WorldWideScience

Sample records for susquehanna river

  1. 33 CFR 117.575 - Susquehanna River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Susquehanna River. 117.575 Section 117.575 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.575 Susquehanna River. The draw of the...

  2. Evaluation of genetic population structure of smallmouth bass in the Susquehanna River basin, Pennsylvania

    Science.gov (United States)

    Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler

    2017-01-01

    The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.

  3. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  4. Twenty-five-year study of radionuclides in the Susquehanna river via periphyton biomonitors.

    Science.gov (United States)

    Patrick, Ruth; Palms, John; Kreeger, Danielle; Harris, Charles

    2007-01-01

    This 25-y study monitored aquatic and terrestrial gamma-ray-emitting radionuclide levels near a nuclear power plant. It is the only known, long-term environmental survey of its kind. It was conducted neither by a utility owner, nor by a government agency, but rather by a private, environmental research institution. Compared to dozens of other flora and fauna, periphyton was found to be the best indicator to biomonitor the Susquehanna River, which runs near PPL Susquehanna's nuclear plant. Sampling began in 1979 before the first plant start-up and continued for the next 24 years. Monitoring began two months after the Three Mile Island accident of 28 March 1979 and includes Three Mile Island area measurements. Ongoing measurements detected fallout from Chernobyl in 1986, as well as I not released from PPL Susquehanna. Although this paper concentrates on radionuclides found in periphyton, the scope of the entire environmental program includes a wide variety of aquatic and land-based plants, animals, and inorganic matter. Other species and matter studied were fish, mussels, snails, crayfish, insects, humus, mushrooms, lichens, squirrels, deer, cabbage, tomatoes, coarse and flocculated sediment, and more. Results show periphyton works well for detection of radionuclide activity, even in concentrations less than 100 Bq kg (picocuries per gram amounts). Data indicate that PPL Susquehanna's radionuclide releases have had no known environmental or human health impact.

  5. Technical manual for estimating low-flow frequency characteristics of streams in the Susquehanna River basin

    Science.gov (United States)

    Armbruster, Jeffrey T.

    1976-01-01

    This report presents procedures for estimating low-flow frequency characteristics for streams in the Susquehanna River basin. The techniques can be used at ungaged sites as well as sites where insufficient data are available to make a reliable estimate. Streams have been divided intp two types--major and minor. Major streams are the Susquehanna, West Branch Susquehanna, Juniata, and Chemung Rivers. Points on these streams with drainage areas of more than 2,000 mi 2 (5,180 km 2 ) are included in this category. Points on these streams with drainage areas of less than 2,000 mi 2 fall into the minor stream category. Generally minor streams are herein defined as those draining less than 2,000 mi 2 (5,180 km 2 ). Multiple -regression techniques have been used to develop relations for estimating the 1-, 3-, 7-, 30-, and 183-day duration low flows at recurrence intervals of 10, 20, SO and 100 years for annual series data and the 1 - , 3-, 7-, and 30-day duration low flows, at the same recurrence intervals, for six individual months, May through October, inclusive.

  6. Groundwater quality in the Upper Susquehanna River Basin, New York, 2009

    Science.gov (United States)

    Reddy, James E.; Risen, Amy J.

    2012-01-01

    Water samples were collected from 16 production wells and 14 private residential wells in the Upper Susquehanna River Basin from August through December 2009 and were analyzed to characterize the groundwater quality in the basin. Wells at 16 of the sites were completed in sand and gravel aquifers, and 14 were finished in bedrock aquifers. In 2004–2005, six of these wells were sampled in the first Upper Susquehanna River Basin study. Water samples from the 2009 study were analyzed for 10 physical properties and 137 constituents that included nutrients, organic carbon, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, and 4 types of bacterial analyses. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater genrally is of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water standard at 28 of the 30 wells. These constituents include: pH, sodium, aluminum, manganese, iron, arsenic, radon-222, residue on evaporation, total and fecal coliform including Escherichia coli and heterotrophic plate count.

  7. Geochemistry of manganese, iron, uranium, lead-210 and major ions in the Susquehanna River

    International Nuclear Information System (INIS)

    Lewis, D.M.

    1976-01-01

    The change in water composition accompanying a change in discharge of large streams and the Susquehanna River results from the change in the proportions of the total flow composed of type waters of constant composition. This change in the flow proportions is due to the different hydrologic responses to precipitation inputs of basins underlain by different single rock types. The in-river precipitation of mine-drainage-injected Mn and Fe was studied at a pH of approximately 7. For Mn the removal from solution appears to be first order. The rate constant is 10 3 times greater than the extrapolated autocatalytic rate constant of previous laboratory experiments. The study of the removal of Fe from solution yields a first order rate constant consistent with previous laboratory experiments. Lead-210 was used as a natural tracer to study the fate of trace metals

  8. Flood-inundation maps for the West Branch Susquehanna River near the Boroughs of Lewisburg and Milton, Pennsylvania

    Science.gov (United States)

    Roland, Mark A.; Hoffman, Scott A.

    2014-01-01

    Digital flood-inundation maps for an approximate 8-mile reach of the West Branch Susquehanna River from approximately 2 miles downstream from the Borough of Lewisburg, extending upstream to approximately 1 mile upstream from the Borough of Milton, Pennsylvania, were created by the U.S. Geological Survey (USGS) in cooperation with the Susquehanna River Basin Commission (SRBC). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict the estimated areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa. In addition, the information has been provided to the Susquehanna River Basin Commission (SRBC) for incorporation into their Susquehanna Inundation Map Viewer (SIMV) flood warning system (http://maps.srbc.net/simv/). The National Weather Service (NWS) forecasted peak-stage information (http://water.weather.gov/ahps) for USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. Calibration of the model was achieved using the most current stage-discharge relations (rating number 11.1) at USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., a documented water-surface profile from the December 2, 2010, flood, and recorded peak stage data. The hydraulic model was then used to determine 26 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum ranging from 14 feet (ft) to 39 ft. Modeled flood stages, as defined by NWS, include Action Stage, 14 ft; Flood Stage, 18 ft; Moderate Flood Stage, 23 ft; and Major Flood Stage, 28 ft. Geographic information system (GIS) technology

  9. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    Science.gov (United States)

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  10. An appraisal of the ground-water resources of the lower Susquehanna River basin (An interim report)

    Science.gov (United States)

    Seaber, Paul R.; Hollyday, Este F.

    1965-01-01

    This report describes the availability, quantity, quality, variability, and cost of development of the ground-water resources in the lower Susquehanna River basin. The report has been prepared for and under specifications established by the Corps of Engineers, U. S. Army, and the Public Health Service, Department of Health, Education, and Welfare.A comprehensive study of the water and related land resources of the Susquehanna River basin was authorized by the Congress of the United States in October 1961, and the task of preparing a report and of coordinating the work being done by others in support of the study was assigned to the Corps of Engineers. The comprehensive study is being conducted by several Federal departments and independent agencies in cooperation with the States of New York, Pennsylvania, and Maryland. The Public Health Service under its authority in the Federal Water Pollution Control Act (P. L. 660) initiated a comprehensive water quality control program for the Chesapeake drainage basin, which includes the Susquehanna River basin.This report is intended to serve the specific needs for ground-water information of both the Corps of Engineers and the Public Health Service, as well as those of the other participating Federal and State agencies.

  11. Hydrogeology of the Susquehanna River valley-fill aquifer system in the Endicott-Vestal area of southwestern Broome County, New York

    Science.gov (United States)

    Randall, Allan D.; Kappel, William M.

    2015-07-29

    The village of Endicott, New York, and the adjacent town of Vestal have historically used groundwater from the Susquehanna River valley-fill aquifer system for municipal water supply, but parts of some aquifers in this urban area suffer from legacy contamination from varied sources. Endicott would like to identify sites distant from known contamination where productive aquifers could supply municipal wells with water that would not require intensive treatment. The distribution or geometry of aquifers within the Susquehanna River valley fill in western Endicott and northwestern Vestal are delineated in this report largely on the basis of abundant borehole data that have been compiled in a table of well records.

  12. Holocene alluvial stratigraphy in the upper Susquehanna River Basin, New York*1

    Science.gov (United States)

    Scully, Richard W.; Arnold, Richard W.

    1981-05-01

    Two alluvial terraces and the present flood plain were studied at two locations along the Susquehanna and Unadilla Rivers in south-central New York state. They have formed since deglaciation and incision of the stream channels into the valley train deposits. The higher terrace has noncumulative soil profiles with well-developed color B horizons predominantly of silt loam and very fine sandy loam. The terrace is weathered to a degree similar to nearby glacial outwash terraces that have caps of similarly textured sediments. Incision that produced the terrace occurred before 9705 ± 130 yr B.P. The lower terrace is characterized by relatively thick, vertical-accretion deposits of silt loam that contain sequences of thin, buried A, color B, and C horizons. They were formed between about 3240 ± 110 ( 14C data of soil humin) and 235 ± 80 yr B.P. Deposits above the 235 ± 80 yr B.P. stratum are unweathered. The soil stratigraphy and 14C dates of soil humin from buried A horizons are surprisingly well correlated between sites. Most sediments of the present flood plain have been deposited since 1120 ± 80 yr B.P. Incipient A horizons and oxidation of inherited organic matter in the subsoil are the only evidence of pedogenesis in the flood-plain deposits that are older than 275 ± 80 yr B.P. The most recent flood-plain fill deposited since then is unaltered. These youngest sediments of the flood plain along with the youngest veneer of vertical-accretion deposits on the lowest terrace are associated with an increased rate of deposition largely attributable to clearing of the forests by settlers, beginning in the late 1700s. Comparison of the alluvial stratigraphy with the radiocarbon-dated pollen stratigraphy of southwestern New York (Miller 1973) reveals some apparent time correlations between alluvial events and vegetation changes. This gives reason to speculate that climatic change or forest catastrophes such as disease or drought are causes of some of the alluvial

  13. Ground-Water Quality in the Upper Susquehanna River Basin, New York, 2004-05

    Science.gov (United States)

    Hetcher-Aguila, Kari K.; Eckhardt, David A.V.

    2006-01-01

    Water samples were collected from 20 production wells and 13 private residential wells throughout the upper Susquehanna River Basin (upstream from the Pennsylvania border) during the fall of 2004 and the spring of 2005 and analyzed to describe the chemical quality of ground water in the upper basin. Wells were selected to represent areas of greatest ground-water use and highest vulnerability to contamination, and to provide a representative sampling from the entire (4,516 square-mile) upper basin. Samples were analyzed for physical properties, nutrients, inorganic constituents, metals, radionuclides, pesticides, volatile organic compounds, and bacteria. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; the anions that were detected in the greatest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrient was nitrate, the concentrations of which were greater in samples from sand and gravel aquifers than in samples from bedrock. The metals barium, boron, cobalt, copper, and nickel were detected in every sample; the metals with the highest concentrations were barium, boron, iron, manganese, strontium, and lithium. The pesticide compounds detected most frequently were atrazine, deethylatrazine, alachlor ESA, and two degradation products of metolachlor (metolachlor ESA and metolachlor OA); the compounds detected in highest concentration were metolachlor ESA and OA. Volatile organic compounds were detected in 11 samples, and concentrations of 3 of these compounds exceeded 1 microgram per liter (?g/L). Methyl tert-butyl ether (MTBE), a gasollline additive, was not detected in any sample. Several analytes were found in concentrations that exceeded Federal and New York State water-quality standards, which are typically identical. Chloride concentrations exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 250 milligrams per liter (mg/L) in two samples

  14. Interdisciplinary applications and interpretations of ERTS data within the Susquehanna River Basin (resource inventory, land use, and pollution)

    Science.gov (United States)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. An interdisciplinary group at Penn State University is analyzing ERTS-1 data. The geographical area of interest is that of the Susquehanna River Basin in Pennsylvania. The objectives of the work have been to ascertain the usefulness of ERTS-1 data in the areas of natural resources and land use inventory, geology and hydrology, and environmental quality. Specific results include a study of land use in the Harrisburg area, discrimination between types of forest resources and vegetation, detection of previously unknown geologic faults and correlation of these with known mineral deposits and ground water, mapping of mine spoils in the anthracite region of eastern Pennsylvania, and mapping of strip mines and acid mine drainage in central Pennsylvania. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach.

  15. Bathymetry and Sediment-Storage Capacity Change in Three Reservoirs on the Lower Susquehanna River, 1996-2008

    Science.gov (United States)

    Langland, Michael J.

    2009-01-01

    The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.

  16. Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay.

    Science.gov (United States)

    Zhang, Q; Brady, D C; Ball, W P

    2013-05-01

    Reduction of nitrogen (N), phosphorus (P), and suspended sediment (SS) load has been a principal focus of Chesapeake Bay Watershed management for decades. To evaluate the progress of management actions in the Bay's largest tributary, the Susquehanna River, we analyzed the long-term seasonal trends of flow-normalized N, P, and SS load over the last two to three decades, both above and below the Lower Susquehanna River Reservoir System. Our results indicate that annual and decadal-scale trends of nutrient and sediment load generally followed similar patterns in all four seasons, implying that changes in watershed function and land use had similar impacts on nutrient and sediment load at all times of the year. Above the reservoir system, the combined loads from the Marietta and Conestoga Stations indicate general trends of N, P, and SS reduction in the Susquehanna River Basin, which can most likely be attributed to a suite of management actions on point, agricultural, and stormwater sources. In contrast, upward trends of SS and particulate-associated P and N were generally observed below the Conowingo Reservoir since the mid-1990s. Our analyses suggest that (1) the reservoirs' capacity to trap these materials has been diminishing over the past two to three decades, and especially so for SS and P since the mid-1990s, and that (2) the Conowingo Reservoir has already neared its sediment storage capacity. These changes in reservoir performance will pose significant new kinds of challenges to attainment of total maximum daily load goals for the Susquehanna River Basin, and particularly if also accompanied by increases in storm frequency and intensity due to climate change. Accordingly, the reservoir issue may need to be factored into the proper establishment of regulatory load requirements and the development of watershed implementation plans. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    Science.gov (United States)

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  18. National Dam Safety Program. Eaton Brook Reservoir Dam (Inventory Number NY 352), Susquehanna River Basin, Madison County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1980-02-19

    Visul IspecionWest Eaton pydrology, Structural Stability OeS iJiiTiAcr~U roawo p*Va *irow % ff n*,c...y sod Idenfi fr by block numbe.r) C) Tis report...provides inforMation andl analys-s on the physical condition of C-") I the dlam as of the report dnte. Information ’and analysis nre based~ on visual...SUSQUEHANNA RIVER BASIN MADISON COUNTY, NEW YORK TABLE OF CONTENTS PAGE NO. ASSESSMENT - OVERVIEW PHOTOGRAPH 1 PROJECT INFORMATION 1 1.1 GENERAL 1 1.2

  19. Legacy Sources, Sinks and Time Lags: 200 Years Of Nitrogen Dynamics in the Mississippi and Susquehanna River Basins

    Science.gov (United States)

    Van Meter, K. J.; Van Cappellen, P.; Basu, N. B.

    2016-12-01

    Global flows of reactive nitrogen (N) have increased significantly over the last century in response to land-use change, agricultural intensification and elevated levels of atmospheric N deposition. Despite widespread implementation of a range of conservation measures to mitigate the impacts of N-intensive agriculture, N concentrations in surface waters are in many cases remaining steady or continuing to increase. Such lack of response has been attributed to legacy N stores in subsurface reservoirs that contribute to time lags between conservation measures implemented on the landscape and water quality benefits realized in receiving water bodies. It has remained unclear, however, what the magnitudes of such stores might be, and how they are partitioned between shallow soil and deeper groundwater reservoirs. In the present work, we have synthesized data to develop a comprehensive, 214-year (1800 - 2014) trajectory of N inputs to the land surface of the continental United States. We have concurrently developed a parsimonious, process-based model, ELEMeNT, that utilizes this N input trajectory together with a travel time-based approach to simulate transport and biogeochemical transformations of N along subsurface pathways. Using the model, we have reconstructed historic nutrient yields at the outlets of two major U.S. watersheds, the Mississippi River Basin (MRB) and Susquehanna River Basin (SRB), which are the sources of significant nutrient contamination to the Gulf of Mexico and Chesapeake Bay, respectively. Our results show significant N loading above baseline levels in both watersheds before the widespread use of commercial N fertilizers, largely due to 19th-century conversion of natural forest and grassland areas to row-crop agriculture. Model results also allow us to quantify the magnitudes of legacy N in soil and groundwater pools, and highlight the dominance of soil N legacies in MRB and groundwater legacies in SRB. Approximately 85% of the current annual N

  20. Seasonal concentrations of organic contaminants at the fall line of the Susquehanna River basin and estimated fluxes to northern Chesapeake Bay, USA

    Science.gov (United States)

    Foster, G.D.; Lippa, K.A.; Miller, C.V.

    2000-01-01

    Riverine fluxes of several pesticides and other organic contaminants from above the fall line of the Susquehanna River basin to northern Chesapeake Bay, USA, were quantified in 1994. Base flow and storm flow samples collected at the fall line of the river from February to December 1994 were analyzed for both dissolved and particulate phase contaminants. Measured concentrations of the organonitrogen and organophosphorus pesticides varied mainly in response to the timing of their application to agricultural fields. Conversely, the concentrations of the more particle-sorptive contaminants such as polychlorinated biphenyls (PCBs), organochlorine (OC) insecticides, and polycyclic aromatic hydrocarbons (PAHs) were more directly correlated with river flow throughout the year. Annual fluxes were almost entirely in the dissolved phase for the organonitrogen and organophosphorus pesticides, distributed between the dissolved and particulate phases for the PCBs and OC insecticides, and primarily in the particulate phase for the PAHs.

  1. Non-radiological consequences to the aquatic biota and fisheries of the Susquehanna River from the 1979 accident at Three Mile Island Nuclear Station

    International Nuclear Information System (INIS)

    Hickey, C.R. Jr.; Samworth, R.B.

    1979-11-01

    The non-radiological consequences to the aquatic biota and fishes of the Susquehanna River from the March 28, 1979 accident at Three Mile Island Nuclear Station were assessed through the post-accident period of July 1979. Thermal and chemical discharges during the period did not exceed required effluent limitations. Several million gallons of treated industrial waste effluents were released into the river which were not of unusual volumes compared with normal operation and were a very small proportion of the seasonally high river flows. The extent and relative location of the effluent plume were defined and the fisheries known to have been under its immediate influence were identified, including rough, forage, and predator/sport fishery species

  2. Evaluation of the streamgage network for estimating streamflow statistics at ungaged sites in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York

    Science.gov (United States)

    Sloto, Ronald A.; Stuckey, Marla H.; Hoffman, Scott A.

    2017-05-10

    The current (2015) streamgage network in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York was evaluated in order to design a network that would meet the hydrologic needs of many partners and serve a variety of purposes and interests, including estimation of streamflow statistics at ungaged sites. This study was done by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection and the Susquehanna River Basin Commission. The study area includes the Commonwealth of Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York. For this study, 229 streamgages were identified as reference streamgages that could be used to represent ungaged watersheds. Criteria for a reference streamgage are a minimum of 10 years of continuous record, minimally altered streamflow, and a drainage area less than 1,500 square miles. Some of the reference streamgages have been discontinued but provide historical hydrologic information valuable in the determination of streamflow characteristics of ungaged watersheds. Watersheds in the study area not adequately represented by a reference streamgage were identified by examining a range of basin characteristics, the extent of geographic coverage, and the strength of estimated streamflow correlations between gaged and ungaged sites.Basin characteristics were determined for the reference streamgage watersheds and the 1,662 12-digit hydrologic unit code (HUC12) subwatersheds in Pennsylvania and the Susquehanna River Basin using a geographic information system (GIS) spatial analysis and nationally available GIS datasets. Basin characteristics selected for this study include drainage area, mean basin elevation, mean basin slope, percentage of urbanized area, percentage of forested area, percentage of carbonate bedrock, mean annual precipitation, and soil thickness. A GIS spatial analysis was used to identify HUC12 subwatersheds outside the range of basin

  3. Effects of Reservoir Filling on Sediment and Nutrient Removal in the Lower Susquehanna River Reservoir: An Input-Output Analysis Based on Long-Term Monitoring

    Science.gov (United States)

    Ball, W. P.; Zhang, Q.; Hirsch, R. M.

    2015-12-01

    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. Susquehanna River, the bay's largest tributary, has drawn attention because SS load from behind Conowingo Dam (near the river fall-line) has risen dramatically recently. To better understand these changes, we evaluated decadal-scale (1986-2013) history of concentrations and fluxes using data from sites above and below the reservoir. First, observed concentration-discharge relationships show declined SS and TP concentrations at the reservoir inlet under most discharges in recent years, but such changes have not been propagated to emerge at the outlet, implying recently diminished reservoir trapping. Second, best estimates of loadings show declined net depositions of SS and TP in recent decades, which occurred under a range of discharges, with the 75th~99.5th percentile of Conowingo discharge dominating such changes and carrying most sediment/nutrient loadings. Finally, stationary models that better accommodate effects of riverflow variability also show diminished reservoir trapping of SS and TP, which occurred under a range of flows including those well below the literature-documented scour threshold. These findings have significant implications in regard to our understanding and management of this major reservoir and illustrate the value of long-term monitoring programs.

  4. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns

    Science.gov (United States)

    Zhang, Qian; Ball, William P.; Moyer, Douglas

    2016-01-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with

  5. Water data to answer urgent water policy questions: Monitoring design, available data, and filling data gaps for determining whether shale gas development activities contaminate surface water or groundwater in the Susquehanna River Basin

    Science.gov (United States)

    Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.

    2016-01-01

    Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.

  6. The Susquehanna plant lifetime excellence program

    International Nuclear Information System (INIS)

    McNamara, R.W.

    1988-01-01

    This paper discusses how the Susquehanna plant lifetime excellence program (SPLEX) blends many of the objectives of a new managing for excellence program with plant life extension objectives to achieve excellence in the lifetime operation and availability of the two-unit Susquehanna steam electric station. Investments in lifetime excellence improvements will provide near-term, as well as plant life extension, benefits. A high-quality lifetime experience record, together with extensive, periodic technical assessments and cost-benefit analyses, will provide conclusive justification for future extensions of the unit operating licenses

  7. Susquehanna SES maintenance supervisor training and certification

    International Nuclear Information System (INIS)

    Deckman, M.

    1991-01-01

    Susquehanna's program targets all Supervisors, Supervisor Candidates, and Temporary Supervisors that are responsible for in-plant maintenance or maintenance support activities, including: mechanical maintenance; electrical maintenance; maintenance support (labor support, radwaste, etc.); mobile construction support (mechanical and electrical); chemistry; health physics; maintenance planning; and instrument and controls. The program integrates the three major areas of direct Supervisory responsibilities: (1) Leadership and Management - Skills that require interpersonal activities that are typically humanistic and subjective; such as coaching, motivating, communications, etc. (2) Technical and Administrative - Knowledge that is directly related to the job of Supervising from the production, regulatory, accountability perspective. These topics are very objective and include training on topics such as workpackages, plant chemistry parameters, radiological concerns, etc. (3) Technical Skills - Ensure each Supervisor is technically competent in the plant systems, components, or equipment he/she is tasked with maintaining or overseeing. Typical skills found in this area are, circuit breaker maintenance, primary system sampling, or overhauling pumps

  8. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.

  9. Capturing interactions between nitrogen and hydrological cycles under historical climate and land use: Susquehanna watershed analysis with the GFDL land model LM3-TAN

    Science.gov (United States)

    Lee, M.; Malyshev, S.; Shevliakova, E.; Milly, Paul C. D.; Jaffé, P. R.

    2014-01-01

    We developed a process model LM3-TAN to assess the combined effects of direct human influences and climate change on terrestrial and aquatic nitrogen (TAN) cycling. The model was developed by expanding NOAA's Geophysical Fluid Dynamics Laboratory land model LM3V-N of coupled terrestrial carbon and nitrogen (C-N) cycling and including new N cycling processes and inputs such as a soil denitrification, point N sources to streams (i.e., sewage), and stream transport and microbial processes. Because the model integrates ecological, hydrological, and biogeochemical processes, it captures key controls of the transport and fate of N in the vegetation–soil–river system in a comprehensive and consistent framework which is responsive to climatic variations and land-use changes. We applied the model at 1/8° resolution for a study of the Susquehanna River Basin. We simulated with LM3-TAN stream dissolved organic-N, ammonium-N, and nitrate-N loads throughout the river network, and we evaluated the modeled loads for 1986–2005 using data from 16 monitoring stations as well as a reported budget for the entire basin. By accounting for interannual hydrologic variability, the model was able to capture interannual variations of stream N loadings. While the model was calibrated with the stream N loads only at the last downstream Susquehanna River Basin Commission station Marietta (40°02' N, 76°32' W), it captured the N loads well at multiple locations within the basin with different climate regimes, land-use types, and associated N sources and transformations in the sub-basins. Furthermore, the calculated and previously reported N budgets agreed well at the level of the whole Susquehanna watershed. Here we illustrate how point and non-point N sources contributing to the various ecosystems are stored, lost, and exported via the river. Local analysis of six sub-basins showed combined effects of land use and climate on soil denitrification rates, with the highest rates in the

  10. Monitoring actual temperatures in Susquehanna SES reactor buildings

    International Nuclear Information System (INIS)

    Derkacs, A.P.

    1991-01-01

    PP and L has been monitoring temperatures in the Susquehanna SES reactor building with digital temperature recorders since 1986. In early 1990, data from four representative areas was analyzed to determine the temperature in each area which would produce the same rate of degradation as the distribution of actual temperatures recorded over about 40 months. From these effective average temperatures, qualified life multipliers were determined for activation energies in the range of 0.5 to 1.5 and those multipliers were used to estimate new qualified lives and the number of replacements which might be saved during the life of the plant. The results indicate that pursuing a program of determining EQ qualified lives from actual temperatures, rather than maximum design basis temperatures, will provide a substantial payback in reduced EQ driven maintenance

  11. Evaluation of selective ion exchange to process liquid radwaste at Susquehanna

    International Nuclear Information System (INIS)

    Vance, J.N.

    1988-01-01

    EPRI sponsored this engineering evaluation of the use of selective ion exchange to process liquid radwaste (LRW) at Susquehanna. This focused on the benefits and impacts of using selective ion exchange, however, it did not evaluate specific selective ion exchange technologies available for this application. Overall, it appears that the use selective ion exchange media for processing LRW at Susquehanna can be implemented with little or no changes to existing systems. The processing capacities of the radwaste and Make-up Systems are adequate to accommodate the discharge mode. It will be necessary to maintain the Make-up Water Treatment System in sound working order to achieve the water quality and system processing capacities required for the discharge mode. The environmental doses are likely to be somewhat higher than are now being achieved, but should still remain a small fraction of Appendix I guidelines. The use of selective ion exchange processing will essentially eliminate in-plant sources of organic. At reasonable low run length ratios, the economics will favor the use of selective ion exchange over conventional organic resin

  12. 76 FR 1666 - Susquehanna Union Railroad Company-Control Exemption-North Shore Railroad Company, Nittany & Bald...

    Science.gov (United States)

    2011-01-11

    ... Union County Industrial Railroad Company On April 12, 2010, Susquehanna Union Railroad Company (SURC), a... Company, Lycoming Valley Railroad Company, and Union County Industrial Railroad Company (collectively... operational changes, or a change in the competitive balance with carriers outside the corporate family...

  13. Risk-based Inspection Guide for the Susquehanna Station HPCI system

    Energy Technology Data Exchange (ETDEWEB)

    Travis, R; Higgins, J; Gunther, W; Shier, W [Brookhaven National Lab., Upton, NY (United States)

    1992-11-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A system Risk-based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Susquehanna Steam Electric Station (SSES) which is operated by Pennsylvania Power & Light (PP&L). Included in this S-RIG is a discussion of the role of HPCI in mitigating accidents and a presentation of PRA-based failure modes which could prevent proper operation of the system. The S-RIG uses industry operating experience, including plant-specific illustrative examples, to augment the basic PRA failure modes. It is designed to be used as a reference for both routine inspections and the evaluation of the significance of component failures.

  14. Fatigue monitoring program for the Susquehanna Unit 1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Novak, J.; Deardorff, A.

    1990-01-01

    A project was initiated to perform ongoing fatigue evaluation of key reactor vessel components at the Susquehanna Steam Electric Station. This effort has resulted in a program of data collection and evaluation which will assist in assessing the continued safe operation and extending the operating life of this boiling water reactor plant. Initial efforts centered on identification of the key design transient cycles and fatigue sensitive locations in the vessel. Based on these studies a manual system of cycle counting and fatigue usage evaluation was developed. A computer-based fatigue monitoring system (FMS) was chosen for tracking fatigue usage at the most critical locations at the reactor feedwater nozzles and the bottom head control rod drive (CRD) penetrations. With this system, fatigue usage is based on the actual plant operational cycles rather than design basis transient cycles. In this paper lessons learned from the project and key results from the fatigue history evaluation are discussed

  15. Risk-based Inspection Guide for the Susquehanna Station HPCI system

    International Nuclear Information System (INIS)

    Travis, R.; Higgins, J.; Gunther, W.; Shier, W.

    1992-11-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A system Risk-based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Susquehanna Steam Electric Station (SSES) which is operated by Pennsylvania Power ampersand Light (PP ampersand L). Included in this S-RIG is a discussion of the role of HPCI in mitigating accidents and a presentation of PRA-based failure modes which could prevent proper operation of the system. The S-RIG uses industry operating experience, including plant-specific illustrative examples, to augment the basic PRA failure modes. It is designed to be used as a reference for both routine inspections and the evaluation of the significance of component failures

  16. Influence of Topography on Root Processes in the Shale Hills-Susquehanna Critical Zone Observatory

    Science.gov (United States)

    Eissenstat, D. M.; Orr, A. S.; Adams, T. S.; Chen, W.; Gaines, K.

    2015-12-01

    Topography can strongly influence root and associated mycorrhizal fungal function in the Critical Zone. In the Shale Hills-Susquehanna Critical Zone Observatory (SSCZO), soil depths range from more than 80 cm deep in the valley floor to about 25 cm on the ridge top. Tree height varies from about 28 m tall at the valley floor to about 17 m tall at the ridge top. Yet total absorptive root length to depth of refusal is quite similar across the hillslope. We find root length density to vary as much at locations only 1-2 m apart as at scales of hundreds of meters across the catchment. Tree community composition also varies along the hillslope, including tree species that vary widely in thickness of their absorptive roots and type of mycorrhiza (arbuscular mycorrhizal and ectomycorrhizal). Studies of trees in a common garden of 16 tree species and in forests near SSCZO indicate that both root morphology and mycorrhizal type can strongly influence root foraging. Species that form thick absorptive roots appear more dependent on mycorrhizal fungi and thin-root species forage more by root proliferation. Ectomycorrhizal trees show more variation in foraging precision (proliferation in a nutrient-rich patch relative to that in an unenriched patch) of their mycorrhizal hyphae whereas AM trees show more variation in foraging precision by root proliferation, indicating alternative strategies among trees of different mycorrhizal types. Collectively, the results provide insight into how topography can influence foraging belowground.

  17. Quantifying shale weathering by Li isotopes at the Susquehanna Shale Hills Critical Zone Observatory

    Science.gov (United States)

    Steinhoefel, Grit; Fantle, Matthew S.; Brantley, Sue L.

    2017-04-01

    Lithium isotopes have emerged as a powerful tool to investigate abiotic weathering processes because isotope fraction is controlled by silicate weathering depending on the weathering rate. In this study, we explore Li isotopes as a proxy for shale weathering in the well-investigated Susquehanna Shale Hills Critical Zone Observatory (USA), which is a first-order catchment in a temperate climate in the Appalachian Mountain. Groundwater, soil and stream water reveal large variation in δ7Li (14.5 to 40.0‰) controlled by variable but high degrees of Li retention by kaolinite and vermiculite formation. Parental shales, bulk soils and stream sediments reveal similar isotope signatures with little variations giving average δ7Li values of -0.6, 0.5 and -0.3‰, respectively which is in the typical range for shales dominated by structural-bound Li and consistent with high Li retention. An isotope mass balance approach reveal that Li is virtually quantitatively exported by erosional weathering from the system. This result is consisted with a high depletion of Li along with clay minerals in soils whereas both is enriched in stream sediments. Overall shale weathering is dominated by clay transformation forming kaolinite through intermediate phases under highly incongruent weathering conditions followed by preferentially loss of fine-grained weathering products, a processes which is likely an important mechanism in the modern global Li cycle.

  18. An appraisal of the ground-water resources of the Juniata River Basin, Pennsylvania

    Science.gov (United States)

    Seaber, Paul R.; Hollyday, Este F.

    1966-01-01

    This report describes the availability, quantity, quality, variability, and cost of development of the ground-water resources in the Juniata River basin, one of the larger sub-basins of the Susquehanna River basin. The report has been prepared for and under specifications established by the Corps of Engineers, U. S. Army, and the Public Health Service, Department of Health, Education, and Welfare.A comprehensive study of the water and related land resources of the Susquehanna River basin was authorized by the Congress of the United States in October 1961, and the task of preparing a report and of coordinating the work being done by others in support of the study was assigned to the Corps of Engineers. The comprehensive study is being conducted by several Federal departments and independent agencies in cooperation with the States of New York, Pennsylvania, and Maryland. The Public Health Service under its authority in the Federal Water Pollution Control Act (P. L. 660) initiated a comprehensive water quality control program for the Chesapeake drainage basin, which includes the Susquehanna River basin.

  19. Volume reduction of filter media at Susquehanna steam and electric station

    International Nuclear Information System (INIS)

    Boris, G.F.; Hettinger, J.

    1990-01-01

    This paper describes the joint efforts between Pennsylvania Power ampersand Light (PPQL) and Scientific Ecology Group, Inc. (SEG) to reduce the volume of waste shipped to the burial site by the Susquehanna Steam and Electric Station (SSES) and the resulting savings realized as a result. The filter media used at SSES for its radwaste filters is composed of a mix of anion and cation powered resins, powered carbon, diatomaceous earth and a fibrous overlay. Due to the nature of this waste stream, dewatering was difficult using systems previously available in the industry. Thus, processing was accomplished by decanting (to concentrate the waste) and solidification. In the continuing effort to dewater wastes of this nature, SEG developed a new fabric filter dewatering system (RDU). To investigate its potential use in large containers, this dewatering system was installed in drum-size high integrity containers and used to test its dewatering capabilities on actual SSES waste. Promising results from these tests warranted a full-scale test. This proved successful and implementation of this processing scheme was immediate. Cost savings were substantial in transportation, burial and processing costs as well as personnel exposure. Also, additional waste volume reduction was found due to the volume reduction capability of the dewatering system (equivalent volume of new filter media approximately 1.2 times that of dewatered product volume). Additional savings resulted from SSES's continuing effort to minimize radwaste generation. Combined, these have reduced the number of shipments of filter media in 1989 to sixty percent of the number made in 1988 and have reduced costs by approximately fifty percent. 4 figs., 1 tab

  20. Engineering evaluation of selective ion-exchange radioactive waste processing at Susquehanna Nuclear Power Plant: Final report

    International Nuclear Information System (INIS)

    Vance, J.N.

    1989-01-01

    This final report describes the work performed of an engineering feasibility evaluation of the use and benefits of a selective ion exchange treatment process in the Susquehanna radwaste system. The evaluation addressed operability and processing capability concerns, radiological impacts of operating in the radwaste discharge mode, required hardware modifications to the radwaste and plant make-up systems, impacts on plant water quality limits and impacts on higher waste classifications. An economic analysis is also reported showing the economic benefit of the use of selective ion exchange. 1 ref., 4 figs., 13 tabs

  1. Factors impacting manganese transport from soils into rivers using data from Shale Hills CZO

    Science.gov (United States)

    Herndon, E.; Brantley, S. L.

    2012-12-01

    Many soils are enriched in trace elements due to atmospheric inputs from industrial sources but little is known about how long these contaminants persist in soils or the rates at which they are transferred into rivers. Modeling the movement of contaminants through the environment is complicated by the heterogeneity of soils and the variability of contaminant mobility across spatial scales. In this study, we use soil, water, and vegetation chemistry to compare rates of Mn contaminant mobilization and removal from soils at ridge, hillslope, and catchment-scales in the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO). The SSHCZO is a first-order, forested watershed located within the Susquehanna River Basin (SRB) in Pennsylvania, U.S.A. Studies from the SSHCZO are compared to trends in long-term water quality measurements for the Susquehanna River to evaluate terrestrial inputs to the river system. At SSHCZO, we find that Mn is being removed ~7x more quickly from soils in swales than soils on convex-upward hillslopes; thus, swales are a large source of dissolved Mn to the stream. Release rates of Mn from all soils are dwarfed by rates of uptake into vegetation, consistent with the hypothesis that trees temporarily slow the removal of atmospherically-deposited Mn from the soil by accumulating Mn in plant biomass. However, elevated levels of dissolved organic carbon in soil pore waters may enhance Mn release in the swales; therefore, vegetation may first decrease then increase rates of Mn removal from soils over the long-term. Unlike the major rock-derived elements which exhibit chemostatic behavior, Mn concentrations in the stream vary widely over a large range of stream discharge rates. High Mn fluxes in the stream occur in short pulses that only weakly respond to precipitation events, suggesting that dissolved Mn loads in rivers are not solely driven by the hydrology but are rather strongly impacted by processes in the soil and stream sediments. Current

  2. Hyporheic Zone Study at Susquehanna/Shale Hills Critical Zone Observatory

    Science.gov (United States)

    Yu, X.; Duffy, C.; Bhatt, G.; Kumar, M.

    2011-12-01

    Hyporheic Zone (HZ) has been investigated by a wide range of researchers in hydrology, biogeochemistry and ecology to examine the complex ecohydrologic and biogeochemical processes near groundwater and surface water interface. A recent European Geosciences Union (EGU) session explored a definition of the HZ as: the saturated transition zone between surface water and groundwater bodies that derives its specific physical (e.g. water temperature) and biogeochemical (e.g. steep chemical gradients) characteristics from active mixing of surface and groundwater to provide a habitat and refugia for obligate and facultative species. According to the definition, understanding the hydrologic processes in HZ are usually the primary targets for HZ studies. Therefore, an increasing number of publications have reported about modeling strategies of hyporheic exchange flow (HEF). Hydrological studies at hyporheic zone have suggested that conditions and processes controlling HEF vary at different spatial scales from reach-scale to watershed-scale. Also, HEF is highly dynamic at temporal scale. One of the most conspicuous direct impacts is the sub daily fluctuation in groundwater table and stream discharge. Therefore, investigation of the HZ and HEF need abundant high-resolution hydrological data. Another important topic about HZ is temperature. Stream temperature directly influences the metabolic rates, biochemical processes and ecologic behaviors. Accurate and versatile water temperature simulation is necessary for comprehensive environmental assessment of HZ ecosystem. The study focuses on a small experimental watershed, Susquehanna-Shale Hills Critical Zone Observatory (SSHO), which provides a platform for multi-disciplinary research. The multi-scale responses of HEF and stream temperature are simulated in a physics based, fully-coupled watershed modeling strategy facilitated by Penn State Integrated Hydrologic Modeling System (PIHM) which has the potential of simulating the

  3. Technical specifications: Susquehanna Steam Electric Station, Unit No. 2 (Docket No. 50-388). Appendix A to License No. NPF-22

    International Nuclear Information System (INIS)

    1984-03-01

    Susquehanna Steam Electric Station, Unit 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  4. Interdisciplinary applications and interpretations of ERTS data within the Susquehanna River Basin; resources inventory, land use and pollution

    Science.gov (United States)

    Mcmurtry, G. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Identification and mapping of three major kinds of coal refuse targets based on spectral signatures in channels four through seven of the ERTS-1 MSS were conducted. Correlation of the placement of the coal refuse targets with an existing map of their location was accomplished. Digital processing of ERTS-1 data permitted identification of stripped areas including ones that are not discernible by visual analysis of ERTS imagery. Combined visual and digital techniques of analyzing ERTS-1 data for geologic formations have been tried on selected areas of Pennsylvania. Mapping of two major agriculture counties to show land forms, drainage patterns, water, and urban areas were made using positive transparencies of MSS data. Two frames of the same central Pennsylvania area were brought into registration by translation and then merged even though the frames were obtained 71 days apart.

  5. 76 FR 72001 - Draft Environmental Impact Statement for the Susquehanna to Roseland 500-kilovolt Transmission Line

    Science.gov (United States)

    2011-11-21

    ... recreational visitors, and the Delaware River is one of the primary recreational attractions in the park. More... National Park Service laws, regulations, and policies, and the purpose of these three parks. The draft EIS...

  6. National Dam Inspection Program. Lewis Lake Dam (NDI-ID Number PA-00061, DER-ID Number 58-7), Susquehanna River Basin, Susquehanna County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1980-08-01

    STAGE IS 1B33.8 MAXIMUM STAGE IS 1833.0 MAXIMUM STAGE IS 1832,2 MAXIMUM STAGE IS 1831.5 MAXIMUM STAGE IS 1830,5 MAXIMUM STAGE 15 1829.5 i UN STAGE IS...6.52 1 1079. ( 16.B9) I 30.56)( 2 5770. ( 163.39)( 3 abo.01 C 158.59)( 4 4538, I 12B,0)O 5 3238. C 91,70)( SUIhARY OF PAM SAFETY ANALISIS PLAN I

  7. National Dam Inspection Program. Page’s Lake Dam NDI Number PA 00062 PennDER Number 58-5) Susquehanna River Basin, Salt Lick Creek, Susquehanna County, Pennsylvania. Phase I Inspection Report.

    Science.gov (United States)

    1981-02-01

    based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, teEting ...potential of the dam. 2) Fill the erosion gully located to the left of the spillway and reseed the area. 3) Remove the brush below the downstream face...in Appendix A. b. Dam - A small erosion gully has formed at the junction of the left spillway training wall and embankment. Brush was present

  8. Relationship between Prevailing Redox Conditions, Water Type, Topographic Location and Methane Concentrations in Susquehanna County, NE Pennsylvania

    Science.gov (United States)

    Molofsky, L. J.; McHugh, T. E.; Connor, J. A.; Richardson, S. D.

    2014-12-01

    Historical occurrence of methane in residential water wells in parts of the Appalachian basin (Pennsylvania, New York, West Virginia) has long been recognized as a natural phenomenon. The recent increase in shale gas extraction activities in these areas has highlighted the need to distinguish between baseline methane concentrations and those that may results from gas extraction activities. For the first time, this study shows that natural dissolved methane in Northeastern Pennsylvania exhibits a relationship with prevailing redox conditions of groundwater, though this relationship is not entirely as predicted. Specifically, methane concentrations in 806 pre-drill samples from residential water wells in Susquehanna County, NE Pennsylvania, were found to be highest in samples with low SO4 concentrations but low Fe(II) concentrations. This is opposite from what would be expected if high methane concentrations were associated with a reduction of insoluble Fe(III)-minerals resulting in the release of soluble Fe(II) (and therefore, an increase in measurable dissolved iron). The water type (i.e., Na-rich vs. Ca-rich), and topographic location (i.e., valley vs. upland) was also evaluated for each of the prevailing redox states to identify associations and potential driving factors. Based on this information, this talk identifies a combination of easily identifiable natural environmental "risk" factors (i.e., advanced redox state, Na-rich water type, and valley setting) that are highly predictive of naturally elevated methane concentrations in water wells. These findings highlight simple and meaningful relationships that may be used to infer whether methane in residential water sources is natural or associated with stray gas migration.

  9. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2 (Docket Nos. 50-387 and 50-388). Suppl.6

    International Nuclear Information System (INIS)

    1984-03-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the applicant and/or licensee) and the Allegheny Electric Cooperative, Inc. (co-applicant) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. This supplement to NUREG-0776 addresses the remaining issues that required resolution before licensing operation of Unit 2 and closes them out

  10. Establishing baseline water quality for household wells within the Marcellus Shale gas region, Susquehanna County, Pennsylvania, U.S.A

    International Nuclear Information System (INIS)

    Rhodes, Amy L.; Horton, Nicholas J.

    2015-01-01

    Highlights: • Laws do not specify how baseline tests are conducted prior to hydraulic fracturing. • Study estimates variability of groundwater chemistry for repeated measurements. • Water chemistry varies more geographically than at a single, household well. • A single, certified test can characterize baseline geochemistry of groundwater. • Multiple measurements better estimate upper limits of regional baseline values. - Abstract: Flowback fluids associated with hydraulic fracturing shale gas extraction are a potential source of contamination for shallow aquifers. In the Marcellus Shale region of northeastern Pennsylvania, certified water tests have been used to establish baseline water chemistry of private drinking water wells. This study investigates whether a single, certified multiparameter water test is sufficient for establishing baseline water chemistry from which possible future contamination by flowback waters could be reliably recognized. We analyzed the water chemistry (major and minor inorganic elements and stable isotopic composition) of multiple samples collected from lake, spring, and well water from 35 houses around Fiddle Lake, Susquehanna County, PA that were collected over approximately a two-year period. Statistical models estimated variance of results within and between households and tested for significant differences between means of our repeated measurements and prior certified water tests. Overall, groundwater chemistry varies more spatially due to heterogeneity of minerals within the bedrock aquifer and due to varying inputs of road salt runoff from paved roads than it does temporally at a single location. For wells located within road salt-runoff zones, Na + and Cl − concentrations, although elevated, are generally consistent through repeated measurements. High acid neutralizing capacity (ANC) and base cation concentrations in well water sourced from mineral weathering reactions, and a uniform stable isotopic composition for

  11. Transport of Riverine Material From Multiple Rivers in the Chesapeake Bay: Important Control of Estuarine Circulation on the Material Distribution

    Science.gov (United States)

    Du, Jiabi; Shen, Jian

    2017-11-01

    Driven by estuarine circulation, material released from lower Chesapeake Bay tributaries has the potential to be transported to the upper Bay. How far and what fraction of the material from tributaries can be carried to the upper estuary have not been quantitatively investigated. For an estuary system with multiple tributaries, the relative contribution from each tributary can provide valuable information for source assessment and fate prediction for riverine materials and passive moving organisms. We conducted long-term numerical simulations using multiple passive tracers that are independently released in the headwater of five main rivers (i.e., Susquehanna, Potomac, Rappahannock, York, and James Rivers) and calculated the relative contribution of each river to the total material in the mainstem. The results show that discharge from Susquehanna River exerts the dominant control on the riverine material throughout the entire mainstem. Despite the smaller contribution from the lower-middle Bay tributaries to the total materials in the mainstem, materials released from these rivers have a high potential to be transported to the middle-upper Bay through the bottom inflow by the persistent estuarine circulation. The fraction of the tributary material transported to the upper Bay depends on the location of the tributary. Materials released near the mouth are subject to a rapid flushing process, small retention time, and strong shelf current. Our results reveal three distinct spatial patterns for materials released from the main river, tributary, and coastal oceans. This study highlights the important control of estuarine circulation over horizontal and vertical distributions of materials in the mainstem.

  12. National Dam Safety Program. Norwich Water Works Dam Number 1 (Inventory Number NY 347), Susquehanna River Basin, Chenango County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1981-08-04

    explorations were made at the site. Based on reports made in the mid 1920’s, the subsurface conditions at the site consist of relatively impermeable glacial...noode~d soil ip 2O~i ’’. ChC b-, a concreto .nd ru.aonry ruir, or overflow ;ii-*.)£ cr; b47t8011 tw.,o win; walls off t ona und concroto; wii~’ . ~t

  13. National Dam Safety Program. Little Choconut Watershed Site 2B Dam (Inventory Number 721), Susquehanna River Basin, Broome County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1981-06-30

    rz "t to L, C6 .- * U, m *l r4 r, t.. r4 4~~~~~~~ 18 ~ ~~ N~ C-4 , CON JN I O0-O.’ m 3mr .ro ,Nm ri 21 N1 -r 2 N r N N N"I *~~~ . .00 ~ 4 0...0.fl.0. * - 0 wN N N N N N -- WwV - c r-I C, C1 _r 10 r., C9 - n ~~0 ~ 4I2~ C’J03~~*I 4 4 4 4. 0.0.0O W: r., C! .O w~~ ~ N4 .r. C C6 . r4...8217 v..- Zar nif 1 N r aZ rllN ’ ri VV V* u 0 NU~~~4.I~~~f~~iO 2~NOl~l1 4kN -.?2 1;I 4P ZN C-1;4U 1;N 0: 4 0 0 N 0 . .20. . N ~ ~ rII N N N N a n

  14. National Dam Safety Program. Millbrook Watershed Project Site I (inventory Number NY 715) Susquehanna River Basin, Chenango County, New York. Phase 1 Inspection Report

    Science.gov (United States)

    1980-09-30

    Milibrook Watershed Project Site T fn~ %/ V National. Darm Safety Program Albny 1223 6. PJERMN ORG RAE04 NUBE Department of th Ar4 Neworek, No 128 9...4U CA > c~ 9%1 Ul NU.LUr -w Z CC 00 tn U.0D L ft SA. .4 ft 0WO ’ O ~02 cmi at 0 0 LA . 30S-U 30 0 ... J 00 z A ~0 3l zu 0 &u .ft~z ft 0 00 -. Q U. m...m m -4 4( -- jC 1- h .0 m -14 0. ~~Ia U% -4-4 tI L.4ET ID eu - - - - - N CU44-. -4..-4 - -L U SlU 20 uv0. 0. zcc f 0 LL U W LA N 0 - a U~ a. C.cr r L

  15. Regional analysis of the effects of land use on stream-water quality; methodology and application in the Susquehanna River Basin, Pennsylvania and New York

    Science.gov (United States)

    Lystrom, David J.; Rinella, F.A.; Rickert, D.A.; Zimmermann, Lisa

    1978-01-01

    A framework is presented for compiling available data for assessing statistical relationships between water quality and climate, physiography and land use. Seventeen water-quality characteristics studied represent annual mean concentrations or calculated annual yields of suspended sediment, dissolved solids and various chemical species of nitrogen and phosphorus. Usable multiple-linear regressions were developed relating water-quality characteristics to basin characteristics for 14 of the 17 water-quality characteristics with standard errors of estimate ranging from 17 to 75 percent. These models can be used to estimate water quality at specific stream sites or to simulate the generalized effect of land-use characteristics on water quality. For example, observed nitrate yields were up to 20 times greater than the simulated background yields. This increase is indicated to be the result of chemical fertilizers, animal wastes, and urbanization. It was concluded that this was a viable method of assessing the relationships between water quality and basin characteristics on a regional basis. (Woodard-USGS)

  16. A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A.

    Science.gov (United States)

    Maloney, Kelly O.; Young, John A.; Faulkner, Stephen; Hailegiorgis, Atesmachew; Slonecker, E. Terrence; Milheim, Lesley

    2018-01-01

    The development of unconventional oil and gas (UOG) involves infrastructure development (well pads, roads and pipelines), well drilling and stimulation (hydraulic fracturing), and production; all of which have the potential to affect stream ecosystems. Here, we developed a fine-scaled (1:24,000) catchment-level disturbance intensity index (DII) that included 17 measures of UOG capturing all steps in the development process (infrastructure, water withdrawals, probabilistic spills) that could affect headwater streams (Value (EV) streams, Class A brook trout streams and Eastern Brook Trout Joint Venture brook trout patches. Overall only 3.8% of all catchments and 2.7% of EV stream length, 1.9% of Class A streams and 1.2% of patches were classified as having medium to high level DII scores (> 50). Well density, often used as a proxy for development, only correlated strongly with well pad coverage and produced materials, and therefore may miss potential effects associated with roads and pipelines, water withdrawals and spills. When analyzed with a future development scenario, 91.1% of EV stream length, 68.7% of Class A streams and 80.0% of patches were in catchments with a moderate to high probability of development. Our method incorporated the cumulative effects of UOG on streams and can be used to identify catchments and reaches at risk to existing stressors or future development.

  17. Use of stable isotopes of carbon, nitrogen, and sulfer to identify sources of nitrogen in surface waters in the Lower Susquehanna River basin, Pennsylvania

    Science.gov (United States)

    Cravotta, C.A.

    1995-01-01

    Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.

  18. A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A.

    Science.gov (United States)

    Maloney, Kelly O.; Young, John A.; Faulkner, Stephen; Hailegiorgis, Atesmachew; Slonecker, E. Terrence; Milheim, Lesley

    2018-01-01

    The development of unconventional oil and gas (UOG) involves infrastructure development (well pads, roads and pipelines), well drilling and stimulation (hydraulic fracturing), and production; all of which have the potential to affect stream ecosystems. Here, we developed a fine-scaled (1:24,000) catchment-level disturbance intensity index (DII) that included 17 measures of UOG capturing all steps in the development process (infrastructure, water withdrawals, probabilistic spills) that could affect headwater streams (medium to high level DII scores (> 50). Well density, often used as a proxy for development, only correlated strongly with well pad coverage and produced materials, and therefore may miss potential effects associated with roads and pipelines, water withdrawals and spills. When analyzed with a future development scenario, 91.1% of EV stream length, 68.7% of Class A streams and 80.0% of patches were in catchments with a moderate to high probability of development. Our method incorporated the cumulative effects of UOG on streams and can be used to identify catchments and reaches at risk to existing stressors or future development.

  19. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  20. Adapting Reservoir Operations to Reduce the Multi-Sectoral Impacts of Flood Intensification in the Lower Susquehanna

    Science.gov (United States)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.

    2017-12-01

    This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.

  1. Microclimate controls on weathering: Insights into deep critical zone evolution from seismic refraction surveys in the Susquehanna Shale Hills Critical Zone Observatory

    Science.gov (United States)

    West, N.; Kirby, E.; Nyblade, A.; Brantley, S. L.; Clarke, B. A.

    2015-12-01

    The formation of regolith is fundamental to the functioning and structure of the critical zone - the physically and chemically altered material formed from in situ parent bedrock that is available for transport. Understanding how regolith production and transport respond to perturbations in climate and/or tectonic forcing remains a first-order question. At the Susquehanna Shale Hills Critical Zone Observatory (SSHO), high resolution LiDAR-derived topographic data and depths to hand auger refusal reveal a systematic asymmetry in hillslope gradient and mobile regolith thickness; both are greater on north-facing hillslopes. Hydrologic and geochemical studies at the SSHO also suggest asymmetric sediment transport, fluid flow, and mineral weathering with respect to hillslope aspect. Here, we combine shallow seismic surveys completed along 4 hillslope transects (2 north-facing and 2-south facing), 2 ridgetops transects, and subsurface observations in boreholes to investigate the role of climate in inducing fracturing and priming the development of the observed asymmetry. Comparisons of shallow p-wave velocities with borehole and pit observations lead us to hypothesize the presence of three distinct layers at SSHO: 1) a deep, high velocity layer that is consistent with unweathered shale bedrock; 2) an intermediate velocity layer that is consistent with fractured and chemically altered bedrock which overlies unaltered bedrock, and 3) a shallow, slow velocity layer that is consistent with mobile material or shallow soil. Shallow p-wave velocity profiles suggest differences in thickness for both the mobile and immobile regolith material with respect to aspect. Patterns of p-wave velocities with depth are consistent with patterns of fracture densities observed in boreholes and with predictive cracking intensity models related to frost action. The models and data are consistent with climate as a primary driver for the development of asymmetry in the subsurface architecture at

  2. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  3. Antecedent Rivers

    Indian Academy of Sciences (India)

    Figure 3). These rivers seem to have maintained ... the river cuts a deep can- yon with practically vertical walls (valley slopes). ... furiously at work, cutting channel beds, eroding slopes, and denuding watersheds. This ever-youthfulness of the.

  4. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...

  5. Developing Rivers

    Directory of Open Access Journals (Sweden)

    Abhik Chakraborty

    2013-10-01

    Full Text Available This article explores the reasons behind the continuation of contentious dam projects in Japanese river basins. Though the River Law of the country was reformed in 1997, and subsequent sociopolitical developments raised hopes that river governance would progress toward a more environment-oriented and bottom-up model, basin governance in Japan remains primarily based on a utilitarian vision that sees rivers as waterways. This article reviews the Achilles heel of the 1997 River Law by examining some most contentious river valley projects, and concludes that a myth of vulnerability to flooding, short-sightedness of river engineers, and bureaucratic inertia combine to place basin governance in a time warp: as projects planned during postwar reconstruction and economic growth continue to be top priorities in policymaking circles while concerns over environment remain largely unaddressed.

  6. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  7. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  8. River Piracy

    Indian Academy of Sciences (India)

    . There is allusion to the disappearance of the river in Van. Parva of the Mahabharat, and also in the Siddhant Shiromani. Great Betrayal. The Aravali continued to rise. The newly formed Yamuna was forced to migrate progressively eastward.

  9. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    policy making, decision drivers and framing of large hydropower projects in China. Hydropower is a complex and interesting field to explore as the consequences go beyond the immediate locality and interacts with local as well as the global contexts. Inspired by Tsing (2003) and Zhan (2008) the paper...... explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...... after running through the Thai-Burmese border. In 2003, a cascade of up to 13 dams were approved by the Chinese government, however, as of yet no dams have been built due to a prolonged controversy between Chinese government officials, Chinese and international environmental NGOs, the media, social...

  10. River Piracy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. River Piracy Saraswati that Disappeared. K S Valdiya. General Article Volume 1 Issue 5 May 1996 pp 19-28. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0019-0028. Author Affiliations.

  11. RIVER STATE

    African Journals Online (AJOL)

    The aim of this study was to investigate the influence of gender on leadership styles and administrative effective~~ess of secondary school principals in selected sctiools in Cross River State. In pursuance of this study, two hypothesis were formulated. Two sets of questionnaires, Principal's Self-Evaluation. Questionnaire ...

  12. River Piracy

    Indian Academy of Sciences (India)

    towns of the Harappan culture (4600 to 4100 years Before Pres en t. - BP) and ashrams ofrishis (sages) lay on the banks of this life-line of the Vedic time. Where has that great river gone? It is today represented by the disproportionately wide and astonishingly water-less, sand-filled channels ofGhaggar in Haryana and ...

  13. Antecedent Rivers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Antecedent Rivers - Ganga Is Older Than Himalaya. K S Valdiya. General Article Volume 1 Issue 8 August 1996 pp 55-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/08/0055-0063 ...

  14. RIVER STATE

    African Journals Online (AJOL)

    The aim of this study was to investigate the influence of gender on leadership styles and administrative .... ranked significantly ahead of men as democratic leaders ... effectiveness and leadership styles of secondary school principals In Cross River. State. METHODOLOGY. Research Area: The study was conducte'd in c ~ m.

  15. River Corridor Easements

    Data.gov (United States)

    Vermont Center for Geographic Information — A River Corridor Easement (RCE) is an area of conserved land adjacent to a river or stream that was conserved to permanently protect the lateral area the river needs...

  16. River Diversions and Shoaling

    National Research Council Canada - National Science Library

    Letter, Jr., Joseph V; Pinkard, Jr., C. F; Raphelt, Nolan K

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note describes the current knowledge of the potential impacts of river diversions on channel morphology, especially induced sedimentation in the river channel...

  17. National Dam Inspection Program. Lake of the Four Seasons Dam (NDS-ID Number PA-568, DER-ID Number 40-225) Susquehanna River Basin, Oley Creek, Luzerne County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1980-09-01

    I- i- *. t i I i t ink"~ t !1. . 󈧏!)(.t .fit 1 8. ;. uise L~I edwItiO it hie p1 pfe p4 tream cl r d N2 prnV vI d I * W Iil o Itvat it) i’i ’ll I...sediment, or till, consists of boulder to clay sized particles. F-i iI Geologic Map of The Lake Of The Four Seasons Dom Area E]Mauch Chunk Forrmtan Scale: 1,. 250,000 F- 2

  18. National Dam Inspection Program. Laurel Run Dam. NDI ID Number PA-00380. DER ID Number 35-6, Pennsylvania Gas and Water Company. Susquehanna River Basin, Laurel Run, Lackawanna County, Pennsylvania Phase I Inspection Report,

    Science.gov (United States)

    1980-04-01

    materials used. b. Construction Considerations. The Pennsylvania Water Supply Commission Report of 1914 indicated that the dam was well -constructed. They...operation. A record of operation does exist in the form of inspection reports prepared by the Commonwealth between 1919 and 1957 as well as various...shaped downwarp that trends northeast and soutwest from Orson to Orangeville. The rim rocks are of the Pottsville and Pocono Formations; they have dips

  19. National Dam Inspection Program. Moose Creek Reservoir Dam, (NDS I.D. Number PA-00423, PennDer I.D. Number 17-6), Susquehanna River Basin, Moose Creek, Clearfield County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1979-03-01

    I7- SUBJECT 7"/ rA sFry sTO BY .J~a DATE iliAI.~.PROJ. No. -(OSLATIC 24 SHET O. tD 22Engineers *Geologists *Planners CHKD. BY V,/ V . DATE 1 24__...MeNX1T:rt %A/r-TH L5R,,T 4 Trf2E 17WIL~ fA’a OUTLET CONmY’ L PLOWAS ELE \\IA,,I 122--7 E9o 12i I /2 4 11ś: 2-S3 21 3t_, IZ4 4 3 zC ~ TcAcjp I~~vGt JILEr /f

  20. National Dam Inspection Program. Jennings Pond Dam (NDI I.D. PA-0891 DER I.D. 066-012) Susquehanna River Basin, Little Mehoopany Creek, Wyoming County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-03-19

    overflow section. 4.2 Maintenance of the Dam. The maintenance of the dam is considered to be fair. The abutments are relatively free of unwanted brush ...drainage area. STORAGE VS. ELEVATION ELEVATION AH, FEET AREA 6VOLUMV STORAI;E (acres) ( 1 ) (acre- teet ) (21 ) (acre-1e-t) 1020 83.6 q. 1009 [1 4

  1. A Comparison of MODIS/VIIRS Cloud Masks over Ice-Bearing River: On Achieving Consistent Cloud Masking and Improved River Ice Mapping

    Directory of Open Access Journals (Sweden)

    Simon Kraatz

    2017-03-01

    Full Text Available The capability of frequently and accurately monitoring ice on rivers is important, since it may be possible to timely identify ice accumulations corresponding to ice jams. Ice jams are dam-like structures formed from arrested ice floes, and may cause rapid flooding. To inform on this potential hazard, the CREST River Ice Observing System (CRIOS produces ice cover maps based on MODIS and VIIRS overpass data at several locations, including the Susquehanna River. CRIOS uses the respective platform’s automatically produced cloud masks to discriminate ice/snow covered grid cells from clouds. However, since cloud masks are produced using each instrument’s data, and owing to differences in detector performance, it is quite possible that identical algorithms applied to even nearly identical instruments may produce substantially different cloud masks. Besides detector performance, cloud identification can be biased due to local (e.g., land cover, viewing geometry, and transient conditions (snow and ice. Snow/cloud confusions and large view angles can result in substantial overestimates of clouds and ice. This impacts algorithms, such as CRIOS, since false cloud cover precludes the determination of whether an otherwise reasonably cloud free grid consists of water or ice. Especially for applications aiming to frequently classify or monitor a location it is important to evaluate cloud masking, including false cloud detections. We present an assessment of three cloud masks via the parameter of effective revisit time. A 100 km stretch of up to 1.6 km wide river was examined with daily data sampled at 500 m resolution, examined over 317 days during winter. Results show that there are substantial differences between each of the cloud mask products, especially while the river bears ice. A contrast-based cloud screening approach was found to provide improved and consistent cloud and ice identification within the reach (95%–99% correlations, and 3%–7% mean

  2. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  3. Measuring River Pollution

    Science.gov (United States)

    Ayyavoo, Gabriel

    2004-01-01

    The Don River watershed is located within Canada's most highly urbanized area--metropolitan Toronto. Many residential and commercial uses, including alterations to the river's course with bridges, have had a significant impact on the Don's fauna and flora. Pollutants have degraded the river's water quality, a situation exacerbated by the…

  4. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  5. Sora rail studies on the Patuxent River, Maryland

    Science.gov (United States)

    Haramis, M.; Kearns, G.D.

    1999-01-01

    College. During 1996-97 we developed a successful radio transmitter attachment technique to secure 1.8g radio transmitters over the synsacrum of migrant soras. We modified Rappole and Tipton's (1991) leg-loop attachment method by addition of a waist loop to prevent soras from slipping transmitters over their short tails. Thin gauge (0.6 mm) elastic thread proved ideal for attachment and allowed for girth expansion associated with fattening during stopover. Sixty instrumented soras have been monitored in two years of study from early September until early November. Only a single mortality was recorded and 41 (68%) were confIrmed and another 13 (total 90%) were believed to have migrated from the study area. Only a single bird slipped a radio transmitter. Most birds demonstrated a sedentary nature in the marsh throughout stopover. Average length of stay was 44 days in 1997 (n=29) with peak departure occurring 20-24 October. Departing migrants were detected using a receiver/data-logger monitoring system placed 4 miles down river from the study site. Thirty-six of 37 (97%) soras departed in a 2-hour window of time, beginning 1 hour after sunset. Departure was synchronized with cold fronts on clear, starlit nights. Twenty-five soras were monitored on migration from 8 km to as far away as 770 km. Findings indicate migration flight speeds of 40 to 50 mph and a direct southward orientation from the study site at least until contact with the Atlantic Ocean west of Cape Lookout, North Carolina. We also attempted to monitor passage of migrant soras radio tagged at Iroquois National Wildlife Refuge in western New York by biologist Soch Lor. None were recorded passing a monitoring unit at Haldeman Island in the middle of the Susquehanna River 10 miles north of Harrisburg, Pennsylvania. This further corroborates our findings that when migrating overland, soras move in a direct southward orientation and are not following land features such as major rivers

  6. DCS Hydrology Submission for Susquehanna County PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic processes for estimating flood discharges for a flood insurance...

  7. DCS Hydraulic Submission for Susquehanna County PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  8. The river research programme

    CSIR Research Space (South Africa)

    Ferrar, AA

    1988-01-01

    Full Text Available OF CONTENTS The Zones of a River Headwaters: the mountain stream The middle reaches The mature lover reaches The estuary CHAPTER 2. HYPOTEESES CONCERNING RIVER ECOSYSTFM The river continuum concept The nutrient sp i r a l l i ng hypothesis... banks. Algae and mosses are present only in small quantities because little light reaches them. Even where sunlight does reach the water, green plantt are still relatively rare because the water is very poor in nutrients. Phyto- and zooplanktonic...

  9. River Corridors (Jan 2, 2015)

    Data.gov (United States)

    Vermont Center for Geographic Information — River corridors are delineated to provide for the least erosive meandering and floodplain geometry toward which a river will evolve over time. River corridor maps...

  10. Tidal river dynamics

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Jay, D.A.

    2016-01-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity

  11. Dissolved methane in groundwater, Upper Delaware River Basin, Pennsylvania and New York, 2007-12

    Science.gov (United States)

    Kappel, William M.

    2013-01-01

    The prospect of natural gas development from the Marcellus and Utica Shales has raised concerns about freshwater aquifers being vulnerable to contamination. Well owners are asking questions about subsurface methane, such as, “Does my well water have methane and is it safe to drink the water?” and “Is my well system at risk of an explosion hazard associated with a combustible gas like methane in groundwater?” This newfound awareness of methane contamination of water wells by stray gas migration is based upon studies such as Molofsky and others (2011) who document the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus Shale gas-development activities, although pre-development groundwater samples were not available for comparison. A compilation of dissolved methane concentrations in groundwater for New York State was published by Kappel and Nystrom (2012). Recent work documenting the occurrence and distribution of methane in groundwater was completed in southern Sullivan County, Pennsylvania (Sloto, 2013). Additional work is ongoing with respect to monitoring for stray gases in groundwater (Jackson and others, 2013). These studies and their results indicate the importance of collecting baseline or pre-development data. While such data are being collected in some areas, published data on methane in groundwater are sparse in the Upper Delaware River Basin of Pennsylvania, New York, and New Jersey. To manage drinking-water resources in areas of gas-well drilling and hydraulic fracturing in the Upper Delaware River Basin, the natural occurrence of methane in the tri-state aquifers needs to be documented. The purpose of this report is to present data on dissolved methane concentrations in the groundwater in the Upper Delaware River Basin. The scope is restricted to

  12. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY... safety zone during the ``NAS Patuxent River Air Expo '11,'' which consists of aerial practices, performance demonstrations and air shows, to be held over certain waters of the Patuxent River adjacent to...

  13. 76 FR 36447 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-06-22

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY... a temporary safety zone during the ``NAS Patuxent River Air Expo '11'', which consists of aerial practices, performance demonstrations and air shows, to be held over certain waters of the Patuxent River...

  14. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River... BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.734 Navesink River (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  15. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  16. Savannah River Plant environment

    International Nuclear Information System (INIS)

    Dukes, E.K.

    1984-03-01

    On June 20, 1972, the Atomic Energy Commission designated 192,323 acres of land near Aiken, SC, as the nation's first National Environmental Research Park. The designated land surrounds the Department of Energy's Savannah River Plant production complex. The site, which borders the Savannah River for 17 miles, includes swampland, pine forests, abandoned town sites, a large man-made lake for cooling water impoundment, fields, streams, and watersheds. This report is a description of the geological, hydrological, meteorological, and biological characteristics of the Savannah River Plant site and is intended as a source of information for those interested in environmental research at the site. 165 references, 68 figures, 52 tables

  17. Hunting camp. River Murray

    OpenAIRE

    ? Bayliss, Charles, 1850-1897, photographer

    2003-01-01

    200 x 149 mm. A good photograph showing a group of aborigines (in European clothes) with two hunting dogs, holding spears and standing in front of rough wooden cabins; with the river in the background. Photograph unknown, possible Charles Bayliss.

  18. Wild and Scenic Rivers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer portrays the linear federally-owned land features (i.e., national parkways, wild and scenic rivers, etc.) of the United States, Puerto Rico, and the...

  19. Down to the River

    DEFF Research Database (Denmark)

    Wessels, Josepha Ivanka

    2015-01-01

    Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from the persp......Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from...... the perspective of economic benefits? I hypothesize that the political uses of citizenship, identity and security at the local level hamper cooperation at the basin level and ignore cognitive dimensions of violence and conflict. In this article, I have chosen the Israeli-occupied Golan Heights as a case study...

  20. What's working on working rivers: a handbook for improving urban rivers: examples from Chicago area rivers.

    Science.gov (United States)

    Naomi Cohn

    1998-01-01

    What's been done on Chicago Area Rivers is truly an inspiration. People's ability to improve these rivers shows what can be improved anywhere, even in a highly developed and complex urban setting like Chicago. A veteran staffer with the Friends of the Chicago River recently concluded: "People look at what's being accomplished on the Chicago River...

  1. Restoring rivers, sustaining communities

    Science.gov (United States)

    Rachel White; Susan Charnley; Gordon Grant; Mary Rowland; Michael Wisdom

    2016-01-01

    Healthy Rivers Connect Humans and Ecosystems James Nash says he is part trout. Growing up on a ranch in the Wallowa Valley of northeast Oregon, he disappeared as often as he could to the banks of the Wallowa River, which runs for more than two miles through his family’s land. Once, while exploring the bottomland, he discovered some old ruts and...

  2. The rivers of civilization

    Science.gov (United States)

    Macklin, Mark G.; Lewin, John

    2015-04-01

    The hydromorphic regimes that underpinned Old World river-based civilizations are reviewed in light of recent research. Notable Holocene climatic changes varied from region to region, whilst the dynamics of floodplain environments were equally diverse, with river channel changes significantly affecting human settlement. There were longer-term trends in Holocene hydroclimate and multi-centennial length 'flood-rich' and 'flood-poor' episodes. These impacted on five identified flooding and settlement scenarios: (i) alluvial fans and aprons; (ii) laterally mobile rivers; (iii) rivers with well-developed levees and flood basins; (iv) river systems characterised by avulsions and floodouts; and (v) large river-fed wetlands. This gave a range of changes that were either more or less regular or incremental from year-to-year (and thus potentially manageable) or catastrophic. The latter might be sudden during a flood event or a few seasons (acute), or over longer periods extending over many decades or even centuries (chronic). The geomorphic and environmental impacts of these events on riparian societies were very often irreversible. Contrasts are made between allogenic and autogenic mechanism for imposing environmental stress on riverine communities and a distinction is made between channel avulsion and contraction responses. Floods, droughts and river channel changes can precondition as well as trigger environmental crises and societal collapse. The Nile system currently offers the best set of independently dated Holocene fluvial and archaeological records, and the contrasted effects of changing hydromorphological regimes on floodwater farming are examined. The persistence of civilizations depended essentially on the societies that maintained them, but they were also understandably resilient in some environments (Pharaonic Egypt in the Egyptian Nile), appear to have had more limited windows of opportunity in others (the Kerma Kingdom in the Nubian Nile), or required

  3. 77 FR 4859 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-01-31

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... notice lists the projects, described below, receiving approval for the consumptive use of water pursuant...

  4. 76 FR 66117 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2011-10-25

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... notice lists the projects, described below, receiving approval for the consumptive use of water pursuant...

  5. 77 FR 55893 - Projects Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects rescinded by the... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  6. 77 FR 66909 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-11-07

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... below, receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...

  7. 77 FR 55891 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  8. 76 FR 50536 - Projects Approved or Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2011-08-15

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  9. 77 FR 25010 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-04-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... below, receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...

  10. 77 FR 59240 - Projects Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects rescinded by the... rescinded for the consumptive use of water pursuant to the Commission's approval by rule process set forth...

  11. 77 FR 55892 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  12. 76 FR 53526 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2011-08-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... lists the projects, described below, receiving approval for the consumptive use of water pursuant to the...

  13. 77 FR 21143 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-04-09

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  14. 75 FR 23837 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-05-04

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of approved projects. SUMMARY: This notice... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(e...

  15. 77 FR 16317 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-03-20

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  16. 18 CFR 801.6 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply. 801.6 Section 801.6 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper...

  17. 77 FR 34455 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-06-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  18. 75 FR 71177 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-11-22

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of approved projects. SUMMARY: This notice... for the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18...

  19. 78 FR 15402 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2013-03-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  20. 78 FR 17281 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2013-03-20

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  1. 78 FR 27471 - Projects Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2013-05-10

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the approved by rule projects..., being rescinded for the consumptive use of water pursuant to the Commission's approval by rule process...

  2. 75 FR 31508 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-06-03

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of Approved Projects. SUMMARY: This notice... consumptive use of water pursuant to the Commission's approval by rule process set forth in and 18 CFR 806.22...

  3. 75 FR 38591 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-07-02

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of Approved Projects. SUMMARY: This notice... consumptive use of water pursuant to the Commission's approval by rule process set forth in and 18 CFR 806.22...

  4. 77 FR 28420 - Commission Meeting

    Science.gov (United States)

    2012-05-14

    ... COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on June 7, 2012, in Binghamton, New... the business meeting and encouraged to review the Commission's Public Meeting Rules of Conduct, which...

  5. 77 FR 52106 - Commission Meeting

    Science.gov (United States)

    2012-08-28

    ... COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on September 20, 2012, in Harrisburg... attend the business meeting and encouraged to review the Commission's Public Meeting Rules of Conduct...

  6. 77 FR 10599 - Commission Meeting

    Science.gov (United States)

    2012-02-22

    ... COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on March 15, 2012, in Harrisburg...: (717) 238-2436; email: [email protected] or Stephanie L. Richardson, Secretary to the Commission...

  7. 78 FR 32295 - Commission Meeting

    Science.gov (United States)

    2013-05-29

    ... COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on June 20, 2013, in Harrisburg... meeting and encouraged to review the Commission's Public Meeting Rules of Conduct, which are posted on the...

  8. 76 FR 72023 - Public Hearing and Commission Meeting

    Science.gov (United States)

    2011-11-21

    ... COMMISSION Public Hearing and Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold a public hearing as part of its regular business meeting on December 15, 2011, in Wilkes-Barre, Pennsylvania. At the public hearing, the Commission will...

  9. 78 FR 52601 - Commission Meeting

    Science.gov (United States)

    2013-08-23

    ... COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on September 19, 2013, in Binghamton... attend the business meeting and encouraged to review the Commission's Public Meeting Rules of Conduct...

  10. 76 FR 60774 - Review and Approval of Projects

    Science.gov (United States)

    2011-09-30

    ... SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Part 806 Review and Approval of Projects AGENCY: Susquehanna River Basin Commission. ACTION: Notice of proposed rulemaking; reopening of comment period. SUMMARY: The purpose of this document is to inform the public of an extension of the comment period for...

  11. 77 FR 75915 - Review and Approval of Projects

    Science.gov (United States)

    2012-12-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Part 806 Review and Approval of Projects AGENCY... document contains proposed rules that would amend the project review regulations of the Susquehanna River... set forth in this proposed rulemaking is to make further modifications to the Commission's project...

  12. 76 FR 41154 - Review and Approval of Projects

    Science.gov (United States)

    2011-07-13

    ... SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Part 806 Review and Approval of Projects AGENCY... document contains proposed rules that would amend the project review regulations of the Susquehanna River... development project to an out-of-basin treatment or disposal facility; insert language authorizing ``renewal...

  13. 75 FR 60617 - Review and Approval of Projects

    Science.gov (United States)

    2010-10-01

    ... SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Parts 806 and 808 Review and Approval of Projects AGENCY... the project review regulations of the Susquehanna River Basin Commission (Commission) to include... approval; improve notice procedures for all project applications; clarify requirements for grandfathered...

  14. 77 FR 8095 - Review and Approval of Projects

    Science.gov (United States)

    2012-02-14

    ... SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Part 806 Review and Approval of Projects AGENCY... amend the project review regulations of the Susquehanna River Basin Commission (Commission) to include... fluids from a Commission approved hydrocarbon development project to an out-of- basin treatment or...

  15. 75 FR 36301 - Review and Approval of Projects

    Science.gov (United States)

    2010-06-25

    ... SUSQUEHANNA RIVER BASIN COMMISSION 18 CFR Parts 806 and 808 Review and Approval of Projects AGENCY... document contains proposed rules that would amend the project review regulations of the Susquehanna River... the scope of withdrawals requiring review and approval; improve notice procedures for all project...

  16. 77 FR 44703 - Public Hearing

    Science.gov (United States)

    2012-07-30

    ... COMMISSION Public Hearing AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold a public hearing on August 23, 2012, in Harrisburg, Pennsylvania. At this public hearing, the Commission will hear testimony on the projects listed in the...

  17. 78 FR 64260 - Public Hearing

    Science.gov (United States)

    2013-10-28

    ... COMMISSION Public Hearing AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold a public hearing on November 13, 2013, in Harrisburg, Pennsylvania. At this public hearing, the Commission will hear testimony on the projects listed in the...

  18. 78 FR 24785 - Public Hearing

    Science.gov (United States)

    2013-04-26

    ... COMMISSION Public Hearing AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold a public hearing on May 23, 2013, in Harrisburg, Pennsylvania. At this public hearing, the Commission will hear testimony on the projects listed in the Supplementary...

  19. 78 FR 43961 - Public Hearing

    Science.gov (United States)

    2013-07-22

    ... COMMISSION Public Hearing AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold a public hearing on August 15, 2013, in Harrisburg, Pennsylvania. At this public hearing, the Commission will hear testimony on the projects listed in the...

  20. 77 FR 75674 - Susquehanna Steam Electric Station, Units 1 and 2, PPL Susquehanna, LLC, Exemption

    Science.gov (United States)

    2012-12-21

    ... emergency preparedness (EP) exercise from October 23, 2012, to February 26, 2013. \\1\\ Agencywide Documents... classification of a Notification of Unusual Event due to an earthquake that resulted in the staffing of the... that these measures are adequate to maintain an acceptable level of emergency preparedness during the...

  1. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  2. Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed

    Science.gov (United States)

    Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.

    2000-01-01

    Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the

  3. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook...

  4. Skjern River Restoration Counterfactual

    DEFF Research Database (Denmark)

    Clemmensen, Thomas Juel

    2014-01-01

    In 2003 the Skjern River Restoration Project in Denmark was awarded the prestigious Europa Nostra Prize for ‘conserving the European cultural heritage’ (Danish Nature Agency 2005). In this case, however, it seems that the conservation of one cultural heritage came at the expense of another cultural...... this massive reconstruction work, which involved moving more than 2,7 million cubic meters of earth, cause a lot of ‘dissonance’ among the local population, the resulting ‘nature’ and its dynamic processes are also constantly compromising the preferred image of the restored landscape (Clemmensen 2014......). The presentation offers insight into an on-going research and development project - Skjern River Restoration Counterfactual, which question existing trends and logics within nature restoration. The project explores how the Skjern River Delta could have been ‘restored’ with a greater sensibility for its cultural...

  5. Assessment of river plan changes in Terengganu River using RS ...

    African Journals Online (AJOL)

    River is one of the most multifarious regular systems. The database can help in the appropriate understanding of river plan change and know the stand of Terengganu River, Malaysia. The data collected from Geographic Information System (GIS) and Remote Sensing (RS) database. Analysis of Types of Lateral Activity ...

  6. Missouri River 1943 Compact Line

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Flood Control, Bank Stabilization and development of a navigational channel on the Missouri River had a great impact on the river and adjacent lands. The new...

  7. Haw River PFCs Data Set

    Data.gov (United States)

    U.S. Environmental Protection Agency — PFAS concentrations in river and drinking water in and around the Haw River in North Carolina. This dataset is associated with the following publication: Sun, M., E....

  8. Two Pontic rivers

    DEFF Research Database (Denmark)

    Bekker-Nielsen, Tønnes; Jensen, Marit

    2015-01-01

    The accounts of the landscape around the Iris (Yeşilirmak) and the Thermodon (Terme) given by ancient authors are diverse and often contradictory. The Periegesis of the World by Dionysius of Alexandria, a didactic poem written in the early IInd c. A.D., established an image of the two rivers...... that does not correspond to their actual characteristics. A closer study reveals that Dionysius, or possibly his source, has confused the two: the river which he describes as the Thermodon is in fact the Iris, and vice versa. This mistake was not realized by later translators (Avienus, late IVth c. A...

  9. for non-perennial rivers

    African Journals Online (AJOL)

    Environmental water requirement (EWR) assessment methods, for ascertaining how much water should be retained in rivers to sustain ecological functioning and desired levels of biodiversity, have mostly been developed for perennial rivers. Despite non-perennial rivers comprising about 30–50% of the world's freshwater ...

  10. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  11. River impoundment and sunfish growth

    Science.gov (United States)

    Andrew L. Rypel

    2011-01-01

    Impoundment of rivers by dams is widespread and one of the most devastating anthropogenic impacts to freshwater environments. Linking theoretical and applied research on river impoundment requires an improved capacity for predicting how varying degrees of impoundment affects a range of species. Here, growth of 14 North American sunfish species resilient to river...

  12. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  13. communities of rivers, nigeria

    African Journals Online (AJOL)

    DEVELOPMENT EFFORTS OF OIL COMPANIES AS PERCEIVED BY. RURAL HOUSEHOLDS IN SELECTED OIL PRODUCING. COMMUNITIES OF RIVERS, NIGERIA. STATE. MATTHEW UKPONGSON AND DONATUS ONU. ABSTRACT. A total of 120 respondents participated in the study to detemmine the perceptions of ...

  14. River and Stream Pollution

    Science.gov (United States)

    ... plants to grow. The two most common nutrients found in water are nitrogen and phosphorus. They cause algae to ... streams and rivers clean helps keep all the water downstream clean, too. Other stuff you might ... What's That Word Scientific Dictionary Not sure of what a word ...

  15. Savannah River Technology Center

    International Nuclear Information System (INIS)

    1993-01-01

    This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns

  16. (MNCHW) in Rivers State?

    African Journals Online (AJOL)

    DATONYE ALASIA

    Monitoring the Maternal, Newborn and Child Health Week — Ordinioha B. ... month . Rivers State has 23 Local Government councils that have an average annual budget that. 5 often exceeds one billion Naira . A substantial part of the State and Local Governments annual .... The nutritional status of 210, 300 children aged.

  17. Stepping in the river

    Directory of Open Access Journals (Sweden)

    Julie Kearney

    2016-11-01

    Full Text Available 'Stepping in the River' is about the cultural misunderstandings and small betrayals that arise when First World tourists visit Third World countries. It is also about the enduring love that people in these countries can inspire, imperfect though that love may be.

  18. River Out of Edenl

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. River Out of Eden Darwin Goes Digital: Old View, New Metaphor. J A Santosh. Book Review Volume 2 Issue 11 November 1997 pp 104-106. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Discover the Nile River

    Science.gov (United States)

    Project WET Foundation, 2009

    2009-01-01

    Bordering on the Fantastic. As the longest river on earth, the Nile passes through 10 countries. Presented through a wide range of activities and a winning array of games, it's also unsurpassed at taking young minds into exploring the world of water, as well as natural and man made wonders.

  20. River Pollution: Part I.

    Science.gov (United States)

    Openshaw, Peter

    1983-01-01

    Describes a unit on river pollution and analytical methods to use in assessing temperature, pH, flow, calcium, chloride, dissolved oxygen, biochemical oxygen demand, dissolved nitrogen, detergents, heavy metals, sewage pollution, conductivity, and sediment cores. Suggests tests to be carried out and discusses significance of results. (JM)

  1. Geomorphic classification of rivers

    Science.gov (United States)

    J. M. Buffington; D. R. Montgomery

    2013-01-01

    Over the last several decades, environmental legislation and a growing awareness of historical human disturbance to rivers worldwide (Schumm, 1977; Collins et al., 2003; Surian and Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and Merritts, 2008) have fostered unprecedented collaboration among scientists, land managers, and stakeholders to better understand,...

  2. Manyame River Basin, Zimbabwe

    African Journals Online (AJOL)

    Available on website http://www.wrc.org.za. ISSN 1816-7950 (On-line) = Water SA Vol. 42 No. 1 January 2016. Published under a Creative Commons Attribution Licence. A test of the Lake Habitat Survey method in Cleveland Reservoir and. Lake Chivero (Manyame River Basin, Zimbabwe). Tatenda Dalu1*, Edwin ...

  3. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  4. New River controversy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbaum, T.J.

    1979-01-01

    The New River for more than 100 million years has made its way, beginning from a source in the mountains of North Carolina and winding northward through Virginia and West Virginia. Today there are dams in its path, to be sure; but between its wellspring in North Carolina and the point at which it crosses into Virginia, it has never suffered the ignominy of impoundment. Not long ago, however, the freedom of the New was almost sacrificed to help satisfy the appetite of a society hungry for electric energy. In 1965, Appalachian Power Company announced its intention to construct in North Carolina the Blue Ridge Project, a pumped-storage facility for generating electricity that would have required damming the river and flooding thousands of acres of its valley. Supporting Appalachian's plans were the national AFL-CIO, the Federal Power Commission, and the governors of Virginia and West Virginia. And though Blue Ridge would have consumed four units of power for every three it produced, destroying in the process unappraisable archeological treasures and displacing hundreds of families - all to provide peak-load electricity to cities far from the serene river that was to yield the energy - construction of the dams was approved time and time again. The threat of Blue Ridge, which loomed for more than eleven years, was finally eliminated by the efforts of one of the most diverse-environmental coalitions ever established. The State of North Carolina, the people of the New River Valley, and conservation groups and newspaper editors from across the country banded together to fight the project in the courts, in Congress, in the media - always against overwhelming odds. The author tells the fascinating story of the tactics and maneuvers employed by those struggling to preserve the river, while also pointing beyond the New to an effective strategy of environmental action.

  5. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  6. Sapucai River Project

    International Nuclear Information System (INIS)

    Duarte, A.L.; Rosa, M.J.

    1988-01-01

    The Sapucai River Project is a gold, ilmenite, monazite and zircon alluvial deposit. It is located on Sapucai River valley in the south of Minas Gerais State. The reserves are 28.000.000 m 3 of pay bed. The production will be 1.400.000 m 3 /year and the mine's life 20 years. A cutterhead suction dredge will do the overburden removal. The pay bed will be mined with an underwater bucket-wheel dredge. The ROM will be concentrated in a washing plant. The gold will be recovered by leaching method. The other heavy minerals will be recovered by electrostatic, magnetic and gravitic methods. SAMITRI believes that it's possible to implant and operate the Project without ecological damage. (author) [pt

  7. Re: Soviet river diversions

    Science.gov (United States)

    Robertson, Jas O.

    The paper on ‘Soviet River Diversions’ by Phil Micklin (Eos, 62(19), May 12, 1981) has just come to hand.Referring to the map on page 489, I was interested to see the estimates of river flows for the Amu and Syr Darya, which clearly show the effect of irrigation on inflows to the Aral Sea. Recently, I was passing over the northeast corner of the sea on a flight from Tashkent to Moscow when I got the impression that increasing irrigation development on the Syr Darya is likely to decrease the annual inflow even more than in the recent past. The same state of affairs has been going on in the Caspian Sea for years, as a result of irrigation development on the Volga. My impression was that the Aral Sea had shrunk considerably from the 26,000 odd square miles (67,304 km2) area quoted (from memory) in Encyclopaedia Britannica (edition circa 1970).

  8. Geomorphology and River Management

    Directory of Open Access Journals (Sweden)

    GARY BRIERLEY

    2008-01-01

    Full Text Available Engineering-dominated practices, visible in a "command and control" outlook on natural systems, have induced enormous damage to the environment. Biodiversity losses and declining provision of ecosystem services are testimony to the non-sustainable outcomes brought about by such practices. More environmentally friendly approaches that promote a harmonious relationship between human activities and nature are required. Moves towards an "ecosystem approach" to environmental management require coherent (integrative scientific guidance. Geomorphology, the study of the form of the earth, provides a landscape template with which to ground this process. This way of thinking respects the inherent diversity and complexity of natural systems. Examples of the transition toward such views in environmental practice are demonstrated by the use of science to guide river management, emphasising applications of the River Styles framework.

  9. River networks as biodiversity hotlines.

    Science.gov (United States)

    Décamps, Henri

    2011-05-01

    For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Onilahy River, Madagascar

    Science.gov (United States)

    1982-01-01

    Near the southern tip of Madagascar, the Onilahy River (23.5S, 44E) drains a near barren landscape, the result of rapid deforestation for quick profits from the lumber industry with no regard to the environmental impact. At the turn of the century, the island was a lush tropical paradise with about 90 percent of the surface forested. Now, at the close of the century, only about 10 percent of the forests remain in inaccessible rugged terrain.

  11. Columbia River pathway report

    International Nuclear Information System (INIS)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  12. The river ecosystem

    International Nuclear Information System (INIS)

    Descy, J.P.; Lambinon, J.

    1984-01-01

    From the standpoint of the ecologist, a river is an ecosystem characterized by its biocoenosis, in dynamic equilibrium with the abiotic environment. This ecosystem can be envisaged at the structural level by examining its physical, chemical and biological properties, together with the relationships existing between these compartments. The biocoenotic structure of a river is relatively complex: it manifests, among other specific features, the presence of plankton communities which show marked space-time variations. The function of the river ecosystem can be approximated by a study of the relationships between the biotic and abiotic components: primary production, secondary production, recycling of organic matter, etc. Lotic environments are subject to frequent disturbance from various forms of man-made pollution: organic pollution, eutrophization, thermal pollution, mineral pollution, contamination by organic and mineral micropollutants, as well as by radionuclides, mechanical pollution and physical degradation. The biocoenotic effects of these forms of pollution may be evaluated, in particular, using biological indicators (bioindicators): these are either able to show the overall impact of the pollution on the biocoenosis or else they permit the detection and evaluation of certain pollutant forms. (author)

  13. Effects of human activities on the Waterval River, Vaal River ...

    African Journals Online (AJOL)

    Rand Water's chemical water quality data from 1991 to 2000 were used to assess the water quality of the Waterval River, which contributes about 111 x 106m3 of water to the Vaal River annually. Due to a biological community's ability to reflect water quality changes over time, biomonitoring was undertaken to support ...

  14. River Restoration and Meanders

    Directory of Open Access Journals (Sweden)

    G. Mathias Kondolf

    2006-12-01

    Full Text Available Among the most visually striking river restoration projects are those that involve the creation of a new channel, often in a new alignment and generally with a form and dimensions that are different from those of the preproject channel. These channel reconstruction projects often have the objective of creating a stable, single-thread, meandering channel, even on rivers that were not historically meandering, on rivers whose sediment load and flow regime would not be consistent with such stable channels, or on already sinuous channels whose bends are not symmetrical. Such meandering channels are often specified by the Rosgen classification system, a popular restoration design approach. Although most projects of this type have not been subject to objective evaluation, completed postproject appraisals show that many of these projects failed within months or years of construction. Despite its, at best, mixed results, this classification and form-based approach continues to be popular because it is easy to apply, because it is accessible to those without formal training in fluvial geomorphology, and probably because it satisfies a deep-seated, although unrecognized, cultural preference for single-thread meandering channels. This preference is consistent with 18th-century English landscape theories, which held the serpentine form to be ideal and led to widespread construction of meandering channels on the country estates of the era. The preference for stability in restored channels seems to be widely accepted by practitioners and funders despite the fact that it is antithetical to research showing that dynamically migrating channels have the greatest ecological richness.

  15. Saga of Clinch River

    International Nuclear Information System (INIS)

    Young, W.H.

    1984-01-01

    An epic struggle in the US Congress between what the author calls the forces of transcendence and the forces of experience over development of a breeder reactor for electric power generation is described in this article. The project was started by President Nixon, survived repeated attacks under President Carter, and ironically succumbed under a strong supporter, President Reagan, as a result of an unlikely coalition of conservative organizations and Republican politicians. The broader meanings of the demise of the Clinch River project are examined on several levels, examining the significance for the nation's energy future and for the nation's political future

  16. River coalitions and water trade

    NARCIS (Netherlands)

    Ansink, Erik; Gengenbach, Michael; Weikard, Hans-Peter

    2017-01-01

    We analyse coalition stability in a game with a spatial structure. We consider a set of agents located along a river who abstract scarce water for their own benefit. Agents may enter an agreement to mutually acknowledge property rights in river water as a prerequisite for water trade. We find that

  17. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  18. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  19. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  20. Robotics at Savannah River

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1983-01-01

    A Robotics Technology Group was organized at the Savannah River Laboratory in August 1982. Many potential applications have been identified that will improve personnel safety, reduce operating costs, and increase productivity using modern robotics and automation. Several active projects are under way to procure robots, to develop unique techniques and systems for the site's processes, and to install the systems in the actual work environments. The projects and development programs are involved in the following general application areas: (1) glove boxes and shielded cell facilities, (2) laboratory chemical processes, (3) fabrication processes for reactor fuel assemblies, (4) sampling processes for separation areas, (5) emergency response in reactor areas, (6) fuel handling in reactor areas, and (7) remote radiation monitoring systems. A Robotics Development Laboratory has been set up for experimental and development work and for demonstration of robotic systems

  1. Ganges River Delta

    Science.gov (United States)

    2002-01-01

    The Ganges River forms an extensive delta where it empties into the Bay of Bengal. The delta is largely covered with a swamp forest known as the Sunderbans, which is home to the Royal Bengal Tiger. It is also home to most of Bangladesh, one of the world's most densely populated countries. Roughly 120 million people live on the Ganges Delta under threat of repeated catastrophic floods due to heavy runoff of meltwater from the Himalayas, and due to the intense rainfall during the monsoon season. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on February 28, 2000. This is a false-color composite image made using green, infrared, and blue wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  2. Alligator Rivers analogue project

    International Nuclear Information System (INIS)

    Duerden, P.

    1990-01-01

    Australian Nuclear Science and Technology Organization has extensively evaluated uranium ore bodies in the Alligator Rivers Uranium Province in Australia as analogues of radioactive waste repositories. The work was extended for a three-year program as an international project based on the Koongarra uranium deposit and sponsored by the OECD Nuclear Energy Agency. The technical program comprises six major sub-projects involving modelling and experimental work: modelling of radionuclide migration; hydrogeology of the Koongarra uranium deposit; uranium/thorium series disequilibria studies; groundwater and colloid studies; fission product studies; transuranic nuclide studies; an outline of the technical programs and a summary of progress in the technical sub-projects is given. This is followed by a series of technical reports which briefly describe current research tasks, and which have been separately indexed

  3. 76 FR 23485 - Safety Zone; Red River

    Science.gov (United States)

    2011-04-27

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Red River AGENCY: Coast Guard, DHS. ACTION... Red River in the State of North Dakota, including those portions of the river bordered by Richland... across latitude 46 20'00'' N, extending the entire width of the river. This safety zone is needed to...

  4. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  5. Elwha River dam removal-Rebirth of a river

    Science.gov (United States)

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  6. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Science.gov (United States)

    2010-07-01

    ... go adrift. Immediately after completion of the emergency mooring, the lockmaster of the first lock... of approach to unattended, normally open automatic, movable span bridges, the factor of river flow...

  7. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Department of Resources — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  8. Anastomosing Rivers are Disequilibrium Patterns

    NARCIS (Netherlands)

    Lavooi, E.; Haas, de T.; Kleinhans, M.G.; Makaske, B.; Smith, D.G.

    2010-01-01

    Anastomosing rivers have multiple interconnected channels that enclose floodbasins. Various theories have been proposed to explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, or, alternatively, a tendency to avulse due to upstream

  9. Missouri River, Natural Resources Bibliography.

    Science.gov (United States)

    1997-07-01

    Dissertation Abstracts, UnCover, Agricola , and terrestrial habitats adjacent to the river resulted in a variety of bibliographies available on the Internet...Missouri and Cheyenne Rivers in South Dakota. South Dakota St. Univ., Brookings. 408. DORTW, RATZLAFF JR. 1970. Recent variations in course and regimen ...Dakota, Grand Forks. 185 p. 1563. RuHE RV. 1971. Stream regimen and man’s manipulation. In: Environmental 1573. SANDHEINRICH MB, ATCHISON GJ. 1986

  10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  11. Hierarchically nested river landform sequences

    Science.gov (United States)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  12. How rivers split

    Science.gov (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.

    2012-12-01

    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  13. Rivers, runoff, and reefs

    Science.gov (United States)

    McLaughlin, C.J.; Smith, C.A.; Buddemeier, R.W.; Bartley, J.D.; Maxwell, B.A.

    2003-01-01

    The role of terrigenous sediment in controlling the occurrence of coral reef ecosystems is qualitatively understood and has been studied at local scales, but has not been systematically evaluated on a global-to-regional scale. Current concerns about degradation of reef environments and alteration of the hydrologic and sediment cycles place the issue at a focal point of multiple environmental concerns. We use a geospatial clustering of a coastal zone database of river and local runoff identified with 0.5?? grid cells to identify areas of high potential runoff effects, and combine this with a database of reported coral reef locations. Coastal cells with high runoff values are much less likely to contain reefs than low runoff cells and GIS buffer analysis demonstrates that this inhibition extends to offshore ocean cells as well. This analysis does not uniquely define the effects of sediment, since salinity, nutrients, and contaminants are potentially confounding variables also associated with runoff. However, sediment effects are likely to be a major factor and a basis is provided for extending the study to higher resolution with more specific variables. ?? 2003 Elsevier B.V. All rights reserved.

  14. A Rejang River rash

    Directory of Open Access Journals (Sweden)

    Jean-Li Lim

    2014-04-01

    Full Text Available A 30-year-old Iban woman presented to a rural primary healthcare clinic located along the Batang Rejang in Sarawak. She had a 2-day history of rash, which started over her trunk and later spread to her face and limbs. What started out as individual erythematous maculopapular spots later coalesced to form larger raised blotches. The rash was extremely pruritic and affected her sleep, and hence her visit. The rash was preceded by high grade, persistent fever that was temporarily relieved by paracetamol. She also complained of malaise, arthralgia and myalgia. Her appetite had been poor since the onset of the fever. She lived in a long house at the edge of the jungle. Although she did not have a history of going into the jungle to forage, she went regularly to the river to wash clothes. Clinically, she appeared lethargic and had bilateral conjunctival injection. Her left anterior cervical lymph nodes were palpable. There were erythematous macules measuring 5 to 15 mm distributed over her whole body but predominantly over the chest and abdominal region (Figure 1. An unusual skin lesion was discovered at the right hypochondriac region. This lesion resembled a cigarette burn with a necrotic centre (Figure 2. There was no evidence of hepato-splenomegaly. Examination of the other systems was unremarkable. On further questioning, the patient admitted being bitten by a ‘kutu babi’ or mite 3 days before the onset of her fever.

  15. Towards a sociogeomorphology of rivers

    Science.gov (United States)

    Ashmore, Peter

    2015-12-01

    While human impacts on rivers and other landforms have long been a component of geomorphic research, little of this work explicitly includes insights into human agency from social science or recognises that in many cases rivers can be considered to be hybrid co-productions or 'socio-natures'. A socio-geomorphic approach proposed here has parallels with some aspects of sociohydrology and can extend and enrich existing geomorphic explanations of the morphology of, for example, urban rivers by explicitly recognising and working with the co-evolution of the human and natural systems. Examples from recent literature illustrate ways in which these relationships can be understood and analyzed, showing a range of socio-natural influences in particular contexts that have material consequences for river morphology and recognising that events in the system have many forms. The approach recognises the importance of contingency in time and place together with the role and nature of both local and global knowledge. An important element of this approach is that it provides ways for understanding the nature, position and intention of geomorphic and other scientific interventions as part of the system, for example in the case of river restoration. This also leads to the need for reflexivity by geomorphologists and reconsideration of the nature of geomorphological knowledge by those involved in such work and with respect to sociogeomorphology as a whole.

  16. Effectiveness of nest site restoration for the endangered northern map turtle. Report no. 1 : nest site selection and nest success from 2013-2014 and establishment of environmental center : [research summary].

    Science.gov (United States)

    2015-05-01

    The Northern Map Turtle, Graptemys geographica, is a Maryland state : Endangered Species, found only in the lower Susquehanna River in Maryland. : The only area where nests of this species are not heavily impacted by predators : occurs in the town of...

  17. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... York Northern California Northern Ohio Rio Grande Savannah River State of Texas Southern California Susquehanna Valley Virginia ... patient's metabolism), and other issues. Typical Doses from Diagnostic Radiology Exams As noted above, the tables below ...

  18. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  19. Terrestrial teleconnections link global rivers

    Science.gov (United States)

    O'Loughlin, F.; Howden, N. J.; Woods, R. A.; Bates, P. D.

    2013-12-01

    We present analyses of river discharge data from across the world, which we used to identify links between annual river flow regimes across different continents. Our hypothesis was that, as atmospheric processes are subject to large-scale teleconnection patterns, and because these atmospheric processes are inherently linked to precipitation regimes across the world, there should be identifiable links between river flow regimes driven by these atmospheric processes. We used discharge data from the Global Runoff Data Centre (GRDC) to identify cross-correlations (and accounted for serial dependence) between 23 of the world's largest river basins where overlapping data were available over a period of 12 years or more: two in South America; five in Africa; one in Australasia; five in North America and ten in Eurasia. The selected river basins drain approximately a third of the Earth's landmass at their furthest downstream gauging station. Where significant cross-correlations were found, we compared these to known patterns associated with the ENSO and NAO teleconnections. In total, 85 of the 253 possible correlations were deemed significant at p0). We compared these significant cross-correlations with known atmospheric teleconnection patterns, and while these were consistent for the majority of cases, we found a number of significant correlations that are inconsistent with the anticipated effects of known atmospheric teleconnections. Our results provide new insight into the inter-continental links between global river systems and the way in which these are controlled by large-scale atmospheric processes. We suggest this may be useful for global industries, such as insurers or aid agencies, who seek to understand correlations between the magnitudes of extreme events across different regions of the world. For the former, this may enable more efficient management of global liabilities, for the latter it may enable better logistical planning of disaster relief requirements

  20. in a non-perennial river

    African Journals Online (AJOL)

    EWRs) in a non-perennial river (Mokolo River) in South Africa. Maitland Seaman, Marie Watson, Marinda Avenant, Alison Joubert, Jackie King, Charles Barker, Surina Esterhuyse, Douglas Graham, Marthie Kemp, Pieter le Roux, Bob Prucha, Nola ...

  1. Charles River Fish Contaminant Survey, April 2001

    Science.gov (United States)

    Report summarizing a biological monitoring component of the Clean Charles River 2005 initiative through the monitoring & analysis of fish within the lower Charles River basin, implemented by the EPA New England Regional Laboratory in the late fall of 1999.

  2. River restoration - Malaysian/DID perspective

    International Nuclear Information System (INIS)

    Ahmad Darus

    2006-01-01

    Initially the river improvement works in Malaysia was weighted on flood control to convey a certain design flood with the lined and channelized rivers. But in late 2003 did has makes the approaches that conservation and improvement of natural function of river, i.e. river environment and eco-system should be incorporated inside the planning and design process. Generally, river restoration will focus on four approaches that will improve water quality, which is improving the quality of stormwater entering the river, maximizing the quantity of the urban river riparian corridor, stabilizing the riverbank, and improving the habitat within the river. This paper outlined the appropriate method of enhancing impairment of water quality from human activities effluent and others effluent. (Author)

  3. Russian River Ice Thickness and Duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of river ice thickness measurements, and beginning and ending dates for river freeze-up events from fifty stations in northern Russia. The...

  4. Habitat Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  5. Minnesota Wild and Scenic River Districts

    Data.gov (United States)

    Minnesota Department of Natural Resources — District boundaries for wild, scenic, and recreational rivers designated under the Minnesota State Wild and Scenic Rivers Act. Includes portions of the Minnesota...

  6. Biological - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  7. Savannah River Site Environmental Implentation Plan

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described

  8. Geomorphic Analysis - Trinity River Restoration Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the Trinity River project is to identify the potential positive effects of large-scale restoration actions in a 63 kilometer reach of the Trinity River...

  9. Physical - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  10. The dark river: Kearsley power station

    OpenAIRE

    Darwell, John

    2016-01-01

    Edition of 150 black and white digital images by John Darwell of the River Irwell area around Kearsley power station, in the North of England. Volume three of five volume set exploring the River Irwell during the 1980s.

  11. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  12. SIRIU RESERVOIR, BUZAU RIVER (ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel Constantin DIACONU

    2008-06-01

    Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.

  13. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA...

  14. 78 FR 41689 - Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA

    Science.gov (United States)

    2013-07-11

    ... submerged automobiles and floating bridge debris in the Skagit River. Following the initial response and...-AA00 Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone around the Skagit River Bridge...

  15. 76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN

    Science.gov (United States)

    2011-04-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AAOO Safety Zone; Red River Safety Zone, Red River, MN AGENCY... Safety Unit Duluth, MN is establishing a temporary safety zone on the Red River, MN. This safety zone is... entering all navigable waters of the Red River in the State of Minnesota north of a line drawn across...

  16. 76 FR 25545 - Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC

    Science.gov (United States)

    2011-05-05

    ...-AA00 Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC AGENCY: Coast... zone on the waters of Little River in Little River, South Carolina during the Blue Crab Festival... this rule because the Coast Guard did not receive notice of the Blue Crab Festival Fireworks Display...

  17. Columbia River Component Data Evaluation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  18. Sediment Size Distribution at Three Rivers with Different Types of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    reach and lower reach as well as to compare between three rivers with different type of land use. The three rivers are Dengar River representing palm oil plantation land use, Mengkibol River representing urban area and Madek River representing logging area. Rivers with a depth of about 200 meter were chosen for the ...

  19. Similarities and differences between a large meandering river and an anabranching river: the Ucayali and Amazon River cases

    Science.gov (United States)

    Abad, J. D.; Paredes, J. R.; Montoro, H.

    2010-12-01

    The Ucayali is one of the largest freely meandering rivers in the world and its planform migration produces complex meander shapes dominated by not only fluvial erosion but mainly geotechnical processes since changes on water stage are appreciable compared to medium- and small-meander rivers. The Amazon is one of the largest anabranching rivers in the world and it is formed by the confluence of the anabranching Marañon River together with the meandering Ucayali River. The seasonal increase and decrease in water and sediment discharges from the Amazonian lowland rivers produce changes in the river’s planform configuration, river flooding, and streambank erosion affecting nearby towns and navigation and shoaling issues. Even though, extensive work has been dedicated to understand both river systems, there is still no absolute understanding of their physically-based formation processes and dynamics, especially at large scales as these lowland Amazonian rivers. The Ucayali Meandering River migrates at greater rates than the Amazon Anabranching River mainly due to their single channel condition; however localized secondary channels of the latter could behave as meandering channels dominating and modifying the planform dynamics of the entire anabranching system. Insights on how a large meandering river (Ucayali) is similar and at the same time different from an anabranching river (Amazon) will be described herein. A team composed of the Earth Processes & Environmental Flows Group (EPEF) at the University of Pittsburgh and the Directorate of Hydrology and Navigation (DHN) from the Peruvian Navy is working towards gathering information and field measurements concerning the dynamics of the Amazonian rivers. Therefore, based on three-dimensional velocity and bed morphodynamic measurements (performed in both river systems using acoustic profilers and echo sounders respectively) combined with mathematical hydrodynamic models, some insights on the flow structure, bed

  20. RiverCare: towards self-sustaining multifunctional rivers

    Science.gov (United States)

    Augustijn, Denie; Schielen, Ralph; Hulscher, Suzanne

    2014-05-01

    Rivers are inherently dynamic water systems involving complex interactions among hydrodynamics, morphology and ecology. In many deltas around the world lowland rivers are intensively managed to meet objectives like safety, navigation, hydropower and water supply. With the increasing pressure of growing population and climate change it will become even more challenging to reach or maintain these objectives and probably also more demanding from a management point of view. In the meantime there is a growing awareness that rivers are natural systems and that, rather than further regulation works, the dynamic natural processes should be better utilized (or restored) to reach the multifunctional objectives. Currently many integrated river management projects are initiated all over the world, in large rivers as well as streams. Examples of large scale projects in the Netherlands are 'Room for the River' (Rhine), the 'Maaswerken' (Meuse), the Deltaprogramme and projects originating from the European Water Framework Directive (WFD). These projects include innovative measures executed never before on this scale and include for example longitudinal training dams, side channels, removal of bank protection, remeandering of streams, dredging/nourishment and floodplain rehabilitation. Although estimates have been made on the effects of these measures for many of the individual projects, the overall effects on the various management objectives remains uncertain, especially if all projects are considered in connection. For all stakeholders with vested interests in the river system it is important to know how that system evolves at intermediate and longer time scales (10 to 100 years) and what the consequences will be for the various river functions. If the total, integrated response of the system can be predicted, the system may be managed in a more effective way, making optimum use of natural processes. In this way, maintenance costs may be reduced, the system remains more natural

  1. Setting targets in strategies for river restoration

    NARCIS (Netherlands)

    Pedroli, G.B.M.; Blust, de G.; Looy, van K.; Rooij, van S.A.M.

    2002-01-01

    Since about 90% of the natural floodplain area of rivers in Europe has been reclaimed and now lacks river dynamics, nature rehabilitation along rivers is of crucial importance for the restoration of their natural function. Flood protection, self-purification of surface water, groundwater recharge,

  2. Interplay between river dynamics and international borders

    NARCIS (Netherlands)

    Yousefi, Saleh; Keesstra, Saskia; Pourghasemi, Hamid Reza; Surian, Nicola; Mirzaee, Somayeh

    2017-01-01

    Fluvial dynamics in riverine borders can play an important role in political relationships between countries. Rivers move and evolve under the influence of natural processes and external drivers (e.g. land use change in river catchments). The Hirmand River is an important riverine border between

  3. 33 CFR 117.175 - Mokelumne River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mokelumne River. 117.175 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.175 Mokelumne River. (a) The draw of the California Department of Transportation highway bridge, the Mokelumne River Bridge, mile 3.0, at...

  4. 33 CFR 117.570 - Sassafras River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sassafras River. 117.570 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.570 Sassafras River. The draw of the Sassafras River (Route 213) bridge, mile 10.0 at Georgetown, Maryland, shall open on signal; except that...

  5. 33 CFR 117.291 - Hillsborough River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hillsborough River. 117.291... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.291 Hillsborough River. (a) The... the CSX Railroad Bridge across the Hillsborough River, mile 0.7, at Tampa, operates as follows: (1...

  6. 33 CFR 117.337 - Trout River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Trout River. 117.337 Section 117... OPERATION REGULATIONS Specific Requirements Florida § 117.337 Trout River. The draw of the CSX Railroad Bridge across the Trout River, mile 0.9 at Jacksonville, operates as follows: (a) The bridge is not...

  7. 33 CFR 117.411 - Missouri River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Missouri River. 117.411 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Kansas § 117.411 Missouri River. The draws of the bridges across the Missouri River shall open on signal; except during the winter season between the date...

  8. 33 CFR 117.217 - Norwalk River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Norwalk River. 117.217 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.217 Norwalk River. (a) The draw of.... to 12 p.m., on the first Saturday in December, to facilitate the running of the annual Norwalk River...

  9. 33 CFR 117.171 - Middle River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Middle River. 117.171 Section 117... OPERATION REGULATIONS Specific Requirements California § 117.171 Middle River. (a) The draw of the San..., mile 9.8 near Middle River Station, shall open on signal if at least 12 hours notice is given to the...

  10. 33 CFR 117.189 - Sacramento River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sacramento River. 117.189 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.189 Sacramento River. (a) The draws of each bridge from Isleton to American River junction shall open on signal from May 1 through...

  11. 33 CFR 117.531 - Piscataqua River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Piscataqua River. 117.531 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.531 Piscataqua River. (a) The following requirements apply to all bridges across the Piscataqua River: (1) Public vessels of the United States...

  12. 33 CFR 117.258 - Apalachicola River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Apalachicola River. 117.258... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.258 Apalachicola River. The draw of the CSX Railroad bridge, mile 105.9, at River Junction shall open on signal Monday through Friday from 8 a...

  13. 33 CFR 117.407 - Missouri River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Missouri River. 117.407 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Iowa § 117.407 Missouri River. See § 117.691, Missouri River listed under Nebraska. Kansas ...

  14. 33 CFR 117.403 - Wabash River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Wabash River. 117.403 Section 117.403 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Indiana § 117.403 Wabash River. See § 117.397, Wabash River...

  15. 33 CFR 117.547 - Bush River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bush River. 117.547 Section 117... OPERATION REGULATIONS Specific Requirements Maryland § 117.547 Bush River. The draw of the Amtrak bridge... Superintendent at 301-291-4278 by an authorized representative of the Bush River Yacht Club by noon on the Friday...

  16. 33 CFR 117.183 - Old River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Old River. 117.183 Section 117... OPERATION REGULATIONS Specific Requirements California § 117.183 Old River. The draw of the California... notice is given to the drawtender at the Rio Vista bridge across the Sacramento River, mile 12.8. ...

  17. 33 CFR 117.359 - Chattahoochee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chattahoochee River. 117.359... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.359 Chattahoochee River. See § 117.107, Chattahoochee River, listed under Alabama. ...

  18. 33 CFR 117.299 - Loxahatchee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Loxahatchee River. 117.299... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.299 Loxahatchee River. The draw of the Florida East Coast Railway bridge across the Loxahatchee River, mile 1.2 at Jupiter, operates as follows...

  19. 33 CFR 117.300 - Manatee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Manatee River. 117.300 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.300 Manatee River. The draw of the CSX Railroad Bridge across the Manatee River, mile 4.5 Bradenton, operates as follows: (a) The bridge is not...

  20. 33 CFR 117.527 - Kennebunk River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kennebunk River. 117.527 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.527 Kennebunk River. The Dock Square drawbridge at mile 1.0, across the Kennebunk River, between Kennebunk and Kennebunkport, Maine, need not open...

  1. 33 CFR 117.333 - Suwannee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Suwannee River. 117.333 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.333 Suwannee River. The draw of Suwannee River bridge, mile 35 at Old Town need not be opened for the passage of vessels, however, the draw shall...

  2. 33 CFR 117.391 - Chicago River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chicago River. 117.391 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Illinois § 117.391 Chicago River. The draws of the bridges operated by the City of Chicago over the Main Branch of Chicago River, the bridges on the North...

  3. 33 CFR 117.397 - Wabash River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Wabash River. 117.397 Section 117... OPERATION REGULATIONS Specific Requirements Illinois § 117.397 Wabash River. The draws of the bridges across the Wabash River need not be opened for the passage of vessels. Indiana ...

  4. HYDROLOGICAL ASSESSMENTS OF SOME RIVERS IN EDO ...

    African Journals Online (AJOL)

    The aim of this study is to determine the hydro-power potentials of selected rivers in Edo State using hydrological indices. Four Rivers were investigated namely Ovia, Ikpoba Edion, Orlie Rivers. Discharge measurement was carried out for 12 calendar months, from January 2013 to December 2013 using the grid point ...

  5. Role of vegetation on river bank accretion

    NARCIS (Netherlands)

    Vargas Luna, A.

    2016-01-01

    There is rising awareness of the need to include the effects of vegetation in studies dealing with the morphological response of rivers. Vegetation growth on river banks and floodplains alters the river bed topography, reduces the bank erosion rates and enhances the development of new floodplains

  6. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  7. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    OpenAIRE

    Ellen Wohl

    2005-01-01

    A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restorati...

  8. 77 FR 47331 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-08-08

    ...-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl... navigable waters of New Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the..., Quinnipiac River, and Mill River RNA. The proposed amendment would give the Captain of the Port Sector Long...

  9. Rebirth of the Cheat River

    Science.gov (United States)

    The Cheat River in West Virginia is again a haven for whitewater rafting and smallmouth bass fishing after years of Clean Water Act funding and the efforts of a local non-profit group and others to control pollution from old abandoned mines.

  10. Sorting out river channel patterns

    NARCIS (Netherlands)

    Kleinhans, M.G.

    2010-01-01

    Rivers self-organize their pattern/planform through feedbacks between bars, channels, floodplain and vegetation, which emerge as a result of the basic spatial sorting process of wash load sediment and bed sediment. The balance between floodplain formation and destruction determines the width and

  11. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective

  12. Hydrological balance of Cauca River

    International Nuclear Information System (INIS)

    Corzo G, J.; Garcia, M.

    1992-11-01

    This thesis understand the superficial and underground hydrology of the C.c. River Basin; the purpose of this study is to obtain information related to the quantity and behavior of the water resource, in order to make the necessary recommendations for the adequate managing, the aquifer protection and thus be able to have valuable liquid

  13. Conservation of South African Rivers

    CSIR Research Space (South Africa)

    O'Keeffe, JH

    1986-01-01

    Full Text Available The report presents the proceedings of a three-day workshop at Midmar Dam designed to establish a consensus view of river conservation and to provide professional conservationists, managers and planners with a set of guidelines. These indicate what...

  14. Union Lake Bourbeuse River, Missouri.

    Science.gov (United States)

    1974-10-01

    Poeciliidae -Cambusia affinis Mosquitofish 8,10 Order Atueriniformes Centrarchidne - Suinfishes AalbloTpites rupestris Rock Bass 9,10,14 LLpomis cyanellus...4, I’he i.ss, ( muscle ) shoals of the Tennessee River revisted. Amercan a~ae1zia Union. Annual Report (19 4)~ pp 25-28. Stansberv, i). ff. 1970

  15. MICROPHYTOBENTHOS IN THE SUTLA RIVER

    Directory of Open Access Journals (Sweden)

    Marija Tomec

    2009-10-01

    Full Text Available The Sutla river is a river along Croatian/Slovenian border. Its length is about 91 km, out of which 89 km in Croatia. Microphytobenthos investigations have been performed at six locations along the Sutla river on Croatian territory. Samples were collected from specific areas of characteristic habitats. Beside sample collection, basic physico–chemical parameters were measured: water temperature, pH values and quantity of water dissolved oxygen. Water temperature changed depending on air temperature and the depth of the river, ranging from 5.1ºC to 6.3ºC. pH values were between 7.77 and 8.14, and dissolved oxygen concentrations (mg/L O2 at the six locations ranged between 8.6 mg/L and 14.9 mg/L. Quantitative microphytobenthos composition comprised 87 microphythic species belonging to the systematic groups of Bacteriophyta, Cyanobacteria and Chrysophyta (Bacillariophyceae and Xanthophyceae. The most numerous group were the diatoms or Bacillariophyceae (76 species or 88.3%, with dominance of the species of the genera Achnanthes, Cocconeis, Cymbella, Gomphonema, Navicula, Nitzschia and Surirella. The group Cyanobacteria was represented with relatively small number of species (9 species or 10%, with the dominance of filamentous algae belonging to the genus Phormidium. From the total number of the determined microphytobenthic species, 73 species or 84% were indicators of saprobity. Most of them were beta–mezosaprobic indicators. Based on the indicator values of determined microphytobenthic species at six investigated locations, P–B saprobity index was in the range from 1.8 to 2.0. These values suggested that the water at the investigated part of the Sutla river belonged to the second class of Croatian Water Quality Directive.

  16. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  17. HANFORD SITE RIVER CORRIDOR CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  18. Biota of the upper Mississippi River ecosystem

    Science.gov (United States)

    Wiener, James G.; Naimo, Teresa J.; Korschgen, Carl E.; Dahlgren, Robert; Sauer, Jennifer S.; Lubinski, Kenneth S.; Rogers, Sara J.; Brewer, Sandra; LaRoe, Edward T.; Farris, Gaye S.; Puckett, Catherine E.; Doran, Peter D.; Mac, Michael J.

    1995-01-01

    The Mississippi River is one of the world's major river systems in size, habitat and biotic diversity, and biotic productivity. The navigable Upper Mississippi River, extending 1,370 km (850 mi) from St. Anthony Falls (Minnesota) to the confluence with the Ohio River, has been impounded by 27 locks and dams to enhance commercial navigation. The reach between two consecutive locks and dams is termed a "pool." The upstream portions of many pools are similar to the unimpounded river, whereas the downstream reaches are similar to reservoirs.

  19. The Amazon, measuring a mighty river

    Science.gov (United States)

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  20. Health evaluation indicator system for urban landscape rivers, case study of the Bailianjing River in Shanghai

    Science.gov (United States)

    Wang, Juan; Wang, Yue; Yang, Haizhen; Lu, Zhibo; Xu, Xiaotian

    2010-11-01

    The River Bailianjing is an iconic landscape feature known to all residents in Pudong area and running through the Shanghai Expo 2010 Park. The river and its basin was a complex living ecosystem which supports a unique variety of flora and fauna several decades ago. However, as a result of unsuccessful pollution source control, sewage and first flow of the storm water is directly coming into the river in some catchment. The water quality of the river is seriously organically polluted now. The typical organic pollutants are COD, NH3-N, TN and TP, which cause the extinction of the water plants and aquatic. Furthermore, the artificial hard river banks isolate the river course and the land, which damaged the whole ecological system totally. The nature of the River Bailianjing and its history has resulted in many government departments and authorities and non government organizations having jurisdiction and/or an interest in the river's management. As a new tool to improve river management, the river health assessment has become the major focus of ecological and environmental science. Consequently, research on river health evaluation and its development on river management are of great theoretical and practical significance. In order to evaluate the healthy status of the River Bailianjing and prepare comprehensive scientific background data for the integrated river ecological rehabilitation planning, the health evaluation indicator system for River Bailianjing is brought forward. The indicator system has three levels: the first is target layer; the second is criteria layer, including five fields: water quality characteristics, hydrology characteristics, river morphology, biological characteristics and river scenic beauty; the third is an index layer, a total of 15 specific indicators included. Fuzzy AHP method is used to evaluate the target river's health status, and five grades are set up to describe it: healthy, sub health, marginal, unhealthy and pathological. The

  1. Energy potential of the Estonian rivers

    International Nuclear Information System (INIS)

    Reihan, Alvina; Kovalenko, Olga

    2002-01-01

    In the current study the river runoff, its long-term distribution and river slope were considered as factors in the evaluation of the hydro energy potential of the Estonian rivers. The analyses of the long-term runoff hydrographs showed the increase of the maximum discharges and the decrease of the minimum discharges, at the same time mean annual discharges were almost unchanged. It indicated that seasonal variability of the runoff decreased. The evaluation of the hydro energy potential of rivers showed, that the Narva and Paernu rivers are the most suitable for hydro energy production, then in decreasing order - the Kasari, Pedja, Piusa, Halliste, Vohandu, Jaegala rivers etc. The analyses of the Rannapungerja river runoff showed, that the activity of the restored Tudulinna hydropower plant had an influence on runoff in 2001: the minimum discharge was less than permitted by the legislative acts. Thus, the environmental aspects should have a high priority in hydropower plants reconstruction(author)

  2. Characteristics of Atmospheric River Families in California's Russian River Basin

    Science.gov (United States)

    Fish, M. A.; Wilson, A. M.; Ralph, F. M.

    2017-12-01

    Previous studies have shown the importance of antecedent conditions and storm duration on atmospheric river (AR) impacts in California's Russian River basin. This study concludes that successive ARs, or families of ARs, produce an enhanced streamflow response compared to individual storms. This amplifies the impacts of these storms, which contribute to 50% of the annual precipitation in the Russian River basin. Using the Modern Era Retrospective - analysis for Research and Applications 2 dataset and 228 AR events from November 2004 - April 2017 affecting Bodega Bay, CA (BBY), this study identified favorable characteristics for families vs single ARs and their associated impacts. It was found that 111 AR events ( 50%) occurred within 5 days of one another with 44 events ( 40%) occurring within 24 hours. Using the winter of 2017, which had a multitude of successive ARs in Northern California, this study evaluates the applicability of family composites using case study comparisons. The results of this study show large divergences of family composites from the overall AR pattern, depending on the time interval between events. A composite of all AR events show Bodega Bay generally south of the jet exit region, SW-NE tilt of 500mb heights and a more northerly subtropical high. ARs occurring on the same day have faster southerly winds, a weaker low off the coast and a southerly moisture plume extending along the CA coast. Comparatively ARs that occur the following day, feature a more zonal pattern with faster winds north of BBY, a deeper low off the coast and a moisture plume southwest of the Russian River watershed.

  3. Elwha River Restoration: Sediment Management

    Science.gov (United States)

    Kimbrel, S.; Bountry, J.; Randle, T. J.; Ritchie, A.; Huginin, H.; Torrance, A.

    2013-12-01

    The removal of Elwha and Glines Canyon Dams on the Elwha River relies on controlled reservoir drawdown increments and natural river flows to erode and redistribute the reservoir sediment, estimated to be a total of 23 (× 3) million m3. To mitigate for the predicted sediment effects, facilities have been constructed for water quality and flood protection. A sediment monitoring program is being implemented by an interdisciplinary team from Reclamation and National Park Service to integrate real-time measurements with continually updated numerical model predictions. The most recent numerical reservoir modeling and monitoring results indicate about 20 to 25 percent of the reservoir sediment has been released since the start of dam removal. Monitoring results in 2012 and early 2013 confirmed that controlled reservoir drawdown increments have induced sufficient vertical and lateral erosion of delta surfaces behind both dams. Predam channel and floodplain surface has been exposed in numerous portions of Lake Aldwell, with the release of coarse and fine sediment in the first few pools below Elwha Dam. The material released from Lake Aldwell has included organic material. With the removal of about three quarters of Glines Canyon Dam and the disappearance of Lake Mills, coarse bedload sediment has been continually released into the downstream river since late fall 2012. Field measurements and numerical modeling are being used to track the progression of the sediment wave downstream to the Elwha River mouth. Initial findings are that the aggradation was greatest immediately downstream of Glines Canyon Dam, and filled pools and transformed river planform from step-pool to glide for most of the 7 mile reach between Lake Mills and Lake Aldwell. Although there has not been a major flood, winter flows and spring snowmelt have significantly reworked the released sediment and remnants of the pre-sediment release pools and rapids have re-emerged. Large wood and organics have also

  4. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry

    Science.gov (United States)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan

    2016-09-01

    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning

  5. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  6. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  7. Large-scale river regulation

    International Nuclear Information System (INIS)

    Petts, G.

    1994-01-01

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  8. Radiocesium dynamics in the Hirose River basin

    Science.gov (United States)

    Kuramoto, T.; Taniguchi, K.; Arai, H.; Onuma, S.; Onishi, Y.

    2017-12-01

    A significant amount of radiocesium was deposited in Fukushima Prefecture during the accident of Fukushima Daiichi Nuclear Power Plant. In river systems, radiocesium is transported to downstream in rivers. For the safe use of river and its water, it is needed to clarify the dynamics of radiocesium in river systems. We started the monitoring of the Hirose River from December 2015. The Hirose River is a tributary of the Abukuma River flowing into the Pacific Ocean, and its catchment is close to areas where a large amount of radiocesium was deposited. We set up nine monitoring points in the Hirose River watershed. The Water level and turbidity data are continuously observed at each monitoring point. We regularly collected about 100 liters of water at each monitoring point. Radiocesium in water samples was separated into two forms; the one is the dissolved form, and the other is the suspended particulate form. Radionuclide concentrations of radiocesium in both forms were measured by a germanium semiconductor detector. Furthermore, we applied the TODAM (Time-dependent One-dimensional Degradation And Migration) code to the Hirose River basin using the monitoring data. The objectives of the modeling are to understand a redistribution pattern of radiocesium adsorbed by sediments during flooding events and to determine the amount of radiocesium flux into the Abukuma River.

  9. Geocode of River Networks in Global Plateaus

    Science.gov (United States)

    Ni, J.; Wang, Y.; Wang, T.

    2017-12-01

    As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.

  10. Naturalness and Place in River Rehabilitation

    Directory of Open Access Journals (Sweden)

    Kirstie Fryirs

    2009-06-01

    Full Text Available An authentic approach to river rehabilitation emphasizes concerns for the natural values of a given place. As landscape considerations fashion the physical template upon which biotic associations take place, various geomorphic issues must be addressed in framing rehabilitation activities that strive to improve river health. An open-ended approach to river classification promotes applications that appreciate the values of a given river, rather than pigeonholing reality. As the geomorphic structure of some rivers is naturally simple, promoting heterogeneity as a basis for management may not always be appropriate. Efforts to protect unique attributes of river systems must be balanced with procedures that look after common features. Concerns for ecosystem functionality must relate to the behavioral regime of a given river, remembering that some rivers are inherently sensitive to disturbance. Responses to human disturbance must be viewed in relation to natural variability, recognizing how spatial relationships in a catchment, and responses to past disturbances, fashion the operation of contemporary fluxes. These fluxes, in turn, influence what is achievable in the rehabilitation of a given reach. Given the inherently adjusting and evolutionary nature of river systems, notional endpoints do not provide an appropriate basis upon which to promote concepts of naturalness and place in the rehabilitation process. These themes are drawn together to promote rehabilitation practices that relate to the natural values of each river system, in preference to applications of "cookbook" measures that build upon textbook geomorphology.

  11. River flood defence. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Toensmann, F. [Kassel Univ. (Germany). Dept. of Hydraulic and Water-Resources Engineering; Koch, M. (eds.) [Kassel Univ. (Germany). Dept. of Geohydraulics and Engineering Hydrology

    2001-07-01

    The present proceedings volume is complementary to the previous two proceedings volumes of the International Symposium on 'River Flood Defence' that was held in Kassel, September, 20-23, 2000. Apart from two supplementary contributions that did not meet the deadline to be published in the first two volumes, the present volume contains contributions to the special symposium 'Pollutants and Disease Pathogens in Floods'. (orig.)

  12. Dioxin in the river Elbe.

    Science.gov (United States)

    Götz, Rainer; Bergemann, Michael; Stachel, Burkhard; Umlauf, Gunther

    2017-09-01

    This paper provides a macro-analysis of the dioxin contamination in the river Elbe from the 1940s to the present. Based on different data sets, the historic dioxin concentration in the Elbe has been reconstructed. For the section between the tributary Mulde and Hamburg, during the 1940s, we find a concentration of about 1500 pg WHO-TEQ g -1 . We argue that this dioxin contamination was caused mainly by emissions from a magnesium plant in Bitterfeld-Wolfen, whose effluents were discharged into a tributary of the river Mulde which flows into the Elbe. Dioxin pattern recognition with neural networks (Kohonen) confirms this. A model simulation shows that a hypothetical dioxin concentration of 10,000 pg WHO-TEQ g -1 in the tributary Mulde could have caused the reconstructed dioxin concentration of 1500 pg WHO-TEQ g -1 in the Elbe. The recent dioxin concentration (about 25-100 pg WHO-TEQ g -1 ) in the river Elbe, downstream the tributary Mulde, originates, according to our hypothesis, from emissions of the banks and the highly contaminated flood plains (transport of the particle bound dioxin). As other possible dioxin sources, the following could be excluded: the dioxin concentration in the Mulde, groynes, small ports, sport boat harbours, and extreme floods. Our hypothesis is supported by the results of pattern recognition techniques and a model simulation. According to these findings, we argue that remediation efforts to reduce the dioxin concentration in the river Elbe are unlikely to be successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  14. Raft River geoscience case study

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  15. THE IMPACT OF URBAN RIVER VALLEY LAND USE AND MORPHOLOGICAL CONDITION FOR RIVER VEGETATION IN RIVER BED

    Directory of Open Access Journals (Sweden)

    Adam Marek Hamerla

    2016-09-01

    Full Text Available This paper is focused on the results of research about the relationship between hydromorphological condition and share of plants in river bed. Assessment, made in urbanized and heavy industry part of Upper Silesia, provide proof of strong relation between land use, land cover in river valley and type of river vegetation. Moreover, the relationship between hydromorphological indicators and groups of plants was defined.

  16. Fish fauna from Sapucaí-Mirim River, tributary of Grande River, upper Paraná River basin, Southeastern Brazil

    OpenAIRE

    Oliveira,Alexandre Kannebley de; Garavello,Julio Cesar; Cesario,Vinicius Vendramini; Cardoso,Rodrigo Torres

    2016-01-01

    The fish species composition of Sapucaí-Mirim River is herein reported and discussed in the faunistic context of Grande and Paranaíba river basins, both formers of the Paraná River. The Sapucaí-Mirim is an important tributary of this hydrographic system, flowing to the left bank of Grande River in a region occupied by the reservoir of the Porto Colombia hydroelectric power plant, at São Paulo state northeastern region, in southeastern Brazil. The poorly known fish diversity of the Sapucaí-Mir...

  17. Rare earth elements in river waters

    Science.gov (United States)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  18. The Upper Mississippi River System—Topobathy

    Science.gov (United States)

    Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.

    2017-03-23

    The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.

  19. Decline of radionuclides in Columbia River biota

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Watson, D.G.; Scott, A.J.; Gurtisen, J.M.

    1980-03-01

    In January 1971, the last of nine plutonium production reactors using direct discharge of once-through cooling waters into the Columbia River was closed. Sampling was initiated at three stations on the Columbia River to document the decline of the radionuclide body burdens in the biota of the Columbia River ecosystem. The data show that in a river-reservoir complex, the measurable body burden of fission-produced radionuclides decreased to essentially undetectable levels within 18 to 24 mo after cessation of discharge of once-through cooling water into the river. On the basis of data from the free-flowing station, we believe that this decrease would be even more rapid in an unimpounded river.

  20. 33 CFR 117.424 - Belle River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Belle River. 117.424 Section 117... OPERATION REGULATIONS Specific Requirements Louisiana § 117.424 Belle River. The draw of the S70 bridge, mile 23.8 (Landside Route) near Belle River, shall open on signal; except that, from 10 p.m. to 6 a.m...

  1. Ecological management of urban rivers in China

    Science.gov (United States)

    Zhang, Junhong; Hou, Xin; Xu, Yiping

    2017-03-01

    At present, China's urban river is widespread with serious pollution, poor water quality, poor water mobility and other issues. In this article, we analyzed the root causes of urban river water environment problems systematically, then puts forward the ways to solve the problems, which including implement the "river length system", strengthen the control of pollution sources, persist in ecological concepts, establish long-term mechanism and strengthen publicity and education.

  2. Anthropogenic impacts on global organic river pollution

    OpenAIRE

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water management for organic river quality at global scale, a crucial step is to develop a spatial analysis of organic river pollution threats. This thesis provides for the first time a quantitative picture of th...

  3. Fish, Barra Bonita River, upper Paraná River basin, state of Paraná, Brazil.

    Directory of Open Access Journals (Sweden)

    Bifi, A. G.

    2008-01-01

    Full Text Available The Barra Bonita River is an affluent of the left margin of the Ivaí River, upper Paraná River basin. Fishsamples were conduced in November 2006 (spring and in February 2007 (summer, in three sampling stations alongthe Barra Bonita River, using gill nets, casting nets, and sieves. Thirty one fish species were collected, which belong tofive orders, 14 families, and 25 genera. Among them, five are probably new to science.

  4. Classification of Tropical River Using Chemometrics Technique: Case Study in Pahang River, Malaysia

    International Nuclear Information System (INIS)

    Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Nur Hishaam Sulaiman

    2015-01-01

    River classification is very important to know the river characteristic in study areas, where this database can help to understand the behaviour of the river. This article discusses about river classification using Chemometrics techniques in mainstream of Pahang River. Based on river survey, GIS and Remote Sensing database, the chemometric analysis techniques have been used to identify the cluster on the Pahang River using Hierarchical Agglomerative Cluster Analysis (HACA). Calibration and validation process using Discriminant Analysis (DA) has been used to confirm the HACA result. Principal Component Analysis (PCA) study to see the strong coefficient where the Pahang River has been classed. The results indicated the main of Pahang River has been classed to three main clusters as upstream, middle stream and downstream. Base on DA analysis, the calibration and validation model shows 100 % convinced. While the PCA indicates there are three variables that have a significant correlation, domination slope with R 2 0.796, L/D ratio with R 2 -0868 and sinuosity with R 2 0.557. Map of the river classification with moving class also was produced. Where the green colour considered in valley erosion zone, yellow in a low terrace of land near the channels and red colour class in flood plain and valley deposition zone. From this result, the basic information can be produced to understand the characteristics of the main Pahang River. This result is important to local authorities to make decisions according to the cluster or guidelines for future study in Pahang River, Malaysia specifically and for Tropical River generally. The research findings are important to local authorities by providing basic data as a guidelines to the integrated river management at Pahang River, and Tropical River in general. (author)

  5. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  6. 33 CFR 207.330 - Mississippi River between Winnibigoshish and Pokegama dams, Leech River between outlet of Leech...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Mississippi River between Winnibigoshish and Pokegama dams, Leech River between outlet of Leech Lake and Mississippi River, and Pokegama... Winnibigoshish and Pokegama dams, Leech River between outlet of Leech Lake and Mississippi River, and Pokegama...

  7. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Science.gov (United States)

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount Pleasant... water swim, starts at Hobcaw Yacht Club on the Wando River, in approximate position 32[deg]49'19'' N, 79...

  8. Savannah River Laboratory monthly report, July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  9. Savannah River Laboratory monthly report, July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  10. The Columbia River System Inside Story

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  11. Savannah River Laboratory monthly report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  12. Savannah River Laboratory monthly report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  13. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  14. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  15. Savannah River Laboratory monthly report, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  16. Savannah River Laboratory monthly report, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  17. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    Science.gov (United States)

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  18. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    Science.gov (United States)

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  19. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Science.gov (United States)

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  20. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...

  1. Rivers running deep : complex flow and morphology in the Mahakam River, Indonesia

    NARCIS (Netherlands)

    Vermeulen, B.

    2014-01-01

    Rivers in tropical regions often challenge our geomorphological understanding of fluvial systems. Hairpin bends, natural scours, bifurcate meander bends, tie channels and embayments in the river bank are a few examples of features ubiquitous in tropical rivers. Existing observation techniques

  2. 78 FR 59237 - Regulated Navigation Area-Weymouth Fore River, Fore River Bridge Construction, Weymouth and...

    Science.gov (United States)

    2013-09-26

    ...-AA11 Regulated Navigation Area--Weymouth Fore River, Fore River Bridge Construction, Weymouth and... necessary to provide for the safety of life in the vicinity of the Fore River Bridge during its construction.... Mark Cutter, Coast Guard Sector Boston Waterways Management Division, telephone 617-223-4000, email...

  3. 78 FR 49918 - Drawbridge Operation Regulation; Taunton River, Fall River and Somerset, MA

    Science.gov (United States)

    2013-08-16

    ... create an environmental risk to health or risk to safety that might disproportionately affect children... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Taunton River, Fall... across the Taunton River, mile 2.1, between Fall River and Somerset, Massachusetts. The bridge owner...

  4. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran

    NARCIS (Netherlands)

    Yousefi, Saleh; Moradi, Hamid Reza; Keesstra, Saskia; Pourghasemi, Hamid Reza; Navratil, Oldrich; Hooke, Janet

    2017-01-01

    In the present study, we investigate the effects of urbanization growth on river morphology in the downstream part of Talar River, east of Mazandaran Province, Iran. Morphological and morphometric parameters in 10 equal sub-reaches were defined along a 11.5 km reach of the Talar River after land

  5. The Middle Sacramento River: Human Impacts on Physical and Ecological Processes Along a Meandering River

    Science.gov (United States)

    Koll Buer; Dave Forwalter; Mike Kissel; Bill Stohlert

    1989-01-01

    Native plant and wildlife communities along Northern California's middle Sacramento River (Red Bluff to Colusa) originally adapted to a changing pattern of erosion and deposition across a broad meander belt. The erosion-deposition process was in balance, with the river alternately building and eroding terraces. Human-induced changes to the Sacramento River,...

  6. 76 FR 24914 - Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers...

    Science.gov (United States)

    2011-05-03

    ... Digital River Education Services acquired Journey Education Marketing (JEM) in August 2010. Some workers... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,975] Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers Whose Unemployment Insurance (UI...

  7. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ...; Yakima River Basin Water Enhancement Project, Yakima, WA AGENCY: Bureau of Reclamation, Interior. ACTION... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... future projects being funded with Yakima River Basin Water Enhancement Project funds. The CAG will also...

  8. Saving a river: a joint management approuch to the Mekong River Basin

    NARCIS (Netherlands)

    Houba, H.E.D.; Pham Do, K.H.; Zhu, X.

    2013-01-01

    The Mekong River Basin (MRB) is a trans-boundary river shared by six countries. The governance by the Mekong River Commission (MRC) of the Lower Mekong Basin (LMB) is weak. This study investigates the welfare effects in the year 2030 arising from strengthening the MRC's governance versus joint

  9. Saving a river: a joint management approach to the Mekong River Basin

    NARCIS (Netherlands)

    Houba, H.; Hang Pham-Do, K.; Zhu, X.

    2013-01-01

    The Mekong River Basin (MRB) is a trans-boundary river shared by six countries. The governance by the Mekong River Commission (MRC) of the Lower Mekong Basin (LMB) is weak. This study investigates the welfare effects in the year 2030 arising from strengthening the MRC's governance versus joint

  10. Inputs from Indian rivers to the ocean: A synthesis

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; SenGupta, R.

    ). Fluxes of chemical substances to the Indian Ocean from these rivers are computed to a first approximation. The major ion contents are inversely proportional to the river runoff especially for the rivers entering the Arabian Sea. On an average Indian...

  11. How Do Atmospheric Rivers Form?

    Science.gov (United States)

    Dacre, H.; Martinez-Alvarado, O.; Clark, P. A.; Stringer, M. A.; Lavers, D.

    2017-12-01

    The term "atmospheric river" is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high-impact flooding events. However, there remains some debate as to how these filaments form. In this study, the authors analyze the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front that sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the center of a cyclone (as suggested by the term "atmospheric river"), these filaments are, in fact, the result of water vapor exported from the cyclone, and thus they represent the footprints left behind as cyclones travel poleward from the subtropics.

  12. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  13. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    Science.gov (United States)

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  14. Coastal river plumes: Collisions and coalescence

    Science.gov (United States)

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas  100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and fate of river waters in these settings will be strongly influenced by these interactions. We conclude that new investigations are needed to characterize how plumes interact offshore of river mouths to

  15. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  16. Savannah River Site dose control

    International Nuclear Information System (INIS)

    Smith, L.S.

    1992-01-01

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits

  17. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  18. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland

    Directory of Open Access Journals (Sweden)

    Przybyłek Jan

    2017-12-01

    Full Text Available River bank filtration (RBF is a system that enriches groundwater resources by induced infiltration of river water to an aquifer. Problematic during operation of RBF systems is the deterioration of infiltration effectiveness caused by river bed clogging. This situation was observed in the Krajkowo well field which supplies fresh water to the city of Poznań (Poland during and after the long hydrological drought between the years 1989 and 1992. The present note discusses results of specific hydrogeological research which included drilling of a net of boreholes to a depth of 10 m below river bottom (for sediment sampling as well as for hydrogeological measurements, analyses of grain size distribution and relative density studies. The results obtained have allowed the recognition of the origin of the clogging processes, as well as the documentation of the clogged parts of the river bottom designated for unclogging activities.

  19. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study...... is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements...

  20. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Science.gov (United States)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  1. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    Directory of Open Access Journals (Sweden)

    Ellen Wohl

    2005-12-01

    Full Text Available A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restoration as well as the decision about what type of restoration should be attempted. Determining the degree to which a river has been altered from its reference condition requires a knowledge of historical land use and the associated effects on rivers. Rivers of the Front Range of the Colorado Rocky Mountains in the United States are used to illustrate how historical land uses such as beaver trapping, placer mining, tie drives, flow regulation, and the construction of transportation corridors continue to affect contemporary river characteristics. Ignorance of regional land use and river history can lead to restoration that sets unrealistic goals because it is based on incorrect assumptions about a river's reference condition or about the influence of persistent land-use effects.

  2. Savannah River Site Environmental Report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  3. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  4. 33 CFR 117.457 - Houston River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Houston River. 117.457 Section 117.457 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.457 Houston River. The draw of the...

  5. Sea Otter, River Otter. The Wonder Series.

    Science.gov (United States)

    Robinson, Sandra Chisholm

    This curriculum guide is all about otters and provides information on both sea and river otters. Included are activities related to the diet of sea otters, the adaptations sea otters have made to live in the sea, their tool-using abilities, where they live and how to spot them, comparative anatomy of sea and river otters, and otter movement. The…

  6. Climate influences on Vaal River flow

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... enriched NW-cloud bands over the Vaal River catchment, during the flood case study of January 2010. Comparison of. (Pacific) Southern Oscillation and east Atlantic influence on Vaal River discharge reveals the former drives evaporative losses while the latter provides an advance warning of flow ...

  7. Excessive nitrogen and phosphorus in European rivers

    NARCIS (Netherlands)

    Blaas, Harry; Kroeze, Carolien

    2016-01-01

    Rivers export nutrients to coastal waters. Excess nutrient export may result in harmful algal blooms and hypoxia, affecting biodiversity, fisheries, and recreation. The purpose of this study is to quantify for European rivers (1) the extent to which N and P loads exceed levels that minimize the

  8. 129I in the Ob river

    International Nuclear Information System (INIS)

    Moran, S.B.; Cochran, J.K.; Fisher, N.S.; Kilius, L.R.

    1995-01-01

    The aim of this study was: 1) to determine 129 I concentrations in the Ob river, and 2) to determine 129 I concentrations in surficial sediments in the river. Some results from the study are summarized in the present paper. 5 refs., 3 figs

  9. Analysis of Cruise Tourism on Croatian Rivers

    Directory of Open Access Journals (Sweden)

    Astrid Zekić

    2017-03-01

    Full Text Available Cruise trips have been rising in popularity since the 1970sand are currently a trend in the tourism market. This is particularly true of river cruises, which record a constant growth in the number of ship calls. The general upward trend in the number of river cruise passengers and dockings is also present in Croatia. Prerequisites for the development of cruising on Croatian rivers include, in addition to other geographical features, also the length of navigable water ways, but a systematic approach to this issue is needed for further development. The authors investigate the level of development of infrastructure on Croatian rivers and analyse the passenger and ship traffic on them. Special attention is given to the importance of cruises for tourism on European rivers and worldwide. In accordance with the Croatian Tourism Development Strategy until 2020, the authors explore geographical and other conditions necessary for the development of river cruise tourism. The aim of the paper is to point to the importance of building infrastructure for accommodation of vessels sailing on Croatian rivers, and in particular to the need to improve tourism offer in river destinations.

  10. 33 CFR 334.230 - Potomac River.

    Science.gov (United States)

    2010-07-01

    ... infrequent intervals. (ii) Middle zone. Beginning at the intersection of the Potomac River Bridge with the... using dredged channels and propelled by mechanical power at a speed greater than five miles per hour may... Potomac River during firing hours shall proceed outside of the northeastern boundary of the Middle Danger...

  11. 33 CFR 117.417 - Ohio River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ohio River. 117.417 Section 117.417 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Kentucky § 117.417 Ohio River. The draw of the Southern Railway...

  12. 33 CFR 117.241 - Mispillion River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mispillion River. 117.241 Section 117.241 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.241 Mispillion River. The draw of the...

  13. 33 CFR 117.381 - Clearwater River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Clearwater River. 117.381 Section 117.381 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho § 117.381 Clearwater River. The draws of the...

  14. 33 CFR 117.113 - Tensaw River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tensaw River. 117.113 Section 117.113 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.113 Tensaw River. The draw of the CSX...

  15. 33 CFR 117.127 - Current River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Current River. 117.127 Section 117.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.127 Current River. The draws of the...

  16. 33 CFR 117.367 - Ogeechee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ogeechee River. 117.367 Section 117.367 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.367 Ogeechee River. (a) The draw of the...

  17. 33 CFR 117.305 - Miami River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Miami River. 117.305 Section 117.305 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.305 Miami River. (a) General. Public vessels of...

  18. 33 CFR 117.141 - American River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false American River. 117.141 Section 117.141 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.141 American River. The draw of the...

  19. 33 CFR 117.473 - Little River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Little River. 117.473 Section 117.473 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.473 Little River. The draw of the Louisiana and...

  20. 33 CFR 117.493 - Sabine River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sabine River. 117.493 Section 117.493 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.493 Sabine River. (a) The draw of the Union...

  1. 33 CFR 117.121 - Arkansas River

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Arkansas River 117.121 Section 117.121 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.121 Arkansas River The draw of the...

  2. 33 CFR 117.215 - Niantic River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Niantic River. 117.215 Section 117.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.215 Niantic River. (a) The draw of...

  3. 33 CFR 117.423 - Atchafalaya River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atchafalaya River. 117.423 Section 117.423 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.423 Atchafalaya River. The draw of the...

  4. 33 CFR 117.365 - Oconee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oconee River. 117.365 Section 117.365 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.365 Oconee River. The draw of the SR46 bridge...

  5. 33 CFR 117.523 - Back River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Back River. 117.523 Section 117.523 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.523 Back River. The draw of the Maine Department of...

  6. 33 CFR 117.109 - Coosa River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Coosa River. 117.109 Section 117.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.109 Coosa River. The draw of the CSX...

  7. 33 CFR 117.422 - Amite River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amite River. 117.422 Section 117.422 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.422 Amite River. (a) The draw of the S22 bridge...

  8. 33 CFR 117.224 - Thames River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Thames River. 117.224 Section 117.224 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.224 Thames River. The draw of the Amtrak...

  9. 33 CFR 117.245 - Smyrna River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smyrna River. 117.245 Section 117.245 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.245 Smyrna River. The draw of the Delaware...

  10. 33 CFR 117.131 - Little River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Little River. 117.131 Section 117.131 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.131 Little River. The draws of the Burlington...

  11. 33 CFR 117.553 - Choptank River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Choptank River. 117.553 Section 117.553 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.553 Choptank River. (a) The draw of the...

  12. 33 CFR 117.529 - Narraguagus River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Narraguagus River. 117.529 Section 117.529 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.529 Narraguagus River. The draw of the...

  13. 33 CFR 117.565 - Miles River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Miles River. 117.565 Section 117.565 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.565 Miles River. The draw of the Route S370...

  14. 33 CFR 117.295 - Kissimmee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kissimmee River. 117.295 Section 117.295 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.295 Kissimmee River. The draw of the DSX...

  15. 33 CFR 117.207 - Housatonic River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Housatonic River. 117.207 Section 117.207 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.207 Housatonic River. (a) The draw...

  16. 33 CFR 117.139 - White River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false White River. 117.139 Section 117.139 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.139 White River. (a) The draws of the St. Louis...

  17. 33 CFR 117.125 - Black River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Black River. 117.125 Section 117.125 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.125 Black River. The following draws need not be...

  18. 33 CFR 117.427 - Black River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Black River. 117.427 Section 117.427 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.427 Black River. The draw of the US84 bridge...

  19. 33 CFR 117.480 - Mermentau River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mermentau River. 117.480 Section 117.480 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.480 Mermentau River. The draw of the...

  20. 33 CFR 117.569 - Pocomoke River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pocomoke River. 117.569 Section 117.569 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.569 Pocomoke River. (a) The Conrail...

  1. 33 CFR 117.551 - Chester River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chester River. 117.551 Section 117.551 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.551 Chester River. The draw of the S213...

  2. 33 CFR 117.319 - Oklawaha River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oklawaha River. 117.319 Section 117.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.319 Oklawaha River. (a) The draw of the...

  3. 33 CFR 117.107 - Chattahoochee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chattahoochee River. 117.107 Section 117.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.107 Chattahoochee River. The draws of...

  4. 33 CFR 117.585 - Acushnet River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Acushnet River. 117.585 Section 117.585 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.585 Acushnet River. (a) The...

  5. 33 CFR 117.221 - Saugatuck River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Saugatuck River. 117.221 Section 117.221 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.221 Saugatuck River. (a) Public...

  6. 33 CFR 117.500 - Tchefuncta River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tchefuncta River. 117.500 Section 117.500 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.500 Tchefuncta River. The draw of the...

  7. 33 CFR 117.525 - Kennebec River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kennebec River. 117.525 Section 117.525 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.525 Kennebec River. (a) The draw of the...

  8. 33 CFR 117.101 - Alabama River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Alabama River. 117.101 Section 117.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.101 Alabama River. (a) The Alabama...

  9. 33 CFR 117.271 - Blackwater River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Blackwater River. 117.271 Section 117.271 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.271 Blackwater River. The draw of the...

  10. 33 CFR 117.219 - Pequonnock River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pequonnock River. 117.219 Section 117.219 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.219 Pequonnock River. (a) Public...

  11. 33 CFR 117.361 - Flint River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Flint River. 117.361 Section 117.361 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.361 Flint River. The draws of the CSX...

  12. 33 CFR 117.389 - Calumet River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Calumet River. 117.389 Section 117.389 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Illinois § 117.389 Calumet River. The draws of the...

  13. 33 CFR 117.503 - Tensas River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tensas River. 117.503 Section 117.503 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.503 Tensas River. The draws of the S15 bridge...

  14. 33 CFR 117.483 - Ouachita River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ouachita River. 117.483 Section 117.483 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.483 Ouachita River. The draw of the S8...

  15. 33 CFR 117.133 - Ouachita River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ouachita River. 117.133 Section 117.133 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.133 Ouachita River. The draw of the St...

  16. 33 CFR 117.567 - Patuxent River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Patuxent River. 117.567 Section 117.567 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.567 Patuxent River. The draw of S231...

  17. 33 CFR 117.587 - Apponagansett River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Apponagansett River. 117.587 Section 117.587 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.587 Apponagansett River. (a) The...

  18. 33 CFR 117.187 - Petaluma River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Petaluma River. 117.187 Section 117.187 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.187 Petaluma River. (a) The draws of...

  19. 33 CFR 117.205 - Connecticut River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Connecticut River. 117.205 Section 117.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.205 Connecticut River. (a) The...

  20. 33 CFR 117.588 - Bass River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bass River. 117.588 Section 117.588 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.588 Bass River. The Hall Whitaker Bridge...

  1. 33 CFR 117.533 - Sheepscot River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sheepscot River. 117.533 Section 117.533 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maine § 117.533 Sheepscot River. The draw of the Maine...

  2. 33 CFR 117.211 - Mystic River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mystic River. 117.211 Section 117.211 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.211 Mystic River. (a) The draw of the Amtrak...

  3. 33 CFR 117.243 - Nanticoke River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nanticoke River. 117.243 Section 117.243 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.243 Nanticoke River. (a) The draw of...

  4. 33 CFR 117.255 - Potomac River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Potomac River. 117.255 Section 117.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements District of Columbia § 117.255 Potomac River. (a) The...

  5. 33 CFR 117.253 - Anacostia River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Anacostia River. 117.253 Section 117.253 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements District of Columbia § 117.253 Anacostia River. (a...

  6. 33 CFR 117.363 - Ocmulgee River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ocmulgee River. 117.363 Section 117.363 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.363 Ocmulgee River. The draws of each...

  7. 33 CFR 117.369 - Satilla River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Satilla River. 117.369 Section 117.369 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.369 Satilla River. The draw of the...

  8. 33 CFR 117.415 - Green River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Green River. 117.415 Section 117.415 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Kentucky § 117.415 Green River. (a) The draw of the CSX...

  9. 33 CFR 80.715 - Savannah River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from the...

  10. 33 CFR 117.135 - Red River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges above...

  11. 33 CFR 117.209 - Mianus River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mianus River. 117.209 Section 117.209 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.209 Mianus River. The draw of the Metro-North...

  12. 33 CFR 117.509 - Vermilion River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Vermilion River. 117.509 Section 117.509 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.509 Vermilion River. (a) The draw of...

  13. 33 CFR 117.351 - Altamaha River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Altamaha River. 117.351 Section 117.351 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.351 Altamaha River. (a) The draws of all...

  14. 33 CFR 117.371 - Savannah River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 117.371 Section 117.371 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of the...

  15. 33 CFR 117.313 - New River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New River. 117.313 Section 117.313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.313 New River. (a) The draw of the SE. Third...

  16. 33 CFR 117.486 - Pearl River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pearl River. 117.486 Section 117.486 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.486 Pearl River. (a) The draw of the CSX...

  17. 33 CFR 117.491 - Red River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union Pacific...

  18. 76 FR 12094 - Whitman River Dam, Inc.

    Science.gov (United States)

    2011-03-04

    ... Dam, Inc. Notice of Application Tendered for Filing With the Commission and Soliciting Additional.... Project No.: 13237-002. c. Date Filed: February 14, 2011. d. Applicant: Whitman River Dam, Inc. e. Name of Project: Crocker Dam Hydro Project. f. Location: On the Whitman River, in the Town of Westminster...

  19. 33 CFR 117.385 - Snake River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge...

  20. 33 CFR 117.697 - Hampton River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hampton River. 117.697 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Hampshire § 117.697 Hampton River. The SR1A bridge, mile 0.0 at Hampton, operates as follows: (a) The draw shall open on signal from April 1 through...

  1. 33 CFR 117.263 - Banana River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers (SR...

  2. Restoring Oaks in the Missouri River Floodplain

    Science.gov (United States)

    Dan Dey; John Kabrick; Jennifer Grabner; Mike Gold

    2001-01-01

    Restoration of native vegetation and hydrologic regimes in the Mississippi and Missouri River floodplains is problematic because they are among the most altered ecosystems in North America (Noss et al. 1995), and because of the competing demands placed on these river ecosystems by commercial, private and social interests. Since the 1780s, more than half (53 percent) of...

  3. Determination of characteristics maximal runoff Mountain Rivers

    African Journals Online (AJOL)

    Ovcharuk V and Todorova O

    Odessa State Environmental University, Ukraine. Received: 03 December 2015 / Accepted: 23 April 2016 / Published online: 01 May 2016. ABSTRACT. This article has been examined maximum runoff of the rivers of the Crimean Mountains. The rivers flow through the western and eastern part of the northern slope Crimean ...

  4. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  5. Water quality of the river Damanganga (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Narvekar, P.V.; Sarma, R.V.; Desai, B.N.

    Water quality (pH, suspended solids, chlorides, DO, BOD, reactive and total phosphorus, nitrates and boron) of River Damanganga which receives 0.2 mld of industrial waste into its fresh water zone through Pimparia River and 3.7 mld in its tidal zone...

  6. Vocal behaviour of Orange River Francolin Scleroptila ...

    African Journals Online (AJOL)

    Fieldwork to study the vocal behaviour of Orange River Francolin Scleroptilia levaillantoides was conducted on a farm in the Heidelberg district, Gauteng province, South Africa, during August 2009 to March 2011. Orange River Francolins possess a basic repertoire of seven calls and one mechanical sound. From 83 ...

  7. Savannah River Site Environmental Report for 1998

    International Nuclear Information System (INIS)

    Arnett, M.

    1999-01-01

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program

  8. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  9. Modern and ancient periglacial river types

    NARCIS (Netherlands)

    Vandenberghe, J.; Woo, M.K.

    2002-01-01

    Climate has been proposed conventionally as the primary factor that determines periglacial river activity (aggradation) and pattern (braided). This concept does not explain the rich diversity in river patterns and morphological processes in both the present and past periglacial environments: besides

  10. Environmental protection in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Riley, G.

    1989-01-01

    One of a series of articles on the work of the Office of the Supervising Scientist for the Alligator Rivers Region (OSS) and its Alligator Rivers Region Research Institute (ARRRI), this discusses the environmental protection function of the OSS and the role of the ARRRI in achieving this

  11. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  12. Thinking big: linking rivers to landscapes

    Science.gov (United States)

    Joan O’Callaghan; Ashley E. Steel; Kelly M. Burnett

    2012-01-01

    Exploring relationships between landscape characteristics and rivers is an emerging field, enabled by the proliferation of satellite date, advances in statistical analysis, and increased emphasis on large-scale monitoring. Landscapes features such as road networks, underlying geology, and human developments, determine the characteristics of the rivers flowing through...

  13. Tanzania River Scoring System (TARISS): a macroinvertebrate ...

    African Journals Online (AJOL)

    The biological assessment of rivers using aquatic macroinvertebrates is an internationally recognised approach for the determination of riverine ecological conditions. In this study a Tanzanian macroinvertebrate-based biotic method, Tanzania River Scoring System (TARISS), was developed in 2012, based on the South ...

  14. 33 CFR 117.1095 - Root River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main Street...

  15. River System Behaviour Effects on Flood Risk

    NARCIS (Netherlands)

    Schweckendiek, T.; Vrouwenvelder, A.C.W.M.; Van Mierlo, M.C.L.M.; Calle, E.O.F.; Courage, W.M.G.

    2008-01-01

    A risk-based safety approach is indispensable to support decision-making on flood protection strategies and measures. Hitherto the effects of river system behaviour on flood risk have usually been neglected. River system behaviour refers to the fact that the flood risk (or safety) of a particular

  16. River system behaviour effects on flood risk

    NARCIS (Netherlands)

    Schweckendiek, T.; Vrouwenvelder, A.C.W.M.; Mierlo, M.C.L.M. van; Calle, E.O.F.; Courage, W.M.G.

    2009-01-01

    A risk-based safety approach is indispensable to support decision-making on flood protection strategies and measures. Hitherto the effects of river system behaviour on flood risk have usually been neglected. River system behaviour refers to the fact that the flood risk (or safety) of a particular

  17. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  18. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    Science.gov (United States)

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  19. Radioactivity in Orontes river environment

    International Nuclear Information System (INIS)

    Othman, I.; Al-Masri, M. S.; Al-Oudat, M.; Abba, A.; Al-Hishari, M.; Berakdar, I.

    1998-09-01

    Syrian phosphate industry is considered to be one of the main sources of pollutants at the most important water resources of the middle region viz. Orontes river and Quttina lake. The main environmental concern associated with this industry in connection to radioactive contamination is the presence of naturally occurring radionuclides such as 238 U, 226 Ra and their daughters. The impact of this industry on Orontes environment has been investigated. Water, particulates, sediments and plants from seven locations along the Orontes River have been collected and analyzed for radioactivity. The results have shown a clear signal enhancement of natural radionuclides such as 226 Ra, 238 U and 210 Po in those samples collected from sites close to the factory. This enhancement was found to be due to phosphate factory discharges viz. Dust, liquid influents and phosphogypsum piles situated in the area. In addition, an increase in the concentrations of these radionuclides was also observed in other samples where the applications of phosphate fertilizers which contain relatively higher levels of 226 Ra (225 Bq/kg), 238 U (444 Bq/kg) and 210 (220 Bq/kg) being the main source of enhancement. However, the obtained levels of radioactivity are still lower than those reported in other areas in the world where similar source of contamination is presented. (author)

  20. The social connectivity of urban rivers

    Science.gov (United States)

    Kondolf, G. Mathias; Pinto, Pedro J.

    2017-01-01

    By social connectivity we refer to the communication and movement of people, goods, ideas, and culture along and across rivers, recognizing longitudinal, lateral, and vertical connectivity, much as has been described for other rivers for hydrology and ecology. We focus on rivers as they pass through cities, and the relationships between these rivers and city dwellers. Historically, the most important longitudinal connectivity function of rivers was their role as major transport routes and the simplification of formerly complex, irregular banks and beds, into straight, uniform shipping channels has resulted in a loss of lateral and vertical connectivity, notably the quotidian uses such as fishing, washing clothes, water supply, swimming and other recreation. The scale of the river itself, and its scale in comparison to the scale of the city, largely determine the river's social function and the degree to which it influences city form. River width affects the perception of 'closeness' of the other bank, ease of bridging the river, influence of the river on the city's street pattern, and type of waterfront uses that occur. Up to 15 m wide, people can converse, whereas across rivers 50 to 200 m wide, people are not recognizable but still clearly visible, instilling the banks with a 'lively' atmosphere. At widths over 200 m, people blur, yet moving vehicles and trees branches shaking in wind may still provide some dynamic elements to an otherwise static landscape composed of building facades. In exceptionally wide rivers, the city on the opposite bank is little more than a skyline, which often becomes a signature and symbol of regional identity. In contemplating how people use rivers, we can define a range of human activities in relation to height above the water (i.e., instream to banktop), a vertical dimension of human connectivity with rivers. Many uses occur on the top of the bank, such as quiet contemplation, walking, or cycling along a riverside trail, while

  1. Ambient noise in large rivers (L).

    Science.gov (United States)

    Vračar, Miodrag S; Mijić, Miomir

    2011-10-01

    This paper presents the results of hydroacoustic noise research in three large European rivers: the Danube, the Sava, and the Tisa. Noise in these rivers was observed during a period of ten years, which includes all annual variation in hydrological and meteorological conditions (flow rate, speed of flow, wind speed, etc.). Noise spectra are characterized by wide maximums at frequencies between 20 and 30 Hz, and relatively constant slope toward higher frequencies. Spectral level of noise changes in time in relatively wide limits. At low frequencies, below 100 Hz, the dynamics of noise level is correlated with the dynamics of water flow and speed. At higher frequencies, noise spectra are mostly influenced by human activities on river and on riverbanks. The influence of wind on noise in rivers is complex due to the annual variation of river surface. The influence of wind is less pronounced than in oceans, seas, and lakes. © 2011 Acoustical Society of America

  2. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  3. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    Hydrological models are widely used by water managers as a decision support tool for both real-time and long-term applications. Some examples of real-time management issues are the optimal management of reservoir releases, flood forecasting or water allocation in drought conditions. Long term....... Many types of RS are now routinely used to set up and drive river basin models. One of the key hydrological state variables is river discharge. It is typically the output of interest for water allocation applications and is also widely used as a source of calibration data as it presents the integrated...... response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...

  4. Preface to the volume Large Rivers

    Science.gov (United States)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  5. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  7. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Lijun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yang Jifeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Wang Li; Yang Bin; Liu Shan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  8. Plankton diversity as bioindicator of Surakarta rivers quality

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2002-07-01

    Full Text Available Rivers have essential role in human cultures. They are sanctuary for amount of biodiversity, but threatened seriously now. The objective of this research is to know Surakarta (Solo rivers quality based on plankton diversity. This town has amount of kampongs and industrial estates that discard wastes to rivers directly. Plankton community is one of the river qualities indicators, because pollutant and other organisms can influence their population. The research was conducted at four rivers in Surakarta, namely Pepe River, Premulung River, Anyar River and Jenes River. Data was collected in triple before and after rivers through the town. Data was analyzed by diversity index of Shannon Wienner. The result indicated that Surakarta rivers had been polluted in degree of lightly to seriously.

  9. [Diatoms Distribution in Ningbo Three-river Watershed during Summer].

    Science.gov (United States)

    Cai, H G; Ying, J; Ni, Z H; Lan, P; Zhang, Y Y; Yu, R J; Pang, H B; Ye, C L; Wei, D M

    2016-12-01

    To explore the species, quantity and distribution of diatoms in Ningbo three-river watershed during summer and to provide scientific basis for forensic examination of drowning cases in the waters of Ningbo. Water samples were collected in July and August of 2015. Fourteen water sampling points were selected from the Yao River, the Fenghua River and the Yong River. The morphological features of diatom species and dominant diatoms were distinguished by microscope. A total of 16 species of diatoms were detected in the Yao River, the Fenghua River and the Yong River. Melosira was the dominant species in the Yao River, and the quantity and richness were higher than in other rivers. The richness of Cyclotella in the Yong River was higher than in other rivers. The richness of Pinnularia and Licmophora were higher in the Fenghua River than in the Yao River and the Yong River. The species and proportion of diatom is different in each river. Database of the species and relative composition for the diatoms in corresponding river is established, which may provide data support for forensic examination of drowning cases in Ningbo three-river watershed. Copyright© by the Editorial Department of Journal of Forensic Medicine

  10. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  11. Isotopic Characterization of River Waters and Water Source Identification in an Inland River, Central Asia

    Directory of Open Access Journals (Sweden)

    Yuting Fan

    2016-07-01

    Full Text Available Understanding runoff generation and dynamics is the basis for water resource management, while water isotopic ratios are a potential tool for studying the mechanism on a large scale. In this paper, spatial variations of δ18O and δD of river water and their sources within a large region of the Tarim River were investigated. The results showed obvious spatial variations of both water isotope values along the river flow direction, and significant seasonal variation occurred within the river water isotopes. This indicated that different proportions of rain and melt water entering river water should lead to spatial variation, and for mid-stream and downstream regions, the transformation relationship between surface water and groundwater should consider less input of melt water. Furthermore, we quantitatively determine the ratio of different water sources using the stable isotope mass balance method and other stable tracer elements. Results showed the contribution of ice-snowmelt water varied from 14.97% to 40.85%, that of rain varied from 9.04% to 54.80%, and that of groundwater varied from 15.34% to 58.85%, and they also showed that baseflow is a factor connecting melt water and groundwater, which meant the Hotan River and the Yarkand River are melt water–dependent rivers, and seasonal precipitation is the main water supply source of baseflow in the Aksu River and the Kaidu River.

  12. Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river.

    Science.gov (United States)

    Tank, Jennifer L; Rosi-Marshall, Emma J; Baker, Michelle A; Hall, Robert O

    2008-10-01

    Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a mass balance approach. To begin to fill this knowledge gap, we present data using a pulse method to measure inorganic nitrogen. (N) transport and removal in the Upper Snake River, Wyoming, USA (seventh order, discharge 12000 L/s). We found that the Upper Snake had surprisingly high biotic demand relative to smaller streams in the same river network for both ammonium (NH4+) and nitrate (NO3-). Placed in the context of a meta-analysis of previously published nutrient uptake studies, these data suggest that large rivers may have similar biotic demand for N as smaller tributaries. We also found that demand for different forms of inorganic N (NH4+ vs. NO3-) scaled differently with stream size. Data from rivers like the Upper Snake and larger are essential for effective water quality management at the scale of river networks. Empirical measurements of solute dynamics in large rivers are needed to understand the role of whole river networks (as opposed to stream reaches) in patterns of nutrient export at regional and continental scales.

  13. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  14. Operational river ice forecasting on the Peace River : managing flood risk and hydropower production

    Energy Technology Data Exchange (ETDEWEB)

    Jasek, M. [BC Hydro, Burnaby, BC (Canada); Friensenhan, E. [Alberta Environment, Edmonton, AB (Canada); Granson, W. [Alberta Environment, Peace River, AB (Canada)

    2007-07-01

    This paper described the procedures used jointly by Alberta Environment and BC Hydro to manage the water flows on the Peace River. The Alberta-British Columbia Joint Task Force on Peace River Ice (JTF) was concerned with the coordination of break-up ice observations along the river as well as ice jam flooding at the Town of Peace River (TPR), resulting from an induced dynamic break-up on the Smoky River, a main tributary of the Peace River. The TPR is the largest community that can be most affected by ice jams on river. As such, river ice processes on the river are monitored and subject to operational procedures of the JTF. These operating procedures are organized into 3 separate sequential phases, notably freeze-up procedures, mid-winter procedures, and break-up procedures. In April 2007, the ice break-up season on the Peace River and Smoky River, was particularly challenging as record high snow cover led to a dynamic break-up of these two streams. Costs due to reduced hydropower production were documented. This paper highlighted the main decision points for mitigation and presented the recommendations that improve mitigation efforts with benefits to both the flood prone community and the power utility. This paper revealed that forecasting the start of control flow by predicting the arrival of the ice front using the Comprehensive River Ice Simulation System Project (CRISSP) model was largely successful. Further work is underway to define the accuracy of forecasting the start of control flow using CRISSP, as accuracy of temperature forecasts appears to be the major uncertainty. The JTF was able to make successful recommendations for flow reductions. However, the need for an accurate hydrologic model for the Smoky River as well as other inflows between Peace Canyon and the TPR was emphasized. 4 refs., 31 figs.

  15. Quantifying River-Groundwater Interactions of New Zealand's Gravel-Bed Rivers: The Wairau Plain.

    Science.gov (United States)

    Wöhling, Thomas; Gosses, Moritz J; Wilson, Scott R; Davidson, Peter

    2017-12-21

    New Zealand's gravel-bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river-groundwater exchange processes in gravel-bed rivers, we investigate the Wairau Plain Aquifer using a three-dimensional groundwater flow model which was calibrated using targeted field observations, "soft" information from experts of the local water authority, parameter regularization techniques, and the model-independent parameter estimation software PEST. The uncertainty of simulated river-aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null-space Monte-Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m 3 /s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m 3 /s, the net exchange flow rarely exceeds 12 m 3 /s and seems to be limited by the physical constraints of unit-gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low-flow periods in the river. We hypothesize that the new insights into the river-groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics. © 2017, National Ground Water Association.

  16. Clinch River Environmental Restoration Program

    International Nuclear Information System (INIS)

    Cook, R.B.

    1992-01-01

    This report consists of tables and listings from the results of the Phase I data gathering activities of the Clinch River Environmental Restoration Program (CR-ERP). The table of contents outlines the presentation of the material and has been annotated to indicate the key fields used to order the printing of each data table. Definitions of selected column headings are provided. Sample collection information is shown first and then more specific information for each matrix type is presented. The analytical results have been reviewed by independent validators and the qualifiers shown are the results of their efforts. No data that were rejected by the validation process are included in this listing. Only results of routine samples are listed; quality control sample results were excluded. All data, both detected and nondetected values, were used to calculated the summary table values. However, only Detected values are given on the analyte specific listings

  17. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  18. Studies on Lyari river effluents

    International Nuclear Information System (INIS)

    Khan, M.A.; Hashmi, I.; Rashid, A.; Niaz, G.R.; Khan, F.

    1999-01-01

    The study was aimed to determining the physical (TS, TSS, TDS, TVS) and chemical (Cl, SO/sub 4/, NH/sub 3/, BOD/sub 5/ COD, DO) characteristics as well as heavy present in the Lyari river effluents so as to identify the extent of pollution. The average results of each parameter of twelve different sites were compared with that of National Environmental Quality Standards (NEQS), BOD/sub 5/ and COD levels were above the NEQS while the NH/sub 3/-N concentration was low. Concentrations of Cd and Zn were within the range while that of Pb, Cr, Ni and Cu were higher than the NEQS at times. This indicates that heavy pollution load is entering into the Arabian Sea creating tremendous harm especially to marine life. (author)

  19. The Mississippi River: A place for fish

    Science.gov (United States)

    Schramm, Harold; Ickes, Brian; Chen, Yushun; Chapman, Duane C.; Jackson, John; Chen, Daqing; Li, Zhongjie; Kilgore, Jack; Phelps, Quinton; Eggleton, Michael

    2016-01-01

    The Mississippi River flows 3,734 km from its source at Lake Itasca, Minnesota to its outlet at the Gulf of Mexico. Along its course, it collects water from portions of two Canadian provinces and 41 % of the conterminous United States. Although greatly altered for navigation and flood control throughout much of its length, the Mississippi River remains an important fishery resource that provides habitat for 188 species of fishes and recreational and commercial fishing opportunities. The objectives of this chapter are to describe the contemporary fisheries habitat throughout the Mississippi River, identify how management to achieve human benefits influences the fishes and their habitats, and summarize efforts to conserve and enhance fish habitat. The 826-km headwater reach is entirely in Minnesota and remains largely unaltered. The reaches that extend 1,059 km from St. Anthony Falls, Minnesota to above the confluence with the Missouri River near St. Louis, Missouri have been altered by impoundment that has affected floodplain function, increased sedimentation of backwaters, and homogenized the formerly diverse aquatic habitats. After the confluence with the Missouri River, the Mississippi River flows freely for 1,849 km to the Gulf of Mexico. The alterations of the free-flowing reaches of greatest significance to the fisheries resource are reducing the duration and height of the flood pulse as a consequence of shortening the river channel, disconnection of the river from its historic and present floodplain, and loss of secondary channel-island complexes. Engineering features to improve commercial navigation have also added habitat and, when wisely manipulated, can be used to rehabilitate habitat. Some aspects of water quality have improved, but legacy chemicals and nutrient-laden inflows and sediments remain problems. Although true restoration in the sense of restoring all environmental conditions to an unaltered state is unlikely, the future value of the

  20. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantifying flooding regime in floodplain forests to guide river restoration

    Science.gov (United States)

    Christian O. Marks; Keith H. Nislow; Francis J. Magilligan

    2014-01-01

    Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and...

  2. Metal bioaccumulation in the fish of the Olifants River, Limpopo ...

    African Journals Online (AJOL)

    The Olifants River, Limpopo River system, is now one of the most polluted rivers in South Africa. The concentrations of metals in fish muscle tissue from two impoundments on the Olifants River, Flag Boshielo Dam and Phalaborwa Barrage, were measured and a human health risk assessment conducted to investigate ...

  3. Concentrations of Heavy Metals in Some Important Rivers of Owerri ...

    African Journals Online (AJOL)

    0.054 ppm). Arsenic was present in lower concentration in Azaraegbelu, Ogochie and Okatankwu Rivers. Cadmium concentration was 0.511 ppm in Azaraegbelu River, 0.034 ppm in Ogochie River, 0.091 ppm in Okatankwu River and 0.166 ...

  4. Conservation genetics of the vulnerable Treur River barb, Barbus ...

    African Journals Online (AJOL)

    At present there are only two populations of the vulnerable Treur River barb, Barbus treurensis, in existence; a founder population in the upper Blyde River and a translocated population in the Treur River where the species became extinct. The translocated population was derived from individuals from the upper Blyde River ...

  5. Projected future runoff of the Breede River under climate change ...

    African Journals Online (AJOL)

    The Breede River is the largest river in the Western Cape Province of South Africa, and as such, is a key resource for a variety of activities within the region. It is this significance of the river that prompted a study into the impact of climate change on future runoff in the river and hence, the potential impacts a projected change ...

  6. An assessment of water quality of Angaw River in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical and bacteriological water quality of the Angaw river were investigated at three different locations on the river. A range of water quality variables were measured in the river over a period of 12 months. The river was characterized by high ionic content. Relatively higher levels of ionic constituents occurred at ...

  7. Hydraulics and morphology of mountain rivers; literature survey

    NARCIS (Netherlands)

    Sieben, J.

    1993-01-01

    Present knowledge on fluvial processes in mountain rivers should be expanded to enable the development of projects dealing with mountain rivers or mountain-river catchment areas. This study reviews research on hydraulic and morphological features of mountain rivers. A major characteristic of

  8. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  9. 78 FR 3836 - Drawbridge Operation Regulation; Shark River, Avon, NJ

    Science.gov (United States)

    2013-01-17

    ... Operation Regulation; Shark River, Avon, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from... Township, NJ. This deviation is necessary to facilitate machinery replacement on the Shark River railroad... River Railroad Bridge across the Shark River (South Channel), mile 0.9, at Avon, NJ, has requested a...

  10. 77 FR 57022 - Drawbridge Operation Regulation; Shark River, Avon, NJ

    Science.gov (United States)

    2012-09-17

    ... Operation Regulation; Shark River, Avon, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation... across the Shark River (South Channel), at Avon Township, NJ. This deviation is necessary to facilitate... of the Shark River Railroad Bridge across the Shark River (South Channel), mile 0.9, at Avon, NJ, has...

  11. 27 CFR 9.47 - Hudson River Region.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Hudson River Region. 9.47... Hudson River Region. (a) Name. The name of the viticultural area described in this section is “Hudson River Region.” (b) Approved maps. The approved maps for determining the boundaries of Hudson River...

  12. Rapid River Hatchery - Spring Chinook, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  13. Raft River Geothermal Aquaculture Experiment. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

    1979-08-01

    Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

  14. Managing Fine Sediment in Regulated Rivers

    Science.gov (United States)

    Schmidt, J. C.

    2015-12-01

    A paradigm useful in managing dams and diversions is that the combined effects of changing flow regime and sediment supply perturb regulated rivers into sediment deficit or sediment surplus. In the U.S. Southwest, large dams constructed on interregional rivers typically create sediment deficit segments >100 km long. Further downstream, sediment surplus may occur if desert tributaries deliver sufficient amounts of fine sediment, such as parts of the Rio Grande, lower Green River, and Colorado River delta. Sediment surplus also occurs on most smaller regional rivers. The protocols for managing rivers perturbed into sediment deficit have been refined for the Colorado River downstream from Glen Canyon Dam but are nonetheless challenged by externally determined water-supply agreements that require annual water deliveries that sometimes occur when there has been little tributary resupply. Virtually all of the naturally supplied sand to the depleted, 100-km long Marble Canyon comes from the Paria River. The sand delivery rate since 2012 was sufficiently large to trigger short-duration controlled floods under the High Flow Experiment (HFE) Protocol. The sand mass balance of Marble Canyon since 2012 when the HFE Protocol was adopted was positive due to the combination of relatively large sand delivery from the Paria River and average total annual flows. Large total annual flows have the potential to export large amounts of sand and create a negative sand mass balance. Despite the challenge of managing a scarce and highly variable sand supply and occasional years of large reservoir releases, the long-term (2006-2015) sand mass balance for the upstream half of Marble Canyon is indeterminant and is positive for the downstream half of Marble Canyon. The apparent success of managing sand in Grand Canyon under deficit conditions suggests that fine sediment management protocols might be developed for other regulated rivers. Implementation would require establishment of networks of

  15. Floods in the Skunk River basin, Iowa

    Science.gov (United States)

    Heinitz, Albert J.; Wiitala, Sulo Werner

    1978-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains require information on floods. This report provides information on flood stages and discharges, flood magnitudes and frequency, and flood profiles for the Skunk River and some of its tributaries. It covers the Skunk -- South Skunk Rivers to Ames, and the lower reaches of tributaries as flows: Squaw Creek, 8.2 miles; Indian Creek, 11.6 miles; North Skunk River, 83.2 miles; Cedar Creek, 55.8 miles; and Big Creek, 21.7 miles.

  16. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  17. Lindane residues in fish inhabiting Nigerian rivers

    International Nuclear Information System (INIS)

    Okereke, G.U.; Dje, Y.

    1997-01-01

    Analysis for residues of lindane in fish collected from various rivers close to rice agroecosystems showed that the concentrations of lindane ranged from none detectable to 3.4 mg kg -1 . Fish from rivers where strict regulations prohibits its use had no detectable lindane residues while appreciable amounts of lindane were found in fish were such restriction was not enforced with the variation attributed to the extent of use of lindane in the area of contamination. The investigation confirms that the use of lindane in rice production in Nigeria can cause the contamination of fish in nearby rivers. (author). 16 refs, 2 tab

  18. Thermal effects on the Savannah River

    International Nuclear Information System (INIS)

    Patrick, R.

    1981-01-01

    The effects of thermal effluents from the Savannah River Plant (SRP), particularly during periods when the L Reactor was operative, on the structure and health of the aquatic communities of organisms in the Savannah River have been determined. Portions of the data base collected by the Academy of Natural Sciences since 1951 on the Savannah River were used. The organisms belonging to various groups of aquatic life were identified to species if possible. The relative abundance of the species was estimated for the more common species. The bacteriological, chemical and physical characteristics of the water were determined

  19. Aquatic macroinvertebrates of the Jablanica river, Serbia

    Directory of Open Access Journals (Sweden)

    Stefanović Katarina S.

    2009-01-01

    Full Text Available Research on the community of aquatic macroinvertebrates was carried out during 2005 and 2006 at four sampling sites along the Jablanica River, a right-hand tributary of the Kolubara River. Fifty-seven taxa were recorded in the course of the investigation. The most diverse group was Ephemeroptera, followed by Trichoptera and Plecoptera. Members of the Rhitrogena semicolorata group were the most abundant. Our results could be the basis for evaluation of the influence of damming of the Jablanica River on the status of its water and can serve as a model for studying the influ­ence of hydromorphological degradation of aquatic ecosystems.

  20. Tritium in the Savannah River estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1979-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is approximately 5 pCi/ml, whereas other rivers in the southeastern United States of America average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the river and from sea-water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary respectively. (author)

  1. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    Science.gov (United States)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river

  2. Are rivers just bigstreams? Using a pulse method to measure nitrogen demand in a large river

    OpenAIRE

    Tank, J. L.; Rosi-Marshall, E. J.; Baker, Michelle A.; Hall, R. O., Jr.

    2008-01-01

    Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a ...

  3. Great River Resource Management Study (Great III): Reconnaissance Report, Mississippi River - Saverton, Missouri to Cairo, Illinois,

    Science.gov (United States)

    1980-07-01

    detail will be sufficient to determine the technical, institutional, economic, social and enviromental elements of a plan. Output of Stage 3 will be a...Missouri Water Quality Report, 1978), high frequency of occurrence of Dieldrin and other pesticides , PCB’s and Mercury in Mississippi River fish. (A...palatability of the fish. The existence of such potentially toxic materials in river water and river sediments as PCBs, pesticides and several heavy

  4. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    OpenAIRE

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammo...

  5. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  6. Taking the Pulse of a River System: Research on the Upper Mississippi River System

    Science.gov (United States)

    Sauer, Jennifer; Johnson, Barry

    2009-01-01

    Mark Twain raved about the Mississippi River basin as, 'the body of the Nation'. The 'upper body', upstream of the confluence with the Ohio River, includes commercially navigable reaches and branching tributaries that are recreationally and environmentally important. Together they feed and shelter an array of fish and wildlife in their flowing channels, floodplain lakes, backwaters, wetlands, and floodplain forests. Effective river management requires knowledge about factors controlling the dynamics and interactions of important ecosystem components. The Long Term Resource Monitoring Program (LTRMP) is the prized diagnostic tool in the Environmental Management Program for the Upper Mississippi River System that provides critical information about the status and trends of key environmental resources.

  7. The Three Colorado Rivers: Comparing the Physical, Legal, and Economic Allocation of a Shared River

    Science.gov (United States)

    Rushforth, R.; Ruddell, B. L.

    2015-12-01

    : For many rivers, the legal allocation of surface water was settled decades ago. The process of apportioning surface water between multiple stakeholders is an arduous process with opposing interests competing for scarce resources. The political capital spent initially allocating a river often cannot be regained, stymieing future attempts for re-allocation. The Colorado River Compact (Compact), signed in 1922, has been "the law of the river" for over 90 years. Since its signing, the Colorado River Basin (CRB) population has increased tenfold, while average river flows have decreased due to threats unforeseeable to Compact signers, such as global climate change. Water sharing agreements, like the Compact, legally re-allocate physical river flows; however, water is increasingly shared through trade rather than aqueducts. Virtual water, or the water embodied by a good or service, is a trade adaption to resource scarcity, namely water and land. This study presents findings of a virtual water complement to the Compact. The goal of this study is to determine how the legal allocation of physical water resources are re-allocated as virtual water via economic trade in a shared river basin. Results are presented by at the sub-basin, state, and county-level, showing the geographic origin and destination of virtual water from CRB states and the Upper and Lower basins. A water stress index is calculated to show the indirect water stress of Colorado River water resources and network statistics are employed to rank the importance of virtual water sources in the CRB.

  8. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    International Nuclear Information System (INIS)

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary, and the Amazon River estuary were studied to elucidate some of the processes which control river water chemistry and the flux of elements to the sea. The approach taken was to identify inputs to the Connecticut River and to investigate geochemical processes which modify the dissolved load. The form and quantity of nuclides which are in turn supplied to the estuary are altered by processes unique to that transition zone to the ocean. The Connecticut River estuary was sampled on a seasonal basis to investigate the role of the estuary in controlling the flux of elements to the sea. The knowledge gained from the Connecticut River study was applied to the quantitatively more significant Amazon River estuary. There a variety of samples were analyzed to understand the processes controlling the single greatest flux of elements to the Atlantic Ocean. The results indicate that estimates of the total flux of nuclides to the oceans can best be calculated based on groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is that which will eventually be delivered to the ocean despite the reactions which were shown to occur in both rivers and estuaries. 153 references, 63 figures, 28 tables

  9. Summary of the river-quality assessment of the upper Chattahoochee River basin, Georgia

    Science.gov (United States)

    Cherry, R.N.; Faye, R.E.; Stamer, J.K.; Kleckner, R.L.

    1980-01-01

    The river-quality assessment of the Upper Chattahoochee River Basin included studies of (1) the impact of heat loads on river quality, (2) sediment transport and deposition, (3) magnitude and nature of point and nonpoint discharges, and (4) phytoplankton growth in the river and reservoirs. The combined thermal effects of flow regulation and powerplants effluents resulted in mean daily river temperature downstream of the powerplants about equal to or less than computed natural temperatures. The average annual river temperature in 1976 was 14.0 ? Celsius just upstream of the Atkinson-McDonough thermoelectric powerplants and 16.0 ? Celsius just downstream from the powerplants. During a low-flow period in June 1977 the heat load from the two powerplants caused an increase in river temperatures of about 7 ? Celsius and a subsequent decrease in the dissolved-oxygen concentration of about 0.2 milligrams per liter. During the June low-flow period, point sources contributed 63 percent of the ultimate biochemical oxygen demand and 97 percent of ammonium as nitrogen at the Franklin station. Oxidation of ultimate biochemical demand and ammonium caused dissolved-oxygen concentrations to decrease from about 8.0 milligrams per liter at river mile 299 to about 4.5 milligrams per liter at river mile 271. Dissolved orthophosphate is the nutrient presently limiting phytoplankton growth in the West Point Lake when water temperatures are greater than about 26 ? Celsius.

  10. River Data Package for the 2004 Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  11. Emergency response capability for pollutant releases to streams and rivers

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.; Watts, J.R.

    1975-01-01

    Stream-river models have been developed which provide an accurate prediction of normal and accidental pollutant releases to streams and rivers. Stream parameters are being developed for the Savannah River Plant streams and the Savannah River to allow quick response in case of an accidental release of radioactive material. These data are stored on permanent disk storage for quick access via the JOSHUA operating system. This system provides an efficient and flexible emergency response capability for pollutant releases to streams and rivers

  12. Columbia River ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for clams, oysters, crabs, and other invertebrate species in Columbia River. Vector polygons in this data...

  13. Savannah River Site Environmental Report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  14. Charles River Residual Designation: Executive Summary

    Science.gov (United States)

    Read an executive summary of the Record of Decision's preliminary decision by the Regional Administrator of EPA Region 1 that storm water permits are needed to address serious water quality problems in the Charles River.

  15. Anthropogenic impacts on global organic river pollution

    NARCIS (Netherlands)

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water

  16. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Dorri G. J. te Boekhorst

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  17. Cover Art: River's Edge: Downward, Outward, Upward

    Directory of Open Access Journals (Sweden)

    Jonee Kulman Brigham

    2017-10-01

    Full Text Available Artist's Statement for the cover art of IJPS volume 4, issue 3: River's Edge: Downward, Outward, Upward, 2015. Mixed Media: photograph, inkjet printed on presentation matte of colored pencil over photograph.

  18. Using river locks to teach hydrodynamic concepts

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L; Mendes, Thales C; Silva, Enisvaldo C; Rios, Márcio L; Silva, Anderson A P

    2013-01-01

    In this work, the use of a river lock as a non-formal setting for teaching hydrodynamical concepts is proposed. In particular, we describe the operation of a river lock situated at the Sobradinho dam, on the São Francisco River (Brazil). A model to represent and to analyse the dynamics of river lock operation is presented and we derive the dynamical equations for the rising of the water column as an example to understand the Euler equation. Furthermore, with this activity, we enable the integration of content initially introduced in the classroom with practical applications, thereby allowing the association of physical themes to content relevant in disciplines such as history and geography. In addition, experiences of this kind enable teachers to talk about the environmental and social impacts caused by the construction of a dam and, consequently, a crossover of concepts has been made possible, leading to more meaningful learning for the students. (paper)

  19. Hudson River Sub-Bottom Profile Points

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hudson River Estuary Shallow Water Surveys. Subbottom Profile Points. Subbottom data was collected November 5 to December 15, 2009, in the estuary north from...

  20. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  1. Columbia River ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for Wildlife Refuges, National Forests, and State Parks for the Columbia River area. Vector polygons in this data set...

  2. Hydro energetic inventory study from Chapecozinho river

    International Nuclear Information System (INIS)

    Pimenta, S.C.; Sureck, M.A.A.; Nascimento, P.R.; Kawasaki, M.; Silva Felipe, R. da.

    1990-01-01

    The Hydro energetic Inventory Study in Chapecozinho River Basin, Brazil is described, comparing the proposed results in 1979 with the actual review in 1989. An analysis for solution the socio-economic and environment problems is also presented. (author)

  3. 2015 OLC FEMA Lidar: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  4. Onset in-river conductivity sonde data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Onset HOBO Model U24-01 in-river sondes were deployed to measure water temperature and electrical conductivity at each of the ISCO sampling sites at 5 min intervals....

  5. Cheyenne River Celebrates 25th Year.

    Science.gov (United States)

    Hall, Francine

    1997-01-01

    Reviews the history of Cheyenne River Community College from 1973-1998. Depicts the college in terms of its mission: studying and preserving the Lakota language, culture, thought, and philosophy. (JDI)

  6. Water resources: Future Nile river flows

    Science.gov (United States)

    Conway, Declan

    2017-04-01

    Climate change is projected to increase annual Nile river flow; importantly, year-to-year variability is also expected to increase markedly. More variable flows could present a challenge for consistent water resource provision in this region.

  7. Flood tracking chart, Amite River Basin, Louisiana

    Science.gov (United States)

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  8. Savannah River Site environmental data for 1995

    International Nuclear Information System (INIS)

    Arnett, M.W.

    1995-01-01

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs

  9. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A.; Mandalia, A.V.

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  10. Offshore extension of Gomati river, Dwarka

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Naik, D.K.; Ganesan, P.; Moraes, C.

    information. Attempts have been made to identify the submerged extension of Gomati River by diving inspection and based on the results obtained such as findings like stone and iron anchors, circular bastions, etc. While many features reported earlier...

  11. Savannah River Site Environmental Report for 1997

    International Nuclear Information System (INIS)

    Arnett, M.W.; Mamatey, A.R.

    1998-01-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site

  12. Ecological flow requirements for South African rivers

    CSIR Research Space (South Africa)

    Ferrar, AA

    1989-01-01

    Full Text Available This document contains the proceedings of a workshop which was convened to debate the ecological flow requirements of South African rivers. Topics which are discussed include the influence of weirs and impoundments, the quantity requirements...

  13. sample data Red River_2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — OK Fish Kill data from Red River 2011-2013. This dataset is associated with the following publication: Jones-Lepp, T., V. Taguchi, W. Sovocool, D. Betowski, P....

  14. Columbia River ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in Columbia River. Vector polygons in this...

  15. DNR 100K Lakes and Rivers

    Data.gov (United States)

    Minnesota Department of Natural Resources — Polygons representing hydrographic features (lakes, ponds, some rivers, and open water areas) originating from the USGS 1:100,000 (100K)DLG (Digital Line Graph)...

  16. Columbia River ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anadromous fish species in Columbia River. Vector lines in this data set represent locations of...

  17. Columbia River ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for bird nesting sites in the Columbia River area. Vector points in this data set represent locations of...

  18. 33 CFR 117.756 - South River.

    Science.gov (United States)

    2010-07-01

    ..., mile 2.8 at South River shall open on weekdays (exclusive of holidays) from December 1 through the last... 1 through the last day of February on weekends and holidays the draw shall be maintained open to...

  19. Program Updates - San Antonio River Basin

    Science.gov (United States)

    This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.

  20. Assessing river health in Europe and Switzerland

    Science.gov (United States)

    Milano, Marianne; Chèvre, Nathalie; Reynard, Emmanuel

    2017-04-01

    River conditions and welfare of aquatic ecosystems are threatened by anthropogenic and climatic changes. The release of personal-care products, pharmaceuticals and crop protection products is increasing and climate change is likely to cause significant changes in hydrological regimes affecting water resources' capacity to dissolve pollutants. Assessing river health, i.e. the ability of a river to support and maintain a balanced ecosystem close to the natural habitat, is thus of major concern to ensure the development of ecosystems and to provide enough clean useable water to users. Such studies involve physical, chemical and biological processes and characteristics. In Europe and Switzerland, standardized procedures have been developed to assess the hydromorphological, ecological and toxicological status of rivers. The European Water Framework Directive sets ecological requirements and chemical guidelines while the Swiss Modular Stepwise Procedure suggests methods to apprehend ecological deficits and promote water management plans. In this study, both procedures were applied and compared in order (i) to address their capacity to follow-up the spatial and temporal variability of the river's water quality and (ii) to identify challenges that still need to be addressed to assess river's health. Applied on the Boiron River (canton of Vaud, Switzerland) for a 11-year period (2005-2015), both frameworks highlight that no section of the river currently meets a good environmental state. This river flows through a diversified agricultural area causing a progressive deterioration of its chemical and biological quality. The two methods also identify two periods of time with significant changes of the river's water quality. The 2009-2011 period is characterized by a significant deterioration of the river's ecological and toxicological state due to severe low flows and an increased use of pesticides. However, since 2013, an improvement in water quality is identified in