WorldWideScience

Sample records for sustain current systems

  1. Adaptive capacity indicators to assess sustainability of urban water systems - Current application.

    Science.gov (United States)

    Spiller, Marc

    2016-11-01

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sustainable winegrowing: current perspectives

    Directory of Open Access Journals (Sweden)

    Mariani A

    2015-05-01

    Full Text Available Angela Mariani,1 Antonella Vastola2 1Department of Economic and Legal Studies, University Parthenope, Naples, 2School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy Abstract: The winegrowing sector worldwide is strongly committed to improving environmental and social sustainability. The aim of this work, based on a literature review, is to highlight current sustainability perspectives and the related main issues. There is a broad consensus that the challenge to achieve a greater spread of sustainable practices is to enhance environmental and social sustainability while maintaining economic viability. From the producers' point of view, the priority is to bridge the still substantial knowledge gaps in terms of perceived environmental benefits, economic benefits, and costs. Thus, an increased research effort focusing on the costs and benefits of different winegrowing practices and technical assistance with implementation might support their diffusion. Moreover, targeted marketing strategies are needed to: enhance consumers' involvement and their attitude toward sustainable wine; improve understanding and use of sustainable labels and claims; and raise awareness of some environmental credentials of wine packaging, mainly with reference to lightweight glass bottles. Keywords: winegrower, sustainability, wine, consumer, marketing strategies

  3. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    DEFF Research Database (Denmark)

    Liu, W.; Lund, H.; Mathiesen, B.V.

    2013-01-01

    Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport...... in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13...

  4. General Technical Approvals for Decentralised Sustainable Urban Drainage Systems (SUDS—The Current Situation in Germany

    Directory of Open Access Journals (Sweden)

    Carsten Dierkes

    2015-03-01

    Full Text Available The use of decentralised, sustainable urban drainage systems (SUDS for the treatment of stormwater runoff is becoming increasingly prevalent in Germany. Decentralised SUDS can offer a viable and attractive alternative to end of pipe treatment systems for stormwater runoff from urban areas. However, there is still some uncertainty regarding the long-term performance of SUDS, and the general legislative requirements for SUDS approval and testing. Whilst the allowable pollution levels in stormwater runoff that infiltrate into ground and/or water table are regulated across Germany by the Federal Soil Protection Law, there is presently no federal law addressing the discharge requirements for surface water runoff. The lack of clear guidance can make it difficult for planners and designers to implement these innovative and sustainable stormwater treatment systems. This study clarifies the current understanding of urban stormwater treatment requirements and new technical approval guidelines for decentralised SUDS devices in Germany. The study findings should assist researchers, designers and asset managers to better anticipate and understand the performance, effective life-spans, and the planning and maintenance requirements for decentralised SUDS systems. This should help promote even greater use of these systems in the future.

  5. System Innovation for Sustainability

    DEFF Research Database (Denmark)

    System Innovation for Sustainability 2 focuses on change towards sustainable personal mobility based on implemented cases analysed from a system perspective. It examines what changes can be made to help us reduce our need for mobility, or start to make use of more sustainable mobility systems...... in order to provide sustainable solutions to our current ‘lock-in’ problems. Three major problem areas are considered (the ‘three Cs’): carbon emissions (and the growing contribution of mobility to the climate change crisis), congestion, and casualties. And each strategy proposed addresses one or more...... such as governments, manufacturers and consumers to intervene in the complex system to promote sustainable mobility. It concludes with a reflection on problems, trends and action needed. The ‘System Innovation for Sustainability’ series is the fruit of the first major international research network on SCP...

  6. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  7. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  8. Sustainable Water Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2013-02-01

    Full Text Available Sustainable water systems often comprise complex combinations of traditional and new system components that mimic natural processes. These green systems aim to protect public health and safety, and restore natural and human landscapes. Green infrastructure elements such as most sustainable drainage systems trap storm water but may contaminate groundwater. There is a need to summarize recent trends in sustainable water systems management in a focused document. The aim of this special issue is therefore to disseminate and share scientific findings on novel sustainable water systems addressing recent problems and opportunities. This special issue focuses on the following key topics: climate change adaptation and vulnerability assessment of water resources systems; holistic water management; carbon credits; potable water savings; sustainable water technologies; nutrient management; holistic storm water reuse; water and wastewater infrastructure planning; ecological status of watercourses defined by the Water Framework Directive. The combined knowledge output advances the understanding of sustainable water, wastewater and storm water systems in the developed and developing world. The research highlights the need for integrated decision-support frameworks addressing the impact of climate change on local and national water resources management strategies involving all relevant stakeholders at all levels.

  9. Developing Sustainable Life Support System Concepts

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  10. Optimal allocation of fault current limiters for sustaining overcurrent relays coordination in a power system with distributed generation

    Directory of Open Access Journals (Sweden)

    A. Elmitwally

    2015-12-01

    Full Text Available This paper addresses the problem of overcurrent relays (OCRs coordination in the presence of DGs. OCRs are optimally set to work in a coordinated manner to isolate faults with minimal impacts on customers. The penetration of DGs into the power system changes the fault current levels seen by the OCRs. This can deteriorate the coordinated operation of OCRs. Operation time difference between backup and main relays can be below the standard limit or even the backup OCR can incorrectly work before the main OCR. Though resetting of OCRs is tedious especially in large systems, it cannot alone restore the original coordinated operation in the presence of DGs. The paper investigates the optimal utilization of fault current limiters (FCLs to maintain the directional OCRs coordinated operation without any need to OCRs resetting irrespective of DGs status. It is required to maintain the OCRs coordination at minimum cost of prospective FCLs. Hence, the FCLs location and sizing problem is formulated as a constrained multi-objective optimization problem. Multi-objective particle swarm optimization is adopted for solving the optimization problem to determine the optimal locations and sizes of FCLs. The proposed algorithm is applied to meshed and radial power systems at different DGs arrangements using different types of FCLs. Moreover, the OCRs coordination problem is studied when the system includes both directional and non-directional OCRs. Comparative analysis of results is provided.

  11. Sustainable Drainage Systems

    OpenAIRE

    Miklas Scholz

    2015-01-01

    Urban water management has somewhat changed since the publication of The Sustainable Drainage System (SuDS) Manual in 2007 [1], transforming from building traditional sewers to implementing SuDS, which are part of the best management practice techniques used in the USA and seen as contributing to water-sensitive urban design in Australia. Most SuDS, such as infiltration trenches, swales, green roofs, ponds, and wetlands, address water quality and quantity challenges, and enhance the local bio...

  12. Sustainable Aluminium Systems

    Directory of Open Access Journals (Sweden)

    Sergio R. Ermolli

    2010-09-01

    Full Text Available In the present paper, an analytical presentation of some popular aluminium systems that contribute to sustainability of structures is presented. Special emphasis has been given to the properties of aluminium, while the influence of these systems in the overall performance of the structure regarding environment and economy is described. In particular, characteristics of aluminium elements such as high reflectivity and recyclability and their role in life cycle analysis (LCA are analyzed. The connections between energy efficiency and conservation of buildings and aluminium application are also discussed. Building applications such as curtain walls, window frames and facade sheets are presented and thoroughly investigated, considering their environmental and economic aspects. Furthermore, many innovative techniques that use aluminium elements in collaboration with other systems in order to produce renewable energy, such as solar panels and photovoltaics, are introduced. Finally, environmental innovations such as optimized ventilation mechanisms and light and shade management systems based on aluminium members are presented.

  13. Sustainability in Higher Education : Analysis and Selection of Assessment Systems

    NARCIS (Netherlands)

    Maragakis, A.; van den Dobbelsteen, A.A.J.F.

    2015-01-01

    There is a noticeable increase in interest with regards to sustainability in higher education. As institutions investigate, implement and market sustainability efforts, there is a myriad of sustainability assessment methodologies currently available. Although these assessment systems were created

  14. Sustainable Drainage Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2015-05-01

    Full Text Available Urban water management has somewhat changed since the publication of The Sustainable Drainage System (SuDS Manual in 2007 [1], transforming from building traditional sewers to implementing SuDS, which are part of the best management practice techniques used in the USA and seen as contributing to water-sensitive urban design in Australia. Most SuDS, such as infiltration trenches, swales, green roofs, ponds, and wetlands, address water quality and quantity challenges, and enhance the local biodiversity while also being acceptable aesthetically to the public. Barriers to the implementation of SuDS include adoption problems, flood and diffuse pollution control challenges, negative public perception, and a lack of decision support tools addressing, particularly, the retrofitting of these systems while enhancing ecosystem services. [...

  15. Successful systems sustaining change.

    Science.gov (United States)

    Bullas, Sheila; Bryant, John

    2007-01-01

    Much has been published on the success and particularly the failure of IT projects; still failures are commonplace. This prospective study focused from the outset on assessing risk of failure and addressing critical success factors. The aim was to apply existing methods in a challenging acute care hospital where success demanded rapid achievement of sustainable improvements in clinical and administrative processes. The implementations were part of the English National Programme for IT. The desired outcomes required the integration of accepted tools and techniques to provide a pragmatic approach to systems implementation: Lean, Six Sigma, PRINCE2 and Benefits Management. The outcome and further insights into success and failure of IT projects in healthcare are described. In particular lessons are identified related to the business need for the project and the successful achievement of the required benefits and business change.

  16. Current Trends in Sustainability of Bitcoins and Related Blockchain Technology

    OpenAIRE

    Pasquale Giungato; Roberto Rana; Angela Tarabella; Caterina Tricase

    2017-01-01

    Bitcoin is a digital currency based on a peer-to-peer payment system managed by an open source software and characterized by lower transaction costs, greater security and scalability than fiat money and no need of a central bank. Despite criticisms about illegal uses and social consequences, it is attracting the interest of the scientific community. The purpose of this work is to define and evaluate the current trends of the literature concerned with the sustainability of bitcoin, considering...

  17. Environmental impacts and sustainability of egg production systems 1

    National Research Council Canada - National Science Library

    Xin, H; Gates, R. S; Green, A. R; Mitloehner, F. M; Moore, P. A; Wathes, C. M

    2011-01-01

    ABSTRACT As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified...

  18. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  19. Sustainable Biomaterials: Current Trends, Challenges and Applications.

    Science.gov (United States)

    Kumar Gupta, Girish; De, Sudipta; Franco, Ana; Balu, Alina Mariana; Luque, Rafael

    2015-12-30

    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  20. Managing Sustainable Information Systems Development

    DEFF Research Database (Denmark)

    Kautz, Karlheinz

    2013-01-01

    Sustainable information systems development (ISD) in the context of this paper is not about products that support sustainability at large with its environmental, economic and social dimensions and little about the development of sustainable products, which are both without doubt important topics....... This paper is about a prerequisite for such products, namely, a sustainable ISD process, a process which exhibits reasonable and responsible stewardship and utilisation of the existing resources for ISD—people and information in the context of scope, time/schedule, budget/cost, quality and risk....

  1. Current and future sustainable biofuels; Dagens och framtidens haallbara biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden)

    2013-07-01

    This report has been prepared as a background paper for the government study of Fossil-Free Vehicle traffic (FFF investigation). The purpose of this study is to describe and summarize the current knowledge on the production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international outlooks. The report's analysis of energy efficiency, GHG performance and production costs are based on system analysis and a life-cycle perspective. The focus is on the production chain up to produced fuel (well-to-tank). Results are based on current research and production chains and is based primarily on standardized LCA and for some systems also on industrial systems analysis.

  2. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  3. PSSD - Planning System for Sustainable Development

    DEFF Research Database (Denmark)

    PSSD - Planning System for Sustainable Development - is a part of the Baltic Sea Region's INTERREG II C program. The current report describes some theories, methods and tools developed under the PSSD project. First, the theoretical foundation of the project is described. Secondly, the role...... of indicators in sustainable development is discussed and a Web-based indicator generator is described. Thirdly, we describe a number of methods and tools, which support planning for sustainable development. Finally, some technical interface tools - especially a Web-based interface to the methods and tools...

  4. A sustainable system of systems approach: a new HFE paradigm.

    Science.gov (United States)

    Thatcher, Andrew; Yeow, Paul H P

    2016-01-01

    Sustainability issues such as natural resource depletion, pollution and poor working conditions have no geographical boundaries in our interconnected world. To address these issues requires a paradigm shift within human factors and ergonomics (HFE), to think beyond a bounded, linear model understanding towards a broader systems framework. For this reason, we introduce a sustainable system of systems model that integrates the current hierarchical conceptualisation of possible interventions (i.e., micro-, meso- and macro-ergonomics) with important concepts from the sustainability literature, including the triple bottom line approach and the notion of time frames. Two practical examples from the HFE literature are presented to illustrate the model. The implications of this paradigm shift for HFE researchers and practitioners are discussed and include the long-term sustainability of the HFE community and comprehensive solutions to problems that consider the emergent issues that arise from this interconnected world. A sustainable world requires a broader systems thinking than that which currently exists in ergonomics. This study proposes a sustainable system of systems model that incorporates ideas from the ecological sciences, notably a nested hierarchy of systems and a hierarchical time dimension. The implications for sustainable design and the sustainability of the HFE community are considered.

  5. Current thinking on contemporary careers: the key roles of sustainable HRM and sustainability of careers

    NARCIS (Netherlands)

    Vos, A. de; Heijden, B.I.J.M. van der

    2017-01-01

    This paper approaches the sustainability of careers, departing from contemporary views on sustainable Human Resource Management (HRM) and key concepts in the current career literature. Recently, the notion of sustainable careers has gained attention as a key perspective on contemporary careers and

  6. Particle Models with Self Sustained Current

    Science.gov (United States)

    Colangeli, M.; De Masi, A.; Presutti, E.

    2017-06-01

    We present some computer simulations run on a stochastic cellular automaton (CA). The CA simulates a gas of particles which are in a channel,the interval [1, L] in Z, but also in "reservoirs" R_1 and R_2. The evolution in the channel simulates a lattice gas with Kawasaki dynamics with attractive Kac interactions; the temperature is chosen smaller than the mean field critical one. There are also exchanges of particles between the channel and the reservoirs and among reservoirs. When the rate of exchanges among reservoirs is in a suitable interval the CA reaches an apparently stationary state with a non zero current; for different choices of the initial condition the current changes sign. We have a quite satisfactory theory of the phenomenon but we miss a full mathematical proof.

  7. Current Trends in Sustainability of Bitcoins and Related Blockchain Technology

    Directory of Open Access Journals (Sweden)

    Pasquale Giungato

    2017-11-01

    Full Text Available Bitcoin is a digital currency based on a peer-to-peer payment system managed by an open source software and characterized by lower transaction costs, greater security and scalability than fiat money and no need of a central bank. Despite criticisms about illegal uses and social consequences, it is attracting the interest of the scientific community. The purpose of this work is to define and evaluate the current trends of the literature concerned with the sustainability of bitcoin, considering the environmental impacts, social issues and economic aspects. From the analysis it emerges that the transition of the whole monetary system in the new cryptocurrency will result in an unacceptable amount of energy consumed to mine new bitcoins and to maintain the entire virtual monetary system, and probably bitcoin will remain a niche currency. Blockchain, which is the base for a distributed and democratically-sustained public ledger of the transactions, could foster new and challenging opportunities. Sharing the framework of medical data, energy generation and distribution in micro-grids at the citizen level, block-stack and new state-driven cryptocurrencies, may benefit from the wide spread of blockchain-based transactions. Under the perspective of its being a driver of social change, bitcoins and related blockchain technologies may overcome the issues highlighted by numerous detractors.

  8. A sustainability analysis of Serbia’s current account deficit

    Directory of Open Access Journals (Sweden)

    Boljanović Srđan

    2012-01-01

    Full Text Available The global economic crisis have important implications for international capital movements, which further sharpens the question of the sustainability of permanent current account deficits in Southeast Europe. The goal of this paper is to analyze the medium and long-term sustainability of Serbia’s current account deficit. The first part of the paper presents a factor analysis of the sustainability of Serbia’s current account deficit. In the second part of the paper the theoretical model created by Milesi-Ferretti and Razin is used to access Serbia’s medium term current account sustainability. On the basis of Reisen’s theoretical work (Reisen methodology and by adding net reinvested earnings from foreign direct investment to the model, a new (modified model for assessing the long-term sustainability of a country’s current account deficit is presented. The created model was used for assessing the long-term sustainability of Serbia’s current account deficit.

  9. Health Systems Sustainability and Rare Diseases.

    Science.gov (United States)

    Ferrelli, Rita Maria; De Santis, Marta; Egle Gentile, Amalia; Taruscio, Domenica

    2017-01-01

    The paper is addressing aspects of health system sustainability for rare diseases in relation to the current economic crisis and equity concerns. It takes into account the results of the narrative review carried out in the framework of the Joint Action for Rare Diseases (Joint RD-Action) "Promoting Implementation of Recommendations on Policy, Information and Data for Rare Diseases", that identified networks as key factors for health systems sustainability for rare diseases. The legal framework of European Reference Networks and their added value is also presented. Networks play a relevant role for health systems sustainability, since they are based upon, pay special attention to and can intervene on health systems knowledge development, partnership, organizational structure, resources, leadership and governance. Moreover, sustainability of health systems can not be separated from the analysis of the context and the action on it, including fiscal equity. As a result of the financial crisis of 2008, cuts of public health-care budgets jeopardized health equity, since the least wealthy suffered from the greatest health effects. Moreover, austerity policies affected economic growth much more adversely than previously believed. Therefore, reducing public health expenditure not only is going to jeopardise citizens' health, but also to hamper fair and sustainable development.

  10. Current and future sustainable biofuels; Dagens och framtidens haallbara biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Tekniska Univ., Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden); Nystroem, Ingrid [Swedish Knowledge Centre for Renewable Transportation Fuels, Goeteborg (Sweden); CIT Industriell Energi., Goeteborg (Sweden)

    2013-09-01

    This report has been prepared as a background paper for the state investigation 'Fossil Free Vehicle Traffic'. The purpose of this study is to describe and summarize the current knowledge on production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report includes both existing and future fuel systems under development, and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report's analysis of energy efficiency, greenhouse gas performance and production costs is based on system analysis and a life-cycle perspective. The focus is on the production chain to the produced fuel (well-to-tank). Results are based on current research and commercial development of the respective chains. They are based primarily from standardized life cycle analysis and, in some production systems, also on industrial systems analysis. These two approaches have some differences in methodology, which are highlighted in the report. In the overview values and results have been compiled to make it possible to compare the results.

  11. Proactive sustainability strategy and corporate sustainability performance: The mediating effect of sustainability control systems.

    Science.gov (United States)

    Wijethilake, Chaminda

    2017-07-01

    This study examines to what extent corporations use sustainability control systems (SCS) to translate proactive sustainability strategy into corporate sustainability performance. The study investigates the mediating effect of SCS on the relationship between proactive sustainability strategy and corporate sustainability performance. Survey data were collected from top managers in 175 multinational and local corporations operating in Sri Lanka and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). SCS were observed to only partially mediate the relationship between proactive sustainability strategy and corporate sustainability performance. The mediating effect of SCS is further examined under three sustainability strategies; environmental and social strategies reveal a partial mediation, while the economic strategy exhibits no mediation. The study also finds that (i) a proactive sustainability strategy is positively associated with SCS and corporate sustainability performance and (ii) SCS are positively associated with corporate sustainability performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sustainability in facilities management: an overview of current research

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Sarasoja, Anna-Liisa; Ramskov Galamba, Kirsten

    2016-01-01

    indicated that the current research varies in focus, methodology and application of theory, and it was concluded that the current research primary addresses environmental sustainability, whereas the current research which takes an integrated strategic approach to SFM is limited. The article includes lists...... the emerging sub-discipline of sustainable facilities management (SFM) on research, an overview of current studies is needed. The purpose of this literature review is to provide exactly this overview. Design/methodology/approach: This article identifies and examines current research studies on SFM through...... a comprehensive and systematic literature review. The literature review included screening of 85 identified scientific journals and almost 20,000 articles from the period of 2007-2012. Of the articles reviewed, 151 were identified as key articles and categorised according to topic. Findings: The literature review...

  13. Upland oak ecology symposium: history, current conditions, and sustainability

    Science.gov (United States)

    Martin A. Spetich

    2004-01-01

    Fifty-one papers address the ecology, history, current conditions, and sustainability of upland oak forests - with emphasis on the Interior Highlands. Subject categories were selected to provide focused coverage of the state-of-the-art research and understanding of upland oak ecology of the region.

  14. Costing systems design for sustainability

    Directory of Open Access Journals (Sweden)

    Mihaela TURTUREA

    2013-10-01

    Full Text Available The aim of this article is to present an overall image of the way Accounting responds to nowadays user’s needs in relation to the quantification of the impact companies have towards the environment. Regarding this, there have been analyzed concepts like sustainable development, environmental accounting, environmental costs and there have been presented the main progress towards environmental cost identification and measurement from the perspective of Activity Based Costing system. To provide an overall image of this concepts, there have been used as research methodology methods the documentation from literature review, analysis, synthesis and comparison.

  15. Finding Sustainability Indicators for Information System Assessment

    OpenAIRE

    Nyström, Tobias; Mustaquim, Moyen

    2015-01-01

    Nowadays, the importance of sustainability is persuading novel shifts in everyday life. This diversity makes it significant and challenging for sustainability to be quantified and measured. While the existence of perfect sustainability indicators is relatively unreasonable, they have important pragmatic roles in quantification and measurement by bridging sustainability's three pillars. Information system (IS) and sustainability are popular research areas, which clearly reflect the divergent a...

  16. Sustainable intensification in agricultural systems.

    Science.gov (United States)

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-12-01

    Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural-environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of

  17. Business system: Sustainable development and anticipatory system

    Directory of Open Access Journals (Sweden)

    Vojko Potočan

    2002-01-01

    Full Text Available The existence and development of humankind depends mainly upon the co-ordinated operation of all areas and levels of human activity. However, in theory and in practice there is no model of operation, which would provide a harmonized and target oriented development. A partial solution is offered by sustainable development, which tries to define and carry out common goals of mankind with a harmonized implementation of human activities at all levels of its living and behaviour. Companies belong to central institutions of modern society which essentially co–create the sustainability of society. The company’s endeavour by simulation to prepare models of their goals concerning their internal and external environment. On the base of systemic treatment, we can define companies as business system, which can survive in a log-run only on the basis of sustainable development. The business system can also be supported by the application of the anticipatory systems. The anticipatory systems can be, in this sense, understood as an entity of the methodological approach, techniques and modes of work. Their characteristics have, a direct impact on the determination of goals, on the orientation of operation, and hence on the achievement of the business system results.

  18. Adoption of bioenergy technologies for a sustainable energy system

    OpenAIRE

    Bjørnstad, Even

    2011-01-01

    A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will be an important part of this system. Changing from the current fossil-dependent energy system to a truly sustainable energy system will require fundamental changes in basic structures of society, in the technologies we utilize in the living of our lives and in the way we as citizens and consumers behave relative to energy use. ...

  19. Towards a sustainable industrial system

    DEFF Research Database (Denmark)

    Evans, Steve; Gregory, Mike; Ryan, Chris

    Our industrial system has been responsible for raising the quality of life of peoples around the world. It is becoming increasingly clear however, that the current system is creating unintended and serious consequences for the environment at a global level. Change on a significant scale is required...... urgently. Some businesses are already engaged in reducing their impact through the introduction of new products, processes and business models. Academics concerned with the industrial system have a responsibility to study these emerging models, to interact with them and to synthesise and spread...... the knowledge. Whilst it is important to address the impact of each product of the industrial system and to pursue aggressive reduction of the effects of specific activities, we must also examine the operation of the whole system. Only in this way can we hope to bring the benefits of industrialisation to those...

  20. Sustainability and Cities as Systems of Innovation

    DEFF Research Database (Denmark)

    Johnson, Bjørn; Lehmann, Martin

    Cities often constitute relevant environments for interactive learning and innovation potentially capable of tackling sustainability problems. In this paper we ask if the concept of systems of innovation can increase our understanding of city dynamics and help promoting the sustainable development...... of cities. Through a combination of the innovation system approach and the perspective of creative cities, we argue that a slightly modified concept – sustainable city systems of innovation – may be helpful in this context. To underline this, we discuss certain ‘city-traits’ of sustainability and conclude...

  1. Desalination and sustainability - An appraisal and current perspective.

    Science.gov (United States)

    Gude, Veera Gnaneswar

    2016-02-01

    Desalination technologies have evolved and advanced rapidly along with increasing water demands around the world since 1950s. Many reviews have focused on the techno-economic and environmental and ecological issues of the desalination technologies and emphasized the feasibility of desalination industry as an alternative to meet the water demands in many water scarce regions. Despite these efforts, many perceptions about desalination processes hinder their applications for potential water supplies. This article has two specific aims: 1) provide an overview of the desalination trends around the world and discuss the sustainability components of desalination processes in comparison with other water supply alternatives; and 2) discuss case studies for desalination, and drivers and factors that influence sustainable desalination and other alternative water sources for desalination to increase our current understanding on the sensitive and futuristic issues of water supply and resource management options for drought facing regions. Although some of the facts and recent developments discussed here show that desalination can be affordable and potentially sustainable, contributions that meaningfully address socio-economic and ecological and environmental issues of desalination processes are urgently required in this critical era of severe water stress for the present context and the future development of desalination technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Current and Suggested focus on Sustainability in Pyrometallurgy

    Science.gov (United States)

    See, J. B.; Robertson, D. G. C.; Mackey, P. J.

    The production of iron and steel and non-ferrous metals by pyrometallurgical processes will remain a critical element in meeting the demand for materials in both developed and developing nations. Given the important need to reduce and minimise greenhouse gas emissions the technological focus of future pyrometallurgical R&D by universities and industry alike must concentrate on sustainability issues such as improved energy efficiency, recycling and waste minimization. Continued efforts are also needed on process optimization and new process development with a view to reducing capital and operating costs of the new large "mega" plants. Using the academic and industrial backgrounds of the authors, the present paper reviews the current status of R&D in pyrometallurgy in university departments with a particular emphasis on sustainability issues. The role of industry and government laboratories is also reviewed although primarily for developed countries. The paper also includes comments and suggestions on the future requirements for education and R&D in pyrometallurgy in developed countries to maximise sustainability. It is also suggested that future R&D in pyrometallurgy will be even more concentrated in developing countries — most notably China.

  3. Threshold Concepts, Systems and Learning for Sustainability

    Science.gov (United States)

    Sandri, Orana Jade

    2013-01-01

    This paper presents a framework for understanding the role that systems theory might play in education for sustainability (EfS). It offers a sketch and critique of Land and Meyer's notion of a "threshold concept", to argue that seeing systems as a threshold concept for sustainability is useful for understanding the processes of…

  4. Innovation in Financial Systems. The Quest For Sustainability

    OpenAIRE

    Voicu-Doroban?u Roxana

    2012-01-01

    The paper focuses on the trials and tribulations the financial systems are facing in the current economic environment, in order to increase their economic sustainability, but also improve their social sustainability. As desperate times (characterized by an endemic crisis, reaching from the financial systems into the globalized economic network) require ‘desperate measures’, there is a certain need for improvement and innovation in instruments and behaviours exhibited by the actors in a financ...

  5. Traditional formwork system sustainability performance: experts’ opinion

    Science.gov (United States)

    Taher Al-ashwal, Mohammed; Abdullah, Redzuan; Zakaria, Rozana

    2017-11-01

    The traditional formwork system is one of the commonly used systems in concrete construction. It is considered as one of the least observed activities in term of sustainability performance. In this paper, the sustainability performance of the traditional formwork has been assessed by using a multi-criteria assessment tool to facilitate the decision on the sustainability performance measurement. A quantitative five Likert scale survey study using judgemental sampling is employed in this study. A sample of 93 of engineering construction experts, with different fields including contractors, developers, and consultants in the Malaysian context has made the body of the collected primary data. The results show variety in the distribution of the respondents’ working experience. The sustainability performance is considered moderately sustainable by the experts with only given 40.24 % of the overall total score for the three sustainable categories namely environmental, social and economic. Despite the finding that shows that the economic pillar was rated as the most sustainable aspect in comparison to the environmental and social pillars the traditional formwork system sustainability still needs enhancement. Further incorporation of the social and environmental pillars into the concrete construction the sustainability performance of traditional formwork system could be improved.

  6. Material research for environmental sustainability in Thailand: current trends

    Science.gov (United States)

    Niranatlumpong, Panadda; Ramangul, Nudjarin; Dulyaprapan, Pongsak; Nivitchanyong, Siriluck; Udomkitdecha, Werasak

    2015-06-01

    This article covers recent developments of material research in Thailand with a focus on environmental sustainability. Data on Thailand’s consumption and economic growth are briefly discussed to present a relevant snapshot of its economy. A selection of research work is classified into three topics, namely, (a) resource utilization, (b) material engineering and manufacturing, and (c) life cycle efficiency. Material technologies have been developed and implemented to reduce the consumption of materials, energy, and other valuable resources, thus reducing the burden we place on our ecological system. At the same time, product life cycle study allows us to understand the extent of the environmental impact we impart to our planet.

  7. System theoretic approach to sustainable development problems

    Directory of Open Access Journals (Sweden)

    Batanović Vladan

    2011-01-01

    Full Text Available This paper shows that the concepts and methodology contained in the system theory and operations research are suitable for application in the planning and control of the sustainable development. The sustainable development problems can be represented using the state space concepts, such as the transition of system, from the given initial state to the final state. It is shown that sustainable development represents a specific control problem. The peculiarity of the sustainable development is that the target is to keep the system in the prescribed feasible region of the state space. The analysis of planning and control problems of sustainable development has also shown that methods developed in the operations research area, such as multicriteria optimization, dynamic processes simulation, non-conventional treatment of uncertainty etc. are adequate, exact base, suitable for resolution of these problems.

  8. Assessing the sustainability of small wastewater systems

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    The authors present a planning tool for comparing and assessing the sustainability of different wastewater systems. The core of the planning tool is an assessment method based on both technical and social elements. The point of departure is that no technique is inherently sustainable or ecological...

  9. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  10. Sustainable, Reliable Mission-Systems Architecture

    Science.gov (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  11. Sustainable Transport in Romania vs. European Union. Analysis of Road Transport System from the Sustainable Transport Perspective

    Directory of Open Access Journals (Sweden)

    Clitan Andrei - Florin

    2014-12-01

    Full Text Available Sustainability is a term used more often lately, based on three factors: social, economic, and environmental. Sustainable transport systems increase social cohesion, reduce environmental problems and help create a more efficient economy. Sustainable transport consists in a complex system that is designed to ensure mobility needs of present generations without damaging the environment and health factors. By improving energy and material consumption, it must be capable to satisfy in optimum conditions the need for mobility for future generations. The current transportation system has not a character of sustainability.

  12. Sustainable supply chain management: current debate and future directions

    Directory of Open Access Journals (Sweden)

    Bruno Silvestre

    Full Text Available Abstract This paper is a research brief on sustainable supply chain management and covers some of the key elements of literature’s past debate and trends for future directions. It highlights the growth of this research area and reinforces the importance of a full consideration of all three key dimensions of sustainability when managing sustainable supply chains, i.e., the financial, environmental and social dimensions. Therefore, supply chain decision makers need to unequivocally assess the impact of their decisions on the financial, environmental and social performances of their supply chains. This paper also argues that risks and opportunities are the key drivers for supply chain decision makers to adopt sustainability within their operations, and that barriers to sustainability adoption exist. This research highlights that, depending on the focus adopted, supply chains can evolve and shift from more traditional to more sustainable approaches over time. The paper concludes with some promising avenues for future investigation.

  13. Strengths and weaknesses of common sustainability indices for multidimensional systems.

    Science.gov (United States)

    Mayer, Audrey L

    2008-02-01

    Sustainability is rapidly moving from an abstract concept to a measurable state of dynamic human-ecological systems. The large number of economic, social, and environmental indicators currently available provides an unwieldy view of system sustainability. To aid policy decisions, these indicators are therefore either presented in the context of a conceptual framework, or quantitatively aggregated into indices. Due to the quantitative nature of sustainability indices, their results may be given more weight by scientists and policy-makers. However, policy decisions can be ineffective or even counterproductive if they do not consider factors which influence index behavior: the scale of the available data and choice of system boundaries; the inclusion, transformation, and weighting of indicator data; and the aggregation method used. As previous reviews have demonstrated, sustainability indices do not rank countries consistently, even when using some of the same indicator data. Several improvements would increase the utility of sustainability indices for policy decisions, particularly the identification of biases introduced by the index methodology and data inclusion. The discrepancy of current sustainability indices due to theoretical or methodological differences supports the use of several complementary indices.

  14. Critical reflections on the currently leading definition of sustainable employability.

    Science.gov (United States)

    Fleuren, Bram Bi; de Grip, Andries; Jansen, Nicole Wh; Kant, Imjert; Zijlstra, Fred Rh

    2016-06-01

    claims can be made, such relationships need to be tested with SE as criterion. This is, however, impossible within the approach van der Klink et al provides. (1), as SE is equated with its predictor(s). Therefore, similar to the first conceptual issue, it seems unlikely that the capability set adequately reflects SE. Fourth, the definition by van der Klink et al (1) suggests that SE only applies to individuals who are employed. In the Abma et al publication (9), which accompanies van der Klink's definition paper as a validation paper, this is shown by the way in which capabilities are measured. Moreover, the definition also suggests this because individuals can only be considered to be sustainably employable if their work context enables them to achieve tangible opportunities. However, individuals who are not currently working can still be highly employable and even sustainably so, but just be between jobs. It is therefore not required for individuals to be enabled by their employer to be sustainably employable. Consequently, in line with our aforementioned points on improving the definition, being enabled by an employer to achieve value may be an important predictor of SE, but it is not necessarily part of SE itself. Moreover, future approaches to SE should define the concept in such a way that it is applicable to every individual regardless of employment status. Finally, the definition and operationalization of SE in the form of a capability set do not include any specification on how the longitudinal aspect of SE should be captured. The definition rightfully acknowledges the longitudinal dimension of SE, but its operationalization focuses solely on achieving value. Although achieving value at work may be an important predictor of SE, a complete operationalization and definition should include its longitudinal nature as well. Outlook In conclusion, while van der Klink et al's definition of SE (1) does have strong merits, it requires further improvement. The approach

  15. A sustainable energy-system in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2003-01-01

    but a negative trade-balance. With this in mind, it is important that Latvia is able to meet the challenge and use the economic development to develop a sustainable energy-system and a sounder trade-balance. A combination of energy planning, national economy and innovation processes in boiler companies will form......The paper presents some of the problems in the Latvian energy-system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems. Latvia has economic growth...

  16. Circular Thermodynamics of Organisms and Sustainable Systems

    Directory of Open Access Journals (Sweden)

    Mae-Wan Ho

    2013-07-01

    Full Text Available A circular thermodynamics of organisms and sustainable systems is presented based on dynamic closures in nested space-time domains that enable the system to approach the ideal of zero entropy production simultaneously at equilibrium and far from equilibrium conditions.

  17. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  18. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Huirong Feng

    2014-01-01

    Full Text Available The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  19. Sustainable deforestation evaluation model and system dynamics analysis.

    Science.gov (United States)

    Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  20. Current energy usage and sustainable energy in Kazakhstan: A review

    Science.gov (United States)

    Karatayev, Marat; Islam, Tofazzal; Salnikov, Vitaliy

    2014-05-01

    Kazakhstan has abundant natural resources. The country has enough coal to supply its energy needs for the next 150 years, and has the world's largest deposits of uranium, substantial quantities of natural gas and petroleum deposits. However, despite such energy riches, due to the size of the territory, its geography, and the country's economic structure, distribution of electricity in Kazakhstan is not uniform. As a result, Kazakhstani rural and remote areas suffer from serious electricity deficits. According to the latest estimates from the Ministry of Industry and New Technologies, about 25-30% of the Kazakhstani population lives in rural communities, where access to affordable energy (for heating, cooling, cooking, refrigeration, lighting, household as well as IT use) is limited. Furthermore, with the main electricity production infrastructure concentrated in the main urban areas, a high amount of electricity is therefore lost during transmission. Moreover, the consumption of poor quality coal as the main source of power generation creates a significant amount of environmental pollution. To illustrate this development, fuel combustion from coal has produced around 75% of carbon dioxide emissions in Kazakhstan. Thus, in order to address the country's electricity and environmental challenges, the Kazakhstani government is taking initiatives to promote renewable energy resources. However, so far, the outcome of these initiatives remains negligible. The current contribution of renewable energy to the total energy consumption is less than 1% (with 90% provided by hydropower) despite the significant potential for renewable energy in the country. As yet, no comprehensive study has been published on the energy scenario and on the potential for renewable energy resources in Kazakhstan. This comprehensive review aims to present an overview of the country's energy resources, supply and demand as the current energy scenario, while discussing the potential for renewable

  1. A Sustainable European Union Own Resources System

    Directory of Open Access Journals (Sweden)

    Cieslukowski Maciej

    2016-10-01

    Full Text Available From 1992, after the UN “Earth Summit” in Rio de Janeiro, sustainable development has become a priority of many countries and international organizations, including the European Union. After the crisis of 2008+ and the strong criticism of traditional economics, it also became a fundamental element of economic development in the XXI century. This new model is based on a solid and integrated economic, socio-cultural and ecological order. Such a development should be supported by suitable budgetary systems at each level of public government. The paper presents a conception of the sustainable EU own resources system and proposes the methodology of its evaluation.

  2. Sustaining an Effective ABC-ABM System

    Directory of Open Access Journals (Sweden)

    Gary COKINS

    2011-02-01

    Full Text Available The purpose of this paper is to describe the Activity- Based Costing (ABC and Activity-Based Management (ABM system and techniques to sustain them as a permanent and repeatable production reporting system, not just for one-off analysis. A comparison is made between ABC/ABM modeling software that extracts source data and business systems that include ABC/ABM modeling features. There are presented the stages of updating, running and rerunning the ABC/ABM system. The resulting information calculated and provided by the ABC/ABM system are analyzed and interpreted in terms of a multidimensional data analysis. The article ends with the authors' conclusions about the benefits of continued operation of sustaining the ABC/ABM system.

  3. Sustainable Food Security Measurement: A Systemic Methodology

    Science.gov (United States)

    Findiastuti, W.; Singgih, M. L.; Anityasari, M.

    2017-04-01

    Sustainable food security measures how a region provides food for its people without endangered the environment. In Indonesia, it was legally measured in Food Security and Vulnerability (FSVA). However, regard to sustainable food security policy, the measurement has not encompassed the environmental aspect. This will lead to lack of environmental aspect information for adjusting the next strategy. This study aimed to assess Sustainable Food security by encompassing both food security and environment aspect using systemic eco-efficiency. Given existing indicator of cereal production level, total emission as environment indicator was generated by constructing Causal Loop Diagram (CLD). Then, a stock-flow diagram was used to develop systemic simulation model. This model was demonstrated for Indonesian five provinces. The result showed there was difference between food security order with and without environmental aspect assessment.

  4. Sustainability of Agricultural Systems: Concept to Application

    Science.gov (United States)

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  5. Sustainable information systems: a knowledge perspective

    NARCIS (Netherlands)

    Maruster, L.; Faber, N.R.; Peters, K.

    2008-01-01

    Purpose – The purpose of this paper is to propose a re-orientation of the way the concept of sustainability is dealt with in relation to information systems, positioning human behaviour and the processing of knowledge at the centre of the concept. Design/methodology/approach – The concept of

  6. Edible insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    Edible insects in Sustainable Food Systems comprehensively covers the basic principles of entomology and population dynamics; edible insects and culture; nutrition and health; gastronomy; insects as animal feed; factors influencing preferences and acceptability of insects; environmental impacts...... and conservation; considerations for insect farming and policy and legislation. The book contains practical information for researchers, NGOs and international organizations, decision-makers, entrepreneurs and students...

  7. Global drivers, sustainable manufacturing and systems ergonomics.

    Science.gov (United States)

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully

  8. Sustainability of organic, integrated and conventional farming systems in Tuscany

    NARCIS (Netherlands)

    Pacini, C.; Giesen, G.W.J.; Vazzana, C.; Wossink, G.A.A.

    2002-01-01

    Agricultural researchers widely recognise the importance of sustainable agricultural production systems and the need to develop appropriate methods to measure sustainability. The principal purpose of this paper is to evaluate the financial and environmental aspects of sustainability of Organic,

  9. Application of sustainable systems of milk production on small farms

    OpenAIRE

    Petrović Milan P.; Sretenović Ljiljana; Aleksić S.; Ružić-Muslić D.; Žujović M.; Maksimović N.

    2008-01-01

    In this paper current situation is analyzed and sustainable systems introduced in production of milk on small farms. Old production systems used on farms were the reason why milk production wasn't profitable activity and therefore livestock production in mountainous regions had complete collapse and pastures remained almost entirely deserted. In population of Pirot Pramenka sheep and local Simmental population of cattle, our analysis of breed productivity shows that effects in mi...

  10. Information Systems Solutions for Environmental Sustainability

    DEFF Research Database (Denmark)

    Gholami, Roya; Watson, Richard T.; Hasan, Helen

    2016-01-01

    themselves in creating solutions for environmental problems. Moreover, information is a perquisite for assessing the state of the environment and making appropriate decisions to ameliorate identified problems. Indeed, the IS scholarly community needs to help create a sustainable society. While......We contend that too few information systems (IS) academics engage in impactful research that offers solutions to global warming despite the fact that climate change is one of the most critical challenges facing this generation. Climate change is a major threat to global sustainability in the 21st...... century. Unfortunately, from submissions of our call for papers presenting IS solutions for environmental sustainability, we found only one paper worthy of publication. Given that IS have been the major force for productivity increases in the last half-century, we suggest that IS scholars should immerse...

  11. Participatory systems mapping for sustainable consumption

    DEFF Research Database (Denmark)

    Sedlacko, Michal; Martinuzzi, Andre; Røpke, Inge

    2014-01-01

    The paper describes our usage of and experience with the method of participatory systems mapping. The method, developed for the purpose of facilitating knowledge brokerage, builds on participatory modelling approaches and applications and was used in several events involving both researchers...... and policy makers. The paper presents and discusses examples of how different types of participatory interaction with causal loop diagrams (‘system maps’) produced different insights on issues related to sustainable consumption and enabled participatory reflection and sharing of knowledge. Together...

  12. Beyond (eco)design : Current approaches to sustainable packaging design

    NARCIS (Netherlands)

    Wever, R.

    2014-01-01

    Packaging has always received a lot of attention within the field of design for sustainability. The classical approach has been to mainly focus on reducing the impact of the packaging. This approach stems from the ill-informed position that packaging is superfluous, or at best there only for

  13. Beyond (eco)design : Current approaches to sustainable packaging design

    NARCIS (Netherlands)

    Wever, R.

    Packaging has always received a lot of attention within the field of design for sustainability. The classical approach has been to mainly focus on reducing the impact of the packaging. This approach stems from the ill-informed position that packaging is superfluous, or at best there only for

  14. Sustainability in Textiles and Fashion – The Current Challenge

    OpenAIRE

    Hann, M

    2014-01-01

    This paper is concerned with sustainability in textiles and fashion and identifies the problems and challenges faced by the international textile and fashion industry. Traditional product end uses as well as novel applications associated with the minority natural fibres such as jute, ramie and hemp are identified, and the potential advantages of focusing on developing the applicability of such in fashion applications is assessed. A series of strategic proposals, aimed at gaining attention in ...

  15. Beyond (eco)design: current approaches to sustainable packaging design

    OpenAIRE

    Wever, R

    2014-01-01

    Packaging has always received a lot of attention within the field of design for sustainability. The classical approach has been to mainly focus on reducing the impact of the packaging. This approach stems from the ill-informed position that packaging is superfluous, or at best there only for marketing reasons. This is a rather guild-based approach that, if taken to extremes, would lead to complete elimination of packaging, or at most a quintessential brown paper bag. In industry reality thoug...

  16. Advancing a sustainable highway system : highlights of FHWA sustainability activities

    Science.gov (United States)

    2014-06-01

    FHWA is undertaking a significant amount of work related to sustainability across a number of program areas throughout the Agency. The purpose of this report is to showcase some of the ways in which FHWA is : incorporating and embedding sustainabilit...

  17. In search of sustainable transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Nijkamp, P.; Vleugel, J.

    1995-12-31

    Several options can be envisaged in order to alleviate the external costs of modern transport systems: moral conviction, strict regulations (including enforcement), user charge principles (e.g. road pricing, Pigovian taxation), sophisticated environment-friendly technologies (e.g. route guidance, zero-emission cars) and alternative modes of physical planning (e.g. compact city design). Any reduction target in environmental stress has to be assessed from both an environmental sustainability viewpoint and from a cost effectiveness viewpoint. Such an assessment may be based on evaluation criteria that are internal to the transport system or on criteria that mirror an overall systemic efficiency and sustainability. This provokes the question of the most appropriate level of reduction of environmental pollution by the transport sector compared to other economic sectors. A policy strategy aiming at a more sustainable transport system has to identify quantitative criteria which would offer guidelines on the maximum allowable contribution to environmental degradation by the transport sector. This presupposes knowledge on the total permissible pollution in a given area and in a given time frame, as well as knowledge on the share of the transport system in this total volume of pollution (for different pollutants). The aim of this paper is to develop some thoughts on the question of identifying the maximum allowable pollution share by the transport sector, assuming a critical level of maximum resource use, a maximum carrying capacity, a maximum environmental utilisation space, a maximum sustainable yield or some other critical threshold level for environmental decay. The notion of maximum environmental capacity use (MECU) is used to indicate the maximum resource use of a given environmental capital stock that - in a given time period - is compatible with both socio-economic objectives and environmental quality conditions now and in the future. 6 tabs., 24 refs.

  18. Towards sustainability-driven innovation through product-service systems

    OpenAIRE

    Thompson, Anthony; Larsson, Tobias; Broman, Göran

    2011-01-01

    Many current sustainability considerations in industry constrain design space by emphasizing reduced material and energy flows across product life cycles. However, there are also opportunities for sustainability awareness to extend design space and drive innovation. Product-service systems (PSS) in particular can be a vehicle through which sustainability-driven innovation occurs. A framework for strategic sustainable development, including a backcasting approach, provides the basis for unders...

  19. ENVIRONMENTAL SYSTEMS MANAGEMENT AND SUSTAINABLE SYSTEMS THEORY

    Science.gov (United States)

    Environmental Systems Management is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects. This is importa...

  20. Engineering performant, innovative and sustainable health systems

    OpenAIRE

    Wouters, Raphael

    2016-01-01

    Background: In a time of growing health expenditures and inefficiencies, ageing populations, rise of chronic diseases, co-morbity and technical evolutions, there is a worldwide quest for performant, innovative and sustainable health systems that are, a.o. effective and cost-efficient, patient-centric and co-creative and able to deal with the growing society dynamics.Problem statement: Effectively implementing strategic initiatives that tackle these challenges appears a frightening task since ...

  1. Geospatial technologies for conservation planning: An approach to build more sustainable cropping systems

    Science.gov (United States)

    Current agricultural production systems must adapt to meet increasing demands for more economically and environmentally sustainable cropping systems. The application of precision agricultural technologies and geospatial and environmental modeling for conservation planning can aid in this transition....

  2. Sustainability of the concrete industry: Current trends and future outlook

    Directory of Open Access Journals (Sweden)

    Tošić Nikola

    2017-01-01

    Full Text Available Achieving sustainability of all human actions has been recognized as an urgent and top priority since the warnings of anthropogenic climate change are overwhelming. However, the precise goal, aim and method of shifting the global paradigm towards sustainability are still contested. Among all human activities, the concrete industry has one of the largest environmental footprints, not only because concrete is the second most used material in the world, but also because the production of cement for concrete is highly energy-intensive and inevitably releases large amounts of CO2. In this paper, a historic and theoretical background to the environmental problems, arising from the production and use of concrete, is presented. The specific problems it poses are recognized as natural resource consumption, CO2 emissions, and waste generation. A technical discussion based on Life Cycle Assessment analyses is presented alongside a societal interpretation within the framework of common resource and externality management. Possible technical solutions in the form of recycling waste concrete and replacing cement with industrial by-products are presented and finally, a necessity for a shift towards a holistic and environmental paradigm is highlighted.

  3. Toward Knowledge Systems for Sustainability Science

    Science.gov (United States)

    Zaks, D. P.; Jahn, M.

    2011-12-01

    Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated

  4. Design for Sustainability: Current Trends in Sustainable Product Design and Development

    Directory of Open Access Journals (Sweden)

    Marcel Crul

    2009-08-01

    Full Text Available The Design for Sustainability (D4S concept outlines methodologies for making sustainable improvements (social, economic and environmental to products by applying elements of life cycle thinking. D4S builds on the work of ecodesign to include economic and social concerns, and its methodology includes both incremental and radical innovation. The United Nations Environment Programme and the Delft University of Technology, the Netherlands, in concert with key partners, work to support, illustrate, and diffuse targeted D4S demonstration efforts, including the European Commission-funded Cleaner Production for Better Products project in Vietnam, that are needed to change unsustainable consumption and production patterns.

  5. Applicability and methodology of determining sustainable yield in groundwater systems

    Science.gov (United States)

    Kalf, Frans R. P.; Woolley, Donald R.

    2005-03-01

    There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use. definiciones actuales son ambiguos y sin base física de modo que no pueden usarse para aplicación cuantitativa, (2) existe necesidad de eliminar interpretaciones variables y mal interpretaciones y aportar bases sanas para aplicación, (3) la noción de que todos los sistemas de aguas subterráneas son o pueden ser sostenibles no esvalida, (4) frecuentemente existen un numero excesivo de factores ligados a la definición de producción sostenible los cuales no son fácil de cuantificar, (5) frecuentemente existe confusión entre la producción optima de un establecimiento y la producción sostenible de unacuenca, (6) en muchos

  6. Is Current Account of Turkey Sustainable ? Evidence from Nonlinear Unit Root Tests

    Directory of Open Access Journals (Sweden)

    Serkan Taştan

    2015-09-01

    Full Text Available In this paper, current account sustainability of Turkey is analyzed in a nonlinear framework. Various nonlinear unit root tests have been used to test for structural break, sign and size nonlinearity. We have tested structural break and size nonlinearity separately and structural break-sign and size-sign nonlinearities simultaneously. Only considering the size nonlinearity, we have found that the current account of Turkey is sustainable. Thus, the size nonlinearity, in other words the speed of reversion to equilibrium, is essential for the current account sustainability of Turkey. We have also found that the speed of adjustment towards equilibrium is symmetric, while considering size and sign nonlinearities simultaneously.

  7. Transport systems and policies for sustainable cities

    Directory of Open Access Journals (Sweden)

    Vučić Vukan R.

    2008-01-01

    Full Text Available The 20th century witnessed revolutionary developments in transportation technology with major impacts on the form and character of cities. Progress in increasing mobility has brought many benefits as well as serious problems, particularly in deterioration of livability and sustainability. Increase in auto ownership led to serious problems of chronic traffic congestion. Attempts to rebuild cities to provide full accommodation of private cars have led to serious problems of auto dependency and deterioration of cities. Experiences from recent decades have shown that urban transportation is much more complex than usually realized. Livable and sustainable cities require policies that lead to creation of a transportation system consisting of coordinated public transit and private cars, and encourages pedestrian environment and efficient, sustainable development. Great need for better understanding of the complex problems in implementing incentives and disincentives aimed at achieving intermodal balance is emphasized. Brief descriptions of cities which lead in achieving such livable conditions is followed by a summary of lessons and guidelines for the future.

  8. Current and potential sustainable corn stover feedstock for biofuel production in the United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman

    2012-01-01

    Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.

  9. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...... methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having...

  10. Sustainable Energy, Water and Environmental Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-06-01

    Full Text Available This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having transmission beyond sight.

  11. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  12. Sustainable Agriculture in Print: Current Books. Special Reference Briefs: SRB 95-02.

    Science.gov (United States)

    National Agricultural Library, Beltsville, MD.

    Prepared by the Alternative Farming Systems Information Center (AFSIC) staff and volunteers, this annotated bibliography provides a list of 85 recently published books pertaining to sustainable agriculture. AFSIC focuses on alternative farming systems (e.g., sustainable, low-input, regenerative, biodynamic, and organic) that maintain agricultural…

  13. A SUSTAINABLE HEALTH CARE SYSTEM REQUIRES MANAGEMENT TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Kanellopoulos Dimitros

    2011-12-01

    Full Text Available In order to be the health care system sustainable , management transformations must be based on very precise diagnostic analysis that includes complete and current information. It is necessary to implement an information system that collects information in real time, that watches the parameters that significantly influence the sustainability of the system. Such an information system should point out a radiography(a scan of the system at some time under following aspects:: 1. An overview of system; 2 An overview of the economic situation; 3 A technical presentation ;4. A legal overview; 5. A social overview ; 6. A management overview .Based on these Xrays of the health system, it outlines a series of conclusions and recommendations together with a SWOT analysis that highlights the potential internal (strengths and weaknesses and external potential (opportunities and threats. Based on this analysis and recommendations, the management is going to redesign the system in order to be adapted to the changing environmental requirements. Management transformation is recommended to be by following steps. :1. The development of a new management system that would make a positive change in the health care system 2. Implementation of the new management system 3. Assessment of the changes

  14. System learning approach to assess sustainability and ...

    Science.gov (United States)

    This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key method in Information Theory, to preserve trends in the historical data and prevent over fitting projections. The methodology was applied to demographic, environmental, food and energy consumption, and agricultural production in the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking conditions in human and natural systems. However, available data are often so far out of date that they limit the ability to manage these systems. Results indicate that the approaches developed provide viable tools for forecasting outcomes with the aim of assisting management toward sustainable trends. This methodology is also applicable for modeling different scenarios in other dynamic systems. Indicators are indispensable for tracking conditions in human and natural systems, however, available data is sometimes far out of date and limit the ability to gauge system status. Techniques like regression and simulation are not sufficient because system characteristics have to be modeled ensuring over simplification of complex dynamics. This work presents a methodology combining the power of an Artificial Neural Network and Information Theory to capture patterns in a real dyna

  15. Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance

    Science.gov (United States)

    Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Zabeo, Alex; Malsch, Ineke; McAlea, Eamonn; Murphy, Finbarr; Mullins, Martin; van Harmelen, Toon; Ligthart, Tom; Linkov, Igor; Marcomini, Antonio

    2016-04-01

    The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit-risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.

  16. Sustaining Engagements for Integrated Heat-Health Information Systems

    Science.gov (United States)

    Trtanj, J.

    2016-12-01

    Extreme heat events are on the rise, evidenced by the record breaking heat in the summer of 2016 in the US, increased heat-related death toll in south Asia, and projections from the Intergovernmental Panel on Climate Change. The impacts, responses and adaptation to extreme heat are inherently local or region in nature and require multisector engagement to manage current and future heat risks. Understanding the character of the information demand, who needs it, when and how it is needed, how it is used, and the remaining research questions, requires sustained engagement of multiple science and decision making communities. The construct of Integrated Information Systems provides the framework that sustains this dialogue, supports the production of useful information, and the translation of knowledge to action. The National Integrated Heat Health Information System (NIHHIS), a multi-agency collaboration, working at state, local and international levels, designed to facilitate an integrated approach to providing a suite of decision support services that reduce heat-related illness and death. NIHHIS sustains engagement across the public health, emergency management, disaster risk reduction, planning, housing, communication, climate, weather and other science communities. This presentation will highlight NIHHS sustained engagements in the Rio Grande Bravo region, other NIHHIS pilots, and international efforts building on the NIHHIS framework. NIHHIS, launched by the National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention in 2015, now has over eight Federal partners and a burgeoning mix of pilots, projects and partners at state, local and international levels.

  17. Determination of Indonesian palm-oil-based bioenergy sustainability indicators using fuzzy inference system

    Science.gov (United States)

    Arkeman, Y.; Rizkyanti, R. A.; Hambali, E.

    2017-05-01

    Development of Indonesian palm-oil-based bioenergy faces an international challenge regarding to sustainability issue, indicated by the establishment of standards on sustainable bioenergy. Currently, Indonesia has sustainability standards limited to palm-oil cultivation, while other standards are lacking appropriateness for Indonesian palm-oil-based bioenergy sustainability regarding to real condition in Indonesia. Thus, Indonesia requires sustainability indicators for Indonesian palm-oil-based bioenergy to gain recognition and easiness in marketing it. Determination of sustainability indicators was accomplished through three stages, which were preliminary analysis, indicator assessment (using fuzzy inference system), and system validation. Global Bioenergy partnership (GBEP) was used as the standard for the assessment because of its general for use, internationally accepted, and it contained balanced proportion between environment, economic, and social aspects. Result showed that the number of sustainability indicators using FIS method are 21 indicators. The system developed has an accuracy of 85%.

  18. Reporting Systems for Sustainability: What Are They Measuring?

    Science.gov (United States)

    Davidson, Kathryn M.

    2011-01-01

    The dominance of the neoliberal discourse in the sustainability debate has tended to privilege the economy over environment and social dimensions with implications for what is measured by sustainability monitoring systems. Moreover, systems to measure sustainability, including those influenced by neoliberal discourse, lack robust definitions and…

  19. An Integrated Sustainable Business and Development System: Thoughts and Opinions

    Directory of Open Access Journals (Sweden)

    Rachel J. C. Chen

    2014-09-01

    Full Text Available Companies understand the importance of monitoring and managing their environmental impacts and aim to integrate, with consistent quality control, effective reduce-reuse-recycle programs and risk preventions. By building an integrated sustainable business and development system to meet certain environmental standards, many companies are eligible to be “green” certified. Companies may consider recognizing global visions on sustainability while implementing local best practices. An integrated sustainable business and development system includes talent management, sustainable supply chain, practicing strategies of leveraging resources effectively, implementing social responsibilities, initiating innovative programs of recycling, reducing, and reusing, advancing leaders’ perceptions towards sustainability, reducing innovation barriers, and engaging sustainable practices strategically.

  20. Distributed Power Systems for Sustainable Energy

    Science.gov (United States)

    2012-10-01

    Base ALC Automatic Logic Corporation BEMS building energy management system BMS battery management system CHP combined heat and power DC...direct current DOD U.S. Department of Defense DSB Defense Science Board EES electric energy storage EMS energy management system EO Executive...Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers LCC life-cycle cost MPPT maximum power point of tracking NDAA National

  1. Current and future sustainable biofuels - Summary; Dagens och framtidens haallbara biodrivmedel - Sammanfattning

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lunds Univ., Lund (Sweden); Lundgren, Joakim [Luleaa Tekniska Univ., Luleaa (Sweden); Ahlgren, Serina [Sveriges Lantbruksuniv., Uppsala (Sweden); Nystroem, Ingrid [Swedish Knowledge Centre for Renewable Transportation Fuels, Goeteborg (Sweden); CIT Industriell Energi., Goeteborg (Sweden)

    2013-09-01

    This report has been prepared as a background paper for the state investigation 'Fossil Free Vehicle Traffic'. The purpose of this study is to describe and summarize the current knowledge on production of biofuels and linkages to sustainability issues such as energy and land efficiency, GHG performance and costs. The report includes both existing and future fuel systems under development and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report includes both existing and future fuel systems under development, and based on different raw materials and production processes. The study has primarily a Swedish perspective, but with international views. The report's analysis of energy efficiency, greenhouse gas performance and production costs is based on system analysis and a life-cycle perspective. The focus is on the production chain to the produced fuel (well-to-tank). Results are based on current research and commercial development of the respective chains. They are based primarily from standardized life cycle analysis and, in some production systems, also on industrial systems analysis. These two approaches have some differences in methodology, which are highlighted in the report. In the overview values and results have been compiled to make it possible to compare the results.

  2. Information systems outsourcing towards sustainable business value

    CERN Document Server

    Hirschheim, Rudy; Dibbern, Jens

    2014-01-01

    This book attempts to synthesize research that contributes to a better understanding of how to reach sustainable business value through information systems (IS) outsourcing. Important topics in this realm are how IS outsourcing can contribute to innovation, how it can be dynamically governed, how to cope with its increasing complexity through multi-vendor arrangements, how service quality standards can be met, how corporate social responsibility can be upheld and how to cope with increasing demands of internationalization and new sourcing models, such as crowdsourcing and platform-based cooperation. These issues are viewed from either the client or vendor perspective, or both. The book should be of interest to all academics and students in the fields of Information Systems, Management and Organization as well as corporate executives and professionals who seek a more profound analysis and understanding of the underlying factors and mechanisms of outsourcing.

  3. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  4. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  5. Current state and perspectives of truffle genetics and sustainable biotechnology.

    Science.gov (United States)

    Poma, Anna; Limongi, Tania; Pacioni, Giovanni

    2006-09-01

    Mycorrhizal fungi belonging to the genus Tuber produce, after the establishment of a productive interaction with a plant host, hypogeous fruitbodies of great economic value known as ''truffles''. This review summarizes the state of art on life cycle, genetic, and biotechnological investigations of Tuber spp. The ascocarp formation in truffles is a consequence of the activation of the sexual phase of the biological cycle. The formation of a dikaryotic secondary mycelium and the karyogamy in the ascal cell (followed by meiosis with ascospores formation) have been hypothesized by several authors but some doubts yet arise from the Tuber cycle by considering that a series of abnormalities have been pointed out in respect to other Ascomycetes. It is unclear if binucleated hyphal cells are derived from the fusion of mononucleated cells belonging to mycelia from different mating types or from one only. According to the karyotypes of Tuber melanosporum, Tuber magnatum, and Tuber borchii, the numbers of hyphal chromosomes suggest a chromosome number of eight (2n); these values are in the range of those of several Ascomycetes and observed for Tuber aestivum (2n=10). The importance and growth in interest during the last years in the fungi protoplasts isolation and transformation techniques can be related to current developments in Tuber genetics and biotechnology. T. borchii could be transformed through liposome-mediated delivery of genetic material as mycelial protoplasts isolation and fusion with liposomes has already been established. On the other hand, Agrobacterium-mediated transformation has been successfully established for T. borchii.

  6. Systems dynamics modelling to assess the sustainability of renewable energy technologies in developing countries

    CSIR Research Space (South Africa)

    Brent, AC

    2011-04-01

    Full Text Available supply, and the related cost implications, for water supply; concentrated solar thermal technology options are currently considered. In this paper a systems dynamics approach is used to assess the sustainability of these types of renewable energy...

  7. Environmental Management Systems and Sustainability in SMEs

    Directory of Open Access Journals (Sweden)

    Shah Satya

    2016-01-01

    Full Text Available Environmental sustainability in manufacturing sector has been allocated a major consideration in the international literature. Due to growing concerns over the high effect of SMEs on world manufacturing industries and their contribution to pollution; this research attempts to focus on the key parameters that interact in the application of environmental management system, taking into account the main features of SMEs and also the integral role of industrial entrepreneurs in inspiring their firms’ approaches. The paper explores the potential opportunities which enable these enterprises to move towards organizations with high level of responsibility regarding environmental protection in order to provide a healthier life for future generations. Case investigation is carried out on an adhesive manufacturing company, which covers a notable market share within the sector. The research identifies that the company requires developing both internal and external entities within an explicit plan to revolutionize the recruitment patterns. Given the lack of adequate studies in adhesive technology, more researches are recommended in the future to consider the sustainable innovations on a broader sample of adhesive manufacturing companies to perform the life-cycle analysis due to the harmful organic compounds and toxic vapours of the adhesive products.

  8. Sustainable bioreactor systems for producing hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A. [Univ. of Hawaii, Honolulu, HI (United States); Benemann, J.R. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Molecular Biology; Tredici, M.R. [Univ. of Florence (Italy). Dipt. di Scienze e Tecnologie Alimentari e Microbiogiche

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  9. TOWARD A THEORY OF SUSTAINABLE SYSTEMS

    Science.gov (United States)

    While there is tremendous interest in the topic of sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory starting with Information Theory and ecological models. We discuss the state of complex sustainable syste...

  10. Evaluating sustainability of truck weight regulations: A system dynamics view

    Directory of Open Access Journals (Sweden)

    Pei Liu

    2015-11-01

    Full Text Available Purpose: Targeting the problem of overload trucking in Highway Transportation of iron ore from Caofeidian to Tangshan (HTCT, this paper aims to assess long-term effects of alternative Truck Weight Regulation (TWR policies on sustainability of HTCT. Design/methodology/approach: A system dynamics model was established for policy evaluation. The model, composed of six interrelating modules, is able to simulate policies effects on trucking issues such as freight flow, truck traffic flow, pavement performance, highway transport capacity and trucking time, and further on the Cumulative Economic Cost (CEC including transport cost and time cost of freight owners and the Cumulative Social Cost (CSC including pavement maintenance cost, green house gas emission cost, air pollutants emission cost and traffic accidents cost, so the effects of TWR policies on sustainability of HTCT could be evaluated. Findings: According to different values of overload ratio which a TWR policy allows, alternative TWR policies are classified into three types, which are The Rigid Policy (TRP, The Moderate Policy (TMP and The Tolerant Policy (TTP. Results show that the best policy for sustainability of HTCT depends on the importance of CSC which is expected by the local government. To be specific, (1 if CSC is considered much less important than CEC, the local government should continue implementing the current TTP with the maximum overload ratio; (2 if CSC is considered much more important than CEC, then TRP is recommended; and (3 if CSC is considered slightly more important than CES, TMP with overload ratio of 80% is the best. Practical implications: Conclusions of this paper may help the local government design appropriate TWR policies to achieve sustainability of HTCT. Originality/value: To the best of our knowledge, this is the first effort to evaluate TWR policies on sustainability of regional freight transportation based on system dynamics modeling.

  11. Sustainable food systems for optimal planetary health.

    Science.gov (United States)

    Canavan, Chelsey R; Noor, Ramadhani A; Golden, Christopher D; Juma, Calestous; Fawzi, Wafaie

    2017-06-01

    Sustainable food systems are an important component of a planetary health strategy to reduce the threat of infectious disease, minimize environmental footprint and promote nutrition. Human population trends and dietary transition have led to growing demand for food and increasing production and consumption of meat, amid declining availability of arable land and water. The intensification of livestock production has serious environmental and infectious disease impacts. Land clearing for agriculture alters ecosystems, increases human-wildlife interactions and leads to disease proliferation. Context-specific interventions should be evaluated towards optimizing nutrition resilience, minimizing environmental footprint and reducing animal and human disease risk. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  12. INDICATORS FOR SUSTAINABILITY IN INDUSTRIAL SYSTEMS CASE STUDY: PAPER MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Maria Emiliana Fortună

    2011-12-01

    Full Text Available The paper describes a framework for promoting sustainability by using indicators for sustainable production. The concept of sustainable production is described as it is viewed by various organisms actions involved in the analysis of the sustainable industrial systems.The measure of sustainability is approached considering indicators of sustainable production, addressing both their dimensions and qualitative and quantitative features.The proposed framework refines the sustainability dimension for a case study which envisages sustainability in paper manufacturing. The analysis takes into account the life cycle analysis for the considered process since the environmental impact is seen as an essential sustainability indicator. Paper recycling and reuse is associated environmental and social costs, as a preferred alternative in waste minimization hierarchy in the manufacturing of non-trees eco-friendly paper.Proactive initiatives to improve the environmental performances of production process are considered as powerful tools for improving the paper manufacturing environmental footprint.

  13. How current assessments of Sustainability Performance by Best Practice in the UN Global Compact challenge legitimacy

    DEFF Research Database (Denmark)

    Kjærgaard, Thomas

    the Economist (2013) turn to Scandinavia as having the solutions to some of the global sustainability-related challenges, it might also be worth reversing the optics. One approach could be to take a closer look at whether this high level of support for the UNGC translates to a high level of Sustainability...... Performance? And how the current assessment of Sustainability Performance by Best Practice in the UN Global Compact challenge the legitimacy of both the corporation, the UNGC and governments attempting to facilitate sustainability and CSR engagement? Best Practice is a concept frequently used by authorities......The Scandinavian countries have been strong supporters of the UN Global Compact (UNGC) since the official launch in year 2000. This is best evidenced by the level of adoption of the UNGC, which is the most widely adopted broad sustainability-reporting standard in Scandinavia (Kjaergaard, submitted...

  14. Natural treatment systems as sustainable ecotechnologies for the developing countries.

    Science.gov (United States)

    Mahmood, Qaisar; Pervez, Arshid; Zeb, Bibi Saima; Zaffar, Habiba; Yaqoob, Hajra; Waseem, Muhammad; Zahidullah; Afsheen, Sumera

    2013-01-01

    The purpose of natural treatment systems is the re-establishment of disturbed ecosystems and their sustainability for benefits to human and nature. The working of natural treatment systems on ecological principles and their sustainability in terms of low cost, low energy consumption, and low mechanical technology is highly desirable. The current review presents pros and cons of the natural treatment systems, their performance, and recent developments to use them in the treatment of various types of wastewaters. Fast population growth and economic pressure in some developing countries compel the implementation of principles of natural treatment to protect natural environment. The employment of these principles for waste treatment not only helps in environmental cleanup but also conserves biological communities. The systems particularly suit developing countries of the world. We reviewed information on constructed wetlands, vermicomposting, role of mangroves, land treatment systems, soil-aquifer treatment, and finally aquatic systems for waste treatment. Economic cost and energy requirements to operate various kinds of natural treatment systems were also reviewed.

  15. A Framework for Supporting Organizational Transition Processes Towards Sustainable Energy Systems

    Science.gov (United States)

    Buch, Rajesh

    organizational transition processes towards sustainable energy systems, using systems and stakeholder mapping, participatory envisioning, and sustainability assessment to prepare the development of transition strategies towards realizing long-term energy sustainability. The energy system at Arizona State University's Tempe campus (ASU) in 2008 was used as a baseline to evaluate the sustainability of the current system. From interviews and participatory workshops, energy system stakeholders provided information to map the current system and measure its performance. Utilizing operationalized principles of energy sustainability, stakeholders envisioned a future sustainable state of the energy system, and then developed strategies to begin transition of the current system to its potential future sustainable state. Key findings include stakeholders recognizing that the current energy system is unsustainable as measured against principles of energy sustainability and an envisioned future sustainable state of the energy system. Also, insufficient governmental stakeholder engagement upstream within the current system could lead to added risk as regulations affect energy supply. Energy demand behavior and consumption patterns are insufficiently understood by current stakeholders, limiting participation and accountability from consumers. In conclusion, although this research study focused on the Tempe campus, ASU could apply this process to other campuses thereby improving overall ASU energy system sustainability. Expanding stakeholder engagement upstream within the energy system and better understanding energy consumption behavior can also improve long-term energy sustainability. Finally, benchmarking ASU's performance against its peer universities could expand the current climate commitment of participants to broader sustainability goals.

  16. Participatory Systems Modeling to Explore Sustainable ...

    Science.gov (United States)

    Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. The US EPA is applying sustainability science to address these needs. Triple Value (3V) Scoping and Modeling projects bring a systems approach to understand complex environmental problems, incorporate local knowledge, and allow decision-makers to explore policy scenarios. This leads to better understanding of feedbacks and outcomes to both human and environmental systems. The Suffolk County, NY (eastern Long Island) 3V Case uses SES interconnections to explore possible policy options and scenarios for intervention to mitigate the effects of excess nitrogen (N) loading to ground, surface, and estuarine waters. Many of the environmental impacts of N pollution negatively affect social and economic well-being and productivity. Key are loss of enjoyment and recreational use of local beach environments and loss of income and revenues from tourism and local fisheries. Stakeholders generated this Problem Statement: Suffolk County is experiencing widespread degradation to groundwater and the coastal marine environment caused by excess nitrogen. How can local stakeholders and decision makers in Suffolk County arrest and reverse this degradation, restore conditions to support a healthy thriving ecos

  17. Indicator-based approach to assess sustainability of current and projected water use in Korea

    Science.gov (United States)

    Kong, I.; Kim, I., Sr.

    2016-12-01

    Recently occurred failures in water supply system derived from lacking rainfall in Korea has raised severe concerns about limited water resources exacerbated by anthropogenic drivers as well as climatic changes. Since Korea is under unprecedented changes in both social and environmental aspects, it is required to integrate social and environmental changes as well as climate factors in order to consider underlying problems and their upcoming impacts on sustainable water use. In this study, we proposed a framework to assess multilateral aspects in sustainable water use in support of performance-based monitoring. The framework is consisted of four thematic indices (climate, infrastructure, pollution, and management capacity) and subordinate indicators. Second, in order to project future circumstances, climate variability, demographic, and land cover scenarios to 2050 were applied after conducting statistical analysis identifying correlations between indicators within the framework since water crisis are caused by numerous interrelated factors. Assessment was conducted throughout 161 administrative boundaries in Korea at the time of 2010, 2030, and 2050. Third, current and future status in water use were illustrated using GIS-based methodology and statistical clustering (K-means and HCA) to elucidate spatially explicit maps and to categorize administrative regions showing similar phenomenon in the future. Based on conspicuous results shown in spatial analysis and clustering method, we suggested policy implementations to navigate local communities to decide which countermeasures should be supplemented or adopted to increase resiliency to upcoming changes in water use environments.

  18. SUSTAINABILITY OF TAX SYSTEM IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Ana Patricia HOMORODEAN (CSATLOS

    2014-11-01

    Full Text Available In the context of globalization, sustainable development is the key to the development of contemporary society and future generations. Sustainability has become a key point for the debates in the political, economic, and academic environment. Therefore, today wehave reached the point when we speak of a country or company sustainability, of environmentalor agricultural sustainability, while speaking,at the same time, of fiscal policy sustainability. The purpose of this paper is to analyze the Romanian fiscal policy sustainability in terms of tax revenues. The methodology used in this research is bibliographical analysis of specialist literature and statistical analysis of data. Bibliographical analysis was used to define operating concepts: fiscal sustainability and tax revenues. Statistical analysis was used to analyze the evolution of tax revenues in Romania between2005and2013, as well as the share of tax revenues in the general consolidated budget of Romania. Statistical data were processed using Microsoft Excel and presented as evolution diagrams. The novelty and originality of the present work consist in the bibliographical study on Romanian fiscal policy sustainability, the statistical study on the evolution of tax revenues in Romania between 2005and2013, and the analysisof fiscal policy sustainability in Romania in terms of tax revenues.

  19. What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics.

    Science.gov (United States)

    Auestad, Nancy; Fulgoni, Victor L

    2015-01-01

    The concept of sustainable diets, although not new, is gaining increased attention across the globe, especially in relation to projected population growth and growing concerns about climate change. As defined by the FAO (Proceedings of the International Scientific Symposium, Biodiversity and Sustainable Diets 2010; FAO 2012), "Sustainable diets are those diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations." Consistent and credible science that brings together agriculture, food systems, nutrition, public health, environment, economics, culture, and trade is needed to identify synergies and trade-offs and to inform guidance on vital elements of healthy, sustainable diets. The aim of this article is to review the emerging research on environmental and related economic impacts of dietary patterns, including habitual eating patterns, nutritionally balanced diets, and a variety of different dietary scenarios. Approaches to research designs, methodologies, and data sources are compared and contrasted to identify research gaps and future research needs. To date, it is difficult to assimilate all of the disparate approaches, and more concerted efforts for multidisciplinary studies are needed. © 2015 American Society for Nutrition.

  20. The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems

    Directory of Open Access Journals (Sweden)

    John J. McGlone

    2013-05-01

    Full Text Available Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons. This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger. This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.

  1. The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems.

    Science.gov (United States)

    McGlone, John J

    2013-05-15

    Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons). This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger). This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.

  2. Stimulating transitions towards sustainable farming systems

    NARCIS (Netherlands)

    Elzen, B.; Barbier, M.; Cerf, M.; Grin, J.; Darnhofer, I.; Gibbon, D.; Dedieu, B.

    2012-01-01

    This chapter will address the dynamics of the agro-food sector in the long run and focus on how transitions to sustainability could be initiated and supported, taking into account renewal intitiatives at the farm level, organised projects, heterogeneous actors and differing interests. Sustainable

  3. CONSTRUCTING A GENERAL SUSTAINABLE SYSTEMS THEORY

    Science.gov (United States)

    Sustainability atracts enormous interest in the minds of the public and the scientific and engineering community because it holds the promise of a long-term solution to environmental problems. Sustainability, however, is mathematically loosely defined. There is no widely accepted...

  4. Practices of corporate social responsibility and sustainable systems work in Peruvian companies issuing sustainability reports

    Directory of Open Access Journals (Sweden)

    María Angela Prialé

    2015-12-01

    Full Text Available Through a literature review, this exploratory study seeks to determine whether the practices related to its colaborators, who report as part of its action responsible Peruvian companies issuing sustainability reports can be considered sustainable management practices of human resources. To this end, it was used the approach of sustainable work systems as a general approach. It was found that some of the practices of responsible management of human resources that implement the analyzed companies address the human dimensions of sustainability, although not all dimensions are considered equally or similar depth.

  5. Performance and sustainability of two alternative rabbit breeding systems

    Directory of Open Access Journals (Sweden)

    M. Theau.Clément

    2016-12-01

    Full Text Available The aim of this study was to evaluate 2 alternative breeding systems that differ from the current system in terms of reproduction rhythm, age of females at first insemination and the age of kits at weaning and at slaughter. We measured the performance of 332 females and their offspring over 4 consecutive cycles, as well as the sustainability of the systems. We compared an intensive (group I: reproduction rhythm [RR]=35 d; first insemination [AI1]=20.6 wk of age; weaning age [WA]=32 d; slaughter age [WS]=63 d an extensive (group E: RR=49 d; AI1=16.6 wk; WA=30 d; WS=70 d and a semi-intensive system (group S: RR=42 d; AI1=19.6 wk; WA=35 d; WS=70 d considered as the control system. Sustainability was evaluated using a multicriteria assessment method that takes 14 economic, environmental and social criteria into account, for which 3 to 5 indicators were expressed as the relative score [–1; –0.5; 0; +0.5; +1] for alternative systems compared to the control system. The productivity measured at 28 d (3.5, 4.2 and 4.6 kg/AI, for groups I, S and E, respectively, at 63 d post-partum (30, 38 and 42 kg/female for 4 cycles, respectively, and the total body energy measured 3 d after the 1st and at the 4th insemination (45.4, 46.8 and 49.5 MJ, respectively, were significantly increased when the reproductive rhythm decreased (P<0.001. Before and after weaning, kit mortality decreased when the reproduction rhythm decreased (11.4, 7.3, and 1.9% and 18.3, 15.3 and 10.6% for groups I, S and E, respectively, P<0.05. Carcass quality (weight and dressing percentage was lower in I than in the S and E groups (P<0.001. On this basis, the yearly productivity per doe at weaning could be estimated at 79, 83, and 78 kg for groups I, S and E, respectively. Consequently, the productivity per reproductive cycle increases with the extensification of the breeding system. Nevertheless, compared with the current French system (S, simultaneous changes in several breeding

  6. Business system: sustainable development and anticipatory systems thinking

    Directory of Open Access Journals (Sweden)

    Vojko Potočan

    2002-01-01

    Full Text Available The existence and development of humankind depends a lot upon a co-ordinated operation of all areas and levels of human activity. However, in either theory or practice we found no model of operation, which would offer a harmonized and target oriented development. A possible solution is offered by sustainable development, which tries to define and carry out common goals of humankind with a holistic harmonization of humans’ activities at all levels of their living and behaviour. Companies belong to central institutions of the modern society and essentially co–create the sustainability of society. Companies endeavour (e.g. by simulation and planning to prepare models of their goals and ways concerning their internal and external environment. On the basis of systems approach, we can define companies as business systems, which can best survive in a log-run on the basis of sustainable development. This business system’s effort can also be supported by the application of the anticipatory systems thinking, which can improve its planning methods, if it is holistic, understood as a future oriented mental activity made of its methodological approach, techniques, and modes of work. Its characteristics have a direct impact on holism of the definition of goals, on the orientation of operation, and hence on the achievement of the business system’s results.

  7. Academic Training: Toward Sustainable Energy Systems?

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es), a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED'electricity interconnection, intending to carry solar electricity fro...

  8. Academic Training: Toward Sustainable Energy Systems?

    CERN Document Server

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 28, 29, 30, 31 March from 11:00 to 12:00 - Main Auditorium, bldg. 500 Toward Sustainable Energy Systems? F. Tellez / CIEMAT, Madrid, E and D.Martinez / CIEMAT-PSA, Almeria, E Recent work on alternative energies go in the direction of proving the feasibility of solar energy as one of the best alternatives into the future. Europe, as everybody else, has understandably vested interests in insourcing energetic demands as far as affordable. The good news is that solar energy may be its deciding straw, because it has remarkable facilities and projects probing the possibilities of this option. Two european research centers are at the leading edge in this area: ENEA, which is leading 'Archimede', a vast solar array project in Sicily, and CIEMAT, with its Plataforma Solar de Almeria (PSA, www.psa.es) ,a major solar energy facility at the south of Spain. Both will become basic poles of the planned 'EURO-MED' electricity interconnection, intending to carry solar electricity f...

  9. Dynamic Business Networks: A Headache for Sustainable Systems Interoperability

    Science.gov (United States)

    Agostinho, Carlos; Jardim-Goncalves, Ricardo

    Collaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property. When achieved seamlessly, efficiency is increased in the entire product life cycle. Nowadays, most organizations try to attain interoperability by establishing peer-to-peer mappings with the different partners, or in optimized networks, by using international standard models as the core for information exchange. In current industrial practice, mappings are only defined once, and the morphisms that represent them, are hardcoded in the enterprise systems. This solution has been effective for static environments, where enterprise and product models are valid for decades. However, with an increasingly complex and dynamic global market, models change frequently to answer new customer requirements. This paper draws concepts from the complex systems science and proposes a framework for sustainable systems interoperability in dynamic networks, enabling different organizations to evolve at their own rate.

  10. Scope and precision of sustainability assessment approaches to food systems

    OpenAIRE

    Christian Schader; Jan Grenz; Matthias S. Meier; Matthias Stolze

    2014-01-01

    With sustainability within food systems becoming an increasingly important issue, several approaches that claim to assess the sustainability of farms, farming systems, and supply chains have been developed. Looking more closely at these sustainability impact assessment approaches, we discerned considerable differences between them in terms of scope, the level of assessment, and the precision of indicators used for impact assessment. Our aim was to classify and analyze a range of available sus...

  11. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...... and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations....

  12. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  13. THE MEDITERRANEAN DIET AS A SUSTAINABLE FOOD SYSTEM

    Directory of Open Access Journals (Sweden)

    Ricardo Lopes

    2016-12-01

    Full Text Available Central theme in society these days, the diet went through several phases during the evolution of the human being. Currently human’s advanced civilizational, deplete resources, develops forms of reproduction and rapid growth of animals, genetically alter plants to make them more resilient and artificially prolongs life. All these factors lead to an overload in nature and revolve to a group of environmentalists and animal rights. Sustainability is part of everyday life of political and social discourse as the fundamental way to our relationship with the environment. Sustainable food systems are those that are able to survive over time, promoting sustainable use of resources and a balance in the economic, social and environmental aspects. Changing diet to the Mediterranean Diet would bring benefits: on the health level, with better nutrition and increased use of some processed products; economic, by encouraging the consumption of local and national production of products; social, with the creation of jobs in agriculture; and environmental, using organic production and the reduction of transportation needs. The Mediterranean Diet encourages a more balanced and healthy eating style, with great positive impact on the environment. With the globalization phenomena is was gradually lost, but is now being revived due to the awakening to health and ecological problems.

  14. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  15. Mechanism behind self-sustained oscillations in direct current glow discharges and in dusty plasmas

    CERN Document Server

    Cho, Sung Nae

    2013-01-01

    An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by fluid models, where oscillations are attributed to positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in DC glow discharges. It is found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with electric field. The presented mechanism also describes the self-sustained oscillations of ions in dusty plasmas, demonstrating that oscillations in dusty plasmas and DC glow disc...

  16. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  17. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  18. The shape of the Sq current system

    Directory of Open Access Journals (Sweden)

    R. J. Stening

    2008-06-01

    Full Text Available Many years ago Mayaud (1965 suggested that a tilted, rather than symmetric, current system may be responsible for the form of daily magnetic variations near the focus of the current system. With arrays of magnetometer stations, both in Australia and in Europe, it is now demonstrated that such tilted systems do exist at certain times. At other times the magnetic variation near the focus is deformed by a previously reported extra morning current system which is apparently unconnected to the regular Sq system.

  19. Sustainability of UK shale gas in comparison with other electricity options: Current situation and future scenarios.

    Science.gov (United States)

    Cooper, Jasmin; Stamford, Laurence; Azapagic, Adisa

    2018-04-01

    Many countries are considering exploitation of shale gas but its overall sustainability is currently unclear. Previous studies focused mainly on environmental aspects of shale gas, largely in the US, with scant information on socio-economic aspects. To address this knowledge gap, this paper integrates for the first time environmental, economic and social aspects of shale gas to evaluate its overall sustainability. The focus is on the UK which is on the cusp of developing a shale gas industry. Shale gas is compared to other electricity options for the current situation and future scenarios up to the year 2030 to investigate whether it can contribute towards a more sustainable electricity mix in the UK. The results obtained through multi-criteria decision analysis suggest that, when equal importance is assumed for each of the three sustainability aspects shale gas ranks seventh out of nine electricity options, with wind and solar PV being the best and coal the worst options. However, it outranks biomass and hydropower. Changing the importance of the sustainability aspects widely, the ranking of shale gas ranges between fourth and eighth. For shale gas to become the most sustainable option of those assessed, large improvements would be needed, including a 329-fold reduction in environmental impacts and 16 times higher employment, along with simultaneous large changes (up to 10,000 times) in the importance assigned to each criterion. Similar changes would be needed if it were to be comparable to conventional or liquefied natural gas, biomass, nuclear or hydropower. The results also suggest that a future electricity mix (2030) would be more sustainable with a lower rather than a higher share of shale gas. These results serve to inform UK policy makers, industry and non-governmental organisations. They will also be of interest to other countries considering exploitation of shale gas. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multilevel and multi-user sustainability assessment of farming systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Passel, Steven, E-mail: Steven.vanpassel@uhasselt.be [Hasselt University, Faculty of Business Economics, Centre for Environmental Sciences, Agoralaan, Building D, 3590, Diepenbeek (Belgium); University of Antwerp, Department Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Meul, Marijke [University College Ghent, Department of Biosciences and Landscape Architecture, Campus Schoonmeersen, Building C, Schoonmeersstraat 52, 9000, Gent (Belgium)

    2012-01-15

    Sustainability assessment is needed to build sustainable farming systems. A broad range of sustainability concepts, methodologies and applications already exists. They differ in level, focus, orientation, measurement, scale, presentation and intended end-users. In this paper we illustrate that a smart combination of existing methods with different levels of application can make sustainability assessment more profound, and that it can broaden the insights of different end-user groups. An overview of sustainability assessment tools on different levels and for different end-users shows the complementarities and the opportunities of using different methods. In a case-study, a combination of the sustainable value approach (SVA) and MOTIFS is used to perform a sustainability evaluation of farming systems in Flanders. SVA is used to evaluate sustainability at sector level, and is especially useful to support policy makers, while MOTIFS is used to support and guide farmers towards sustainability at farm level. The combined use of the two methods with complementary goals can widen the insights of both farmers and policy makers, without losing the particularities of the different approaches. To stimulate and support further research and applications, we propose guidelines for multilevel and multi-user sustainability assessments. - Highlights: Black-Right-Pointing-Pointer We give an overview of sustainability assessment tools for agricultural systems. Black-Right-Pointing-Pointer SVA and MOTIFS are used to evaluate the sustainability of dairy farming in Flanders. Black-Right-Pointing-Pointer Combination of methods with different levels broadens the insights of different end-user groups. Black-Right-Pointing-Pointer We propose guidelines for multilevel and multi-user sustainability assessments.

  1. Current and Future Flight Operating Systems

    Science.gov (United States)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  2. Land system science and sustainable development of the earth system

    DEFF Research Database (Denmark)

    Verburg, Peter H.; Crossman, Neville; Ellis, Erle C.

    2015-01-01

    as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between...... distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can...... be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action....

  3. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  4. NASA's Space Launch System: Affordability for Sustainability

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  5. A systems engineering approach for realizing sustainability in infrastructure projects

    OpenAIRE

    Mohamed Matar; Hesham Osman; Maged Georgy; Azza Abou-Zeid; Moheeb El-Said

    2017-01-01

    Sustainability is very quickly becoming a fundamental requirement of the construction industry as it delivers its projects; whether buildings or infrastructures. Throughout more than two decades, a plethora of modeling schemes, evaluation tools and rating systems have been introduced en route to realizing sustainable construction. Many of these, however, lack consensus on evaluation criteria, a robust scientific model that captures the logic behind their sustainability performance evaluation,...

  6. A water management decision support system contributing to sustainability

    Science.gov (United States)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high

  7. Systems and practices in sustainable consumption research

    DEFF Research Database (Denmark)

    Røpke, Inge

    The financial crisis in 2007-2008 and the subsequent economic crisis served as a wake-up call for sustainable consumption studies. The literature on consumption and environment had little focus on finance, but the crisis made it clear that financial issues are important also from an environmental...... perspective. Credit plays an important role as a driver of unsustainable consumption, and financial mechanisms contribute to the widening inequalities as well as the build-up of macroeconomic instability. Looking ahead, transformation of finance is just as important for sustainability as transformation...

  8. Current rectification in a tropical coral reef system

    Science.gov (United States)

    Salas-Monreal, D.; Salas-de-León, D. A.; Monreal-Gómez, M. A.; Riverón-Enzástiga, M. L.

    2009-12-01

    Acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles were recorded in the Veracruz Reef System (VRS) to elucidate the effect of topography on current circulation and zooplankton distribution. Measurements showed the baroclinic behavior of the tropical coral reef system with vertical temperature and salinity gradients of 0.4°C m-1 and 0.5 psu m-1, respectively. Under sustained southerly wind conditions, a cyclonic eddy generated by subtidal and tidal current rectification was observed between the two groups of coral colonies studied. Current rectification was attributed to the shallowness of the coral colonies and to a small cape close to Anton Lizardo Village. The cyclonic eddy, with low surface temperature, produced an increment in the vertically integrated acoustic scattering volume (biovolume), suggesting that this is a high-productivity area.

  9. Space Command Sustainment Review: Improving the Balance Between Current and Future Capabilities

    National Research Council Canada - National Science Library

    Tripp, Robert S; Lynch, Kristin F; Harrison, Shawn; Drew, John G; Roll, Jr, Charles R

    2007-01-01

    .... Air Force space systems by evaluating the effectiveness and efficiency of current policies related to processes, force development, doctrine, information systems and tools, and organization form command perspective...

  10. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  11. Response Current from Spin-Vortex-Induced Loop Current System to Feeding Current

    Science.gov (United States)

    Morisaki, Tsubasa; Wakaura, Hikaru; Abou Ghantous, Michel; Koizumi, Hiroyasu

    2017-07-01

    The spin-vortex-induced loop current (SVILC) is a loop current generated around a spin-vortex formed by itinerant electrons. It is generated by a U(1) instanton created by the single-valued requirement of wave functions with respect to the coordinate, and protected by the topological number, "winding number". In a system with SVILCs, a macroscopic persistent current is generated as a collection of SVILCs. In the present work, we consider the situation where external currents are fed in the SVILC system and response currents are measured as spontaneous currents that flow through leads attached to the SVILC system. The response currents from SVILC systems are markedly different from the feeding currents in their directions and magnitude, and depend on the original current pattern of the SVILC system; thus, they may be used in the readout process in the recently proposed SVILC quantum computer, a quantum computer that utilizes SVILCs as qubits. We also consider the use of the response current to detect SVILCs.

  12. Glioblastoma in the limbic system presenting as sustained central hypopnea

    Directory of Open Access Journals (Sweden)

    Ryota Mashiko

    2017-03-01

    Full Text Available A 71-year-old woman was transferred to our hospital after experiencing an epigastric sensation followed by unconsciousness. On arrival, the patient showed impaired consciousness without convulsive movement, cyanosis and shallow breathing, arterial O2 desaturation, and increased PCO2. Artificial respiration improved CO2 accumulation and consciousness, but interruption of artificial respiration returned the patient to her former state. Computed tomography of the head showed a mass around the left corpus callosum. The patient's hypopnea followed by unconsciousness suggested sustained nonconvulsive epilepsy manifesting in central hypopnea and subsequent unconsciousness due to CO2 narcosis. Intravenous (IV anticonvulsants promptly improved the respiratory condition, and the patient started to regain consciousness. Magnetic resonance imaging revealed a lesion involving the bilateral limbic systems. To our knowledge, limbic seizure manifesting with hypopnea causing unconsciousness due to CO2 narcosis has not previously been reported, despite evidence of a strong relationship between the limbic and respiratory systems. The current case suggests that sustained limbic seizure can manifest as hypopnea. Since emergency EEG can be difficult to perform, IV anticonvulsant treatment is an appropriate diagnostic therapy.

  13. Sustainable development indicators for urban water systems: a case ...

    African Journals Online (AJOL)

    In the light of the increasing pressures on the world's freshwater resources, changes in the present and future urban water systems are called for in order to achieve sustainable development. The transformation from unsustainable practices demands tools that measure progress and can warn of future trends. Sustainable ...

  14. Business models and information systems for sustainable development

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Shishkov, Boris; Shishkov, B.B.

    Businesses are expected to explore market opportunities in the area of sustainable development, thus contributing to finding solutions aiming at sustainable quality of life. This will require adaptation and innovation of business models and information systems, with challenges of particular interest

  15. Evaluating the Sustainability of the Current Account Deficits of Ukraine: the Modern Trends

    Directory of Open Access Journals (Sweden)

    Bazhenova Olena V.

    2017-05-01

    Full Text Available The article analyzes the dynamics of the current account of the balance of payments of Ukraine, which indicates the persistence of its imbalances. The accumulated current account deficits preceded economic crises, confirming the hypothesis that the countries that demonstrate sustained current account deficits on the eve of crises suffer significant losses as a result of their occurrence. The main tendencies in Ukraine in the context of imbalances in investment and savings were analyzed. It has been shown that GDP growth was not accompanied by an increase in the current account deficits, which also signals its volatility. The current account deficit is attributable mainly to the negative net export balance that shows a decline in the foreign exchange earnings to resettle and service the previously accumulated external debt, which became especially actual in the last three years. The calculation of balance of the current account of Ukraine on the basis of its components and in accordance with the financial and capital accounts data has revealed a significant volume of hidden exports. Moreover, in recent years, the deterioration of situation in the context of external sustainability is determined by a combination of current account deficits and a rapid increase in the debt burden on the economy.

  16. Sustaining organizational culture change in health systems.

    Science.gov (United States)

    Willis, Cameron David; Saul, Jessie; Bevan, Helen; Scheirer, Mary Ann; Best, Allan; Greenhalgh, Trisha; Mannion, Russell; Cornelissen, Evelyn; Howland, David; Jenkins, Emily; Bitz, Jennifer

    2016-01-01

    The questions addressed by this review are: first, what are the guiding principles underlying efforts to stimulate sustained cultural change; second, what are the mechanisms by which these principles operate; and, finally, what are the contextual factors that influence the likelihood of these principles being effective? The paper aims to discuss these issues. The authors conducted a literature review informed by rapid realist review methodology that examined how interventions interact with contexts and mechanisms to influence the sustainability of cultural change. Reference and expert panelists assisted in refining the research questions, systematically searching published and grey literature, and helping to identify interactions between interventions, mechanisms and contexts. Six guiding principles were identified: align vision and action; make incremental changes within a comprehensive transformation strategy; foster distributed leadership; promote staff engagement; create collaborative relationships; and continuously assess and learn from change. These principles interact with contextual elements such as local power distributions, pre-existing values and beliefs and readiness to engage. Mechanisms influencing how these principles sustain cultural change include activation of a shared sense of urgency and fostering flexible levels of engagement. The principles identified in this review, along with the contexts and mechanisms that influence their effectiveness, are useful domains for policy and practice leaders to explore when grappling with cultural change. These principles are sufficiently broad to allow local flexibilities in adoption and application. This is the first study to adopt a realist approach for understanding how changes in organizational culture may be sustained. Through doing so, this review highlights the broad principles by which organizational action may be organized within enabling contextual settings.

  17. Scope and precision of sustainability assessment approaches to food systems

    Directory of Open Access Journals (Sweden)

    Christian Schader

    2014-09-01

    Full Text Available With sustainability within food systems becoming an increasingly important issue, several approaches that claim to assess the sustainability of farms, farming systems, and supply chains have been developed. Looking more closely at these sustainability impact assessment approaches, we discerned considerable differences between them in terms of scope, the level of assessment, and the precision of indicators used for impact assessment. Our aim was to classify and analyze a range of available sustainability impact assessment approaches with respect to scope and precision. From a total of 35 sustainability assessment approaches, we selected 6 for a detailed comparison. From our analysis, we concluded that there are 3 different types of trade-offs in these approaches: between different kinds of scope, between different indicators for precision and trade-offs, and between the scope and precision. Thus, one-size-fits-all solutions, with respect to tool selection, are rarely feasible. Furthermore, as indicator selection determines the assessment results, different and inconsistent indicators can lead to contradictory assessment results that may not be comparable. To overcome these shortcomings, sustainability impact assessments should include a precise definition of the notion of "sustainability" along with a description of the methodological approach and the indicator sets and should aim for harmonization of indicators and assumptions. Global initiatives such as the Sustainability Assessment in Food and Agriculture Systems (SAFA Guidelines are a helpful step toward shedding light on the differences of these approaches and making the assessment results more comparable.

  18. Innovative Integrated Management System (IIMS for Sustainable Food Industry

    Directory of Open Access Journals (Sweden)

    Suttiprasit Prasert

    2014-11-01

    Full Text Available It is evident that the long-term survival and growth of global food industry depend on the availability and efficient use of raw materials, energy and water and other facilities under the concept of sustainable practice, i.e. in environment, society and economics. Quality and safety managements are essential to ensure that the industry can continue to support the communities in which it operates. Awarding a number of certifications to show the high standing of international quality and hygiene characteristics are currently necessary, e.g. ISO 9001: 2000, GMP/GHP, HACCP, ISO 22000, BRC and etc. To minimize the cost and maximize the efficiency, the Innovative Integration Management System (IIMS has been implemented effectively under the frameworks of sustainability in a numbers of national and international food production companies in Thailand during the past years. This will allow the organization to integrate all common processes such as management review, document control, record control, training, monitoring & measuring, data analysing, internal audits, and corrective and preventive actions whereas the critical or specific processes required by each standard are still retained harmoniously with the others.

  19. Sustained load performance of adhesive anchor systems in concrete

    Science.gov (United States)

    Davis, Todd Marshall

    Stemming from a tragic failure of an adhesive anchor system, this research project investigated the sustained load performance of adhesive anchors in concrete under different installation and in-service conditions. The literature review investigated the current state of art of adhesive anchors. Extensive discussion was devoted to the behavior of adhesive anchors in concrete as well as the many factors that can affect their short-term and sustained load strength. Existing standards and specifications for the testing, design, construction, and inspection of adhesive anchors were covered. Based on the results of the literature review and the experience of the research group, a triage was conducted on many parameters identified as possibly affecting the sustained load performance of adhesive anchors and the highest priority parameters were investigated in this project. A stress versus time-to-failure approach was used to evaluate sensitivity of three ICC-ES AC 308 approved adhesive anchor systems. Of the various parameters investigated, only elevated in-service temperature and manufacturer's cure time was shown to exhibit adverse effects on sustained loads more than that predicted by short-term tests of fully cured adhesive over a reasonable structure lifetime of 75 years. In a related study, various tests were conducted on the adhesive alone (time-temperature superposition, time-stress superposition, and dogbone tensile tests). The results of that study were used to investigate the existence of a correlation with long-term anchor pullout testing in concrete. No consistent correlations were detected for the adhesives in the study. Tests were also conducted on the effect of early-age concrete on adhesive anchor bond strength. On the basis of confined test bond-strength alone, adhesive A (vinyl ester) did not show any significant increase after 14 days (102% of 28 day strength at 14 days), and adhesive B and C (epoxies) did not show any significant increase after 7 days

  20. Exergy and Sustainability : Insights into the Value of Exergy Analysis in Sustainability Assessment of Technological Systems

    NARCIS (Netherlands)

    Stougie, L.

    2014-01-01

    A major challenge in striving for a more sustainable society is the selection of technological systems. Given the capital intensity of industrial production plants, power generation systems and infrastructure, investment decisions create path dependencies for decades to come. It is difficult to know

  1. Design technologies for green and sustainable computing systems

    CERN Document Server

    Ganguly, Amlan; Chakrabarty, Krishnendu

    2013-01-01

    This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high-performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking. ·         Offers readers a single-source reference for addressing the challenges of power efficiency and sustainability in embedded computing systems; ·         Provides in-depth coverage of the key underlying design technologies for green and sustainable computing; ·         Covers a wide range of topics, from chip-level design to architectures, computing systems, and networks.

  2. Dynamic management of sustainable development methods for large technical systems

    CERN Document Server

    Krishans, Zigurds; Merkuryev, Yuri; Oleinikova, Irina

    2014-01-01

    Dynamic Management of Sustainable Development presents a concise summary of the authors' research in dynamic methods analysis of technical systems development. The text illustrates mathematical methods, with a focus on practical realization and applications.

  3. Modeling and Advanced Control for Sustainable Process Systems

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  4. A conceptual approach to design livestock production systems for robustness to enhance sustainability

    NARCIS (Netherlands)

    Napel, ten J.; Veen, van der A.A.; Oosting, S.J.; Groot Koerkamp, P.W.G.

    2011-01-01

    Existing approaches to enhance sustainability of livestock production systems focus on the level of sustainability indicators. Maintaining the level of sustainability in the face of perturbations, which is robustness of sustainability, is relatively unexplored. Perturbations can be classed as noise

  5. Sustainability of vector control strategies in the Gran Chaco Region: current challenges and possible approaches

    Directory of Open Access Journals (Sweden)

    Ricardo E Gürtler

    2009-07-01

    Full Text Available Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical.

  6. Advanced thermodynamics metrics for sustainability assessments of open engineering systems

    Directory of Open Access Journals (Sweden)

    Sekulić Dušan P.

    2006-01-01

    Full Text Available This paper offers a verification of the following hypotheses. Advanced thermodynamics metrics based on entropy generation assessments indicate the level of sustainability of transient open systems, such as in manufacturing or process industries. The indicator of sustainability may be related to particular property uniformity during materials processing. In such a case the property uniformity would indicate systems’ distance from equilibrium i.e., from the sustainable energy utilization level. This idea is applied to a selected state-of-the-art manufacturing process. The system under consideration involves thermal processing of complex aluminum structures during controlled atmosphere brazing for a near-net-shape mass production of compact heat exchangers.

  7. Green innovation and sustainable industrial systems within sustainability and company improvement perspective

    Science.gov (United States)

    Edi Nugroho Soebandrija, Khristian

    2017-12-01

    This paper comprises discussion of Green Innovation and Sustainable Industrial Systems within Sustainability and Company Improvement Perspective of beverage manufacturing company (BMC). The stakeholder theory is the grand theory for the company improvement perspective in this paper. The data processing in this paper is conducted through software which are SEM-PLS with SmartPLS 2.0 and SPSS 19. The specified objective of this paper has focus on sustainability as one of 6 variables, in lieu of those 6 variables as the big picture. The reason behind this focus on sustainability is the fact that there are assorted challenges in sustainability that is ranging from economic, environment and company perspectives. Those challenges in sustainability include the sustainable service supply chain management and its involvement of society. The overall objective is to analyze relationship hypothesis of 6 variables, 4 of them (leadership, organizational learning, innovation, and performance) are based on Malcolm Baldrige’s performance excellence concept to achieve sustainability and competitive advantage through company-competitor and customer questionnaire, and its relation to Total Quality Management (TQM) and Quality Management System (QMS). In conclusion, the spearheaded of company improvement in this paper is in term of consumer satisfaction through 99.997% quality standards. These can be achieved by ambidexterity through exploitation and exploration innovation. Furthermore, in this paper, TQM enables to obtain popularity brand index achievement that is greater than 45.9%. Subsequently, ISO22000 of food security standard encompasses quality standard of ISO9000 and HACCP. Through the ambidexterity of exploitation and exploration (Non Standard Product Inspection) NOSPI machine, the company improvement generates the achievement of 75% automation, 99.997% quality control standard and 80% of waste reduction.

  8. The Battle Command Sustainment Support System: Initial Analysis Report

    Science.gov (United States)

    2016-09-01

    Sustainment Sustainment System Mission Command (S2MC) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...Data (214A) 6 Global Air Transportation Execution System (GATES) 6 Radio-Frequency Identification ( RFID ) Detections, Level 6, and Interrogator...information. Logistics Support Activity (LOGSA)  Frequency: 2 or 6 hr  Format: direct database link or flat file via secure file transfer

  9. Sustainable Innovation, Management Accounting and Control Systems, and International Performance

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Valeiras

    2015-03-01

    Full Text Available This study analyzes how Management Accounting and Control Systems (MACS facilitate the appropriation of the benefits of sustainable innovations in organizations. In particular, this paper examines the moderating role of different types of MACS in the relationships between sustainable innovation and international performance at an organizational level. We collected survey data from 123 Spanish and Portuguese organizations. Partial Least Square was used to analyze the data. Results show that the effect of sustainable innovations on international performance is enhanced by contemporary rather than traditional types of MACS. Overall our findings show that MACS can help managers to develop and monitor organizational activities (e.g., costumer services and distribution activities, which support the appropriation of the potential benefits from sustainable innovation. This paper responds to recent calls for in-depth studies about the organizational mechanism that may enhance the success of sustainable innovation.

  10. Medical Robots: Current Systems and Research Directions

    OpenAIRE

    Ryan A. Beasley

    2012-01-01

    First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities ...

  11. Opportunities and challenges for multicriteria assessment of food system sustainability

    Directory of Open Access Journals (Sweden)

    Hugo F. Alrøe

    2016-03-01

    Full Text Available The focus of the Special Feature on "Multicriteria assessment of food system sustainability" is on the complex challenges of making and communicating overall assessments of food systems sustainability based on multiple and varied criteria. Four papers concern the choice and development of appropriate tools for making multicriteria sustainability assessments that handle built-in methodological conflicts and trade-offs between different assessment objectives. They underscore the value of linking diverse methods and tools, or nesting and stepping their deployment, to help build resilience and sustainability. They conclude that there is no one tool, one framework, or one indicator set that is appropriate for the different purposes and contexts of sustainability assessment. The process of creating the assessment framework also emerges as important: if the key stakeholders are not given a responsible and full role in the development of any assessment tool, it is less likely to be fit for their purpose and they are unlikely to take ownership or have confidence in it. Six other papers reflect on more fundamental considerations of how assessments are based in different scientific perspectives and on the role of values, motivation, and trust in relation to assessments in the development of more sustainable food systems. They recommend a radical break with the tradition of conducting multicriteria assessment from one hegemonic perspective to considering multiple perspectives. Collectively the contributions to this Special Feature identify three main challenges for improved multicriteria assessment of food system sustainability: (i how to balance different types of knowledge to avoid that the most well-known, precise, or easiest to measure dimensions of sustainability gets the most weight; (ii how to expose the values in assessment tools and choices to allow evaluation of how they relate to the ethical principles of sustainable food systems, to societal

  12. Assessing the sustainability of egg production systems in The Netherlands.

    Science.gov (United States)

    van Asselt, E D; van Bussel, L G J; van Horne, P; van der Voet, H; van der Heijden, G W A M; van der Fels-Klerx, H J

    2015-08-01

    Housing systems for laying hens have changed over the years due to increased public concern regarding animal welfare. In terms of sustainability, animal welfare is just one aspect that needs to be considered. Social aspects as well as environmental and economic factors need to be included as well. In this study, we assessed the sustainability of enriched cage, barn, free-range, and organic egg production systems following a predefined protocol. Indicators were selected within the social, environmental, and economic dimensions, after which parameter values and sustainability limits were set for the core indicators in order to quantify sustainability. Uncertainty in the parameter values as well as assigned weights and compensabilities of the indicators influenced the outcome of the sustainability assessment. Using equal weights for the indicators showed that, for the Dutch situation, enriched cage egg production was most sustainable, having the highest score on the environmental dimension, whereas free-range egg production gave the highest score in the social dimension (covering food safety, animal welfare, and human welfare). In the economic dimension both enriched cage egg and organic egg production had the highest sustainability score. When weights were attributed according to stakeholder outputs, individual differences were seen, but the overall scores were comparable to the sustainability scores based on equal weights. The provided method enabled a quantification of sustainability using input from stakeholders to include societal preferences in the overall assessment. Allowing for different weights and compensabilities helps policymakers in communicating with stakeholders involved and provides a weighted decision regarding future housing systems for laying hens. © 2015 Poultry Science Association Inc.

  13. Thermally stimulated currents in glassy systems

    CERN Document Server

    Halpern, V

    2003-01-01

    A common interpretation of the results of thermally stimulated current experiments is in terms of a fixed set of states present in the system with a range of activation energies, of which specific subsets are selected and identified by thermal slicing (TS) (or fractional polarization) experiments at different polarization temperatures T sub p. On the other hand, such an interpretation is not consistent with many current theories of supercooled liquids and of the glass transition. The results are presented of our calculations on thermally activated Fredrickson-Andersen model systems, which indicate that the TS technique does identify the isothermal response of the system at T sub p. However, this response need not be associated with specific states present in the system, but can arise for instance from a competition between different relaxation paths for the dipole moments of the individual particles. In addition, the compensation law is found to be obeyed for systems with and without cooperative effects, so t...

  14. Nonregenerative natural resources in a sustainable system of energy supply.

    Science.gov (United States)

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sustainability and Convergence: The Future of Corporate Governance Systems?

    Directory of Open Access Journals (Sweden)

    Daniela M. Salvioni

    2016-11-01

    Full Text Available In today’s world, a sustainable approach to corporate governance can be a source of competitive advantage and a long-term success factor for any firm. Sustainable governance requires that the board of directors considers economic, social and environmental expectations in an integrated way, no matter what ownership structure and formal rules of corporate governance apply to the company: this mitigates the traditional differences between insider and outsider systems of corporate governance. Previous studies failed to consider the contribution of sustainability in the process of corporate governance convergence. Therefore, the aim of this article is to fill the gap in the existing literature by means of a qualitative analysis, supporting the international debate about convergence of corporate governance systems. The article describes the evolution of outsider and insider systems in the light of the increasing importance of sustainability in the board’s decision-making and firm’s operation to satisfy the needs of all the company’s stakeholders. According to this, a qualitative content analysis developed with a directed approach completes the theoretical discussion, demonstrating that sustainability can bring de facto convergence between outsider and insider corporate governance systems. The article aims to be a theoretical starting point for future research, the findings of which could also have practical implications: the study encourages the policy makers to translate the sustainable business best practices into laws and recommendations, strengthening the mutual influence between formal and substantial convergence.

  16. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  17. Is current biochar soil study addressing global soil constraints for sustainable agriculture?

    Science.gov (United States)

    Pan, Genxing; Zhang, Dengxiao; Yan, Ming; Niu, Yaru; Liu, Xiaoyu; van Zwieten, Lukas; Chen, De; Bian, Rongjun; Cheng, Kun; Li, Lianqing; Joseph, Stephen; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Crowley, David; Filley, Timothy

    2016-04-01

    Global soil degradation has been increasingly threatened sustainability of world agriculture. Use of biochar from bio-wastes has been proposed as a global option for its great potential in tackling soil degradation and mitigating climate change in agriculture. For last 10 years, there have been greatly increasing interests in application of charred biomass, more recently termed biochar, as a soil amendment for addressing soil constraints for sustainable agriculture. Biochar soil studies could deliver reliable information for appropriate application of biochar to soils where for sustainable agriculture has been challenged. Here we review the literature of 798 publications reporting biochar soil studies by August, 2015 to address potential gaps in understanding of biochar's role in agriculture. We have found some substantial biases and gaps inherent in the current biochar studies. 1) The majority of published studies were from developed regions where the soils are less constrained and were much more frequent in laboratory and glasshouse pot experiments than field studies under realistic agriculture. 2) The published biochar soil studies have used more often small kiln or lab prepared biochar than commercial scale biochars, more often wood and municipal waste derived biochars than crop straw biochars. Overall, the lack of long-term well designed field studies using biochar produced in commercial processes may have limited our current understanding of biochar's potential to enhance global crop production and climate change mitigation. We have also recommended a global alliance between longer-term research experiments and biochar production facilities to foster the uptake of this important technology at a global scale. Keywords: biochar, soil study, literature review, research gap, global perspective, quantitative assessment, sustainable agriculture

  18. Revamping Grooving Process for Sustainability using Fuzzy Expert System

    Directory of Open Access Journals (Sweden)

    Iqba Asif

    2016-01-01

    Full Text Available The article presents an application of a fuzzy expert system for renovating a metal cutting process to cope with the sustainability requirements. The work seeks a sustainable balance between energy consumption, productivity and tool damage. Cylindrical grooving experiments were performed to generate data related to quantification of the effects of material hardness, cutting speed, width of cut and feed rate on the aforementioned sustainability measures. A fuzzy knowledge-base was developed that suggests the most suitable adjustments of the controlled variables that would lead to achievement of various combinations of the objectives.

  19. Evaluating the Sustainability of the Spanish Social Security System

    Directory of Open Access Journals (Sweden)

    Francisco J. Blanco-Encomienda

    2017-12-01

    Full Text Available Social security has remarkable relevance in the general context of Spanish economy. This system is viable if the volume of active population increases at a higher rate than the number of pensioners does and if, in addition, active population is employed by the productive system. The reports of the National Institute of Statistics about Spanish demography demonstrate how these conditions are not met as of today, because our society has one of the highest aging rates and also a remarkable increase in the dependency rate. Through various techniques of time series analysis, this paper reveals the current economic trends in Spain to demonstrate the need for structural reforms of the system so as to make it more sustainable in the long term. To achieve this, it is necessary to change the financing model to a mixed one where the capitalization method plays a significant role, and also to implement urgent measures in order to reduce the barriers to business and employment development.

  20. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    Science.gov (United States)

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded.......A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup...

  2. Performance versus values in sustainability transformation of food systems

    DEFF Research Database (Denmark)

    Alrøe, Hugo F.; Sautier, Marion; Legun, Katharine

    2017-01-01

    -based approaches that aim at communicating and mediating sustainability values to enable coordinated and cooperative action to transform the food system. We identify their respective strengths and weaknesses based on a cross-case analysis of four cases, and propose that the two approaches, likeWeber's two types......Questions have been raised on what role the knowledge provided by sustainability science actually plays in the transition to sustainability and what role it may play in the future. In this paper we investigate different approaches to sustainability transformation of food systems by analyzing...... the rationale behind transformative acts-the ground that the direct agents of change act upon-and how the type of rationale is connected to the role of research and how the agents of change are involved. To do this we employ MaxWeber's distinction between instrumental rationality and value-rationality in social...

  3. Public-Private Partnerships and Sustainable Regional Innovation Systems

    DEFF Research Database (Denmark)

    Lehmann, Martin; Christensen, Per; Johnson, Bjørn

    -private partnerships. The role of universities if and when actively participating in ‘life outside the ivory tower’ is addressed. These partnerships are also discussed in a regional context. With point of departure in innovation theory, we combine ‘sustainable development’ with the Regional System of Innovation...... approach to propose a new concept – Sustainable Regional Innovation System – in which regional initiatives such as Public-Private(-Academic) Partnerships play an integrated role, not least in the context of ‘learning and innovation for sustainable development’. Two cases are presented to underline...... be playing in public-private partnerships for sustainable development, and the links and benefits this may provide towards universities fulfilling their first (science) and second (education) missions. In this paper, the first part is dedicated to the discussion and clarification of the concept of public...

  4. Sustainability and deliberate transition of socio-technical systems

    DEFF Research Database (Denmark)

    Hansen, Ole Erik; Søndergård, Bent; Stærdahl, Jens

    or developing socio-technical systems in order to integrate the concept of sustainability as a driver for the deliberate and purposeful shaping and transition. The article discusses the requirements to effective governance networks and governing of governance networks. Research within innovation systems......, transition management and technology systems combined with planning and experimental activities provides both a theoretical and empirical body of knowledge of such governance processes. The article discusses how this perspective can be used in relation to the process of developing bio-fuel systems......The article suggests that deliberate planning for sustainability demands a focus on the transition of socio-technical systems in order to establish robust and more sustainable patterns of production and consumption. This implies the necessity of a new perspective for environmental planning...

  5. Health care financing and the sustainability of health systems

    OpenAIRE

    Liaropoulos, Lycourgos; Goranitis, Ilias

    2015-01-01

    The economic crisis brought an unprecedented attention to the issue of health system sustainability in the developed world. The discussion, however, has been mainly limited to “traditional” issues of cost-effectiveness, quality of care, and, lately, patient involvement. Not enough attention has yet been paid to the issue of who pays and, more importantly, to the sustainability of financing. This fundamental concept in the economics of health policy needs to be reconsidered carefully. In a glo...

  6. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    OpenAIRE

    Despoina E. Keramioti; Christos A. Frangopoulos

    2010-01-01

    A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat) of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three syste...

  7. Collaborative business modeling for systemic and sustainability innovations

    DEFF Research Database (Denmark)

    Rohrbeck, René; Konnertz, L.; Knab, S.

    2013-01-01

    Sustainability innovations are characterized by a systemic nature, and require that multiple organizations act in an orchestrated fashion. To jointly identify opportunities and plan sustainability innovations, new methods and approaches are needed. In this article we describe a case study where 8...... and roadmapping. We find that CBM has its particular strengths in promoting creativity, dealing with uncertainty, and providing a platform for both strategic discussions and planning the future architecture of an emerging market....

  8. Development of a sustainability management system for petroleum companies

    OpenAIRE

    Irhoma, A

    2017-01-01

    Petroleum companies contribute to the largest proportion of environmental degradation in Libya. In support, the 2014 environmental performance index ranks Libya 120th out of 178 countries which suggest the country faces serious environmental degradation, unlike the developed countries. It is necessary to critically investigate the key environmental sustainability issues faced by the Libyan petroleum companies to develop a Sustainability Management System (SMS).\\ud \\ud The research aims to dev...

  9. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column......, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light...

  10. Controlled Release System for Localized and Sustained Drug Delivery Applications

    Science.gov (United States)

    Rodriguez, Lidia Betsabe

    Current controlled release formulations has many drawbacks such as excess of initial burst release, low drug efficiency, non-degradability of the system and low reproducibility. The present project aims to offer an alternative by developing a technique to prepare uniform, biodegradable particles ( ˜19 mum ) that can sustainably release a drug for a specific period of time. Chitosan is a natural polysaccharide that has many characteristics to be used for biomedical applications. In the last two decades, there have been a considerable number of studies affirming that chitosan could be used for pharmaceutical applications. However, chitosan suffers from inherent weaknesses such as low mechanical stability and dissolution of the system in acidic media. In the present study, chitosan microparticles were prepared by emulsification process. The model drug chosen was acetylsalicylic acid as it is a small and challenging molecule. The maximum loading capacity obtained for the microparticles was approximately 96%. The parameters for the preparation of uniform particles with a narrow size distribution were identified in a triangular phase diagram. Moreover, chitosan particles were successfully coated with thin layers of poly lactic-coglycolic acid (PLGA) and poly lactic acid (PLA). The performance of different layerswas tested for in vitro drug release and degradation studies. Additionally, the degradability of the system was evaluated by measuring the weight loss of the system when exposed to enzyme and without enzyme. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to characterize the controlled release system. Additionally, the in vitro drug release was monitored by ultraviolet-visible spectrophotometry (UV-Vis) and liquid chromatography mass spectrometry (LC-MS). The results obtained from this project showed that it is

  11. Defense Systems Modernization and Sustainment Initiative

    Science.gov (United States)

    2014-03-31

    Oshkosh_MTVR_brochure.pdf ST12 compliance of the fixture was significant compared to the thermal spray sample and needle roller interaction. An extensometer was...Pressure Regula * Purge Tank Valves & Switch Brake System Drivetram System E Driveline Assemt Coolant Filter Engine1 -- Engine Oil Filler...engine speed (RPM) is reported by engine ECU, transmission ECU, and brake system ECUs, and the engineer can set a preference in that order. 4. The

  12. Improving Sustainability through a Dual Audit System

    Directory of Open Access Journals (Sweden)

    Shun-Ji Jin

    2018-01-01

    Full Text Available As a consequence of a large-scale accounting fraud, China implemented a dual audit system for listed companies issuing foreign stocks (B shares and H shares from 2001 to 2006, before adopting Chinese-IFRS in 2007. At the end of 2010, the EU proposed that listed corporations over a certain size should be required to implement a joint audit system. However, only a few countries have implemented this system, and thus, data and references are extremely limited. The dual audit system is called the “twin” of the joint audit system. We analyze whether the dual system improves a company’s earnings quality. Earnings quality is studied by means of real earnings management, and the variable of loss aversion. We find that real earnings management of dual audited enterprises is lower than that of single audited (A-share enterprises, and the inclination toward loss aversion of enterprises in the foreign share market has not increased significantly relative to the A-share enterprises after the abolition of the dual audit system. The results indicate that a dual audit system improves earnings quality. We expect that the conclusions of this research will resolve the issues and concerns about the joint audit system.

  13. Trade Services System Adaptation for Sustainable Development

    Science.gov (United States)

    Khrichenkov, A.; Shaufler, V.; Bannikova, L.

    2017-11-01

    Under market conditions, the trade services system in post-Soviet Russia, being one of the most important city infrastructures, loses its systematic and hierarchic consistency hence provoking the degradation of communicating transport systems and urban planning framework. This article describes the results of the research carried out to identify objects and object parameters that influence functioning of a locally significant trade services system. Based on the revealed consumer behaviour patterns, we propose methods to determine the optimal parameters of objects inside a locally significant trade services system.

  14. Defense Systems Modernization and Sustainment Initiative

    National Research Council Canada - National Science Library

    Nasr, Nabil; McCarthy, Edward; Haselkorn, Michael; Thurston, Michael

    2006-01-01

    .... NC3R efforts included the development of remanufacturing processes for critical aircraft and ground vehicle components, reverse engineering and upgrade for obsolete fire control system components...

  15. Dynamic Facades: Environmental Control Systems for Sustainable Design

    Directory of Open Access Journals (Sweden)

    Riham Nady

    2017-03-01

    Full Text Available Façades are the most strategic and visible part of the building which leads to an improvement in appearance and environmental performances in buildings. Facades play a significant role in the quality of a building. It forms the barrier between the internal space and the outside climate. This means that the façade is the medium through which the interaction takes place between the activities, inside and outside. The image of a building, and therefore for the users, is reflected through the design of the façade.In recent practices, architects and engineers are strategically designing and installing dynamic facades not only for their aesthetic values, but also for improving the buildings’ energy performance. The high integration of these strategies for dynamic facades increases their durability and suitability, with current building demands, which targets for energy efficiency and thermal comfort level.  In the meantime, recent studies show that the majority of people spend up to 90% of their time indoors especially in hot climates. This trend has had a high impact on the requirements of the indoor environment, consequently turning the buildings into complex devices that ensure the wellbeing of the people who use them.  Therefore, users are starting to look for new products for the façade design that comply with the requirements of energy. This poses an important question, is there anything to be done to this specific part of the building in order to positively influence the overall energy need of the building?The paper will discuss the concept and the importance of dynamic facades according to their design and types, implementations, current challenges and climate impacts. It will highlight the history of these facades and the essential parameters which make the building sustainable through its facades. Moreover, the paper will analyze two examples of buildings with dynamic facades with automated control systems and its effect on the

  16. Automatic system for ionization chamber current measurements.

    Science.gov (United States)

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F

    2004-12-01

    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  17. Agronomic and socioeconomic sustainability of farming systems

    NARCIS (Netherlands)

    Dersseh, Waga Mazengia

    2017-01-01

    Potato has multiple benefits and thus can play a vital role in ensuring food security in Ethiopia. However, for diverse reasons, its productivity is low. The farming systems in Ethiopia in which potato is grown, are predominantly mixed farming systems. Most of the research in Ethiopia is focused on

  18. Direct current power delivery system and method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  19. Towards a Sustainable Spatial Organization of the Energy System: Backcasting Experiences from Austria

    Directory of Open Access Journals (Sweden)

    Markus Knoflacher

    2012-02-01

    Full Text Available The transition to a sustainable energy system faces more challenges than a simple replacement of fossil energy sources by renewable ones. Since current structures do not favor sustainable energy generation and use, it is indispensable to change the existing infrastructure. A fundamental change of the energy system also requires re-organizing spatial structures and their respective institutions and governance structures. Especially in Austria, urban sprawl and unsustainable settlement structures are regarded as one of the main developments leading to increased energy demand. One of the aims within the project E-Trans 2050 was to identify socio-economic constellations that are central to the further transformation of the energy system and to focus on actors and their socio-technical framework conditions. Based on a sustainable future vision for the year 2050 a backcasting workshop was conducted to identify necessary steps for the envisaged transition to a more sustainable energy system. The results shed light on the necessary changes for a transformation towards sustainability in the specific Austrian situation. Critical issues are region-specific production of energy and its use, settlement and regional structures and values and role models, which all have a determining influence on energy demand. Combining the knowledge of extensive energy use with available energy resources in spatial planning decisions is a main challenge towards a long term sustainable energy system.

  20. Electromechanical systems generating constant frequency alternating current

    Directory of Open Access Journals (Sweden)

    Т.А. Мазур

    2008-01-01

    Full Text Available  In the article we consider the usage of electromechanical drivers of constant speed rotation, which is based on many stepped electrodynamic reduction unit, in onboard main systems of electric supply of alternative current with constant frequency.

  1. Studying, Teaching and Applying Sustainability Visions Using Systems Modeling

    Directory of Open Access Journals (Sweden)

    David M. Iwaniec

    2014-07-01

    Full Text Available The objective of articulating sustainability visions through modeling is to enhance the outcomes and process of visioning in order to successfully move the system toward a desired state. Models emphasize approaches to develop visions that are viable and resilient and are crafted to adhere to sustainability principles. This approach is largely assembled from visioning processes (resulting in descriptions of desirable future states generated from stakeholder values and preferences and participatory modeling processes (resulting in systems-based representations of future states co-produced by experts and stakeholders. Vision modeling is distinct from normative scenarios and backcasting processes in that the structure and function of the future desirable state is explicitly articulated as a systems model. Crafting, representing and evaluating the future desirable state as a systems model in participatory settings is intended to support compliance with sustainability visioning quality criteria (visionary, sustainable, systemic, coherent, plausible, tangible, relevant, nuanced, motivational and shared in order to develop rigorous and operationalizable visions. We provide two empirical examples to demonstrate the incorporation of vision modeling in research practice and education settings. In both settings, vision modeling was used to develop, represent, simulate and evaluate future desirable states. This allowed participants to better identify, explore and scrutinize sustainability solutions.

  2. Environmental impacts and sustainability of egg production systems.

    Science.gov (United States)

    Xin, H; Gates, R S; Green, A R; Mitloehner, F M; Moore, P A; Wathes, C M

    2011-01-01

    As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified topics requiring further research. Currently, we know that 1) high-rise cage houses generally have poorer air quality and emit more ammonia than manure belt (MB) cage houses; 2) manure removal frequency in MB houses greatly affects ammonia emissions; 3) emissions from manure storage are largely affected by storage conditions, including ventilation rate, manure moisture content, air temperature, and stacking profile; 4) more baseline data on air emissions from high-rise and MB houses are being collected in the United States to complement earlier measurements; 5) noncage houses generally have poorer air quality (ammonia and dust levels) than cage houses; 6) noncage houses tend to be colder during cold weather due to a lower stocking density than caged houses, leading to greater feed and fuel energy use; 7) hens in noncage houses are less efficient in resource (feed, energy, and land) utilization, leading to a greater carbon footprint; 8) excessive application of hen manure to cropland can lead to nutrient runoff to water bodies; 9) hen manure on open (free) range may be subject to runoff during rainfall, although quantitative data are lacking; 10) mitigation technologies exist to reduce generation and emission of noxious gases and dust; however, work is needed to evaluate their economic feasibility and optimize design; and 11) dietary modification shows promise for mitigating emissions. Further research is needed on 1) indoor air quality, barn emissions, thermal conditions, and energy use in alternative hen housing systems (1-story floor, aviary, and enriched cage systems), along with conventional housing systems under different production conditions; 2) environmental footprint for different US egg production systems through life cycle assessment; 3) practical means to mitigate air

  3. Technical Design of Flexible Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  4. Sustainability evaluation of automatic and conventional milking systems on organic dairy farms in Denmark

    NARCIS (Netherlands)

    Oudshoorn, F.W.; Kristensen, T.; Zijpp, van der A.J.; Boer, de I.J.M.

    2012-01-01

    Organic dairy farmers in Denmark currently are implementing automatic milking systems (AMS) to save labour costs. As organic agriculture aims at sustainable production, the introduction of a new technology such as AMS should be evaluated regarding its economic viability, environmental impact, and

  5. A methodic way to more sustainable farming systems

    NARCIS (Netherlands)

    Vereijken, P.H.

    1992-01-01

    A methodic pathway is suggested for the definition, elaboration, evaluation and introduction of farming systems based on an "integrated' or an "ecosystem-oriented' vision, both considered more sustainable than a "world-market-oriented' vision. The objectives of these three basic types of systems are

  6. Sustainability, Complexity and Learning: Insights from Complex Systems Approaches

    Science.gov (United States)

    Espinosa, A.; Porter, T.

    2011-01-01

    Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…

  7. Sustaining the Earth's watersheds, agricultural research data system

    Science.gov (United States)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  8. Sustainable intensification of agricultural systems in the Central African Highlands

    NARCIS (Netherlands)

    Schut, Marc; Asten, van Piet; Okafor, Chris; Hicintuka, Cyrille; Mapatano, Sylvain; Nabahungu, Nsharwasi Léon; Kagabo, Desire; Muchunguzi, Perez; Njukwe, Emmanuel; Dontsop-Nguezet, Paul M.; Sartas, Murat; Vanlauwe, Bernard

    2016-01-01

    This study identifies entry points for innovation for sustainable intensification of agricultural systems. An agricultural innovation systems approach is used to provide a holistic image of (relations between) constraints faced by different stakeholder groups, the dimensions and causes of these

  9. Application of geographic information systems (gis) for sustainable ...

    African Journals Online (AJOL)

    ... recent advances in information technology e.g. geographical information systems (GIS). This paper highlights the need for the integration of geographic information systems with processes of land evaluation, for improved quality of land decisions and sustainable land use and management. Journal of Applied Chemistry ...

  10. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  11. Intelligent decision support systems for sustainable computing paradigms and applications

    CERN Document Server

    Abraham, Ajith; Siarry, Patrick; Sheng, Michael

    2017-01-01

    This unique book dicusses the latest research, innovative ideas, challenges and computational intelligence (CI) solutions in sustainable computing. It presents novel, in-depth fundamental research on achieving a sustainable lifestyle for society, either from a methodological or from an application perspective. Sustainable computing has expanded to become a significant research area covering the fields of computer science and engineering, electrical engineering and other engineering disciplines, and there has been an increase in the amount of literature on aspects sustainable computing such as energy efficiency and natural resources conservation that emphasizes the role of ICT (information and communications technology) in achieving system design and operation objectives. The energy impact/design of more efficient IT infrastructures is a key challenge in realizing new computing paradigms. The book explores the uses of computational intelligence (CI) techniques for intelligent decision support that can be explo...

  12. Modeling and control of sustainable power systems

    CERN Document Server

    Wang, Lingfeng

    2011-01-01

    The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power

  13. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis

    Directory of Open Access Journals (Sweden)

    Tiffany L. Fess

    2018-01-01

    Full Text Available We are at a pivotal time in human history, as the agricultural sector undergoes consolidation coupled with increasing energy costs in the context of declining resource availability. Although organic systems are often thought of as more sustainable than conventional operations, the lack of concise and widely accepted means to measure sustainability makes coming to an agreement on this issue quite challenging. However, an accurate assessment of sustainability can be reached by dissecting the scientific underpinnings of opposing production practices and crop output between cropping systems. The purpose of this review is to provide an in-depth and comprehensive evaluation of modern global production practices and economics of organic cropping systems, as well as assess the sustainability of organic production practices through the clarification of information and analysis of recent research. Additionally, this review addresses areas where improvements can be made to help meet the needs of future organic producers, including organic-focused breeding programs and necessity of coming to a unified global stance on plant breeding technologies. By identifying management strategies that utilize practices with long-term environmental and resource efficiencies, a concerted global effort could guide the adoption of organic agriculture as a sustainable food production system.

  14. Intelligent DC Homes in Future Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2016-01-01

    distribution systems. As a consequence a lot of research has been done on DC distribution systems and its potential for residential applications. Furthermore, the increasing presence and used of smart devices in homes, reveal a promising future for intelligent homes, integrated in the Internet of Things...... concept, where the residential electrical power systems works in co-operation with the smart devices, in order to achieve a smarter, more sustainable, and cleaner energy systems....

  15. From Intuitive Programming of Robotic Systems to Business Sustainability of Manufacturing SMEs

    Directory of Open Access Journals (Sweden)

    Bogdan Mocan

    2016-02-01

    Full Text Available Economic growth and sustainable development are issues which are becoming more and more important for nowadays companies. Sustainable development strives for moderate and responsible use within the economic and production activity the limited resources of our planet. Eco-innovations, eco-efficiency and corporate social responsibility practices define much of the current industrial sustainability agenda. While important, they are insufficient in themselves to deliver the holistic changes necessary to achieve long-term social and environmental sustainability. This paper proposed a framework for designing multimodal human-robot interfaces and a demonstrator that facilitate a sustainable use of robotic systems with positive effects on SMEs business sustainability. The proposed approach is intended to bring important contributions to the development of human robot interaction in order to facilitate intuitive programming and to enable easily adapting to changes in robot tasks and applications without the need of using skilled personnel. Our research emphasize the idea that new technologies in product and process create and enable new business strategies; and we demonstrate that changing the paradigm in programming industrial robotic systems it is possible by a “business case for sustainability” to have a sustainable development of the business, in special in case of SMEs.

  16. Indicators to support environmental sustainability of bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Allen [ORNL; Dale, Virginia H [ORNL; Baskaran, Latha Malar [ORNL; Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Efroymson, Rebecca Ann [ORNL; Garten Jr, Charles T [ORNL; Kline, Keith L [ORNL; Jager, Yetta [ORNL; Mulholland, Patrick J [ORNL; Parish, Esther S [ORNL; Schweizer, Peter E [ORNL; Storey, John Morse [ORNL

    2011-01-01

    Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.

  17. Assessing Sustainability Transition in the US Electrical Power System

    Directory of Open Access Journals (Sweden)

    Stephen McCauley

    2010-02-01

    Full Text Available This paper examines sustainability transition dynamics in the US electricity system, drawing on the socio-technical systems approach. We view system change as unfolding along several critical dimensions and geographical scales, including dynamics in the environment, science, civil society, discourse, and state regulatory institutions, as well as in capital and technology formations. A particular emphasis is given to the interaction of discourses, policy networks, and institutions. We trace four distinct regimes which have characterized the evolution of this discourse-network-institutional nexus over the last century. The research examines dynamics that present a challenge to the incumbent energy regime based on fossil fuels, nuclear and hydropower, and demonstrates how the actor-network supporting renewables and energy efficiency has grown stronger and more capable of moving toward a sustainability transition than at any time since the sustainable energy movement began a generation ago.

  18. The sustainable management and protection of forests: analysis of the current position globally.

    Science.gov (United States)

    Freer-Smith, Peter; Carnus, Jean-Michel

    2008-06-01

    The loss of forest area globally due to change of land use, the importance of forests in the conservation of biodiversity and in carbon and other biogeochemical cycles, together with the threat to forests from pollution and from the impacts of climate change, place forestry policy and practice at the center of global environmental and sustainability strategy. Forests provide important economic, environmental, social, and cultural benefits, so that in forestry, as in other areas of environmental policy and management, there are tensions between economic development and environmental protection. In this article we review the current information on global forest cover and condition, examine the international processes that relate to forest protection and to sustainable forest management, and look at the main forest certification schemes. We consider the link between the international processes and certification schemes and also their combined effectiveness. We conclude that in some regions of the world neither mechanism is achieving forest protection, while in others local or regional implementation is occurring and is having a significant impact. Choice of certification scheme and implementation of management standards are often influenced by a consideration of the associated costs, and there are some major issues over the monitoring of agreed actions and of the criteria and indicators of sustainability. There are currently a number of initiatives seeking to improve the operation of the international forestry framework (e.g., The Montreal Process, the Ministerial Convention of the Protection of Forests in Europe and European Union actions in Europe, the African Timber Organisation and International Tropical Timber Organisation initiative for African tropical forest, and the development of a worldwide voluntary agreement on forestry in the United Nations Forum on Forests). We suggest that there is a need to improve the connections between scientific understanding

  19. Sustainability assessment of stormwater management systems

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Ammitsøe, Christian

    We quantify ecotoxicity impacts caused by different solutions to manage stormwater using life cycle assessment. As a novelty, we include emissions of a wide range of pollutants present in runoff. These emissions turn out to be of great importance, especially in decentralized, above surface systems....

  20. Leadership & Sustainability: System Thinkers in Action

    Science.gov (United States)

    Fullan, Michael

    2004-01-01

    As agencies have pushed for greater performance and public accountability over the past two decades, some incremental improvements have been seen. All too often experience reveals that these improvements are temporary. This book provides a comprehensive examination of what leaders at all levels of the educational system can do to pave the way for…

  1. Product Manager Force Sustainment Systems. Overview

    Science.gov (United States)

    2009-11-01

    INTEGRATED REMAINS COLLECTION SYSTEM (MIRCS) • Description: – Mobile Mortuary Processing Facility – 8×8×20 Expandable Shelter – Refrigerated Storage for...Set-up time, 15 minutes with 2 personnel • TRICON container folds out to 18-feet in length • 4-low water use toilets w/ privacy stalls • Power

  2. Globalisation of agrifood systems and sustainable nutrition.

    Science.gov (United States)

    Qaim, Matin

    2017-02-01

    The globalisation of agrifood systems is a mega-trend with potentially profound nutritional implications. This paper describes various facets of this globalisation process and reviews studies on nutritional effects with a particular focus on developing countries. Results show that global trade and technological change in agriculture have substantially improved food security in recent decades, although intensified production systems have also contributed to environmental problems in some regions. New agricultural technologies and policies need to place more emphasis on promoting dietary diversity and reducing environmental externalities. Globalising agrifood systems also involve changing supply-chain structures, with a rapid rise of modern retailing, new food safety and food quality standards, and higher levels of vertical integration. Studies show that emerging high-value supply chains can contribute to income growth in the small farm sector and improved access to food for rural and urban populations. However, there is also evidence that the retail revolution in developing countries, with its growing role of supermarkets and processed foods, can contribute to overweight and obesity among consumers. The multi-faceted linkages between changing agrifood systems and nutrition are a new field of interdisciplinary research, combining agricultural, nutritional, economics and social sciences perspectives. The number of studies on specific aspects is still limited, so the evidence is not yet conclusive. A review at this early stage can help to better understand important relationships and encourage follow-up work.

  3. Defense Systems Modernization and Sustainment Initiative

    Science.gov (United States)

    2006-12-20

    aids Remote monitoring ( telematics ) - Data transmission and security mechanisms - Data analysis and visualization tools - Standardized interfaces for...assessment. 15. SUBJECT TERMS Remanufacturing, Life Cycle Analysis, Diagnostic, Prognostic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME...based maintenance aiding system - Electronic portable (point-of-maintenance) aids Remote monitoring - Data transmission and security mechanisms

  4. Multi-Criteria Evaluation of Energy Systems with Sustainability Considerations

    Directory of Open Access Journals (Sweden)

    Despoina E. Keramioti

    2010-04-01

    Full Text Available A multi-criteria approach is presented for the assessment of alternative means for covering the energy needs (electricity and heat of an industrial unit, taking into consideration sustainability aspects. The procedure is first described in general terms: proper indicators are defined; next they are grouped in order to form sub-indices, which are then used to determine the composite sustainability index. The procedure is applied for the evaluation of three alternative systems. The three systems are placed in order of preference, which depends on the criteria used. In addition to conclusions reached as a result of the particular case study, recommendations for future work are given.

  5. Sustainable economic production quantity models for inventory systems with shortage

    DEFF Research Database (Denmark)

    Taleizadeh, Ata Allah; Soleymanfar, Vahid Reza; Govindan, Kannan

    2018-01-01

    (EPQ). The theoretical sustainable EOQ and EPQ models are basic models that ignore many real-life conditions such as the possibility of stock-out in inventory systems. In this paper, we develop four new sustainable economic production quantity models that consider different shortage situations. To find...... optimal values of inventory system variables, we solve four independent profit maximization problems for four different situations. These proposed models include a basic model in which shortages are not allowed, and when shortages are allowed, the lost sale, full backordering and partial backordering...

  6. How Does Implementation of Environmental Management System Contribute to Corporate Sustainability Management

    Directory of Open Access Journals (Sweden)

    Lucie Vnoučková

    2014-01-01

    Full Text Available Corporate sustainability management (CSM appears to be an important issue for current management. The aim of the paper is to identify what determinants of sustainability management are examined in the literature and discuss the contribution of environmental management system (EMS to CSM based on experiences of selected Czech organizations with implemented EMS according to ISO 14001. The data for the survey was gathered from 222 organizations (N = 1265 who have already implemented EMS. The results show there is a basic knowledge of sustainability concept in the surveyed Czech organizations. Perceived improvements of EMS implementation in Czech organizations are mainly in the area of environmental performance, economic performance, relationship with involved parties and social issues. Based on the implementation of EMS, the organizations take care about corporate sustainability (about the areas of environmental aspects and impacts of the organization. Improved environmental performance has been linked with process and product cost improvements and lower risk factors.

  7. Current advances in systems and integrative biology

    Directory of Open Access Journals (Sweden)

    Scott W. Robinson

    2014-08-01

    Full Text Available Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal.

  8. Sustainability Decision Support Framework for Industrial System Prioritization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Wei, Shunan; Goodsite, Michael Evan

    2016-01-01

    A multicriteria decision-making methodology for the sustainability prioritization of industrial systems is proposed. The methodology incorporates a fuzzy Analytic Hierarchy Process method that allows the users to assess the soft criteria using linguistic terms. A fuzzy Analytic Network Process...... method is used to calculate the weights of each criterion, which can tackle the interdependencies and interactions among the criteria. The Preference Ranking Organization Method for Enrichment Evaluation approach is used to prioritize the sustainability sequence of the alternative systems. Moreover......, a sensitivity analysis method was developed to investigate the most critical and sensitive criteria. The developed methodology was illustrated by a case study to rank the sustainability of five alternative hydrogen production technologies. The advantages of the developed methodology over the previous approaches...

  9. Modelling Sustainable Development Scenarios of Croatian Power System

    Science.gov (United States)

    Pašičko, Robert; Stanić, Zoran; Debrecin, Nenad

    2010-05-01

    The main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

  10. Comparing decision-support systems in adopting sustainable intensification criteria

    Directory of Open Access Journals (Sweden)

    Bouda eVosough Ahmadi

    2015-02-01

    Full Text Available Sustainable intensification (SI is a multifaceted concept incorporating the ambition to increase or maintain the current level of agricultural yields while reduce negative ecological and environmental impacts. Decision-support systems (DSS that use integrated analytical methods are often used to support decision making processes in agriculture. However, DSS often consist of set of values, objectives and assumptions that may be inconsistent or in conflict with merits and objectives of SI. These potential conflicts will have consequences for adoption and up-take of agricultural research, technologies and related policies and regulations such as genetic technology in pursuit of SI. This perspective paper aimed at comparing a number of frequently used socio-economic DSS with respect to their capacity in incorporating various dimensions of SI, and discussing their application to analyzing farm animal genetic resources (FAnGR policies. The case of FAnGR policies was chosen because of its great potential in delivering merits of SI. It was concluded that flexible DSS, with great integration capacity with various natural and social sciences, are needed to provide guidance on feasibility, practicality and policy implementation for SI.

  11. Comparing decision-support systems in adopting sustainable intensification criteria.

    Science.gov (United States)

    Ahmadi, Bouda Vosough; Moran, Dominic; Barnes, Andrew P; Baret, Philippe V

    2015-01-01

    Sustainable intensification (SI) is a multifaceted concept incorporating the ambition to increase or maintain the current level of agricultural yields while reduce negative ecological and environmental impacts. Decision-support systems (DSS) that use integrated analytical methods are often used to support decision making processes in agriculture. However, DSS often consist of set of values, objectives, and assumptions that may be inconsistent or in conflict with merits and objectives of SI. These potential conflicts will have consequences for adoption and up-take of agricultural research, technologies and related policies and regulations such as genetic technology in pursuit of SI. This perspective paper aimed at comparing a number of frequently used socio-economic DSS with respect to their capacity in incorporating various dimensions of SI, and discussing their application to analyzing farm animal genetic resources (FAnGR) policies. The case of FAnGR policies was chosen because of its great potential in delivering merits of SI. It was concluded that flexible DSS, with great integration capacity with various natural and social sciences, are needed to provide guidance on feasibility, practicality, and policy implementation for SI.

  12. Contamination of Detained Sediment in Sustainable Urban Drainage Systems

    Directory of Open Access Journals (Sweden)

    Deonie Allen

    2017-05-01

    Full Text Available Adsorption is a key water pollution remediation measure used to achieve stormwater quality improvement in Sustainable urban Drainage Systems (SuDS. The level of contamination of detained sediment within SuDS assets is not well documented, with published investigations limited to specific contaminant occurrence in ponds, wetlands or infiltration devices (bioretention cells and generally focused on solute or suspended sediment. Guidance on contamination threshold levels and potential deposited sediment contamination information is not included in current UK SuDS design or maintenance guidance, primarily due to a lack of evidence and understanding. There is a need to understand possible deposited sediment contamination levels in SuDS, specifically in relation to sediment removal maintenance activities and potential impact on receiving waterways of conveyed sediment. Thus, the objective of the research presented herein was to identify what major elements and trace metals were observable in (the investigated SuDS assets detained sediment, the concentration of these major elements and trace metals and whether they met/surpassed ecotoxicity or contaminated land thresholds. The research presented here provides evidence of investigated SuDS sediment major element and trace metal levels to help inform guidance and maintenance needs, and presents a new methodology to identify the general cause (anthropocentric land use and extent of detained SuDS fine urban sediment contamination through use of a contamination matrix.

  13. Performance of Power Systems under Sustained Random Perturbations

    Directory of Open Access Journals (Sweden)

    Humberto Verdejo

    2014-01-01

    Full Text Available This paper studies linear systems under sustained additive random perturbations. The stable operating point of an electric power system is replaced by an attracting stationary solution if the system is subjected to (small random additive perturbations. The invariant distribution of this stationary solution gives rise to several performance indices that measure how well the system copes with the randomness. These indices are introduced, showing how they can be used for the optimal tuning of system parameters in the presence of noise. Results on a four-generator two-area system are presented and discussed.

  14. Assessing the Sustainability of Small Farmer Natural Resource Management Systems. A Critical Analysis of the MESMIS Program (1995-2010)

    OpenAIRE

    Marta Astier; Luis García-Barrios; Yankuic Galván-Miyoshi; Carlos E. González-Esquivel; Omar R. Masera

    2012-01-01

    Sustainability assessment oriented to improve current systems and practices is urgently needed, particularly in the context of small farmer natural resource management systems (NRMS). Unfortunately, social-ecological systems (SES) theory, sustainability evaluation frameworks, and assessment methods are still foreign not only to farmers but to many researchers, students, NGOs, policy makers/operators, and other interested groups. In this paper we examine the main achievements and challenges of...

  15. Environmental Sustainability of Some Cropping Systems in the ...

    African Journals Online (AJOL)

    One of the greatest challenges facing agriculture in the tropics is the need to develop viable cropping systems for the rained uplands that are capable of ensuring increased and sustained crop production with minimum degradation of the non- renewable soil resource base. Increased population has reduced the ...

  16. Assessing the sustainability of egg production systems in the Netherlands

    NARCIS (Netherlands)

    Asselt, van E.D.; Bussel, van L.G.J.; Horne, van P.L.M.; Voet, van der H.; Heijden, van der G.W.A.M.; Fels, van der H.J.

    2015-01-01

    Housing systems for laying hens have changed over the years due to increased public concern regarding animal welfare. In terms of sustainability, animal welfare is just one aspect that needs to be considered. Social aspects as well as environmental and economic factors need to be included as well.

  17. Wetland harvesting systems -- developing alternatives for sustainable operation

    Science.gov (United States)

    Robert B. Rummer; Bryce J. Stokes; Alvin Schilling

    1997-01-01

    Wetland forests represent some of the most productive forest lands in the Southeast. They are also an environmentally sensitive ecotype which presents unique problems for forest operations. Sustaining active management in these areas will require systems which can operate on weak soil conditions without adversely affecting soil properties or stand regeneration. The...

  18. Biorefinery systems – potential contributors to sustainable innovation

    NARCIS (Netherlands)

    Wellisch, M.; Jungmeier, G.; Karbowski, A.; Patel, M.K.; Rogulska, M.

    2010-01-01

    Sustainable biorefineries have a critical role to play in our common future. The need to provide more goods using renewable resources, combined with advances in science and technology, has provided a receptive environment for biorefinery systems development. Biorefineries offer the promise of using

  19. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    Science.gov (United States)

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  20. enhanced digital library system that supports sustainable knowledge

    African Journals Online (AJOL)

    Keywords: Enhanced, Digital library, Sustainable knowledge. Introduction. It is rooted in the recent year׳s ... browser instantly with a nice pagination links for swapping in-between pages. 4. To restrict access from ... digital library is a type of information retrieval system (Candela, et al, 2011). The web based nature of digital ...

  1. Sustainability of the Health Management Information System in ...

    African Journals Online (AJOL)

    This study examines how Health Management Information Systems (HMIS) can be sustained in the Tanzanian context based on the experiences of Muheza and Kinondoni districts. Data for the study was collected using interviews, questionnares and document reviews. The findings show that the capability of a health facility ...

  2. Sustainable ecological systems: Implementing an ecological approach to land management

    Science.gov (United States)

    W. Wallace Covington; Leonard F. DeBano

    1994-01-01

    This conference brought together scientiests and managers from federal, state, and local agencies, along with private-sector interests, to examine key concepts involving sustainable ecological systems, and ways in which to apply these concepts to ecosystem management. Session topics were: ecological consequenses of land and water use changes, biology of rare and...

  3. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  4. The Contribution to the Integration of Management Systems Oriented to the Sustainable and TQM

    Directory of Open Access Journals (Sweden)

    Věra Pelantová

    2017-11-01

    Full Text Available Most organisations have established their management systems. Often these are concerning quality management systems, work safety and the environment. Organisations are now striving to integrate them, usually because of lowering of administration and improving their performance. They address the difficulties and ignorance of the theory of management systems. The development of these systems continues. Substantial surroundings are changing dynamically. Organisations must react to survive. The article presents a pilot study on new aspects of integration of management systems. It interconnects knowledge about quality, environment, work safety and information, corporate social responsibility and performance. Based on the results of the literature research, according to the analysis of the state of management systems in the selected organisations and according to the experience of authors, it sets out the basic features for an integrated management system aimed at sustainability and social responsibility. Using these characters, the current status of this area is detected in organisations. Then the article compares the current EFQM requirements with these characters. With the help of TQM basics, recommendations and a simplified sustainable EFQM model are presented. The methods used in the article are: common mathematical statistics, observation, controlled interview, data analysis and synthesis, brainstorming, the Triangular Table, the EFQM model and other quality tools. The article is based on the assumption that the convergence of management system concepts will continue. The result is to set recommendations on management systems and lay the foundations for a sustainable management system for the organisation.

  5. Generating sustainable towns from Chinese villages: a system modeling approach.

    Science.gov (United States)

    Levine, Richard S; Hughes, Michael T; Ryan Mather, Casey; Yanarella, Ernest J

    2008-04-01

    The great majority of China's developing towns will be extensions of already existing villages. With the prospect of hundreds of millions of Chinese farmers projected to leave their villages to become industrial workers in new and expanded towns within the next few years, new challenges will be faced. As expansion and modernization progress, this development moves from the traditional village model that operates not far from resource sustainability to increasingly unsustainable patterns of commerce, urban development, and modern life. With such an unprecedented mass migration and transformation, how can Chinese culture survive? What is to become of the existing million plus agricultural villages? How can these massively unsustainable new industrial towns survive? In the European Commission sponsored research program SUCCESS, researchers worked from the scale of the Chinese village to find viable answers to these questions. To address these issues, the Center for Sustainable Cities, one of the SUCCESS teams, studied the metabolism of several small villages. In these studies, system dynamics models of a village's metabolism were created and then modified so that inherently unsustainable means were eliminated from the model (fossil fuels, harmful agricultural chemicals, etc.) and replaced by sustainability-oriented means. Small Chinese farming villages are unlikely to survive in anything like their present form or scale, not least because they are too small to provide the range of life opportunities to which the young generation of educated Chinese aspires. As a response to this realization as well as to the many other threats to the Chinese village and its rural way of life, it was proposed that one viable path into the future would be to enlarge the villages to become full service towns with sufficient diversity of opportunity to be able to attract and keep many of the best and brightest young people who are now migrating to the larger cities. Starting with the

  6. Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    The Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES) in 2015 returned to its hometown, Dubrovnik, and once again served as a significant venue for scientists and specialists in different areas of sustainable development from all over the world to initiate...... traditionally cover a range of energy issues - higher renewables penetration and various technologies and fuels assessments at energy supply side, as well as, energy efficiency in various sectors, buildings, district heating, electric vehicles and demand modelling at energy demand side. Also, a review paper...

  7. World in transition 3 towards sustainable energy systems

    CERN Document Server

    2014-01-01

    'The publication of World in Transition: Towards Sustainable Energy Systems is timely indeed. The World Summit on Sustainable Development gave great prominence to this challenge, but failed to agree on a quantitative, time-bound target for the introduction of renewable energy sources. The German Advisory Council on Global Change (WBGU) has now produced a report with a global focus, which is essential in view of the global impacts of climate change. The report provides a convincing long-term analysis, which is also essential. Global energy policies have to take a long-term perspective, over the

  8. Sustainable energy systems: Limitations and challenges based on exergy analysis

    OpenAIRE

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This thesis discusses problems and possibilities of more sustainable energy systems first of all for the energy supply of the Netherlands. The “trias energetica” is used to distinguish the steps that have...

  9. Human behavior research and the design of sustainable transport systems

    Science.gov (United States)

    Schauer, James J.

    2011-09-01

    Transport currently represents approximately 19% of the global energy demand and accounts for about 23% of the global carbon dioxide emissions (IEA 2009). As the demand for mobility is expected to continue to increase in the coming decades, the stabilization of atmospheric carbon dioxide levels will require the evolution of transport, along with power generation, building design and manufacturing. The continued development of these sectors will need to include changes in energy sources, energy delivery, materials, infrastructure and human behavior. Pathways to reducing carbon from the transport sector have unique challenges and opportunities that are inherent to the human choices and behavioral patterns that mold the transportation systems and the associated energy needs. Technology, government investment, and regulatory policies have a significant impact on the formulation of transportation infrastructure; however, the role of human behavior and public acceptance on the efficiency and effectiveness of transport systems should not be underestimated. Although developed, rapidly developing, and underdeveloped nations face different challenges in the establishment of transport infrastructure that can meet transport needs while achieving sustainable carbon dioxide emissions, the constraints that establish the domain of possibilities are closely related for all nations. These constraints include capital investment, fuel supplies, power systems, and human behavior. Throughout the world, there are considerable efforts directed at advancing and optimizing the financing of sustainable infrastructures, the production of low carbon fuels, and the production of advanced power systems, but the foundational work on methods to understand human preferences and behavior within the context of transport and the valuation of reductions in carbon dioxide emissions is greatly lagging behind. These methods and the associated understanding of human behavior and the willingness to pay for

  10. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    Science.gov (United States)

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. An Integrated Method for Sustainable Manufacturing Systems Design

    Directory of Open Access Journals (Sweden)

    Nujoom Reda

    2016-01-01

    Full Text Available In the past decade, there has been an increasing awareness in development of sustainable manufacturing systems as governments in many countries have been enforcing ever-stricter environmental policies and regulations in industry by promoting energy saving and low emissions manufacturing activities. Lean manufacturing can be helpful for achieving a sustainable manufacturing system as it can reduce production wastes and increase manufacturing efficiency. Nevertheless, this lean approach does not include a consideration in energy consumption and carbon dioxide (CO2 emissions when designing a lean manufacturing system. This paper presents a methodology which can be useful for measuring energy consumption and CO2 emissions for a typical manufacturing system design at an early stage. A case study was carried out for obtaining computational results using the developed methodology based on data collected from a real production line.

  12. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    Science.gov (United States)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an

  13. Defining elements of sustainable work systems--a system-oriented approach.

    Science.gov (United States)

    Fischer, Klaus; Zink, Klaus J

    2012-01-01

    Based on a system-theoretic discussion of sustainability, this paper aims to develop a conceptual model of a sustainable work system which is consistent with the definition of ergonomics by the IEA in 2000 (but also with earlier definitions) as well as with the triple bottom line understanding of sustainable development - comprising the management of human, social, ecological and economic capital in a balanced manner.

  14. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    Science.gov (United States)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this

  15. Learning from the organic food system as a model for sustainable food systems - the Organic Food System Program

    DEFF Research Database (Denmark)

    Kahl, Johannes; Strassner, Carola; Hertwig, Jostein

    2016-01-01

    Today’s understanding of food systems includes product-specific values (e.g. palatability, taste, nutritional and safety values, health promotion) and process-oriented values (e.g. environmental impact, animal welfare and social fairness). These values are currently challenged and changing. Food ...... production and consumption within one system, thus creating and distributing value along the chains for sustainable food systems.......Today’s understanding of food systems includes product-specific values (e.g. palatability, taste, nutritional and safety values, health promotion) and process-oriented values (e.g. environmental impact, animal welfare and social fairness). These values are currently challenged and changing. Food...... habits, cultural, social, ethical, economic and political criteria play an increasingly important role as values. An organic values-based supply chain links food production to values such as partnership, cooperation and trust. Within a values-based supply chain, all actors should be connected through...

  16. The Canary Current system off the Iberian Peninsula and North ...

    African Journals Online (AJOL)

    spamer

    The Canary Current system off the Iberian Peninsula and North-West Africa, the Humboldt Current system off western South America, the California Current system off the western United States, and the. Benguela Current system off the west coast of southern. Africa are the four major eastern boundary current regions.

  17. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A. [University of Washington, Seattle, Washington 98195 (United States)

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  18. Systemic aspects of the transition to sustainable energy

    Science.gov (United States)

    Schlögl, R.

    2015-08-01

    The supply of free energy to our societies is today an intricate system comprising the regimes of technologies, regulatory frameworks, socio-economic impacts and techno-ecological interactions. As a consequence it is challenging to define clear directions or even device a master plan for the transformation of a single national energy system into a sustainable future. Even the term "sustainable" needs extensive discussion in this context that should not be defined solely in technological or ecological senses. The contribution illustrates some of the elements of the energy system and their interdependencies. It will become clear that multiple reasons exist to change the traditional generation and use of energy even when climate protection is not a sufficiently strong argument for a change.

  19. Current State and Future Prospects of Education for Sustainable Development (ESD) in Japan

    Science.gov (United States)

    Tanaka, Haruhiko

    2017-01-01

    The UN Decade of Education for Sustainable Development (ESD) ran from 2005 to 2014. This study concerns the concepts of Sustainable Development (SD) and ESD. The term "sustainable development" was coined by the Brundtland Commission in 1987 as the key word in integrating environment and development. SD achieved international consensus at…

  20. Education for Sustainable Development: Current Discourses and Practices and Their Relevance to Technology Education

    Science.gov (United States)

    Leal Filho, Walter; Manolas, Evangelos; Pace, Paul

    2009-01-01

    Technology education is a well-established field of knowledge whose applications have many ramifications. For example, technology education may be used as a tool in meeting the challenges of sustainable development. However, the usefulness of technology education to the sustainability debate as a whole and to education for sustainable development…

  1. Seven Food System Metrics of Sustainable Nutrition Security

    Directory of Open Access Journals (Sweden)

    David Gustafson

    2016-02-01

    Full Text Available Sustainability considerations have been absent from most food security assessments conducted to date, despite the tremendous economic, environmental, and social implications of meeting accelerating food demand in the face of water shortages and climate change. In addition, previous food security work has generally focused only on achieving adequate calories, rather than addressing dietary diversity and micronutrient adequacy, both of which are critical to maintaining a healthy overall nutritional status. In response to the limitations of previous assessments, a new methodology is proposed here based on the concept of “sustainable nutrition security” (SNS. This novel assessment methodology is intended to remedy both kinds of deficiencies in the previous work by defining seven metrics, each based on a combination of multiple indicators, for use in characterizing sustainable nutrition outcomes of food systems: (1 food nutrient adequacy; (2 ecosystem stability; (3 food affordability and availability; (4 sociocultural wellbeing; (5 food safety; (6 resilience; and (7 waste and loss reduction. Each of the metrics comprises multiple indicators that are combined to derive an overall score (0–100. A novel SNS assessment methodology based on these metrics can be deployed by decision-makers and investors to set meaningful goals, track progress, and evaluate the potential impact of food system interventions intended to improve sustainability and human nutrition outcomes.

  2. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    Science.gov (United States)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; hide

    2016-01-01

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.

  3. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    Energy Technology Data Exchange (ETDEWEB)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; Hubacek, Klaus; Miralles-Wilhelm, Fernando; Miyoshi, Takemasa; Ruth, Matthias; Sagdeev, Roald; Shirmohammadi, Adel; Shukla, Jagadish; Srebric, Jelena; Yakovenko, Victor M.; Zeng, Ning

    2016-12-11

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.

  4. Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability.

    Science.gov (United States)

    van Wagenberg, C P A; de Haas, Y; Hogeveen, H; van Krimpen, M M; Meuwissen, M P M; van Middelaar, C E; Rodenburg, T B

    2017-10-01

    To sustainably contribute to food security of a growing and richer world population, livestock production systems are challenged to increase production levels while reducing environmental impact, being economically viable, and socially responsible. Knowledge about the sustainability performance of current livestock production systems may help to formulate strategies for future systems. Our study provides a systematic overview of differences between conventional and organic livestock production systems on a broad range of sustainability aspects and animal species available in peer-reviewed literature. Systems were compared on economy, productivity, environmental impact, animal welfare and public health. The review was limited to dairy cattle, beef cattle, pigs, broilers and laying hens, and to Europe, North America and New Zealand. Results per indicators are presented as in the articles without performing additional calculations. Out of 4171 initial search hits, 179 articles were analysed. Studies varied widely in indicators, research design, sample size and location and context. Quite some studies used small samples. No study analysed all aspects of sustainability simultaneously. Conventional systems had lower labour requirements per unit product, lower income risk per animal, higher production per animal per time unit, higher reproduction numbers, lower feed conversion ratio, lower land use, generally lower acidification and eutrophication potential per unit product, equal or better udder health for cows and equal or lower microbiological contamination. Organic systems had higher income per animal or full time employee, lower impact on biodiversity, lower eutrophication and acidification potential per unit land, equal or lower likelihood of antibiotic resistance in bacteria and higher beneficial fatty acid levels in cow milk. For most sustainability aspects, sometimes conventional and sometimes organic systems performed better, except for productivity, which was

  5. Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives.

    Science.gov (United States)

    Magni, Paolo; Bier, Dennis M; Pecorelli, Sergio; Agostoni, Carlo; Astrup, Arne; Brighenti, Furio; Cook, Robert; Folco, Emanuela; Fontana, Luigi; Gibson, Robert A; Guerra, Ranieri; Guyatt, Gordon H; Ioannidis, John Pa; Jackson, Ann S; Klurfeld, David M; Makrides, Maria; Mathioudakis, Basil; Monaco, Alessandro; Patel, Chirag J; Racagni, Giorgio; Schünemann, Holger J; Shamir, Raanan; Zmora, Niv; Peracino, Andrea

    2017-07-01

    A large body of evidence supports the notion that incorrect or insufficient nutrition contributes to disease development. A pivotal goal is thus to understand what exactly is appropriate and what is inappropriate in food ingestion and the consequent nutritional status and health. The effective application of these concepts requires the translation of scientific information into practical approaches that have a tangible and measurable impact at both individual and population levels. The agenda for the future is expected to support available methodology in nutrition research to personalize guideline recommendations, properly grading the quality of the available evidence, promoting adherence to the well-established evidence hierarchy in nutrition, and enhancing strategies for appropriate vetting and transparent reporting that will solidify the recommendations for health promotion. The final goal is to build a constructive coalition among scientists, policy makers, and communication professionals for sustainable health and nutritional policies. Currently, a strong rationale and available data support a personalized dietary approach according to personal variables, including sex and age, circulating metabolic biomarkers, food quality and intake frequency, lifestyle variables such as physical activity, and environmental variables including one's microbiome profile. There is a strong and urgent need to develop a successful commitment among all the stakeholders to define novel and sustainable approaches toward the management of the health value of nutrition at individual and population levels. Moving forward requires adherence to well-established principles of evidence evaluation as well as identification of effective tools to obtain better quality evidence. Much remains to be done in the near future. © 2017 American Society for Nutrition.

  6. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  7. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  8. Agricultural biodiversity, social-ecological systems and sustainable diets.

    Science.gov (United States)

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.

  9. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  10. Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Stephen M. Neill

    2017-11-01

    Full Text Available Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D and three-dimensional (3-D scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

  11. Dynamic Systems Modeling for Sustainable Economic Empowerment in Cilacap

    Directory of Open Access Journals (Sweden)

    Nurul Anwar

    2011-09-01

    Full Text Available This paper investigates the dynamic problem of living system in Kampung Laut, Cilacap, whichincludes social problems and ecological changes. The paper uses a dynamic system model to structurethe problems. The model simulates various feasible scenarios, from which the best becomesthe base to impose a policy to empower their sustainable economy. The model conceptualizes variablesrelated to the problem to build a figure of Causal Loop Diagram (CLD, which is then simulatedusing Powersim 2.5 software package. Using the scenario of intensification and populationcontrol, the paper finds that it can increase the people’s income, with positive trend until the end ofsimulation.Keywords: Dynamic modelling, sustainable economic empowerment, causal loop diagram

  12. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  13. EMPIRICAL STUDY REGARDING SUSTAINABILITY OF ROMANIAN PENSION SYSTEM

    Directory of Open Access Journals (Sweden)

    Oprean Delia

    2013-07-01

    Full Text Available This paper is part of a broad, applied scientific research, based on popular empirical procedures (such as natural observation. Positivistic and constructive research methodology used was based on the consensual-inductive system (Locke, which is why we studied the different views of specialists on sustainability of pensions in Romania, necessary to formulate the problem of generating relevant information. Research strategies used were the comparative and longitudinal ones, as we analyzed the time evolution of qualitative indicators VUAN (unitary value of net asset specific to pension funds Pillar II and Pillar III of Romania, concomitant with the number of participants in these funds, as to determine their direct relationship with the need for sustainability in this area. The hypotheses regarding causal relationship efficiency – participants - sustainability and needed measures for pension reform were built in this paper inductively (by analyzing the sustainability issues of pensions in time, causally (by explaining the cause and effect phenomenon studied, deductively, logically and subjectively (due to the existence and perpetuation of conflict premise between generations and social inequality between employees and pensioners. The qualitative approach of the phenomenon studied by collecting information (using mediated data collection technique has allowed the relevant findings and practical solutions necessary for all those involved in this concerted action of pensions, which affects us all.

  14. Sustainable Design of Energy Systems - The Case of Geothermal Energy

    OpenAIRE

    Heracles Polatidis; Dias Haralambopoulos

    2006-01-01

    Geothermal energy is one of the renewable energy resources with a vast potential. It is extended spatially in many areas, isolated from urban areas and direct uses, whereas its utilisation when it is not for electricity production is many times hampered due to lack of a proper development framework. In this work we present a design framework for sustainable geothermal systems incorporating modules covering the various aspects of exploration, utilisation, end-use and management. The overall fr...

  15. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    Directory of Open Access Journals (Sweden)

    Wesley Ingwersen

    2014-03-01

    Full Text Available Life cycle approaches are critical for identifying and reducing environmental burdens of products. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA methods fail to integrate the multiple impacts of a system into unified measures of social, economic or environmental performance related to sustainability. Integrated metrics that combine multiple aspects of system performance based on a common scientific or economic principle have proven to be valuable for sustainability evaluation. In this work, we propose methods of adapting four integrated metrics for use with LCAs of product systems: ecological footprint, emergy, green net value added, and Fisher information. These metrics provide information on the full product system in land, energy, monetary equivalents, and as a unitless information index; each bundled with one or more indicators for reporting. When used together and for relative comparison, integrated metrics provide a broader coverage of sustainability aspects from multiple theoretical perspectives that is more likely to illuminate potential issues than individual impact indicators. These integrated metrics are recommended for use in combination with traditional indicators used in LCA. Future work will test and demonstrate the value of using these integrated metrics and combinations to assess product system sustainability.

  16. Sustainability of Rainwater Harvesting System in terms of Water Quality

    Directory of Open Access Journals (Sweden)

    Sadia Rahman

    2014-01-01

    Full Text Available Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  17. Sustainability of Rainwater Harvesting System in terms of Water Quality

    Science.gov (United States)

    Khan, M. T. R.; Akib, Shatirah; Din, Nazli Bin Che; Biswas, S. K.; Shirazi, S. M.

    2014-01-01

    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical. PMID:24701186

  18. Sustainability of rainwater harvesting system in terms of water quality.

    Science.gov (United States)

    Rahman, Sadia; Khan, M T R; Akib, Shatirah; Din, Nazli Bin Che; Biswas, S K; Shirazi, S M

    2014-01-01

    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3-N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  19. Health care financing and the sustainability of health systems.

    Science.gov (United States)

    Liaropoulos, Lycourgos; Goranitis, Ilias

    2015-09-15

    The economic crisis brought an unprecedented attention to the issue of health system sustainability in the developed world. The discussion, however, has been mainly limited to "traditional" issues of cost-effectiveness, quality of care, and, lately, patient involvement. Not enough attention has yet been paid to the issue of who pays and, more importantly, to the sustainability of financing. This fundamental concept in the economics of health policy needs to be reconsidered carefully. In a globalized economy, as the share of labor decreases relative to that of capital, wage income is increasingly insufficient to cover the rising cost of care. At the same time, as the cost of Social Health Insurance through employment contributions rises with medical costs, it imperils the competitiveness of the economy. These reasons explain why spreading health care cost to all factors of production through comprehensive National Health Insurance financed by progressive taxation of income from all sources, instead of employer-employee contributions, protects health system objectives, especially during economic recessions, and ensures health system sustainability.

  20. California current system - Predators and the preyscape

    Science.gov (United States)

    Ainley, David G.; Adams, Peter B.; Jahncke, Jaime

    2015-06-01

    The preyscape of the California Current System (CCS), one of the most productive marine areas on Earth (Glantz and Thompson, 1981), is highly variable, as evidenced by the papers in this issue, and as such presents a challenge to Ecosystem-based fishery management (EBFM), which attempts to integrate ecosystem considerations as part of fishery management and conservation decisions. Approaches to EBFM for the waters off Washington, Oregon, and California, the CCS, have been initiated (PFMC, 2007, 2013), and are continually being developed. To inform this process, a workshop was held in September 2013 to: i) gather together the existing information on forage fish and predator dynamics in the CCS; ii) consider temporal (seasonal, annual, decadal) and spatial availability of prey complexes and why these patterns of availability occur and change; iii) summarize and present that information for discussion to a large range of experts in oceanography, fish and fisheries management, seabirds, marine mammals, and ecosystem management; and, iv) synthesize this information to be useable by fishery agencies. The papers in this special Journal of Marine Systems issue address these four points. While the full results and recommendations can be found here - "http://www.pointblue.org/uploads/assets/calcurrent/REPORT_Forage_Fish_Workshop_FINAL.pdf"

  1. Innovation Systems for Transformations towards Sustainability? Taking the Normative Dimension Seriously

    Directory of Open Access Journals (Sweden)

    Michael P. Schlaile

    2017-12-01

    Full Text Available The aim of this article is to complement research on transformations towards sustainability by drawing upon the innovation systems (IS framework. The IS framework already serves as a suitable and influential basis for research on processes of technological innovation and economic change. We argue that improving the capacity of an IS framework for dealing with wicked problems and the normative complexity of sustainability requires a fundamental paradigm shift because in the current IS paradigm innovations are considered as per se desirable and in mostly technological terms. Therefore, we call for IS dedicated to transformations towards sustainability by opening up for systemic innovations beyond the technological dimension and by acknowledging that stakeholders have conflicting visions, interests, norms, and expectations with regard to sustainability goals. Taking the normative dimension of transformations towards sustainability seriously thus requires more explicit and integrative research on directionality, legitimacy, responsibility, and their interrelation in IS. The article concludes by proposing suggestions for future research based on IS-related approaches that can serve as building blocks for an IS framework capable of incorporating legitimate goal-orientation for transformative innovation by and for society.

  2. INFORMATION SOCIETY AND FINANCIAL SUSTAINABILITY OF THE ROMANIAN HEALTH SYSTEM

    Directory of Open Access Journals (Sweden)

    TATIANA BOGDAN

    2016-06-01

    Full Text Available The financial sustainability of the health systems often reveals the ability of policy makers to finance healthcare in the face of growing cost pressures, with populations ageing, new technologies and increased patient expectations for healthcare coverage and quality. Thus, the healthcare systems need to reinvent themselves by using innovative financing mechanisms coupled with electronic information and communication systems, while offering greater transparency, flexibility and choice and increasing access to the services available. The paper analyses the healthcare financing models: the national health system, the social insurance or the private insurance model so that the Romanian health care reform should preserve the best elements of its existing system while selectively adapt techniques and processes that seemed to have been successful in other countries. Moreover, the application of information and communication technologies – eHealth offers new possibilities for improving almost every aspect of healthcare, from making medical systems more powerful and responsive to providing better health information to all.

  3. Analysing the sustainability performance and critical improvement factors of urban municipal waste systems - Case study Trondheim

    OpenAIRE

    Unander, Silje Madalena Oliveira

    2017-01-01

    The management of the natural output of consumption, waste, has to become more sustainable. Ideally this would mean that it simply ceased to exist, but as unrealistic that may be, the current discourse in waste legislation and management is on increasing the material recycling rate. This is a part of the circular economy. Analysing waste management systems is crucial to know what effect different measures might have on the actual recycling rate. In turn, these measures might impact the energ...

  4. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management

    Directory of Open Access Journals (Sweden)

    Guy Blomme

    2017-07-01

    Full Text Available Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis and Fusarium wilt (Fusarium oxysporum f. sp. cubense. However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1 Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis; (2 Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3 Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi, bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca. Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed. This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset.

  5. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management.

    Science.gov (United States)

    Blomme, Guy; Dita, Miguel; Jacobsen, Kim Sarah; Pérez Vicente, Luis; Molina, Agustin; Ocimati, Walter; Poussier, Stephane; Prior, Philippe

    2017-01-01

    Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis) and Fusarium wilt (Fusarium oxysporum f. sp. cubense). However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1) Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis); (2) Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3) Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi), bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca). Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed). This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset.

  6. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management

    Science.gov (United States)

    Blomme, Guy; Dita, Miguel; Jacobsen, Kim Sarah; Pérez Vicente, Luis; Molina, Agustin; Ocimati, Walter; Poussier, Stephane; Prior, Philippe

    2017-01-01

    Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis) and Fusarium wilt (Fusarium oxysporum f. sp. cubense). However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1) Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis); (2) Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3) Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi), bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca). Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed). This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset. PMID:28785275

  7. SUSTAINABILITY OF TURKISH GREY CATTLE IN ORGANIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Hülya HANOĞLU

    2015-08-01

    Full Text Available Beef consumption has significantly increased in the last fifty years as a response to the increase in population size, whereas the sustainability of production systems has begun to be questioned. Because the residues left in the animal feed additives used in conventional food production constitute major health problems in consumers. Therefore, an interest in organic farming methods based on natural grazing and feed production without the use of chemicals is increasing. One of the most important examples of organic beef production in Turkey is the project carried out in the villages of Ayvacık district in Çanakkale. This region has an ecological structure which does not allow an extensive production of culture cattle. The most important advantages of the Turkish grey cattle living in the pastures in the region covered with bushes are that they have less needs of shelter, they do not need supplementary feeding throughout the year and labor costs for their production for beef are low. Breeders in this region maintained a market price for their products by shifting to organic system and thus allowed the sustainable production of the Turkish grey cattle. In this study, Ayvacık Organic Beef Production Project which sets an example for the sustainability of Turkish grey cattle production by featuring its surplus values was evaluated.

  8. Self-sustaining fuel purging fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.R.; Koblish, T.R.

    1994-01-11

    A fuel injector system for a combustor of a gas turbine engine includes first and second fuel injectors rendered operative to discharge fuel to the combustor during a high power regime of engine operation and rendered non-operative during a lower power regime of engine operation. The first and second fuel injectors include respective first and second fuel discharge passages in fuel flow communication to one another and to the combustor via associated fuel discharge lips to sustain a flame region. The first and second fuel injectors are operatively associated with respective first and second air discharge means having air discharge lips for discharging air to the combustor for sustaining the flame region therein. When the fuel injectors are rendered non-operative, different pneumatic pressures are established at the fuel discharge lips to purge fuel from the fuel injectors to the combustor. 26 figs.

  9. [Health care system sustainability and the contribution of emergency departments].

    Science.gov (United States)

    Urbanos-Garrido, Rosa María; López-Valcárcel, Beatriz G

    2015-06-01

    The purpose of this paper is to describe the main proposals for ensuring national health service sustainability, in the light of a review of the most relevant diagnostic reports and guidelines published since the onset of the economic crisis. The following proposals are among the most frequently mentioned in the literature: selective financing of technology, reorganization to provide more care for chronic conditions and better coordination between levels of care and the network of social and health care services, and the reinforcement of primary care. Also commonly suggested is the reform of health care governance. Likewise, the authors briefly examine the measures adopted to date to promote the system's sustainability and discuss how the emergency department can further this aim.

  10. Development of Bioelectrochemical Systems to Promote Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2015-06-01

    Full Text Available Bioelectrochemical systems (BES are a newly emerged technology for energy-efficient water and wastewater treatment. Much effort as well as significant progress has been made in advancing this technology towards practical applications treating various types of waste. However, BES application for agriculture has not been well explored. Herein, studies of BES related to agriculture are reviewed and the potential applications of BES for promoting sustainable agriculture are discussed. BES may be applied to treat the waste/wastewater from agricultural production, minimizing contaminants, producing bioenergy, and recovering useful nutrients. BES can also be used to supply irrigation water via desalinating brackish water or producing reclaimed water from wastewater. The energy generated in BES can be used as a power source for wireless sensors monitoring the key parameters for agricultural activities. The importance of BES to sustainable agriculture should be recognized, and future development of this technology should identify proper application niches with technological advancement.

  11. [Current status of ISO 15189 accreditation system].

    Science.gov (United States)

    Watanabe, Kiyoaki; Kubono, Katsuo; Shimoda, Katsuji

    2012-07-01

    The Japan Accreditation Board (JAB) mainly involves the ISO 15189 accreditation system with support from the Japanese Committee for Clinical Laboratory Standards (JCCLS). The currently available procedure to obtain accreditation is as below. Firstly, it is necessary for applicants to prepare ISO 15189 and related documents in each laboratory. Then a JAB assessor will conduct a preliminary assessment to check if the applicant is ready to be accredited. Subsequently, a team consisting of one to five JAB assessors and/or technical experts will conduct the initial assessment, usually for two days. Finally, the team will make a recommendation to the JAB Accreditation Committee for Medical Laboratory on its evaluation for accreditation. If the Accreditation Committee approves the recommendation of the assessment team, the applicant will be granted accreditation and issued with a certificate of accreditation. According to EU data in February 2011, about 1,300 medical laboratories obtained the ISO 15189 accreditation. The numbers of accredited laboratories are 482 in Germany, 276 in England, 209 in France, 100 in Czechoslovakia etc. Similarly, the data for the Asia-Pacific region in June 2011 showed that the numbers of accredited laboratories are 638 in Australia, 287 in India, 220 in Canada, 160 in Taiwan etc. Although 59 laboratories are accredited in Japan, the ISO 15189 accreditation is not so widespread compared with other countries. It is now expected that the government and/or related bodies will have sufficient understanding of this accreditation system to further its development in Japan. [Rinsho Byori 60: 653-659, 2012

  12. Mapping one year's design processes at an architecture firm specialized in sustainable architecture- How do sustainability certification systems affect design processes?

    DEFF Research Database (Denmark)

    Landgren, M.; Jensen, Lotte Bjerregaard; Heller, Alfred

    2016-01-01

    The current study mapped how a Danish architecture firm integrated sustainability in their projects over a year. All the projects concerned were aimed at being sustainable within the framework of the DGNB certification system. The focus of DGNB is equally divided between environmental, economic...... in practice. The framework for the study is the increased focus in recent decades on minimizing the energy consumption used for operating buildings, because the building industry accounts for 40% of the total energy consumption in the EU. This focus has led to more optimized design processes within...

  13. Current-potential characteristics of electrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Vincent S. [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    This dissertation contains investigations in three distinct areas. Chapters 1 and 2 provide an analysis of the effects of electromagnetic phenomena during the initial stages of cell discharge. Chapter 1 includes the solution to Maxwell`s equations for the penetration of the axial component of an electric field into an infinitely long cylindrical conductor. Chapter 2 contains the analysis of the conductor included in a radial circuit. Chapter 3 provides a complete description of the equations that describe the growth of an oxide film. A finite difference program was written to solve the equations. The system investigated is the iron/iron oxide in a basic, aqueous solution. Chapters 4 and 5 include the experimental attempts for replacing formaldehyde with an innocuous reducing agent for electroless deposition. In chapter 4, current-versus-voltage curves are provided for a sodium thiosulfate bath in the presence of a copper disk electrode. Also provided are the cathodic polarization curves of a copper/EDTA bath in the presence of a copper electrode. Chapter 5 contains the experimental results of work done with sodium hypophosphite as a reducing agent. Mixed-potential-versus-time curves for solutions containing various combinations of copper sulfate, nickel chloride, and hypophosphite in the presence of a palladium disk electrode provide an indication of the reducing power of the solutions.

  14. Transnational Higher Education and Sustainable Development: Current Initiatives and Future Prospects

    Science.gov (United States)

    Koehn, Peter H.

    2012-01-01

    Tertiary educational institutions increasingly are relied upon for sustainable development initiatives. This policy research note analyzes newly available data regarding seven key dimensions of 295 transnational sustainable development projects involving US universities. Comparative regional analysis of the projects profiled in the APLU/AAU…

  15. Modeling sustainability in renewable energy supply chain systems

    Science.gov (United States)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  16. Current systems of coronal loops in 3D MHD simulations

    Science.gov (United States)

    Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.

    2017-11-01

    Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system

  17. Forage based animal production systems and sustainability, an invited keynote

    Directory of Open Access Journals (Sweden)

    Abdul Shakoor Chaudhry

    2008-07-01

    Full Text Available Forages are essential for the successful operation of animal production systems. This is more relevant to ruminants which are heavily dependant upon forages for their health and production in a cost-effective and sustainable manner. While forages are an economical source of nutrients for animal production, they also help conserve the soil integrity, water supply and air quality. Although the role of these forages for animal production could vary depending upon the regional preferences for the animal and forage species, climate and resources, their importance in the success of ruminant production is acknowledged. However with the increasing global human population and urbanisation, the sustainability of forage based animal production systems is sometimes questioned due to the interrelationship between animal production and the environment. It is therefore vital to examine the suitability of these systems for their place in the future to supply quality food which is safe for human consumption and available at a competitive price to the growing human population. Grassland and forage crops are recognised for their contribution to the environment, recreation and efficiency of meat and milk production,. To maintain sustainability, it is crucial that such farming systems remain profitable and environmentally friendly while producing nutritious foods of high economical value. Thus, it is pertinent to improve the nutritive value of grasses and other forage plants in order to enhance animal production to obtain quality food. It is also vital to develop new forages which are efficiently utilised and wasted less by involving efficient animals. A combination of forage legumes, fresh or conserved grasses, crop residues and other feeds could help develop an animal production system which is economically efficient, beneficial and viable. Also, it is crucial to use efficient animals, improved forage conservation methods, better manure handling, and minimum

  18. Thermal energy storage technologies for sustainability systems design, assessment and applications

    CERN Document Server

    Kalaiselvam, S

    2014-01-01

    Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.Describes how thermal energ

  19. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  20. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    Science.gov (United States)

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  1. Agrifood systems and the microbial safety of fresh produce: Trade-offs in the wake of increased sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-the, Christophe, E-mail: christophe.nguyen-the@avignon.inra.fr [UMR408 SQPOV «Sécurité et Qualité des Produits d' Origine Végétale», INRA, Avignon Université, 84000 Avignon (France); Bardin, Marc, E-mail: marc.bardin@avignon.inra.fr [INRA, UR0407 Plant Pathology, F-84143 Montfavet (France); Berard, Annette, E-mail: annette.berard@avignon.inra.fr [EMMAH, INRA, Avignon Université, 84000 Avignon (France); Berge, Odile, E-mail: odile.berge@avignon.inra.fr [INRA, UR0407 Plant Pathology, F-84143 Montfavet (France); Brillard, Julien, E-mail: julien.brillard@univ-montp2.fr [UMR408 SQPOV «Sécurité et Qualité des Produits d' Origine Végétale», INRA, Avignon Université, 84000 Avignon (France); Broussolle, Véronique, E-mail: veronique.broussolle@avignon.inra.fr [UMR408 SQPOV «Sécurité et Qualité des Produits d' Origine Végétale», INRA, Avignon Université, 84000 Avignon (France); and others

    2016-08-15

    Fresh produce has been a growing cause of food borne outbreaks world-wide prompting the need for safer production practices. Yet fresh produce agrifood systems are diverse and under constraints for more sustainability. We analyze how measures taken to guarantee safety interact with other objectives for sustainability, in light of the diversity of fresh produce agrifood systems. The review is based on the publications at the interface between fresh produce safety and sustainability, with sustainability defined by low environmental impacts, food and nutrition security and healthy life. The paths for more sustainable fresh produce are diverse. They include an increased use of ecosystem services to e.g. favor predators of pests, or to reduce impact of floods, to reduce soil erosion, or to purify run-off waters. In contrast, they also include production systems isolated from the environment. From a socio-economical view, sustainability may imply maintaining small tenures with a higher risk of pathogen contamination. We analyzed the consequences for produce safety by focusing on risks of contamination by water, soil, environment and live stocks. Climate change may increase the constraints and recent knowledge on interactions between produce and human pathogens may bring new solutions. Existing technologies may suffice to resolve some conflicts between ensuring safety of fresh produce and moving towards more sustainability. However, socio-economic constraints of some agri-food systems may prevent their implementation. In addition, current strategies to preserve produce safety are not adapted to systems relying on ecological principles and knowledge is lacking to develop the new risk management approaches that would be needed. - Highlights: • Measures taken to improve safety were assessed for their impact on sustainability. • Fresh produce safety improvements may come at the expense of sustainability. • Environment, food security and human health constituted the

  2. An environmentally sustainable transport system in Sweden. A scenario study

    Energy Technology Data Exchange (ETDEWEB)

    Brokking, P.; Emmelin, L.; Engstroem, M-G.; Nilsson, Jan-Evert; Eriksson, Gunnar; Wikberg, O.

    1997-02-01

    This is a short version of a scenario study concerning the possibilities to reach an Environmentally Sustainable Transport system in Sweden in a perspective of 30 years. The aim of the scenario study has been to describe one of several possible paths from today`s transport system to an environmentally adopted one. However, this does not imply that the task is to predict how such a transformation can be accomplished. The aim is rather to illustrate what such transformation require in the form of political decisions. The transformation of the transport system in to an environmentally adopted one, is primarily treated as a political problem, and a political perspective has accordingly been chosen for the study. In this English version of the scenario, the carbon dioxide problem is used to illuminate the many conflicts in goals and other problem that will attend an environmental adoption of the Swedish transport system, and to highlight the analytical points of departure for the scenario study. The analysis shows that it is possible to reach the national environmental goals that characterise, with given definitions, an environmentally sustainable transport system. However, this implies many severe political decisions over a long period of time, which in turn, implies a long term national consensus about the importance to reach the overall goal. Other results the scenario points out, is the risk that a policy focused on one sector leads to `solving` a problem by moving it outside systems limitations, and the limitations on a national environmental policy: Being able to count on assistance from other countries through an environmental adoption of the transport system in the European Union or globally, would drastically facilitate the environmental adoption of the Swedish transport system, through, among other things, a more rapid technological development. This indicates the necessity of promoting issues involving transportation and the environment in international

  3. A sustainable and affordable support system for rural healthcare delivery

    CSIR Research Space (South Africa)

    Barjis, J

    2013-12-01

    Full Text Available et al., 2009). Furthermore, many projects that have taken place, started by government or non-government organizations, have delivered ‘white elephants’ rather than a sustainable system. The idiom of ‘white elephant’ (Robinson and Toryik, 2005, p.... The remainder of this paper is structured as follows: in part one we discuss the socio-cultural and economic context, which sets the stage for the research carried out and the results presented in this article; in part we discuss the underlying theoretical...

  4. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I.

    2011-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings...... of the dominating neoclassical economy and the short time horizon of the present market system. On the supply side fossil fuels are becoming a central problem being the dominating global energy source while at the same time presenting serious problems in relation to global warming and limited resources (“peak oil...

  5. New Systems Thinking and Policy Means for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2010-01-01

    Sustainable energy development requires attention to both the demand and supply side. On the demand side there is an urgent need for efficient policy means promoting energy conservation. This includes changes in the institutional and economic framework to compensate for the short comings...... of the dominating neoclassical economy and the short time horizon of the present market system. On the supply side fossil fuels are becoming a central problem being the dominating global energy source while at the same time presenting serious problems in relation to global warming and limited resources (“peak oil...

  6. Sustainable solid waste management a systems engineering approach

    CERN Document Server

    Chang, N

    2015-01-01

    Interactions between human activities and the environment are complicated and often difficult to quantify. In many occasions, judging where the optimal balance should lie among environmental protection, social well-being, economic growth, and technological progress is complex. The use of a systems engineering approach will fill in the gap contributing to how we understand the intricacy by a holistic way and how we generate better sustainable solid waste management practices. This book aims to advance interdisciplinary understanding of intertwined facets between policy and technology relevant to solid waste management issues interrelated to climate change, land use, economic growth, environmental pollution, industrial ecology, and population dynamics.

  7. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  8. SUSTAINABLE MANAGEMENT PLAN APPLICABLE FOR ECOTOURISM CERTIFICATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Romeo Cătălin CREŢU

    2015-06-01

    Full Text Available The purpose of this study is to introduce the certification procedure of ecological tourism as well as the criteria that have to be fulfilled by the lodging units whose desire is to voluntarily adhere to this new form of tourism. In Romania, the Certifying System in Ecotourism is used by the AER (Romanian Association of Ecotourism and that adjusts the international experience into the national context. This is developed as the same as the Accreditation Program in Nature and Ecotourism promoted by the Australian Association of Ecotourism (NEAP is the first accreditation system in ecological tourism and in conformity with Nature’s Best of the Swedish Association of Ecotourism (the first accreditation system in Ecotourism in the northern hemisphere. An important element in the certification procedure consists of drawing up a plan of sustained development which has to respond to the entirely certification requirements. The hereby study allows to see a model of sustained development plan that maybe used by managers and directors of lodging units which wanted to acquire this certification of tourism.

  9. Superconducting Current Leads for Cryogenic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space flight cryocoolers will be able to handle limited heat loads at their expected operating temperatures and the current leads may be the dominant contributor to...

  10. Systemic aspects of the transition to sustainable energy

    Directory of Open Access Journals (Sweden)

    Schlögl R.

    2015-01-01

    Full Text Available The supply of free energy to our societies is today an intricate system comprising the regimes of technologies, regulatory frameworks, socio-economic impacts and techno-ecological interactions. As a consequence it is challenging to define clear directions or even device a master plan for the transformation of a single national energy system into a sustainable future. Even the term “sustainable” needs extensive discussion in this context that should not be defined solely in technological or ecological senses. The contribution illustrates some of the elements of the energy system and their interdependencies. It will become clear that multiple reasons exist to change the traditional generation and use of energy even when climate protection is not a sufficiently strong argument for a change.

  11. Adoption of Geospatial Systems towards evolving Sustainable Himalayan Mountain Development

    Science.gov (United States)

    Murthy, M. S. R.; Bajracharya, B.; Pradhan, S.; Shestra, B.; Bajracharya, R.; Shakya, K.; Wesselmann, S.; Ali, M.; Bajracharya, S.; Pradhan, S.

    2014-11-01

    Natural resources dependence of mountain communities, rapid social and developmental changes, disaster proneness and climate change are conceived as the critical factors regulating sustainable Himalayan mountain development. The Himalayan region posed by typical geographic settings, diverse physical and cultural diversity present a formidable challenge to collect and manage data, information and understands varied socio-ecological settings. Recent advances in earth observation, near real-time data, in-situ measurements and in combination of information and communication technology have transformed the way we collect, process, and generate information and how we use such information for societal benefits. Glacier dynamics, land cover changes, disaster risk reduction systems, food security and ecosystem conservation are a few thematic areas where geospatial information and knowledge have significantly contributed to informed decision making systems over the region. The emergence and adoption of near-real time systems, unmanned aerial vehicles (UAV), board-scale citizen science (crowd-sourcing), mobile services and mapping, and cloud computing have paved the way towards developing automated environmental monitoring systems, enhanced scientific understanding of geophysical and biophysical processes, coupled management of socio-ecological systems and community based adaptation models tailored to mountain specific environment. There are differentiated capacities among the ICIMOD regional member countries with regard to utilization of earth observation and geospatial technologies. The region can greatly benefit from a coordinated and collaborative approach to capture the opportunities offered by earth observation and geospatial technologies. The regional level data sharing, knowledge exchange, and Himalayan GEO supporting geospatial platforms, spatial data infrastructure, unique region specific satellite systems to address trans-boundary challenges would go a long way in

  12. Flexible procurement systems is key to supply chain sustainability

    Directory of Open Access Journals (Sweden)

    Surajit Bag

    2016-01-01

    Full Text Available Background: In this dynamic business environment, manufacturers are focusing primarily on delivery performance and competitive pricing to win orders. It is essential that manufacturers adopt flexible procurement systems (FPSs in such an uncertain environment for business sustainability.Objectives: The purpose of the study is to identify the elements of FPSs and model the interrelationships between elements of FPSs and, finally, to understand how FPSs are linked with supply chain sustainability.Method: Besides providing a brief conceptual review of FPSs, the study largely illustrates the use of an innovative multi-criteria decision-making approach called total interpretive structural modelling (TISM.Results: The total interpretive structural modelling–based model evaluates the causality and illustrates elements with interpretation of relations and suggests that bottom-level elements are vital for sustainability in FPSs and avert risks. Secondly, strategic sourcing is positively influencing supplier integration. Thirdly, supplier integration positively influences supplier responsiveness. Fourthly, skills of flexible procurement workforce positively influence supplier integration. Fifthly, it is found that supplier integration positively influences flexible transportation. The sixth finding suggests that supplier integration positively influences eco-friendly packaging. The seventh finding highlights that supplier integration positively influences ISO 14001 certifications. The eighth finding explains that supplier responsiveness positively influences customer satisfaction. It is also observed that flexible transport reduces operational cost and environmental costs. The second last finding explains eco-friendly packaging and reduction in environmental cost by careful selection of packing material and chemicals. Lastly, it is found that ISO 14001/environmental certifications reduce environmental costs by greening suppliers and pressurises them to

  13. Capabilities of current electronic payment systems

    OpenAIRE

    Knap, Jiří

    2009-01-01

    This thesis describes the development of payment systems through time from barter payments to modern electronic payment systems, describing law background for these systems in Czech Republic and also shows capabilities of the most popular internet payment system PayPal. Finaly in this thesis I apply theoretical knowledge to implement PayPal payments into small e-shop, so the customers will be able to pay for their goods using PayPal acocunts or simple credit card payment.

  14. The Sustainable Development of Industry Clusters: Emergent Knowledge Networks and Socio Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Susu Nousala

    2009-10-01

    Full Text Available In a highly competitive global economy the development of sustainable, innovative responses from Industry is now vital. Many industries globally need to respond rather than react to current economic climate through sustainable (economically and environmentally development. The steel industry is a critical player in the urban landscape. Like many industries, small, medium enterprises (SMEs are vital players within the steel industry supply chain. The Australian SME steel housing sector (based in rural and regional areas are still developing systemic capabilities with the aim of realizing its full potential. The question of an effective sustainable industry is much larger than any one player. This paper aims to present a proposed methodological approach for sustainable cluster development based on previous industry wide investigations. Through the lens of scalability of a socio complex adaptive system, SME development becomes arguably the most significant player with regards to industry cluster development. By starting with SME development it's possible to build an understanding of a simultaneous two layered approach, "bottom up – top down" whilst including a very diversified group.

  15. A Teacher Education for Sustainable Development System: An Institutional Responsibility

    Science.gov (United States)

    Bentham, Hayley; Sinnes, Astrid; Gjøtterud, Sigrid

    2015-01-01

    Soft systems methodology is commonly used in organizational research and can be very useful when attempting to understand both organizational structures and dynamics. A teacher education institution is identified here as an organization. Soft systems methodology is employed to gain a picture of the current organizational structure of a Science and…

  16. Applying a Transportation Rating System to Advance Sustainability Evaluation, Planning and Partnerships

    Science.gov (United States)

    Barrella, Elise; Lineburg, Kelsey; Hurley, Peter

    2017-01-01

    Purpose: The purpose of this paper is to describe a pilot application of the Sustainable Transportation Analysis & Rating System (STARS), and highlight how a sustainability rating system can be used to promote sustainable urban development through a university-city partnership. STARS is an example of a second-generation "green"…

  17. Three Views of Systems Theories and Their Implications for Sustainability Education

    Science.gov (United States)

    Porter, Terry; Cordoba, Jose

    2009-01-01

    Worldwide, there is an emerging interest in sustainability and sustainability education. A popular and promising approach is the use of systems thinking. However, the systems approach to sustainability has neither been clearly defined nor has its practical application followed any systematic rigor, resulting in confounded and underspecified…

  18. Prototyping and farm system modelling - Partners on the road towards more sustainable farm systems?

    NARCIS (Netherlands)

    Sterk, B.; Ittersum, van M.K.; Leeuwis, C.; Wijnands, F.G.

    2007-01-01

    Farm system modelling and prototyping are two research methods proposed to enhance the process of developing sustainable farm systems. Farm system models provide means to formalize, expand and refine expert knowledge and to integrate this with scientific agro-ecological knowledge at the farm level.

  19. Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability

    NARCIS (Netherlands)

    Wagenberg, van C.P.A.; Haas, de Y.; Hogeveen, H.; Krimpen, van M.M.; Meuwissen, M.P.M.; Middelaar, van C.E.; Rodenburg, T.B.

    2017-01-01

    To sustainably contribute to food security of a growing and richer world population, livestock production systems are challenged to increase production levels while reducing environmental impact, being economically viable, and socially responsible. Knowledge about the sustainability performance

  20. Welfare and Generational Equity in Sustainable Unfunded Pension Systems

    Science.gov (United States)

    Auerbach, Alan J.; Lee, Ronald

    2011-01-01

    Using stochastic simulations we analyze how public pension structures spread the risks arising from demographic and economic shocks across generations. We consider several actual and hypothetical sustainable PAYGO pension structures, including: (1) versions of the US Social Security system with annual adjustments of taxes or benefits to maintain fiscal balance; (2) Sweden’s Notional Defined Contribution system and several variants developed to improve fiscal stability; and (3) the German system, which also includes annual adjustments to maintain fiscal balance. For each system, we present descriptive measures of uncertainty in representative outcomes for a typical generation and across generations. We then estimate expected utility for generations based on simplifying assumptions and incorporate these expected utility calculations in an overall social welfare measure. Using a horizontal equity index, we also compare the different systems’ performance in terms of how neighboring generations are treated. While the actual Swedish system smoothes stochastic fluctuations more than any other and produces the highest degree of horizontal equity, it does so by accumulating a buffer stock of assets that alleviates the need for frequent adjustments. In terms of social welfare, this accumulation of assets leads to a lower average rate of return that more than offsets the benefits of risk reduction, leaving systems with more frequent adjustments that spread risks broadly among generations as those most preferred. PMID:21818166

  1. ERP systems: aspects of selection, implementation and sustainable operations

    Directory of Open Access Journals (Sweden)

    Torsten Munkelt

    2013-01-01

    Full Text Available This paper gives recommendations for selecting, implementing and sustainably operating ERP systems. We indicate special aspects which are important from our point of view. The paper addresses practitioners who are responsible for ERP systems, especially IT and project managers. The structure of the paper matches the three main phases of an ERP system’s lifecycle within an enterprise: selection, implementation and operations. General process models are given for selection and implementation of ERP systems. Our suggestions stretch from project management, business process reengineering, system selection criteria, reporting and customizing to choosing key users, data migration, and user training. Operations of ERP systems are commented according to the views defined by the ARIS concept. We are focusing on organizational issues, but give also remarks on business process maintenance, exploitation of ERP functions, and data management. While other publications give rather general advice, recommendations in this paper are selected to be use-oriented and easy to apply. The recommendations do not depend on any particular ERP system.

  2. The application of appropriate technologies and systems for sustainable sanitation

    CSIR Research Space (South Africa)

    Duncker, Louiza C

    2014-11-01

    Full Text Available Sustainable development, which encompasses sustainable sanitation, is defined as development that is appropriate, has the specific objectives of accelerated growth, targeted interventions and community mobilisation to eradicate poverty and focuses...

  3. Pathway to Support the Sustainable National Health Information System

    Science.gov (United States)

    Sahavechaphan, Naiyana; Phengsuwan, Jedsada; U-Ruekolan, Suriya; Aroonrua, Kamron; Ponhan, Jukrapong; Harnsamut, Nattapon; Vannarat, Sornthep

    Heath information across geographically distributed healthcare centers has been recognized as an essential resource that drives an efficient national health-care plan. There is thus a need for the National Health Information System (NHIS) that provides the transparent and secure access to health information from different healthcare centers both on demand and in a time efficient manner. As healthiness is the ultimate goal of people and nation, we believe that the NHIS should be sustainable by taking the healthcare center and information consumer perspectives into account. Several issues in particular must be resolved altogether: (i) the diversity of health information structures among healthcare centers; (ii) the availability of health information sharing from healthcare centers; (iii) the efficient information access to various healthcare centers; and (iv) the privacy and privilege of heath information. To achieve the sustainable NHIS, this paper details our work which is divided into 3 main phases. Essentially, the first phase focuses on the application of metadata standard to enable the interoperability and usability of health information across healthcare centers. The second phase moves forward to make information sharing possible and to provide an efficient information access to a large number of healthcare centers. Finally, in the third phase, the privacy and privilege of health information is promoted with respect to access rights of information consumers.

  4. Toolbox for tomorrow. Exploring and designing sustainable systems

    NARCIS (Netherlands)

    Saraph, Anupam

    1994-01-01

    The exercise to construct a toolbox for operating on change and sustainability was undertaken out of the concerns voiced over the last two decades about the rapidly reorganising world which seems to move away from promising to sustain the human race (and much else). The pressures on sustaining

  5. Sustainability in CALL Learning Environments: A Systemic Functional Grammar Approach

    Science.gov (United States)

    McDonald, Peter

    2014-01-01

    This research aims to define a sustainable resource in Computer-Assisted Language Learning (CALL). In order for a CALL resource to be sustainable it must work within existing educational curricula. This feature is a necessary prerequisite of sustainability because, despite the potential for educational change that digitalization has offered since…

  6. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    Science.gov (United States)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  7. Baseline sustainability assessment of the current state of livestock/fish and fruit/vegetables supply chains

    NARCIS (Netherlands)

    Zanten, van H.H.E.; Hornborg, Sara; Ziegler, F.; Tetens, I.; Leip, Adrian; Kuiper, M.H.; Boer, de I.J.M.

    2017-01-01

    To assess different possible future directions for the EU food system, potential pathways based on a set of innovations need to be identified. The aim of WP5 is to define different pathways towards more sustainable and healthy diets within the EU, without negative implications in the rest of world.

  8. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  9. Current trends on knowledge-based systems

    CERN Document Server

    Valencia-García, Rafael

    2017-01-01

    This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used...

  10. Aurora-associated three-dimensional current system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengying.

    1993-05-01

    Ground based measurements from the CANOPUS All-sky Imager (ASI), the Bistatic Auroral Radar System (BARS), and the Magnetometer and Riometer Array (MARIA) were combined to infer a three-dimensional current system of finite width and length in the auroral zone using a new method of quantitative analysis. In this new method, the auroral emission rates I(427.8 nm) and I(630.0 nm) were used to calculate the Pedersen and Hall height-integrated conductivities in the auroral arc region. Electric fields were measured from the BARS. Ohm's law and the current continuity equation were used to derive the current system. The resulting current system consisted of 400 ionospheric (horizontal) current vectors and 400 field-aligned current vectors in the field of view. The three cases selected were near midnight. The current system found is a combination of two types of Bostroem current systems within a small region. The magnetic perturbations on the ground resulting from the current system were calculated and compared with the magnetic observations from MARIA. The good agreement shows that the inferred current system is reasonable, and the major current source producing the magnetic perturbations on the ground is the current system in the auroral region overhead. 71 refs., 42 figs., 2 tabs.

  11. Incentive Systems That Support Sustainability: A First Nations Example

    Directory of Open Access Journals (Sweden)

    Ronald L. Trosper

    1998-12-01

    Full Text Available Prior to contact with European settlers, the incentive and governance systems used by First Nations peoples of the Northwest coast of North America provided more sustainable use of the fisheries and other resources of that region than did subsequent systems. This paper explores the major reason for that success: the requirements of the potlatch system that chiefs share their income with each other. Because chiefs controlled well-defined territories and subjected each other to review, the potlatch governance system embodied the characteristics of negative feedback, coordination, resiliency, and robustness that political scientist John Dryzek identifies as means to support ecological rationality in the management of ecosystems. This ecological rationality occurs because the sharing of income made chiefs aware of the effects that their actions had on the income of other chiefs. In addition, public discussions that occurred at feasts would allow chiefs to coordinate their actions as needed. The paper concludes with proposals for application of the potlatch system to modern circumstances. Such application means changing the rules for the distribution of income from using ecosystem resources so that all entities share their surplus income with each other. The potlatch system can be applied to modern organizations by noting that chief executive officers are like chiefs, that profit is like surplus income, and that corporations can be viewed as similar to the houses of the traditional Northwest systems. One major change is that profit is no longer privately owned, and must be shared with other organizations that use an ecosystem. Although controls on behavior mandated by state power would be reduced, a modernized potlatch system would still need to operate within a context provided by governments and international agreements.

  12. Superpersistent Currents in Dirac Fermion Systems

    Science.gov (United States)

    2017-03-06

    August 2016. Dissertation: Quantum nonlinear dynamics in graphene , optomechanical, and semiconductor superlattice systems. 2. Hong-Ya Xu, Electrical...accomplishments are the following: (1) a physical understanding of conductance stability in chaotic and integrable graphene quantum dots with random...impurities, (2) the analysis of conductance fluctuations in chaotic bilayer graphene quantum dots, (3) the identification of reverse Stark effect

  13. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple

  14. Strategic steps towards the implementation of sustainable energy systems as seen by an oil and gas company

    Energy Technology Data Exchange (ETDEWEB)

    Myrvang, Gunnar

    1998-12-01

    The publication relates to the implementation of sustainable energy systems by strategy. Main themes discussed are the world`s shifting energy picture from 1860 to 1992 and the current European energy and natural gas picture including some future projections, and Statoil`s activities in renewables and research in energy technology. 6 figs.

  15. The role of productivity in improving the environmental sustainability of ruminant production systems.

    Science.gov (United States)

    Capper, Judith L; Bauman, Dale E

    2013-01-01

    The global livestock industry is charged with providing sufficient animal source foods to supply the global population while improving the environmental sustainability of animal production. Improved productivity within dairy and beef systems has demonstrably reduced resource use and greenhouse gas emissions per unit of food over the past century through the dilution of maintenance effect. Further environmental mitigation effects have been gained through the current use of technologies and practices that enhance milk yield or growth in ruminants; however, the social acceptability of continued intensification and use of productivity-enhancing technologies is subject to debate. As the environmental impact of food production continues to be a significant issue for all stakeholders within the field, further research is needed to ensure that comparisons among foods are made based on both environmental impact and nutritive value to truly assess the sustainability of ruminant products.

  16. Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals.

    Science.gov (United States)

    Yang, Dongsoo; Cho, Jae Sung; Choi, Kyeong Rok; Kim, Hyun Uk; Lee, Sang Yup

    2017-09-01

    With pressing issues arising in recent years, the United Nations proposed 17 Sustainable Development Goals (SDGs) as an agenda urging international cooperations for sustainable development. In this perspective, we examine the roles of systems metabolic engineering (SysME) and its contribution to improving the quality of life and protecting our environment, presenting how this field of study offers resolutions to the SDGs with relevant examples. We conclude with offering our opinion on the current state of SysME and the direction it should move forward in the generations to come, explicitly focusing on addressing the SDGs. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...... governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new...... buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating...

  18. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least...... that a least‐cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps. Keywords: Energy Efficiency, Renewable energy, Heating strategy, Heat savings, District heating, Smart energy......‐cost strategies. With Denmark as a case, this paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used. Based on a concrete proposal to implement the Danish governmental long...

  19. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  20. Disaster Risk Reduction and Climate Change Adaptation—A Sustainable Development Systems Perspective

    Directory of Open Access Journals (Sweden)

    Tom R. Burns

    2017-02-01

    Full Text Available This article considers the concepts of sustainability and sustainable development in relation to disaster risk reduction and climate change adaptation. We conceptualize sustainability from a social systemic perspective, that is, from a perspective that encompasses the multiple functionalities of a social system and their interrelationships in particular environmental contexts. The systems perspective is applied in our consideration and analysis of disaster risk reduction (DRR, climate change adaptation (CCA, and sustainable development (SD. Section “Sustainability and Sustainable Development” introduces briefly sustainability and sustainable development, followed by a brief presentation of the theory of complex social systems (Section “Social System Model”. The theory conceptualizes interdependent subsystems, their multiple functionalities, and the agential and systemic responses to internal and external stressors on a social system. Section “Case Studies of Response to Stressors” considers disaster risk reduction (DRR and climate change adaptation (CCA, emerging in response to one or more systemic stressors. It illustrates these with disaster risk reduction in the cases of food and chemical security regulation in the EU. CCA is illustrated by initiatives and developments on the island of Gotland, Sweden and in the Gothenburg Metropolitan area, which go beyond a limited CCA perspective, taking into account long-term sustainability issues. Section “Sustainable Development as a Societal Development System” discusses the limitations of DRR and CCA, not only their technical limitations but economic, socio-cultural, and political limitations, as informed from a sustainability perspective. It is argued that DRRs are only partial subsystems and must be considered and assessed in the context of a more encompassing systemic perspective. Part of the discussion is focused on the distinction between sustainable and non-sustainable DRRs and

  1. Sustainable Urban Agriculture in Ghana: What Governance System Works?

    Directory of Open Access Journals (Sweden)

    Eileen Bogweh Nchanji

    2017-11-01

    Full Text Available Urban farming takes advantage of its proximity to market, transport and other urban infrastructure to provide food for the city and sustain the livelihoods of urban and peri-urban dwellers. It is an agricultural activity which employs more than 50% of the local urban population with positive and negative impacts on local and national development. Urban agriculture is an informal activity not supported by law but in practice is regulated to a certain extent by state institutions, traditional rulers, farmers and national and international non-governmental organisations. Tamale’s rapid population growth, exacerbated by the unplanned development system and institutional conflicts, are factors contributing to the present bottlenecks in the urban agricultural system. In this paper, these bottlenecks are conceptualised as problems of governance. These issues will be illustrated using ethnographic data from land sales, crop-livestock competition, waste-water irrigation, and markets. I will explain how conflicts which arise from these different situations are resolved through the interactions of various governance systems. Informal governance arrangements are widespread, but neither they nor formal systems are always successful in resolving governance issues. A participatory governance does not seem possible due to actors’ divergent interests. A governance solution for this sector is not yet apparent, contributing to food and nutritional insecurity.

  2. A Labview Based Leakage Current Monitoring System For HV Insulators

    OpenAIRE

    N. Mavrikakis; I. Androulidakis; D. Pylarinos; K. Siderakis

    2015-01-01

    In this paper, a Labview based leakage current monitoring system for High Voltage insulators is described. The system uses a general purpose DAQ system with the addition of different current sensors. The DAQ system consists of a chassis and hot-swappable modules. Through the proper design of current sensors, low cost modules operating with a suitable input range can be employed. Fully customizable software can be developed using Labview, allowing on-demand changes and incorporatio...

  3. ICT enabled land administration systems for sustainable development

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    This paper analyses the current Land Administration System (LAS) in Denmark with a focus on institutional arrangements, land policies, land information infrastructure, and the four land administration functions: land tenure, land value, land-use, and land development. The analysis, this way, builds...

  4. Sustainable waste management via incineration system: an Islamic ...

    African Journals Online (AJOL)

    This paper would firstly examine solid waste management currently experienced in Malaysia with special concentration given to waste incineration. Its function and benefits entailed from this system shall then be identified. This paper attempts to emphasize this notion within the Islamic perspective, stressing on the needs to ...

  5. Joint Sustainment of Weapon Systems. Would We Be Better Off?

    National Research Council Canada - National Science Library

    Hall, Richard A

    2006-01-01

    .... As depots within the military begin to implement new procedures based on the Lean Six Sigma model, a proposed consolidation of efforts based on major weapon systems could lead to improved cost benefits and decreased maintenance time. Tied with the current Joint Depot Maintenance Program, Lean Six Sigma can continue to improve the Service's depot performance.

  6. Structural sustainability of cambisol under different land use system

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    2012-12-01

    Full Text Available Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a young secondary forest; b old secondary forest; c forest; d pasture; e cropping, and f agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth, the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.

  7. A System of Systems (SoS) Approach to Sustainable Energy Planning

    Science.gov (United States)

    Madani, Kaveh; Hadian, Saeed

    2015-04-01

    The general policy of mandating fossil fuel replacement with "green" energies may not be as effective and environmental-friendly as perceived, due to the secondary impacts of renewable energies on different natural resources. An integrated systems analysis framework is essential to developing sustainable energy supply systems with minimal unintended impacts on valuable natural resources such as water, climate, and ecosystem. This presentation discusses how a system of systems (SoS) framework can be developed to quantitatively evaluate the desirability of different energy supply alternatives with respect to different sustainability criteria under uncertainty. Relative Aggregate Footprint (RAF) scores of a range of renewable and nonrenewable energy alternatives are determined using their performance values under four sustainability criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production. Our results suggest that despite their lower emissions, some renewable energy sources are less promising than non-renewable energy sources from a SoS perspective that considers the trade-offs between carbon footprint of energies and their effects on water, ecosystem, and economic resources. A new framework based on the Modern Portfolio Theory (MPT) is also proposed for analyzing the overall sustainability of different energy mixes for different risk of return levels with respect to the trade-offs involved. It is discussed how the proposed finance-based sustainability evaluation method can help policy makers maximize the energy portfolio's expected sustainability for a given amount of portfolio risk, or equivalently minimize risk for a given level of expected sustainability level, by revising the energy mix.

  8. Innovation in user-centered skills and performance improvement for sustainable complex service systems.

    Science.gov (United States)

    Karwowski, Waldemar; Ahram, Tareq Z

    2012-01-01

    In order to leverage individual and organizational learning and to remain competitive in current turbulent markets it is important for employees, managers, planners and leaders to perform at high levels over time. Employee competence and skills are extremely important matters in view of the general shortage of talent and the mobility of employees with talent. Two factors emerged to have the greatest impact on the competitiveness of complex service systems: improving managerial and employee's knowledge attainment for skills, and improving the training and development of the workforce. This paper introduces the knowledge-based user-centered service design approach for sustainable skill and performance improvement in education, design and modeling of the next generation of complex service systems. The rest of the paper cover topics in human factors and sustainable business process modeling for the service industry, and illustrates the user-centered service system development cycle with the integration of systems engineering concepts in service systems. A roadmap for designing service systems of the future is discussed. The framework introduced in this paper is based on key user-centered design principles and systems engineering applications to support service competitiveness.

  9. Development and application of a multi-attribute sustainability function for Dutch dairy farming systems

    NARCIS (Netherlands)

    Calker, van K.J.; Berentsen, P.B.M.; Romero, C.; Giesen, G.W.J.; Huirne, R.B.M.

    2006-01-01

    Sustainability in dairy farming is determined by using aspects (economic, social and ecological). Per aspect a number of measurable attributes is selected. Difficulty for determining the sustainability of farming systems is the combination of the different attribute measures into a sustainability

  10. Workshop in a Box: Sustainable Management of Rural and Small Water and Wastewater Systems Workshops

    Science.gov (United States)

    A resource to help rural and small systems and communities to conduct workshops, either for an individual system or for a group of systems, based on the Rural and Small Systems Guidebook to Sustainable Utility Management.

  11. Levels of sirolimus in saliva and blood following oral topical sustained-release varnish delivery system application.

    Science.gov (United States)

    Nudelman, Zakhar; Findler, Mordechai; Barasch, Dinorah; Nemirovski, Alina; Pikovsky, Anna; Kirmayer, David; Basheer, Maamoun; Gutkind, J Silvio; Friedman, Michael; Czerninski, Rakefet

    2015-05-01

    Sirolimus (rapamycin) is a mammalian target of rapamycin pathway blocker. The efficacy of sirolimus is currently studied for its antiproliferative properties in various malignancies and particularly in squamous cell carcinoma and other oral disorders. Topical application at the oral cavity can augment sirolimus availability at the site of action by increasing sirolimus levels in saliva and hence efficacy, along with improved safety (low levels in the blood to avoid side effects) and compliance. Our purpose was to evaluate the release profile and safety of a topical sirolimus sustained-release varnish drug delivery system. Sirolimus sustained-release varnish drug delivery system containing a total of 0.5 mg of the drug was applied to nine healthy male volunteers. Saliva and blood levels were determined utilizing mass spectrometry and chemiluminescent microparticle immunoassay, respectively. The prolonged release profile and safety were evaluated for the oral topical delivery system. After the application of the drug delivery system, a sustained-release profile was observed in the oral cavity. We have measured moderate sirolimus levels for up to 12 h. The safety was confirmed, and systemic sirolimus blood levels were negligible. After an application of sirolimus sustained-release varnish drug delivery system, prolonged drug levels can be achieved in the saliva. The oral topical sirolimus concentrations were potentially therapeutic along with minimal systemic exposure. These results broaden the potential clinical use of sustained-release oral topical rapalogs.

  12. Current Mode Data Converters for Sensor Systems

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger

    of noise in SI is presented which leads to a new optimization methodology for SI. The optimization methodology minimizes the power consumption for a given performance (SNR and THD). The optimization methodology also takes process variations into account.Six chips have been implemented based on the theory...... performs slightly poorer than the first one and the third DAC does not operate properly.A third order SI A/D Sigma-Delta modulator is presented. A thorough analysis is presented that shows that the design of the modulator at the system level and the SI building blocks at the transistor level must...

  13. Community, culture and sustainability in multilevel dynamic systems intervention science.

    Science.gov (United States)

    Schensul, Jean J

    2009-06-01

    This paper addresses intertwined issues in the conceptualization, implementation and evaluation of multilevel dynamic systems intervention science (MDSIS). Interventions are systematically planned, conducted and evaluated social science-based cultural products intercepting the lives of people and institutions in the context of multiple additional events and processes (which also may be referred to as interventions) that may speed, slow or reduce change towards a desired outcome. Multilevel interventions address change efforts at multiple social levels in the hope that effects at each level will forge synergistic links, facilitating movement toward desired change. This paper utilizes an ecological framework that identifies macro (policy and regulatory institutions), meso (organizations and agencies with resources, and power) and micro (individuals, families and friends living in communities) interacting directly and indirectly. An MDSIS approach hypothesizes that change toward a goal will occur faster and more effectively when synchronized and supported across levels in a social system. MDSIS approaches by definition involve "whole" communities and cannot be implemented without the establishments of working community partnerships This paper takes a dynamic systems approach to science as conducted in communities, and discusses four concepts that are central to MDSIS--science, community, culture, and sustainability. These concepts are important in community based participatory research and to the targeting, refinement, and adaptation of enduring interventions. Consistency in their meaning and use can promote forward movement in the field of MDSIS, and in community-based prevention science.

  14. Economic sustainability of organic dairy sheep systems in Central Spain

    Directory of Open Access Journals (Sweden)

    Paula Toro-Mujica

    2015-05-01

    Full Text Available Sheep production systems in regions with a Mediterranean climate are important in social, economic and environmental terms. Modeling these systems allows, among others, evaluation of the costs efficiencies which in turn permits assessing the expected effects of changes in production variables. This paper presents a prototype analysis of the economic sustainability of ecological dairy sheep systems of Castilla-La Mancha, Central Spain evaluated through the estimation of costs efficiencies. Costs functions were developed using data from 31 farms. Rate of supplementary feeding, labour use, and flock size were used to measure the cost efficiency. On average, cost efficiency was 61.7±15.5%, with significant differences among typological groups. High efficiency was found in only 29% of the farms. The economic analyses performed suggest that the continued existence of economically unsustainably farms is explained by the available subsidies, lack of amortization of fixed assets leading to progressive decapitalization, and subsistence incomes by family groups (gross family income.

  15. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration

    Science.gov (United States)

    To, Jennifer PC; Zhu, Jinming; Benfey, Philip N

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration. PMID:21173868

  16. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  17. Sustainable infrastructure system modeling under uncertainties and dynamics

    Science.gov (United States)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  18. Alternative aviation jet fuel sustainability evaluation report - task 3 : sustainability criteria and rating systems for the use in aircraft alternative fuel supply chain

    Science.gov (United States)

    2013-03-31

    This report identifies criteria that can be used to evaluate the sustainability of biofuels introduced into the aviation fuel supply chain. It describes the inputs, criteria and outputs that can be used in a sustainability rating system. It identifie...

  19. Systemic Analysis of Food Supply and Distribution Systems in City-Region Systems—An Examination of FAO’s Policy Guidelines towards Sustainable Agri-Food Systems

    Directory of Open Access Journals (Sweden)

    Vanessa Armendáriz

    2016-12-01

    Full Text Available The world is continuously transforming to supply growing cities and urbanization processes are still driving important changes in our current food systems. Future sustainability constraints are emphasizing that Food Supply and Distribution Systems (FSDS are deeply embedded in city-region systems with specific technical and socio-ecological characteristics. This paper aims to provide a systemic understanding on FSDS focusing the integration of urban and rural structures considering the system biophysical boundaries and societal targets. A qualitative framework model, based on the Food and Agriculture Organization of the United Nations (FAO’s FSDS literature, has been developed by using Systems Thinking (ST and System Dynamics (SD approaches. The model analysis suggested that to increase sustainability and resilience of food systems large emphasis has to be maintained on: (i estimation of local territorial carrying capacities; (ii land use planning to enhance connections among rural supplies and city needs; (iii city policies, to regulate emergent market size and local scale of production; (iv technological efficiency at farm, distribution and market levels; (v urban, peri-urban and rural functional linkages that considers social metabolic balances; (vi rural development as a core point for building sustainable food systems and counteracting the urbanization growth. These key areas are relevant to test new paths of cities-regions reconfiguration towards the transition to resilient agri-food systems.

  20. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    Science.gov (United States)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  1. Sustainable Development for Solar Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Keh-Chin Chang

    2015-02-01

    Full Text Available In response to the impact of the United Nations Framework Convention on Climate Change, developing and using renewable energy sources and technologies have become vital for managing energy supply and demand in Taiwan. The long-term subsidy programs (1986–1991, 2000–present for solar water heaters (SWHs launched by the Taiwanese government constitute the main driving force for market expansion. By the end of 2013, the cumulative area of installed solar collectors was 2.27 million m2. Approximately 0.3 million systems (or 1.545 million m2 are in operation. This corresponds to an annual collector yield of 0.92 TWh, which is equivalent to savings of 98.7 thousand tons of oil and 319 thousand tons of CO2,eq. The market-driven mechanism is associated with cost-to-benefit ratios, construction businesses, types of building architecture, degree of urbanization and household composition. The strong wind load of typhoons is another major concern. For sustaining the solar thermal industry in Taiwan, the dominant factor for disseminating SWHs in metropolitan areas involves developing building-integrated solar thermal systems. Alternative financial incentives are required for industrial heating processes in the commercial sector.

  2. Sustainability certification systems as guidelines for early-phase urban design processes

    DEFF Research Database (Denmark)

    Jensen, Lotte Bjerregaard; Bjerre, Lærke; Mansfelt, Lise

    2016-01-01

    The German Sustainable Building Council (Deutsche Gesellschaft für Nachhaltiges Bauen or DGNB) has one of the most comprehensive sustainability certification systems for urban districts (UD). Their explicit aim is that the system should impact the very earliest design decisions. The Technical......-UD addresses a broad sustainable focus and can be used as a tool for setting sustainability goals from the very first design steps. The system tends to promote multifunctional compromise solutions that meet several criteria at the same time. Using the DGNB-UD certification system in the early design phases...

  3. ISD: A New Methodological Approach for Measuring the Sustainability of the German Energy System

    Directory of Open Access Journals (Sweden)

    Holger Schlör

    2011-01-01

    Full Text Available The research community has developed three main concepts and indicator systems to measure sustainability: the capital concept, the ecological concept and the multidimensional concept. Whereas a lot of research has been dedicated to the pros and cons of the three/four-pillar sustainability concept, to the shaping of the pillars and their indicators, research on standardized methods to aggregate the indicators to one index is lacking. However, a useful model exists—the GDP—which summarizes the different economic activities of various social actors in one index. An overall sustainability index has the advantage that the sustainability of a system can be expressed in one index. This allows the sustainability status of a system to be better communicated both to the public and to politicians. Against this background, we developed the Index of Sustainable Development (ISD to measure the sustainability of systems described by multidimensional sustainability concepts. We demonstrate that it is possible to aggregate sustainability indicators of the multidimensional sustainability concepts to one index. We have chosen exemplarily the German sustainability strategy and selected the energy indicators within it because of the importance of the energy sector and due to the good statistical database in this sector.

  4. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  5. Effect of economic crisis on sustainability of Holstein dairy systems in Brazil

    NARCIS (Netherlands)

    Waltrick, B.; Koops, W.

    2002-01-01

    This analysis presents the development of the Holstein dairy system in Brazil, evaluating system sustainability during a time of crisis, based on changes in system productivity, stability, resilience and equity. Sustainability indicators are used to describe these changes. Records of Holstein cows

  6. Building knowledge systems for sustainable agriculture: supporting private advisors to adequately address sustainable farm management in regular service contacts

    NARCIS (Netherlands)

    Klerkx, L.W.A.; Jansen, J.

    2010-01-01

    Advisory service provisioning on sustainability issues such as environmental care and food safety is considered suboptimal in privatized extension systems, which comprise a diverse set of private advisors. Apart from funding dedicated ‘public good’ projects, government also relies on these advisors

  7. A Sustainable Model for Integrating Current Topics in Machine Learning Research into the Undergraduate Curriculum

    Science.gov (United States)

    Georgiopoulos, M.; DeMara, R. F.; Gonzalez, A. J.; Wu, A. S.; Mollaghasemi, M.; Gelenbe, E.; Kysilka, M.; Secretan, J.; Sharma, C. A.; Alnsour, A. J.

    2009-01-01

    This paper presents an integrated research and teaching model that has resulted from an NSF-funded effort to introduce results of current Machine Learning research into the engineering and computer science curriculum at the University of Central Florida (UCF). While in-depth exposure to current topics in Machine Learning has traditionally occurred…

  8. Towards a systems approach to sustainable developments | Kutua ...

    African Journals Online (AJOL)

    Botswana Journal of Technology ... The report defined sustainable development as “development that meets the needs of the present without compromising the ability of future generations to meet their own ... However, from this definition, we cannot ascertain the central intuition of the notion of sustainable development.

  9. ELEMENTS OF A MATHEMATICAL THEORY OF SUSTAINABLE SYSTEMS

    Science.gov (United States)

    The subject of Sustainability has recently attracted enormous interest in the minds of both the public and the scientific and engineering community. The reason for this interest is the fact that the concept of Sustainability holds the promise of a solution to society's long-term ...

  10. Developing an aquaponics system to learn sustainability and social compromise skills

    Directory of Open Access Journals (Sweden)

    Abel José Duarte

    2016-01-01

    Full Text Available The goal of this project, one of the proposals of the EPS@ISEP Spring 2014, was to develop an Aquaponics System. Over recent years Aquaponics systems have received increased attention since they contribute to reduce the strain on resources within 1st and 3rd world countries. Aquaponics is the combination of Hydroponics and Aquaculture and mimics a natural environment in order to successfully apply and enhance the understanding of natural cycles within an indoor process. Using this knowledge of natural cycles, it was possible to create a system with capabilities similar to that of a natural environment with the support of electronics, enhancing the overall efficiency of the system. The multinational team involved in the development of this system was composed of five students from five countries and fields of study. This paper describes their solution, involving the overall design, the technology involved and the benefits it can bring to the current market. The team was able to design and render the Computer Aided Design (CAD drawings of the prototype, assemble all components, successfully test the electronics and comply with the budget. Furthermore, the designed solution was supported by a product sustainability study and included a specific marketing plan. Last but not least, the students involved in this project obtained new multidisciplinary knowledge and improved their sustainable development, social compromise, team work and cross-cultural communication skills.

  11. IDESSA: An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas

    Science.gov (United States)

    Meyer, Hanna; Authmann, Christian; Dreber, Niels; Hess, Bastian; Kellner, Klaus; Morgenthal, Theunis; Nauss, Thomas; Seeger, Bernhard; Tsvuura, Zivanai; Wiegand, Kerstin

    2017-04-01

    Bush encroachment is a syndrome of land degradation that occurs in many savannas including those of southern Africa. The increase in density, cover or biomass of woody vegetation often has negative effects on a range of ecosystem functions and services, which are hardly reversible. However, despite its importance, neither the causes of bush encroachment, nor the consequences of different resource management strategies to combat or mitigate related shifts in savanna states are fully understood. The project "IDESSA" (An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas) aims to improve the understanding of the complex interplays between land use, climate patterns and vegetation dynamics and to implement an integrative monitoring and decision-support system for the sustainable management of different savanna types. For this purpose, IDESSA follows an innovative approach that integrates local knowledge, botanical surveys, remote-sensing and machine-learning based time-series of atmospheric and land-cover dynamics, spatially explicit simulation modeling and analytical database management. The integration of the heterogeneous data will be implemented in a user oriented database infrastructure and scientific workflow system. Accessible via web-based interfaces, this database and analysis system will allow scientists to manage and analyze monitoring data and scenario computations, as well as allow stakeholders (e. g. land users, policy makers) to retrieve current ecosystem information and seasonal outlooks. We present the concept of the project and show preliminary results of the realization steps towards the integrative savanna management and decision-support system.

  12. [Sustainability and excellence of the Catalan health system. New paradigms, challenges and responses].

    Science.gov (United States)

    Fernández i Alegre, Roser; Argenter i Giralt, Miquel; Rodríguez i Guasch, Xavier

    2015-11-01

    The aim of a health system and the priority of any government is to anticipate problems before they appear, provide an innovative response to these new needs and healthcare models, improve access of the general public and patients to health care, especially care for the most vulnerable groups, improve healthcare results and implement the structural reforms necessary to maintain a viable and sustainable quality public healthcare system for everyone. In the current environment, health systems are facing new economic, demographic, care, social, technological and political paradigms to which health policy must respond. Faced with these challenges, health systems, especially in the case of Catalonia, are challenged to take decisions on how best to approach the implementation of structural reform designed to facilitate the necessary economic and fiscal sustainability in the service of fresh and innovative health policies and patient-centred care within a system marked by excellence and equity. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  13. Towards systemic sustainable performance of TBI care systems: emergency leadership frontiers.

    Science.gov (United States)

    Caro, Denis H J

    2010-11-10

    Traumatic brain injuries (TBIs) continue as a twenty-first century subterranean and almost invisible scourge internationally. TBI care systems provide a safety net for survival, recovery, and reintegration into social communities from this scourge, particularly in Canada, the European Union, and the USA. This paper examines the underlying issues of systemic performance and sustainability of TBI care systems, in the light of decreasing care resources and increasing demands for services. This paper reviews the extant literature on TBI care systems, systems reengineering, and emergency leadership literature. This paper presents a seven care layer paradigm, which forms the essence of systemic performance in the care of patients with TBIs. It also identifies five key strategic drivers that hold promise for the future systemic sustainability of TBI care systems. Transformational leadership and engagement from the international emergency medical community is the key to generating positive change. The sustainability/performance care framework is relevant and pertinent for consideration internationally and in the context of other emergency medical populations.

  14. Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis

    NARCIS (Netherlands)

    Pacini, G.C.; Wossink, G.A.A.; Vazzana, C.; Huirne, R.B.M.

    2003-01-01

    Agricultural researchers widely recognise the importance of sustainable agricultural production systems and the need to develop appropriate methods to measure sustainability. The principal purpose of this paper is to evaluate the financial and environmental aspects of sustainability of organic,

  15. Velocity of small-scale auroral ionospheric current systems over ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    triangulation experiment at MAI is as follows. It is an established fact that the auroral regions of the. Earth form the locale for field-aligned currents aris- ing from precipitation of energetic magnetospheric. Keywords. Geomagnetic pulsations; mobile auroral current systems; field-aligned currents; Antarctica. Proc. Indian Acad.

  16. Photovoltaic Cells and Systems: Current State and Future Trends

    Directory of Open Access Journals (Sweden)

    Hadj Bourdoucen

    2000-12-01

    Full Text Available Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. Photovoltaic applications in Oman are also presented. Finally, the existing and the future trends in technologies and materials used for the fabrication of solar cells are summarized.

  17. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives.

    Science.gov (United States)

    Raliya, Ramesh; Saharan, Vinod; Dimkpa, Christian; Biswas, Pratim

    2017-09-01

    The increasing food demand as a result of the rising global population has prompted the large-scale use of fertilizers. As a result of resource constraints and low use efficiency of fertilizers, the cost to the farmer is increasing dramatically. Nanotechnology offers great potential to tailor fertilizer production with the desired chemical composition, improve the nutrient use efficiency that may reduce environmental impact, and boost the plant productivity. Furthermore, controlled release and targeted delivery of nanoscale active ingredients can realize the potential of sustainable and precision agriculture. A review of nanotechnology-based smart and precision agriculture is discussed in this paper. Scientific gaps to be overcome and fundamental questions to be answered for safe and effective development and deployment of nanotechnology are addressed.

  18. Sustainability of current agriculture practices, community perception, and implications for ecosystem health: an Indian study.

    Science.gov (United States)

    Sarkar, Atanu; Patil, Shantagouda; Hugar, Lingappa B; vanLoon, Gary

    2011-12-01

    In order to support agribusiness and to attain food security for ever-increasing populations, most countries in the world have embraced modern agricultural technologies. Ecological consequences of the technocentric approaches, and their sustainability and impacts on human health have, however, not received adequate attention particularly in developing countries. India is one country that has undergone a rapid transformation in the field of agriculture by adopting strategies of the Green Revolution. This article provides a comparative analysis of the effects of older and newer paradigms of agricultural practices on ecosystem and human health within the larger context of sustainability. The study was conducted in three closely situated areas where different agricultural practices were followed: (a) the head-end of a modern canal-irrigated area, (b) an adjacent dryland, and (c) an area (the ancient area) that has been provided with irrigation for some 800 years. Data were collected by in-depth interviews of individual farmers, focus-group discussions, participatory observations, and from secondary sources. The dryland, receiving limited rainfall, continues to practice diverse cropping centered to a large extent on traditional coarse cereals and uses only small amounts of chemical inputs. On the other hand, modern agriculture in the head-end emphasizes continuous cropping of rice supported by extensive and indiscriminate use of agrochemicals. Market forces have, to a significant degree, influenced the ancient area to abandon much of its early practices of organic farming and to take up aspects of modern agricultural practice. Rice cultivation in the irrigated parts has changed the local landscape and vegetation and has augmented the mosquito population, which is a potential vector for malaria, Japanese encephalitis and other diseases. Nevertheless, despite these problems, perceptions of adverse environmental effects are lowest in the heavily irrigated area.

  19. SUSTAINABLE H/C SYSTEMS FOR CHICKEN FARMS IN SYRIA

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad Kharseh; Bo Nordell [Dept. of Civil and Environmental Engineering, Lulea University of Technology, Lulea (Sweden)

    2008-09-30

    Space heating/cooling systems account for approximately 30% of the global energy consumption. Such systems contribute to global warming by emitting 0.39.1011 MWh of heat and 2.9.1010 tons of CO{sub 2}. There is a general understanding that the way to reduce global warming is a more efficient use of energy and increased use of renewable energy in all fields of the society. The poultry industry in the Mid East is an important business. There are e.g. 13000 chicken farms in Syria producing 172,000 ton of meat. This industry employs directly almost 150,000 people. The total investment in chicken farming is 130 BSP. Even though, the annual mean temperature in Syria is {approx}15-18 C the winter temperatures are close to freezing for two months. Since the chickens need a temperature of 21-35 C, depending on age, approximately 168.103 tons of coal (1170 GWh) is consumed for heating these plants. The chicken farms have no cooling systems since conventional cooling is too expensive. In the summer time, the ambient air temperature in Syria could reach above 45 C. The elevated temperature inside the farms reduces the chicken growth and lots of chicken die of over heating. Using the ground as a heat source means a sustainable and less expensive heating of the chicken farms. During the summer the resulting colder ground can be used as a source for free cooling, i.e. it can be used directly for cooling of the plants without any cooling machines. This study shows the design and simulated operation of a ground coupled heating/cooling system for a typical chicken farm in Syria. Based on this study the national potential of using such systems was estimated. It shows that the implementation of such ground coupled heating and cooling systems in the Syrian poultry sector would mean increased poultry production and considerable savings in money, energy, and the environment.

  20. A Life-cycle Approach to Improve the Sustainability of Rural Water Systems in Resource-Limited Countries

    Directory of Open Access Journals (Sweden)

    Nicholas Stacey

    2012-11-01

    Full Text Available A WHO and UNICEF joint report states that in 2008, 884 million people lacked access to potable drinking water. A life-cycle approach to develop potable water systems may improve the sustainability for such systems, however, a review of the literature shows that such an approach has primarily been used for urban systems located in resourced countries. Although urbanization is increasing globally, over 40 percent of the world’s population is currently rural with many considered poor. In this paper, we present a first step towards using life-cycle assessment to develop sustainable rural water systems in resource-limited countries while pointing out the needs. For example, while there are few differences in costs and environmental impacts for many improved rural water system options, a system that uses groundwater with community standpipes is substantially lower in cost that other alternatives with a somewhat lower environmental inventory. However, a LCA approach shows that from institutional as well as community and managerial perspectives, sustainability includes many other factors besides cost and environment that are a function of the interdependent decision process used across the life cycle of a water system by aid organizations, water user committees, and household users. These factors often present the biggest challenge to designing sustainable rural water systems for resource-limited countries.

  1. Earth System Monitoring Selected Entries from the Encyclopedia of Sustainability Science and Technology

    CERN Document Server

    2013-01-01

    Modern Earth System Monitoring represents a fundamental change in the way scientists study the Earth System.  In Oceanography, for the past two centuries, ships have provided the platforms for observing.  Expeditions on the continents and Earth’s poles are land-based analogues. Fundamental understanding of current systems, climate, natural hazards, and ecosystems has been greatly advanced. While these approaches have been remarkably successful, the need to establish measurements over time can only be made using Earth observations and observatories with exacting standards and continuous data.  The 19 peer-reviewed contributions in this volume provide early insights into this emerging view of Earth in both space and time in which change is a critical component of our growing understanding. Presents 19 authoritative, peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology Covers a wide range of data collection platforms, including satellite remote sensing, aerial surveys, and l...

  2. A Critical Review of Environmental Management System as a Tool for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    for sustainability in a local authority FM-context. As a branding tool it might have some potential but there is a risk that the tool legitimizes non-sustainable practices as sustainable, which can lead to frustrations and resignation among employees willing to actually make a difference. Practical Implications......: Facilities managers in local authorities must be aware that when using management technologies as e.g. the environmental management system other means than the system are needed if they aim for sustainability in a broader sense. The instrumental rationality on which the systems are based can lead...

  3. A Critical Review of Environmental Management System as a Tool for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    2012-01-01

    for sustainability in a local authority FM-context. As a branding tool it might have some potential but there is a risk that the tool legitimizes non-sustainable practices as sustainable, which can lead to frustrations and resignation among employees willing to actually make a difference. Practical Implications......: Facilities managers in local authorities must be aware that when using management technologies as e.g. the environmental management system other means than the system are needed if they aim for sustainability in a broader sense. The instrumental rationality on which the systems are based can lead...

  4. The Social Dimensions of Sustainability and Change in Diversified Farming Systems

    OpenAIRE

    Christopher M. Bacon; Christy Getz; Sibella Kraus; Maywa Montenegro; Kaelin Holland

    2012-01-01

    Agricultural systems are embedded in wider social-ecological processes that must be considered in any complete discussion of sustainable agriculture. Just as climatic profiles will influence the future viability of crops, institutions, i.e., governance agreements, rural household and community norms, local associations, markets, and agricultural ministries, to name but a few, create the conditions that foster sustainable food systems. Because discussions of agricultural sustainability often o...

  5. SUNRA - a sustainability rating system framework for National Road Administrations

    DEFF Research Database (Denmark)

    Sowerby, Chris; Langstraat, James; Harmer, Clare

    National Road Administrations (NRAs) across Europe strive to improve the performance of their road networks. This improvement has been underpinned by significant research in the optimisation of road planning, design, construction and maintenance, which has enhanced the understanding of the social......, environmental and economic aspects of managing a road network. Whilst there is common understanding in some aspects of sustainability there is not a common understanding of sustainability as a whole and thus how to benchmark and improve overall performance. The Sustainability: National Road Administrations...

  6. The sustainability of current account in the presence of endogenous multiple structural breaks: Evidence from developed and developing countries

    Directory of Open Access Journals (Sweden)

    Dülger Fikret

    2016-01-01

    Full Text Available The purpose of this study is to test for the sustainability of current account in 18 developed and 10 developing countries. The stability of the relationship between export (inflows and import (outflows is assessed using the tests proposed by Mohitosh Kejriwal and Pierre Perron (2010. In particular, the nature of the long-run relationship, when multiple regime shifts are identified endogenously, is analyzed using the residual-based test of the null hypothesis of cointegration with multiple breaks proposed by Kejriwal (2008. The results clearly indicate that, for all countries, (i the stability tests reject the null of coefficient stability of the long-run relationship between exports and imports; (ii the cointegration tests that correspond to the number of breaks selected reject the null of cointegration (weak form of sustainability; and (iii the strong form of sustainability hypothesis is not supported by the data for all countries in most regimes but not for 20 of 28 countries especially in the last regime (the post-2000 era. For eight countries (Canada, New Zealand, Spain, Brazil, Mexico, South Africa, Thailand, and Turkey, the findings may be perceived as a warning to creditors and policymakers unless there are policy distortions or permanent productivity shocks to the domestic economies.

  7. Agrifood systems and the microbial safety of fresh produce: Trade-offs in the wake of increased sustainability.

    Science.gov (United States)

    Nguyen-The, Christophe; Bardin, Marc; Berard, Annette; Berge, Odile; Brillard, Julien; Broussolle, Véronique; Carlin, Frédéric; Renault, Pierre; Tchamitchian, Marc; Morris, Cindy E

    2016-08-15

    Fresh produce has been a growing cause of food borne outbreaks world-wide prompting the need for safer production practices. Yet fresh produce agrifood systems are diverse and under constraints for more sustainability. We analyze how measures taken to guarantee safety interact with other objectives for sustainability, in light of the diversity of fresh produce agrifood systems. The review is based on the publications at the interface between fresh produce safety and sustainability, with sustainability defined by low environmental impacts, food and nutrition security and healthy life. The paths for more sustainable fresh produce are diverse. They include an increased use of ecosystem services to e.g. favor predators of pests, or to reduce impact of floods, to reduce soil erosion, or to purify run-off waters. In contrast, they also include production systems isolated from the environment. From a socio-economical view, sustainability may imply maintaining small tenures with a higher risk of pathogen contamination. We analyzed the consequences for produce safety by focusing on risks of contamination by water, soil, environment and live stocks. Climate change may increase the constraints and recent knowledge on interactions between produce and human pathogens may bring new solutions. Existing technologies may suffice to resolve some conflicts between ensuring safety of fresh produce and moving towards more sustainability. However, socio-economic constraints of some agri-food systems may prevent their implementation. In addition, current strategies to preserve produce safety are not adapted to systems relying on ecological principles and knowledge is lacking to develop the new risk management approaches that would be needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influences of various magnetospheric and ionospheric current systems on geomagnetically induced currents around the world

    Science.gov (United States)

    Villiers, J. S.; Kosch, M.; Yamazaki, Y.; Lotz, S.

    2017-02-01

    Ground-based observations of geomagnetic field (B field) are usually a superposition of signatures from different source current systems in the magnetosphere and ionosphere. Fluctuating B fields generate geoelectric fields (E fields), which drive geomagnetically induced currents (GIC) in technological conducting media at the Earth's surface. We introduce a new Fourier integral B field model of east/west directed line current systems over a one-dimensional multilayered Earth in plane geometry. Derived layered-Earth profiles, given in the literature, are needed to calculate the surface impedance, and therefore reflection coefficient in the integral. The 2003 Halloween storm measurements were Fourier transformed for B field spectrum Levenberg-Marquardt least squares inversion over latitude. The inversion modeled strengths of the equatorial electrojets, auroral electrojets, and ring currents were compared to the forward problem computed strength. It is found the optimized and direct results match each other closely and supplement previous established studies about these source currents. Using this model, a data set of current system magnitudes may be used to develop empirical models linking solar wind activity to magnetospheric current systems. In addition, the ground E fields are also calculated directly, which serves as a proxy for computing GIC in conductor-based networks.

  9. A Systemic Tool and Process for Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Claude Villeneuve

    2017-10-01

    Full Text Available Sustainability assessment is a growing concern worldwide with United Nations’ Agenda 2030 being implemented. As sustainability refers to the consideration of environmental, social and economic issues in light of cultural, historic—retrospective and prospective—and institutional perspectives, appropriate tools are needed to ensure the complete coverage of these aspects and allow the participation of multiple stakeholders. This article presents a scientifically robust and flexible tool, developed over the last 25 years and tested in different cultural and development contexts to build a framework for sustainability assessment of policies, strategies, programs and projects in light of Agenda 2030. A selected case study conducted on a major mining project in Québec (Canada illustrates the Sustainable Development Analytical Grid performance for sustainability assessment. This tool and process is part of the United Nations’ Sustainable Development Goals Acceleration Toolkit; it is one of the most adaptable, addresses all 17 SDGs and is fully accessible for free. Other advantages and limitations of the tool and process are discussed.

  10. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    Science.gov (United States)

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

  11. Sustainable fuelwood use in rural Mexico. Volume 1: Current patterns of resource use

    Energy Technology Data Exchange (ETDEWEB)

    Masera, O.

    1993-04-01

    The present report summarizes the results of the first phase of a project of cooperation between the Mexican National Commission for Energy Conservation (CONAE) and the United States Environmental Protection Agency (U.S. EPA) on sustainable biofuel use in rural Mexico. This first phase has been devoted to (i) conducting an in-depth review of the status of fuelwood use in rural and peri-urban areas of Mexico, (ii) providing improved estimates of biomass energy use, (iii) assessing the socioeconomic and environmental impacts of fuelwood use, and (iv) identifying preliminary potential lines of action to improve the patterns of biomass energy use in Mexico; in particular, identifying those interventions that, by improving living conditions for rural inhabitants, can result in global benefits (such as the reduction in greenhouse gas emissions). A comprehensive review of the existing documentation of biofuel use in rural and peri-urban Mexico was conducted. Reports from official, academic, and non-governmental organizations were gathered and analyzed. A computerized rural energy database was created by re-processing a national rural energy survey. Because of the paucity of information about biofuel use in small rural industries, most of the analysis is devoted to the household sector.

  12. A Labview Based Leakage Current Monitoring System For HV Insulators

    Directory of Open Access Journals (Sweden)

    N. Mavrikakis

    2015-10-01

    Full Text Available In this paper, a Labview based leakage current monitoring system for High Voltage insulators is described. The system uses a general purpose DAQ system with the addition of different current sensors. The DAQ system consists of a chassis and hot-swappable modules. Through the proper design of current sensors, low cost modules operating with a suitable input range can be employed. Fully customizable software can be developed using Labview, allowing on-demand changes and incorporation of upgrades. Such a system provides a low cost alternative to specially designed equipment with the added advantage of maximum flexibility. Further, it can be modified to satisfy the specifications (technical and economical set under different scenarios. In fact, the system described in this paper has already been installed in the HV Lab of the TEI of Crete whereas a variation of it is currently in use in TALOS High Voltage Test Station.

  13. Sustainability of livestock production systems : a comparing conventional and organic livestock husbandry

    NARCIS (Netherlands)

    Wagenberg, van C.P.A.; Haas, de Y.; Hogeveen, H.; Krimpen, van M.M.; Meuwissen, M.P.M.; Middelaar, van C.E.; Rodenburg, T.B.

    2016-01-01

    Sustainable livestock production systems are needed to feed the larger, more urban, richer and older world population in 2050. Quantitative information about the sustainability performance of existing livestock production systems can aid the debate of which actions could be developed and

  14. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability

    NARCIS (Netherlands)

    Martins, C.I.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Roque dÓrbcastel, E.; Verreth, J.A.J.

    2010-01-01

    The dual objective of sustainable aquaculture, i.e., to produce food while sustaining natural resources is achieved only when production systems with a minimum ecological impact are used. Recirculating aquaculture systems (RASs) provide opportunities to reduce water usage and to improve waste

  15. Material Design, Selection, and Manufacturing Methods for System Sustainment

    Energy Technology Data Exchange (ETDEWEB)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  16. System for evaluating weld quality using eddy currents

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  17. Probability current and thermodynamics of open quantum systems

    OpenAIRE

    Schumacher, Benjamin; Westmoreland, Michael D.; New, Alexander; Qiao, Haifeng

    2016-01-01

    This paper explores the generalization of the concept of a "probability current", familiar from wave-function quantum mechanics, to quantum systems with finite-dimensional Hilbert spaces. The generalized definition applies both to isolated systems evolving via the Schr\\"odinger equation and to more general open systems obeying the Lindblad master equation. We establish several properties of the probability current and explore its relation to thermodynamic heat and work.

  18. Evaluation of the sustainability of road drainage systems

    Science.gov (United States)

    García-Diez, Iván; Palencia, Covadonga; Fernández Raga, María

    2017-04-01

    Water is the most erosive agent that exists on the linear structures, because they are constantly subjected to outdoor condition like irregular infiltration, frosts and different rain intensities. Another variables that highly influence in the entire lifetime of a natural drainage system are the spatial and temporal variability of the rainfall, the soil, the vegetation cover and the design. All this factors are affecting the vulnerability of the clearings and embankments, by wearing away the weakest materials which surround the roads or train rails, producing erosion and very bumpy surfaces. The result is that the original pattern, developped to disminished the lost of soil, is not properly working and it cannot eliminate water, with the consequence destruction of the linear structure after several rainfall periods, and the accumulation of material down slope. The propose of this research focuses on analysing the drainage systems used in spanish roads and railways lines. For this purpose, a revision of the literature has been done, and the main drainage solutions have been recovered, carrying out an evaluation of them from an environmental point of view. This procedure has been requested by several authors in the past (Nwa, E.U. & Twocock, J.G., 1969; Goulter, I.C., 1992), together with the need of designing a more sustainable drainage system. The final objective of this complete revision is to compare objetively the designs to valuate them in order to develop a new drainage patter which minimize the erosion, increasing the durability and effectiveness of the drainage system. For this purpose, it is neccesary to assure that all the systems will be compare under similar parameters of flow rate, vegetation, substrate, lenght, slope and total section. Only the channels pattern and water distribution will change. The analysis has been done following Liu, H. & Zhu, X.B., (2012), who pointed out that the main parameters to take into account to select a road drainage

  19. TECHNIQUES AND SYSTEMS OF INDICATORS USED IN THE ANALYSIS OF SUSTAINABLE DEVELOPMENT OF RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Sabina VITALIA

    2013-01-01

    Full Text Available The present article exposes the summary of a research project whose purpose is measuring sustainable development in Romania at the level of rural areas. Sustainable Development (Sustainable Development in English means better quality of life now and for future generations. According to the vision of sustainable development, progress integrates immediate and long-term objectives, local actions and global economic and environmental issues, all of which are inseparable. Such a vision of society can not be imposed only by political, society as a whole must adopt certain principles (political, economic, social, thinking. Sustainable development can be defined simply as a better quality of life for everyone, both now and for future generations. Sustainable development means: balanced and equitable economic development; high levels of employment, social cohesion and inclusion; a high level of environmental protection and responsible use of natural resources; generating a coherent political system open, transparent and accountable; effective international cooperation to promote global sustainable development (Gothenburg Strategy, 2001.

  20. Sizing Performance of the Newly Developed Eddy Current System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Moon, Gyoon Young; Lee, Tae Hoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    This paper describes the comparison results of sizing performance for two systems. The KHNP developed a new eddy current testing system for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment of the newly developed system with the EPRI-qualified system was already carried out. In this paper, the comparisons of depth-sizing performance for the artificial flaws between two systems were performed. The results show that the newly developed system is in good agreement with the qualified system. Therefore, it is expected that the newly developed eddy current system can be used for the inspection of steam generator tubing in nuclear power plants. There are some non-destructive examination (NDE) methods for the inspection of components in nuclear power plants, such as ultrasonic, radiographic, eddy current testing, etc. The eddy current testing is widely used for the inspection of steam generator (SG) tubing because it offers a relatively low cost approach for high speed, large scale testing of metallic materials in high pressure and temperature engineering systems. The Korea Hydro and Nuclear Power Co., Ltd. (KHNP) developed an eddy current testing system for the inspection of steam generator tubing in nuclear power plants. This system includes not only hardware but software such as the frequency generator and data acquisition-analysis program. The foreign eddy current system developed by ZETEC is currently used for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment between two systems was already carried out in accordance with the EPRI steam generator examination guidelines.

  1. How can countries achieve sustainable food supply in 2050: current knowledge and way forward

    Science.gov (United States)

    Kummu, M.; Fader, M.; Gerten, D.; Guillaume, J. H. A.; Jalava, M.; Jägermeyr, J.; Pfister, S.; Porkka, M.; Siebert, S.; Varis, O.

    2016-12-01

    urgent need to integrate these, and other potential measures, together and deepen the knowledge of their combined impact on future sustainable food supply.

  2. A screening life cycle metric to benchmark the environmental sustainability of waste management systems.

    Science.gov (United States)

    Kaufman, Scott M; Krishnan, Nikhil; Themelis, Nickolas J

    2010-08-01

    The disposal of municipal solid waste (MSW) can lead to significant environmental burdens. The implementation of effective waste management practices, however, requires the ability to benchmark alternative systems from an environmental sustainability perspective. Existing metrics--such as recycling and generation rates, or the emissions of individual pollutants--often are not goal-oriented, are not readily comparable, and may not provide insight into the most effective options for improvement. Life cycle assessment (LCA) is an effective approach to quantify and compare systems, but full LCA comparisons typically involve significant expenditure of resources and time. In this work we develop a metric called the Resource Conservation Efficiency (RCE) that is based on a screening-LCA approach, and that can be used to rapidly and effectively benchmark (on a screening level) the ecological sustainability of waste management practices across multiple locations. We first demonstrate that this measure is an effective proxy by comparing RCE results with existing LCA inventory and impact assessment methods. We then demonstrate the use of the RCE metric by benchmarking the sustainability of waste management practices in two U.S. cities: San Francisco and Honolulu. The results show that while San Francisco does an excellent job recovering recyclable materials, adding a waste to energy (WTE) facility to their infrastructure would most beneficially impact the environmental performance of their waste management system. Honolulu would achieve the greatest gains by increasing the capture of easily recycled materials not currently being recovered. Overall results also highlight how the RCE metric may be used to provide insight into effective actions cities can take to boost the environmental performance of their waste management practices.

  3. Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE.

    Science.gov (United States)

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-03-01

      Urban water systems (UWSs) are challenged by the sustainability perspective. Certain limitations of the sustainability of centralized UWSs and decentralized household level wastewater treatments can be overcome by managing UWSs at an intermediate scale, referred to as small to medium sized UWSs (SMUWSs). SMUWSs are different from large UWSs, mainly in terms of smaller infrastructure, data limitation, smaller service area, and institutional limitations. Moreover, sustainability assessment systems to evaluate the sustainability of an entire UWS are very limited and confined only to large UWSs. This research addressed the gap and has developed a set of 38 applied sustainability performance indicators (SPIs) by using fuzzy-Elimination and Choice Translating Reality (ELECTRE) I outranking method to assess the sustainability of SMUWSs. The developed set of SPIs can be applied to existing and new SMUWSs and also provides a flexibility to include additional SPIs in the future based on the same selection criteria.

  4. Measuring sustainability within the Veterans Administration Mental Health System Redesign initiative.

    Science.gov (United States)

    Ford, James H; Krahn, Dean; Wise, Meg; Oliver, Karen Anderson

    2011-01-01

    To examine how attributes affecting sustainability differ across Veterans Health Administration organizational components and by staff characteristics. Surveys of 870 change team members and 50 staff interviews within the Veterans Affairs' Mental Health System Redesign initiative. A 1-way ANOVA with a Tukey post hoc test examined differences in sustainability by Veteran Integrated Service Networks, job classification, and tenure from staff survey data of the Sustainability Index. Qualitative interviews used an iterative process to identify "a priori" and "in vivo" themes. A simple stepwise linear regression explored predictors of sustainability. Sustainability differed across Veteran Integrated Service Networks and staff tenure. Job classification differences existed for the following: (1) benefits and credibility of the change and (2) staff involvement and attitudes toward change. Sustainability barriers were staff and institutional resistance and nonsupportive leadership. Facilitators were commitment to veterans, strong leadership, and use of quality improvement tools. Sustainability predictors were outcomes tracking, regular reporting, and use of Plan, Do, Study, Adjust cycles. Creating homogeneous implementation and sustainability processes across a national health system is difficult. Despite the Veterans Affairs' best evidence-based implementation efforts, there was significant variance. Locally tailored interventions might better support sustainability than "one-size-fits-all" approaches. Further research is needed to understand how participation in a quality improvement collaborative affects sustainability.

  5. Study on the groundwater sustainable problem by numerical simulation in a multi-layered coastal aquifer system of Zhanjiang, China

    Science.gov (United States)

    Zhou, Pengpeng; Li, Ming; Lu, Yaodong

    2017-10-01

    Assessing sustainability of coastal groundwater is significant for groundwater management as coastal groundwater is vulnerable to over-exploitation and contamination. To address the issues of serious groundwater level drawdown and potential seawater intrusion risk of a multi-layered coastal aquifer system in Zhanjiang, China, this paper presents a numerical modelling study to research groundwater sustainability of this aquifer system. The transient modelling results show that the groundwater budget was negative (-3826× 104 to -4502× 10^{4 } m3/a) during the years 2008-2011, revealing that this aquifer system was over-exploited. Meanwhile, the groundwater sustainability was assessed by evaluating the negative hydraulic pressure area (NHPA) of the unconfined aquifer and the groundwater level dynamic and flow velocity of the offshore boundaries of the confined aquifers. The results demonstrate that the Nansan Island is most influenced by NHPA and that the local groundwater should not be exploited. The results also suggest that, with the current groundwater exploitation scheme, the sustainable yield should be 1.784× 108 m3/a (i.e., decreased by 20% from the current exploitation amount). To satisfy public water demands, the 20% decrease of the exploitation amount can be offset by the groundwater sourced from the Taiping groundwater resource field. These results provide valuable guidance for groundwater management of Zhanjiang.

  6. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    Science.gov (United States)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  7. MUNICIPAL INDICATORS SYSTEM SUSTAINABLE DEVELOPMENT: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Anderson Saccol Ferreira

    2015-12-01

    Full Text Available The article analyzes the indicators of sustainable development in the municipalities of Chapeco , Joaçaba , Port Union and Mafra, which developed the urban and territorial expansion of the West and North of the Santa Catarina region during the twentieth century . Thus, the objective of the analysis is to identify the similarities and differences of municipal sustainable development of each municipality , proposing alternative ways to improve these indexes, through the concepts Sachs (1997. The work is guided by a comparative analysis of data considering the indicators in 2012 and 2014 , through a survey of documentary approach . From this analysis , identified and demonstrated the points with disabilities, but at the same time essential to raise the indices of sustainability of municipalities in socio-cultural terms, economic, environmental and political

  8. Multi-criteria sustainability assessment: A tool for evaluation of new energy system

    OpenAIRE

    Afgan Naim H.; Begić Fajik; Kazagić Anes

    2007-01-01

    One of perspective methods for the evaluation of quality of energy system is the multi-criteria sustainability assessment, based on the analysis and synthesis of indicators expressing different aspects of the system. Application of this methodology in the cases of information deficiency (ASPID methodology) enables evaluation of various energy systems. In the paper, the multi-criteria sustainability assessment of energy systems of various energy sources is used to evaluate the energy power sys...

  9. THE SUSTAINABILITY OF THE AGRICULTURAL SYSTEMS WITH SMALL IRRIGATION. THE CASE OF SAN PABLO ACTIPAN

    OpenAIRE

    René Neri Noriega; Ignacio Ocampo Fletes; Juan Francisco Escobedo Castillo; Andrés Pérez Magaña; Susana Edith Rappo Miguez

    2008-01-01

    Was realized an analysis of the sustainability of the agricultural systems with small irrigation that use water of the underground in San Pablo, Actipan, Tepeaca, Puebla state. The analysis was carried out with agroecological focus, using the Framework for the Evaluation of Systems of Management Incorporating Indicators of Sustainability (MESMIS). It was realized a transversal study comparing two irrigation societies: "The Chamizal” (reference system) and “Lázaro Cárdenas" (alternative system...

  10. A multiple soil ecosystem services approach to evaluate the sustainability of reduced tillage systems

    Science.gov (United States)

    Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam

    2017-04-01

    In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that

  11. Long-term evolution of magnetospheric current systems during storms

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2004-04-01

    Full Text Available We present a method to model the storm-time magnetospheric magnetic field using representations of the magnetic field arising from the various magnetospheric current systems. We incorporate the effects of magnetotail changes during substorms by introducing an additional localized thin current sheet into the Tsyganenko T89 model. To represent the storm-time ring current the T89 ring current is replaced by a bean-shaped current system, which has a cross section that is close to the observed distribution of trapped particles in the inner magnetosphere and has an eastward flowing inner and westward flowing outer components. In addition to the symmetric ring current, an asymmetric partial ring current is taken into account with closing Region 2 sense field-aligned currents. Magnetopause currents are varied in accordance with solar wind dynamic pressure variations. Three moderate geomagnetic storms when Dst reached about –150 nT and one big storm with Dst about –250 nT are modelled. The model free parameters are specified for each time step separately using observations from GOES 8 and 9, Polar, Interball and Geotail satellites and Dst measurements. The model gives a high time-resolution field representation of the large-scale magnetic field, and a very good reproduction of the Dst index. It is shown that the ring current is most important during intense storms, whereas the near-Earth tail currents contribute more to the Dst index than the ring current during moderate storms.

    Key words. Magnetospheric physics (Current systems; Magnetospheric configuration and dynamics; Storms and substorms

  12. Long-term evolution of magnetospheric current systems during storms

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2004-04-01

    Full Text Available We present a method to model the storm-time magnetospheric magnetic field using representations of the magnetic field arising from the various magnetospheric current systems. We incorporate the effects of magnetotail changes during substorms by introducing an additional localized thin current sheet into the Tsyganenko T89 model. To represent the storm-time ring current the T89 ring current is replaced by a bean-shaped current system, which has a cross section that is close to the observed distribution of trapped particles in the inner magnetosphere and has an eastward flowing inner and westward flowing outer components. In addition to the symmetric ring current, an asymmetric partial ring current is taken into account with closing Region 2 sense field-aligned currents. Magnetopause currents are varied in accordance with solar wind dynamic pressure variations. Three moderate geomagnetic storms when Dst reached about –150 nT and one big storm with Dst about –250 nT are modelled. The model free parameters are specified for each time step separately using observations from GOES 8 and 9, Polar, Interball and Geotail satellites and Dst measurements. The model gives a high time-resolution field representation of the large-scale magnetic field, and a very good reproduction of the Dst index. It is shown that the ring current is most important during intense storms, whereas the near-Earth tail currents contribute more to the Dst index than the ring current during moderate storms. Key words. Magnetospheric physics (Current systems; Magnetospheric configuration and dynamics; Storms and substorms

  13. Upwelling systems in eastern boundary currents have been ...

    African Journals Online (AJOL)

    spamer

    In the Benguela system north of 32°S, winds are upwelling-favourable and currents are equatorward all year, but stronger in summer. The current strengthens in summer, when water parcels with high steric heights move into the region offshore of the jet from the Agulhas Retroflection area at the same time that steric heights ...

  14. Spin currents and magnetization dynamics in multilayer systems

    NARCIS (Netherlands)

    van der Bijl, E.

    2014-01-01

    In this Thesis the interplay between spin currents and magnetization dynamics is investigated theoretically. With the help of a simple model the relevant physical phenomena are introduced. From this model it can be deduced that in systems with small spin-orbit coupling, current-induced torques on

  15. Population vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...

  16. Communicable disease control programmes and health systems: an analytical approach to sustainability.

    Science.gov (United States)

    Shigayeva, Altynay; Coker, Richard J

    2015-04-01

    There is renewed concern over the sustainability of disease control programmes, and re-emergence of policy recommendations to integrate programmes with general health systems. However, the conceptualization of this issue has remarkably received little critical attention. Additionally, the study of programmatic sustainability presents methodological challenges. In this article, we propose a conceptual framework to support analyses of sustainability of communicable disease programmes. Through this work, we also aim to clarify a link between notions of integration and sustainability. As a part of development of the conceptual framework, we conducted a systematic literature review of peer-reviewed literature on concepts, definitions, analytical approaches and empirical studies on sustainability in health systems. Identified conceptual proposals for analysis of sustainability in health systems lack an explicit conceptualization of what a health system is. Drawing upon theoretical concepts originating in sustainability sciences and our review here, we conceptualize a communicable disease programme as a component of a health system which is viewed as a complex adaptive system. We propose five programmatic characteristics that may explain a potential for sustainability: leadership, capacity, interactions (notions of integration), flexibility/adaptability and performance. Though integration of elements of a programme with other system components is important, its role in sustainability is context specific and difficult to predict. The proposed framework might serve as a basis for further empirical evaluations in understanding complex interplay between programmes and broader health systems in the development of sustainable responses to communicable diseases. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.

  17. Some Danish experience with product-service systems and their potentials and barriers to sustainable development

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2003-01-01

    This paper is one of the first attempts to scan the Danish experience with product-service systems and analyse the experiences with respect to potentials and barriers to sustainable development, i.e. reduced resource consumption and reduced environmental impact. The scan shows a variety of product......-service-systems: some have been around for many years and have not be set up for sustainability purposes, while others are rather new and are attempts to contribute to a more sustainable development. Some of the systems identified are so to say born as product-service-systems (like food catering), while others have...

  18. Monitoring Tidal Currents with a Towed ADCP System

    Science.gov (United States)

    2015-12-22

    Monitoring tidal currents with a towed ADCP system Alexei Sentchev1 & Max Yaremchuk2 Received: 22 September 2015 /Accepted: 10 December 2015...English Channel) is measured during the var- ious stages of the tidal cycle with a low-cost towed Acoustic Doppler Current Profiler ( ADCP ) system for the...provided by the ADCP observations and their error statistics. Technically, the MARS model run provides the first guess (background) evo- lution of the

  19. Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system

    Energy Technology Data Exchange (ETDEWEB)

    Cherni, Judith A. [Centre for Environmental Policy, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)]. E-mail: j.cherni@imperial.ac.uk; Dyner, Isaac [Universidad Nacional de Colombia, AA 1027 Medellin (Colombia); Henao, Felipe [Office B 1.32, Doctoral Programme Warwick Business School, The University of Warwick, Coventry CV4 7AL (United Kingdom); Jaramillo, Patricia [Instituto de Sistemas y Ciencias de la Decision Escuela de Sistemas Universidad Nacional de Colombia, Medellin (Colombia); Smith, Ricardo [Escuela de Geociencias y Medio Ambiente, Facultad de Minas, Universidad Nacional de Colombia, Medellin (Colombia); Font, Raul Olalde [Universidad Central ' Marta Abreu' de Las Villas, Centro de Estudio de Termoenergetica Azucarera, Carretera a Camajuani Km 5.5. CP: 54830, Santa Clara, Villa Clara (Cuba)

    2007-03-15

    Energy supply to the rural poor in developing countries is a complex activity that transcends the simple selection of a best technology. This paper explains the outcomes achieved by using a new multi-criteria decision-support system to assist in calculating the most appropriate set of energy options for providing sufficient power to fulfil local demands that improve livelihoods. The elicitation of the priorities of future users, which are subsequently integrated into the energy selection process, is seen as a mechanism for the promotion of energy policies that ensure that technological developments reduce poverty. The sustainable rural energy decision support system (SURE DSS), a methodological package and software designed by the research team RESURL builds upon technical and non-technical features of energy development in remote poor areas, drawing on a sustainable livelihoods approach as part of its rationale. SURE enables simulations and calculation of the disparities that may arise between current and potential livelihoods after specific energy solutions have been installed, as well as measuring potential trade-offs among alternative livelihoods. The paper reports the outcome of an application of SURE to the case of a remote Colombian rural community whose total energy demands are only partly met through a diesel generator.

  20. On sustainability assessment of technical systems. Experience from systems analysis with the ORWARE and Ecoeffect tools

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering

    2006-06-15

    Engineering research and development work is undergoing a reorientation from focusing on specific parts of different systems to a broader perspective of systems level, albeit at a slower pace. This reorientation should be further developed and enhanced with the aim of organizing and structuring our technical systems in meeting sustainability requirements in face of global ecological threats that have far-reaching social and economic implications, which can no longer be captured using conventional approach of research. Until a list of universally acceptable, clear, and measurable indicators of sustainable development is developed, the work with sustainability metrics should continue to evolve as a relative measure of ecological, economic, and social performance of human activities in general, and technical systems in particular. This work can be done by comparing the relative performance of alternative technologies of providing the same well-defined function or service; or by characterizing technologies that enjoy different levels of societal priorities using relevant performance indicators. In both cases, concepts and methods of industrial ecology play a vital role. This thesis is about the development and application of a systematic approach for the assessment of the performance of technical systems from the perspective of systems analysis, sustainability, sustainability assessment, and industrial ecology. The systematic approach developed and characterized in this thesis advocates for a simultaneous assessment of the ecological, economic, and social dimensions of performance of technologies in avoiding sub-optimization and problem shifting between dimensions. It gives a holistic picture by taking a life cycle perspective of all important aspects. The systematic assessment of technical systems provides an even-handed assessment resulting in a cumulative knowledge. A modular structure of the approach makes it flexible enough in terms of comparing a number of

  1. The role of forage systems in environmentally sustainable beef

    Science.gov (United States)

    To develop better scientific understanding of the sustainability of beef in the United States, a national assessment is being conducted with support from the Beef Checkoff. This includes a life cycle assessment (LCA) of important environmental, social and economic impact categories of the beef value...

  2. Language Use for Sustainable Development in Nigeria: a Systemic ...

    African Journals Online (AJOL)

    The 7- Point Agenda is one of such policy statements meant to impact on Nigeria's quest for sustainable development and its language is considered as a socially oriented discourse strategically performing illocutionary functions intended to meet a target trend. In this regard, its language in this paper is considered as an ...

  3. Sustainability issues on rice–wheat cropping system

    Directory of Open Access Journals (Sweden)

    Rajan Bhatt

    2016-03-01

    In this review, an attempt was made to highlight different issues resulted from the practise of intensive rice–wheat cropping sequence of the region, which must be considered while framing and implementing any integrated approach/project such as conservation agriculture for improving the productions, profits and sustainability of RWCS in the region.

  4. Global navigation satellite system (GNSS): a utility for sustainable ...

    African Journals Online (AJOL)

    This technology has an enormous potential to contribute to the management of environment, natural disasters, provide food security, emergency response, improve the efficiency in surveying and mapping. Land, water ... It looks at how this space technology can support our sustainable development as developing nations.

  5. Sustainable energy systems : Limitations and challenges based on exergy analysis

    NARCIS (Netherlands)

    Verkooijen, A.H.M.; Woudstra, N.

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This

  6. A sustainability assessment system for Chinese iron and steel firms

    DEFF Research Database (Denmark)

    Long, Yunguang; Pan, Jieyi; Farooq, Sami

    2016-01-01

    The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable...

  7. Sustainable energy systems : Limitations and challenges based on exergy analysis

    NARCIS (Netherlands)

    Woudstra, N.

    2012-01-01

    General There is a general understanding that the so-called “developed countries” have to change their way of life including their energy supply into a more sustainable way. But even in the case of unanimity with regard to the direction, there are still many opinions about the way to follow. This

  8. Multi-criteria sustainability assessment: A tool for evaluation of new energy system

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2007-01-01

    Full Text Available One of perspective methods for the evaluation of quality of energy system is the multi-criteria sustainability assessment, based on the analysis and synthesis of indicators expressing different aspects of the system. Application of this methodology in the cases of information deficiency (ASPID methodology enables evaluation of various energy systems. In the paper, the multi-criteria sustainability assessment of energy systems of various energy sources is used to evaluate the energy power system of Bosnia and Herzegovina. Eight different energy system options are taken into a consideration as the potential options for the capacity building within the energy power system of Bosnia and Herzegovina. It has included various renewable sources and fossil fuel clean technologies. Within the multi-criteria sustainability assessment method, sustainability indicators and weighting coefficients are defined and calculated, including: resource indicator, environment indicator, social indicator and economic indicator with respective weighting factors. The methodology includes the system of stochastic models of uncertainty in order to realize the assessment from various supporting systems, and to obtain respective normalization indexes by using non-numeric (ordinal, non-exact (interval, and non-complete information (NNN- information, for sources of various reliability and probability. By the analysis of multi-criteria sustainability assessment of selected options, the decision makers could be enabled to form opinion on quality of considered energy systems, and from the aspect of sustainability, make selection an optimum option of energy system. .

  9. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources.

    Science.gov (United States)

    Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia

    2016-01-01

    Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes

  10. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources

    Directory of Open Access Journals (Sweden)

    Javier Sanchez-Lopez

    2016-01-01

    Full Text Available Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows where only one of them (an arrow pointing up right required a motor response (i.e., target. CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200 as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus and limbic (mainly in the Anterior Cingulate

  11. The nitrogen fate beyond the current nutrient mitigation measures: sustainability of an integrated agriculture

    Science.gov (United States)

    Thieu, V.; Billen, G. F.; Garnier, J.; Lancelot, C.; Gypens, N.

    2010-12-01

    Located in the North-Western Europe the terrestrial continuum that includes the Seine, Somme, and Scheldt River basins offers an interesting example of a transborder territory (France, Belgium, and Netherlands) with high-intensity anthropogenic pressures. It well-illustrates the rapid development of modern agriculture in industrialised countries and the resulting severe alteration of water resources and jeopardising the capacity of rural territories to produce drinking water. The corresponding nutrient loads delivered then into the Southern Bight of the North Sea, strongly affect the ecological functioning of the coastal zone. An integrated ‘river-ocean’ assessment, coupling two deterministic models - the SENEQUE RIVESTRAHLER model simulating nutrient dynamic in the drainage network and the MIRO model describing the ecological functioning coastal ecosystem - points out the relevance of current policy based measures (improvement of waste water treatment) to mitigate phosphorous emissions, while the nitrogen pollution related to agriculture will remain critical despite the implementation of classical management measure (good agricultural practices). Therefore and irrespectively of the current political agenda, a more radical alternative is established, consisting of a generalised shift to an integrated agriculture of all agricultural areas in the three basins, excluding the use of synthetically compounded fertilisers and the importation of livestock feed. Such scenario aims at evaluating whether agriculture, by essence, can conciliate (i) the demand for food and feed by local populations, (ii) a good ecological functioning of aquatic ecosystems and (iii) a balanced nutrient status for the adjacent coastal area. This scenario involves an increased livestock density in the Seine and Somme and a decrease in livestock in the Scheldt basin. It leads to a significant reduction of agricultural production that finally brings the three basins closer to autotrophy

  12. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    H. Lucas

    2009-07-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  13. Whole systems thinking for sustainable water treatment design

    Science.gov (United States)

    Huggins, Mitchell Tyler

    Microbial fuel cell (MFC) technology could provide a low cost alternative to conventional aerated wastewater treatment, however there has been little comparison between MFC and aeration treatment using real wastewater substrate. This study attempts to directly compare the wastewater treatment efficiency and energy consumption and generation among three reactor systems, a traditional aeration process, a simple submerged MFC configuration, and a control reactor acting similar as natural lagoons. Results showed that all three systems were able to remove >90% of COD, but the aeration used shorter time (8 days) then the MFC (10 days) and control reactor (25 days). Compared to aeration, the MFC showed lower removal efficiency in high COD concentration but much higher efficiency when the COD is low. Only the aeration system showed complete nitrification during the operation, reflected by completed ammonia removal and nitrate accumulation. Suspended solid measurements showed that MFC reduced sludge production by 52-82% as compared to aeration, and it also saved 100% of aeration energy. Furthermore, though not designed for high power generation, the MFC reactor showed a 0.3 Wh/g COD/L or 24 Wh/m3 (wastewater treated) net energy gain in electricity generation. These results demonstrate that MFC technology could be integrated into wastewater infrastructure to meet effluent quality and save operational cost. The high cost and life-cycle impact of electrode materials is one major barrier to the large scale application of microbial fuel cells (MFC). We also demonstrate that biomass-derived black carbon (biochar), could be a more cost effective and sustainable alternative to granular activated carbon (GAC) and graphite granule (GG) electrodes. In a comparison study, two biochar materials made from lodgepole pine sawdust pellets (BCp) and lodgepole pine woodchips (BCc), gassified at a highest heat temperature (HHT) of 1000°C under a heating rate of 16°C/min, showed a

  14. Multiple criteria decision making for sustainable energy and transportation systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ehrgott, Matthias [Auckland Univ. (New Zealand). Dept. of Engineering Science; Naujoks, Boris [Login GmbH, Schwelm (Germany).; Stewart, Theodor J. [Cape Town Univ., Rondebosch (South Africa). Dept. of Statistical Sciences; Wallenius, Jyrki (eds.) [Helsinki School of Economics (Finland). Dept. of Business Technology

    2010-07-01

    In the twenty-first century the sustainability of energy and transportation systems is on the top of the political agenda in many countries around the world and governments are establishing policies towards a sustainable, low emissions energy future. Environmental impacts of human economic activity necessitate the consideration of conflicting goals in decision making processes to develop sustainable systems. Any sustainable development has to reconcile conflicting economic and environmental objectives and criteria. The science of multiple criteria decision making has a lot to offer in addressing this need. Decision making with multiple (conflicting) criteria is the topic of research that is at the heart of the International Society of Multiple Criteria Decision Making. This book is based on selected papers presented at the societies 19th International Conference, held at The University of Auckland, New Zealand, from 7th to 12th January 2008 under the theme ''MCDM for Sustainable Energy and Transportation Systems''. (orig.)

  15. Sustainability of health information systems: a three-country qualitative study in southern Africa.

    Science.gov (United States)

    Moucheraud, Corrina; Schwitters, Amee; Boudreaux, Chantelle; Giles, Denise; Kilmarx, Peter H; Ntolo, Ntolo; Bangani, Zwashe; St Louis, Michael E; Bossert, Thomas J

    2017-01-10

    Health information systems are central to strong health systems. They assist with patient and program management, quality improvement, disease surveillance, and strategic use of information. Many donors have worked to improve health information systems, particularly by supporting the introduction of electronic health information systems (EHIS), which are considered more responsive and more efficient than older, paper-based systems. As many donor-driven programs are increasing their focus on country ownership, sustainability of these investments is a key concern. This analysis explores the potential sustainability of EHIS investments in Malawi, Zambia and Zimbabwe, originally supported by the United States President's Emergency Plan for AIDS Relief (PEPFAR). Using a framework based on sustainability theories from the health systems literature, this analysis employs a qualitative case study methodology to highlight factors that may increase the likelihood that donor-supported initiatives will continue after the original support is modified or ends. Findings highlight commonalities around possible determinants of sustainability. The study found that there is great optimism about the potential for EHIS, but the perceived risks may result in hesitancy to transition completely and parallel use of paper-based systems. Full stakeholder engagement is likely to be crucial for sustainability, as well as integration with other activities within the health system and those funded by development partners. The literature suggests that a sustainable system has clearly-defined goals around which stakeholders can rally, but this has not been achieved in the systems studied. The study also found that technical resource constraints - affecting system usage, maintenance, upgrades and repairs - may limit EHIS sustainability even if these other pillars were addressed. The sustainability of EHIS faces many challenges, which could be addressed through systems' technical design, stakeholder

  16. Sustainability in the Higher Education System: An Opportunity to Improve Quality and Image

    Directory of Open Access Journals (Sweden)

    Daniela M. Salvioni

    2017-05-01

    Full Text Available In view of the increasing importance attributed to social responsibility and stakeholder relationship management, more universities have expanded their research topics and their educational programs through the years. High attention is dedicated to the dominant principles and values of internal and external relations, to the innovation processes designed to ensure an approach to sustainable development. However, less attention is dedicated to the sustainability governance orientation and to the development of a strong institutional culture of sustainability, which is a key success factor to improve the quality and the image. This article observes the sustainability governance orientation, through the analysis of the information on the websites of three fair groups of universities in the international Top 500-ARWU (Academic Ranking of World Universities 2015 ranking. The aim is to verify if there is a link between the degree of sustainability culture in the management and the positioning of the universities in the international ranking. In addition, the analysis is compared with self-assessment data carried out by the same universities in terms of performance sustainability through the STARS (Sustainability Tracking, Assessment & Rating System online platform. As principal consideration, we have noted that the best universities in the ranking have a management approach based on a shared vision of sustainability development of their university leaders, who play an essential role affirming and disseminating a sustainability culture. All this opens broader future implications intended to highlight the importance of management sustainability as a quality improvement factor of universities.

  17. Environmental sustainability assessment of urban systems applying coupled urban metabolism and life cycle assessment

    DEFF Research Database (Denmark)

    Birkved, Morten; Goldstein, Benjamin Paul

    2013-01-01

    urban metabolism (UM) and life cycle assessment (LCA) can be applied to assess the sustainability of urban system, taking into account up- and downstream activities directly or indirectly linked to the metabolism of urban systems. Further we apply the fused UM-LCA approach to assess the absolute......The necessity of assessing and addressing the environmental sustainability of urban systems is becoming increasingly relevant due to growing urbanization across the globe, higher consumption in urban systems and related competition for finite resource stocks. In this study we present how fused...... environmental sustainability of large urban systems by relating the environmental sustainability performance of urban systems with global environmental burden boundaries quantifying pollution thresholds beyond which performance of global ecosystems services may be detrimentally affected....

  18. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    Science.gov (United States)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  19. Life cycle assessment for sustainable metropolitan water systems planning.

    Science.gov (United States)

    Lundie, Sven; Peters, Gregory M; Beavis, Paul C

    2004-07-01

    Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. Developing a life cycle assessment for a large water and wastewater system involves making methodological decisions about the level of detail which is retained through different stages of the process. In this article we discuss a methodology tailored to strategic planning needs which retains a high degree of model segmentation in order to enhance modeling of a large, complex system. This is illustrated by a case study of Sydney Water, which is Australia's largest water service provider. A prospective LCA was carried out to examine the potential environmental impacts of Sydney Water's total operations in the year 2021. To our knowledge this is the first study to create an LCA model of an integrated water and wastewater system with this degree of complexity. A "base case" system model was constructed to represent current operating assets as augmented and upgraded to 2021. The base case results provided a basis for the comparison of alternative future scenarios and for conclusions to be drawn regarding potential environmental improvements. The scenarios can be roughly classified in two categories: (1) options which improve the environmental performance across all impact categories and (2) options which improve one indicator and worsen others. Overall environmental improvements are achieved in all categories by the scenarios examining increased demand management, energy efficiency, energy generation, and additional energy recovery from biosolids. The scenarios which examined desalination of seawater and the upgrades of major coastal sewage treatment plants to secondary and tertiary treatment produced an improvement in one environmental indicator but deteriorations in all the other impact categories, indicating the environmental tradeoffs within the system. The desalination scenario produced a significant increase in greenhouse gas

  20. Biotemplated materials for sustainable energy and environment: current status and challenges.

    Science.gov (United States)

    Zhou, Han; Fan, Tongxiang; Zhang, Di

    2011-10-17

    Materials science will play a key role in the further development of emerging solutions for the increasing problems of energy and environment. Materials found in nature have many inspiring structures, such as hierarchical organizations, periodic architectures, or nanostructures, that endow them with amazing functions, such as energy harvesting and conversion, antireflection, structural coloration, superhydrophobicity, and biological self-assembly. Biotemplating is an effective strategy to obtain morphology-controllable materials with structural specificity, complexity, and related unique functions. Herein, we highlight the synthesis and application of biotemplated materials for six key areas of energy and environment technologies, namely, photocatalytic hydrogen evolution, CO(2) reduction, solar cells, lithium-ion batteries, photocatalytic degradation, and gas/vapor sensing. Although the applications differ from each other, a common fundamental challenge is to realize optimum structures for improved performances. We highlight the role of four typical structures derived from biological systems exploited to optimize properties: hierarchical (porous) structures, periodic (porous) structures, hollow structures, and nanostructures. We also provide examples of using biogenic elements (e.g., C, Si, N, I, P, S) for the creation of active materials. Finally, we disscuss the challenges of achieving the desired performance for large-scale commercial applications and provide some useful prototypes from nature for the biomimetic design of new materials or systems. The emphasis is mainly focused on the structural effects and compositional utilization of biotemplated materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On the Sustainability and Management of a Model System with Ecological, Macroeconomic, and Legal Components

    Science.gov (United States)

    Sustainability is essentially about insuring that human existence can be indefinitely supported by the biological system of the Earth at an appropriate level of civilization. Hence, one of the most fundamental questions in sustainability is the extent to which human activities a...

  2. Cultivating Sustained Teachers' Professional Learning within a Centralised Education System

    Science.gov (United States)

    Shaari, Imran; Lim, Victor; Hung, David; Kwan, Yew Meng

    2018-01-01

    This study investigates how sustained professional learning for teachers within a centralised system was cultivated. Specifically, the sustained professional learning was initiated by officers from the headquarters (HQ) and involved interested teachers across schools in Singapore. Qualitative instruments were used to collect and analyse the data…

  3. Evaluating the sustainability of complex socio-environmental systems. The MESMIS framework

    NARCIS (Netherlands)

    López Ridaura, S.; Masera, O.; Astier, M.

    2002-01-01

    Sustainable development has become a leading target of scientific research and policy agenda. In the context of natural resource management, understanding and evaluating the performance of complex socio-environmental systems has become a challenge, and the design of more sustainable alternatives is

  4. Sustainability of greenhouse fruit vegetables; Spain versus The Netherlands; Development of a monitoring system

    NARCIS (Netherlands)

    Velden, van der N.J.A.

    2004-01-01

    Sustainability is becoming more and more important in the competitive battle between the greenhouse-grown fruiting vegetables produced in Spain and the Netherlands. A monitoring system has been developed. Sustainability is a broad concept regarding primary producers and other links in the chain.

  5. Short-term and sustained effects of a health system strengthening ...

    African Journals Online (AJOL)

    There is a need to develop reproducible interventions that reinforce the implementation of these guidelines and assess their effect and sustainability. Objectives. To assess the short-term and sustained effects of a health system strengthening intervention on mortality attributable to SAM in two hospitals located in the Eastern ...

  6. Evaluation of the sustainability of contrasted pig farming systems: integrated evaluation

    NARCIS (Netherlands)

    Bonneau, M.; Klauke, T.N.; Gonzalez, J.; Rydhmer, L.; Ilari-Antoine, E.; Dourmad, J.Y.; Greef, de K.H.; Houwers, H.W.J.; Cinar, M.U.; Fabrega, E.; Zimmer, C.; Hviid, M.; Oever, van der B.; Edwards, S.A.

    2014-01-01

    The aim of this paper is to present an approach for an integrated evaluation of the sustainability of pig farming systems, taking into account the three classical pillars: economy, environment and society. Eight sustainability themes were considered: Animal Welfare (AW), Animal Health (AH), Breeding

  7. The science of decisionmaking: applications for sustainable forest and grassland management in the National Forest System

    Science.gov (United States)

    Matthew P. Thompson; Bruce G. Marcot; Frank R. Thompson; Steven McNulty; Larry A. Fisher; Michael C. Runge; David Cleaves; Monica Tomosy

    2013-01-01

    Sustainable management of national forests and grasslands within the National Forest System (NFS) often requires managers to make tough decisions under considerable uncertainty, complexity, and potential conflict. Resource decisionmakers must weigh a variety of risks, stressors, and challenges to sustainable management, including climate change, wildland fire, invasive...

  8. Sustainability Assessment of Power Generation Systems by Applying Exergy Analysis and LCA Methods

    NARCIS (Netherlands)

    Stougie, L.; van der Kooi, H.J.; Valero Delgado, A.

    2015-01-01

    The selection of power generation systems is important when striving for a more sustainable society. However, the results of environmental, economic and social sustainability assessments are subject to new insights into the calculation methods and to changing needs, economic conditions and societal

  9. The Feasibility of "oscar" as AN Information System for Sustainable Rehabilitation of Built Heritage

    Science.gov (United States)

    Farmer, C.; Rouillard, C.

    2017-08-01

    This paper aims to examine the feasibility of the Online Sustainable Conservation Assistance Resource (OSCAR) as an information system and framework to help find appropriate ways to improve the sustainable performance of heritage buildings in North America. The paper reviews the need for holistic comprehensive authoritative information in the field of sustainable conservation, how OSCAR addresses this gap, the OSCAR workflow, and how it was used in two case studies. It was found that OSCAR has potential to become a practical educational tool and design aide to address the sustainable performance of heritage buildings. The paper contributes to the discourse on sustainable conservation by examining resources and tools which address the need for holistic retrofit approaches. The findings will be useful to educators and professionals in the fields of sustainable design and heritage conservation.

  10. Sustainability evaluation of automatic and conventional milking systems on organic dairy farms in Denmark

    DEFF Research Database (Denmark)

    Oudshoorn, Frank W; Kristensen, Troels; van der Zijpp, A J

    2012-01-01

    , and social acceptability, i.e., its contribution to sustainable development. The objective of this research, therefore, was to evaluate sustainability of AMS use on organic dairy farms in Denmark, by comparing results of a set of sustainability indicators for nine farms using AMS with nine farms using...... conventional milking systems (CMS). Sustainability indicators were quantified for economic performance of the farm, on-farm eutrophication, on-farm biodiversity, animal welfare (including health), grazing time, milk composition and labour time. Milk yield per cow per year was higher for AMS farms (9021 kg...... this quantification of selected sustainability indicators it can be concluded that organic dairy farms using AMS, in spite of the substantial decrease in grazing time, show the potential of economic and environmental sustainable development within the range of herd sizes investigated (65–157 cows per farm). Even...

  11. THE FEASIBILITY OF “OSCAR” AS AN INFORMATION SYSTEM FOR SUSTAINABLE REHABILITATION OF BUILT HERITAGE

    Directory of Open Access Journals (Sweden)

    C. Farmer

    2017-08-01

    Full Text Available This paper aims to examine the feasibility of the Online Sustainable Conservation Assistance Resource (OSCAR as an information system and framework to help find appropriate ways to improve the sustainable performance of heritage buildings in North America. The paper reviews the need for holistic comprehensive authoritative information in the field of sustainable conservation, how OSCAR addresses this gap, the OSCAR workflow, and how it was used in two case studies. It was found that OSCAR has potential to become a practical educational tool and design aide to address the sustainable performance of heritage buildings. The paper contributes to the discourse on sustainable conservation by examining resources and tools which address the need for holistic retrofit approaches. The findings will be useful to educators and professionals in the fields of sustainable design and heritage conservation.

  12. Evaluation of the sustainability of contrasted pig farming systems: breeding programmes.

    Science.gov (United States)

    Rydhmer, L; Gourdine, J L; de Greef, K; Bonneau, M

    2014-12-01

    The sustainability of breeding activities in 15 pig farming systems in five European countries was evaluated. One conventional and two differentiated systems per country were studied. The Conventional systems were the standard systems in their countries. The differentiated systems were of three categories: Adapted Conventional with focus on animal welfare, meat quality or environment (five systems); Traditional with local breeds in small-scale production (three systems) and Organic (two systems). Data were collected with a questionnaire from nine breeding organisations providing animals and semen to the studied farming systems and from, on average, five farmers per farming system. The sustainability assessment of breeding activities was performed in four dimensions. The first dimension described whether the market for the product was well defined, and whether the breeding goal reflected the farming system and the farmers' demands. The second dimension described recording and selection procedures, together with genetic change in traits that were important in the system. The third dimension described genetic variation, both within and between pig breeds. The fourth dimension described the management of the breeding organisation, including communication, transparency, and technical and human resources. The results show substantial differences in the sustainability of breeding activities, both between farming systems within the same category and between different categories of farming systems. The breeding activities are assessed to be more sustainable for conventional systems than for differentiated systems in three of the four dimensions. In most differentiated farming systems, breeding goals are not related to the system, as these systems use the same genetic material as conventional systems. The breeds used in Traditional farming systems are important for genetic biodiversity, but the small scale of these systems renders them vulnerable. It is hoped that, by

  13. Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Nuri Cihat Onat

    2017-04-01

    Full Text Available Tracking the environmental impacts of production, use, and disposal of products (e.g., goods, and services have been an important issue in the global economy. Although Life Cycle Assessment (LCA is a widely applied method to track these environmental impacts and support policies, it has certain limitations and an isolated way of evaluating the environmental impacts with no consideration of social and economic impacts and mechanisms. To overcome the limits of current LCA, three mechanisms have been proposed in the literature: (1 broadening the indicators by including social and economic indicators in addition to the environmental impacts; (2 broadening the scope of analysis from product-level assessment to national and global levels; (3 deepening the assessment by inclusion of more mechanisms to account for interrelations among the system elements, uncertainty analysis, stakeholder involvement, etc. With these developments, LCA has been evolving into a new framework called Life Cycle Sustainability Assessment (LCSA. Practical application of LCSA requires integration of various methods, tools, and disciplines. In this study, a comprehensive literature review is conducted to investigate recent developments, current challenges, and future perspectives in the LCSA literature. According to the review, a high number (40% of LCSA studies are from the environmental science discipline, while contributions from other disciplines such as economics (3% and social sciences (9% are very low. On broadening the scope of analysis, 58% of the studies are product-level works, while 37% quantified the impacts at national level and achieved an economy-wide analysis, and only 5% of the studies were able to quantify the global impacts of products using LCSA framework. Furthermore, current applications of LCSA have not considered the rebound effects, feedback mechanisms, and interrelations of the system of interest sufficiently. To address these challenges, we present a

  14. Central Neural Control of the Cardiovascular System: Current Perspectives

    Science.gov (United States)

    Dampney, Roger A. L.

    2016-01-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…

  15. Simulation of the sustainability of farming systems in Northern Thailand

    OpenAIRE

    Potchanasin, Chakrit

    2008-01-01

    Summary Introduction Due to an increase in environmental problems and resource degradation, economic development should be pursued with consideration of environmental functions and the supply and quality of natural resources. Monitoring and assessment of whether the development approaches a sustainable path are required to provide information for policy development. This becomes increasingly important ? especially for marginal areas where the environment and natural resources are sensit...

  16. Challenging the Sustainability of an Education System of Evaluation and Labor Market Outcomes

    Directory of Open Access Journals (Sweden)

    Wonyoung Baek

    2015-12-01

    Full Text Available Students’ inattention to the importance of teaching evaluations may undermine the sustainability of the education evaluation system. This study analyzed the effects of the personality variable reflected by monotonic response patterns, which is a typical example of student indifference, on the employability of graduates using Career-SET (student evaluations of teaching matched data of college graduates from 2008–2012. The results from various estimation models consistently indicated that graduates with a higher ratio of insincere responses in student evaluations of teaching are less likely to be employed, or are hired for lower prestige jobs than other comparison groups. This means that unlike the current practice in which firms rely simply on specifications to hire employees, applicants’ invisible characteristics, such as personality, can also be screened by job interviewers.

  17. Current Status and Problems in Certification of Sustainable Forest Management in China

    Science.gov (United States)

    Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing

    2011-12-01

    Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US0.66-86.63 million while the economic benefits for the forestry business sector could exceed US150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.

  18. Current status and problems in certification of sustainable forest management in China.

    Science.gov (United States)

    Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing

    2011-12-01

    Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US$0.66-86.63 million while the economic benefits for the forestry business sector could exceed US$150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.

  19. Production regimes in four eastern boundary current systems

    Science.gov (United States)

    Carr, M. E.; Kearns, E. J.

    2003-01-01

    High productivity (maxima 3 g C m(sup -2)day(sup -1)) of the Eastern Boundary Currents (EBCs), i.e. the California, Peru-Humboldt, Canary and Benguela Currents, is driven by a combination of local forcing and large-scale circulation. The characteristics of the deep water brought to the surface by upwelling favorable winds depend on the large-scale circulation patterns. Here we use a new hydrographic and nutrient climatology together with satellite measurements ofthe wind vector, sea-surface temperature (SST), chlorophyll concentration, and primary production modeled from ocean color to quantify the meridional and seasonal patterns of upwelling dynamics and biological response. The unprecedented combination of data sets allows us to describe objectively the variability for small regions within each current and to characterize the governing factors for biological production. The temporal and spatial environmental variability was due in most regions to large-scale circulation, alone or in combination with offshore transport (local forcing). The observed meridional and seasonal patterns of biomass and primary production were most highlycorrelated to components representing large-scale circulation. The biomass sustained by a given nutrient concentration in the Atlantic EBCs was twice as large as that of the Pacific EBCs. This apparent greater efficiency may be due toavailability of iron, physical retention, or differences in planktonic community structure.

  20. A New Current Drogue System for Remotely Monitoring Shelf Current Circulation

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Davis, G.; Whelan, W.; Tornatore, G.

    1975-01-01

    The author has identified the following significant results. An ocean current drogue system was developed for use in the coastal zone and continental shelf region. The method features an extremely simple radiosonde device whose position is determined from a pair of cooperative shore stations. These ocean sondes follow the tradition of the atmospheric radiosonde in that they are economically disposable at the end of their mission. The system was successfully tested in a number of environments, including the North Atlantic in two winter coastal storms. Tracking to the edge of the Baltimore and Wilmington trenches was achieved. The drogue system is being used in conjunction with remote sensing aircraft and satellites to chart current circulation at ocean waste disposal sites 40 miles off Delaware's coast.

  1. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    Science.gov (United States)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  2. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Olutobi Adeyemi

    2017-02-01

    Full Text Available Globally, the irrigation of crops is the largest consumptive user of fresh water. Water scarcity is increasing worldwide, resulting in tighter regulation of its use for agriculture. This necessitates the development of irrigation practices that are more efficient in the use of water but do not compromise crop quality and yield. Precision irrigation already achieves this goal, in part. The goal of precision irrigation is to accurately supply the crop water need in a timely manner and as spatially uniformly as possible. However, to maximize the benefits of precision irrigation, additional technologies need to be enabled and incorporated into agriculture. This paper discusses how incorporating adaptive decision support systems into precision irrigation management will enable significant advances in increasing the efficiency of current irrigation approaches. From the literature review, it is found that precision irrigation can be applied in achieving the environmental goals related to sustainability. The demonstrated economic benefits of precision irrigation in field-scale crop production is however minimal. It is argued that a proper combination of soil, plant and weather sensors providing real-time data to an adaptive decision support system provides an innovative platform for improving sustainability in irrigated agriculture. The review also shows that adaptive decision support systems based on model predictive control are able to adequately account for the time-varying nature of the soil–plant–atmosphere system while considering operational limitations and agronomic objectives in arriving at optimal irrigation decisions. It is concluded that significant improvements in crop yield and water savings can be achieved by incorporating model predictive control into precision irrigation decision support tools. Further improvements in water savings can also be realized by including deficit irrigation as part of the overall irrigation management

  3. A System of Systems (SoS) Approach to Sustainable Energy Planning in MENA

    Science.gov (United States)

    Mahlooji, Maral; Ristic, Bora; Price, Katherine; Madani, Kaveh

    2016-04-01

    The global issue of climate change has put pressure on governments to de-carbonise their energy portfolios by transitioning from the dominant use of fossil fuels energy to extensive use of renewable energies. The lack of renewable energy laws and credible targets and valid roadmaps for energy policies within the MENA region has let to ambitious and unrealistic renewable targets, where countries such as Djibouti and Morocco are aiming for 100% and 42% renewables respectively, by 2020, while Kuwait and Qatar are only aiming for 5% and 6% respectively. Nevertheless, this demonstrates the commitment and desirability of the members of the MENA region on increasing their share of renewables in their energy mix to reduce the greenhouse gas emissions of the region and minimise the unintended impacts of energy technologies on major natural resources through use of cost efficient technologies. The Relative Aggregate Footprint (RAF) of energy sources among the member states of the MENA region is assessed by applying the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015). RAF demonstrates the efficiency of the overall resource-use of energy resources through creating a trade-off between carbon footprint, land footprint, water footprint, and economic cost. Using the resource availability of each member states, weights are assigned to the four criteria. This allows the evaluation of the desirability of energy sources with respect to regional resource availability and therefore, the efficiency of the overall resource-use of the energy portfolio of the MENA region is determined. This study has recognised the need for reform and radical changes within the MENA region's energy profile to make a significant contribution to the reduction of carbon emissions in order to use the resources in a sustainable way and increase the regional energy security of the member states across MENA. Reference: Hadian S, Madani K (2015) A System of Systems

  4. Sustainable Education Systems For The Unfortunate In South Sulawesi

    Directory of Open Access Journals (Sweden)

    Andi Rasyid Pananrangi

    2016-02-01

    Full Text Available The aim of this paper was (1 to explain some basic issues faced by the education policy makers in South Sulawesi, including the introduction of school fees and the private provision of schools; (2 to outline the relation between planning and budgeting for the educational policy objectives on the one hand and the economic planning and management of resources on the other; (3 to discuss the influence of this policy for the unfortunate in obtaining education. This study was carried in South Sulawesi. A descriptive approach was used in this study. The data were collected through library research and observation. The obtained data were then analyzed and presented descriptively. The results show that the available approach is not adequate to accommodate and to provide the opportunity of education for the unfortunate in South Sulawesi. The full or partial replacement of annual incremental planning and budgeting systems were still less appropriate to current problems. Reforms should also take full account of the need to strengthen a potentially beneficial relationship between the state and the private sectors.

  5. Sustainable Development in Higher Education: Current Practice and Future Development: A Case Study of University of Calabar-Nigeria

    Science.gov (United States)

    Ajake, Uchenna E.; Omori, Anne E.; Essien, Margaret

    2011-01-01

    The study highlighted the Nigerian Universities' new sustainable development strategies: emphasizes the role that entrepreneurship education can play in both raising awareness among young people about sustainable development and giving them the skills to put sustainable development into practice. Universities place priority on the development of…

  6. Responses of the sustained inward current to autonomic agonists in guinea-pig sino-atrial node pacemaker cells.

    Science.gov (United States)

    Toyoda, Futoshi; Ding, Wei-Guang; Matsuura, Hiroshi

    2005-03-01

    1. The present study was undertaken to examine the responses of the sustained inward current (I(st)) to beta-adrenergic and muscarinic agonists in guinea-pig sino-atrial (SA) node cells using the whole-cell patch-clamp technique. I(st) was detected as the nicardipine (1 microM)-sensitive inward current at potentials between approximately -80 and +20 mV in the presence of low concentration (0.1 mM) of extracellular Ca2+, where the L-type Ca2+ current (I(Ca,L)) was practically abolished. 2. Beta-adrenergic agonist isoprenaline (ISO) in nanomolar concentrations not only increased the amplitude of I(st) but also shifted the membrane potential producing the peak amplitude (Vpeak) to a negative direction by approximately 15 mV without appreciably affecting potential range for the current activation. The stimulatory effect of ISO was concentration-dependent with an EC50 of 2.26 nM and the maximal effect (96.4+/-22.9% increase, n=6) was obtained at 100 nM ISO, when evaluated by the responses at -50 mV. 3. Bath application of acetylcholine (ACh) significantly inhibited I(st), which had been maximally augmented by 100 nM ISO; this inhibitory effect of ACh was concentration-dependent with an IC50 of 133.9 nM. High concentration (1000 nM) of ACh depressed basal I(st) by 10.5+/-2.0% (n=3). 4. In action potential clamp experiments, I(st) was also detected under control conditions and was markedly potentiated by exposure to ISO. 5. These results strongly suggest that I(st) not only contributes to the spontaneous action potentials of mammalian SA node cells but also plays a substantial role in mediating autonomic regulation of SA node pacemaker activity.

  7. A GIS-based performance measurement system for assessing transportation sustainability and community livability : final report.

    Science.gov (United States)

    2014-08-31

    Sustainability and livability in transportation, as the concepts referring to the capability of transportation systems to maintain the well being of our society, have been widely : accepted as the critical principles to improve quality of life and he...

  8. Land Administration System for Sustainable Development – Case Study of Poland

    National Research Council Canada - National Science Library

    Agnieszka Dawidowicz; Ryszard Źróbek

    2017-01-01

    The global idea of building state Land Administration Systems was to determine the infrastructures for the implementation of land policies and land management strategies in support of sustainable development...

  9. Texas Urban Triangle : pilot study to implement a spatial decision support system (SDSS) for sustainable mobility.

    Science.gov (United States)

    2011-03-01

    This project addressed sustainable transportation in the Texas Urban Triangle (TUT) by conducting a pilot : project at the county scale. The project tested and developed the multi-attribute Spatial Decision Support : System (SDSS) developed in 2009 u...

  10. Maturity-based approach for the development of environmentally sustainable product/service-systems

    DEFF Research Database (Denmark)

    Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2016-01-01

    Despite their substantial potential for enabling increased environmental performance, product/service-systems (PSS) are not intrinsically environmentally sustainable. In order to ensure increased environmental performance, PSS best practices should be integrated with ecodesign best practices, from...

  11. Mechanization and new technologies for the control and the sustainability of agricultural and forestry systems

    Directory of Open Access Journals (Sweden)

    The Editors

    2016-05-01

    Full Text Available Abstract Book of the Congress:Mechanization and new technologies for the control and the sustainability of agricultural and forestry systems Alghero, Italy, 29th May - 1st June 2016

  12. A Systems Model to Make, Market, and Lead Your Way towards Sustained Growth

    National Research Council Canada - National Science Library

    Raman Kumar Agrawalla

    2017-01-01

    .... Marketing is a key business function to market and lead a business towards sustained profitable growth but the problem is it lacks a systems perspective in its operations, strategy, and practice...

  13. Storm that rocks the boat: the systemic impact of gated communities on urban sustainability

    CSIR Research Space (South Africa)

    Landman, K

    2007-01-01

    Full Text Available , and to seeking underlying systemic interrelationships which are responsible for the patterns of behaviour and the events (Bellinger 2004). 6 “Sustainability is the condition or state that would allow the continued existence of homo sapiens...

  14. Utilizing Indigenous Knowledge Systems in Agricultural Education to Promote Sustainable Agriculture.

    Science.gov (United States)

    Williams, David L.; Muchena, Olivia N.

    1991-01-01

    Understanding and appreciation of indigenous knowledge systems (IKS) are essential for promoting sustainable agriculture development. IKS provides a cultural basis for nonformal agricultural programs that is absent in technology transfer approaches. (SK)

  15. Genetic traits of relevance to sustainability of smallholder sheep farming systems in South Africa

    NARCIS (Netherlands)

    Molotsi, Annelin; Dube, Bekezela; Oosting, Simon; Marandure, Tawanda; Mapiye, Cletos; Cloete, Schalk; Dzama, Kennedy

    2017-01-01

    Sustainable livestock production is important to ensure continuous availability of resources for future generations. Most smallholder livestock farming systems in developing countries have been perceived to be environmentally, socially and economically unsustainable. Farming with livestock that is

  16. Sustainable Transport Systems: Linkages Between Environmental Issues, Public Transport, Non-Motorized Transport And Safety

    Science.gov (United States)

    2000-10-01

    A sustainable transport system must provide mobility and accessibility to all urban residents in a safe and end environmentally friendly mode of transport. This is a complex and difficult task when the needs and demands of people belonging to differe...

  17. Performance of Superconducting Current Feeder System for SST-1

    Science.gov (United States)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  18. Output Current Ripple Reduction Algorithms for Home Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Park

    2013-10-01

    Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.

  19. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  20. Information and entropy theory for the sustainability of coupled human and natural systems

    Directory of Open Access Journals (Sweden)

    Audrey L. Mayer

    2014-09-01

    Full Text Available For coupled human and natural systems (CHANS, sustainability can be defined operationally as a feasible, desirable set of flows (material, currency, information, energy, individuals, etc. that can be maintained despite internal changes and changes in the environment. Sustainable development can be defined as the process by which CHANS can be moved toward sustainability. Specific indicators that give insight into the structure and behavior of feedbacks in CHANS are of particular interest because they would aid in the sustainable management of these systems through an understanding of the structures that govern system behavior. However, the use of specific feedbacks as monitoring tools is rare, possibly because of uncertainties regarding the nature of their dynamics and the diversity of types of feedbacks encountered in these systems. An information theory perspective may help to rectify this situation, as evidenced by recent research in sustainability science that supports the use of unit-free measures such as Shannon entropy and Fisher information to aggregate disparate indicators. These measures have been used for spatial and temporal datasets to monitor progress toward sustainability targets. Here, we provide a review of information theory and a theoretical framework for studying the dynamics of feedbacks in CHANS. We propose a combination of information-based indices that might productively inform our sustainability goals, particularly when related to key feedbacks in CHANS.

  1. Towards an Agent Based Framework for Modelling Smart Self-Sustainable Systems

    Directory of Open Access Journals (Sweden)

    Igor Tomičić

    2015-01-01

    Full Text Available Self-sustainability is a property of a system; a system is considered to be self-sustainable if it can sustain itself without external support in an observed period of time. If this property is mapped to a human settlement in context of resources (water, energy, food, etc., it would describe a human settlement which is independent of external resources (like the national electrical grid or a central water distribution system, where such external resources are either not available, or not desirable. This article contributes to presenting the state-of-the-art overview of self-sustainability-related research. While self-sustainability as in the above described form was not a direct subject of research, there are several fields which are either related to, or could be of significant value to the self-sustainability research in this context. The extensive literature overview also showed no frameworks for modeling self sustainable systems in the context of human settlements. Herein a motivation for using agent-based modeling and simulation techniques will be given.

  2. Current Status of the Nitrogen Oxygen Recharge System

    Science.gov (United States)

    Dick, Brandon

    2011-01-01

    This paper presents an overview of the Nitrogen Oxygen Recharge System (NORS) to date and the current development status of the system. NORS is an element of the International Space Station (ISS) Environmental Control and Life Support Systems (ECLSS) used to resupply the ISS with Nitrogen and Oxygen following the impending retirement of the Space Shuttle. The paper will discuss why NASA is developing NORS, including a summary of other concepts considered, and other related concepts currently being developed by NASA. The current system architecture will be described, along with a summary of the current design of the NORS. The overall programmatic schedule of the NORS in the context of the upcoming shuttle retirement and future launch vehicle development will also be presented. Finally, the paper will examine the significant technical challenges encountered during the requirements and preliminary design phase of NORS development. A key challenge to the development of NORS is the international shipment - and associated regulations - of pressurized Oxygen, which is necessary due to the use of launch vehicles based in Japan and French Guiana to send NORS gasses to the ISS. The storage and use of relatively large quantities of high pressure (41,000 kPa) Oxygen and Nitrogen within the ISS, which is unprecedented both on the ISS and other space vehicles, has had a significant impact on the design and architecture of the system. The high pressure of the system also poses unique thermal considerations, which has led to the development of a heater system for thermal conditioning of high pressure gas to avoid thermal impacts on downstream hardware. The on-orbit envelope allocated to the NORS has changed (gotten smaller) and has impacted both the design and architecture of the system. Finally, the balance of safety considerations associated with these high pressure gasses, particularly high pressure Oxygen, with the functionality of the system has profoundly impacted the form

  3. Special Issue: Enhancing Sustainable Performance in Organizational and Inter-Institutional Systems

    Directory of Open Access Journals (Sweden)

    Graham Winch

    2013-05-01

    Full Text Available Sustainability is not just for Christmas… it’s for life. Sustainable solutions, whether sought in terms of business strategies, social policies, or the exploitation of natural resources have to serve organizations and communities in the long term, sometimes very long term, as well as the short term. Static analysis is unlikely to be able to evaluate candidate solutions fully, and is more likely to focus on the short-term future to the detriment of the longer-term. Sustainable solutions are more likely to be developed from studies based on deep analysis using systems approaches, and from system dynamics (SD approaches in particular.

  4. Designing Sustainable IT System – From the Perspective of Universal Design Principles

    OpenAIRE

    Mustaquim, Moyen; Nyström, Tobias

    2013-01-01

    Since the concept of universal design is already extending the boundary of disabilities, it is significant to include different aspects of information technology where universal design enabled efforts can contribute towards better designed systems, products and services. Sustainability is an important and growing public concern in today’s world. Nevertheless, attempts of designing IT system that can be called sustainable in nature are not so evident at present. In this paper we propose a fram...

  5. Geospatial Based Information System Development in Public Administration for Sustainable Development and Planning in Urban Environment

    OpenAIRE

    Georgios N. Kouziokas

    2016-01-01

    It is generally agreed that the governmental authorities should actively encourage the development of an efficient framework of information and communication technology initiatives so as to advance and promote sustainable development and planning strategies. This paper presents a prototype Information System for public administration which was designed to facilitate public management and decision making for sustainable development and planning. The system was developed by using several progra...

  6. Energy policies and politics for sustainable world-system development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    environmental impacts of renewable energy sources. Normatively, (a) parts of the 1987 Brundtland report and (b) Danish experiences with regulated markets and innovations (Hvelplund 1995) are discussed and supplemented by (c) a critique of EU energy policies, especially the continued support of nuclear industry...... by Euratom (Woodman 2003). A political approach to preconditions for sustainable energy policies is finally developed from (a) Barry Commoner's critique of 1979 of president Carter's energy plan followed by the impasse of the Reagan era with the US government's retreat from federal energy and environmental...

  7. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...... health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed...

  8. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    Science.gov (United States)

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  9. Sonoelastography in the musculoskeletal system: Current role and future directions.

    Science.gov (United States)

    Winn, Naomi; Lalam, Radhesh; Cassar-Pullicino, Victor

    2016-11-28

    Ultrasound is an essential modality within musculoskeletal imaging, with the recent addition of elastography. The elastic properties of tissues are different from the acoustic impedance used to create B mode imaging and the flow properties used within Doppler imaging, hence elastography provides a different form of tissue assessment. The current role of ultrasound elastography in the musculoskeletal system will be reviewed, in particular with reference to muscles, tendons, ligaments, joints and soft tissue tumours. The different ultrasound elastography methods currently available will be described, in particular strain elastography and shear wave elastography. Future directions of ultrasound elastography in the musculoskeletal system will also be discussed.

  10. Immediate and Sustained Effects of 5-Day Transcranial Direct Current Stimulation of the Motor Cortex in Phantom Limb Pain.

    Science.gov (United States)

    Bolognini, Nadia; Spandri, Viviana; Ferraro, Francesco; Salmaggi, Andrea; Molinari, Alessandro C L; Fregni, Felipe; Maravita, Angelo

    2015-07-01

    The study explored the analgesic effects of transcranial direct current stimulation (tDCS) over the motor cortex on postamputation phantom limb pain (PLP). Eight subjects with unilateral lower or upper limb amputation and chronic PLP were enrolled in a crossover, double-blind, sham-controlled treatment program. For 5 consecutive days, anodal (active or sham) tDCS was applied over the motor cortex for 15 minutes at an intensity of 1.5 mA. The 5-day treatment with active, but not sham, tDCS induced a sustained decrease in background PLP and in the frequency of PLP paroxysms, which lasted for 1 week after the end of treatment. Moreover, on each day of active tDCS, patients reported an immediate PLP relief, along with an increased ability to move their phantom limb. Patients' immediate responses to sham tDCS, on the contrary, were variable, marked by an increase or decrease of PLP levels from baseline. These results show that a 5-day treatment of motor cortex stimulation with tDCS can induce stable relief from PLP in amputees. Neuromodulation targeting the motor cortex appears to be a promising option for the management of this debilitating neuropathic pain condition, which is often refractory to classic pharmacologic and surgical treatments. The study describes sustained and immediate effects of motor cortex stimulation by tDCS on postamputation PLP, whose analgesic action seems linked to the motor reactivation of the phantom limb. These results are helpful for the exploitation of tDCS as a therapeutic tool for the management of neuropathic pain. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Academic-community partnerships for sustainable preparedness and response systems.

    Science.gov (United States)

    Isakov, Alexander; O'Neal, Patrick; Prescott, John; Stanley, Joan; Herrmann, Jack; Dunlop, Anne

    2014-01-01

    Academic institutions possess tremendous resources that could be important for community disaster response and preparedness activities. In-depth exploration of the role of academic institutions in community disaster response has elicited information about particular academic resources leveraged for and essential to community preparedness and response; factors that contribute to the decision-making process for partner engagement; and facilitators of and barriers to sustainable collaborations from the perspectives of academic institutions, public health and emergency management agencies, and national association and agency leaders. The Academic-Community Partnership Project of the Emory University Preparedness and Emergency Response Research Center in collaboration with the Association of Schools of Public Health convened an invitational summit which included leadership from the National Association of County and City Health Officials, Association of State and Territorial Health Officials, Directors of Public Health Preparedness, Department of Health and Human Services Office of the Assistant Secretary for Preparedness and Response, CDC Office of Public Health Preparedness and Response, Association of Schools of Public Health, Association of American Medical Colleges, Association of Academic Health Centers, American Association of Colleges of Nursing, Council of State and Territorial Epidemiologists, and American Association of Poison Control Centers. From this convention, emerged recommendations for building and sustaining academic-public health-community collaborations for preparedness locally and regionally.

  12. The efficient and sustainable use of environmental resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerlagh, R.

    1999-02-01

    The two main questions in this study are: (1) how to represent environmental resources within a dynamic, competitive economy, and (2) how to specify environmental policies that guarantee the efficient and sustainable use of these resources, and do not require day-to-day intervention. This study is organized as follows. In Chapter 2, both types of dynamic economies (dynastic and overlapping generations or OLG) are formally specified, and existence of equilibrium is proven. In particular, attention is paid to the consequences of including exhaustible resources with amenity values. It is shown that the equilibrium paths exhibit the specific features of path-dependence. This property implies that present policies have non-diminishing effects on future welfare, and points once more to the urgency of policy interventions. Chapter 3 focuses on efficiency aspects and on the capacity of environmental resources to produce an indefinite stream of valuable services. The chapter also introduces ALICE, an applied model that has a single environmental resource that possesses three specific characteristics: the resource has non-negligible amenity value and is therefore valuable, it is exhaustible, but, if no extraction takes place, the resource produces an indefinite stream of valuable services (the amenity value). An example is provided of strictly conservationist policies that create inefficiencies, and it is shown that efficiency is restored if property rights over the resource are given to the present generation, a policy known as grandfathering. However, it is also shown that, compared to the strictly conservationist policy, grandfathering improves welfare of the present generation while reducing it for future generations. Indeed, an unsustainable equilibrium path cannot be ruled out. Next, parameters are chosen such that the numerical outcomes of the stylized model become comparable with those of existing integrated assessment models that include climate change. The

  13. A Systemic Approach for Measuring Environmental Sustainability at Higher Education Institutions : A Case Study of the University of Oslo

    OpenAIRE

    Faghihimani, Maryam

    2012-01-01

    Sustainability is becoming an integral part of the university system. A global trend among universities shows that they are revising their missions and strategies by embodying sustainability on their agenda. This study aims to define what a sustainable university is and how implementing sustainability and more precisely environmental sustainability can be measured at the higher education institutions. The contextual background of this study will elaborate on the role of higher education syste...

  14. A System for Ontology-Based Sharing of Expert Knowledge in Sustainability Science

    Directory of Open Access Journals (Sweden)

    Steven Kraines

    2011-01-01

    Full Text Available Work towards creation of a knowledge sharing system for sustainability science through the application of semantic data modeling is described. An ontology grounded in description logics was developed based on the ISO 15926 data model to describe three types of sustainability science conceptualizations: situational knowledge, analytic methods, and scenario frameworks. Semantic statements were then created using this ontology to describe expert knowledge expressed in research proposals and papers related to sustainability science and in scenarios for achieving sustainable societies. Semantic matching based on logic and rule-based inference was used to quantify the conceptual overlap of semantic statements, which shows the semantic similarity of topics studied by different researchers in sustainability science, similarities that might be unknown to the researchers themselves.

  15. Assessing the Financial Sustainability of China’s Rural Pension System

    Directory of Open Access Journals (Sweden)

    Lijian Wang

    2014-05-01

    Full Text Available Considering the rapid growth of China’s elderly rural population, establishing both an adequate and a financially sustainable rural pension system is a major challenge. Focusing on financial sustainability, this article defines this concept of financial sustainability before constructing sound actuarial models for China’s rural pension system. Based on these models and statistical data, the analysis finds that the rural pension funding gap should rise from 97.80 billion Yuan in 2014 to 3062.31 billion Yuan in 2049, which represents an annual growth rate of 10.34%. This implies that, as it stands, the rural pension system in China is not financially sustainable. Finally, the article explains how this problem could be fixed through policy recommendations based on recent international experiences.

  16. Journal of Sustainable Development of Energy, Water and Environment Systems - Volume II

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2014-12-01

    Full Text Available The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations. In total 32 manuscripts were published in Volume II, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  17. An accurate continuous calibration system for high voltage current transformer.

    Science.gov (United States)

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  18. How the Organic Food System Supports Sustainable Diets and Translates These into Practice.

    Science.gov (United States)

    Strassner, Carola; Cavoski, Ivana; Di Cagno, Raffaella; Kahl, Johannes; Kesse-Guyot, Emmanuelle; Lairon, Denis; Lampkin, Nicolas; Løes, Anne-Kristin; Matt, Darja; Niggli, Urs; Paoletti, Flavio; Pehme, Sirli; Rembiałkowska, Ewa; Schader, Christian; Stolze, Matthias

    2015-01-01

    Organic production and consumption provide a delineated food system that can be explored for its potential contribution to sustainable diets. While organic agriculture improves the sustainability performance on the production side, critical reflections are made on how organic consumption patterns, understood as the practice of people consuming significant amounts of organic produce, may also be taken as an example for sustainable food consumption. The consumption patterns of regular organic consumers seem to be close to the sustainable diet concept of FAO. Certain organic-related measures might therefore be useful in the sustainability assessment of diets, e.g., organic production and organic consumption. Since diets play a central role in shaping food systems and food systems shape diets, the role of organic consumption emerges as an essential topic to be addressed. This role may be based on four important organic achievements: organic agriculture and food production has a definition, well-established principles, public standards, and useful metrics. By 2015, data for organic production and consumption are recorded annually from more than 160 countries, and regulations are in force in more than 80 countries or regions. The organic food system puts the land (agri-cultura) back into the diet; it is the land from which the diet in toto is shaped. Therefore, the organic food system provides essential components of a sustainable diet.

  19. How the Organic Food System Supports Sustainable Diets and Translates These into Practice

    Science.gov (United States)

    Strassner, Carola; Cavoski, Ivana; Di Cagno, Raffaella; Kahl, Johannes; Kesse-Guyot, Emmanuelle; Lairon, Denis; Lampkin, Nicolas; Løes, Anne-Kristin; Matt, Darja; Niggli, Urs; Paoletti, Flavio; Pehme, Sirli; Rembiałkowska, Ewa; Schader, Christian; Stolze, Matthias

    2015-01-01

    Organic production and consumption provide a delineated food system that can be explored for its potential contribution to sustainable diets. While organic agriculture improves the sustainability performance on the production side, critical reflections are made on how organic consumption patterns, understood as the practice of people consuming significant amounts of organic produce, may also be taken as an example for sustainable food consumption. The consumption patterns of regular organic consumers seem to be close to the sustainable diet concept of FAO. Certain organic-related measures might therefore be useful in the sustainability assessment of diets, e.g., organic production and organic consumption. Since diets play a central role in shaping food systems and food systems shape diets, the role of organic consumption emerges as an essential topic to be addressed. This role may be based on four important organic achievements: organic agriculture and food production has a definition, well-established principles, public standards, and useful metrics. By 2015, data for organic production and consumption are recorded annually from more than 160 countries, and regulations are in force in more than 80 countries or regions. The organic food system puts the land (agri-cultura) back into the diet; it is the land from which the diet in toto is shaped. Therefore, the organic food system provides essential components of a sustainable diet. PMID:26176912

  20. A partial Hamiltonian approach for current value Hamiltonian systems

    Science.gov (United States)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.