melão (Cucumis melo L.. As coletas foram realizadas em novembro de 2007 e fevereiro, abril e julho de 2008 no município de Juazeiro, BA, utilizando armadilhas contendo formol 4

  4. Is mealworm or shrimp allergy indicative for food allergy to insects?

    NARCIS (Netherlands)

    Broekman, H.C.H.P.; Knulst, A.C.; Jong, G. de; Gaspari, M.; Hartog Jager, C.F. den; Houben, G.F.; Verhoeckx, K.C.M.

    2017-01-01

    Scope: The growing world population is a key driver for the exploration of sustainable protein sources to ensure food security. Mealworm and other insects are promising candidates. Previously we found that shrimp allergic patients are at risk for mealworm allergy, and that mealworm can induce a

  5. In vitro digestibility and fermentability of selected insects for dog foods

    NARCIS (Netherlands)

    Bosch, G.; Vervoort, J.J.M.; Hendriks, W.H.

    2016-01-01

    Insects are considered as a sustainable protein source for future pet foods. Here we aimed to evaluate the protein quality of larvae of the black soldier fly (Hermetia illucens, BSF), housefly (Musca domestica, HF) and yellow mealworm (Tenebrio molitor, YMW) and to evaluate the fermentation

  6. Entomophagy – why should it bug you? The ethics of insect production for food and feed

    DEFF Research Database (Denmark)

    Gjerris, Mickey; Gamborg, Christian; Röcklinsberg, Helena

    2015-01-01

    Humans have, as far as the archeological records show, always eaten insects, reaching over 2000 edible species today. Given a growing global human population and high pressure on resources, interest in insects as a nutrious protein source for human food (entomophagy) and novel protein source...... for animal feed is developing. Compared to most other sources of animal protein insects are considered to be an environmentally low-impact source of nutrients. In a Western context the search for sustainable food and feed products has therefore lead to a growing interest in the area. However, as insects...... score low on the socio-zoological scale, but high on the ‘disgust’-scale, mainly based on culturally transmitted information, utilizing insects in the food sector will probably face consumer resistance. The use of insects as a major human food and feed source is thought to present two major challenges...

  7. Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell.

    Science.gov (United States)

    Shoji, Kan; Akiyama, Yoshitake; Suzuki, Masato; Hoshino, Takayuki; Nakamura, Nobuhumi; Ohno, Hiroyuki; Morishima, Keisuke

    2012-12-01

    In this paper, an insect biofuel cell (BFC) using trehalose included in insect hemolymph was developed. The insect BFC is based on trehalase and glucose oxidase (GOD) reaction systems which oxidize β-glucose obtained by hydrolyzing trehalose. First, we confirmed by LC-MS that a sufficient amount of trehalose was present in the cockroach hemolymph (CHL). The maximum power density obtained using the insect BFC was 6.07 μW/cm(2). The power output was kept more than 10 % for 2.5 h by protecting the electrodes with a dialysis membrane. Furthermore, the maximum power density was increased to 10.5 μW/cm(2) by using an air diffusion cathode. Finally, we succeeded in driving a melody integrated circuit (IC) and a piezo speaker by connecting five insect BFCs in series. The results indicate that the insect BFC is a promising insect-mountable battery to power environmental monitoring micro-tools.

  8. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  9. Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India.

    Science.gov (United States)

    Shantibala, T; Lokeshwari, R K; Debaraj, H

    2014-01-26

    The people living in Manipur have a distinct identity, culture, and food habits. They have a prototype culture of eating insects. In our study, the nutritive contents of five potentially-edible aquatic insects, Lethocerus indicus (Lepeletier and Serville) (Hemiptera: Belostomatidae), Laccotrephes maculatus (F.) (Nepidae), Hydrophilus olivaceous (F.) (Coleoptera: Dytiscidae), Cybister tripunctatus (Olivier), and Crocothemis servilia (Drury) (Odonata: Libellulidae), were analyzed to inform consumers about the nutritional quality of the insects and the suggested quantity of their intake. A good amount of protein content and high gross energy was recorded among the insects. The results showed high levels of sodium, calcium, and magnesium present in the insects, indicating that they are a good source of minerals. Antinutritional properties of these insects were below 0.52%, which is a non-toxic level. Aquatic insects, such as C. tripunctatus, also possesses strong antioxidant activity (110 µg/mL). Therefore, these insects can play a major role in food security, health, and environment management. It is essential to cultivate edible insects to maintain their population sustainability. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  10. Insects used for animal feed in West Africa

    Directory of Open Access Journals (Sweden)

    M. Kenis

    2014-10-01

    Full Text Available In West Africa, as in many parts of the world, livestock and fish farming suffer from the increasing cost of feed, especially protein ingredients, which are hardly available for village poultry farming and small-scale fish farming. Insects, which are a natural food source of poultry and fish and are rich in protein and other valuable nutrients, can be used to improve animal diets, a practice which is now strongly promoted by the FAO as a tool for poverty alleviation. This paper reviews practices and research on the use of insects as animal feed in West Africa and the perspectives to further develop the techniques, in particular for smallholder farmers and fish farmers. The most promising insects are flies, especially the house fly (Musca domestica (Diptera Muscidae and the black soldier fly (Hermetia illucens (Diptera Stratiomyiidae, which can be mass reared on-farm for domestic use, in small production units at the community or industrial level. Flies have the advantage over most other insects of developing on freely available waste material and could even contribute to rural sanitation. Termites are traditionally used by smallholder farmers to feed village poultry. While their mass production is problematic, methods to enhance populations on-farm and facilitate collection can be developed. In any case, new methods will need to demonstrate their economic profitability, social acceptability and environmental sustainability

  11. Superorganism resilience: Eusociality and susceptibility of ecosystem service providing insects to stressors

    Science.gov (United States)

    Insects provide crucial ecosystem services for human food security and maintenance of biodiversity. Therefore, major declines in wild species combined with losses of managed bees have raised concern over the sustainability of their ecosystem services. Recent data suggest that honey bees appear to be...

  12. Insect-based protein: future promising protein source for fish cultured

    Science.gov (United States)

    Nugroho, R. A.; Nur, F. M.

    2018-04-01

    As one of the vital component feed used in fisheries, fishmeal (FM) is generally added to the fish diet to enhance fish growth, digestive performance and absorption of nutrients. This addition contributes significantly to the variable production cost in the aquaculture industry. Expanded production of carnivorous species requiring high protein, high-energy feeds will further tax global fish meal. Thus, research based on the low-cost budget for feed operating cost should be strategized to assist aquaculturists in enhancing fish productivity. Moreover, suitable alternative feed ingredients will have to be utilized to provide the essential nutrients and energy needed to fuel the growth of aquaculture production. To this effect, the use of insect-based protein sources to replace FM that often scarce, expensive, limited availability, and leads to high fish production costs is alternative ways and has been gaining momentum. Currently, Insects have been proposed as one of the potential future protein sources of protein because of the production of insects is highly sustainable. Farming insects is characterized by higher food conversion efficiencies, lower environmental impact, and higher potential to be grown on waste streams.

  13. Outbreaks of forest defoliating insects in Japan, 1950-2000.

    Science.gov (United States)

    Kamata, N; Kamata, N

    2002-04-01

    In Japan, several forest-defoliating insects reach outbreak levels and cause serious defoliation. Stand mortality sometimes occurs after severe defoliation. However, in general, tree mortality caused by insect defoliation is low because of the prevailing moist climate in Japan. Evergreen conifers are more susceptible to tree mortality as a result of insect defoliation whereas deciduous broad-leaved trees are seldom killed. Insect defoliation occurs more frequently in man-made environments such as among shade trees, orchards, and plantations than in natural habitats. Outbreaks of some defoliators tend to occur in stands of a particular age: e.g. outbreaks of the pine caterpillar, Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae) occur more frequently in young pine plantations. In contrast, defoliation caused by outbreaks of lepidopterous and hymenopterous pests in larch plantations is more frequent with stand maturation. There is a relationship between outbreaks of some defoliators and altitude above sea level. Most outbreaks of forest defoliators were terminated by insect pathogens that operated in a density-dependent fashion. Since the 1970s, Japan has been prosperous and can afford to buy timber from abroad. More recently, there has been an increasing demand for timber in Japan, that coincides with a huge demand internationally, so that the country will need to produce more timber locally in the future. The increasing pressure on the forestry industry to meet this demand will require more sophisticated methods of pest control coupled with more sustainable methods of silviculture.

  14. The effect of communication and implicit associations on consuming insects: An experiment in Denmark and Italy.

    Science.gov (United States)

    Verneau, Fabio; La Barbera, Francesco; Kolle, Susanne; Amato, Mario; Del Giudice, Teresa; Grunert, Klaus

    2016-11-01

    It has been widely noted that the introduction of insects in Westerns' diet might be a promising path towards a more sustainable food consumption. However, Westerns' are almost disgusted and sceptical about the eating of insects. In the current paper we report the results of an experiment conducted in two European countries-Denmark and Italy-different for food culture and familiarity with the topic of eating insects. We investigated the possibility to foster people's willingness to eat insect-based food through communication, also comparing messages based on individual vs. societal benefits of the eating of insects. Communication proved to be effective on intention and behaviour, and the societal message appeared to be more robust over time. The communication effect is significant across nation, gender, and previous knowledge about the topic. In addition, we investigated the impact of non-conscious negative associations with insects on the choice to eat vs. not eat insect-based food. Implicit attitudes proved to be a powerful factor in relation to behaviour, yet they did not impede the effectiveness of communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cooking and disgust sensitivity influence preference for attending insect-based food events.

    Science.gov (United States)

    Hamerman, Eric J

    2016-01-01

    Insects are energy-efficient and sustainable sources of animal protein in a world with insufficient food resources to feed an ever-increasing population. However, much of the western world refuses to eat insects because they perceive them as disgusting. This research finds that both animal reminder disgust and core disgust reduced people's willingness to attend a program called "Bug Appétit" in which insects were served as food. Additionally, people who were low in sensitivity to animal reminder disgust were more willing to attend this program after having been primed to think about cooking. Cooking is a process by which raw ingredients are transformed into finished products, reducing the "animalness" of meat products that renders them disgusting. Sensitivity to core disgust did not interact with cooking to influence willingness to attend the program. While prior research has emphasized that direct education campaigns about the benefits of entomophagy (the consumption of insects) can increase willingness to attend events at which insect-based food is served, this is the first demonstration that indirect priming can have a similar effect among a subset of the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  17. Insects: A nutritional alternative

    Science.gov (United States)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  18. A case report on inVALUABLE: insect value chain in a circular bioeconomy

    DEFF Research Database (Denmark)

    Heckmann, L.-H.; Andersen, J.L.; Eilenberg, J.

    2018-01-01

    partners span the entire value chain and include entrepreneurs, experts in biology, biotechnology, automation, processing and food tech and safety. This paper provides an overview of the goal, activities and some preliminary results obtained during the first year of the project.......The vision of inVALUABLE is to create a sustainable resource-efficient industry for animal production based on insects. inVALUABLE has focus on the R&D demand for scaling up production of insects in Denmark and assessing the application potential of particularly mealworms. The inVALUABLE consortium...

  19. Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii.

    Science.gov (United States)

    Lee, Kwang-Zin; Vilcinskas, Andreas

    2017-09-01

    The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis in Washington State, USA

    Directory of Open Access Journals (Sweden)

    David G. James

    2016-06-01

    Full Text Available Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp. are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus; however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.

  1. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA.

    Science.gov (United States)

    James, David G; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie

    2016-06-29

    Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.

  2. Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population.

    Science.gov (United States)

    Williams, D Dudley; Williams, Siân S

    2017-07-21

    Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this?

  3. Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population

    Science.gov (United States)

    Williams, D. Dudley; Williams, Siân S.

    2017-01-01

    Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? PMID:28754025

  4. All insects are equal, but some insects are more equal than others

    OpenAIRE

    Fischer, Arnout R.H.; Steenbekkers, L.P.A.

    2018-01-01

    Purpose: Lack of acceptance of insects as food is considered a barrier against societal adoption of the potentially valuable contribution of insects to human foods. An underlying barrier may be that insects are lumped together as one group, while consumers typically try specific insects. The purpose of this paper is to investigate the ways in which Dutch consumers, with and without insect tasting experience, are more or less willing to eat different insects. Design/methodology/approach: In a ...

  5. Insects and Scorpions

    Science.gov (United States)

    ... insects or scorpions can be hazardous to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects of stinging or biting insects or scorpions range ...

  6. Potential of insects as food and feed in assuring food security.

    Science.gov (United States)

    van Huis, Arnold

    2013-01-01

    With a growing world population and increasingly demanding consumers, the production of sufficient protein from livestock, poultry, and fish represents a serious challenge for the future. Approximately 1,900 insect species are eaten worldwide, mainly in developing countries. They constitute quality food and feed, have high feed conversion ratios, and emit low levels of greenhouse gases. Some insect species can be grown on organic side streams, reducing environmental contamination and transforming waste into high-protein feed that can replace increasingly more expensive compound feed ingredients, such as fish meal. This requires the development of cost-effective, automated mass-rearing facilities that provide a reliable, stable, and safe product. In the tropics, sustainable harvesting needs to be assured and rearing practices promoted, and in general, the food resource needs to be revalorized. In the Western world, consumer acceptability will relate to pricing, perceived environmental benefits, and the development of tasty insect-derived protein products.

  7. Application of nuclear technology for sustainable development, and IAEA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    1998-01-01

    The role of radiation and isotopes for sustainable development in improving agriculture, industry and environmental conservation is presented. The radiation and isotope technology can increase productivity in a sustainable way. The IAEA programmes encompass mutation breeding, soil fertility and crop production, animal production, food irradiation, agrochemicals and insect pest control using nuclear technology

  8. All insects are equal, but some insects are more equal than others

    NARCIS (Netherlands)

    Fischer, Arnout R.H.; Steenbekkers, L.P.A.

    2018-01-01

    Purpose: Lack of acceptance of insects as food is considered a barrier against societal adoption of the potentially valuable contribution of insects to human foods. An underlying barrier may be that insects are lumped together as one group, while consumers typically try specific insects. The purpose

  9. Insect Repellents: Protect Your Child from Insect Bites

    Science.gov (United States)

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Mosquitoes, biting ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is ...

  10. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  11. A nuclear insect appears

    International Nuclear Information System (INIS)

    Shin, Gi Hwal

    1989-06-01

    This book is dairy of a nuclear insect in A. F. era. It consists of 6 parts, which have fun pictures and titles. The contents are the letter that is sent the Homo sapiens by insect, exodus of nuclear insect F 100 years latter. The time that a nuclear insect is attacked in F 101, the time that a nuclear dinosaur is beat in AF 102, the time that a nuclear insect struggles in AF 104 and the time that a nuclear insect drifts in AF 104.

  12. Stinging Insect Matching Game

    Science.gov (United States)

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  13. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  14. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a 60 Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment

  15. Applying the sterile insect technique to the control of insect pests

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, L E; Klassen, W [Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria)

    1991-09-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a {sup 60}Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment.

  16. Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes.

    Science.gov (United States)

    Gómez-Brandón, María; Aira, Manuel; Lores, Marta; Domínguez, Jorge

    2011-01-01

    Earthworms play a critical role in organic matter decomposition because of the interactions they establish with microorganisms. The ingestion, digestion, assimilation of organic material in the gut and then casting is the first step in earthworm-microorganism interactions. The current knowledge of these direct effects is still limited for epigeic earthworm species, mainly those living in man-made environments. Here we tested whether and to what extent the earthworm Eisenia andrei is capable of altering the microbiological properties of fresh organic matter through gut associated processes; and if these direct effects are related to the earthworm diet. To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (fluorescein diacetate hydrolysis) in the earthworm casts derived from three types of animal manure (cow, horse and pig manure), which differed in microbial composition. The passage of the organic material through the gut of E. andrei reduced the total microbial biomass irrespective of the type of manure, and resulted in a decrease in bacterial biomass in all the manures; whilst leaving the fungi unaffected in the egested materials. However, unlike the microbial biomass, no such reduction was detected in the total microbial activity of cast samples derived from the pig manure. Moreover, no differences were found between cast samples derived from the different types of manure with regards to microbial community structure, which provides strong evidence for a bottleneck effect of worm digestion on microbial populations of the original material consumed. Our data reveal that earthworm gut is a major shaper of microbial communities, thereby favouring the existence of a reduced but more active microbial population in the egested materials, which is of great importance to understand how biotic interactions within the decomposer food web influence on nutrient cycling.

  17. Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes.

    Directory of Open Access Journals (Sweden)

    María Gómez-Brandón

    Full Text Available BACKGROUND: Earthworms play a critical role in organic matter decomposition because of the interactions they establish with microorganisms. The ingestion, digestion, assimilation of organic material in the gut and then casting is the first step in earthworm-microorganism interactions. The current knowledge of these direct effects is still limited for epigeic earthworm species, mainly those living in man-made environments. Here we tested whether and to what extent the earthworm Eisenia andrei is capable of altering the microbiological properties of fresh organic matter through gut associated processes; and if these direct effects are related to the earthworm diet. METHODOLOGY: To address these questions we determined the microbial community structure (phospholipid fatty acid profiles and microbial activity (fluorescein diacetate hydrolysis in the earthworm casts derived from three types of animal manure (cow, horse and pig manure, which differed in microbial composition. PRINCIPAL FINDINGS: The passage of the organic material through the gut of E. andrei reduced the total microbial biomass irrespective of the type of manure, and resulted in a decrease in bacterial biomass in all the manures; whilst leaving the fungi unaffected in the egested materials. However, unlike the microbial biomass, no such reduction was detected in the total microbial activity of cast samples derived from the pig manure. Moreover, no differences were found between cast samples derived from the different types of manure with regards to microbial community structure, which provides strong evidence for a bottleneck effect of worm digestion on microbial populations of the original material consumed. CONCLUSIONS/SIGNIFICANCE: Our data reveal that earthworm gut is a major shaper of microbial communities, thereby favouring the existence of a reduced but more active microbial population in the egested materials, which is of great importance to understand how biotic interactions

  18. Insects, isotopes and radiation

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1987-01-01

    The article describes the increased use of nuclear techniques in controlling harmful insects. The sterile insect technique (SIT), which uses radiation to sexually sterilize insects and prevent reproduction, is particularly effective in eradication programmes. At the present time, there are approximately 10 species of insect pests being attacked by the SIT. Research and development is being conducted on other insect species and it is anticipated that the technology will be more widely used in the future

  19. Forest insect pest management and forest management in China: an overview.

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  20. Forest Insect Pest Management and Forest Management in China: An Overview

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  1. Marketing insects

    DEFF Research Database (Denmark)

    Schiemer, Carolin; Halloran, Afton Marina Szasz; Jespersen, Kristjan

    2018-01-01

    In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood is a mar......In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood...... is a marketing term for nutrient-packed foods, which are successfully promoted to Western consumers with the promises of health, well-being and beauty. However, the increase in the demand in the West is argued to cause negative social, environmental, economic and cultural consequences – externalities – felt...

  2. Protein quality of insects as potential ingredients for dog and cat foods.

    Science.gov (United States)

    Bosch, Guido; Zhang, Sheng; Oonincx, Dennis G A B; Hendriks, Wouter H

    2014-01-01

    Insects have been proposed as a high-quality, efficient and sustainable dietary protein source. The present study evaluated the protein quality of a selection of insect species. Insect substrates were housefly pupae, adult house cricket, yellow mealworm larvae, lesser mealworm larvae, Morio worm larvae, black soldier fly larvae and pupae, six spot roach, death's head cockroach and Argentinean cockroach. Reference substrates were poultry meat meal, fish meal and soyabean meal. Substrates were analysed for DM, N, crude fat, ash and amino acid (AA) contents and for in vitro digestibility of organic matter (OM) and N. The nutrient composition, AA scores as well as in vitro OM and N digestibility varied considerably between insect substrates. For the AA score, the first limiting AA for most substrates was the combined requirement for Met and Cys. The pupae of the housefly and black soldier fly were high in protein and had high AA scores but were less digestible than other insect substrates. The protein content and AA score of house crickets were high and similar to that of fish meal; however, in vitro N digestibility was higher. The cockroaches were relatively high in protein but the indispensable AA contents, AA scores and the in vitro digestibility values were relatively low. In addition to the indices of protein quality, other aspects such as efficiency of conversion of organic side streams, feasibility of mass-production, product safety and pet owner perception are important for future dog and cat food application of insects as alternative protein source.

  3. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards

  4. Insect barcode information system.

    Science.gov (United States)

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client- server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. http://www.nabg-nbaii.res.in/barcode.

  5. How will better products improve the sensory-liking and willingness to buy insect-based foods?

    NARCIS (Netherlands)

    Tan, Hui Shan Grace; Verbaan, Yoeri Timothy; Stieger, Markus

    2017-01-01

    Insects have been established to be a more sustainable alternative source of protein in comparison to conventional meats, but have little appeal to those who are unfamiliar with their taste. Yet little attention has been given to understanding how more appealing products could be developed, and

  6. Insect-resistant biotech crops and their impacts on beneficial arthropods

    Science.gov (United States)

    Gatehouse, A. M. R.; Ferry, N.; Edwards, M. G.; Bell, H. A.

    2011-01-01

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids. PMID:21444317

  7. Insect-resistant biotech crops and their impacts on beneficial arthropods.

    Science.gov (United States)

    Gatehouse, A M R; Ferry, N; Edwards, M G; Bell, H A

    2011-05-12

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids.

  8. Thematic Plan for the Sterile Insect Technique for Old and New World Screwworm

    International Nuclear Information System (INIS)

    1998-01-01

    Objective: To support livestock development programmes aiming at controlling or eradicating key insect pests. This involves the application of the sterile insect technique (SIT) into area wide integrated pest management and eradication systems. The sustainability of eradication activities has been demonstrated for a number of insect pests under various national settings where the application of SIT has produced significant impact on socio-economic development, in terms of both cost-savings and environmental quality. In line with the TC strategy, this thematic plan reviews best practices and experience gained in field operations, identifies stakeholders and common objectives in New World Screwworm, Cochliomya hominivorax (NWS) and Old World Screwworm, Chrysomya bezziana (OWS), control and outlines a strategy for implementing integrated pest control programmes at the regional, sub-regional and national level. Synergies are sought with partner organisations to expand the knowledge base and capabilities for SIT based pest control activities and to strengthen TCDC.

  9. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins

    OpenAIRE

    Martinez, Ana Fl?via Canovas; de Almeida, Lu?s Gustavo; Moraes, Luiz Alberto Beraldo; C?nsoli, Fernando Lu?s

    2017-01-01

    Background The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted att...

  10. Insect pest control newsletter. No. 64

    International Nuclear Information System (INIS)

    2004-12-01

    In October 2004 the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture celebrated 40 years of existence. The creation in October 1964 of this Division, which includes the Insect Pest Control Subprogramme, marked the beginning of what is certainly a unique and arguably the best example of inter-agency cooperation within the whole UN family. The goal was to join the talents and resources of both organizations to obtain better cooperation and less duplication of efforts in assisting their Member States in applying nuclear techniques for providing people with more, better and safer food and other agricultural products, while sustaining the natural resources base. The complete press release is included under 'Special News and Reports'

  11. Insekter - Fremtidens fødevare?: Insects - Food of the future?

    OpenAIRE

    Schelbli, Mia Vest; Dam-Amby, Nicole; Birch, Maia; Nørtoft, Jeppe Nothlev; Kinnerup, Kenneth; Kühnel, Andreas; Thorsen, Kasper

    2014-01-01

    This paper investigates the cultural and psychological factors, which is applicable to the Danish view of entomophagy and how to enable the practice of entomophagy on a private basis. Based on essential theories from countries who have already integrated entomophagy as a lifestyle and an alternative source to protein, this paper explores in greater depth not only the importance of using insects as an alternative to meat but also as a resolution to better the environment using this sustainable...

  12. RNA interference: Applications and advances in insect toxicology and insect pest management.

    Science.gov (United States)

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The mechanisms underlying the production of discontinuous gas exchange cycles in insects.

    Science.gov (United States)

    Matthews, Philip G D

    2018-03-01

    This review examines the control of gas exchange in insects, specifically examining what mechanisms could explain the emergence of discontinuous gas exchange cycles (DGCs). DGCs are gas exchange patterns consisting of alternating breath-hold periods and bouts of gas exchange. While all insects are capable of displaying a continuous pattern of gas exchange, this episodic pattern is known to occur within only some groups of insects and then only sporadically or during certain phases of their life cycle. Investigations into DGCs have tended to emphasise the role of chemosensory thresholds in triggering spiracle opening as critical for producing these gas exchange patterns. However, a chemosensory basis for episodic breathing also requires an as-of-yet unidentified hysteresis between internal respiratory stimuli, chemoreceptors, and the spiracles. What has been less appreciated is the role that the insect's central nervous system (CNS) might play in generating episodic patterns of ventilation. The active ventilation displayed by many insects during DGCs suggests that this pattern could be the product of directed control by the CNS rather than arising passively as a result of self-sustaining oscillations in internal oxygen and carbon dioxide levels. This paper attempts to summarise what is currently known about insect gas exchange regulation, examining the location and control of ventilatory pattern generators in the CNS, the influence of chemoreceptor feedback in the form of O 2 and CO 2 /pH fluctuations in the haemolymph, and the role of state-dependent changes in CNS activity on ventilatory control. This information is placed in the context of what is currently known regarding the production of discontinuous gas exchange patterns.

  14. Edible insects

    NARCIS (Netherlands)

    Huis, van A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than

  15. Insects and human nutrition

    DEFF Research Database (Denmark)

    Roos, Nanna

    2018-01-01

    Despite high diversity in species as well as metamorphological life-­stages, edible insects are essentially an animal-source food contributing high quality protein and fat when viewed in the context of human nutrition. The nutritional contribution of insects to diets in populations where insects ...

  16. Colgajos de perforantes de las arterias epigástricas inferiores profunda y superficial Deep and superficial inferior epigastric artery perforator flaps

    Directory of Open Access Journals (Sweden)

    A. R. Gagnon

    2006-12-01

    Full Text Available Con el desarrollo de los colgajos miocutáneos de recto abdominal (TRAM, el abdomen inferior ha sido reconocido como la principal área dadora de tejidos autólogos de alta calidad, especialmente útiles en reconstrucción mamaria. Más recientemente la habilidad para obtener componentes adiposocutáneos similares sin sacrificar el músculo recto ha revolucionado el campo de la Cirugía Reconstructiva. El advenimiento de los colgajos de perforantes ha permitido a los cirujanos plásticos lograr los mismos buenos resultados estéticos que con los colgajos miocutáneos tradicionales, pero con un considerable descenso en la morbilidad del área donante. Con los colgajos de perforantes de la arteria epigástrica inferior profunda (DIEP y de la arteria epigástrica inferior superficial (SIEA, los pacientes han incrementado sus opciones de reconstrucción. Este artículo revisa la anatomía quirúrgica de la pared abdominal relativa a los colgajos SIEA y DIEP. Se explican detalladamente los pasos principales para la preparación preoperatoria, la técnica quirúrgica y los cuidados postoperatorios. Se discuten las ventajas y desventajas y se presen- tan los trucos técnicos que pueden ayudar a mejorar el resultado final. Además se ilustran con ayuda de casos clínicos las indicaciones típicas y atípicas.Following the development of the transverse rectus abdominis myocutaneous (TRAM flap, the lower abdomen has been recognized as a prime source of high quality autogenous tissue, especially useful in breast reconstruction. More recently, the ability to harvest a similar adipocutaneous component without sacrifice of the rectus muscle has revolutionized the field of reconstructive surgery. The advent of perforator flaps has allowed plastic surgeons to achieve the same highly esthetic results as with the former myocutaneous flaps while significantly decreasing the donor site morbidity. With the deep inferior epigastric artery perforator (DIEP flap and

  17. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... all life stages of insects from and around the corpse. The collected specimens are subjected to further analysis either in the field itself or in the laboratory. A forensic entomologist has three main objectives in his mind while analyzing the insect data: determination of place, time and mode of death, each of.

  18. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  19. Sterile insect supply, emergence, and release

    International Nuclear Information System (INIS)

    Dowell, R.V.; Worley, J.; Gomes, P.J.

    2005-01-01

    Insect mass-rearing for a sterile insect technique (SIT) programme is designed to move beyond the large-scale rearing of insects in a laboratory to the industrial production of consistently high-quality insects for sterilization and release. Each facility reflects the unique biology of the insect reared within it, but there are some generalities for all rearing facilities. Rearing insects in self-contained modules offers flexibility, and increased safety from catastrophic occurrences, compared with using a single building which houses all facets of the rearing process. Although mechanizing certain aspects of the rearing steps helps provide a consistently high-quality insect, successful mass-rearing and delivery depends largely upon the human component. Besides production in centralized facilities, insects can be produced from purchased eggs, or nowadays, adult insects are often obtained from specialized satellite emergence/collection facilities. Interest in commercializing insect production and release is increasing. Shipping sterile insects, sometimes over long distances, is now common practice. Procedures for handling and chilling adult insects, and providing food and water prior to release, are continually being improved. Sterile insects are released via static-release receptacles, ground-release systems, or most commonly from the air. The aerial release of chilled sterile insects is the most efficient method of release, especially when aircraft flight paths are guided by a Global Positioning System (GPS) linked to a computer-controlled release mechanism. (author)

  20. Insects vis a vis radiations

    International Nuclear Information System (INIS)

    Srivastava, Meera

    2014-01-01

    Insects have turned out to be much more radiation resistant. For most insects a dose of about 500-700 Gy is required to kill them within a few weeks of exposure; although cockroaches require 900-1000 Gy. Killing insects in less than a few days requires much higher doses. These doses are for mature insects, the immature stages of some insects can be killed by doses as low as 40 Gy. Some insects can be sterilized at even lower doses, and this has application in insect control. Screw-worms, for example, can be sterilized with doses of 25-50 Gy. By contrast, doses as low as 3 Gy caused death of humans in Hiroshima and Nagasaki and doses of about 6 Gy caused death of fire fighters in the Chernobyl accident. It is not exactly certain what the basis is for the resistance of insects to ionizing radiation. It is not animal size by itself, nor lack of penetration. It is also not because of few dividing cells as these are more radiosensitive than non-dividing ones. The speculation that insects might have lower oxygen tensions, and the lack of oxygen is known to protect cells from radiation also does not work. Insect cells might have an enhanced capacity to repair radiation damage also could not be proven. The number of chromosomes influenced radio-sensitivity, and that insects had fewer chromosomes could be true. The radiation resistance is inherent to the cells, since cells derived from insects are also radiation resistant when grown in cell culture. For example, a dose of 60 Gy is required to produce a 80% kill of insect cells, while doses of 1-2 Gy are sufficient to generate this level of killing in mammalian cells. But, nevertheless, according to recent researches, radiation from Japan's leaking Fukushima nuclear plant has caused mutations in some butterflies. It is therefore clear that insects are resistant to ionizing radiation and that this resistance is an inherent property of their cells. But it is not clear exactly what the basis of this cellular resistance is

  1. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  2. Sustainable protein technology : an evaluation on the STW Protein programme and an outlook for the future

    NARCIS (Netherlands)

    Voudouris, Panagiotis; Tamayo Tenorio, Angelica; Lesschen, Jan Peter; Kyriakopoulou, Konstantina; Sanders, Johan P.M.; Goot, van der Atze Jan; Bruins, Marieke E.

    2017-01-01

    In 2013 a new STW research programme was started on sustainable protein recovery. This STW Protein Programme consisted of five sustainable protein technology projects, which aimed at developing innovative methods to extract proteins from plant leaves, microalgae and insects to meet the increasing

  3. Barriers to sustainable consumption attenuated by foreign language use

    NARCIS (Netherlands)

    J. Geipel (Janet); C. Hadjichristidis (Constantinos); A.K. Klesse (Anne Kathrin)

    2018-01-01

    textabstractAbstract The adoption of certain innovative products, such as recycled water, artificial meat, and insect-based food, could help promote sustainability. However, the disgust these products elicit acts as a barrier to their consumption. Here, we show that describing such products in a

  4. Radiations: tool for insect pest management

    International Nuclear Information System (INIS)

    Swami, Kailash Kumar; Kiradoo, M.M.; Srivastava, Meera

    2012-01-01

    The discovery that X-rays or gamma radiation could cause sufficient genetic damage to insect reproductive systems to induce sterility resulted from work conducted by H.J. Muller starting in the 1920s. The sterilizing effect of radiation was noted by scientists of the US Department of Agriculture who had been seeking a method to sterilize insects for many years. These scientists had theorized that if large numbers of the target insect species were reared, sterilized, and released into the field, the sterile insects would mate with the wild insects. These mating would result in no offspring and thus a decline in the population would be obtained. They calculated that if sufficient numbers of sterile insects were released, reproductive rate for the wild population would rapidly decline and reach zero. In simple language, birth control of insects. Radiation sterilization was the answer. In a SIT operation, radiation is used to sexually sterilize insects. Since the SIT is species specific, the selection the insect pest or group of pests on which to work is of primary importance. The Joint Division of the IAEA Food and Agriculture Organization (FAO) has been involved in the use of isotopes and radiation in insect control since 1964. Isotopes are used as tags or markers, for instance, of chemical molecules, insects, or plants. For example, with these tags one can follow the fate of insecticides within insects and the environment; the incorporation of nutrients into the insect; and the movements of insects under field conditions. They also can plants on which insects feed so that the quantity of consumed food can be measured and directly correlated with plant resistance. They can be used as well to follow parasites and predators of insects - for example, their movements, numbers, and ability to help control insect pests. Radiations therefore have come as a novel tool to combat insect pest problem and in future could be very helpful in various other ways, of be it be cost

  5. Evolution of the Insects

    Science.gov (United States)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  6. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique involves the mass-rearing of insects, which are sterilized by gamma rays from a 60 Co source before being released in a controlled fashion into nature. Matings between the sterile insects released and native insects produce no progeny, and so if enough of these matings occur the pest population can be controlled or even eradicated. A modification of the technique, especially suitable for the suppression of the moths and butterflies, is called the F, or inherited sterility method. In this, lower radiation doses are used such that the released males are only partially sterile (30-60%) and the females are fully sterile. When released males mate with native females some progeny are produced, but they are completely sterile. Thus, full expression of the sterility is delayed by one generation. This article describes the use of the sterile insect technique in controlling the screwworm fly, the tsetse fly, the medfly, the pink bollworm and the melon fly, and of the F 1 sterility method in the eradication of local gypsy moth infestations. 18 refs, 5 figs, 1 tab

  7. With or without pheromone habituation: possible differences between insect orders?

    Science.gov (United States)

    Suckling, David Maxwell; Stringer, Lloyd D; Jiménez-Pérez, Alfredo; Walter, Gimme H; Sullivan, Nicola; El-Sayed, Ashraf M

    2018-06-01

    Habituation to sex pheromones is one of the key mechanisms in mating disruption, an insect control tactic. Male moths often show reduced sexual response after pre-exposure to female sex pheromone. Mating disruption is relatively rare in insect orders other than Lepidoptera. As a positive control we confirmed habituation in a moth (Epiphyas postvittana) using 24 h pre-exposure to sex pheromone to reduce subsequent activation behaviour. We then tested the impact of pre-exposure to sex or trail pheromone on subsequent behavioural response with insects from three other orders. Similar pre-exposure for 24 h to either sex pheromone [Pseudococcus calceolariae (Homoptera) and apple leaf curling midge Dasineura mali (Diptera), or trail pheromone of Argentine ants (Linepithema humile (Hymenoptera)], followed by behavioural assay in clean air provided no evidence of habituation after pre-exposure in these latter cases. The moths alone were affected by pre-exposure to pheromone. For pests without habituation, sustained attraction to a point source may make lure and kill more economical. Improved knowledge of behavioural processes should lead to better success in pest management and mechanisms should be investigated further to inform studies and practical efforts generally enhancing effectiveness of pheromone-based management. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. FAO/IAEA international conference on area-wide control of insect pests: Integrating the sterile insect and related nuclear and other techniques. Book of extended synopses

    International Nuclear Information System (INIS)

    2005-01-01

    The successful implementation of area-wide pest control programmes integrating the use of sterile insects with other control technologies against a number of key veterinary, medical and plant insect pests, such as various fruit flies, moths, screwworms, and tsetse species, clearly demonstrates a peaceful application of nuclear technology. Over the last 40 years, FAO and IAEA have played, and they will continue to play, a critical role in supporting their Member States in the development and application of these environment-friendly pest control methods. The concept of area-wide integrated pest management, in which the total population of a pest in an area or region is targeted, is central to the effective application of the Sterile Insect Technique (SIT) and is increasingly being considered for related genetic, biological and other pest control technologies. Insect movement, occurring sometimes over long distances, is generally underestimated. As a consequence, most conventional pest control can be described as localized, un-coordinated action against segments of a pest population, resulting very often in an unsustainable spiral of insecticide application and eventual resistance. However, an area-wide integrated approach adopts a preventive rather than a reactive tactic, whereby all individuals of the pest population are targeted, requiring fewer inputs and resulting in more cost effective and sustainable control. In June 1998 FAO and IAEA sponsored the First International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and other Techniques in Penang, Malaysia with the participation of almost 300 participants from 63 Member States and 5 international organizations. This Conference greatly increased awareness concerning the area-wide approach for insect pest control programmes. Since then, many new technical innovations have been introduced and a better regulatory framework is being developed for integrating SIT

  9. FAO/IAEA international conference on area-wide control of insect pests: Integrating the sterile insect and related nuclear and other techniques. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The successful implementation of area-wide pest control programmes integrating the use of sterile insects with other control technologies against a number of key veterinary, medical and plant insect pests, such as various fruit flies, moths, screwworms, and tsetse species, clearly demonstrates a peaceful application of nuclear technology. Over the last 40 years, FAO and IAEA have played, and they will continue to play, a critical role in supporting their Member States in the development and application of these environment-friendly pest control methods. The concept of area-wide integrated pest management, in which the total population of a pest in an area or region is targeted, is central to the effective application of the Sterile Insect Technique (SIT) and is increasingly being considered for related genetic, biological and other pest control technologies. Insect movement, occurring sometimes over long distances, is generally underestimated. As a consequence, most conventional pest control can be described as localized, un-coordinated action against segments of a pest population, resulting very often in an unsustainable spiral of insecticide application and eventual resistance. However, an area-wide integrated approach adopts a preventive rather than a reactive tactic, whereby all individuals of the pest population are targeted, requiring fewer inputs and resulting in more cost effective and sustainable control. In June 1998 FAO and IAEA sponsored the First International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and other Techniques in Penang, Malaysia with the participation of almost 300 participants from 63 Member States and 5 international organizations. This Conference greatly increased awareness concerning the area-wide approach for insect pest control programmes. Since then, many new technical innovations have been introduced and a better regulatory framework is being developed for integrating SIT

  10. Insect and Pest Control Newsletter, No. 87, July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    A year ago, in NL 85, we reported on the increasing demands from our FAO and IAEA Member States to expand our focus from developing and transferring the sterile insect technique (SIT) for major crop and livestock insect pests to major disease-transmitting mosquitoes. Since the mid-2000s, there have been several IAEA General Conference resolutions requesting the Joint FAO/IAEA Insect Pest Control Subprogramme to develop a complete “SIT package” for major mosquito species to be used as a component of area-wide integrated vector management (IVM) approaches. The first resolutions focussed on the malaria vector Anopheles arabiensis, but since 2010, also the dengue and chikungunya vectors Aedes aegypti and Ae. albopictus were included. In view that the traditional chemical-based vector control strategies were facing serious challenges due to increased resistance of mosquitoes to insecticides and increased public concern of insecticide use in urban areas, there was a clear need for novel methods and complementary approaches to manage mosquito populations in an effective and more environmentally friendly and sustainable way. Furthermore, due to the absence of effective vaccines and drugs against some of these diseases, vector suppression approaches are widely seen as the most effective means to reduce these mosquito-transmitted diseases that pose an enormous economic and social burden, and whose incidence has increased drastically in recent years with the spread to new regions.

  11. Insect bite reactions

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2013-01-01

    Full Text Available Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some

  12. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed.

    Science.gov (United States)

    Grau, Thorben; Vilcinskas, Andreas; Joop, Gerrit

    2017-09-26

    The farming of edible insects is an alternative strategy for the production of protein-rich food and feed with a low ecological footprint. The industrial production of insect-derived protein is more cost-effective and energy-efficient than livestock farming or aquaculture. The mealworm Tenebrio molitor is economically among the most important species used for the large-scale conversion of plant biomass into protein. Here, we review the mass rearing of this species and its conversion into food and feed, focusing on challenges such as the contamination of food/feed products with bacteria from the insect gut and the risk of rapidly spreading pathogens and parasites. We propose solutions to prevent the outbreak of infections among farmed insects without reliance on antibiotics. Transgenerational immune priming and probiotic bacteria may provide alternative strategies for sustainable insect farming.

  13. Insect anaphylaxis: addressing clinical challenges.

    Science.gov (United States)

    Tracy, James M; Lewis, Elena J; Demain, Jeffrey G

    2011-08-01

    Few allergic reactions are as potentially life-threatening, or frightening to the patient, as anaphylaxis. Food, medications, and insect stings are the three most common triggers of anaphylaxis, but insect allergy provides the best opportunity to understand the biology of anaphylaxis. If the physician can establish a diagnosis of insect allergy, treatment with nearly 98% effectiveness can be initiated. However, sometimes patients have a compelling history of insect sting anaphylaxis, but negative skin and blood tests. This situation presents us with a fascinating opportunity to understand the biology of insect anaphylaxis. Recent and ongoing work shows that occult mast cell disease may be critical in insect anaphylaxis. Mastocytosis, serum tryptase and basophil biology are key elements; genetic markers may potentially help us diagnose at-risk individuals and determine proper treatment. Understanding basophil activation may play an additional role both in diagnosis and knowing when therapy might be terminated. Mast cell disease, serum tryptase and basophil biology are providing an opportunity to better understand and manage insect allergy. This evolving understanding should improve long-term management of insect anaphylaxis and help us to better understand the clinical dilemma of appropriate management of the history-positive patient in which testing is unable to detect venom-specific IgE. Furthermore, omalizumab's immunomodulatory effects may play a role in difficult-to-treat insect allergy and mastocytosis. Finally, unrelated to these, but still important as an ongoing risk factor, is the continued underutilization of epinephrine for both acute and long-term management of insect anaphylaxis.

  14. SUSTAINABILITY OF INSECT RESISTANCE MANAGEMENT STRATEGIES FOR TRANSGENIC BT CORN

    Science.gov (United States)

    Increasing interest in the responsible management of technology in the industrial and agricultural sectors of the economy has been met through the development of broadly applicable tools to assess the "sustainability" of new technologies. An arena ripe for application of such ana...

  15. Environmental RNAi in herbivorous insects.

    Science.gov (United States)

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. © 2015 Ivashuta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Sex determination in insects: a binary decision based on alternative splicing.

    Science.gov (United States)

    Salz, Helen K

    2011-08-01

    The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, Pinsects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host

  18. Degradation and excretion of the Fusarium toxin deoxynivalenol by an edible insect, the Yellow mealworm (Tenebrio molitor L.)

    NARCIS (Netherlands)

    Broekhoven, van S.; Mota Gutierrez, J.; Rijk, de T.C.; Nijs, de W.C.M.; Loon, van J.J.A.

    2017-01-01

    Insects could provide an alternative and more sustainable source of animal protein compared to conventional livestock. Yellow mealworms (Tenebrio molitor L.) can be grown on diets composed of organic by-products. However, these diets could be contaminated with mycotoxins. Thus far, little is

  19. Edible insects of Northern Angola

    OpenAIRE

    Lautenschläger,Thea; Neinhuis,Christoph; Monizi,Mawunu; Mandombe,José Lau; Förster,Anke; Henle,Thomas; Nuss,Matthias

    2017-01-01

    From 2013–2017, we accompanied and interviewed local people harvesting edible insects in the Northern Angolan province of Uíge. Insect and host plant samples were collected for species identification and nutritive analyses. Additionally, live caterpillars were taken to feed and keep until pupation and eclosion of the imago, necessary for morphological species identification. Altogether, 18 insect species eaten by humans were recorded. Twenty four edible insect species were formerly known from...

  20. Pathogen avoidance by insect predators

    OpenAIRE

    Meyling, Nicolai V.; Ormond, Emma; Roy, Helen E.; Pell, Judith K.

    2008-01-01

    Insects can detect cues related to the risk of attack by their natural enemies. Pathogens are among the natural enemies of insects and entomopathogenic fungi attack a wide array of host species. Evidence documents that social insects in particular have adapted behavioural mechanisms to avoid infection by fungal pathogens. These mechanisms are referred to as 'behavioural resistance'. However, there is little evidence for similar adaptations in non-social insects. We have conducted experime...

  1. The city as a refuge for insect pollinators.

    Science.gov (United States)

    Hall, Damon M; Camilo, Gerardo R; Tonietto, Rebecca K; Ollerton, Jeff; Ahrné, Karin; Arduser, Mike; Ascher, John S; Baldock, Katherine C R; Fowler, Robert; Frankie, Gordon; Goulson, Dave; Gunnarsson, Bengt; Hanley, Mick E; Jackson, Janet I; Langellotto, Gail; Lowenstein, David; Minor, Emily S; Philpott, Stacy M; Potts, Simon G; Sirohi, Muzafar H; Spevak, Edward M; Stone, Graham N; Threlfall, Caragh G

    2017-02-01

    Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  2. Edible insects in China: Utilization and prospects.

    Science.gov (United States)

    Feng, Ying; Chen, Xiao-Ming; Zhao, Min; He, Zhao; Sun, Long; Wang, Cheng-Ye; Ding, Wei-Feng

    2018-04-01

    The use of edible insects has a long history in China, where they have been consumed for more than 2000 years. In general, the level of acceptance is high for the consumption of insects in China. Many studies on edible insects have been conducted in the last 20 years, and the scope of the research includes the culture of entomophagy and the identification, nutritional value, farming and breeding of edible insects, in addition to food production and safety. Currently, 324 species of insects from 11 orders are documented that are either edible or associated with entomophagy in China, which include the common edible species, some less commonly consumed species and some medicinal insects. However, only approximately 10 to 20 types of insects are regularly consumed. The nutritional values for 174 species are available in China, including edible, feed and medicinal species. Although the nutritional values vary among species, all the insects examined contain protein, fat, vitamins and minerals at levels that meet human nutritional requirements. Edible insects were, and continue to be, consumed by different ethnic groups in many parts of China. People directly consume insects or food products made from insects. The processing of products from insect protein powder, oil and chitin, and the development of healthcare foods has been studied in China. People also consume insects indirectly by eating livestock that were fed insects, which may be a more acceptable pathway to use insects in human diets. Although limited, the data on the food safety of insects indicate that insects are safe for food or feed. Incidences of allergic reactions after consuming silkworm pupae, cicadas and crickets have been reported in China. Insect farming is a unique breeding industry in rural China and is a source of income for local people. Insects are reared and bred for human food, medicine and animal feed using two approaches in China: the insects are either fully domesticated and reared

  3. Beneficial Insect Borders Provide Northern Bobwhite Brood Habitat

    Science.gov (United States)

    Moorman, Christopher E.; Plush, Charles J.; Orr, David B.; Reberg-Horton, Chris

    2013-01-01

    Strips of fallow vegetation along cropland borders are an effective strategy for providing brood habitat for declining populations of upland game birds (Order: Galliformes), including northern bobwhite (Colinus virginianus), but fallow borders lack nectar-producing vegetation needed to sustain many beneficial insect populations (e.g., crop pest predators, parasitoids, and pollinator species). Planted borders that contain mixes of prairie flowers and grasses are designed to harbor more diverse arthropod communities, but the relative value of these borders as brood habitat is unknown. We used groups of six human-imprinted northern bobwhite chicks as a bioassay for comparing four different border treatments (planted native grass and prairie flowers, planted prairie flowers only, fallow vegetation, or mowed vegetation) as northern bobwhite brood habitat from June-August 2009 and 2010. All field border treatments were established around nine organic crop fields. Groups of chicks were led through borders for 30-min foraging trials and immediately euthanized, and eaten arthropods in crops and gizzards were measured to calculate a foraging rate for each border treatment. We estimated arthropod prey availability within each border treatment using a modified blower-vac to sample arthropods at the vegetation strata where chicks foraged. Foraging rate did not differ among border treatments in 2009 or 2010. Total arthropod prey densities calculated from blower-vac samples did not differ among border treatments in 2009 or 2010. Our results showed plant communities established to attract beneficial insects should maximize the biodiversity potential of field border establishment by providing habitat for beneficial insects and young upland game birds. PMID:24376759

  4. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA

    OpenAIRE

    David G. James; Lorraine Seymour; Gerry Lauby; Katie Buckley

    2016-01-01

    Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other bene...

  5. Irradiation as an alternative treatment to methyl bromide for insect control

    International Nuclear Information System (INIS)

    Akinbingol, B.

    2001-01-01

    Turkey is the leading country in the world, in production and exports of dried fig, apricot, raisin and hazelnut. One of main problem in the export trade is infestation by stored product insects. Using MB is very effective for controlling stored product insects in Turkey. MB has also listed as an ozone depleting substance and worldwide production will be phased out in the near future, than Turkey will be faced very serious problem for export dry fruits and hazelnut. Use of irradiation to disinfest agricultural products has obvius advantages, most of which are influenced by environmental, cultural, economic, commercial and govermental factors. The first two factors, effectiveness and economy, are adressed principally. Research conducted world-wide in the past four decades have shown that radiation processing is an effective and safe method for controlling insect pests of stored products. Irradiation offers an effective alternative quarantine treatment which is more environmentally friendly and sustainable as compared to fumigants. In view of the phasing out of the currently used post harvest chemical fumigants, irradiation either alone or in conjuction with other post-harvest procedures can contribute towards the goals of achieving food security in developing and less developed countries by effectively reducing post-harvest losses

  6. Insect immunology and hematopoiesis.

    Science.gov (United States)

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  8. Eating insects

    OpenAIRE

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards eating creatures that are not regarded as food. The low consumer acceptance of this culturally inappropriate food is currently considered to be one of the key barriers to attaining the benefits of this po...

  9. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  10. The Native Hawaiian Insect Microbiome Initiative: A Critical Perspective for Hawaiian Insect Evolution

    Directory of Open Access Journals (Sweden)

    Kirsten E. Poff

    2017-12-01

    Full Text Available Insects associate with a diversity of microbes that can shape host ecology and diversity by providing essential biological and adaptive services. For most insect groups, the evolutionary implications of host–microbe interactions remain poorly understood. Geographically discrete areas with high biodiversity offer powerful, simplified model systems to better understand insect–microbe interactions. Hawaii boasts a diverse endemic insect fauna (~6000 species characterized by spectacular adaptive radiations. Despite this, little is known about the role of bacteria in shaping this diversity. To address this knowledge gap, we inaugurate the Native Hawaiian Insect Microbiome Initiative (NHIMI. The NHIMI is an effort intended to develop a framework for informing evolutionary and biological studies in Hawaii. To initiate this effort, we have sequenced the bacterial microbiomes of thirteen species representing iconic, endemic Hawaiian insect groups. Our results show that native Hawaiian insects associate with a diversity of bacteria that exhibit a wide phylogenetic breadth. Several groups show predictable associations with obligate microbes that permit diet specialization. Others exhibit unique ecological transitions that are correlated with shifts in their microbiomes (e.g., transition to carrion feeding from plant-feeding in Nysius wekiuicola. Finally, some groups, such as the Hawaiian Drosophila, have relatively diverse microbiomes with a conserved core of bacterial taxa across multiple species and islands.

  11. Insects and diseases

    Science.gov (United States)

    John W. Couston

    2009-01-01

    Insects and diseases are a natural part of forested ecosystems. Their activity is partially regulated by biotic factors, e.g., host abundance, host quality; physical factors, e.g., soil, climate; and disturbances (Berryman 1986). Insects and diseases can influence both forest patterns and forest processes by causing, for example, defoliation and mortality. These...

  12. Protecting Yourself from Stinging Insects

    Science.gov (United States)

    ... from St ing in g In sect s Flying Insects Outdoor workers are at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While ... If a worker is stung by a stinging insect: ■■ Have someone stay with the worker to be ...

  13. An Integrated Molecular Database on Indian Insects.

    Science.gov (United States)

    Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil

    2018-01-01

    MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.

  14. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    , defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar...... defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects...

  15. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    Directory of Open Access Journals (Sweden)

    Qing-Mei Quan

    information to guide the protection and sustainable use of these host insects as well as O. sinensis.

  16. Insects: An Interdisciplinary Unit

    Science.gov (United States)

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  17. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... on management, 32-115 kg ant brood (mainly new queens) was harvested per ha per year without detrimental effect on colony survival and worker ant densities. This suggest that ant biocontrol and ant harvest can be sustainable integrated in plantations and double benefits derived. As ant production is fuelled...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  18. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Broekhoven, Van Sarah; Huis, Van Arnold; Loon, Van J.J.A.

    2015-01-01

    A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from byproducts of food

  19. Insects: Bugged Out!

    Science.gov (United States)

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  20. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  1. Predicting the potential establishment of two insect species using the simulation environment INSIM (INsect SIMulation)

    NARCIS (Netherlands)

    Hemerik, Lia; Nes, van Egbert H.

    2016-01-01

    Degree-day models have long been used to predict events in the life cycle of insects and therewith the timing of outbreaks of insect pests and their natural enemies. This approach assumes, however, that the effect of temperature is linear, whereas developmental rates of insects are non-linearly

  2. Insects and Bugs

    Science.gov (United States)

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  3. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  4. Insect Bites and Stings

    Science.gov (United States)

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  5. The Curious Connection Between Insects and Dreams.

    Science.gov (United States)

    Klein, Barrett A

    2011-12-21

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  6. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  7. The basic principles of the application of sterile insect technique for area-wide insect pest control

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2006-01-01

    Sterile Insect Technique (SIT) is a new insect pest control technique, potential, and compatible to other techniques. This technique includes irradiation of insect colony in the laboratory using gamma, n, or x-rays and then release them in the field periodically to obtain the increase of sterility probability level from the first generation to the dependence as the result the decrease of the fertility level in the field. The effect the release of sterile insects ( 9:1 ratio to the male indigenous and reproductive potential every single female of each generation reproduce 5 females ) to the insect reduction population model is conceptually discussed. From one million of the female parental decrease to be 26, 316; 1,907; 10; and 0 insects at the first, second, third, and the forth progeny respectively. Then if sterile insect technique integrated with chemical technique (insecticide) 90% kill, it will be much more effective compared to the application sterile insect technique only. From the number of one million population of insects will decrease to be 2,632; 189; and 0 insects at the first, second, and the third progeny respectively. In the Lepidoptera insects was found a phenomenon of inherited sterility. According to Knipling (1970) the inherited sterility in the first offspring caused by chromosome translocation in the gamete . In the individual of heterozygote will be die and in the homozygotes is still alive. Interspecific hybrid sterility first time was found by Laster (1972) from a cross between males Heliothis virescens (F) and females Heliothis subflexa Guenee. Male moths of the first offspring from the cross between H. virescens and H. subflexa is sterile and the females still remain fertile. If the female moths of the first offspring back crossed with male H. virescens the phenomenon of sterility always found will same situation as mention earlier the male offspring is sterile and the females is fertile ( the male F2 will be sterile and the females will

  8. Advances on polyphenism in insects.

    Science.gov (United States)

    Xue, Xian-Ci; Yu, Li

    2017-09-20

    Polyphenism denotes that one genome produces two or more distinct phenotypes due to environmental inductions. Many cases have been reported in insects, for example, metamorphosis, seasonal polyphenism, the caste of eusocial insects and so on. Polyphenism is one of the most important reasons for insects to survive and thrive, because insects can adapt and use the environmental cues around them in order to avoid predators and reproduce by changing their phenotypes. Polyphenism has received growing attentions, ranging from the earlier description of this phenomenon to the exploration of possible inducing factors. With the recent advent of the genomic era, more and more studies based on next generation sequencing, gene knockout and RNA interference have been reported to reveal the molecular mechanism of polyphenism. In this review, we summarize the progresses of the polyphenism in insects and envision prospects of future researches.

  9. Radioactive labelling of insects

    International Nuclear Information System (INIS)

    Thygesen, Th.

    Experiments are described with the internal contamination of insects with phosphorus 32 introduced previously in plants of the brassica type using three different techniques. The intake of radioactivity from the plants to the insects is shown. (L.O.)

  10. Consuming insects

    DEFF Research Database (Denmark)

    Roos, Nanna; van Huis, A.

    2017-01-01

    as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and vegetables. Various recent studies have indicated such bioactivity in different insect species....... The enormous number of edible insect species may be a source of novel bioactive compounds with health benefits addressing global health challenges. However, any identified health benefits need to be confirmed in human studies or in standardised assays accepted in health research prior to making health claims....

  11. The Curious Connection Between Insects and Dreams

    Directory of Open Access Journals (Sweden)

    Barrett A. Klein

    2011-12-01

    Full Text Available A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  12. The Curious Connection Between Insects and Dreams

    Science.gov (United States)

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  13. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  14. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  15. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  16. Radiocesium concentrations in epigeic earthworms at various distances from the Fukushima Nuclear Power Plant 6 months after the 2011 accident.

    Science.gov (United States)

    Hasegawa, Motohiro; Ito, Masamichi T; Kaneko, Shinji; Kiyono, Yoshiyuki; Ikeda, Shigeto; Makino, Shun'ichi

    2013-12-01

    We investigated the concentrations of radiocesium in epigeic earthworms, litter, and soil samples collected from forests in Fukushima Prefecture 6 months after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011. Radiocesium concentrations in litter accumulated on the forest floor were higher than those in the soil (0-5 cm depth). The highest average (134+137)Cs concentrations in earthworms (approximately 19 Bq g(-1) of wet weight with gut contents and 108 Bq g(-1) of dry weight without gut contents) were recorded from a plot that experienced an air dose rate of 3.1 μSv h(-1), and earthworm concentrations were found to increase with litter and/or soil concentrations. Average (134)Cs and (137)Cs concentrations (with or without gut contents) were intermediate between accumulated litter and soil. Different species in the same ecological groups on the same plots had similar concentrations because of their use of the same habitats or their similar physiological characteristics. The contribution of global fallout (137)Cs to earthworms with gut contents was calculated to be very low, and most (137)Cs in earthworms was derived from the Fukushima accident. Transfer factors from accumulated litter to earthworms, based on their dry weights, ranged from 0.21 to 0.35, in agreement with previous field studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 40 CFR 161.590 - Nontarget insect data requirements.

    Science.gov (United States)

    2010-07-01

    ... pollinators (4) CR CR CR CR CR CR TEP TEP 141-5 Nontarget insect testing—aquatic insects Acute toxicity to aquatic insects (5) 142-1 Aquatic insect life-cycle study (5) 142-1 Simulated or actual field testing for aquatic insects (5) 142-3 Nontarget insect testing—predators and parasites (5) 143-1thru 143-3 Key: CR...

  18. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  19. CATT as a sustainable method for disinfestation of strawberry mother planting stock

    NARCIS (Netherlands)

    Kruistum, van G.; Hoek, H.; Verschoor, J.; Molendijk, L.P.G.

    2014-01-01

    From 2009 Controlled Atmosphere Temperature Treatment (CATT) is scaled up to a commercial level and widely applied by Dutch producers of strawberry (Fragaria × ananassa) mother planting stock. CATT is a non-chemical and sustainable method to disinfest plant material from insect pests. Frigo plants

  20. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments.

    Science.gov (United States)

    Zotti, M J; Smagghe, G

    2015-06-01

    The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.

  1. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  2. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  3. 21 CFR 1250.95 - Insect control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be... generally accepted methods of insect control. ...

  4. Herbivory increases diversification across insect clades.

    Science.gov (United States)

    Wiens, John J; Lapoint, Richard T; Whiteman, Noah K

    2015-09-24

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.

  5. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  6. Insect Capital

    Directory of Open Access Journals (Sweden)

    Andrew Pilsch

    2015-12-01

    Full Text Available In this note, Pilsch address William Gibson’s use of insect imagery in to trouble the common understanding of the novel Neuromancer, its commentary on corporate culture, and its relationship to a then-emergent posthumanism. Further, he concludes by suggesting that, for Gibson, the insect hive as an image for the corporate body shows that corporate culture is, in contrast to the banal image the term brings to mind, a set of nefarious cultural techniques derived for interfacing human bodies with the corporation’s native environment in the postmodern era: the abstractions of data.

  7. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  9. Attention-like processes in insects.

    Science.gov (United States)

    Nityananda, Vivek

    2016-11-16

    Attention is fundamentally important for sensory systems to focus on behaviourally relevant stimuli. It has therefore been an important field of study in human psychology and neuroscience. Primates, however, are not the only animals that might benefit from attention-like processes. Other animals, including insects, also have to use their senses and select one among many stimuli to forage, avoid predators and find mates. They have evolved different mechanisms to reduce the information processed by their brains to focus on only relevant stimuli. What are the mechanisms used by insects to selectively attend to visual and auditory stimuli? Do these attention-like mechanisms achieve the same functions as they do in primates? To investigate these questions, I use an established framework for investigating attention in non-human animals that proposes four fundamental components of attention: salience filters, competitive selection, top-down sensitivity control and working memory. I discuss evidence for each of these component processes in insects and compare the characteristics of these processes in insects to what we know from primates. Finally, I highlight important outstanding questions about insect attention that need to be addressed for us to understand the differences and similarities between vertebrate and insect attention. © 2016 The Author(s).

  10. Plant responses to insect egg deposition

    NARCIS (Netherlands)

    Hilker, M.; Fatouros, N.E.

    2015-01-01

    Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect

  11. ORAL INSECT REPELLENTS - INSECT TASTE RECEPTORS AND THEIR ACTION,

    Science.gov (United States)

    CULICIDAE, * CHEMORECEPTORS ), INSECT REPELLENTS, ELECTROPHYSIOLOGY, STIMULATION(PHYSIOLOGY), ELECTROLYTES(PHYSIOLOGY), BLOOD, INGESTION(PHYSIOLOGY), REPRODUCTION(PHYSIOLOGY), NUTRITION, ENTOMOLOGY, AEDES, MOUTH

  12. Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Ford, JoAnne [ed.

    2002-07-01

    Nuclear technology offers unique tools in the quest for sustainable development. Such technology is often the best to gather information and provide solutions that would not otherwise be possible or practical: to diagnose and treat disease, to breed better crops and fight insect pests; to assess new sources of fresh water; and to monitor pollution. While many may only think of energy, nuclear technology has a much larger role to play in human development. Where it can make a difference, the International Atomic Energy Agency (IAEA) provides support to 134 Member States for using this technology to solve the important challenges they face. Isotopes, stable and radioactive forms of chemical elements, can be used to 'label' materials under study. Since both stable and radioactive isotopes can be identified and measured using appropriate equipment, labelling is often used in diagnostic medical tests, in studies of underground sources of water, and to trace pollutants, such as heavy metals and pesticides. Stable, non-radioactive, isotopes are used in nutritional studies to trace the metabolism of vitamins and trace minerals in supplements. Other nuclear techniques use radiation which can be focussed into beams and depending on the intensity, can be used to kill cancer cells, to sterilize tissue grafts for burn victims, to sterilize food against insects or disease causing pathogens, to make insects sterile so they cannot reproduce, to induce desirable genetic changes in crops, or to scan body organs for abnormalities.

  13. Building a sustainable future

    International Nuclear Information System (INIS)

    Ford, JoAnne

    2002-01-01

    Nuclear technology offers unique tools in the quest for sustainable development. Such technology is often the best to gather information and provide solutions that would not otherwise be possible or practical: to diagnose and treat disease, to breed better crops and fight insect pests; to assess new sources of fresh water; and to monitor pollution. While many may only think of energy, nuclear technology has a much larger role to play in human development. Where it can make a difference, the International Atomic Energy Agency (IAEA) provides support to 134 Member States for using this technology to solve the important challenges they face. Isotopes, stable and radioactive forms of chemical elements, can be used to 'label' materials under study. Since both stable and radioactive isotopes can be identified and measured using appropriate equipment, labelling is often used in diagnostic medical tests, in studies of underground sources of water, and to trace pollutants, such as heavy metals and pesticides. Stable, non-radioactive, isotopes are used in nutritional studies to trace the metabolism of vitamins and trace minerals in supplements. Other nuclear techniques use radiation which can be focussed into beams and depending on the intensity, can be used to kill cancer cells, to sterilize tissue grafts for burn victims, to sterilize food against insects or disease causing pathogens, to make insects sterile so they cannot reproduce, to induce desirable genetic changes in crops, or to scan body organs for abnormalities

  14. How will better products improve the sensory-liking and willingness to buy insect-based foods?

    Science.gov (United States)

    Tan, Hui Shan Grace; Verbaan, Yoeri Timothy; Stieger, Markus

    2017-02-01

    Insects have been established to be a more sustainable alternative source of protein in comparison to conventional meats, but have little appeal to those who are unfamiliar with their taste. Yet little attention has been given to understanding how more appealing products could be developed, and whether that is sufficient to encourage consumption of a culturally unusual food. By evaluating appropriate (i.e. meatball) and inappropriate (i.e. dairy drink) mealworm products along with the original mealworm-free products, this study provided new insights into how the product influences sensory-liking and willingness to buy insect-based foods for trial and regular consumption. Willing (n=135) and unwilling tasters (n=79) were recruited to explore differences between individuals who differ in their intentions to eat insects. An appropriate product context improved the expected sensory-liking and willingness to buy mealworm products once and regularly. However, consumers should first be motivated to eat insects for a better product to improve consumption intentions. Descriptive sensory profiling revealed that mealworm products were expected and experienced to taste very different from the original mealworm-free products, but were generally preferred to taste similar to the original, albeit with some unique attributes. Using a familiar and liked product preparation could help to increase trial intentions, but the product should also be appropriate and taste good if it is to be regularly consumed. We conclude that even with high interest and good products, willing consumers still hesitate to consume insect-based foods regularly due to other practical and socio-cultural factors. We recommend that future research should not only give emphasis to increasing initial motivations to try, but should address the barriers to buying and preparing insects for regular consumption, where issues relating to availability, pricing, knowledge and the social environment inhibit the uptake of

  15. Sustainability Assessment of Plant Protection Strategies in Swiss Winter Wheat and Potato Production

    Directory of Open Access Journals (Sweden)

    Patrik Mouron

    2016-01-01

    Full Text Available Production of arable crops in Switzerland is subsidized for services performed within the Proof of Ecological Performance (PEP program, the crop protection part of which is based on IPM principles. Within PEP, chemical insect control must rely on those approved insecticides that are deemed harmless for beneficial arthropods. Approved insecticides potentially impacting beneficial arthropods may also be applied, but only if unavoidable and with an official permit. In order to assess the ecological and economic sustainability of this PEP program, a reference insecticide strategy illustrating the current PEP requirements was compared with other strategies. For this purpose, a sustainability assessment taking account of ecotoxicological risks and economic viability in addition to the preservation of beneficial arthropods was performed according to the SustainOS methodology. The results show that the one-off use of Audienz (spinosad to control cereal leaf beetle (Oulema melanopus—a key pest in winter wheat—would significantly improve sustainability vis-à-vis the reference (Nomolt (teflubenzuron plus Biscaya (thiacloprid. However, in the case of the Colorado potato beetle (Leptinotarsa decemlineata, in potato crops, where Audienz is considered the reference, no alternative would exhibit better sustainability. Moreover, the study shows that strategies using Novodor (Bacillus thuringiensis protect beneficial species well but have the drawbacks of increased yield risk and higher costs. The conclusions drawn from these analyses allow recommendations for modifications of the PEP requirements for these two pest insects. The SustainOS methodology, a multi-step process combining expert knowledge with quantitative assessments including a sensitivity analysis of key target parameters and a rule-based aggregation of assessment results, yielded valuable insights into the sustainability of different crop protection strategies.

  16. Mass-rearing for sterile insect release

    International Nuclear Information System (INIS)

    Parker, A.G.

    2005-01-01

    As the sterile insect technique (SIT) relies upon released sterile male insects efficiently competing with wild males to mate with wild females, it follows that mass-rearing of insects is one of the principal steps in the process. Mass-rearing for the SIT presents both problems and opportunities due to the increased scale involved compared with rearing insects for most other purposes. This chapter discusses facility design, environmental concerns, strain management, quality control, automation, diet, sex separation, marking, and storage in relation to rearing for the SIT. (author)

  17. Insects diversity in lima bean (Phaseolus lunatus

    Directory of Open Access Journals (Sweden)

    WIWIN SETIAWATI

    2005-10-01

    Full Text Available Lima bean (Phaseolus lunatus is a vegetable which usually made as a home yard plant for Indonesian people to fulfill their daily needs. This plant has not been produced in the large number by the farmer. So it is hard to find in the market. Lima bean is light by many kind of insect. Inventory, identification and the study of insect taxon to this plant is being done to collect some information about the insect who life in the plant. The research was done in Balitsa experiment garden in the district of Lembang in Bandung regency on November 2003-February 2004, the experiment start at 4 weeks age, at the height of 1260 m over the sea level. The observation was made systematically by absolute method (D-vac macine and relative method (sweeping net. The research so that there were 26 species of phytofagous insect, 9 species of predator insect, 6 species of parasitoid insect, 4 species of pollinator and 14 species of scavenger insect. According to the research the highest species number was got in the 8th week (3rd sampling, which had 27 variety of species, so the highest diversity was also got in this with 2,113 point. Aphididae and Cicadellidae was the most insect found in roay plant. The research also had high number of species insect so the diversity of insect and evenness become high. A community will have the high stability if it is a long with the high diversity. High evenness in community that has low species dominance and high species number of insect so the high of species richness.

  18. Radioisotopes and food preservation against insects

    International Nuclear Information System (INIS)

    Hachem Ahmad, M.S.

    1998-01-01

    The book describes how to preserve food from harmful insects by using radioisotopes. It focusses on the impact of ionized radiation on the different stages of insect growth and on its metabolism and immunity. It also discusses the relationship between radiation doses and insect reproduction. It explains the various methods to detect the irradiated foods

  19. Diseases in insects produced for food and feed

    DEFF Research Database (Denmark)

    Eilenberg, Jørgen; Vlak, J.M.; Nielsen-Leroux, C.

    2015-01-01

    Increased production of insects on a large scale for food and feed will likely lead to many novel challenges, including problems with diseases. We provide an overview of important groups of insect pathogens, which can cause disease in insects produced for food and feed. Main characteristics of each...... pathogen group (viruses, bacteria, fungi, protists and nematodes) are described and illustrated, with a selection of examples from the most commonly produced insect species for food and feed. Honeybee and silkworm are mostly produced for other reasons than as human food, yet we can still use them...... as examples to learn about emergence of new diseases in production insects. Results from a 2014 survey about insect diseases in current insect production systems are presented for the first time. Finally, we give some recommendations for the prevention and control of insect diseases. Key words: disease...

  20. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos.

    Science.gov (United States)

    Barennes, Hubert; Phimmasane, Maniphet; Rajaonarivo, Christian

    2015-01-01

    Insect consumption (entomophagy) is a potentially high nutritious and healthy source of food with high fat, protein, vitamin, fiber and micronutrient content. At least 2 billion people globally eat insects (over 1900 edible species) though this habit is regarded negatively by others. There is a limited amount of data on the perception and consumption of insects. We conducted a national cross-sectional survey in the Lao People's Democratic Republic (Laos) to assess the prevalence and characteristics of insect consumption among adult lay people and insect vendors. We conducted a multi stage randomized national survey in 1303 households in 96 villages in 16 Lao provinces. Three insect vendors or collectors per village were also included. A standardized pretested questionnaire addressed the following issues: socioeconomic characteristics, type of insects consumed and frequency of consumption, reasons and trends in consumption as well as reports on side effects, over the last 10 years. A total of 1059 adults (Sex ratio F/M: 1.2, 30 ethnic groups), and 256 vendors were enrolled. A total of 1025 (96.8%) lay people were currently insect consumers, 135 (13.0%) daily or weekly consumers, and 322 (31.1%) consumed several times per month. For the majority (575, 55.6%) the consumption was infrequent (less than a few times per year) and only 22 (2%) had never eaten insects. Consumption started in childhood. Insect availability was seasonal (670, 63.2%) and respondents would have eaten more insects, if they had been more available (919, 86.7%). Hmong and Leu ethnic groups had significantly lower consumption levels than the general population. Eggs of weaver ants, short-tailed crickets, crickets, grasshoppers, and cicadas were the top 5 insects consumed. Consumption had decreased in the last decade, mostly due to less availability (869; 84.0%) and change of life (29; 5.5%). Of 1059, 80 (7.5%) reported allergy problems and 106 (10.0%) reported some use in traditional medicine. A

  1. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos.

    Directory of Open Access Journals (Sweden)

    Hubert Barennes

    Full Text Available Insect consumption (entomophagy is a potentially high nutritious and healthy source of food with high fat, protein, vitamin, fiber and micronutrient content. At least 2 billion people globally eat insects (over 1900 edible species though this habit is regarded negatively by others. There is a limited amount of data on the perception and consumption of insects. We conducted a national cross-sectional survey in the Lao People's Democratic Republic (Laos to assess the prevalence and characteristics of insect consumption among adult lay people and insect vendors.We conducted a multi stage randomized national survey in 1303 households in 96 villages in 16 Lao provinces. Three insect vendors or collectors per village were also included. A standardized pretested questionnaire addressed the following issues: socioeconomic characteristics, type of insects consumed and frequency of consumption, reasons and trends in consumption as well as reports on side effects, over the last 10 years.A total of 1059 adults (Sex ratio F/M: 1.2, 30 ethnic groups, and 256 vendors were enrolled. A total of 1025 (96.8% lay people were currently insect consumers, 135 (13.0% daily or weekly consumers, and 322 (31.1% consumed several times per month. For the majority (575, 55.6% the consumption was infrequent (less than a few times per year and only 22 (2% had never eaten insects. Consumption started in childhood. Insect availability was seasonal (670, 63.2% and respondents would have eaten more insects, if they had been more available (919, 86.7%. Hmong and Leu ethnic groups had significantly lower consumption levels than the general population. Eggs of weaver ants, short-tailed crickets, crickets, grasshoppers, and cicadas were the top 5 insects consumed. Consumption had decreased in the last decade, mostly due to less availability (869; 84.0% and change of life (29; 5.5%. Of 1059, 80 (7.5% reported allergy problems and 106 (10.0% reported some use in traditional medicine. A

  2. Respiratory symptoms in insect breeders.

    Science.gov (United States)

    Harris-Roberts, J; Fishwick, D; Tate, P; Rawbone, R; Stagg, S; Barber, C M; Adisesh, A

    2011-08-01

    A number of specialist food suppliers in the UK breed and distribute insects and insect larvae as food for exotic pets, such as reptiles, amphibians and invertebrates. To investigate the extent of work-related (WR) symptoms and workplace-specific serum IgE in workers potentially exposed to a variety of biological contaminants, including insect and insect larvae allergens, endotoxin and cereal allergens at a UK specialist insect breeding facility. We undertook a study of respiratory symptoms and exposures at the facility, with subsequent detailed clinical assessment of one worker. All 32 workers were assessed clinically using a respiratory questionnaire and lung function. Eighteen workers consented to provide serum for determination of specific IgE to workplace allergens. Thirty-four per cent (11/32) of insect workers reported WR respiratory symptoms. Sensitization, as judged by specific IgE, was found in 29% (4/14) of currently exposed workers. Total inhalable dust levels ranged from 1.2 to 17.9 mg/m(3) [mean 4.3 mg/m(3) (SD 4.4 mg/m(3)), median 2.0 mg/m(3)] and endotoxin levels of up to 29435 EU/m(3) were recorded. Exposure to organic dusts below the levels for which there are UK workplace exposure limits can result in respiratory symptoms and sensitization. The results should alert those responsible for the health of similarly exposed workers to the potential for respiratory ill-health and the need to provide a suitable health surveillance programme.

  3. Bugs, butterflies, and spiders: children's understandings about insects

    Science.gov (United States)

    Shepardson, Daniel P.

    2002-06-01

    This article explores elementary children's ideas about insects. The study involved 20 children from each grade level, kindergarten through fifth-grade, for a total of 120 children. The data collection procedure was designed to investigate what an insect means to children, through the use of three different tasks: draw and explain, interview about instances, and the formulation of a general rule. Considering children's responses to the three tasks, I found that their ideas about insects reflect understandings based on physical characteristics of size and shape, arthropod characteristics, insect characteristics, human-insect interactions, life habits of insects, feeding habits of insects, and means of locomotion. Children's understandings are juxtaposed to that of a scientific perspective, elucidating implications for curriculum development and instructional practice.

  4. Aquatic insects as the main food resource of fish the community in a Neotropical reservoir

    Directory of Open Access Journals (Sweden)

    Ana Paula Vidotto-Magnoni

    Full Text Available We evaluated the feeding of fish species of the Nova Avanhandava Reservoir, low Tietê River, São Paulo State, Brazil. Fishes were collected in two stretches of the reservoir: Santa Bárbara (14 samples and Bonito (two samples between September 2002 and March 2004, using gill and seining nets. The results of stomach contents analysis were expressed with the frequency of occurrence and gravimetric method, combined in the Alimentary Index (AI. The 20 species studied consumed 52 food items, grouped in 10 food categories: aquatic insects, terrestrial insects, crustaceans, fish, macroinvertebrates, microcrustaceans, algae, vegetal matter, detritus/sediment and scales. The aquatic insects (mainly Chironomidae, Odonata and Ephemeroptera were the most common food resources, consumed by 18 species. The diet composition of the community (species grouped indicated that the dominant food category in the diet of fishes was aquatic insects (AI = 77.6%, followed by crustaceans (AI = 7.1%. Four trophic guilds were identified according a cluster analysis (Pearson distance: insectivorous (10 species, omnivorous (4 species, detritivorous (3 species and piscivorous/carcinophagous (3 species. Despite the highest number of species, the insectivorous guild was responsible for more than 80% in captures in number and biomass (CPUEn and CPUEb. The low values of niche breadth presented by all species, along with the low values of diet overlap between species pairs indicate a high degree of food resources partitioning among species. The aquatic insects, despite being the main food resource of insectivorous fishes, also complemented the diet of other species, which demonstrate the importance of this food resource for the fish community, sustaining a high diversity, abundance and biomass of fishes.

  5. Testing mechanistic models of growth in insects.

    Science.gov (United States)

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  6. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost......-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient...

  7. The evolution of plant-insect mutualisms.

    Science.gov (United States)

    Bronstein, Judith L; Alarcón, Ruben; Geber, Monica

    2006-01-01

    Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.

  8. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  9. The Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kiragu, J.

    2006-01-01

    Insect pests have caused an increasing problem in agriculture and human health through crop losses and disease transmission to man and livestock. Intervention to ensure food security and human health has relied on Integrated Pest Management (IPM) strategies to keep the pests population below economic injury levels. IPM integrate a variety of methods, but there has been over-reliance on chemical control following the discovery of insecticidal properties of DDT. It is now realized that, maintaining pest populations at controlled levels is unsustainable and eradication options is now being considered. Although the Sterile Insect Technique(SIT) could be used for insect suppression, it is gaining favour in the elimination (eradication) of the target pest population through Areawide-based IPM (Author)

  10. Consideration of insects as a source of dietary protein for human consumption.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Pinckaers, Philippe J M; van Loon, Joop J A; van Loon, Luc J C

    2017-12-01

    Consumption of sufficient dietary protein is fundamental to muscle mass maintenance and overall health. Conventional animal-based protein sources such as meat (ie, beef, pork, lamb), poultry, fish, eggs, and dairy are generally considered high-quality sources of dietary protein because they meet all of the indispensable amino-acid requirements for humans and are highly digestible. However, the production of sufficient amounts of conventional animal-based protein to meet future global food demands represents a challenge. Edible insects have recently been proposed as an alternative source of dietary protein that may be produced on a more viable and sustainable commercial scale and, as such, may contribute to ensuring global food security. This review evaluates the protein content, amino-acid composition, and digestibility of edible insects and considers their proposed quality and potential as an alternative protein source for human consumption. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Are edible insects more or less 'healthy' than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition.

    Science.gov (United States)

    Payne, C L R; Scarborough, P; Rayner, M; Nonaka, K

    2016-03-01

    Insects have been the subject of recent attention as a potentially environmentally sustainable and nutritious alternative to traditional protein sources. The purpose of this paper is to test the hypothesis that insects are nutritionally preferable to meat, using two evaluative tools that are designed to combat over- and under-nutrition. We selected 183 datalines of publicly available data on the nutrient composition of raw cuts and offal of three commonly consumed meats (beef, pork and chicken), and six commercially available insect species, for energy and 12 relevant nutrients. We applied two nutrient profiling tools to this data: The Ofcom model, which is used in the United Kingdom, and the Nutrient Value Score (NVS), which has been used in East Africa. We compared the median nutrient profile scores of different insect species and meat types using non-parametric tests and applied Bonferroni adjustments to assess for statistical significance in differences. Insect nutritional composition showed high diversity between species. According to the Ofcom model, no insects were significantly 'healthier' than meat products. The NVS assigned crickets, palm weevil larvae and mealworm a significantly healthier score than beef (Pinsects were statistically less healthy than meat. Insect nutritional composition is highly diverse in comparison with commonly consumed meats. The food category 'insects' contains some foods that could potentially exacerbate diet-related public health problems related to over-nutrition, but may be effective in combating under-nutrition.

  12. Phytoplasmas: bacteria that manipulate plants and insects.

    Science.gov (United States)

    Hogenhout, Saskia A; Oshima, Kenro; Ammar, El-Desouky; Kakizawa, Shigeyuki; Kingdom, Heather N; Namba, Shigetou

    2008-07-01

    Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.

  13. Prostaglandins and their receptors in insect biology

    Directory of Open Access Journals (Sweden)

    David eStanley

    2011-12-01

    Full Text Available We treat the biological significance of prostaglandins (PGs and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  14. Modern insect control: Nuclear techniques and biotechnology

    International Nuclear Information System (INIS)

    1988-01-01

    The Symposium dealt primarily with genetic methods of insect control, including sterile insect technique (SIT), F 1 sterility, compound chromosomes, translocations and conditional lethals. Research and development activities on various aspects of these control technologies were reported by participants during the Symposium. Of particular interest was development of F 1 sterility as a practical method of controlling pest Lepidoptera. Genetic methods of insect control are applicable only on an area wide basis. They are species specific and thus do not reduce populations of beneficial insects or cause other environmental problems. Other papers presented reported on the potential use of radiation as a quarantine treatment for commodities in international trade and the use of radioisotopes as ''tags'' in studying insects

  15. Insects and other invertebrates

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Diane M. Bowers

    1985-01-01

    Quaking aspen throughout its range appears to be host to several insect and other invertebrate pests (fig. 1). It is a short-lived species that is palatable to a large variety of animals. Furniss and Carolin (1977) listed 33 insect species that use aspen as a food source. Some are quite damaging and may kill otherwise healthy stands of aspen; others feed on weakened or...

  16. How Insects Survive Winter in the Midwest

    Science.gov (United States)

    Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...

  17. Microbial brokers of insect-plant interactions revisited.

    Science.gov (United States)

    Douglas, Angela E

    2013-07-01

    Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis.

  18. Love Games that Insects Play

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. Love Games that Insects Play - The Evolution of Sexual Behaviours in Insects ... Author Affiliations. K N Ganeshaiah1. Department of Genetics & Plant Breeding University of Agricultural Sciences, GKVK Bangalore 560 065, India ...

  19. External Insect Morphology: A Negative Factor in Attitudes toward Insects and Likelihood of Incorporation in Future Science Education Settings

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2012-01-01

    This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher's attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers…

  20. Diversity in protein glycosylation among insect species.

    Directory of Open Access Journals (Sweden)

    Gianni Vandenborre

    Full Text Available BACKGROUND: A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum, the silkworm (Bombyx mori, the honeybee (Apis mellifera, the fruit fly (D. melanogaster and the pea aphid (Acyrthosiphon pisum. To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE: The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.

  1. Insect Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature and environment derived from beetle and other insect fossils. Parameter keywords describe what was measured in this data set. Additional...

  2. Are edible insects more or less ‘healthy' than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition

    Science.gov (United States)

    Payne, C L R; Scarborough, P; Rayner, M; Nonaka, K

    2016-01-01

    Background/Objectives: Insects have been the subject of recent attention as a potentially environmentally sustainable and nutritious alternative to traditional protein sources. The purpose of this paper is to test the hypothesis that insects are nutritionally preferable to meat, using two evaluative tools that are designed to combat over- and under-nutrition. Subjects/Methods: We selected 183 datalines of publicly available data on the nutrient composition of raw cuts and offal of three commonly consumed meats (beef, pork and chicken), and six commercially available insect species, for energy and 12 relevant nutrients. We applied two nutrient profiling tools to this data: The Ofcom model, which is used in the United Kingdom, and the Nutrient Value Score (NVS), which has been used in East Africa. We compared the median nutrient profile scores of different insect species and meat types using non-parametric tests and applied Bonferroni adjustments to assess for statistical significance in differences. Results: Insect nutritional composition showed high diversity between species. According to the Ofcom model, no insects were significantly ‘healthier' than meat products. The NVS assigned crickets, palm weevil larvae and mealworm a significantly healthier score than beef (Pinsects were statistically less healthy than meat. Conclusions: Insect nutritional composition is highly diverse in comparison with commonly consumed meats. The food category ‘insects' contains some foods that could potentially exacerbate diet-related public health problems related to over-nutrition, but may be effective in combating under-nutrition. PMID:26373961

  3. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    Science.gov (United States)

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genetic basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Robinson, A.S.

    2014-01-01

    The use of the sterile insect technique for insect control relies on the introduction of sterility in the females of the wild population. This sterility is produced following the mating of these females with released males carrying, in their sperm, dominant lethal mutations that have been induced by ionizing radiation. As well as radiation-induced sterility, natural mechanisms can be recruited, especially the use of hybrid sterility. Radiation is usually one of the last procedures that insects undergo before leaving mass-rearing facilities for release in the field. It is essential that the dosimetry of the radiation source be checked to ensure that all the insects receive the required minimum dose. A dose should be chosen that maximizes the level of introduced sterility in the wild females in the field. Irradiation in nitrogen can provide protection against the detrimental somatic effects of radiation. Currently, the development of molecular methods to sterilize pest insects in the field, by the release of fertile insects carrying trans genes, is very much in vogue. It is concluded that using a physical process, such as radiation, will always have significant advantages over genetic and other methods of sterilization for the large-scale application of the sterile insect technique. (author)

  5. Insect Immunity: The Post-Genomic Era

    OpenAIRE

    Bangham, Jenny; Jiggins, Frank; Lemaitre, Bruno

    2006-01-01

    Insects have a complex and effective immune system, many components of which are conserved in mammals. But only in the last decade have the molecular mechanisms that regulate the insect immune response--and their relevance to general biology and human immunology--become fully appreciated. A meeting supported by the Centre National de la Récherche Scientifique (France) was held to bring together the whole spectrum of researchers working on insect immunity. The meeting addressed diverse aspects...

  6. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  7. Horizontal Transmission of Intracellular Insect Symbionts via Plants

    Directory of Open Access Journals (Sweden)

    Ewa Chrostek

    2017-11-01

    Full Text Available Experimental evidence is accumulating that endosymbionts of phytophagous insects may transmit horizontally via plants. Intracellular symbionts known for manipulating insect reproduction and altering fitness (Rickettsia, Cardinium, Wolbachia, and bacterial parasite of the leafhopper Euscelidius variegatus have been found to travel from infected insects into plants. Other insects, either of the same or different species can acquire the symbiont from the plant through feeding, and in some cases transfer it to their progeny. These reports prompt many questions regarding how intracellular insect symbionts are delivered to plants and how they affect them. Are symbionts passively transported along the insect-plant-insect path, or do they actively participate in the process? How widespread are these interactions? How does symbiont presence influence the plant? And what conditions are required for the new infection to establish in an insect? From an ecological, evolutionary, and applied perspective, this mode of horizontal transmission could have profound implications if occurring frequently enough or if new stable symbiont infections are established. Transmission of symbionts through plants likely represents an underappreciated means of infection, both in terms of symbiont epidemiology and the movement of symbionts to new host species.

  8. Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction.

    Science.gov (United States)

    Saska, Pavel; van der Werf, Wopke; Hemerik, Lia; Luff, Martin L; Hatten, Timothy D; Honek, Alois; Pocock, Michael

    2013-02-01

    Carabids and other epigeal arthropods make important contributions to biodiversity, food webs and biocontrol of invertebrate pests and weeds. Pitfall trapping is widely used for sampling carabid populations, but this technique yields biased estimates of abundance ('activity-density') because individual activity - which is affected by climatic factors - affects the rate of catch. To date, the impact of temperature on pitfall catches, while suspected to be large, has not been quantified, and no method is available to account for it. This lack of knowledge and the unavailability of a method for bias correction affect the confidence that can be placed on results of ecological field studies based on pitfall data.Here, we develop a simple model for the effect of temperature, assuming a constant proportional change in the rate of catch per °C change in temperature, r , consistent with an exponential Q 10 response to temperature. We fit this model to 38 time series of pitfall catches and accompanying temperature records from the literature, using first differences and other detrending methods to account for seasonality. We use meta-analysis to assess consistency of the estimated parameter r among studies.The mean rate of increase in total catch across data sets was 0·0863 ± 0·0058 per °C of maximum temperature and 0·0497 ± 0·0107 per °C of minimum temperature. Multiple regression analyses of 19 data sets showed that temperature is the key climatic variable affecting total catch. Relationships between temperature and catch were also identified at species level. Correction for temperature bias had substantial effects on seasonal trends of carabid catches. Synthesis and Applications . The effect of temperature on pitfall catches is shown here to be substantial and worthy of consideration when interpreting results of pitfall trapping. The exponential model can be used both for effect estimation and for bias correction of observed data. Correcting for temperature

  9. Recombinant DNA technology and insect control

    International Nuclear Information System (INIS)

    Seawright, J.A.; Cockburn, Andrew F.

    1989-01-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal

  10. Recombinant DNA technology and insect control

    Energy Technology Data Exchange (ETDEWEB)

    Seawright, J A; Cockburn, Andrew F [Insects Affecting Man and Animals Laboratory, Agric. Res. Serv., U.S. Department of Agriculture, Gainesville, FL (United States)

    1989-08-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal.

  11. Insect immunology and hematopoiesis

    OpenAIRE

    Hillyer, Julián F.

    2015-01-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and...

  12. Electronic nose in edible insects area

    OpenAIRE

    Martin Adámek; Anna Adámková; Marie Borkovcová; Jiří Mlček; Martina Bednářová; Lenka Kouřimská; Josef Skácel; Michal Řezníček

    2017-01-01

    Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manusc...

  13. Feeding Studies of Irradiated Foods with Insects

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, Srisan

    1978-06-15

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  14. Feeding studies of irradiated foods with insects

    International Nuclear Information System (INIS)

    Loaharanu, S.

    1978-01-01

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  15. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  16. Anatomy of adult Megaphragma (Hymenoptera: Trichogrammatidae, one of the smallest insects, and new insight into insect miniaturization.

    Directory of Open Access Journals (Sweden)

    Alexey A Polilov

    Full Text Available The body size, especially in cases of extreme reduction, is an important characteristic that strongly determines the morphology, physiology, and biology of animals. Miniaturization is a widespread trend in animal evolution and one of the principal directions of evolution in insects. Miniaturization-related features of insect morphology have been subject to intensive studies during the last few years, but the structure of the smallest insects remains insufficiently known. It is especially important to study hymenopterans of the genus Megaphragma, which include the smallest flying insects and a species in which an almost anucleate nervous system was recently discovered. This article is the first detailed study of the external and internal morphology of adults of Megaphragma mymaripenne and M. amalphitanum using histological methods, 3D computer modeling and other techniques. It is shown that in spite of the extremely small size the organization of Megaphragma retains a considerkable level of structural complexity. On the other hand, miniaturization leads to re-organizations of several organ systems. Unique structural features related to miniaturization have been found in both species: lysis of cell bodies and nuclei of neurons at late stages of pupal development, absence of the heart, and considerable reductions in the set of muscles. Comparative analysis of structure in the smallest insects representing different taxa has revealed common features of the evolutionary process of miniaturization in insects.

  17. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  18. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  19. Stinging insect allergy: state of the art 2015.

    Science.gov (United States)

    Tankersley, Michael S; Ledford, Dennis K

    2015-01-01

    Stinging insect allergy is responsible for more than 10% of all cases of anaphylaxis. The potential culprit insects are diverse and vary with geography. The incidence of insect allergy is declining in some areas and increasing in others, possibly due to effects of climate change, introduction of species into new areas, outdoor recreational activities, and movement of human populations that brings insects into contact with a greater number of people. Flying Hymenoptera and imported fire ant stings are responsible for the majority of patients evaluated for insect anaphylaxis. The most efficient means of identifying allergy to insects is skin testing although falsely positive and negative results occur. The limitations of testing coupled with the natural temporal variability of allergic sensitivity complicate the interpretation of test results. The clinical history is of paramount importance to be certain that the test results are relevant; therefore, screening or testing before a history of a sting reaction is not advisable. Mast cell disorders are associated with severe anaphylaxis from insect stings and should be considered in affected subjects. Insect immunotherapy, using venoms for most insects and whole-body extracts for imported fire ants, is proven effective in reducing the likelihood of anaphylaxis due to subsequent stings from 40%-60% to less than 5%. Future clinical application of component testing or in vitro cellular tests, such as the basophil activation test, may improve optimal choices for immunotherapy. Published by Elsevier Inc.

  20. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects.

    Science.gov (United States)

    Otte, Tobias; Hilker, Monika; Geiselhardt, Sven

    2018-03-01

    The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.

  1. RNA Interference in Insect Vectors for Plant Viruses

    Directory of Open Access Journals (Sweden)

    Surapathrudu Kanakala

    2016-12-01

    Full Text Available Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  2. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... He writes popular science articles in ... science, English poetry is his area of ... A fascinating branch of insect science (ento- ... Methods in Forensic Entomology .... bullet wound to the right temple, and a substantial pooling of.

  3. A new look at the comparative physiology of insect and human hearts.

    Science.gov (United States)

    Sláma, Karel

    2012-08-01

    Recent electrocardiographic (ECG) studies of insect hearts revealed the presence of human-like, involuntary and purely myogenic hearts. Certain insects, like a small light-weight species of hoverfly (Episyrphus balteatus), have evolved a very efficient cardiac system comprised of a compact heart ventricle and a narrow tube of aorta, which evolved as an adaptation to sustained hovering flights. Application of thermocardiographic and optocardiographic ECG methods revealed that adult flies of this species use the compact muscular heart chamber (heart ventricle) for intensive pumping of insect "blood" (haemolymph) into the head and thorax which is ringed all over with indirect flight musculature. The recordings of these hearts revealed extremely high, record rates of forward-directed, anterograde heartbeat (up to 10Hz), associated with extremely enhanced synchronic (not peristaltic) propagation of systolic myocardial contractions (32.2mm/s at room temperature). The relatively slow, backward-directed or retrograde cardiac contractions occurred only sporadically in the form of individual or twinned pulses replacing occasionally the resting periods. The compact heart ventricle contained bi-directional lateral apertures, whose opening and closure diverted the intracardiac anterograde "blood" streams between the abdominal haemocoelic cavity and the aortan artery, respectively. The visceral organs of this flying machine (crop, midgut) exhibited myogenic, extracardiac peristaltic pulsations similar to heartbeat, including the periodically reversed forward and backward direction of the peristaltic waves. The tubular crop contracted with a periodicity of 1Hz, both forwards and backwards, with propagation of the peristaltic waves at 4.4mm/s. The air-inflated and blindly ended midgut contracted at 0.2Hz, with a 0.9mm/s propagation of the peristaltic contraction waves. The neurogenic system of extracardiac haemocoelic pulsations, widely engaged in the regulation of circulatory and

  4. Australian Consumers' Awareness and Acceptance of Insects as Food.

    Science.gov (United States)

    Wilkinson, Kerry; Muhlhausler, Beverly; Motley, Crystal; Crump, Anna; Bray, Heather; Ankeny, Rachel

    2018-04-19

    Insects have long been consumed as part of the diets of many Asian, African, and South American cultures. However, despite international agencies such as the Food and Agriculture Organization of the United Nations advocating the nutritional, environmental, and economic benefits of entomophagy, attitudinal barriers persist in Western societies. In Australia, the indigenous ‘bush tucker’ diet comprising witchetty grubs, honey ants, and Bogong moths is quite well known; however, in most Australian locales, the consumption of insects tends to occur only as a novelty. Therefore, this study aimed to investigate the awareness and acceptance of insects as food. An online survey of 820 consumers found that 68% of participants had heard of entomophagy, but only 21% had previously eaten insects; witchetty grubs, ants, grasshoppers, and crickets were the most commonly tasted insects. Taste, appearance, safety, and quality were identified as the factors that were most likely to influence consumer willingness to try eating insects, but consumer attitudes towards entomophagy were underpinned by both food neophobia (i.e., reluctance to eat new or novel foods) and prior consumption of insects. Neophobic consumers were far less accepting of entomophagy than neophilic consumers, while consumers who had previously eaten insects were most accepting of insects as food. Incorporating insects into familiar products (e.g., biscuits) or cooked meals also improved their appeal. Collectively, these findings can be used by the food industry to devise production and/or marketing strategies that overcome barriers to insect consumption in Australia.

  5. Australian Consumers’ Awareness and Acceptance of Insects as Food

    Directory of Open Access Journals (Sweden)

    Kerry Wilkinson

    2018-04-01

    Full Text Available Insects have long been consumed as part of the diets of many Asian, African, and South American cultures. However, despite international agencies such as the Food and Agriculture Organization of the United Nations advocating the nutritional, environmental, and economic benefits of entomophagy, attitudinal barriers persist in Western societies. In Australia, the indigenous ‘bush tucker’ diet comprising witchetty grubs, honey ants, and Bogong moths is quite well known; however, in most Australian locales, the consumption of insects tends to occur only as a novelty. Therefore, this study aimed to investigate the awareness and acceptance of insects as food. An online survey of 820 consumers found that 68% of participants had heard of entomophagy, but only 21% had previously eaten insects; witchetty grubs, ants, grasshoppers, and crickets were the most commonly tasted insects. Taste, appearance, safety, and quality were identified as the factors that were most likely to influence consumer willingness to try eating insects, but consumer attitudes towards entomophagy were underpinned by both food neophobia (i.e., reluctance to eat new or novel foods and prior consumption of insects. Neophobic consumers were far less accepting of entomophagy than neophilic consumers, while consumers who had previously eaten insects were most accepting of insects as food. Incorporating insects into familiar products (e.g., biscuits or cooked meals also improved their appeal. Collectively, these findings can be used by the food industry to devise production and/or marketing strategies that overcome barriers to insect consumption in Australia.

  6. Endocrinology of insects

    National Research Council Canada - National Science Library

    Downer, Roger G. H; Laufer, Hans

    1983-01-01

    Contents: Organization of the neuroendocrine system - Chemistry of insect hormones and neurohormones - Regulation of metamorphosis - Regulation of reproduction - Regulation of growth and development...

  7. Tomographic reconstruction of neopterous carboniferous insect nymphs.

    Directory of Open Access Journals (Sweden)

    Russell Garwood

    Full Text Available Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One-Anebos phrixos gen. et sp. nov.-is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles' palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work.

  8. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  9. Allergic risks of consuming edible insects: A systematic review.

    Science.gov (United States)

    Ribeiro, José Carlos; Cunha, Luís Miguel; Sousa-Pinto, Bernardo; Fonseca, João

    2018-01-01

    The expected future demand for food and animal-derived protein will require environment-friendly novel food sources with high nutritional value. Insects may be one of such novel food sources. However, there needs to be an assessment of the risks associated with their consumption, including allergic risks. Therefore, we performed a systematic review aiming to analyse current data available regarding the allergic risks of consuming insects. We reviewed all reported cases of food allergy to insects, and studied the possibility of cross-reactivity and co-sensitisation between edible insects, crustaceans and house dust mites. We analysed a total of 25 articles - eight assessing the cross-reactivity/co-sensitisation between edible insects, crustaceans and house dust mites; three characterizing allergens in edible insects and 14 case reports, describing case series or prevalence studies of food allergy caused by insects. Cross-reactivity/co-sensitisation between edible insects and crustaceans seems to be clinically relevant, while it is still unknown if co-sensitisation between house dust mites and edible insects can lead to a food allergy. Additionally, more information is also needed about the molecular mechanisms underlying food allergy to insects, although current data suggest that an important role is played by arthropod pan-allergens such as tropomyosin or arginine kinase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Three-way interaction among plants, bacteria, and coleopteran insects.

    Science.gov (United States)

    Wielkopolan, Beata; Obrępalska-Stęplowska, Aleksandra

    2016-08-01

    Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.

  11. Insect anaphylaxis: where are we? The stinging facts 2012.

    Science.gov (United States)

    Tracy, James M; Khan, Fatima S; Demain, Jeffrey G

    2012-08-01

    Insect allergy remains an important cause of morbidity and mortality in the United States. In 2011, the third iteration of the stinging insect hypersensitivity practice parameter was published, the first being published in 1999 and the second in 2004. Since the 2004 edition, our understanding of insect hypersensitivity has continued to expand and has been incorporated into the 2011 edition. This work will review the relevant changes in the management of insect hypersensitivity occurring since 2004 and present our current understanding of the insect hypersensitivity diagnosis and management. Since the 2004 commissioning by the Joint Task Force (JTF) on Practice Parameters of 'Stinging insect hypersensitivity: a practice parameter update', there have been important contributions to our understanding of insect allergy. These contributions were incorporated into the 2011 iteration. Similar efforts were made by the European Allergy Asthma and Clinical Immunology Interest Group in 2005 and most recently in 2011 by the British Society of Allergy and Clinical Immunology. Our understanding of insect allergy, including the natural history, epidemiology, diagnostic testing, and risk factors, has greatly expanded. This evolution of knowledge should provide improved long-term management of stinging insect hypersensitivity. This review will focus primarily on the changes between the 2004 and 2011 stinging insect practice parameter commissioned by the JTF on Practice Parameters, but will, where appropriate, highlight the differences between working groups.

  12. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    Science.gov (United States)

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  13. Spatial distribution of aquatic insects

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann

    (time since glacial disturbance and habitat stability) and question the generality of these processes for the understanding of species richness gradients in European rivers. Using regional distributions of European mayflies, stoneflies, and caddisflies this chapter demonstrates that differences...... and shape the habitat requirements and distribution of one of the most affected groups of freshwater species: aquatic insects. It comprises four chapters each addressing different spatial factors in relation to the occurrence of aquatic insects in Europe. Chapter I examine two spatial ecological processes...... niche is derived from local distribution patterns, without incorporating landscape history it can lead to an erroneous niche definition. Chapter III provides some of the first evidence for differences in dispersal phenology related to flight potential in aquatic insects. The chapter highlights...

  14. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and...

  15. Coconut leaf bioactivity toward generalist maize insect pests

    Science.gov (United States)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  16. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  17. The evolutionary development of plant-feeding insects and their nutritional endosymbionts.

    Science.gov (United States)

    Skidmore, Isabel H; Hansen, Allison K

    2017-12-01

    Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen-poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore-endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect-symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect-plant interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Viruses of insects reared for food and feed

    NARCIS (Netherlands)

    Maciel-Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in

  19. Nutritional and sensory quality of edible insects

    Directory of Open Access Journals (Sweden)

    Lenka Kouřimská

    2016-10-01

    Full Text Available Insects are for many nations and ethnic groups an indispensable part of the diet. From a nutritional point of view, insects have significant protein content. It varies from 20 to 76% of dry matter depending on the type and development stage of the insect. Fat content variability is large (2–50% of dry matter and depends on many factors. Total polyunsaturated fatty acids' content may be up to 70% of total fatty acids. Carbohydrates are represented mainly by chitin, whose content ranges between 2.7 mg and 49.8 mg per kg of fresh matter. Some species of edible insects contain a reasonable amount of minerals (K, Na, Ca, Cu, Fe, Zn, Mn and P as well as vitamins such as B group vitamins, vitamins A, D, E, K, and C. However their content is seasonal and dependent on the feed. From the hygienic point of view it should be pointed out that some insects may produce or contain toxic bioactive compounds. They may also contain residues of pesticides and heavy metals from the ecosystem. Adverse human allergic reactions to edible insects could be also a possible hazard. Keywords: Chitin, Entomophagy, Fat, Minerals, Proteins, Vitamins

  20. Viruses of insects reared for food and feed.

    Science.gov (United States)

    Maciel-Vergara, Gabriela; Ros, Vera I D

    2017-07-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in industrial settings, can be the key for a change in the way natural resources are utilized in order to produce meat, animal protein and a list of other valuable animal products. However, because insect mass rearing technology is relatively new, little is known about the different factors that determine the quality and yield of the production process. Obtaining such knowledge is crucial for the success of insect-based product development. One of the issues that is likely to compromise the success of insect rearing is the outbreak of insect diseases. In particular, viral diseases can be devastating for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks in mass rearing systems, ranging from simple sanitation methods to highly sophisticated methods including RNAi and transgenics. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Edible insects contributing to food security?

    NARCIS (Netherlands)

    Huis, van Arnold

    2015-01-01

    Because of growing demand for meat and declining availability of agricultural land, there is an urgent need to find alternative protein sources. Edible insects can be produced with less environmental impact than livestock. Insect meal can replace scarce fishmeal as feed ingredient, in particular

  2. Insect cadaver applications: pros and cons

    Science.gov (United States)

    Application of entomopathogenic nematodes (EPNs) formulated as insect cadavers has become an alternative to aqueous application for the control of agricultural pests. In this approach, the infected insect host cadaver is applied directly to the target site and pest suppression is achieved by the inf...

  3. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control

    International Nuclear Information System (INIS)

    Nelson, S.O.; Bartley, P.G. Jr.; Lawrence, K.C.

    1998-01-01

    The permittivities of bulk samples of adult insects of the rice weevil, red flour beetle, sawtoothed grain beetle, and lesser grain borer were measured at single frequencies of 9.4 and 11.7 Ghz in X-band waveguide at about 23 degrees C, and permittivities of homogenized samples of the same species were measured from 0.2 to 20 GHz at temperatures from 10 to 70 degrees C with an open-ended coaxial-line probe and network analyzer. Sample densities for the coaxial-line probe measurements were determined from the X-band measurements with a linear relationship between the cube root of the dielectric constant and sample bulk density determined from permittivity measurements on bulk samples of the adult insects in a waveguide sample holder taken with the short-circuited line technique. Since linearity of the cube root of the dielectric constant with bulk density is consistent with the Landau and Lifshitz, Looyenga dielectric mixture equation, this equation was used to calculate estimated dielectric constants and loss factors of the insects from measured permittivities and volume fractions determined from measured bulk density and adult insect density determined by air-comparison pycnometer measurements. Estimated dielectric constants and loss factors of the insects are presented graphically for temperatures from 10 to 70 degrees C, and tabulated data are provided for range information and comparative purposes

  4. Anaphylaxis and insect allergy.

    Science.gov (United States)

    Demain, Jeffrey G; Minaei, Ashley A; Tracy, James M

    2010-08-01

    Anaphylaxis is an acute-onset and potentially life-threatening allergic reaction that can be caused by numerous allergic triggers including stinging insects. This review focuses on recent advances, natural history, risk factors and therapeutic considerations. Recent work suggests that concerns over insect allergy diagnosis continue to exist. This is especially true with individuals who have a convincing history of a serious life-threatening anaphylactic event, but lack the necessary diagnostic criteria of venom-specific IgE by skin test or in-vitro diagnostic methods to confirm the diagnosis. The role of occult mastocytosis or increased basophile reactivity may play a role in this subset population. Additionally, epinephrine continues to be underutilized as the primary acute intervention for an anaphylactic reaction in the emergent setting. The incidence of anaphylaxis continues to rise across all demographic groups, especially those less than 20 years of age. Fortunately, the fatalities related to anaphylaxis appear to have decreased over the past decades. Our understanding of various triggers, associated risk factors, as well as an improved understanding and utilization of biological markers such as serum tryptase have improved. Our ability to treat insect anaphylaxis by venom immunotherapy is highly effective. Unfortunately, anaphylaxis continues to be underappreciated and undertreated especially in regard to insect sting anaphylaxis. This includes the appropriate use of injectable epinephrine as the primary acute management tool. These findings suggest that continued education of the general population, primary care healthcare providers and emergency departments is required.

  5. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    Science.gov (United States)

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  6. Acoustic communication in insect disease vectors

    Directory of Open Access Journals (Sweden)

    Felipe de Mello Vigoder

    2013-01-01

    Full Text Available Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  7. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  8. Investigation--Insects!

    Science.gov (United States)

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  9. Impacts of urbanization process on insect diversity

    OpenAIRE

    Shuisong Ye; Yan Fang; Kai Li

    2013-01-01

    Rapid worldwide urbanization during the last century has led to more than half the world’s population living in urban regions. Studies of how urbanization affects insect diversity have focused on the following: insect abundance, distribution, extinction, food habits and ecosystem services. Native insect populations have declined greatly in urban areas, where studies of their spatial distribution have revealed that abundance decreases along what is termed the rural–city center gradient (RCG), ...

  10. Landscape changes have greater effects than climate changes on six insect pests in China.

    Science.gov (United States)

    Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng

    2016-06-01

    In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.

  11. Toxicological characteristics of edible insects in China: A historical review.

    Science.gov (United States)

    Gao, Yu; Wang, Di; Xu, Meng-Lei; Shi, Shu-Sen; Xiong, Jin-Feng

    2018-04-10

    Edible insects are ideal food sources, which contain important nutrients and health-promoting compounds. With a rapid development of industrial insect farming, insect-derived food is a novel and emerging food industry. Edible insects have been traditionally consumed in various communities, while continuously gaining relevance in today's society; however, they currently remain underutilized. Although there are a large number of literature on edible insects, these literature primarily focus on the nutritional value edible insects. The toxicity assessment data of edible insects remain incomprehensive, especially for the new national standard that is currently in effect; and many data and conclusions are not accurately specified/reported. Therefore, we performed a literature review and summarized the data on the toxicological assessment of edible insects in China. The review first describes the research progress on safety toxicological assessment, and then offers references regarding the development of 34 edible insect species in China. These data can be a platform for the development of future toxicological assessment strategies, which can be carried out by a multidisciplinary team, possibly consisting of food engineers, agronomists, farmers, and so on, to improve the acceptability of edible insects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Emerging strategies for RNA interference (RNAi) applications in insects.

    Science.gov (United States)

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  13. Development of Natural Insect-Repellent Loaded Halloysite Nanotubes and their Application to Food Packaging to Prevent Plodia interpunctella Infestation.

    Science.gov (United States)

    Kim, Jungheon; Park, No-Hyung; Na, Ja Hyun; Han, Jaejoon

    2016-08-01

    The aims of this study were to develop insect-proof halloysite nanotubes (HNTs) and apply the HNTs to a low-density polyethylene (LDPE) film that will prevent Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), commonly known as Indian mealmoth, from infesting the food. Clove bud oil (CO), an insect repellent, was encapsulated into HNTs with polyethylenimine (PEI) to bring about controlled release of CO. Chemical composition and insecticidal effect of CO were examined. The Fourier transform infrared (FTIR) spectrum of encapsulated CO was confirmed. The surface charges of uncoated HNTs (HNTs/CO) and coated HNTs with PEI by the layer-by-layer (LBL) method (HNTs/CO/LBL) were determined to be -37.23 and 36.33 mV, respectively. HNTs/CO/LBL showed slow, controlled release of CO compared to HNTs/CO. After 30 d, the residual amounts of CO in HNTs/CO and HNTs/CO/LBL were estimated to be 13.43 and 28.66 mg/g, respectively. HNTs/CO/LBL showed the most sustainable repellent effect. HNTs applied to gravure printing ink solution did not affect mechanical, optical, or thermal properties of the developed film. Gravure-printed LDPE film containing HNTs/CO/LBL displayed the greatest preventive effect on insect penetration, indicating its potential for use as insect-resistant food packaging materials. © 2016 Institute of Food Technologists®

  14. The Evolution of Agriculture in Insects

    DEFF Research Database (Denmark)

    Mueller, Ulrich G.; Gerardo, Nicole M.; Aanen, Duur Kornelis

    2005-01-01

    Agriculture has evolved independently in three insect orders: once in ants, once in termites, and seven times in ambrosia beetles. Although these insect farmers are in some ways quite different from each other, in many more ways they are remarkably similar, suggesting convergent evolution. All pr...

  15. Alpha particle radiography of small insects

    International Nuclear Information System (INIS)

    Chingshen Su

    1993-01-01

    Radiographies of ants, mosquitoes, cockroaches and small bugs have been done with a radioisotope 244 Cm alpha source. Energy of alpha particles was varied by attenuating the 5.81 MeV alpha particles with adjustable air spacings from the source to the sample. The LR-115 was used to register radiographs. The image of the insect registered on the LR-115 was etched out in a 2.5 N NaOH solution at 52 o C for certain minutes, depending on various irradiation conditions for the insects. For larger insects, a scanning device for the alpha particle irradiation has been fabricated to take the radiograph of whole body of the insect, and the scanning period can be selected to give desired irradiation dosage. A CCDTV camera system connected to a microscope interfaced to an IBM/AT computer is used to register the microscopic image of the radiograph and to print it out with a video copy processor. (Author)

  16. The plasticity of extracellular fluid homeostasis in insects.

    Science.gov (United States)

    Beyenbach, Klaus W

    2016-09-01

    In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.

  17. An extreme case of plant-insect codiversification

    DEFF Research Database (Denmark)

    Cruaud, Astrid; Rønsted, Nina; Chanterasuwan, Bhanumas

    2012-01-01

    It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores...... and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical...... for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups...

  18. Synthesis of model compounds derived from natural clerodane insect antifeedants

    NARCIS (Netherlands)

    Klein Gebbinck, E.A.

    1999-01-01

    Insect antifeedants are compounds with the ability to reduce or inhibit insect feeding without directly killing the insect. Such compounds offer a number of properties that are highly desirable in environmentally friendly crop protection agents. Although the principle of insect control

  19. Phylogenomics resolves the timing and pattern of insect evolution.

    Science.gov (United States)

    Misof, Bernhard; Liu, Shanlin; Meusemann, Karen; Peters, Ralph S; Donath, Alexander; Mayer, Christoph; Frandsen, Paul B; Ware, Jessica; Flouri, Tomáš; Beutel, Rolf G; Niehuis, Oliver; Petersen, Malte; Izquierdo-Carrasco, Fernando; Wappler, Torsten; Rust, Jes; Aberer, Andre J; Aspöck, Ulrike; Aspöck, Horst; Bartel, Daniela; Blanke, Alexander; Berger, Simon; Böhm, Alexander; Buckley, Thomas R; Calcott, Brett; Chen, Junqing; Friedrich, Frank; Fukui, Makiko; Fujita, Mari; Greve, Carola; Grobe, Peter; Gu, Shengchang; Huang, Ying; Jermiin, Lars S; Kawahara, Akito Y; Krogmann, Lars; Kubiak, Martin; Lanfear, Robert; Letsch, Harald; Li, Yiyuan; Li, Zhenyu; Li, Jiguang; Lu, Haorong; Machida, Ryuichiro; Mashimo, Yuta; Kapli, Pashalia; McKenna, Duane D; Meng, Guanliang; Nakagaki, Yasutaka; Navarrete-Heredia, José Luis; Ott, Michael; Ou, Yanxiang; Pass, Günther; Podsiadlowski, Lars; Pohl, Hans; von Reumont, Björn M; Schütte, Kai; Sekiya, Kaoru; Shimizu, Shota; Slipinski, Adam; Stamatakis, Alexandros; Song, Wenhui; Su, Xu; Szucsich, Nikolaus U; Tan, Meihua; Tan, Xuemei; Tang, Min; Tang, Jingbo; Timelthaler, Gerald; Tomizuka, Shigekazu; Trautwein, Michelle; Tong, Xiaoli; Uchifune, Toshiki; Walzl, Manfred G; Wiegmann, Brian M; Wilbrandt, Jeanne; Wipfler, Benjamin; Wong, Thomas K F; Wu, Qiong; Wu, Gengxiong; Xie, Yinlong; Yang, Shenzhou; Yang, Qing; Yeates, David K; Yoshizawa, Kazunori; Zhang, Qing; Zhang, Rui; Zhang, Wenwei; Zhang, Yunhui; Zhao, Jing; Zhou, Chengran; Zhou, Lili; Ziesmann, Tanja; Zou, Shijie; Li, Yingrui; Xu, Xun; Zhang, Yong; Yang, Huanming; Wang, Jian; Wang, Jun; Kjer, Karl M; Zhou, Xin

    2014-11-07

    Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects. Copyright © 2014, American Association for the Advancement of Science.

  20. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009.

    Directory of Open Access Journals (Sweden)

    Nicholas W Calderone

    Full Text Available In the US, the cultivated area (hectares and production (tonnes of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc. increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc. was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination.

  1. Notes on collecting flower-visiting insects

    NARCIS (Netherlands)

    Willemstein, S.C.

    1974-01-01

    Flower-visiting insects may play a role in the pollination of the flowers they visit. An important indication for this is the pollen they carry on their body. The transport of pollen does not prove pollination without observations of the behaviour of the insects on the flowers, but at least it

  2. Sustainable manufacture of insect repellents derived from Nepeta cataria.

    Science.gov (United States)

    Patience, Gregory S; Karirekinyana, Ginette; Galli, Federico; Patience, Nicolas A; Kubwabo, Cariton; Collin, Guy; Bizimana, Jean Claude; Boffito, Daria C

    2018-02-02

    Malaria devastates sub-Saharan Africa; the World Health Organization (WHO) estimates that 212 million people contract malaria annually and that the plasmodium virus will kill 419 000 in 2017. The disease affects rural populations who have the least economic means to fight it. Impregnated mosquito nets have reduced the mortality rate but the Anopheles mosquitoes are changing their feeding patterns and have become more active at dusk and early morning rather than after 22h00 as an adaptation to the nets. Everyone is susceptible to the Anopheles at these times but infants and pregnant women are the most vulnerable to the disease. Plant-based mosquito repellents are as effective as synthetic repellents that protect people from bites. They are sustainable preventative measures against malaria not only because of their efficacy but because the local population can produce and distribute them, which represents a source of economic growth for rural areas. Here, we extract and test the essential oil nepetalactone from Nepeta cataria via steam distillation. Families in endemic areas of Burundi found them effective against bites but commented that the odor was pungent. An epidemiological study is required to establish its clinical efficacy.

  3. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    Science.gov (United States)

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Plant odour plumes as mediators of plant-insect interactions.

    Science.gov (United States)

    Beyaert, Ivo; Hilker, Monika

    2014-02-01

    Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a 'POP concept' for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory-mediated plant-insect interactions. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  5. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  6. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  7. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects.

    Science.gov (United States)

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-05-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing 'uncoupled' gene drive system components in the field.

  8. ENTOMOLOGY - INSECTS AND OTHER PESTS IN FIELD CROPS

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2009-12-01

    Full Text Available The academic textbook Entomology - Insects and other pests in field crops, describes the most important pests of field crops supported by many photographs. The textbook encompasses 15 chapters. Importance of entomology in intensive plant production is discussed in introductory chapter, in terms of increased threat of insects and other pests. Morphology, anatomy and physiology are given in the second and third chapter, while ways and phases of insect development are elaborated in the fourth chapter. The fifth chapter, overview of insect systematic is given. Polyphagous insects are described from the sixth to fourteenth chapter, as follows: pests of cereals, maize, sugar beet, sunflower, oil seed rape, soybean, forage crops and stored products. In the last chapter, principles of integrated pest management are described due to proper application of all control measures to obtain healthier food production.

  9. Viruses of insects reared for food and feed

    DEFF Research Database (Denmark)

    Maciel Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even...... with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks...... for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays...

  10. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  11. Atomic war on insects intensified

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Intensive research work in many countries using nuclear methods aimed at reducing the immense food losses caused by insects have led to a number of important trial operations this year. Some are now in progress in Capri, the famous Italian tourist island, and in Central America. Both are directed against the Mediterranean fruit fly, which attacks most fruit in tropical and sub-tropical countries. Similar methods are also developing to combat other insect pests

  12. Remote sensing of forest insect disturbances: Current state and future directions.

    Science.gov (United States)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  13. Sustainable restitution/recultivation

    African Journals Online (AJOL)

    RECHERCHE02

    Insects are the most diversified animals, equivalent to 55% of all identified and named ... 1 No. 1, 2013. Insects exhibit a great degree of biological adaptations and are ... predation and parasitism (Greenwood, 1987; Daily, 1997). Insects are.

  14. Evolutionary conservation and changes in insect TRP channels.

    Science.gov (United States)

    Matsuura, Hironori; Sokabe, Takaaki; Kohno, Keigo; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2009-09-10

    TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA). NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP family members. As shown for mammalian TRP channels, this

  15. Evolutionary conservation and changes in insect TRP channels

    Directory of Open Access Journals (Sweden)

    Tominaga Makoto

    2009-09-01

    Full Text Available Abstract Background TRP (Transient Receptor Potential channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. Results All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA. NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. Conclusion The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP

  16. Guide for dosimetry for sterile insect release programs. 2. ed.

    International Nuclear Information System (INIS)

    2004-01-01

    This guide outlines dosimetric procedures to be followed for the radiation sterilization of live insects for use in pest management programs. The primary use of irradiated, reproductively sterile insects is in the Sterile Insect Technique, where large numbers of sterile insects are released into the field to mate with and thus control pest populations of the same species. A secondary use of sterile insects is as benign hosts for rearing insect parasitoids. The procedures outlined in this guide will help ensure that insects processed with ionizing radiation from gamma, electron, or X-ray sources receive absorbed doses within a predetermined range. Information on effective dose ranges for specific applications of insect sterilization, or on methodology for determining effective dose ranges, is not within the scope of this guide. Note: Dosimetry is only one component of a total quality control program to ensure that irradiated insects are adequately sterilized and sufficiently competitive or otherwise suitable for their intended purpose. This guide covers dosimetry in the irradiation of insects for these types of irradiators: self-contained dry-storage 137 Cs or 60 Co irradiators, large-scale gamma irradiators, and electron accelerators. Additional, detailed information on dosimetric procedures to be followed in installation qualification, operational qualification, performance qualification, and routine product processing can be found in ISO/ASTM Practices 51608 (X-ray [bremsstrahlung] facilities), 51649 (electron beam facilities), 51702 (large-scale gamma facilities), and ASTM Practice E 2116 (self-contained dry-storage gamma facilities). The absorbed dose for insect sterilization is typically within the range of 20 Gy to 600 Gy

  17. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  18. Trapping of insects in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, S.C.; Parulekar, A.H.

    Some insects caught on RV Gaveshani, while on a cruise in the Arabian Sea in May-June 1986 is reported Of the 23 insects caught, 16 were lepidopterans An interesting flight behaviour of Psychota sp is described...

  19. Nonlinear flight dynamics and stability of hovering model insects

    Science.gov (United States)

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  20. Ecological Importance of Insects in Selenium Biogenic Cycling

    Directory of Open Access Journals (Sweden)

    Nadezhda Golubkina

    2014-01-01

    Full Text Available Selenium is an essential trace element for animal and human beings. Despite the importance of insects in most ecosystems and their significant contribution to the biological cycling of trace elements due to high abundance, population productivity, and diverse ecosystem functions, surprisingly little information is available on selenium bioaccumulation by these arthropods. This review considers selenium essentiality and toxicity to insects as well as insects’ contribution to selenium trophic transfer through the food chains. Data on Se accumulation by insects of the Dniester River Valley with no anthropogenic Se loading reveal typically low Se content in necrophagous insects compared to predators and herbivores and seasonal variations in Se accumulation.

  1. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet

    Directory of Open Access Journals (Sweden)

    Dimitrov Mitko

    2009-08-01

    Full Text Available Abstract Background N,N-Diethyl-3-methylbenzamide (deet remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system. Results By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase. Conclusion These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health.

  2. In vivo evaluation of insect wax for hair growth potential

    Science.gov (United States)

    Ma, Jinju

    2018-01-01

    Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential. PMID:29438422

  3. In vivo evaluation of insect wax for hair growth potential.

    Directory of Open Access Journals (Sweden)

    Jinju Ma

    Full Text Available Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential.

  4. Nano-particles - A recent approach to insect pest control

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Available online at http://www.academicjournals.org/AJB ... It is now known that many insects possess ferromagnetic materials in the head ... nanoparticles in insects and their potential for use in insect pest management. ... often synthesized using chemical methods. ..... opacus termite: FMR characterization.

  5. Effect of canopy openness on the pressure of predatory arthropods and birds on epigeic insects

    Czech Academy of Sciences Publication Activity Database

    Šipoš, Jan; Drozdová, M.; Drozd, P.

    2012-01-01

    Roč. 7, č. 6 (2012), s. 1021-1029 ISSN 1895-104X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60870520 Keywords : predation rate * weather conditions * living baits * temperate forest Subject RIV: EH - Ecology, Behaviour Impact factor: 0.818, year: 2012

  6. Monitoring sterile and wild insects in area-wide integrated pest management programmes

    International Nuclear Information System (INIS)

    Vreysen, M.J.B.

    2005-01-01

    Insect pest control programmes, which integrate the release of sterile insects, can be efficient only if the released insects have an optimal biological quality. Frequent monitoring of the quality of reared insects after being released in the field is an important but often neglected component of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Parameters of sterile insects, which should be monitored regularly, are sexual competitiveness of the released insects, and related components, e.g. survival, mobility, dispersal characteristics, and spatial occupation of the habitat. A well-balanced monitoring programme will, at any given time, provide essential feedback on the progress being made. This information is prerequisite to efficient implementation of the release and cost-efficient use of sterile insects. The type of monitoring to be done will be determined largely by the particular biology of the target insect species. The most important parameter in relation to the release of sterile insects is the rate of sterility induced in the wild insect pest population; it will provide the best evidence that any observed changes, e.g. in the density of the target insect, are caused by the release of sterile insects. (author)

  7. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  8. Molecular Genetics of Beauveria bassiana Infection of Insects.

    Science.gov (United States)

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Nutritional contributions of insects to primate diets: implications for primate evolution.

    Science.gov (United States)

    Rothman, Jessica M; Raubenheimer, David; Bryer, Margaret A H; Takahashi, Maressa; Gilbert, Christopher C

    2014-06-01

    Insects and other invertebrates form a portion of many living and extinct primate diets. We review the nutritional profiles of insects in comparison with other dietary items, and discuss insect nutrients in relation to the nutritional needs of living primates. We find that insects are incorporated into some primate diets as staple foods whereby they are the majority of food intake. They can also be incorporated as complements to other foods in the diet, providing protein in a diet otherwise dominated by gums and/or fruits, or be incorporated as supplements to likely provide an essential nutrient that is not available in the typical diet. During times when they are very abundant, such as in insect outbreaks, insects can serve as replacements to the usual foods eaten by primates. Nutritionally, insects are high in protein and fat compared with typical dietary items like fruit and vegetation. However, insects are small in size and for larger primates (>1 kg) it is usually nutritionally profitable only to consume insects when they are available in large quantities. In small quantities, they may serve to provide important vitamins and fatty acids typically unavailable in primate diets. In a brief analysis, we found that soft-bodied insects are higher in fat though similar in chitin and protein than hard-bodied insects. In the fossil record, primates can be defined as soft- or hard-bodied insect feeders based on dental morphology. The differences in the nutritional composition of insects may have implications for understanding early primate evolution and ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Resistance to sap-sucking insects in modern-day agriculture

    Directory of Open Access Journals (Sweden)

    Martin eDe Vos

    2013-06-01

    Full Text Available Plants and herbivores have co-evolved in their natural habitats for about 350 million years, but since the domestication of crops, plant resistance against insects has taken a different turn. With the onset of monoculture-driven modern agriculture, selective pressure on insects to overcome resistances has dramatically increased. Therefore plant breeders have resorted to high-tech tools to continuously create new insect-resistant crops. Efforts in the past 30 years have resulted in elucidation of mechanisms of many effective plant defenses against insect herbivores. Here, we critically appraise these efforts and - with a focus on sap-sucking insects - discuss how these findings have contributed to herbivore-resistant crops. Moreover, in this review we try to assess where future challenges and opportunities lay ahead. Of particular importance will be a mandatory reduction in systemic pesticide usage and thus a greater reliance on alternative methods, such as improved plant genetics for plant resistance to insect herbivores.

  11. RNA Interference in Insect Vectors for Plant Viruses

    OpenAIRE

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests...

  12. Insect Pest Control Newsletter, No. 82, January 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia_SI/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  13. Insect Pest Control Newsletter, No. 82, January 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia{sub S}I/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  14. Aquatic insect populations in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Rozilah Ismail; Ahyaudin Ali

    2002-01-01

    Periodic sampling of aquatic insects was carried out in an experimental plot of the Muda rice agroecosystem. The study which was conducted from August to December 1995, investigated the impact of the pesticides Broadox and Trebon on aquatic insect populations during the rice growing period. The results indicated that there was no significant difference in abundance and diversity of aquatic insects between the treated and non-treated area. The four dominant aquatic insects were from the families; Chironomidae, Dysticidae, Corixidae and Belostomatidae. Water temperature and dissolved oxygen showed changes throughout the rice growing season and the values of these parameters decreased gradually towards the end of the rice growing season in January when the rice plants were maturing. (Author)

  15. Usefulness of the insect food in the long-term space stay

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi

    2016-07-01

    The meal is important in life in the space. The importance of space foods is not only health maintenance. The space foods are one of the Life-support system for a space trip. Time for meal is time of the relaxation of home life of the astronaut. However, the breeding of the large animal is still impossible in the spaceship now narrowly. If it is fish and an insect, the breeding in the spaceship is possible. We recognize an insect as ingredients on the earth. As for the insect, possibility to save a food shortage of the earth is expected in future. We suggested the space foods using the insect for 12 years. The cultivation of the insect is pushed forward now in Europe. We suggest a menu to have you know the space foods which took in an insect more. The insect which we used for this menu is silkworm-pupa, a grasshopper, a larva of a wasp and apple snail. The Japanese foods were registered with world's cultural heritage. Therefore we used an insect to make our Japanese foods. Space foods must be universal food. This is because the astronauts are recruited from the whole world. Space foods that a world astronaut eats and thinks to be delicious are necessary. We want to take in an insect in world cooking in future. The insect food includes essential amino acids and essential fatty acid. The insect is superior nutritionally. We will think that insect food is necessary more and more on both the space and the earth in future. The insect is precious ingredients relieving a food shortage for the human.

  16. Dichlone-induced oxidative stress in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Ahmad, S; Zaman, K; MacGill, R S; Batcabe, J P; Pardini, R S

    1995-11-01

    Southern armyworm, Spodoptera eridania, larvae were provided ad libitum 0.002-0.25% w/w dichlone, 2,3-dichloro-1,4-naphthoquinone (CNQ). Larval mortality occurred in a time-and-dose dependent manner, with an LC17 of 0.01% and an LC50 of 0.26% CNQ at day-5. Extracts of larvae fed control, 0.01, and 0.25% CNQ diets for 5 days were assayed for antioxidant enzymes. While 0.01% CNQ had a mild effect, 0.25% CNQ profoundly increased levels of all antioxidant enzymes that were examined. The increases as compared to control were: 5.3-, 1.9-, 3.2-, 2.6-, 2.8-, and 3.5-fold higher for superoxide dismutase, catalase, glutathione transferase and its peroxidase activity, glutathione reductase and DT-diaphorase, respectively. At 0.01% CNQ, the thiobarbituric acid reactive substances (TBARS) were similar to the control group. However, despite the induction from 0.25% CNQ of all enzymes examined, the lipid peroxidation was not attenuated; the TBARS were 29.7% over the control value. High mortalities and CNQ-induced pathologies reflected in retarded growth, wasting syndrome, and diuresis clearly indicated that the insect sustained severe oxidant-induced injuries before appropriate defenses were fully mobilized. Thus, this quinone causes an oxidative stress in a model insect species analogous to that observed in mammalian species.

  17. Insect pest control newsletter. No. 65

    International Nuclear Information System (INIS)

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  18. Insect pest control newsletter. No. 65

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  19. Arriving at the age of pest insect transgenesis

    International Nuclear Information System (INIS)

    Atkinson, Peter W.; O'Brochta, David A.

    2000-01-01

    Technologies that enable the stable genetic transformation of insects other than the vinegar fly, Drosophila melanogaster Meigen, have been sought since D. melanogaster was initially transformed using the P transposable element (Rubin and Spradling 1982). D. melanogaster transformation can now be achieved by using Type II eukaryotic transposable elements such as P, hobo, Hermes, mariner, Minos and piggyBac (Blackman et al. 1989, Lidholm et al. 1993, Loukeris et al. 1995a, O'Brochta et al. 1996, Rubin and Spadling 1982, A. M. Handler, personal communication). The success of this strategy led to many attempts to extend it into non-drosophilid insects and this approach has recently been successful with the use of four different transposable elements to transform two non-drosophilid insect species, the Medfly, Ceratitis capitata Wied. and the yellow fever mosquito, Aedes aegypti L. (Coates et al. 1998, Handler et al. 1998, Jasinskiene et al. 1998, Loukeris et al. 1995b). The generation of these transgenic insects has, in part, arisen through the adoption of two approaches. One has been the isolation of new transposable elements from non-drosophilid insects. The second has been the implementation of mobility assays that have quickly enabled the mobility properties of these new elements in the target pest species to be determined. The success of these approaches will most likely be extended to other pest insect species over the next five years and will increase our ability to use modern genetic techniques to develop new strategies to control pest insects

  20. Insect pests of Eucalyptus and their control

    Energy Technology Data Exchange (ETDEWEB)

    Sen-Sarma, P K; Thakur, M L

    1983-12-01

    In India, about sixty odd species of insects have so far been recorded to be associated with Eucalyptus. Important pests are some xylophagous insects, sap suckers, defoliators and termites. Of these, stem and root borer, Celostrna scabrator Fabr, and some species of termites have been recognised as key pests, whereas Apogonia coriaces Waterhouse, Mimeta mundissima Walker (Coleoptera: Scarabaeidae), Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), Brachytrypus portenosus Lichtenstein and Gymmogryllus humeralis Walker (Orthoptera: Gryllidae) are likely to become potential pests in Eucalyptus nurseries. In this paper available information on insect pests of Eucalyptus, their bioecology and control measures have been presented.

  1. Measuring Asymmetry in Insect-Plant Networks

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Claudia P T [Programa de Pos-Graduacao em Fisica, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); De Almeida, Adriana M [Departamento de Botanica, Ecologia e Zoologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); Corso, Gilberto, E-mail: claudia@dfte.ufrn.br, E-mail: adrianam@ufrn.br, E-mail: corso@cb.ufrn.br [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil)

    2011-03-01

    In this work we focus on interaction networks between insects and plants and in the characterization of insect plant asymmetry, an important issue in coevolution and evolutionary biology. We analyze in particular the asymmetry in the interaction matrix of animals (herbivorous insects) and plants (food resource for the insects). Instead of driving our attention to the interaction matrix itself we derive two networks associated to the bipartite network: the animal network, D{sub 1}, and the plant network, D{sub 2}. These networks are constructed according to the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. To explore the asymmetry between D{sub 2} and D{sub 1} we test for a set of 23 networks from the ecologic literature networks: the difference in size, {Delta}L, clustering coefficient difference, {Delta}C, and mean connectivity difference, {Delta}. We used a nonparametric statistical test to check the differences in {Delta}L, {Delta}C and {Delta}. Our results indicate that {Delta}L and {Delta} show a significative asymmetry.

  2. Mechanosensation and Adaptive Motor Control in Insects.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-10-24

    The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Phylogenetic origin and diversification of RNAi pathway genes in insects

    DEFF Research Database (Denmark)

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander

    2016-01-01

    RNAinterference (RNAi) refers tothe set ofmolecular processes foundin eukaryotic organisms in which smallRNAmolecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense...... against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes...... across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect...

  4. Toward cropping systems that enhance productivity and sustainability

    Science.gov (United States)

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  5. Fungus-insect gall of Phlebopus portentosus.

    Science.gov (United States)

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. © 2015 by The Mycological Society of America.

  6. Insect and pest control newsletter. No. 53

    International Nuclear Information System (INIS)

    1999-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  7. Insect and pest control newsletter. No. 56

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  8. Insect and pest control newsletter. No. 55

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  9. Insect and pest control newsletter. No. 55

    International Nuclear Information System (INIS)

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  10. Insect and pest control newsletter. No. 54

    International Nuclear Information System (INIS)

    2000-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  11. Insect and pest control newsletter. No. 56

    International Nuclear Information System (INIS)

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  12. Insect and pest control newsletter. No. 52

    International Nuclear Information System (INIS)

    1998-12-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  13. Insect and pest control newsletter. No. 50

    International Nuclear Information System (INIS)

    1997-10-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  14. Insect and pest control newsletter. No. 51

    International Nuclear Information System (INIS)

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  15. Insect and pest control newsletter. No. 51

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  16. Quality in mass-produced insects: definition and evaluation

    International Nuclear Information System (INIS)

    Chambers, D.L.

    1975-01-01

    The insect that is mass-produced and released in a control programme is in effect a biological bullet, a self-guided missile designed to deliver a beneficial effect against a pest insect. The ability of the released insect to achieve this objective may be influenced in many ways. The control of the quality of mass-produced insects must include an understanding of the behavioural components critical to their success and an evaluation of their performance based upon these behavioural components. The paper discusses some of the principles and techniques being used and developed to study behavioural performance and quality. Included are discussions of tests of: vigour, irritability, activity, sound production, response thresholds, reproductive preference and drive, biotic potential, and others. (author)

  17. Towards fenceless boundaries for solar powered insect biobots.

    Science.gov (United States)

    Latif, Tahmid; Whitmire, Eric; Novak, Tristan; Bozkurt, Alper

    2014-01-01

    Demonstration of remote navigation with instrumented insects, such as the Madagascar Hissing Cockroach, Gromphadorhina portentosa, has enabled the concept of biobotic agents for search and rescue missions and environmental monitoring applications. The biobots can form the nodes of a mobile sensor network to be established, for example, in unknown and dynamic environments after natural disasters to pinpoint surviving victims. We demonstrate here, for the first time, the concept of an invisible fence for insect biobots with an ultimate goal of keeping insect biobots within a certain distance of each other or a base station to ensure a reliable wireless network. For extended mission durations, this fenceless boundary would also be used to guide insects towards light sources for autonomous solar charging of their on-board batteries.

  18. Mechanisms for regulating oxygen toxicity in phytophagous insects.

    Science.gov (United States)

    Ahmad, S; Pardini, R S

    1990-01-01

    The antioxidant enzymatic defense of insects for the regulation of oxygen toxicity was investigated. Insect species examined were lepidopterous larvae of the cabbage looper (Trichoplusia ni), southern armyworm (Spodoptera eridania), and black swallowtail (Papilio polyxenes). These phytophagous species are subject to both endogenous and exogenous sources of oxidative stress from toxic oxygen radicals, hydrogen peroxide (H2O2) and lipid peroxides (LOOH). In general, the constitutive levels of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GT), and its peroxidase activity (GTpx), and glutathione reductase (GR), correlate well with natural feeding habits of these insects and their relative susceptibility to prooxidant plant allelochemicals, quercetin (a flavonoid), and xanthotoxin (a photoactive furanocoumarin). Induction of SOD activity which rapidly destroys superoxide radicals, appears to be the main response to dietary prooxidant exposure. A unique observation includes high constitutive activity of CAT and a broader subcellular distribution in all three insects than observed in most mammalian species. These attributes of CAT appear to be important in the prevention of excessive accumulation of cytotoxic H2O2. Unlike mammalian species, insects possess very low levels of a GPOX-like activity toward H2O2. Irrefutable proof that this activity is due to a selenium-dependent GPOX found in mammals, is lacking at this time. However, the activity of selenium-independent GTpx is unusually high in insects, suggesting that GTpx and not GPOX plays a prominent role in scavenging deleterious LOOHs. The GSSG generated from the GPOX and GTpx reactions may be reduced to GSH by GR activity. A key role of SOD in protecting insects from prooxidant toxicity was evident when its inhibition resulted in enhanced toxicity towards prooxidants. The role of antioxidant compounds in protecting these insects from toxic forms of oxygen has not been explored in

  19. Radioisotope labelling of several major insect pest

    International Nuclear Information System (INIS)

    Sutrisno, Singgih

    1981-01-01

    Radioisotope uptake by insects could take place through various parts i.e. mouth, cuticula, intersegmental, secretion and excretion organs. Usually insects are labelled internally by feeding them on an artificial diet containing radioisotope solution. Labelling of several insect pests of cabbage (Crocidolomia binotalis) Zell and Plutella maculipennis Curt and rice (Chilo suppressalis Walker) by dipping of the pupae in 32 P solution showed a promising result. Pupae of Crocidolomia binotalis Zell dipped in 3 ml solution of 32 P with specific activities of 1, 3, 5 and 7 μCi/ml had developed labelled adults of sufficiently high radioactivity levels for ecological studies. Similar results were also obtained with Plutella maculipennis Curt and Chilo suppressalis Walker with doses of 1, 3, 5, 7 and 9 μCi/ml 32 P solution. The best doses for radioisotope labelling by dipping of the insects Crocidolomia binotalis Zell, Plutella maculipennis Curt, and Chilo suppressalis Walker were 1, 9, and 7 μCi/ml respectivelly. (author)

  20. Insect transgenesis: current applications and future prospects.

    Science.gov (United States)

    Fraser, Malcolm J

    2012-01-01

    The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized. Copyright © 2012 by Annual Reviews. All rights reserved.

  1. Nocturnal insects use optic flow for flight control

    OpenAIRE

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flyin...

  2. Hedgerow benefits align with food production and sustainability goals

    Directory of Open Access Journals (Sweden)

    Rachael F. Long

    2017-09-01

    Full Text Available Restoring hedgerows, or other field edge plantings, to provide habitat for bees and other beneficial insects on farms is needed to sustain global food production in intensive agricultural systems. To date, the creation of hedgerows and other restored habitat areas on California farms remains low, in part because of a lack of information and outreach that addresses the benefits of field edge habitat, and growers' concerns about its effect on crop production and wildlife intrusion. Field studies in the Sacramento Valley highlighted that hedgerows can enhance pest control and pollination in crops, resulting in a return on investment within 7 to 16 years, without negatively impacting food safety. To encourage hedgerow and other restoration practices that enhance farm sustainability, increased outreach, technical guidance, and continued policy support for conservation programs in agriculture are imperative.

  3. Unraveling navigational strategies in migratory insects.

    Science.gov (United States)

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M

    2012-04-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  5. Neonicotinoid insecticides can serve as inadvertent insect contraceptives

    Science.gov (United States)

    Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R.

    2016-01-01

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera. Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  6. A review of chemosensation and related behavior in aquatic insects.

    Science.gov (United States)

    Crespo, José G

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.

  7. Using mass-release of engineered insects to manage insecticide resistance

    International Nuclear Information System (INIS)

    Alphey, Nina; Coleman, Paul G.; Donnelly, Christl A.

    2006-01-01

    Transgenic crops expressing insecticidal toxins derived from Bacillus thuringiensis (Bt) are widely used to control insect pests. The benefits of such crops would be lost if resistance to the toxins spread to a significant proportion of the pest population. The main resistance management method, mandatory in the US, is the high-dose/refuge strategy, requiring nearby refuges of toxin-free crops, and the use of toxin doses sufficiently high to kill not only wild type insects but also insects heterozygous for a resistance allele, thereby rendering the resistance functionally recessive. We propose that mass-release of harmless toxin-sensitive insects could substantially delay or even reverse the spread of resistance. Mass-release of such insects is an integral part of RIDL, a genetics-based method of pest control related to the Sterile Insect Technique. We used a population genetic mathematical model to analyze the effects of releasing male insects homozygous for a female-specific dominant lethal genetic construct, and concluded that this RIDL strategy could form an effective component of a resistance management scheme for insecticidal plants and other toxins. (author)

  8. Using mass-release of engineered insects to manage insecticide resistance

    Energy Technology Data Exchange (ETDEWEB)

    Alphey, Nina [University of Oxford (United Kingdom). Dept. of Zoology; Alphey, Luke [Oxitec Limited, Oxford (United Kingdom); Coleman, Paul G [London School of Hygiene and Tropical Medicine (United Kingdom). Dept. of Infectious and Tropical Diseases; Donnelly, Christl A [Imperial College Faculty of Medicine, London (United Kingdom). Dept. of Infectious Disease Epidemiology

    2006-07-01

    Transgenic crops expressing insecticidal toxins derived from Bacillus thuringiensis (Bt) are widely used to control insect pests. The benefits of such crops would be lost if resistance to the toxins spread to a significant proportion of the pest population. The main resistance management method, mandatory in the US, is the high-dose/refuge strategy, requiring nearby refuges of toxin-free crops, and the use of toxin doses sufficiently high to kill not only wild type insects but also insects heterozygous for a resistance allele, thereby rendering the resistance functionally recessive. We propose that mass-release of harmless toxin-sensitive insects could substantially delay or even reverse the spread of resistance. Mass-release of such insects is an integral part of RIDL, a genetics-based method of pest control related to the Sterile Insect Technique. We used a population genetic mathematical model to analyze the effects of releasing male insects homozygous for a female-specific dominant lethal genetic construct, and concluded that this RIDL strategy could form an effective component of a resistance management scheme for insecticidal plants and other toxins. (author)

  9. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders...

  10. Influence of presence and spatial arrangement of belowground insects on host-plant selection of aboveground insects: a field study

    NARCIS (Netherlands)

    Soler, J.J.; Schaper, S.V.; Bezemer, T.M.; Cortesero, A.M.; Hoffmeister, T.S.; Van der Putten, W.H.; Vet, L.E.M.; Harvey, J.A.

    2009-01-01

    1. Several studies have shown that above- and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host-plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was

  11. Role of radioisotopes in the study of insect pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2013-01-01

    Although the use of nuclear techniques, particularly radioisotopes, in entomological research is less than a century old, the contribution of radioisotopes to the science of studying insects (Entomology) is indispensable. In fact, radioisotopes provided a very important and sometimes a unique tool for solving many research problems in entomology. This article discusses the most important and widely used applications of radioisotopes in studying insect pests. In particular, it concentrates on the subject of radioisotopes used in entomological research, methods of labeling insect with radioisotopes, half life of radioisotopes, and the role of radioisotopes in physiological, ecological, biological and behavioral studies of insects. (author)

  12. IAEA and the world summit on sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ford, JoAnne [ed.

    2002-03-01

    Nuclear technology offers unique tools in the quest for sustainable development. Such technology is often the best to gather information and provide solutions that would not otherwise be possible or practical: to diagnose and treat disease, to breed better crops and fight insect pests; to assess new sources of fresh water; and to monitor pollution. While many may only think of energy, nuclear technology has a much larger role to play in human development. Where it can make a difference, the International Atomic Energy Agency (IAEA) provides support to 133 Member States for using this technology to solve the important challenges they face.

  13. IAEA and the world summit on sustainable development

    International Nuclear Information System (INIS)

    Ford, JoAnne

    2002-03-01

    Nuclear technology offers unique tools in the quest for sustainable development. Such technology is often the best to gather information and provide solutions that would not otherwise be possible or practical: to diagnose and treat disease, to breed better crops and fight insect pests; to assess new sources of fresh water; and to monitor pollution. While many may only think of energy, nuclear technology has a much larger role to play in human development. Where it can make a difference, the International Atomic Energy Agency (IAEA) provides support to 133 Member States for using this technology to solve the important challenges they face

  14. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Insects and sex

    NARCIS (Netherlands)

    Beukeboom, Leo

    2005-01-01

    Most organisms reproduce sexually, but the evolution of sexual reproduction is not yet well understood. Sexual reproduction leads to new variation and adaptations to the environment, but sex is also costly. Some insects reproduce without sex through parthenogenesis or paedogenesis. Almost all sexual

  17. Insects - a natural nutrient source for poultry - a review

    DEFF Research Database (Denmark)

    Józefiak, D; Josefiak, A; Kieronczyk, B

    2016-01-01

    , such as fishmeal. With estimated 1.5 to 3 million species, the class of insects harbours the largest species variety in the world including species providing a high protein and sulphur amino acids content, which can be successfully exploited as feed for poultry. The aim of this paper is to review the present state...... of knowledge concerning the use of insect protein in poultry nutrition and the possibilities of mass production of insects for the feed industry. There is no doubt that insects have an enormous potential as a source of nutrients (protein) and active substances (polyunsaturated fatty acids, antimicrobial...... peptides) for poultry. It can be concluded, based on many experimental results, that meals from insects being members of the orders Diptera (black soldier fly, housefly), Coleoptera (mealworms) and Orthoptera (grasshoppers, locust, crickets and katylids), may be successfully used as feed material...

  18. Cleptobiosis in Social Insects

    Directory of Open Access Journals (Sweden)

    Michael D. Breed

    2012-01-01

    Full Text Available In this review of cleptobiosis, we not only focus on social insects, but also consider broader issues and concepts relating to the theft of food among animals. Cleptobiosis occurs when members of a species steal food, or sometimes nesting materials or other items of value, either from members of the same or a different species. This simple definition is not universally used, and there is some terminological confusion among cleptobiosis, cleptoparasitism, brood parasitism, and inquilinism. We first discuss the definitions of these terms and the confusion that arises from varying usage of the words. We consider that cleptobiosis usually is derived evolutionarily from established foraging behaviors. Cleptobionts can succeed by deception or by force, and we review the literature on cleptobiosis by deception or force in social insects. We focus on the best known examples of cleptobiosis, the ectatommine ant Ectatomma ruidum, the harvester ant Messor capitatus, and the stingless bee Lestrimellita limão. Cleptobiosis is facilitated either by deception or physical force, and we discuss both mechanisms. Part of this discussion is an analysis of the ecological implications (competition by interference and the evolutionary effects of cleptobiosis. We conclude with a comment on how cleptobiosis can increase the risk of disease or parasite spread among colonies of social insects.

  19. Stinging and biting insect allergy: an Australian experience.

    Science.gov (United States)

    Solley, Graham O

    2004-12-01

    Stings and bites from various insects are responsible for many anaphylactic events. To document the clinical features of specific forms of anaphylaxis and investigate clinical concerns regarding stinging and biting insect allergy. All patients presenting for evaluation of adverse reactions to insect stings or bites between December 1980 and December 1997 had the clinical details of their reactions recorded and their reactions classified. The spectrum of clinical symptoms and signs is similar to that seen in anaphylaxis from other sources; stings on the head or neck are not more likely to cause life-threatening reactions than stings elsewhere on the body; a lesser reaction will not necessarily lead to a more serious reaction from a future sting; asthmatic patients do appear to have an increased risk of asthma as a feature of their anaphylactic response; anaphylaxis is usually confined to a particular insect species for the individual patient; patients who have had multiple stings at one time may have experienced true anaphylaxis and not a "toxic" response; and patients who have had anaphylaxis from other sources are at no greater risk than that of the general population of reacting similarly to insect stings or bites. Anaphylactic events from insect stings show the same clinical features as those from other sources. Systemic reactions seem confined to a specific insect species. Patients who experience RXN3 reactions from multiple stings at one time should undergo specific venom testing, because many have experienced true anaphylaxis and not a toxic response. Future consideration should be given to the role of beta-adrenergic antagonists and ACE inhibitors in patients with systemic reactions.

  20. A study of the Bronze Age insect fauna

    OpenAIRE

    Reilly, Eileen

    2008-01-01

    This section examines the insect remains from eleven samples retained during the excavation of site A. The samples are all from ditch fills from a variety of trenches that were dug during the 1993, 1994 and 1995 excavation seasons (§2.5.1). A total of fourteen samples were processed and examined, but three produced no insect remains and are therefore not discussed in detail.As the samples are from different trenches, the insect assemblage can be looked at in a number o...

  1. Insects associated with ponderosa pine in Colorado

    Science.gov (United States)

    Robert E. Stevens; J. Wayne Brewer; David A. Leatherman

    1980-01-01

    Ponderosa pine serves as a host for a wide variety of insects. Many of these, including all the particularly destructive ones in Colorado, are discussed in this report. Included are a key to the major insect groups, an annotated list of the major groups, a glossary, and a list of references.

  2. Insect acetyl-CoA carboxylase: activity during the larval, pupal and adult stages of insect development.

    Science.gov (United States)

    Goldring, J P; Read, J S

    1993-12-01

    1. The activity of the lipogenic enzyme, acetyl-CoA carboxylase, was investigated in four insect species; Bombyx mori (Lepidoptera), Tenebrio molitor (Coleoptera), Glossina morsitans and Sarcophaga nodosa (Diptera). 2. Acetyl-CoA carboxylase activity in larval, pupal and adult forms was compared with the saponifiable lipid mass at each stage of the life-cycle, and found to follow similar patterns except for Tenebrio molitor. 3. The results are examined in relation to known metabolic requirements for each insect.

  3. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control.

    Science.gov (United States)

    Arora, Arinder K; Douglas, Angela E

    2017-11-01

    All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Changes in gene expression caused by insect venom immunotherapy responsible for the long-term protection of insect venom-allergic patients

    NARCIS (Netherlands)

    Niedoszytko, Marek; Bruinenberg, Marcel; de Monchy, Jan; Weersma, Rinse K.; Wijmenga, Cisca; Jassem, Ewa; Oude Elberink, Joanne N. G.

    Background: Insect venom immunotherapy (VIT) is the only causative treatment of insect venom allergy (IVA). The immunological mechanism(s) responsible for long-term protection achieved by VIT are largely unknown. A better understanding is relevant for improving the diagnosis, prediction of

  5. Global warming favours light-coloured insects in Europe

    Science.gov (United States)

    Zeuss, Dirk; Brandl, Roland; Brändle, Martin; Rahbek, Carsten; Brunzel, Stefan

    2014-01-01

    Associations between biological traits of animals and climate are well documented by physiological and local-scale studies. However, whether an ecophysiological phenomenon can affect large-scale biogeographical patterns of insects is largely unknown. Insects absorb energy from the sun to become mobile, and their colouration varies depending on the prevailing climate where they live. Here we show, using data of 473 European butterfly and dragonfly species, that dark-coloured insect species are favoured in cooler climates and light-coloured species in warmer climates. By comparing distribution maps of dragonflies from 1988 and 2006, we provide support for a mechanistic link between climate, functional traits and species that affects geographical distributions even at continental scales. Our results constitute a foundation for better forecasting the effect of climate change on many insect groups. PMID:24866819

  6. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    Science.gov (United States)

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the

  7. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    Directory of Open Access Journals (Sweden)

    Bernal Matarrita-Carranza

    2017-10-01

    Full Text Available The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees, Vespidae (wasps, and Formicidae (ants. In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect

  8. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    Science.gov (United States)

    Matarrita-Carranza, Bernal; Moreira-Soto, Rolando D.; Murillo-Cruz, Catalina; Mora, Marielos; Currie, Cameron R.; Pinto-Tomas, Adrián A.

    2017-01-01

    The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and

  9. Biological basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Lance, D.R.; McInnis, D.O.

    2005-01-01

    In principle, the sterile insect technique (SIT) is applicable to controlling a wide variety of insect pests, but biological factors, interacting with socio-economic and political forces, restrict its practical use to a narrower set of pest species and situations. This chapter reviews how the biology and ecology of a given pest affect the feasibility and logistics of developing and using the SIT against that pest insect. The subjects of pest abundance, distribution, and population dynamics are discussed in relation to producing and delivering sufficient sterile insects to control target populations. Pest movement and distribution are considered as factors that influence the feasibility and design of SIT projects, including the need for population- or area-wide management approaches. Biological characteristics, that affect the ability of sterile insects to interact with wild populations, are presented, including the nature of mating systems of pests, behavioural and physiological consequences of mass production and sterilization, and mechanisms that males use to block a female's acquisition and/or use of sperm from other males. An adequate knowledge of the biology of the pest species and potential target populations is needed, both for making sound decisions on whether integration of the SIT into an area-wide integrated pest management (AW-IPM) programme is appropriate, and for the efficient and effective application of the technique. (author)

  10. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  11. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  12. Identification and characterization of insect-specific proteins by genome data analysis

    Directory of Open Access Journals (Sweden)

    Clark Terry

    2007-04-01

    Full Text Available Abstract Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts. ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through

  13. Molecular determinants of odorant receptor function in insects

    Indian Academy of Sciences (India)

    2014-07-20

    Jul 20, 2014 ... other host-odor responsive receptors from vector insect spe- cies would .... those that mediate host-seeking behaviour in insect disease vectors and ... receptors are transmitted and processed via olfactory circuits. (Vosshall ...

  14. Life Cycle Inventory Analysis of Prospective Insect Based Feed Production in West Africa

    Directory of Open Access Journals (Sweden)

    Martin Roffeis

    2017-09-01

    Full Text Available While the concept of insect based feeds (IBFs promises great potential, especially in developing countries, the sustainability performance of IBF production remains widely underexplored. Drawing on experimental data from rearing trials in West Africa, three different insect production systems were modelled ex-ante. The generic models served as a basis to analyse and compare the process performances of different IBF production systems using Musca domestica and Hermetia illucens reared on different substrates. The results show that the input efficiency in the production of IBF is largely determined by the quality of rearing substrates, the larval development time and the employed inoculation practises, i.e., the method by which eggs or larvae are added to rearing substrates. The H. illucens system ranked highest for conversion efficiency (substrate input per IBF output, but showed substantially higher inputs in labour, fossil energy and output of wastewater. M. domestica systems operated at lower conversion efficiencies, which resulted in higher outputs of residue substrates, together with higher emissions, land requirements, built infrastructure and water. By offering full disclosure of generic inventory data, this study provides data and inspiration for prospect research and development activities and offers a reference to future life cycle assessments (LCAs on IBF.

  15. ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.

    Science.gov (United States)

    Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V

    2014-01-01

    A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects

  16. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    Science.gov (United States)

    Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.

    2016-01-01

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855

  17. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Electronic nose in edible insects area

    Directory of Open Access Journals (Sweden)

    Martin Adámek

    2017-01-01

    Full Text Available Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manuscript describes the phases of edible insect culinary treatment and methods of distinguishing mealworm (Tenebrio molitor and giant mealworm (Zophobas morio using simple electronic nose. These species were measured in the live stage, after killing with boiling water, after drying and after inserting into the chocolate.The sensing device was based on the Arduino Mega platform with the ability to store the recorded data on the SD memory card, and with the possibility to communicate via internet. Data analysis shows that even a simple, cheap and portable electronic nose can distinguish between the different steps of culinary treatment (native samples, dried samples, samples enriched with chocolate for cooking and selected species. Another benefit of the electronic nose could be its future introduction into the control mechanisms of food security systems (e.g. HACCP.

  19. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  20. A study on feasibility of insect-control with γ-ray

    International Nuclear Information System (INIS)

    Huifen Feng; Jingren Li; Xin Hu

    1993-01-01

    Insect-control with Co-γ-ray is a method for conserving archives, books, cotton textiles, historical relics, wood structured houses and furniture. The temporary and residual effects of γ-ray on irradiated objects and the biological effects on insects are presented in this report. Our study shows that there is no obvious harmful effect on irradiated objects when the radiation dose is below 870 Gy, while there is obvious deterioration to the objects when the dose is above 870 Gy. On the other hand, a dose below 870 Gy is strong enough for the insects to be affected. At the dose of 43.5 - 130.5 Gy, the irradiated insects' reproductive function could be damaged or insects killed. (author)

  1. Estimating Aquatic Insect Populations. Introduction to Sampling.

    Science.gov (United States)

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  2. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Forest habitat conservation in Africa using commercially important insects.

    Science.gov (United States)

    Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie

    2011-01-01

    African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.

  4. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups.

    Science.gov (United States)

    Thomas, J A

    2005-02-28

    Conservative estimates suggest that 50-90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1-100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10-30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies, bumblebees

  5. FAO/IAEA international conference on area-wide control of insect pests integrating the sterile insect and related nuclear and other techniques. Programme book of abstracts

    International Nuclear Information System (INIS)

    1998-06-01

    The organization of this International Conference on the Areawide Approach to the Control of Insect Pests is appropriate and timely. There is increasing interest in the holistic approach to dealing with major insect pest problems. This interest has been prompted by the steady progress scientists have made in the development of the sterile insect technique for eliminating the screwworm from North America, the melon fly from Okinawa, the elimination and containment of the medfly in various countries and the progress that scientists have made in eradicating tsetse fly populations from isolated areas. Increased interest has also been shown by agriculturalists because of the realization that the farm-to-farm reactive method of insect control is only a temporary solution to problems and that pests continue to be about as numerous as ever from year-to-year. In the meantime, there is increasing public concern over the environmental hazards created by the use of broad-spectrum insecticides to deal with insect pest problems. The sterile insect technique provides a feasible way to manage total insect pest populations. However, other techniques and strategies appropriately integrated into management programs can increase the effectiveness and efficiency of area-wide management programs. These include the augmentation of massproduced biological organisms and the use of semiochemicals such as the insect sex pheromones. This conference will give pest management scientists from many countries the opportunity to exchange information on the area-wide approach to insect pest management - an approach that if fully developed can be highly effective, low in cost and at the same time make a major contribution to alleviating the environmental concerns associated with primary reliance on broad-spectrum insecticides for controlling insect pests. This document contains 200 abstracts of papers presented at the conference

  6. An immunological axis of biocontrol: infections in field-trapped insects

    Science.gov (United States)

    Tunaz, Hasan; Stanley, David

    2009-09-01

    Insect immunology is an active research arena, however, the vast majority of research in the area is conducted on model species taken from laboratory cultures. We tested the hypothesis that insects are regularly exposed to infections or invasions in nature and here report results of a field study designed to assess the extent of natural infections in insects collected from agrarian fields surrounding Kahramanmaraş, Turkey. Specimens were dissected to assess numbers of nodules. Formation of darkened, melanotic nodules is the predominant cellular immune reaction to microbial and parasitic infection, and once formed, the nodules are permanently attached to internal surfaces. The collected insects were healthy. Of the >400 examined specimens, at least some nodules were found in 98%. Numbers of nodules ranged from ˜2/individual to >100 nodules/individual. We conclude that insects are regularly challenged by microbial and parasitic infections from which they recover. The novel implication of our data is that insect immune systems may limit the host range and effectiveness of agents deployed in biological control programs. Knowledge of insect immune systems may contribute to increased use of biopesticides globally.

  7. Minor lipophilic compounds in edible insects

    OpenAIRE

    Monika Sabolová; Anna Adámková; Lenka Kouřimská; Diana Chrpová; Jan Pánek

    2016-01-01

    Contemporary society is faced with the question how to ensure suffiecient nutrition (quantity and quality) for rapidly growing population. One solution can be consumption of edible insect, which can have very good nutritional value (dietary energy, protein, fatty acids, fibers, dietary minerals and vitamins composition). Some edible insects species, which contains a relatively large amount of fat, can have a potential to be a „good" (interesting, new) source of minor lipophilic compound...

  8. Developmental constraint of insect audition

    Directory of Open Access Journals (Sweden)

    Strauß Johannes

    2006-12-01

    Full Text Available Abstract Background Insect ears contain very different numbers of sensory cells, from only one sensory cell in some moths to thousands of sensory cells, e.g. in cicadas. These differences still await functional explanation and especially the large numbers in cicadas remain puzzling. Insects of the different orders have distinct developmental sequences for the generation of auditory organs. These sensory cells might have different functions depending on the developmental stages. Here we propose that constraints arising during development are also important for the design of insect ears and might influence cell numbers of the adults. Presentation of the hypothesis We propose that the functional requirements of the subadult stages determine the adult complement of sensory units in the auditory system of cicadas. The hypothetical larval sensory organ should function as a vibration receiver, representing a functional caenogenesis. Testing the hypothesis Experiments at different levels have to be designed to test the hypothesis. Firstly, the neuroanatomy of the larval sense organ should be analyzed to detail. Secondly, the function should be unraveled neurophysiologically and behaviorally. Thirdly, the persistence of the sensory cells and the rebuilding of the sensory organ to the adult should be investigated. Implications of the hypothesis Usually, the evolution of insect ears is viewed with respect to physiological and neuronal mechanisms of sound perception. This view should be extended to the development of sense organs. Functional requirements during postembryonic development may act as constraints for the evolution of adult organs, as exemplified with the auditory system of cicadas.

  9. Phenoptosis in arthropods and immortality of social insects.

    Science.gov (United States)

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  10. Broadening insect gastronomy

    DEFF Research Database (Denmark)

    Halloran, Afton Marina Szasz; Münke, Christopher; Vantomme, Paul

    2015-01-01

    In recent years there has been a trend among chefs to diversify their ingredients and techniques, drawing inspiration from other cultures and creating new foods by blending this knowledge with the flavours of their local region. Edible insects, with their plethora of taste, aromatic, textural and...

  11. Insect biodiversity of the Algodones Dunes of California

    Directory of Open Access Journals (Sweden)

    Lynn Kimsey

    2017-11-01

    Full Text Available Over a nine year period beginning in 2007 we surveyed the insects of the Algodones Dunes, Imperial Count, California, as part of a study undertaken for the U.S. Bureau of Land Management. In a series of 22 collecting trips ranging in duration from 2 to 8 days we thus far have accumulated records of 1,840 species, 21 orders and 244 families from the dunes. Hymenoptera constituted the most diverse order, comprising about 45% of all the species recovered. Insect diversity and abundance peaked during the hottest part of the year between the months of May and September. Life history traits of the insects sampled included herbivores (29.6%, parasitoids (28.7%, predators (18.1%, pollen/nectar feeders (10.9%, detritivores (6.2% and scavengers (2.4%. Seventy-nine or 4% of the insect species collected in the dunes have been solely recorded from there, and 3% of the species almost certainly derive from adjacent aquatic habitats or agricultural ecosystems, as their life histories could not be completed in Algodones Dunes habitat. The insect fauna of the Algodones Dunes is unexpectedly rich and diverse.

  12. Context dependency and generality of fever in insects

    Science.gov (United States)

    Stahlschmidt, Z. R.; Adamo, S. A.

    2013-07-01

    Fever can reduce mortality in infected animals. Yet, despite its fitness-enhancing qualities, fever often varies among animals. We used several approaches to examine this variation in insects. Texas field crickets ( Gryllus texensis) exhibited a modest fever (1 °C increase in preferred body temperature, T pref) after injection of prostaglandin, which putatively mediates fever in both vertebrates and invertebrates, but they did not exhibit fever during chronic exposure to heat-killed bacteria. Further, chronic food limitation and mating status did not affect T pref or the expression of behavioural fever, suggesting limited context dependency of fever in G. texensis. Our meta-analysis of behavioural fever studies indicated that behavioural fever occurs in many insects, but it is not ubiquitous. Thus, both empirical and meta-analytical results suggest that the fever response in insects `is widespread, although certainly not inevitable' (Moore 2002). We highlight the need for future work focusing on standardizing an experimental protocol to measure behavioural fever, understanding the specific mechanism(s) underlying fever in insects, and examining whether ecological or physiological costs often outweigh the benefits of fever and can explain the sporadic nature of fever in insects.

  13. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    Science.gov (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  14. The Importance of Insects in Australian Aboriginal Society: A Dictionary Survey

    Directory of Open Access Journals (Sweden)

    Aung Si

    2015-09-01

    Full Text Available Insects and their products have long been used in Indigenous Australian societies as food, medicine and construction material, and given prominent roles in myths, traditional songs and ceremonies. However, much of the available information on the uses of insects in Australia remains anecdotal. In this essay, we review published dictionaries of Aboriginal languages spoken in many parts of Australia, to provide an overview of the Indigenous names and knowledge of insects and their products. We find that that native honeybees and insect larvae (particularly of Lepidoptera and Coleoptera are the most highly prized insects, and should be recognized as cultural keystone species. Many insects mentioned in dictionaries lack scientific identifications, however, and we urge documentary linguists to address this important issue.

  15. Stinging insect identification: Are the allergy specialists any better than their patients?

    Science.gov (United States)

    Baker, Troy W; Forester, Joseph P; Johnson, Monica L; Sikora, Jeremy M; Stolfi, Adrienne; Stahl, Mark C

    2016-05-01

    It has been reported that the general population is not skillful at identifying stinging insects with the exception of the honeybee. No information is available to evaluate allergy physicians' accuracy with stinging insect identification. To measure the accuracy of allergists' ability to identify stinging insects and assess their common practices for evaluating individuals with suspected insect hypersensitivity. A picture-based survey and a dried specimen insect box were constructed to determine allergists' and nonallergists' accuracy in identifying insects. Allergists attending the 2013 American College of Allergy, Asthma, and Immunology meeting were invited to participate in the study. Common practice approaches for evaluating individuals with stinging insect hypersensitivity were also investigated using a brief questionnaire. Allergy physicians are collectively better at insect identification than nonallergists. Overall, the mean (SD) number of correct responses for nonallergists was 5.4 (2.0) of a total of 10. This score was significantly lower than the score for allergists (6.1 [2.0]; P = .01) who participated in the study. Most allergists (78.5%) test for all stinging insects and use skin testing (69.5%) as the initial test of choice for evaluating individuals with insect hypersensitivity. Overall, allergists are more skilled at Hymenoptera identification. Most allergy specialists reported testing for all stinging insects when evaluating insect hypersensitivity, and skin testing was the preferred testing method in nearly 70% of allergists. These data support the practice parameter's recommendation to consider testing for all flying Hymenoptera insects during venom evaluation, which most of the participating allergists surveyed incorporate into their clinical practice. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. NIR detects, destroys insect pests

    International Nuclear Information System (INIS)

    McGraw, L.C.

    1998-01-01

    What’s good for Georgia peanuts may also be good for Kansas wheat. An electric eye that scans all food-grade peanuts for visual defects could one day do the same for wheat kernels. For peanuts, it’s a proven method for monitoring quality. In wheat, scanning with near-infrared (NIR) energy can reveal hidden insect infestations that lower wheat quality. ARS entomologists James E. Throne and James E. Baker and ARS agricultural engineer Floyd E. Dowell are the first to combine NIR with an automated grain-handling system to rapidly detect insects hidden in single wheat kernels

  17. ESR signals of irradiated insects

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Kameya, Hiromi; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko; Shimoyama, Yuhei

    2009-01-01

    Analysis of irradiated insects using Electron Spin Resonance (ESR) spectroscopy was reported. The insects were maize weevil, red flour beetle, Indian meal moth and cigarette beetle that are hazardous to crops. The ESR spectra were consisted of a singlet at g=2 and a sextet centered at the similar g-value. The singlet signal is due to an organic free radical. The sextet signal is attributable to the hyperfine interactions from Mn 2+ ions. Upon irradiation, new signals were not detected. The relaxation times, T 1 and T 2 , showed no variations before and after irradiation. (author)

  18. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release

    OpenAIRE

    Grutters, B.M.C.; Gross, E.M.; Bakker, E.S.

    2016-01-01

    Eutrophication and globalisation facilitate the dominance of exotic plants in aquatic ecosystems worldwide. Aquatic omnivores can provide biotic resistance to plant invasions, but little is known about whether obligate aquatic herbivores can do the same. Herbivores such as insects can decimate aquatic vegetation, but may not be able to consume exotic plants due to their more or less specialised nature of feeding. We experimentally tested the larval feeding of an aquatic insect, the moth Parap...

  19. Suppressing Resistance to Bt Cotton with Sterile Insect Releases

    Energy Technology Data Exchange (ETDEWEB)

    Tabashnik, B E [Department of Entomology, University of Arizona, Tucson, AZ (United States); Sisterson, M S [USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA (United States); Ellsworth, P C [Department of Entomology, University of Arizona, Maricopa Agricultural Center, Maricopa, AZ (United States)

    2011-01-15

    Genetically engineered crops that produce insecticidal toxins from Bacillus thuringiensis (Bt) are grown widely for pest control. However, insect adaptation can reduce the toxins' efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to provide susceptible insects to mate with resistant insects. Variable farmer compliance is one of the limitations of this approach. Here we report the benefits of an alternative strategy where sterile insects are released to mate with resistant insects and refuges are scarce or absent. Computer simulations show that this approach works in principle against pests with recessive or dominant inheritance of resistance. During a largescale, four-year field deployment of this strategy in Arizona, resistance of pink bollworm (Pectinophora gossypiella) to Bt cotton did not increase. A multitactic eradication program that included the release of sterile moths reduced pink bollworm abundance by >99%, while eliminating insecticide sprays against this key invasive pest. (author)

  20. Evolution of SUMO Function and Chain Formation in Insects.

    Science.gov (United States)

    Ureña, Enric; Pirone, Lucia; Chafino, Silvia; Pérez, Coralia; Sutherland, James D; Lang, Valérie; Rodriguez, Manuel S; Lopitz-Otsoa, Fernando; Blanco, Francisco J; Barrio, Rosa; Martín, David

    2016-02-01

    SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. BATS AND BT INSECT RESISTANCE ON AGRICULTURAL LANDSCAPES

    Science.gov (United States)

    A landscape model that utilizes land cover classification data, insect life history, insect movement, and bat foraging pressure is developed that addresses the implementation of genetically modified crops in the Winter Garden region of Texas. The principal strategy for delaying r...

  2. Sterile insect technique: A model for dose optimisation for improved sterile insect quality

    International Nuclear Information System (INIS)

    Parker, A.; Mehta, K.

    2007-01-01

    The sterile insect technique (SIT) is an environment-friendly pest control technique with application in the area-wide integrated control of key pests, including the suppression or elimination of introduced populations and the exclusion of new introductions. Reproductive sterility is normally induced by ionizing radiation, a convenient and consistent method that maintains a reasonable degree of competitiveness in the released insects. The cost and effectiveness of a control program integrating the SIT depend on the balance between sterility and competitiveness, but it appears that current operational programs with an SIT component are not achieving an appropriate balance. In this paper we discuss optimization of the sterilization process and present a simple model and procedure for determining the optimum dose. (author) [es

  3. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  4. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering [University of Saskatchewan, Saskatoon, SK (Canada). Department of Geological Sciences

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  5. Freshwater biodiversity and aquatic insect diversification.

    Science.gov (United States)

    Dijkstra, Klaas-Douwe B; Monaghan, Michael T; Pauls, Steffen U

    2014-01-01

    Inland waters cover less than 1% of Earth's surface but harbor more than 6% of all insect species: Nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are highly susceptible to environmental change and exhibit marked ecological gradients. Standing waters appear to harbor more dispersive species than running waters, but there is little understanding of how this fundamental ecological difference has affected diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bioindicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification.

  6. Wide Ranging Insect Infestation of the Pioneer Mangrove Sonneratia alba by Two Insect Species along the Kenyan Coast.

    Directory of Open Access Journals (Sweden)

    Elisha Mrabu Jenoh

    Full Text Available Insect infestation of mangroves currently threatens mangrove forest health and management. In the Western Indian Ocean region, little is known about insect damage to mangroves despite the fact that numerous infestations have occurred. In Kenya, infestations of Sonneratia alba have persisted for almost two decades, yet the taxonomic identity of the infesting pest(s, the extent of infestation, the pests' biology, the impacts of infestation on host and the ecosystem, the host's defensive strategies to the infestation are poorly understood. S. alba is a ubiquitous, pioneer mangrove species of the Indo-Pacific, occurring along the waterfront in a variety of mangrove ecosystem settings. Our main objectives were to identify the pest(s responsible for the current dieback of S. alba in Kenya, and to determine the extent of infestation. To identify the pests responsible for infestation, we trapped emergent insects and reared larvae in the laboratory. To determine the overall extent of infestation within the S. alba zone, we assessed nine sites along the entire Kenyan coastline for the presence or absence of infested mangroves. Insect infestation in two mangrove embayments (Gazi and Mida was quantified in depth. Two wood-boring insects were identified: a metarbelid moth (Lepidoptera, Cossoidea of undescribed genus and the beetle Bottegia rubra (Cerambycidae, Lamiinae.The metarbelid moth infests mangroves in both northern (from Ngomeni to Kiunga and southern regions (from Vanga to Mtwapa of the Kenyan coast. B. rubra appeared in low density in Gazi, and in high density in Mida, Kilifi, and Ngomeni, with densities gradually decreasing northward. Insect infestation levels reached 18% in Gazi and 25% of S. alba stands in Mida. Our results indicate that B. rubra has the ability to infest young mangrove trees and expand its range, posing a danger to rehabilitation efforts where plantations have been established. Thus, there is great need for forest managers to

  7. Chemical signaling and insect attraction is a conserved trait in yeasts.

    Science.gov (United States)

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  8. Observations of movement dynamics of flying insects using high resolution lidar

    DEFF Research Database (Denmark)

    Kirkeby, Carsten Thure; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-01-01

    insects (wing size cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm2 in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We......Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one...

  9. Ecological turmoil in evolutionary dynamics of plant-insect interactions: defense to offence.

    Science.gov (United States)

    Mishra, Manasi; Lomate, Purushottam R; Joshi, Rakesh S; Punekar, Sachin A; Gupta, Vidya S; Giri, Ashok P

    2015-10-01

    Available history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO₂ and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant-insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant-insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant-insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their

  10. Ecology and IPM of Insects at Grain Elevators

    Science.gov (United States)

    Cost-effectiveness of insect pest management depends upon its integration with other elevator operations. Successful integration may require consideration of insect ecology. Field infestation has not been observed for grain received at elevators. Grain may be infested during harvest by residual inse...

  11. Machine learning for characterization of insect vector feeding

    Science.gov (United States)

    Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and animals. The feeding processes required for successful pathogen transmission by sucking insects can be recorded by monito...

  12. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins.

    Science.gov (United States)

    Martinez, Ana Flávia Canovas; de Almeida, Luís Gustavo; Moraes, Luiz Alberto Beraldo; Cônsoli, Fernando Luís

    2017-06-27

    The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted attention as a source of new bioactive molecules because these microbes are exposed to various selection pressures in their association with insects. Analytical techniques must be used to isolate and characterize new compounds, and sensitive analytical tools such as mass spectrometry and high-resolution chromatography are required to identify the least-abundant molecules. We used classical fermentation techniques combined with tandem mass spectrometry to prospect for insecticidal substances produced by the ant symbiont Streptomyces caniferus. Crude extracts from this bacterium showed low biological activity (less than 10% mortality) against the larval stage of the fall armyworm Spodoptera frugiperda. Because of the complexity of the crude extract, we used fractionation-guided bioassays to investigate if the low toxicity was related to the relative abundance of the active molecule, leading to the isolation of porphyrins as active molecules. Porphyrins are a class of photoactive molecules with a broad range of bioactivity, including insecticidal. The active fraction, containing a mixture of porphyrins, induced up to 100% larval mortality (LD 50  = 37.7 μg.cm -2 ). Tandem mass-spectrometry analyses provided structural information for two new porphyrin structures. Data on the availability of porphyrins in 67 other crude extracts of ant ectosymbionts were also obtained with ion-monitoring experiments. Insect-associated bacterial symbionts are a rich source of bioactive compounds. Exploring

  13. Effects of nitrogen fertilization on forest trees in relation to insect resistance and to red-listed insect species

    International Nuclear Information System (INIS)

    Glynn, C.; Herms, D.A.

    2001-10-01

    Ecosystems worldwide are experiencing unprecedented nitrogen enrichment through fertilization and pollution. While longterm ecological consequences are difficult to predict, it seems that plants and animals adapted to nitrogen-limited environments are at particular risk from these changes. This report summarizes the limited body of literature which addresses this important topic. From a herbivoreAes perspective, fertilization increases the nutritional quality of host plant tissues. In some cases fertilization has lead to decreased production of defensive compounds. How this affects populations of insects is unclear because fertilization affects not only herbivores but their natural enemies. This report outlines how fertilization affects tree processes such as growth, photosynthesis, and production of defensive compounds. The many factors that affect insect repsonse to fertilization and the difficulties in assessing how fertilization affects insect populations are discussed

  14. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    OpenAIRE

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management.

  15. Genetic Engineering of Insects

    Indian Academy of Sciences (India)

    wild-type DNA resulted in the production of adults with wing ... using conventional method of breeding and selection. .... insects, birds, and other animals .... used to derive the expression of the antibiotic, tetracycline repressible transactivator.

  16. Allergies to Insect Venom

    Science.gov (United States)

    ... insects (as might be the case when a nest is disturbed, or when Africanized honeybees are involved); ... test with the five commercially available venoms; honey bee, paper wasp, yellow jacket, yellow hornet and white- ...

  17. Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions.

    Science.gov (United States)

    Renault, David; Laparie, Mathieu; McCauley, Shannon J; Bonte, Dries

    2018-01-07

    Insect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species' spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions.

  18. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.

    Science.gov (United States)

    Blackmon, Heath; Ross, Laura; Bachtrog, Doris

    2017-01-01

    Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Insects and Related Pests of Trees, Shrubs, and Lawns. MP-25R.

    Science.gov (United States)

    Spackman, Everett W.; Lawson, Fred A.

    This document discusses identification and control of the pests of trees and shrubs. The insects are grouped according to feeding habits and the type of damage caused to plants. Categories include the sucking insects and mites, leaf eating insects, pests attacking trunks and branches, and gall causing insects. (CS)

  20. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  1. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  2. Innovative Strategies for Control of Coffee Insect Pests in Tanzania ...

    African Journals Online (AJOL)

    Coffee insect pests are one of the major factors which affect coffee production and quality. globally, coffee insect pests are estimated to cause losses of about 13%. However in Africa, yield losses can be much higher, particularly where Arabica and Robusta coffee are grown for a long time. In Tanzania the major insect pests ...

  3. Wood Anatomy and Insect Defoliator Systems: Is there an anatomical response to sustained feeding by the western spruce budworm (Choristoneura occidentalis) on Douglas-fir (Pseudotusga menziesii)?

    Science.gov (United States)

    Axelson, Jodi; Gärtner, Holger; Alfaro, René; Smith, Dan

    2013-04-01

    The western spruce budworm (Choristoneura occidentalis Freeman) is the most widespread and destructive defoliator of coniferous forests in western North America, and has a long-term coexistence with its primary host tree, Douglas-fir (Pseudotsuga menziesii Franco). Western spruce budworm (WSB) outbreaks usually last for several years, and cause reductions in annual growth, stem defects, and regeneration delays. In British Columbia, the WSB is the second most damaging insect after the mountain pine beetle, and sustained and/or severe defoliation can result in the mortality of host trees. Numerous studies have used tree rings to reconstruct WSB outbreaks across long temporal scales, to evaluate losses in stand productivity, and examine isotope ratios. Although some studies have looked at the impacts of artificial defoliation on balsam fir in eastern North America, there has been no prior research on how WSB outbreaks affect the anatomical structure of the stem as described by intra-annual wood density and potential cell size variations. The objective of this study was to anatomically examine the response of Douglas-fir to sustained WSB outbreaks in two regions of southern British Columbia. We hypothesize that the anatomical intra-annual characteristics of the tree rings, such as cell wall thickness, latewood cell size, and/or lumen area changes during sustained WSB outbreaks. To test this hypothesis we sampled four permanent sample plots in coastal and dry interior sites, which had annually resolved defoliation data collected over a 7-12 year period. At each site diameter-at-breast height (cm), height (m), and crown position were recorded and three increment cores were extracted from 25 trees. Increment cores were prepared to permit anatomical and x-ray density analyses. For each tree, a 15µm thick micro section was cut from the radial plane. Digital images of the micro sections were captured and processed. In each annual ring, features such as cell lumen area (µm2

  4. Steering soil microbiomes to suppress aboveground insect pests

    NARCIS (Netherlands)

    Pineda, Ana; Kaplan, Ian; Bezemer, T. Martijn

    2017-01-01

    Soil-borne microbes affect aboveground herbivorous insects through a cascade of molecular and chemical changes in the plant, but knowledge of these microbe?plant?insect interactions is mostly limited to one or a few microbial strains. Yet, the soil microbial community comprises thousands of unique

  5. Challenges and prospects in the telemetry of insects

    NARCIS (Netherlands)

    Kissling, W.D.; Pattemore, D.E.; Hagen, M.

    2014-01-01

    Radio telemetry has been widely used to study the space use and movement behaviour of vertebrates, but transmitter sizes have only recently become small enough to allow tracking of insects under natural field conditions. Here, we review the available literature on insect telemetry using active

  6. Allergen immunotherapy for insect venom allergy

    DEFF Research Database (Denmark)

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines on Allergen Immunotherapy (AIT) for the management of insect venom allergy. To inform this process, we sought to assess the effectiveness, cost-effectiveness and safety...... of AIT in the management of insect venom allergy. METHODS: We undertook a systematic review, which involved searching 15 international biomedical databases for published and unpublished evidence. Studies were independently screened and critically appraised using established instruments. Data were...

  7. Insect disinfestation of food and agricultural products by irradiation

    International Nuclear Information System (INIS)

    1991-01-01

    Insect infestation is a major cause of post-harvest food loss. Use of chemical pesticides is one of the main methods of controlling storage losses caused by insects. Decades of research conducted worldwide on radiation disinfestation of food and agricultural products have shown that this method could be an alternative to the chemical treatment of foods. The advantages of irradiation processing include no undesirable residues in the foods, no resistance developed by the insects and no significant changes in the physicochemical properties or the nutritive value of the treated products. This volume contains the proceedings of the final Research Co-ordination Meeting on insect disinfestation of food and agricultural products by irradiation, held in May 1987. The individual contributions are indexed separately. Refs, figs and tabs

  8. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  9. Constant-dose microwave irradiation of insect pupae

    Science.gov (United States)

    Olsen, Richard G.

    Pupae of the yellow mealworm Tenebrio molitor L. were subjected to microwave irradiation for 1.5-24 hours at power density levels adjusted to produce a total dosage of approximately 1123 J/g in each insect for every experiment. Insects without visible blemishes were exposed in a standing wave irradiation system such that half of them were exposed in the plane of maximum electric field (E field) and the other half were exposed in the plane of maximum magnetic field (H field). Both E field and H field insects exhibited nearly the same specific absorption rate (SAR) for pupal orientation parallel to the magnetic field vector at 5.95 GHz. Irradiations were conducted both with and without the use of a ventilating fan to control the temperature rise in the irradiation chamber. Abnormal development as a result of the microwave exposure was seen only in the high-power, short-duration experiment without chamber ventilation. This result suggests a thermal interaction mechanism for explanation of observed microwave-induced abnormalities. A study of the time course of the average temperature rise in the irradiated insects indicates that teratological effects for this configuration have a temperature threshold of approximately 40°C.

  10. Insect Pest Control Newsletter, No. 73, July 2009

    International Nuclear Information System (INIS)

    2009-07-01

    This issue of the Newsletter reports on status of technical cooperation field projects, coordinated research projects and research coordination meetings, developments at the Entomology Unit Seibersdorf, training courses offered on insect pest control as well as news items on other activities of the Insect Pest Control Section

  11. Insect herbivores should follow plants escaping their relatives

    NARCIS (Netherlands)

    Yguel, B.; Bailey, R.I.; Villemant, C.; Brault, A.; Jactel, H.; Prinzing, A.

    2014-01-01

    Neighboring plants within a local community may be separated by many millions of years of evolutionary history, potentially reducing enemy pressure by insect herbivores. However, it is not known how the evolutionary isolation of a plant affects the fitness of an insect herbivore living on such a

  12. Insect Pest Control Newsletter, No. 73, July 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    This issue of the Newsletter reports on status of technical cooperation field projects, coordinated research projects and research coordination meetings, developments at the Entomology Unit Seibersdorf, training courses offered on insect pest control as well as news items on other activities of the Insect Pest Control Section.

  13. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    Science.gov (United States)

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  14. Review of food composition data for edible insects.

    Science.gov (United States)

    Nowak, Verena; Persijn, Diedelinde; Rittenschober, Doris; Charrondiere, U Ruth

    2016-02-15

    Edible insects are considered rich in protein and a variety of micronutrients, and are therefore seen as potential contributors to food security. However, the estimation of the insects' contribution to the nutrient intake is limited since data are absent in food composition tables and databases. Therefore, FAO/INFOODS collected and published analytical data from primary sources with sufficient quality in the Food Composition Database for Biodiversity (BioFoodComp). Data were compiled for 456 food entries on insects in different developmental stages. A total of 5734 data points were entered, most on minerals and trace elements (34.8%), proximates (24.5%), amino acids (15.3%) and (pro)vitamins (9.1%). Data analysis of Tenebrio molitor confirms its nutritive quality that can help to combat malnutrition. The collection of data will assist compilers to incorporate more insects into tables and databases, and to further improve nutrient intake estimations. Copyright © 2015 Food and Agriculture Organization of the United Nations. Published by Elsevier Ltd.. All rights reserved.

  15. IMp: The customizable LEGO® Pinned Insect Manipulator

    Directory of Open Access Journals (Sweden)

    Steen Dupont

    2015-02-01

    Full Text Available We present a pinned insect manipulator (IMp constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  16. IMp: The customizable LEGO® Pinned Insect Manipulator

    Science.gov (United States)

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  17. Test for Local Insect Traps against some Solanacea Insects Plant under Green House Conditions in Riyadh, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Ayedh, Hassan Ibn Yahiya

    2005-01-01

    Trapping efficiency of seven different colored sticky traps (Green, Fluorescent yellow, Orange, Pink, red, White and Yellow) was evaluated in some solanacea plants, tomatoes (Lycopersicon esculentum), eggplant (Solanum Magellan) and sweet pepper (Capsicum spp.) crops, for whitefly (Bemis ia airlifting), leaf miners (Liriomyza trifolii), thrips (Thrips tabaci) in Riyadh, Saudi Arabia. The traps were placed at four different heights (0.5, 1.0, 1.5 and 2.0 m above the ground). The experiment was laid out in a Completely Randomized Block Design (CRBD) with four replications during autumn 2001, spring and autumn 2002. Significantly high insect populations were trapped on Fluorescent yellow, yellow and green colored sticky traps. No significant differences were witnessed between mean numbers of various insects caught on sticky traps placed at different heights but more insects were trapped at 0.5 - 1.5m. (author)

  18. Insect herbivory and plant adaptation in an early successional community.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Fines, Daniel M; Bogdanowicz, Steve; Huber, Meret

    2018-05-01

    To address the role of insect herbivores in adaptation of plant populations and the persistence of selection through succession, we manipulated herbivory in a long-term field experiment. We suppressed insects in half of 16 plots over nine years and examined the genotypic structure and chemical defense of common dandelion (Taraxacum officinale), a naturally colonizing perennial apomictic plant. Insect suppression doubled dandelion abundance in the first few years, but had negligible effects thereafter. Using microsatellite DNA markers, we genotyped >2500 plants and demonstrate that insect suppression altered the genotypic composition of plots in both sampling years. Phenotypic and genotypic estimates of defensive terpenes and phenolics from the field plots allowed us to infer phenotypic plasticity and the response of dandelion populations to insect-mediated natural selection. The effects of insect suppression on plant chemistry were, indeed, driven both by plasticity and plant genotypic identity. In particular, di-phenolic inositol esters were more abundant in plots exposed to herbivory (due to the genotypic composition of the plots) and were also induced in response to herbivory. This field experiment thus demonstrates evolutionary sorting of plant genotypes in response to insect herbivores that was in same direction as the plastic defensive response within genotypes. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  19. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2010-09-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  20. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2011-02-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  1. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  2. Population suppression in support of the sterile insect technique

    International Nuclear Information System (INIS)

    Mangan, R.L.

    2005-01-01

    Suppression or eradication of insect pest populations by the release of sterile insects is often dependent on supplementary methods of pest reduction to levels where the target pest population can be overflooded with sterile insects. Population suppression activities take place in advance of, or coincide with, the production of sterile insects. Supplementary methods to remove breeding opportunities, or management methods that prevent access of pests to the hosts, may reduce the population or prevent damage. Insecticides have been used widely in direct applications or applied as baits, in traps, or on specific sites where the pest makes contact or reproduces. As sterile insect release does not kill the pest, adult biting pests or fertile mated females of the pests will continue to attack hosts after the release of sterile insects. Thus supplementary pest suppression programmes and quarantine measures are essential to prevent damage or the spread of disease. Eradication or effective pest management requires that the entire population of the pest be treated, or that the programme apply immigration barriers. When supplementary pest control activities benefit the human population in areas being treated, such as in mosquito or screwworm eradication programmes, these activities are usually acceptable to the public, but when the public receives no direct benefit from supplementary control activities such as in fruit fly programmes, social resistance may develop. (author)

  3. Insect pest intervention using the sterile insect technique. Current status on research and on operational programs in the world

    International Nuclear Information System (INIS)

    Enkerlin, Walther; Bakri, Abdel; Caceres, Carlos

    2003-01-01

    The area-wide integrated approach to insect pest management (AWIPM) is increasingly gaining acceptance for major insect pests in view that agriculture and medical/veterinary pests cannot be controlled effectively at the local level, without the systematic use of conventional insecticides which disrupt the environment, affect human health and preclude access to low pesticide or organic markets. The Sterile Insect Technique (SIT) is amongst the most non-disruptive pest control methods, however, it is only effective when implementation is coordinated over larger contiguous areas to address whole target pest populations. Over the last four decades the Joint FAOI/IAEA has been promoting the AWIPM concept and supporting the development and application of the SIT against various key insect pests including fruit files, moths, screwworms and tsetse flies. There has been considerable progress in the development and integrated use of the SIT against a number of such pests, as reflected by operational programs on all five continents for eradication, for prevention, and lately increasingly for suppression. There is however, considerable scope for improving the efficiency of SIT, an indispensable requirement for increased involvement of the livestock and horticultural industry and biocontrol producers in any future application. (author)

  4. Social insects: from selfish genes to self organisation and beyond.

    Science.gov (United States)

    Boomsma, Jacobus J; Franks, Nigel R

    2006-06-01

    Selfish gene and self-organisation approaches have revolutionised the study of social insects and have provided unparalleled insights into the highly sophisticated nature of insect social evolution. Here, we briefly review the core programs and interfaces with communication and recognition studies that characterise these fields today, and offer an interdisciplinary future perspective for the study of social insect evolutionary biology.

  5. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  6. Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines

    Directory of Open Access Journals (Sweden)

    Norman Ratcliffe

    2014-01-01

    Full Text Available Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines. Utilising knowledge gleaned from Insect Folk Medicines, this review describes modern research into bioengineering honey and venom from bees, silk, cantharidin, antimicrobial peptides, and maggot secretions and anticoagulants from blood-sucking insects into medicines. Problems and solutions encountered in these endeavours are described and indicate that the future is bright for new insect derived pharmaceuticals treatments and medicines.

  7. Thermographic analysis of waveguide-irradiated insect pupae

    Science.gov (United States)

    Olsen, Richard G.; Hammer, Wayne C.

    1982-01-01

    Pupae of the insect Tenebrio molitor L. were thermographically imaged during waveguide irradiation through longitudinal slots. T. molitor pupae have been subjects of microwave-induced teratology for a number of years, but until now the smallness of the insect has prevented detailed dosimetry. High-resolution thermographic imaging equipment was used to obtain the magnitude and spatial distribution of absorbed microwave energy at three frequencies, 1.3, 5.95, and 10 GHz. The detail of the thermal images obtained is sufficient to show the differential heating of structures as small as a single insect leg. Results show that the electrical properties of the head, thorax, and abdomen are sufficiently different to seriously impair the usefulness of any theoretical dosimetric model of homogeneous composition. Some general features of correlation with a slab model in waveguide are given.

  8. Photorhabdus luminescens genes induced upon insect infection

    Directory of Open Access Journals (Sweden)

    Jung Kirsten

    2008-05-01

    Full Text Available Abstract Background Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. Results A differential fluorescence induction (DFI approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18 were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known

  9. When Eggs Don't Hatch. The Benefits of the Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kilian, Lizette

    2012-01-01

    Insect pests, such as the medfly, tsetse flies and carob moth can devastate crops and infect herds, causing severe economic hardship. To suppress the insect pest population and protect their livestock and crops, farmers usually use large quantities of pesticides. However, these pesticides are expensive, a risk to public health and cause environmental damage. Another technique, however, can reduce the insect pest population using natural means that do not require toxic chemicals: the sterile insect technique, or SIT. When female insect pests mate with male partners that have been radiation sterilized, the insemination produces eggs that cannot hatch. Since mating does not produce offspring, the insect population decreases naturally. The pest population can be suppressed with little or no use of pesticides. With the help of the IAEA, farmers have applied SIT successfully in over 20 countries on five continents, for over 15 insect species worldwide.

  10. In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems.

    Science.gov (United States)

    Pearsons, Kirsten A; Tooker, John F

    2017-08-05

    The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators.

  11. In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems

    Directory of Open Access Journals (Sweden)

    Kirsten A. Pearsons

    2017-08-01

    Full Text Available The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators.

  12. Increasing insect reactions in Alaska: is this related to changing climate?

    Science.gov (United States)

    Demain, Jeffrey G; Gessner, Bradford D; McLaughlin, Joseph B; Sikes, Derek S; Foote, J Timothy

    2009-01-01

    In 2006, Fairbanks, AK, reported its first cases of fatal anaphylaxis as a result of Hymenoptera stings concurrent with an increase in insect reactions observed throughout the state. This study was designed to determine whether Alaska medical visits for insect reactions have increased. We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care for adverse reactions after insect-related events. For each database, an insect reaction was defined as a claim for the International Classification of Diseases, Ninth Edition (ICD-9), codes E9053, E906.4, and 989.5. Increases in insect reactions in each region were compared with temperature changes in the same region. Each database revealed a statistically significant trend in patients seeking care for insect reactions. Fairbanks Memorial Hospital Emergency Department reported a fourfold increase in patients in 2006 compared with previous years (1992-2005). The Allergy, Asthma, and Immunology Center of Alaska reported a threefold increase in patients from 1999 to 2002 to 2003 to 2007. A retrospective review of the Alaska Medicaid database from 1999 to 2006 showed increases in medical claims for insect reactions among all regions, with the largest percentage of increases occurring in the most northern areas. Increases in insect reactions in Alaska have occurred after increases in annual and winter temperatures, and these findings may be causally related.

  13. The Insect Microbiome Modulates Vector Competence for Arboviruses

    Directory of Open Access Journals (Sweden)

    Natapong Jupatanakul

    2014-11-01

    Full Text Available Diseases caused by arthropod-borne viruses (arboviruses, such as Dengue, West Nile, and Chikungunya, constitute a major global health burden and are increasing in incidence and geographic range. The natural microbiota of insect vectors influences various aspects of host biology, such as nutrition, reproduction, metabolism, and immunity, and recent studies have highlighted the ability of insect-associated bacteria to reduce vector competence for arboviruses and other pathogens. This reduction can occur through mechanisms, such as immune response activation, resource competition, or the production of anti-viral molecules. Studying the interactions between insect vectors and their microbiota is an important step toward developing alternative strategies for arbovirus transmission control.

  14. Insect pest control newsletter. No. 63

    International Nuclear Information System (INIS)

    2004-07-01

    The Second International Conference on Areawide Insect Pest Control sponsored by FAO and IAEA will be held from 9 to 13 May, 2005 in Vienna, Austria. This conference will provide a forum for the presentation of scientific papers dealing with areawide insect management programmes, including those applying the Sterile Insect Technique (SIT) and will include significant time for plenary discussion. The framework of the conference is being developed and the announcement with details of the Conference can be found under http://www.pub.iaea.org/MTCD/Meetings/Meetings2005.asp. It is planned to hold several Research Coordination Meetings in conjunction with this meeting. The Interregional Training Course on The Use of the Sterile Insect and Related Techniques for the Integrated Areawide Management of Insect Pests, was held from 4 May to 1 June 2004 in Gainesville, Florida, USA. This is a unique course that provides participants with a complete overview of all aspects related to areawide and SIT operational programmes. Both USA and external lecturers participated with an adequate balance between theory and practical laboratory and field exercises. Third, the SIT programme in Madeira is in negotiations with a private company regarding some type of partnership to ensure sustainability of the programme when EC funding comes to an end. These developments have been followed very closely by the sub-programme and we have been involved in providing advice, developing collaborative links and interacting at the R and D and technology transfer levels. There will be ample scope for further collaboration when these initiatives become fully realized. The fifth meeting of the Working Group on Fruit Flies of the Western Hemisphere (WGFFWH) took place in Fort Lauderdale, Florida, from 16 to 21 May 2004 and more than 200 participants attended. The meeting has a very unique format where scientists, action programme managers and the industry interact, greatly encouraging discussions and

  15. Insect pest control newsletter. No. 67, July 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  16. Insect pest control newsletter, No. 71, July 2008

    International Nuclear Information System (INIS)

    2008-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  17. Insect pest control newsletter. No. 66, January 2006

    International Nuclear Information System (INIS)

    2006-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  18. Insect pest control newsletter, No. 72, January 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  19. Insect pest control newsletter. No. 69, July 2007

    International Nuclear Information System (INIS)

    2007-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  20. Insect pest control newsletter. No. 68, January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  1. Insect pest control newsletter, No. 70, January 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  2. Forest insect & disease conditions in the Northeast - 1956

    Science.gov (United States)

    W. E. Waters; Alma M. Waterman

    1957-01-01

    This annual report on forest pest conditions in the Northeast combines, for the first time, information about both the major forest insects and the major forest diseases in the region. It was prepared as an aid to those who have a concern for protecting our forests from insect and disease attacks.

  3. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Colepicolo Neto, P.; Bechara, E.J.H.

    1984-01-01

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author) [pt

  4. Flemish consumer attitudes towards more sustainable food choices.

    Science.gov (United States)

    Vanhonacker, Filiep; Van Loo, Ellen J; Gellynck, Xavier; Verbeke, Wim

    2013-03-01

    Intensive agricultural practices and current western consumption patterns are associated with increased ecological pressure. One way to reduce the ecological impact could be a shift to more sustainable food choices. This study investigates consumer opinions towards a series of food choices with a lower ecological impact. The investigated food choices range from well-known meat substitutes to alternatives which are more radical or innovative and that require an adaptation of food habits and cultural patterns. Results are obtained through a survey among 221 Flemish respondents in Spring 2011. Many consumers underestimate the ecological impact of animal production. Well-known alternatives such as organic meat, moderation of meat consumption and sustainable fish are accepted, although willingness to pay is clearly lower than willingness to consume. Consumers are more reluctant to alternatives that (partly) ban or replace meat in the meal. Opportunities of introducing insects currently appear to be non-existent. Five consumer segments were identified based on self-evaluated ecological footprint and personal relevance of the ecological footprint. The segments were termed Conscious, Active, Unwilling, Ignorant and Uncertain. A profile in terms of demographics, attitudinal and behavioral characteristics is developed for each segments, and conclusions with respect to opportunities for sustainable food choices are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Feeding the insect industry

    Science.gov (United States)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vit...

  6. Probability to produce animal vaccines in insect baculovirus ...

    African Journals Online (AJOL)

    The insect baculovirus expression system is a valuable tool for the production of vaccine. Many subunit vaccines have been expressed in this system. The first vaccine produced in insect cells for animal use is now in the market. In this study, we reviewed recent progress of animal's vaccine production for different expression ...

  7. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production

    International Nuclear Information System (INIS)

    Jarvis, Donald L.

    2003-01-01

    The baculovirus-insect cell expression system is widely used to produce recombinant glycoproteins for many different biomedical applications. However, due to the fundamental nature of insect glycoprotein processing pathways, this system is typically unable to produce recombinant mammalian glycoproteins with authentic oligosaccharide side chains. This minireview summarizes our current understanding of insect protein glycosylation pathways and our recent efforts to address this problem. These efforts have yielded new insect cell lines and baculoviral vectors that can produce recombinant glycoproteins with humanized oligosaccharide side chains

  8. Seasonal bat activity related to insect emergence at three temperate lakes.

    Science.gov (United States)

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  9. Circadian organization in hemimetabolous insects.

    Science.gov (United States)

    Tomioka, Kenji; Abdelsalam, Salaheldin

    2004-12-01

    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm.

  10. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Genetic basis of triatomine behavior: lessons from available insect genomes

    Directory of Open Access Journals (Sweden)

    Jose Manuel Latorre-Estivalis

    2013-01-01

    Full Text Available Triatomines have been important model organisms for behavioural research. Diverse reports about triatomine host search, pheromone communication in the sexual, shelter and alarm contexts, daily cycles of activity, refuge choice and behavioural plasticity have been published in the last two decades. In recent times, a variety of molecular genetics techniques has allowed researchers to investigate elaborate and complex questions about the genetic bases of the physiology of insects. This, together with the current characterisation of the genome sequence of Rhodnius prolixus allows the resurgence of this excellent insect physiology model in the omics era. In the present revision, we suggest that studying the molecular basis of behaviour and sensory ecology in triatomines will promote a deeper understanding of fundamental aspects of insect and, particularly, vector biology. This will allow uncovering unknown features of essential insect physiology questions for a hemimetabolous model organism, promoting more robust comparative studies of insect sensory function and cognition.

  12. Insect Pest Control Newsletter, No. 81, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives

  13. Insect Pest Control Newsletter, No. 81, July 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives.

  14. Using insects for STEM outreach: Development and evaluation of the UA Insect Discovery Program

    Science.gov (United States)

    Beal, Benjamin D.

    Science and technology impact most aspects of modern daily life. It is therefore important to create a scientifically literate society. Since the majority of Americans do not take college-level science courses, strong K-12 science education is essential. At the K-5 level, however, many teachers lack the time, resources and background for effective science teaching. Elementary teachers and students may benefit from scientist-led outreach programs created by Cooperative Extension or other institutions. One example is the University of Arizona Insect Discovery Program, which provides short-duration programing that uses insects to support science content learning, teach critical thinking and spark interest in science. We conducted evaluations of the Insect Discovery programming to determine whether the activities offered were accomplishing program goals. Pre-post tests, post program questionnaires for teachers, and novel assessments of children's drawings were used as assessment tools. Assessments were complicated by the short duration of the program interactions with the children as well as their limited literacy. In spite of these difficulties, results of the pre-post tests indicated a significant impact on content knowledge and critical thinking skills. Based on post-program teacher questionnaires, positive impacts on interest in science learning were noted as much as a month after the children participated in the program. New programming and resources developed to widen the potential for impact are also described.

  15. Thermocouple design for measuring temperatures of small insects

    Science.gov (United States)

    A.A. Hanson; R.C. Venette

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to...

  16. A survey of some insect pests of cultivated vegetables in three ...

    African Journals Online (AJOL)

    DR GATSING

    ABSTRACT. The survey aimed at identifying insect pests that attack vegetables grown in three irrigation areas along Jakara River in Kano, Nigeria. The areas were Kwarin gogau, Nomansland and. Kwakwaci. Two methods of trapping the insects were employed, namely hand capture for wingless insects as well as hand net ...

  17. Insects observed on cowpea flowers in three districts in the central ...

    African Journals Online (AJOL)

    The main insects observed on the cowpea flowers were bees such as Apis mellifera, Ceratina sp, Megachile sp, Xylocopa calens, Xylocopa imitator, Braussepis sp., .Lipotriches sp., Melecta sp and Amegilla sp. and other insects, such as thrips, flies, butterflies / moths, beetles, and Dysdercus sp. Thrips were the insects most ...

  18. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens.

    Science.gov (United States)

    Shikano, Ikkei

    2017-06-01

    Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect-pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect-pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant-insect-entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

  19. Policosanol fabrication from insect wax and optimization by response surface methodology.

    Science.gov (United States)

    Ma, Jinju; Ma, Liyi; Zhang, Hong; Zhang, Zhongquan; Wang, Youqiong; Li, Kai; Chen, Xiaoming

    2018-01-01

    Insect wax is a famous biological resource for the role in economic production in China. Insect wax is a good source of policosanol, which may is a candidate supplement in foodstuff and pharmaceuticals that has important physiological activities. Therefore, this work aims to investigate a high-yield and rapid method for policosanol fabrication from insect wax. The conditions for policosanol fabrication were optimized as follows: an oil bath temperature of 112.7°C and reductant dosage of 0.97 g (used for the reduction of 10.00 g of insect wax). The yield of policosanol reached 83.20%, which was 4 times greater than that of existing methods, such as saponification. The total content of policosanol obtained under the optimal conditions reached 87%. In other words, a high yield of policosanol was obtained from insect wax (723.84 mg/g), that was 55 times higher than that generated from beeswax-brown via saponification. The concentrations of metal residues in policosanol were within the limits of the European Union regulations and EFSA stipulation. The LD50 values for oral doses of insect wax and policosanol were both > 5 g/kg. Policosanol was fabricated via solvent-free reduction from insect wax using LiAlH4 at a high yield. The fabrication conditions were optimized. Policosanol and insect wax showed high security, which made them potential candidates as supplements in foods, pharmaceuticals and cosmetics. The rapid and high-yield method has great potential for commercial manufacturing of policosanol.

  20. Multi-scale responses to warming in an experimental insect metacommunity.

    Science.gov (United States)

    Grainger, Tess Nahanni; Gilbert, Benjamin

    2017-12-01

    In metacommunities, diversity is the product of species interactions at the local scale and dispersal between habitat patches at the regional scale. Although warming can alter both species interactions and dispersal, the combined effects of warming on these two processes remains uncertain. To determine the independent and interactive effects of warming-induced changes to local species interactions and dispersal, we constructed experimental metacommunities consisting of enclosed milkweed patches seeded with five herbivorous milkweed specialist insect species. We treated metacommunities with two levels of warming (unwarmed and warmed) and three levels of connectivity (isolated, low connectivity, high connectivity). Based on metabolic theory, we predicted that if plant resources were limited, warming would accelerate resource drawdown, causing local insect declines and increasing both insect dispersal and the importance of connectivity to neighboring patches for insect persistence. Conversely, given abundant resources, warming could have positive local effects on insects, and the risk of traversing a corridor to reach a neighboring patch could outweigh the benefits of additional resources. We found support for the latter scenario. Neither resource drawdown nor the weak insect-insect associations in our system were affected by warming, and most insect species did better locally in warmed conditions and had dispersal responses that were unchanged or indirectly affected by warming. Dispersal across the matrix posed a species-specific risk that led to declines in two species in connected metacommunities. Combined, this scaled up to cause an interactive effect of warming and connectivity on diversity, with unwarmed metacommunities with low connectivity incurring the most rapid declines in diversity. Overall, this study demonstrates the importance of integrating the complex outcomes of species interactions and spatial structure in understanding community response to climate

  1. COMPARATIVE ASPECTS OF PLANT-CELL WALL DIGESTION IN INSECTS

    NARCIS (Netherlands)

    PRINS, RA; KREULEN, DA

    Although many phytophagous and wood-eating invertibrates form their own cellulases, there is an overwhelming variety of symbioses between plant- and wood-utilising insects and microorganisms. In one type of symbiosis (endosymbiosis), insects (rhinoceros beetle, cockroach, lower termites) host

  2. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  3. Fossil evidence for key innovations in the evolution of insect diversity

    Science.gov (United States)

    Nicholson, David B.; Ross, Andrew J.; Mayhew, Peter J.

    2014-01-01

    Explaining the taxonomic richness of the insects, comprising over half of all described species, is a major challenge in evolutionary biology. Previously, several evolutionary novelties (key innovations) have been posited to contribute to that richness, including the insect bauplan, wings, wing folding and complete metamorphosis, but evidence over their relative importance and modes of action is sparse and equivocal. Here, a new dataset on the first and last occurrences of fossil hexapod (insects and close relatives) families is used to show that basal families of winged insects (Palaeoptera, e.g. dragonflies) show higher origination and extinction rates in the fossil record than basal wingless groups (Apterygota, e.g. silverfish). Origination and extinction rates were maintained at levels similar to Palaeoptera in the more derived Polyneoptera (e.g. cockroaches) and Paraneoptera (e.g. true bugs), but extinction rates subsequently reduced in the very rich group of insects with complete metamorphosis (Holometabola, e.g. beetles). Holometabola show evidence of a recent slow-down in their high net diversification rate, whereas other winged taxa continue to diversify at constant but low rates. These data suggest that wings and complete metamorphosis have had the most effect on family-level insect macroevolution, and point to specific mechanisms by which they have influenced insect diversity through time. PMID:25165766

  4. Morphology and physiology of the olfactory system of blood-feeding insects.

    Science.gov (United States)

    Guidobaldi, F; May-Concha, I J; Guerenstein, P G

    2014-01-01

    Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain

  5. Patterns of Insect Abundance and Distribution in Urban Domestic Gardens in Bangalore, India

    Directory of Open Access Journals (Sweden)

    Madhumitha Jaganmohan

    2013-10-01

    Full Text Available Domestic gardens may play a vital role in supporting urban insect biodiversity, despite their small size. This paper assesses the abundance, diversity and distribution of insects in urban domestic gardens in the tropics, through a study in the rapidly expanding Indian city of Bangalore. Fifty domestic gardens were studied using a combination of light traps and pitfall traps. We recorded a large number of insects, 2,185 insects from 10 orders, of which ants, bugs, beetles and flies were the most common. We found 25 species of trees (from 160 individuals and 117 species of herbs and shrubs in the 50 sampled domestic gardens. The number of insect orders encountered was significantly related to the number of tree and herb/shrub species. Garden management practices also influenced the abundance and richness of insect orders. Thus, greater numbers of insects were observed in gardens with a greater proportion of bare soil relative to grass area and with less intensive weeding practices. More insect orders were encountered in gardens with a composting pit. Insect numbers were significantly reduced in gardens subjected to pesticide application. Most residents avoided application of pesticides and herbicides, citing health concerns.

  6. A simple device for dehairing insect egg masses

    Science.gov (United States)

    Benjamin J. Cosenza; Edwin A. Boger; Normand R. Dubois; Franklin B. Lewis

    1963-01-01

    The egg masses of some lepidopterous insects are covered by a mat of hairs that for some research purposes must be removed. Doing this by hand is tedious. Besides, the hairs on the egg masses of certain insects such as the gypsy moth (Porthetria dispar [L.] and the browntail moth Nygmia phaeorrhoea [Donov.]) can cause severe...

  7. Minor lipophilic compounds in edible insects

    Directory of Open Access Journals (Sweden)

    Monika Sabolová

    2016-07-01

    Full Text Available Contemporary society is faced with the question how to ensure suffiecient nutrition (quantity and quality for rapidly growing population. One solution can be consumption of edible insect, which can have very good nutritional value (dietary energy, protein, fatty acids, fibers, dietary minerals and vitamins composition. Some edible insects species, which contains a relatively large amount of fat, can have a potential to be a „good" (interesting, new source of minor lipophilic compounds such as sterols (cholesterol and phytosterols and tocopherols in our diet. For this reason, the objective of this work was to characterize the sterols and tocopherols composition of fat from larvae of edible insect Zophobas morio L. and Tenebrio mollitor L. Cholesterol and three phytosterols (campesterol, stigmasterol and β-sitosterol were reliably identified and quantified after hot saponification and derivatization by GC-MS. Other steroid compounds, including 5,6-trans-cholecalciferol were identified only according to the NIST library. Cholesterol was the predominant sterol in all analysed samples. Both types of larvae also contained high amount of phytosterols. Different region of origin had a no significant impact on sterols composition, while the effect of beetle genus was crucial. Tocopherols were analysed by reverse phase HPLC coupled with amperometric detection. Tocopherols content in mealworm larvae was lower than content in edible oils, but important from the nutritional point of view. Change of tocopherols composition was not observed during the storage under different conditions. Larvae of edible insect can be a potential good dietary source of cholesterol, but also vitamin D3 isomers, phytosterols and tocopherols.  

  8. Preliminary list of the lepidopterous insects in the Arizona State University Hasbrouck Insect Collection

    Directory of Open Access Journals (Sweden)

    Sangmi Lee

    2014-03-01

    Full Text Available The Arizona State University Hasbrouck Insect Collection (ASUHIC is one of the vital Southwest Arthropod collections in America North of Mexico, providing important biological information. The principal objective of the Catalog is to give a complete list of the lepidopterous insects held in the ASUHIC. Furthermore, it will be an online catalog of the Lepidoptera of Arizona. The preliminary Lepidoptera checklist is presented, consisting of 1983 species and 175 subspecies of 55 families in approximately 60,000 holdings at the ASUHIC. This article follows the recent classification and nomenclature (Hodges RW. 1983. Check list of the Lepidoptera of America north of Mexico. London, UK: E.W. Classey Ltd. and the Wedge Entomological Research Foundation; Moth Photographers Group (MPG. 2014. http://mothphotographersgroup.msstate.edu/MainMenu.shtml.

  9. Basic studies on the efficacy of gamma irradiation as insect disinfestation and sterilising techniques for stored rice insects

    International Nuclear Information System (INIS)

    Abdul Rahim Muda.

    1987-01-01

    Basic laboratory evaluations on the efficacy of gamma irradiation on the insect sitophilus zeamais, Motch. showed this method of insect control is effective to disinfest both internal and surface infestations in stored milled rice, and substantially reduced reproductive potentials of the weevil. Adult emergence of treated larvae developing within the rice kernel reduced by an average of 82% for treatment doses of 0.05 to 1 kGy. All emerged adults died within 16 days upon emergence at all tested doses. Radiated adult insects showed 100% mortality within 18 days at doses above 0.15 kGy; 26 days at 0.1 kGy and 33 days at 0.05 kGy. However none of the tested doses recorded total immediate mortality after treatment. Significant sterility effects through 93% reduction in F 1 progenies can be achieved by sterilising both parents; but none of the tested doses showed potential for employment as male sterilising technique alone. (author)

  10. Taphonomy of the fossil insects of the middle Eocene Kishenehn Formation

    Directory of Open Access Journals (Sweden)

    Dale E. Greenwalt

    2015-12-01

    Full Text Available The lacustrine oil shales of the Coal Creek Member of the Kishenehn Formation in northwestern Montana comprise a relatively unstudied middle Eocene fossil insect locality. Herein, we detail the stratigraphic position of the fossiliferous unit, describe the insect fauna of the Coal Creek locality and document its bias towards very small but remarkably pre-served insects. In addition, the depositional environment is examined and the mineral constituents of the laminations that comprise the varves of the Kishenehn oil shale are defined. Fifteen orders of insects have been recorded with the majority of all insects identified as aquatic with the families Chironomidae (Diptera and Corixidae (Hemiptera dominant. The presence of small aquatic insects, many of which are immature, the intact nature of >90% of the fossil insects and the presence of Daphnia ephippia, all indicate that the depositional environment was the shallow margin of a large freshwater lake. The fossil insects occur within fossilized microbial mat layers that comprise the bedding planes of the oil shale. Unlike the fossiliferous shales of the Florissant and Okanagan Highlands, the mats are not a product of diatomaceous algae nor are diatom frustules a component of the sediments or the varve structure. Instead, the varves are composed of very fine eolian siliciclastic silt grains overlaid with non-diatomaceous, possibly cyanobacteria-derived microbial mats which contain distinct traces of polyaromatic hydrocarbons. A distinct third layer composed of essentially pure calcite is present in the shale of some exposures and is presumably derived from the seasonal warming-induced precipitation of carbonate from the lake’s waters. The Coal Creek locality presents a unique opportunity to study both very small middle Eocene insects not often preserved as compression fossils in most Konservat-Lagerstätte and the processes that led to their preservation.

  11. Management of stinging insect hypersensitivity: a 5-year retrospective medical record review.

    Science.gov (United States)

    Johnson, Thomas; Dietrich, Jeffrey; Hagan, Larry

    2006-08-01

    The Joint Task Force on Practice Parameters for Allergy and Immunology recommends that patients with a history of a systemic reaction to an insect sting be educated on ways to avoid insect stings, carry injectable epinephrine for emergency self-treatment, undergo specific IgE testing for stinging insect sensitivity, and be considered for immunotherapy. To review frontline providers' documented care and recommendations for imported fire ant and flying insect hypersensitivity reactions. A retrospective medical record review was performed of emergency department and primary care clinic visits between November 1, 1999, and November 30, 2004. Using International Classification of Diseases, Ninth Revision, codes, medical records were selected for review to identify patients with potential insect hypersensitivity. A total of 769 medical records from patients who experienced an insect sting were reviewed. Of 120 patients with a systemic reaction, 66 (55.0%) received a prescription for injectable epinephrine, and 14 (11.7%) were given information regarding avoidance of the offending insect. Forty-seven patients with systemic reactions (39.2%) were referred to an allergist. Of 28 patients who kept their appointments and underwent skin testing, 3 had negative results and 25 (89%) had positive results and were advised to start immunotherapy. Adherence to the stinging insect hypersensitivity practice parameter recommendations is poor. Many patients who have experienced a systemic reaction after an insect sting and have sought medical care are not afforded an opportunity for potentially lifesaving therapy.

  12. Life cycle assessment of edible insects for food protein

    DEFF Research Database (Denmark)

    Halloran, Afton Marina Szasz; Roos, Nanna; Eilenberg, Jørgen

    2016-01-01

    Compared to their vertebrate counterparts in traditional husbandry, insects are extremely efficient at converting organic matter into animal protein and dietary energy. For this reason, insects for food and feed show great potential as an environmentally friendly choice in future food systems. Ho...

  13. Tree mortality from drought, insects, and their interactions in a changing climate

    Science.gov (United States)

    Anderegg, William R.L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie

    2015-01-01

    Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.

  14. The influence of different vegetation patches on the spatial distribution of nests and the epigeic activity of ants (Lasius niger) on a spoil dump after brown coal mining (Czech Republic)

    Energy Technology Data Exchange (ETDEWEB)

    Holec, M.; Frouz, J.; Pokorny, R. [Academy of Science Czech Republic, Ceske Budejovice (Czech Republic). Inst. of Soil Biology

    2006-07-15

    A study was carried out during 2001 on mine tailings in NW Bohemia aimed at describing the spatial patterns of nests distribution and epigeic activity of ants in relation to the vegetation mosaic. Lasius niger was the most abundant species of ant and its nest mounds were significantly more numerous in patches with sparse vegetation than inside dense Calamagrostis epigejos vegetation; this was particularly true for small and medium-sized nests. Small and medium nests also occurred more frequently near the edges of a given patch than in the center. Large and medium nests were randomly distributed in the area, whereas small nests had an aggregated distribution. Pitfall trapping reveal significantly higher activity of L. niger workers in tall and dense vegetation stands in comparison with low and sparse vegetation. This pattern was particularly pronounced during the peak of foraging activity in summer and was not so significant in spring or autumn. We expect that ants preferentially forage in shaded habitats during the summer months when bare soil may be too hot. The results indicated that nesting and foraging may differ in their microclimatic requirements and the formation of vegetation mosaics may be important to changes in the ant population during succession.

  15. Phase Coexistence in Insect Swarms

    Science.gov (United States)

    Sinhuber, Michael; Ouellette, Nicholas T.

    2017-10-01

    Animal aggregations are visually striking, and as such are popular examples of collective behavior in the natural world. Quantitatively demonstrating the collective nature of such groups, however, remains surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to laboratory insect swarms and found evidence for emergent, material-like states. We show that the swarms consist of a core "condensed" phase surrounded by a dilute "vapor" phase. These two phases coexist in equilibrium, and maintain their distinct macroscopic properties even though individual insects pass freely between them. We further define a pressure and chemical potential to describe these phases, extending theories of active matter to aggregations of macroscopic animals and laying the groundwork for a thermodynamic description of collective animal groups.

  16. Control of dengue vector by the sterile insect technique considering logistic recruitment

    International Nuclear Information System (INIS)

    Esteva, L.; Yang, H.M.

    2006-01-01

    We propose a mathematical model to assess the effects of irradiated male insects introduction in a previously infested region, taking into account the logistic recruitment of sterile male insects. The release of sterile male insects aims to displace gradually the natural (or wild) insect from the habitat. We discuss the suitability of this release technique when applied to peridomestic adapted Aedes aegypyti mosquitoes which are transmitters of Yellow Fever and Dengue disease. (author)

  17. Control of dengue vector by the sterile insect technique considering logistic recruitment

    Energy Technology Data Exchange (ETDEWEB)

    Esteva, L. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico). Facultad de Ciencias. Dept. de Matematicas; Lab-Epifisma, Mexico, D.F. (Mexico); Yang, H.M. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Matematica, Estatistica e Ciencia da Computacao. Dept. de Matematica Aplicada; Lab-Epifisma, Campinas, SP (Brazil)

    2006-07-01

    We propose a mathematical model to assess the effects of irradiated male insects introduction in a previously infested region, taking into account the logistic recruitment of sterile male insects. The release of sterile male insects aims to displace gradually the natural (or wild) insect from the habitat. We discuss the suitability of this release technique when applied to peridomestic adapted Aedes aegypyti mosquitoes which are transmitters of Yellow Fever and Dengue disease. (author)

  18. Insect Cells as Hosts for Recombinat Proteins

    OpenAIRE

    Murwani, Retno

    1997-01-01

    Since the development of recombinant baculovirus expression system, insect cell culture has rapidly gain popularity as the method of choice for production of a variety of biologically active proteins. Up to date tens of recombinant protein have been produced by this method commercially or non-commercially and have been widely used for research. This review describes the basic concept of baculovirus expression vector and the use of insect cells as host for recombinant proteins. Examples of the...

  19. Social insect symbionts: evolution in homeostatic fortresses

    DEFF Research Database (Denmark)

    Hughes, David P; Pierce, Naomi E; Boomsma, Jacobus J

    2008-01-01

    The massive environmentally buffered nests of some social insects can contain millions of individuals and a wide variety of parasites, commensals and mutualists. We suggest that the ways in which these homeostatic fortress environments affect the evolution of social insect symbionts are relevant...... in these nests. We hypothesize that biodiversity gradients in these hotspots might be less affected by abiotic latitudinal clines than gradients in neighboring 'control' habitats. We suggest several research lines to test these ideas....

  20. Insects affecting establishment of northern red oak seedlings in central Pennsylvania

    Science.gov (United States)

    J. Galford; L.R. Auchmoody; H.C. Smith; R.S. Walters

    1991-01-01

    Studies to evaluate the impact of insects on the establishment of advance oak regeneration in Pennsylvania were initiated in 1989. The populations and species of insects feeding on germinating acorns and new seedlings, their activity periods, and the damage caused by these insects were studied in relation to overstory-density (40, 60, and 100 percent relative density)...