WorldWideScience

Sample records for suspension equilibrium state

  1. Off-Equilibrium Surface Tension in Colloidal Suspensions

    Science.gov (United States)

    Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca

    2014-03-01

    We study the fingering instability of the interface between two miscible fluids, a colloidal suspension and its own solvent. The temporal evolution of the interface in a Hele-Shaw cell is found to be governed by the competition between the nonlinear viscosity of the suspension and an off-equilibrium, effective surface tension Γe. By studying suspensions in a wide range of volume fractions, ΦC, we show that Γe˜ΦC2, in agreement with Korteweg's theory for miscible fluids. The surface tension exhibits an anomalous increase with particle size, which we account for using entropy arguments.

  2. Equilibrium structure and fluctuations of suspensions of colloidal dumbbells

    Science.gov (United States)

    Heptner, Nils; Dzubiella, Joachim

    2015-09-01

    We investigate the structure and equilibrium linear-response dynamics of suspensions of hard colloidal dumbbells using Brownian dynamics computer simulations. The focus lies on the dense fluid and plastic crystal states of the colloids with investigated aspect (elongation-to-diameter) ratios varying from the hard sphere limit up to 0.39, which is roughly the stability limit of the plastic crystal phase. We find expected structural changes with larger elongation with respect to the hard sphere reference case and very localised orientational correlations, typically just involving next-neighbour couplings. These relatively weak correlations are also reflected in only minor effects on the translational and rotational diffusion coefficients for most of the investigated elongations. However, the linear response shear viscosity exhibits a dramatic increase at high packing fractions (φ ≳ 0.5) beyond a critical anisotropy factor of about L* ≃ 0.15 which is surprising in view of the relatively weak changes found before on the level of colloidal self-dynamics. We suspect that even for the small investigated anisotropies, newly occurring, collective rotational-translational couplings must be made responsible for the slow time scales appearing in the plastic crystal.

  3. A mixture theory model for a particulate suspension flow in a thermal non-equilibrium context

    Energy Technology Data Exchange (ETDEWEB)

    Martins-Costa, M.L. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Lab. de Mecanica Teorica e Aplicada; Gama, R.M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Rio de Janeiro, RJ (Brazil)

    1998-07-01

    The present work proposes a local model for a particulate suspension flow employing the continuum theory of mixture - specially developed to deal with multiphase phenomena. The flow of a Newtonian fluid with small solid particles in suspension - in which thermal non-equilibrium is allowed - is described as a mixture of solid and fluid constituents coexisting superposed. Thermo-dynamically consistent constitutive hypotheses are derived in order an adequate model for suspensions. (author)

  4. Effect of organic matter on CO(2) hydrate phase equilibrium in phyllosilicate suspensions.

    Science.gov (United States)

    Park, Taehyung; Kyung, Daeseung; Lee, Woojin

    2014-06-17

    In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.5-277.0 K and 14-22 bar. Organic matter inhibited the phase equilibrium of CO2 hydrate by association with water molecules. The inhibition effect decreased in the order: urea phase equilibrium, while Na-MMT (expandable clay) affected the phase equilibrium because of its interlayer cations. The CO2 hydrate equilibrium conditions, in the illite and kaolinite suspensions with organic matter, were very similar to those in the aqueous organic matter solutions. However, the equilibrium condition in the Na-MMT suspension with organic matter changed because of reduction of its inhibition effect by intercalated organic matter associated with cations in the Na-MMT interlayer.

  5. Nonequilibrium Equation of State in Suspensions of Active Colloids

    Directory of Open Access Journals (Sweden)

    Félix Ginot

    2015-01-01

    Full Text Available Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  6. On the definition of equilibrium and non-equilibrium states in dynamical systems

    OpenAIRE

    Akimoto, Takuma

    2008-01-01

    We propose a definition of equilibrium and non-equilibrium states in dynamical systems on the basis of the time average. We show numerically that there exists a non-equilibrium non-stationary state in the coupled modified Bernoulli map lattice.

  7. Equilibrium states of homogeneous sheared compressible turbulence

    Directory of Open Access Journals (Sweden)

    M. Riahi

    2011-06-01

    Full Text Available Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT. The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10 in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  8. Quantum Ground States as Equilibrium Particle-Vacuum Interaction States

    CERN Document Server

    Puthoff, Harold E

    2012-01-01

    A remarkable feature of atomic ground states is that they are observed to be radiationless in nature, despite (from a classical viewpoint) typically involving charged particles in accelerated motions. The simple hydrogen atom is a case in point. This universal groundstate characteristic is shown to derive from particle-vacuum interactions in which a dynamic equilibrium is established between radiation emission due to particle acceleration, and compensatory absorption from the zero-point fluctuations of the vacuum electromagnetic field. The result is a net radiationless ground state. This principle constitutes an overarching constraint that delineates an important feature of quantum ground states.

  9. Equilibrium and non-equilibrium electron tunneling via discrete quantum states

    OpenAIRE

    Deshmukh, Mandar M.; Bonet, Edgar; Pasupathy, A. N.; Ralph, D. C.

    2001-01-01

    Tunneling is measured via the quantum levels of a metal nanoparticle. We analyze quantitatively the resonance energies, widths, and amplitudes, both in the regime where only one state is accessible for tunneling and in the non-equilibrium regime when additional states are made accessible one-by-one. For tunneling through one state, our results agree with expectations for sequential tunneling, but in the non-equilibrium regime the resonances are broadened and shifted in ways that require takin...

  10. Non-Equilibrium Steady States of the XY Chain

    CERN Document Server

    Aschbacher, W H

    2002-01-01

    We study the non-equilibrium statistical mechanics of the two-sided XY chain. We start from an initial state in which the left and right part of the lattice {x|xM}, are at inverse temperatures beta_L and beta_R. Using a simple scattering theoretic analysis, we construct the unique non-equilibrium steady state (NESS). This state depends on beta_L and beta_R, but not on the choice of the decoupling parameter M. We prove that in the non-equilibrium case, beta_L \

  11. One-group constant libraries for nuclear equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Akihiko; Sekimoto, Hiroshi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    One-group constant libraries for the nuclear equilibrium state were generated for both liquid sodium cooled MOX fuel type fast reactor and PWR type thermal reactor with Equilibrium Cell Iterative Calculation System (ECICS) using JENDL-3.2, -3, -2 and ENDF/B-VI nuclear data libraries. ECICS produced one-group constant sets for 129 heavy metal nuclides and 1238 fission products. (author)

  12. Free energy for non-equilibrium quasi-stationary states

    Science.gov (United States)

    Allahverdyan, A. E.; Martirosyan, N. H.

    2017-03-01

    We study a class of non-equilibrium quasi-stationary states for a Markov system interacting with two different thermal baths. We show that the work done under a slow, external change of parameters admits a potential, i.e., the free energy. Three conditions are needed for the existence of free energy in this non-equilibrium system: time-scale separation between variables of the system, partial controllability (external fields couple only with the slow variable), and an effective detailed balance. These conditions are facilitated in the continuous limit for the slow variable. In contrast to its equilibrium counterpart, the non-equilibrium free energy can increase with temperature. One example of this is that entropy reduction by means of external fields (cooling) can be easier (in the sense of the work cost) if it starts from a higher temperature.

  13. Equilibrium large vortex state in ferromagnetic disks

    Science.gov (United States)

    Metlov, Konstantin L.

    2013-06-01

    Magnetic vortices in soft ferromagnetic nano-disks have been extensively studied for at least several decades both for their applied (non-volatile information storage) as well as fundamental value. Here, it is shown that there is another vortex ground state with large radius-dependent core profile in nano-scale ferromagnetic disks of several exchange lengths in size. Its energy is computed numerically and its stability is studied analytically, which allows to plot it on magnetic phase diagram. Large vortices may exist on par with the classical ones, while being separated by an energy barrier, controllable by tuning the geometry and material of ferromagnetic disk.

  14. Gel formation in suspensions of oppositely charged colloids: mechanism and relation the equilibrium phase diagram

    NARCIS (Netherlands)

    Sanz, E.; Leunissen, M.E.; Fortini, A.; van Blaaderen, A.; Dijkstra, M.

    2008-01-01

    We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid

  15. Non-equilibrium steady state in the hydro regime

    Energy Technology Data Exchange (ETDEWEB)

    Pourhasan, Razieh [Science Institute, University of Iceland,Dunhaga 5, 107 Reykjavik (Iceland)

    2016-02-01

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P=P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  16. Quantum reciprocity conjecture for the non-equilibrium steady state

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, P; Mao, W [Center for Materials Theory, Rutgers University, Piscataway, NJ 08854 (United States)

    2004-05-26

    A consideration of the lack of history dependence in the non-equilibrium steady state of a quantum system leads us to conjecture that in such a system there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analogue of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot. (letter to the editor)

  17. Non-equilibrium steady states in supramolecular polymerization

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  18. A numerical study of equilibrium states in tidal network morphodynamics

    Science.gov (United States)

    Xu, Fan; Coco, Giovanni; Zhou, Zeng; Tao, Jianfeng; Zhang, Changkuan

    2017-09-01

    The long-term morphodynamic evolution of tidal networks on tidal flats is investigated using a two-dimensional numerical model. We explore the physical processes related to the development of the morphology and the presence of equilibrium configurations. Tidal networks are simulated over a rectangular domain representing a tidal platform, a different setting compared to estuaries (subject to riverine influence) and lagoons (offshore bars constricting the flow). In the early and middle phases of the tidal network evolution, large sediment patches with rhombus-like shape form and gradually migrate in the flood direction, even though the overall sediment flux is ebb-directed. A cross-section-averaged "equilibrium" state is asymptotically approached after about 500 years. The area and peak discharge of the lower flat cross-sections at year 500 approximately show a 1:1 relationship, which is in agreement with field observations. We also show that model results are consistent with the Q-A relationship (peak discharge Q versus cross-sectional area A), which is obtained under the assumption of a constant Chézy friction.

  19. A numerical study of equilibrium states in tidal network morphodynamics

    Science.gov (United States)

    Xu, Fan; Coco, Giovanni; Zhou, Zeng; Tao, Jianfeng; Zhang, Changkuan

    2017-12-01

    The long-term morphodynamic evolution of tidal networks on tidal flats is investigated using a two-dimensional numerical model. We explore the physical processes related to the development of the morphology and the presence of equilibrium configurations. Tidal networks are simulated over a rectangular domain representing a tidal platform, a different setting compared to estuaries (subject to riverine influence) and lagoons (offshore bars constricting the flow). In the early and middle phases of the tidal network evolution, large sediment patches with rhombus-like shape form and gradually migrate in the flood direction, even though the overall sediment flux is ebb-directed. A cross-section-averaged "equilibrium" state is asymptotically approached after about 500 years. The area and peak discharge of the lower flat cross-sections at year 500 approximately show a 1:1 relationship, which is in agreement with field observations. We also show that model results are consistent with the Q-A relationship (peak discharge Q versus cross-sectional area A), which is obtained under the assumption of a constant Chézy friction.

  20. Equilibrium states and stability of pre-tensioned adhesive tapes

    Directory of Open Access Journals (Sweden)

    Carmine Putignano

    2014-10-01

    Full Text Available In the present paper we propose a generalization of the model developed in Afferrante, L.; Carbone, G.; Demelio, G.; Pugno, N. Tribol. Lett. 2013, 52, 439–447 to take into account the effect of the pre-tension in the tape. A detailed analysis of the peeling process shows the existence of two possible detachment regimes: one being stable and the other being unstable, depending on the initial configuration of the tape. In the stability region, as the peeling process advances, the peeling angle reaches a limiting value, which only depends on the geometry, on the elastic modulus of the tape and on the surface energy of adhesion. Vice versa, in the unstable region, depending on the initial conditions of the system, the tape can evolve towards a state of complete detachment or fail before reaching a state of equilibrium with complete adhesion. We find that the presence of pre-tension in the tape does not modify the stability behavior of the system, but significantly affects the pull-off force which can be sustained by the tape before complete detachment. Moreover, above a critical value of the pre-tension, which depends on the surface energy of adhesion, the tape will tend to spontaneously detach from the substrate. In this case, an external force is necessary to avoid spontaneous detachment and make the tape adhering to the substrate.

  1. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Science.gov (United States)

    Deshpande, Avinash A.; Kumar, N.

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  2. Non-equilibrium plasma experiments at The Pennsylvania State University

    Science.gov (United States)

    Knecht, Sean; Bilen, Sven; Micci, Michael

    2013-10-01

    The authors have recently established the capability at The Pennsylvania State University to generate non-equilibrium plasma in atmospheric-pressure air and liquids such as water and saline. The plasma is generated using a high-voltage pulser (Pacific-Electronics PT-55), which is capable of voltage pulses of 75-ns width, peak voltage >50 kV, with rise-times on the order of nanoseconds. The electrodes are tungsten wires of various diameters (50 μm, 175 μm, 254 μm) insulated with nylon tubing. The spacing of the electrodes is controlled with translating mounts with resolution of tens of microns. Spectroscopy (Ocean Optics Model HR2000) is presently used for line identification only. Current and voltage vs. time will be measured with a 500-MHz bandwidth oscilloscope, a high-voltage probe and a shunt resistor connected to the ground side of the circuit. Research directions presently being pursued include the effects of solution electrical conductivity on plasma production and propellant ignition studies. Data from several types of experiments will be presented.

  3. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    Science.gov (United States)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  4. Pathways from School Suspension to Adolescent Nonviolent Antisocial Behavior in Students in Victoria, Australia and Washington State, United States

    Science.gov (United States)

    Hemphill, Sheryl A.; Herrenkohl, Todd I.; Plenty, Stephanie M.; Toumbourou, John W.; Catalano, Richard F.; McMorris, Barbara J.

    2012-01-01

    School suspension is associated with school dropout, crime, delinquency, and alcohol and other drug use for the suspended student. Important research questions are how academic and related factors are relevant to the school suspension process and the generality of the process in different sites. State-representative samples of Grade 7 students (N…

  5. Equilibrium states of a variational formulation for the Ginzburg-Landau equation

    Science.gov (United States)

    Kulikov, A. N.; Kulikov, D. A.

    2017-12-01

    Periodic boundary value problem for one of the versions of the complex Ginzburg- Landau equation, which is commonly called the variational Ginzburg-Landau equation are studied. Questions of existence and stability in the sense of Lyapunov, and also the local bifurcations problem of spatially nonhomogeneous equilibrium states are investigated. Three types of such solutions for the given problem are indicated. The exact formulas of the solutions for the first two types are suggested. Equilibrium states of the second type are expressed through elliptic functions. The third type of equilibrium states appears as a result of bifurcations of automodel equilibrium states, i.e., solutions of the first type in the case when the stability changes. It is shown that equilibrium states of the second and third types are unstable.

  6. Stability Analysis of Equilibrium States of an SEIR Tuberculosis Model

    African Journals Online (AJOL)

    Finally, based on our results, we discuss optimum treatment strategies for tuberculosis epidemics. Keywords: Tuberculosis; Mathematical model; Global stability; Equilibrium; Epidemics; Basic reproduction number. Journal of the Nigerian Association of Mathematical Physics, Volume 20 (March, 2012), pp 119 – 124 ...

  7. Near-Nash equilibrium strategies for LQ differential games with inaccurate state information

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available ε -Nash equilibrium or “near equilibrium” for a linear quadratic cost game is considered. Due to inaccurate state information, the standard solution for feedback Nash equilibrium cannot be applied. Instead, an estimation of the players' states is substituted into the optimal control strategies equation obtained for perfect state information. The magnitude of the ε in the ε -Nash equilibrium will depend on the quality of the estimation process. To illustrate this approach, a Luenberger-type observer is used in the numerical example to generate the players' state estimates in a two-player non-zero-sum LQ differential game.

  8. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    Science.gov (United States)

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  9. Spinor order parameter and equilibrium states of spin s = 1 Bose systems

    Science.gov (United States)

    Glushchenko, A. V.; Kovalevsky, M. Yu.

    2017-09-01

    The problem of classification of degenerate equilibrium states in spin s = 1 systems with the phase and magnetic symmetries simultaneously broken is considered. An assumption about the residual symmetry of degenerate equilibrium states and the transformation properties of the spinor order-parameter operator under transformations generated by additive integrals of motion yields equations that classify its equilibrium values. The anisotropic structure of the equilibrium values of the order parameter is presented in terms of the parameters of the residual symmetry generator. Based on the model with a separated condensate, the structure of the densities of the magnetic additive integrals of motion in the equilibrium state is revealed. A comparison is made with the results of existing studies on superfluid spin s = 1 systems.

  10. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    Science.gov (United States)

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  11. The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state

    NARCIS (Netherlands)

    Philipse, A.P.|info:eu-repo/dai/nl/073532894; Vrij, A.|info:eu-repo/dai/nl/304841382

    2011-01-01

    The thermodynamic equilibrium between charged colloids and an electrolyte reservoir is named after Frederic Donnan who first published on it one century ago (Donnan 1911 Z. Electrochem. 17 572). One of the intriguing features of the Donnan equilibrium is the ensuing osmotic equation of state which

  12. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    Science.gov (United States)

    Valkass, R. A. J.; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J.; Cavill, S. A.; van der Laan, G.; Dhesi, S. S.; Bashir, M. A.; Gubbins, M. A.; Czoschke, P. J.; Lopusnik, R.

    2015-06-01

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.

  13. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    Energy Technology Data Exchange (ETDEWEB)

    Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cavill, S. A. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Laan, G. van der; Dhesi, S. S. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bashir, M. A.; Gubbins, M. A. [Research and Development, Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Derry BT48 0BF (United Kingdom); Czoschke, P. J.; Lopusnik, R. [Recording Heads Operation, Seagate Technology, 7801 Computer Avenue South, Bloomington, Minnesota 55435 (United States)

    2015-06-08

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.

  14. KMS-like properties of local equilibrium states in quantum field theory

    Science.gov (United States)

    Gransee, Michael; Pinamonti, Nicola; Verch, Rainer

    2017-07-01

    A new condition, called ;Local KMS Condition;, characterizing states of a quantum field to which one can ascribe, at a given spacetime point, a temperature, is introduced in this article. It will be shown that the Local KMS Condition (LKMS condition) is equivalent to the Local Thermal Equilibrium (LTE) condition, proposed previously by Buchholz, Ojima and Roos, for states of the quantized scalar Klein-Gordon field that fulfill the analytic microlocal spectrum condition. Therefore, known examples of states fulfilling the LTE condition provide examples of states obeying the LKMS condition with a temperature distribution varying in space and time. The results extend to the generalized cases of mixed-temperature LKMS and LTE states. The LKMS condition therefore provides a promising generalization of the KMS condition, which characterizes global thermal equilibrium states with respect to an inertial time evolution, to states which are globally out of equilibrium but still possess a local temperature distribution.

  15. A class of almost equilibrium states in Robertson-Walker spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Kueskue, Muharrem

    2008-11-06

    In quantum field theory in curved spacetimes the construction of the algebra of observables of linear fields is today well understood. However, it remains a non-trivial task to construct physically meaningful states on the algebra. For instance, we are in the unsatisfactory situation that there exist no examples of states suited to describe local thermal equilibrium in a non-stationary spacetime. In this thesis, we construct a class of states for the Klein-Gordon field in Robertson-Walker spacetimes, which seem to provide the first example of thermal states in a spacetime without time translation symmetry. More precisely, in the setting of real, linear, scalar fields in Robertson-Walker spacetimes we define on the set of homogeneous, isotropic, quasi-free states a free energy functional that is based on the averaged energy density measured by an isotropic observer along his worldline. This functional is well defined and lower bounded by a suitable quantum energy inequality. Subsequently, we minimize this functional and obtain states that we interpret as 'almost equilibrium states'. It turns out that the states of low energy are the ground states of the almost equilibrium states. Finally, we prove that the almost equilibrium states satisfy the Hadamard condition, which qualifies them as physically meaningful states. (orig.)

  16. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    Science.gov (United States)

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  17. Stability analysis of uniform equilibrium foam states for EOR processes

    NARCIS (Netherlands)

    Ashoori, E.; Marchesin, D.; Rossen, W.R.

    2011-01-01

    The use of foam for mobility control is a promising mean to improve sweep efficiency in EOR. Experimental studies discovered that foam exhibits three different states (weak foam, intermediate foam, and strong foam). The intermediate-foam state is found to be unstable in the lab whereas the weak- and

  18. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Energy Technology Data Exchange (ETDEWEB)

    Doyon, Benjamin, E-mail: benjamin.doyon@kcl.ac.uk

    2015-03-15

    Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  19. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  20. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    Science.gov (United States)

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  1. Classical orbital paramagnetism in non-equilibrium steady state

    Indian Academy of Sciences (India)

    58

    Abstract. We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital ...

  2. Variational Principle for Non-Equilibrium Steady States of the XX Model

    CERN Document Server

    Matsui, T

    2003-01-01

    We show that non-equilibrium steady states of the one dimensional exactly solved XY model can be characterized by the variational principle of free energy of a long range interaction and that they cannot be a KMS state for any C$^*$-dynamical system.

  3. Equilibrium states of generic quantum systems subject to periodic driving.

    Science.gov (United States)

    Lazarides, Achilleas; Das, Arnab; Moessner, Roderich

    2014-07-01

    When a closed quantum system is driven periodically with period T, it approaches a periodic state synchronized with the drive in which any local observable measured stroboscopically approaches a steady value. For integrable systems, the resulting behavior is captured by a periodic version of a generalized Gibbs ensemble. By contrast, here we show that for generic nonintegrable interacting systems, local observables become independent of the initial state entirely. Essentially, this happens because Floquet eigenstates of the driven system at quasienergy ω(α) consist of a mixture of the exponentially many eigenstates of the undriven Hamiltonian, which are thus drawn from the entire extensive undriven spectrum. This is a form of equilibration which depends only on the Hilbert space of the undriven system and not on any details of its Hamiltonian.

  4. Resource theory of quantum states out of thermal equilibrium.

    Science.gov (United States)

    Brandão, Fernando G S L; Horodecki, Michał; Oppenheim, Jonathan; Renes, Joseph M; Spekkens, Robert W

    2013-12-20

    The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution.

  5. 76 FR 65360 - Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order Provisions

    Science.gov (United States)

    2011-10-21

    .... Clark, Marketing Specialist, or Kenneth G. Johnson, Regional Manager, DC Marketing Field Office... Agricultural Marketing Service 7 CFR Part 953 Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order Provisions AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This...

  6. 76 FR 33967 - Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order Provisions

    Science.gov (United States)

    2011-06-10

    ... INFORMATION CONTACT: Dawana J. Clark, Marketing Specialist, or Kenneth G. Johnson, Regional Manager, DC... / Friday, June 10, 2011 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 953 Irish Potatoes Grown in Southeastern States; Suspension of Marketing Order...

  7. 34 CFR 395.17 - Suspension of designation as State licensing agency.

    Science.gov (United States)

    2010-07-01

    ... protection of Federal property on which vending machines subject to the requirements of § 395.32 are located in the State. Upon the suspension of such designation, vending machine income from vending machines... maintenance, operation and protection of the Federal property on which such vending machines are located...

  8. State-to-state modeling of non equilibrium low-temperature atomic plasmas

    Science.gov (United States)

    Bultel, Arnaud; Morel, Vincent; Annaloro, Julien; Druguet, Marie-Claude

    2017-03-01

    The most relevant approach leading to a thorough understanding of the behavior of non equilibrium atomic plasmas is to elaborate state-to-state models in which the mass conservation equation is applied directly to atoms or ions on their excited states. The present communication reports the elaboration of such models and the results obtained. Two situations close to each other are considered. First, the plasmas produced behind shock fronts obtained in ground test facilities (shock tubes) or during planetary atmospheric entries of spacecrafts are discussed. We focused our attention on the nitrogen case for which a complete implementation of the CoRaM-N2 collisional-radiative model has been performed in a steady one-dimensional computation code based on the Rankine-Hugoniot assumptions. Second, the plasmas produced by the interaction between an ultra short laser pulse and a tungsten sample are discussed in the framework of the elaboration of the Laser-Induced Breakdown Spectroscopy (LIBS) technique. In the present case, tungsten has been chosen in the purpose of validating an in situ experimental method able to provide the elemental composition of the divertor wall of a tokamak like WEST or ITER undergoing high energetic deuterium and tritium nuclei fluxes.

  9. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  10. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.

    2009-01-01

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  11. An equilibrium for frustrated quantum spin systems in the stochastic state selection method

    Energy Technology Data Exchange (ETDEWEB)

    Munehisa, Tomo; Munehisa, Yasuko [Faculty of Engineering, University of Yamanashi, Kofu 400-8511 (Japan)

    2007-05-16

    We develop a new method to calculate eigenvalues in frustrated quantum spin models. It is based on the stochastic state selection (SSS) method, which is an unconventional Monte Carlo technique that we have investigated in recent years. We observe that a kind of equilibrium is realized under some conditions when we repeatedly operate a Hamiltonian and a random choice operator, which is defined by stochastic variables in the SSS method, to a trial state. In this equilibrium, which we call the SSS equilibrium, we can evaluate the lowest eigenvalue of the Hamiltonian using the statistical average of the normalization factor of the generated state. The SSS equilibrium itself has already been observed in unfrustrated models. Our study in this paper shows that we can also see the equilibrium in frustrated models, with some restriction on values of a parameter introduced in the SSS method. As a concrete example, we employ the spin-1/2 frustrated J{sub 1}-J{sub 2} Heisenberg model on the square lattice. We present numerical results on the 20-, 32-, and 36-site systems, which demonstrate that statistical averages of the normalization factors reproduce the known exact eigenvalue to good precision. Finally, we apply the method to the 40-site system. Then we obtain the value of the lowest energy eigenvalue with an error of less than 0.2%.

  12. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    Science.gov (United States)

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn4 and In, with some Sn being detected by XRD, but no In3Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In3Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  13. Dynamical Detailed Balance and Local Kms Condition for Non-Equilibrium States

    Science.gov (United States)

    Accardi, Luigi; Imafuku, Kentaro

    The principle of detailed balance is at the basis of equilibrium physics and is equivalent to the Kubo-Martin-Schwinger (KMS) condition (under quite general assumptions). In the present paper we prove that a large class of non-equilibrium quantum systems satisfies a dynamical generalization of the detailed balance condition (dynamical detailed balance) expressing the fact that all the micro-currents, associated to the Bohr frequencies are constant. The usual (equilibrium) detailed balance condition is characterized by the property that this constant is identically zero. From this we deduce a simple and experimentally measurable relation expressing the microcurrent associated to a transition between two levels ɛm→ɛn as a linear combination of the occupation probabilities of the two levels, with coefficients given by the generalized susceptivities (transport coefficients). We then give a second characterization of the dynamical detailed balance condition using a master equation rather than the microcurrents. Finally we show that these two conditions are equivalent to a "local" generalization of the usual KMS condition. Summing up: rather than postulating some ansatz on the basis of phenomenological models or of numerical simulations, we deduce, directly in the quantum domain and from fundamental principles, some natural and simple non equilibrium generalizations of the three main characterizations of equilibrium states. Then we prove that these three, apparently very far, conditions are equivalent. These facts support our convinction that these three equivalent conditions capture a universal aspect of non equilibrium phenomena.

  14. State observer-based sliding mode control for semi-active hydro-pneumatic suspension

    Science.gov (United States)

    Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin

    2016-02-01

    This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.

  15. Stability analysis of the endemic equilibrium state of an infection age ...

    African Journals Online (AJOL)

    In this work we present an infection-age-structured mathematical model of AIDS disease dynamics and examine the endemic equilibrium state for stability. An explicit formula for the basic reproduction number R0 was obtained in terms of the demographic and epidemiological parameters of the model. The endemic ...

  16. Thermodynamics and stability of non-equilibrium steady states in open systems

    OpenAIRE

    Bulíček, Miroslav; Málek, Josef; Průša, Vít

    2017-01-01

    Thermodynamical arguments are known to be useful in the construction of physically motivated Lyapunov functionals for nonlinear stability analysis of spatially homogeneous equilibrium steady states in thermodynamically isolated systems. Unfortunately, the limitation to thermodynamically isolated systems is essential, and standard arguments are not applicable even for some very simple thermodynamically open systems. On the other hand, the nonlinear stability of thermodynamically open systems i...

  17. 27 CFR 70.226 - Suspension of running of period of limitation; taxpayer outside of United States.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Suspension of running of... Limitations § 70.226 Suspension of running of period of limitation; taxpayer outside of United States. The running of the period of limitations on collection after assessment prescribed in 26 U.S.C. 6502 (relating...

  18. Quantum criticality out of equilibrium: steady state in a magnetic single-electron transistor.

    Science.gov (United States)

    Kirchner, Stefan; Si, Qimiao

    2009-11-13

    Quantum critical systems out of equilibrium are of extensive interest, but are difficult to study theoretically. We consider here the steady-state limit of a single-electron transistor with ferromagnetic leads. In equilibrium (i.e., bias voltage V = 0), this system features a continuous quantum phase transition with a critical destruction of the Kondo effect. We construct an exact quantum Boltzmann treatment in a dynamical large-N limit, and determine the universal scaling functions of both the nonlinear conductance and fluctuation-dissipation ratios. We also elucidate the decoherence properties as encoded in the local spin response.

  19. Equilibrium points of the tilted perfect fluid Bianchi VIh state space

    Science.gov (United States)

    Apostolopoulos, Pantelis S.

    2005-05-01

    We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h VIh.

  20. Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational–vibrational (V–V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.

  1. Equilibrium Play and Best Response to (Stated) Beliefs in Constant Sum Games

    OpenAIRE

    Rey-Biel, Pedro

    2007-01-01

    In a laboratory experiment, subjects played ten two-person 3x3 constant sum games and stated beliefs about the frequencies of play by their opponents. Contrary to previous experimental evidence, game-theoretical predictions work well: 80% of actions coincided with Nash equilibrium, subjects were good at predicting the action which was played with highest frequency and 73% of actions taken were best responses to stated beliefs. Complexity, measured by the necessary number of rounds of iterated...

  2. New quasi-steady-state and partial-equilibrium methods for integrating chemically reacting systems

    Science.gov (United States)

    Mott, David Ray

    1999-11-01

    We present new quasi-steady-state (QSS) and partial- equilibrium (PE) methods for integrating systems of ordinary differential equations (ODEs) that arise from chemical reactions. These methods were developed for use in process-split reacting-flow simulations. The new QSS integrator is a second-order predictor- corrector method that is A-stable for linear equations. The method is accurate regardless of the timescales of the individual ODEs in the system and works well for problems typical of hydrocarbon combustion. The method has very low start-up costs, making it ideal for process- split reacting-flow simulations which require the solution of an initial-value problem in each computational cell in the flowfield for every global timestep. For problems of extreme stiffness, PE tools can be used in combination with the QSS integrator. PE methods remove the fastest reactions in the mechanism from the kinetic integration when their effects can be calculated using algebraic equilibrium constraints. Conservation constraints are used to write an ODE for the reaction's progress variable. The solution of this equation provides a new method for identifying reactions in equilibrium. A systematic method for finding a set of conserved scalars for an arbitrary group of reactions is presented, and this method is used to eliminate reactions that produce redundant equilibrium constraints. Since the equilibrium reactions must compensate for changes in the system that disturb their equilibrium, the equilibrium source terms are not forced identically to zero. Equilibrium is imposed by driving these source terms to the average value required to compensate for the perturbations caused by the other processes. Integration results for a cesium-air mechanism, a hydrogen-air mechanism, and a thermonuclear mechanism used in astrophysics are presented. One-dimensional flame and detonation results are presented for a single-step hydrogen mechanism and the thermonuclear mechanism, respectively

  3. Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states.

    Science.gov (United States)

    Capitelli, M; Celiberto, R; Gorse, C; Laricchiuta, A; Pagano, D; Traversa, P

    2004-02-01

    A study of the dependence of transport coefficients (thermal conductivity, viscosity, electrical conductivity) of local thermodynamic equilibrium H2 plasmas on the presence of electronically atomic excited states, H(n), is reported. The results show that excited states with their "abnormal" cross sections strongly affect the transport coefficients especially at high pressure. Large relative errors are found when comparing the different quantities with the corresponding values obtained by using ground-state transport cross sections. The accuracy of the present calculation is finally discussed in the light of the selection of transport cross sections and in dependence of the considered number of excited states.

  4. Non-equilibrium steady states of quantum systems on star graphs

    Energy Technology Data Exchange (ETDEWEB)

    Mintchev, Mihail, E-mail: mintchev@df.unipi.it [Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica, Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2011-10-14

    Non-equilibrium steady states of quantum fields on star graphs are explicitly constructed. These states are parametrized by the temperature and the chemical potential, associated with each edge of the graph. Time reversal invariance is spontaneously broken. We study in this general framework the transport properties of the Schroedinger and the Dirac systems on a star graph, modeling a quantum wire junction. The interaction, which drives the system away from equilibrium, is localized in the vertex of the graph. All point-like vertex interactions, giving rise to self-adjoint Hamiltonians possibly involving the minimal coupling to a static electromagnetic field in the ambient space, are considered. In this context, we compute the exact electric steady current and the non-equilibrium charge density. We also investigate the heat transport and derive the Casimir energy density away from equilibrium. The appearance of Friedel-type oscillations of the charge and energy densities along the edges of the graph is established. We focus finally on the noise power and discuss the non-trivial impact of the point-like interactions on the noise. (paper)

  5. Some Considerations on the Fundamentals of Chemical Kinetics: Steady State, Quasi-Equilibrium, and Transition State Theory

    Science.gov (United States)

    Perez-Benito, Joaquin F.

    2017-01-01

    The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…

  6. Emergence of equilibrium thermodynamic properties in quantum pure states. I. Theory.

    Science.gov (United States)

    Fresch, Barbara; Moro, Giorgio J

    2010-07-21

    Investigation on foundational aspects of quantum statistical mechanics recently entered a renaissance period due to novel intuitions from quantum information theory and to increasing attention on the dynamical aspects of single quantum systems. In the present contribution a simple but effective theoretical framework is introduced to clarify the connections between a purely mechanical description and the thermodynamic characterization of the equilibrium state of an isolated quantum system. A salient feature of our approach is the very transparent distinction between the statistical aspects and the dynamical aspects in the description of isolated quantum systems. Like in the classical statistical mechanics, the equilibrium distribution of any property is identified on the basis of the time evolution of the considered system. As a consequence equilibrium properties of quantum system appear to depend on the details of the initial state due to the abundance of constants of the motion in the Schrodinger dynamics. On the other hand the study of the probability distributions of some functions, such as the entropy or the equilibrium state of a subsystem, in statistical ensembles of pure states reveals the crucial role of typicality as the bridge between macroscopic thermodynamics and microscopic quantum dynamics. We shall consider two particular ensembles: the random pure state ensemble and the fixed expectation energy ensemble. The relation between the introduced ensembles, the properties of a given isolated system, and the standard quantum statistical description are discussed throughout the presentation. Finally we point out the conditions which should be satisfied by an ensemble in order to get meaningful thermodynamical characterization of an isolated quantum system.

  7. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem.

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    Full Text Available In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games.

  8. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem

    Science.gov (United States)

    Li, Jiawei; Kendall, Graham

    2015-01-01

    In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games. PMID:26288088

  9. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.

    Science.gov (United States)

    Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich

    2015-09-04

    We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

  10. Physical mechanism for biopolymers to aggregate and maintain in non-equilibrium states.

    Science.gov (United States)

    Ma, Wen-Jong; Hu, Chin-Kun

    2017-06-08

    Many human or animal diseases are related to aggregation of proteins. A viable biological organism should maintain in non-equilibrium states. How protein aggregate and why biological organisms can maintain in non-equilibrium states are not well understood. As a first step to understand such complex systems problems, we consider simple model systems containing polymer chains and solvent particles. The strength of the spring to connect two neighboring monomers in a polymer chain is controlled by a parameter s with s → ∞ for rigid-bond. The strengths of bending and torsion angle dependent interactions are controlled by a parameter s A with s A  → -∞ corresponding to no bending and torsion angle dependent interactions. We find that for very small s A , polymer chains tend to aggregate spontaneously and the trend is independent of the strength of spring. For strong springs, the speed distribution of monomers in the parallel (along the direction of the spring to connect two neighboring monomers) and perpendicular directions have different effective temperatures and such systems are in non-equilibrium states.

  11. Discrimination of Sol and Gel states in an aging clay suspension

    Science.gov (United States)

    Shayeganfar, F.; Sadegh Movahed, M.; Jafari, G. R.

    2013-09-01

    The dynamical scattered light intensity and multiplicative cascade model was employed to characterize the anisotropic charged colloidal particles suspension during the so-called Sol-Gel transition. Generally we looked for finding a criterion to distinguish the properties of Sol and Gel states systematically. The probability density function (PDF) of the light scattering intensity shows an obvious change with proceeding of the sample aging process (during of gelation state). Our results confirmed that in the so-called Sol state, the value of non-Gaussian parameter, λw2, as a function of time is larger than that of for weak-Gel or in coexistence Sol-Gel state. The number of cascades in the weak-Gel is smaller than the rest of states. In addition, we found out a deviation from Kolmogorov-Obukhov hypothesis concerning the linear dependance of λw2 to the logarithm of scale.

  12. EMPLOYMENT, PRODUCTION AND CONSUMPTION WITH RANDOM UPDATE: NON-EQUILIBRIUM STATIONARY STATE EQUATIONS

    Directory of Open Access Journals (Sweden)

    Hynek Lavička

    2013-12-01

    Full Text Available In this work, we investigate the Model of Employment, Production and Consumption, as introduced in a series of papers by I. Wright [1–3] from the perspective of statistical physics, and we focus on the presence of equilibrium. The model itself belongs to the class of multi-agent computational models, which aim to explain macro-economic behavior using explicit micro-economic interactions.Based on the mean-field approximation, we form the Fokker-Plank equation(s and then formulate conditions forming the stationary solution, which results in a system of non-linear integral-differential equations. This approximation then allows the presence of non-equilibrium stationary states, where the model is a mixed additive-multiplicative model.

  13. Out-of-equilibrium dynamics in superspin glass state of strongly interacting magnetic nanoparticle assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Nakamae, Sawako, E-mail: Sawako.nakamae@cea.fr

    2014-04-15

    Interacting magnetic nanoparticles display a wide variety of magnetic behaviors ranging from modified superparamagnetism, superspin glass to possibly, superferromagnetism. The superspin glass state is described by its slow and out-of-equilibrium magnetic behaviors akin to those found in atomic spin glasses. In this article, recent experimental findings on superspin correlation length growth and the violation of the fluctuation-dissipation theorem obtained in concentrated frozen ferrofluids are presented to illustrate certain out-of-equilibrium dynamics behavior in superspin glasses. - Highlights: • Recent experimental findings on superspin glass dynamics in magnetic nanoparticle systems. • Advantages of magnetic nanoparticles for the study of spin glass physics. • Open questions and future directions in superspin glass research.

  14. Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow

    Science.gov (United States)

    Rodriquez, Alvaro Che

    2002-01-01

    An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.

  15. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    Science.gov (United States)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  16. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  17. Emergence of equilibrium thermodynamic properties in quantum pure states. II. Analysis of a spin model system.

    Science.gov (United States)

    Fresch, Barbara; Moro, Giorgio J

    2010-07-21

    A system composed of identical spins and described by a quantum mechanical pure state is analyzed within the statistical framework presented in Part I of this work. We explicitly derive the typical values of the entropy, of the energy, and of the equilibrium reduced density matrix of a subsystem for the two different statistics introduced in Part I. In order to analyze their consistency with thermodynamics, these quantities of interest are evaluated in the limit of large number of components of the isolated system. The main results can be summarized as follows: typical values of the entropy and of the equilibrium reduced density matrix as functions of the internal energy in the fixed expectation energy ensemble do not satisfy the requirement of thermodynamics. On the contrary, the thermodynamical description is recovered from the random pure state ensemble (RPSE), provided that one considers systems large enough. The thermodynamic limit of the considered properties for the spin system reveals a number of important features. First canonical statistics (and thus, canonical typicality as long as the fluctuations around the average value are small) emerges without the need of assuming the microcanonical space for the global pure state. Moreover, we rigorously prove (i) the equivalence of the "global temperature," derived from the entropy equation of state, with the "local temperature" determining the canonical state of the subsystems; and (ii) the equivalence between the RPSE typical entropy and the canonical entropy for the overall system.

  18. Vibration Control of a Semiactive Vehicle Suspension System Based on Extended State Observer Techniques

    Directory of Open Access Journals (Sweden)

    Ze Zhang

    2014-01-01

    Full Text Available A feedback control method based on an extended state observer (ESO method is implemented to vibration reduction in a typical semiactive suspension (SAS system using a magnetorheological (MR damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.

  19. Boundary state in an integrable quantum field theory out of equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Sotiriadis, Spyros [Department of Physics, University of Pisa (Italy); INFN, Pisa section (Italy); Takacs, Gabor [Department of Theoretical Physics, Budapest University of Technology and Economics (Hungary); MTA-BME “Momentum” Statistical Field Theory Research Group (Hungary); Mussardo, Giuseppe [SISSA and INFN, Trieste (Italy); The Abdus Salam ICTP, Trieste (Italy)

    2014-06-27

    We study a quantum quench of the mass and the interaction in the Sinh-Gordon model starting from a large initial mass and zero initial coupling. Our focus is on the determination of the expansion of the initial state in terms of post-quench excitations. We argue that the large energy profile of the involved excitations can be relevant for the late time behaviour of the system and common regularization schemes are unreliable. We therefore proceed in determining the initial state by first principles expanding it in a systematic and controllable fashion on the basis of the asymptotic states. Our results show that, for the special limit of pre-quench parameters we consider, it assumes a squeezed state form that has been shown to evolve so as to exhibit the equilibrium behaviour predicted by the Generalized Gibbs Ensemble.

  20. Student and school factors associated with school suspension: A multilevel analysis of students in Victoria, Australia and Washington State, United States

    Science.gov (United States)

    Sheryl, A. Hemphill; Stephanie, M. Plenty; Herrenkohl, Todd I.; Toumbourou, John W.; Catalano, Richard F.

    2014-01-01

    One of the common issues schools face is how best to handle challenging student behaviors such as violent behavior, antisocial behavior, bullying, school rule violations, and interrupting other students’ learning. School suspension may be used to remove students engaging in challenging behaviors from the school for a period of time. However, the act of suspending students from school may worsen rather than improve their behavior. Research shows that suspensions predict a range of student outcomes, including crime, delinquency, and drug use. It is therefore crucial to understand the factors associated with the use of school suspension, particularly in sites with different policy approaches to problem behaviors. This paper draws on data from state-representative samples of 3,129 Grade 7 and 9 students in Washington State, United States and Victoria, Australia sampled in 2002. Multilevel modeling examined student and school level factors associated with student-reported school suspension. Results showed that both student (being male, previous student antisocial and violent behavior, rebelliousness, academic failure) and school (socioeconomic status of the school, aggregate measures of low school commitment) level factors were associated with school suspension and that the factors related to suspension were similar in the two states. The implications of the findings for effective school behavior management policy are that, rather than focusing only on the student, both student and school level factors need to be addressed to reduce the rates of school suspension. PMID:24860205

  1. xTRAM: Estimating Equilibrium Expectations from Time-Correlated Simulation Data at Multiple Thermodynamic States

    Directory of Open Access Journals (Sweden)

    Antonia S. J. S. Mey

    2014-10-01

    Full Text Available Computing the equilibrium properties of complex systems, such as free energy differences, is often hampered by rare events in the dynamics. Enhanced sampling methods may be used in order to speed up sampling by, for example, using high temperatures, as in parallel tempering, or simulating with a biasing potential such as in the case of umbrella sampling. The equilibrium properties of the thermodynamic state of interest (e.g., lowest temperature or unbiased potential can be computed using reweighting estimators such as the weighted histogram analysis method or the multistate Bennett acceptance ratio (MBAR. weighted histogram analysis method and MBAR produce unbiased estimates, the simulation samples from the global equilibria at their respective thermodynamic states—a requirement that can be prohibitively expensive for some simulations such as a large parallel tempering ensemble of an explicitly solvated biomolecule. Here, we introduce the transition-based reweighting analysis method (TRAM—a class of estimators that exploit ideas from Markov modeling and only require the simulation data to be in local equilibrium within subsets of the configuration space. We formulate the expanded TRAM (xTRAM estimator that is shown to be asymptotically unbiased and a generalization of MBAR. Using four exemplary systems of varying complexity, we demonstrate the improved convergence (ranging from a twofold improvement to several orders of magnitude of xTRAM in comparison to a direct counting estimator and MBAR, with respect to the invested simulation effort. Lastly, we introduce a random-swapping simulation protocol that can be used with xTRAM, gaining orders-of-magnitude advantages over simulation protocols that require the constraint of sampling from a global equilibrium.

  2. Impacts of energy consumption and emissions on the trip cost without late arrival at the equilibrium state

    Science.gov (United States)

    Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Shang, Hua-Yan

    2017-08-01

    In this paper, we apply a car-following model, fuel consumption model, emission model and electricity consumption model to explore the influences of energy consumption and emissions on each commuter's trip costs without late arrival at the equilibrium state. The numerical results show that the energy consumption and emissions have significant impacts on each commuter's trip cost without late arrival at the equilibrium state. The fuel cost and emission cost prominently enhance each commuter's trip cost and the trip cost increases with the number of vehicles, which shows that considering the fuel cost and emission cost in the trip cost will destroy the equilibrium state. However, the electricity cost slightly enhances each commuter's trip cost, but the trip cost is still approximately a constant, which indicates that considering the electricity cost in the trip cost does not destroy the equilibrium state.

  3. Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    We compare matrix product purifications and minimally entangled typical thermal states (METTS) for the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems. For METTS, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. We assess the computation costs and accuracies of the two methods for critical and gapped spin chains and the Bose-Hubbard model. For the same computation cost, purifications yield more accurate results than METTS except for temperatures well below the system's energy gap.

  4. On a quantum phase transition in a steady state out of equilibrium

    Science.gov (United States)

    Aschbacher, Walter H.

    2016-10-01

    Within the rigorous axiomatic framework for the description of quantum mechanical systems with a large number of degrees of freedom, we show that the nonequilibrium steady state, constructed in the quasifree fermionic system corresponding to the isotropic XY chain in which a finite sample, coupled to two thermal reservoirs at different temperatures, is exposed to a local external magnetic field, is breaking translation invariance and exhibits a strictly positive entropy production rate. Moreover, we prove that there exists a second-order nonequilibrium quantum phase transition with respect to the strength of the magnetic field as soon as the system is truly out of equilibrium.

  5. Quantum phase transition in a far-from-equilibrium steady state of an XY spin chain.

    Science.gov (United States)

    Prosen, Tomaz; Pizorn, Iztok

    2008-09-05

    Using quantization in the Fock space of operators, we compute the nonequilibrium steady state in an open Heisenberg XY spin 1/2 chain of a finite but large size coupled to Markovian baths at its ends. Numerical and theoretical evidence is given for a far-from-equilibrium quantum phase transition with the spontaneous emergence of long-range order in spin-spin correlation functions, characterized by a transition from saturation to linear growth with the size of the entanglement entropy in operator space.

  6. Existence of equilibrium states of hollow elastic cylinders submerged in a fluid

    Directory of Open Access Journals (Sweden)

    M. B. M. Elgindi

    1992-01-01

    Full Text Available This paper is concerned with the existence of equilibrium states of thin-walled elastic, cylindrical shell fully or partially submerged in a fluid. This problem obviously serves as a model for many problems with engineering importance. Previous studies on the deformation of the shell have assumed that the pressure due to the fluid is uniform. This paper takes into consideration the non-uniformity of the pressure by taking into account the effect of gravity. The presence of a pressure gradient brings additional parameters to the problem which in turn lead to the consideration of several boundary value problems.

  7. A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, M [Institut fuer Theoretische Physik, Albert-Einstein Allee 11, Universitaet Ulm, D-89069 Ulm (Germany); Eisert, J, E-mail: marcus.cramer@macnews.d, E-mail: jense@qipc.or [Institute for Mathematical Sciences, Imperial College London, Prince' s Gardens, London SW7 2PE (United Kingdom)

    2010-05-15

    We prove that quantum many-body systems on a one-dimensional lattice locally relax to Gaussian states under non-equilibrium dynamics generated by a bosonic quadratic Hamiltonian. This is true for a large class of initial states-pure or mixed-which have to satisfy merely weak conditions concerning the decay of correlations. The considered setting is a proven instance of a situation where dynamically evolving closed quantum systems locally appear as if they had truly relaxed, to maximum entropy states for fixed second moments. This furthers the understanding of relaxation in suddenly quenched quantum many-body systems. The proof features a non-commutative central limit theorem for non-i.i.d. random variables, showing convergence to Gaussian characteristic functions, giving rise to trace-norm closeness. We briefly link our findings to the ideas of typicality and concentration of measure.

  8. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  9. On the state dependency of the equilibrium climate sensitivity during the last 5 million years

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2015-12-01

    Full Text Available It is still an open question how equilibrium warming in response to increasing radiative forcing – the specific equilibrium climate sensitivity S – depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr. We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr. During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6–5 Myr BP the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP, the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar

  10. On the state dependency of the equilibrium climate sensitivity during the last 5 million years

    Science.gov (United States)

    Köhler, P.; de Boer, B.; von der Heydt, A. S.; Stap, L. B.; van de Wal, R. S. W.

    2015-12-01

    It is still an open question how equilibrium warming in response to increasing radiative forcing - the specific equilibrium climate sensitivity S - depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6-5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata

  11. The density of available states of the DDHMS pre-equilibrium model

    Directory of Open Access Journals (Sweden)

    Mega D.F.

    2012-02-01

    Full Text Available Griffin's exciton model of pre-equilibrium emission and Blann's hybrid model have proven extremely successful in describing the energy dependence and, to a certain extent the angular dependence, of nucleon and composite particle emission in preequilibrium reactions. However, the conceptual basis of these models was called into question by Bisplinghoff already some time ago. In response to Bisplinghoff, Blann proposed the hybrid Monte Carlo simulation model (HMS, which uses only the densities of available states for creation and decay of single particle-hole pairs. The model was later extended, in collaboration with Chadwick, to the double-differential HMS, which we call the DDHMS. This extension is based on the Chadwick-Obložinský prescription for pproximating the energy-angular distribution of available two-particle-one-hole states. Here, we show how this distribution can be calculated exactly.

  12. Equilibrium states of open quantum systems in the strong coupling regime.

    Science.gov (United States)

    Subaşı, Y; Fleming, C H; Taylor, J M; Hu, B L

    2012-12-01

    In this work we investigate the late-time steady states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the thermal reservoir is nonvanishing or equivalently if the relaxation time scales are finite. Using a variety of nonequilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system = system+environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multitime correlations of the open system evolve towards those of the closed system thermal state. Multitime correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations.

  13. Usefulness of an equal-probability assumption for out-of-equilibrium states: A master equation approach

    KAUST Repository

    Nogawa, Tomoaki

    2012-10-18

    We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we propose a method to construct a master equation for extensive variables describing nonstationary nonequilibrium dynamics. The key point of the method is the assumption that transient states are equivalent to the equilibrium state that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium. We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields relaxation dynamics that are very fast, the redundant two-variable description well reproduces the true dynamics quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena. © 2012 American Physical Society.

  14. Localized Bioconvection Patterns and Their Initial State Dependency in Euglena gracilis Suspensions in an Annular Container

    Science.gov (United States)

    Shoji, Erika; Nishimori, Hiraku; Awazu, Akinori; Izumi, Shunsuke; Iima, Makoto

    2014-04-01

    Localized patterns of bioconvection in Euglena gracilis suspensions were experimentally analyzed in an annular container. Near the critical mean density of convection, we succeeded in isolating two basic types of localized convection patterns. One was an almost stationary pattern consisting of two convection cells centered by an isolated high-density region of the microorganism where a downflow was generated, which we call a "bioconvection unit". The other was a traveling wave pattern consisting of an array of moving high-density waves bounded in a certain area. The effect of the mean density of E. gracilis on the emergence of the localized convection pattern was also examined. Near the critical mean density, we found that the emergence probability of the localized convection pattern depends on the initial state, i.e., whether E. gracilis has a uniform or localized distribution, which suggests that the system is bistable. Such bistability is often accompanied by localized structures in spatially extended dissipative systems.

  15. Non-existence of Steady State Equilibrium in the Neoclassical Growth Model with a Longevity Trend

    DEFF Research Database (Denmark)

    Hermansen, Mikkel Nørlem

    Longevity has been increasing in the developed countries for almost two centuries and further increases are expected in the future. In the neoclassical growth models the case of population growth driven by fertility is well-known, whereas the properties of population growth caused by persistently...... declining mortality rates have received little attention. Furthermore, the economic literature on the consequences of changing longevity has relied almost entirely on analysis applying a once and for all change in the survival probability. This paper raises concern about such an approach of comparison...... of steady state equilibrium when considering the empirically observed trend in longevity. We extend a standard continuous time overlapping generations model by a longevity trend and are thereby able to study the properties of mortality-driven population growth. This turns out to be exceedingly complicated...

  16. IGE Model: An Extension of the Ideal Gas Model to Include Chemical Composition as Part of the Equilibrium State

    Directory of Open Access Journals (Sweden)

    Christopher P. Paolini

    2012-01-01

    Full Text Available The ideal gas (IG model is probably the most well-known gas models in engineering thermodynamics. In this paper, we extend the IG model into an ideal gas equilibrium (IGE model mixture model by incorporating chemical equilibrium calculations as part of the state evaluation. Through a simple graphical interface, users can set the atomic composition of a gas mixture. We have integrated this model into a thermodynamic web portal TEST (http://thermofluids.sdsu.edu/ that contains Java applets for various models for properties of pure substances. In the state panel of the IGE model, the known thermodynamic properties are entered. For a given pressure and temperature, the mixture's Gibbs function is minimized subject to atomic constraints and the equilibrium composition along with thermodynamic properties of the mixture are calculated and displayed. What is unique about this approach is that equilibrium computations are performed in the background, without requiring any major change in the familiar user interface used in other state daemons. Properties calculated by this equilibrium state daemon are compared with results from other established applications such as NASA CEA and STANJAN. Also, two different algorithms, an iterative approach and a direct approach based on minimizing different thermodynamic functions in different situation, are compared.

  17. Chemical potential in active systems: predicting phase equilibrium from bulk equations of state?

    Science.gov (United States)

    Paliwal, Siddharth; Rodenburg, Jeroen; van Roij, René; Dijkstra, Marjolein

    2018-01-01

    We derive a microscopic expression for a quantity μ that plays the role of chemical potential of active Brownian particles (ABPs) in a steady state in the absence of vortices. We show that μ consists of (i) an intrinsic chemical potential similar to passive systems, which depends on density and self-propulsion speed, but not on the external potential, (ii) the external potential, and (iii) a newly derived one-body swim potential due to the activity of the particles. Our simulations on ABPs show good agreement with our Fokker–Planck calculations, and confirm that μ (z) is spatially constant for several inhomogeneous active fluids in their steady states in a planar geometry. Finally, we show that phase coexistence of ABPs with a planar interface satisfies not only mechanical but also diffusive equilibrium. The coexistence can be well-described by equating the bulk chemical potential and bulk pressure obtained from bulk simulations for systems with low activity but requires explicit evaluation of the interfacial contributions at high activity.

  18. The Impact of School Suspension on Student Tobacco Use: A Longitudinal Study in Victoria, Australia, and Washington State, United States

    Science.gov (United States)

    Hemphill, Sheryl A.; Heerde, Jessica A.; Herrenkohl, Todd I.; Toumbourou, John W.; Catalano, Richard F.

    2012-01-01

    Context: School suspension may have unintended consequences in contributing to problem behaviors, including dropping out from school, substance use, and antisocial behavior. Tobacco use is an early-onset problem behavior, but prospective studies of the effects of suspension on tobacco use are lacking. Method: Longitudinal school-based survey of…

  19. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  20. Dynamics of a spin-1 Ising system in the neighborhood of equilibrium states

    Science.gov (United States)

    Erdem, R.ıza; Keskin, Mustafa

    2001-08-01

    The dynamics of a spin-1 Ising system containing biquadratic interactions near equilibrium states is formulated by the method of thermodynamics of irreversible processes. From the expression for the entropy production, generalized forces and fluxes are determined. The kinetic equations are obtained by introducing kinetic coefficients that satisfy the Onsager relation. By solving these equations a set of relaxation times is calculated and examined for temperatures near the phase transition temperatures, with the result that one of the relaxation times approaches infinity near the second-order phase transition temperature on either side, whereas it is sharply cusped at the first-order phase transition temperature. On the other hand, the other relaxation time has a cusp at the second-order phase transition temperature but displays a different behavior at the first-order phase transition, just a jump discontinuity. The behavior of both relaxation times is also investigated at the tricritical point. Moreover, the phase transition behaviors of the relaxation times are also obtained analytically via the critical exponents. Results are compared with conventional kinetic theory in the random-phase or generalized molecular-field approximation and a very good overall agreement is found.

  1. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  2. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra.

    Science.gov (United States)

    Chen, Duyu; Jiao, Yang; Torquato, Salvatore

    2014-07-17

    Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid-solid transition and then a solid-solid transition. The isotropic liquid phase coexists with the Conway-Torquato (CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [ J. Chem. Phys. 2011 , 135 , 151101 ]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591 ± 0.005. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and orientational pair correlation

  3. Influence of formulation pH and suspension state on freezing-induced agglomeration of aluminum adjuvants.

    Science.gov (United States)

    Salnikova, Maya S; Davis, Harrison; Mensch, Christopher; Celano, Lauren; Thiriot, David S

    2012-03-01

    Freezing and thawing of vaccines containing aluminum adjuvants can lead to formation of aggregates and loss in vaccine potency. We sought to understand whether and to what extent the freeze-thaw damage to aluminum adjuvants would differ based on suspension state (flocculation and settlement) at the time of freezing. As flocculation and settlement characteristics of aluminum adjuvants are driven largely by the electrostatic charges on the adjuvant particles, which, in turn, are strongly influenced by the pH of the suspension, we conducted freeze-thaw studies on both Adjuphos and Alhydrogel™ samples at three pH levels (4, 6.5, and 7.2) in buffer solutions with 9% sucrose. Significantly less aggregation occurred in the buffered sucrose solutions at the pH furthest from the aluminum adjuvant point of zero charge during slow freezing at -20°C. The freezing-induced aggregation for the samples with 9% sucrose at each pH was minimal during fast freezing at -70°C and -115°C. Suspensions that were flocculated and settled to a greater extent experienced the most freeze-thaw aggregation, whereas suspensions that were frozen before significant flocculation and settlement occurred showed little or no aggregation. Because pH of formulation can affect flocculation and settling time, it indirectly affects the extent of freeze-thaw aggregation. Copyright © 2011 Wiley Periodicals, Inc.

  4. Non-equilibrium theory employing enthalpy-based equation of state for binary solid and porous mixtures

    Science.gov (United States)

    Nayak, B.; Menon, S. V. G.

    2017-04-01

    A generalized enthalpy-based equation of state, which includes thermal electron excitations and non-equilibrium thermal energies, is formulated for binary solid and porous mixtures. Our approach gives rise to an extra contribution to mixture volume, in addition to those corresponding to average mixture parameters. This excess term involves the difference of thermal enthalpies of the two components, which depend on their individual temperatures. We propose to use the Hugoniot of the components to compute non-equilibrium temperatures in the mixture. These are then compared with the average temperature obtained from the mixture Hugoniot, thereby giving an estimate of non-equilibrium effects. The Birch-Murnaghan model for the zero-temperature isotherm and a linear thermal model are then used for applying the method to several mixtures, including one porous case. Comparison with experimental data on the pressure-volume Hugoniot and shock speed versus particle speed shows good agreement.

  5. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models

    Science.gov (United States)

    Fugel, Malte; Weiss, Volker C.

    2017-02-01

    Many atomistic potential models have been proposed to reproduce the properties of real water and to capture as many of its anomalies as possible. The large number of different models indicates that this task is by no means an easy one. Some models are reasonably successful for various properties, while others are designed to account for only a very few specific features of water accurately. Among the most popular models are SPC/E, TIP4P, TIP4P/2005, TIP4P/Ice, and TIP5P-E. Here, we report the equilibrium properties of the liquid-vapor coexistence, such as the densities of the liquid phase and the vapor phase, the interfacial tension between them, and the vapor pressure at saturation. From these data, the critical parameters are determined and subsequently used to cast the liquid-vapor coexistence properties into a corresponding-states form following Guggenheim's suggestions. Doing so reveals that the three TIP4P-based models display the same corresponding-states behavior and that the SPC/E model behaves quite similarly. Only the TIP5P-E model shows clear deviations from the corresponding-states properties of the other models. A comparison with data for real water shows that the reduced surface tension is well described, while the reduced coexistence curve is too wide. The models underestimate the critical compressibility factor and overestimate Guggenheim's ratio as well as the reduced boiling temperature (Guldberg's ratio). As demonstrated by the collapse of the data for the TIP4P-based models, these deviations are inherent to the specific model and cannot be corrected by a simple reparametrization. For comparison, the results for two recent polarizable models, HBP and BK3, are shown, and both models are seen to perform well in terms of absolute numbers and in a corresponding-states framework. The kind of analysis applied here can therefore be used as a guideline in the design of more accurate and yet simple multi-purpose models of water.

  6. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models.

    Science.gov (United States)

    Fugel, Malte; Weiss, Volker C

    2017-02-14

    Many atomistic potential models have been proposed to reproduce the properties of real water and to capture as many of its anomalies as possible. The large number of different models indicates that this task is by no means an easy one. Some models are reasonably successful for various properties, while others are designed to account for only a very few specific features of water accurately. Among the most popular models are SPC/E, TIP4P, TIP4P/2005, TIP4P/Ice, and TIP5P-E. Here, we report the equilibrium properties of the liquid-vapor coexistence, such as the densities of the liquid phase and the vapor phase, the interfacial tension between them, and the vapor pressure at saturation. From these data, the critical parameters are determined and subsequently used to cast the liquid-vapor coexistence properties into a corresponding-states form following Guggenheim's suggestions. Doing so reveals that the three TIP4P-based models display the same corresponding-states behavior and that the SPC/E model behaves quite similarly. Only the TIP5P-E model shows clear deviations from the corresponding-states properties of the other models. A comparison with data for real water shows that the reduced surface tension is well described, while the reduced coexistence curve is too wide. The models underestimate the critical compressibility factor and overestimate Guggenheim's ratio as well as the reduced boiling temperature (Guldberg's ratio). As demonstrated by the collapse of the data for the TIP4P-based models, these deviations are inherent to the specific model and cannot be corrected by a simple reparametrization. For comparison, the results for two recent polarizable models, HBP and BK3, are shown, and both models are seen to perform well in terms of absolute numbers and in a corresponding-states framework. The kind of analysis applied here can therefore be used as a guideline in the design of more accurate and yet simple multi-purpose models of water.

  7. Quality assessment of fluconazole capsules and oral suspensions compounded by pharmacies located in the United States.

    Science.gov (United States)

    Laporte, Carine M; Cruz-Espindola, Crisanta; Thungrat, Kamoltip; Schick, Anthea E; Lewis, Thomas P; Boothe, Dawn M

    2017-04-01

    OBJECTIVE To evaluate pharmaceutical characteristics (strength or concentration, accuracy, and precision), physical properties, and bacterial contamination of fluconazole compounded products. SAMPLE Fluconazole compounded products (30- and 240-mg capsules; 30- and 100-mg/mL oral suspensions) from 4 US veterinary compounding pharmacies. PROCEDURES Fluconazole compounded products were ordered 3 times from each of 4 pharmacies at 7- or 10-day intervals. Generic fluconazole products (50- and 200-mg tablets; 10- and 40-mg/mL oral suspensions) served as references. Compounded products were evaluated at the time of receipt; suspensions also were evaluated 3 months later and at beyond-use dates. Evaluations included assessments of strength (concentration), accuracy, precision, physical properties, and bacterial contamination. Acceptable accuracy was defined as within ± 10% of the labeled strength (concentration) and acceptable precision as within ± 10%. Fluconazole was quantified by use of high-performance liquid chromatography. RESULTS Physical characteristics of compounded products differed among pharmacies. Aerobic bacterial cultures yielded negative results. Capsules (30 and 240 mg) had acceptable accuracy (median, 96.3%; range, 87.3% to 135.2%) and precision (mean ± SD, 7.4 ± 6.0%). Suspensions (30 and 100 mg/mL) had poor accuracy (median, 73.8%; range, 53.9% to 95.2%) and precision (mean ± SD, 15.0 ± 6.9%). Accuracy and precision were significantly better for capsules than for suspensions. CONCLUSIONS AND CLINICAL RELEVANCE Fluconazole compounded products, particularly suspensions, differed in pharmaceutical and physical qualities. Studies to evaluate the impact of inconsistent quality on bioavailability or clinical efficacy of compounded fluconazole products are indicated, and each study should include data on the quality of the compounded product evaluated.

  8. A Review of Equation of State Models, Chemical Equilibrium Calculations and CERV Code Requirements for SHS Detonation Modelling

    Science.gov (United States)

    2009-10-01

    Becker-Kistiakowsky-Wilson (BKW) 2. Jacobs-Cowperthwaite-Zwisler ( JCZ ) 3. Hayes 4. Davis 5. Williamsburg 6. JWL 7. HOM the JWL and HOM EOS...have often been used in hydrocode/CFD simulations. On the other hand, the BKW and JCZ equations remain the EOS of choice in chemical equilibrium code...development for condensed explosives. Various databases have been constructed for the BKW and JCZ equations of state. These include: BKWC

  9. The in-situ solid-state NMR spectroscopy investigation of alcoholic lactose suspensions.

    Science.gov (United States)

    Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G

    2010-01-01

    The polymorphic forms of lactose in alcoholic suspensions have been determined by (13)C CP-MAS NMR spectroscopy, employing hand-made glass inserts. Suspensions of alpha lactose monohydrate (Lalpha.H(2)O) with particle size between 2 and 200mum were prepared by 24h reflux or by storage for 28d in anhydrous ethanol without agitation. These suspensions were compared to an ethanolic sub-micron lactose suspension provided by a 3M Health Care (Loughborough). The (13)C CP-MAS NMR spectra indicated that Lalpha.H(2)O dehydrated to stable anhydrous alpha lactose polymorph (Lalpha(S)) whilst suspended in ethanol. In addition, strong ethanol (13)C resonances were observed for some samples, indicating a liquid-solid interaction between the ethanol and lactose surface. Replacement of ethanol with anhydrous methanol, n-butanol and 3-methylbutan-2-ol implied that the solvent mediated dehydration of Lalpha.H(2)O to Lalpha(S) occurs as a result of sterically controlled interactions. Copyright 2010 Elsevier Inc. All rights reserved.

  10. General and Partial Equilibrium Modeling of Sectoral Policies to Address Climate Change in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Pizer, William; Burtraw, Dallas; Harrington, Winston; Newell, Richard; Sanchirico, James; Toman, Michael

    2003-03-31

    This document provides technical documentation for work using detailed sectoral models to calibrate a general equilibrium analysis of market and non-market sectoral policies to address climate change. Results of this work can be found in the companion paper, "Modeling Costs of Economy-wide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Model".

  11. Dynamics of the quantum vacuum: Cosmology as relaxation to the equilibrium state

    CERN Document Server

    Klinkhamer, F R

    2011-01-01

    The behavior of the gravitating vacuum energy density in an expanding universe is discussed. A scenario is presented with a step-wise relaxation of the vacuum energy density. The vacuum energy density moves from plateau to plateau and follows, on average, the steadily decreasing matter energy density. The current plateau of the vacuum energy density (effective cosmological constant) may result from light massive neutrinos still being out of equilibrium.

  12. Molecular simulations of Crussard curves of detonation product mixtures at chemical equilibrium: Microscopic calculation of the Chapman-Jouguet state

    Science.gov (United States)

    Bourasseau, Emeric; Dubois, Vincent; Desbiens, Nicolas; Maillet, Jean-Bernard

    2007-06-01

    The simultaneous use of the Reaction Ensemble Monte Carlo (ReMC) method and the Adaptative Erpenbeck EOS (AE-EOS) method allows us to calculate direclty the thermodynamical and chemical equilibrium of a mixture on the hugoniot curve. The ReMC method allow to reach chemical equilibrium of detonation products and the AE-EOS method constraints ths system to satisfy the Hugoniot relation. Once the Crussard curve of detonation products has been established, CJ state properties may be calculated. An additional NPT simulation is performed at CJ conditions in order to compute derivative thermodynamic quantities like Cp, Cv, Gruneisen gama, sound velocity, and compressibility factor. Several explosives has been studied, of which PETN, nitromethane, tetranitromethane, and hexanitroethane. In these first simulations, solid carbon is eventually treated using an EOS.

  13. Reprint of: Out-of-equilibrium dynamics in superspin glass state of strongly interacting magnetic nanoparticle assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Nakamae, Sawako, E-mail: Sawako.nakamae@cea.fr

    2014-11-15

    Interacting magnetic nanoparticles display a wide variety of magnetic behaviors ranging from modified superparamagnetism, superspin glass to possibly, superferromagnetism. The superspin glass state is described by its slow and out-of-equilibrium magnetic behaviors akin to those found in atomic spin glasses. In this article, recent experimental findings on superspin correlation length growth and the violation of the fluctuation-dissipation theorem obtained in concentrated frozen ferrofluids are presented to illustrate certain out-of-equilibrium dynamics behavior in superspin glasses. - Highlights: • Recent experimental findings on superspin glass dynamics in magnetic nanoparticle systems. • Advantages of magnetic nanoparticles for the study of spin glass physics. • Open questions and future directions in superspin glass research.

  14. Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots.

    Science.gov (United States)

    Marquardt, B; Geller, M; Baxevanis, B; Pfannkuche, D; Wieck, A D; Reuter, D; Lorke, A

    2011-02-22

    Self-assembled quantum dots (QDs) are prominent candidates for solid-state quantum information processing. For these systems, great progress has been made in addressing spin states by optical means. In this study, we introduce an all-electrical measurement technique to prepare and detect non-equilibrium many-particle spin states in an ensemble of self-assembled QDs at liquid helium temperature. The excitation spectra of the one- (QD hydrogen), two- (QD helium) and three- (QD lithium) electron configuration are shown and compared with calculations using the exact diagonalization method. An exchange splitting of 10 meV between the excited triplet and singlet spin states is observed in the QD helium spectrum. These experiments are a starting point for an all-electrical control of electron spin states in self-assembled QDs above liquid helium temperature.

  15. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states.

    Science.gov (United States)

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-11-16

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height (|λF - λI|), the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field.

  16. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    N W 2002 Nature 416 811 [9] Borsboom M et al 1998 J. Synchrotron Radiat. 5 518 [10] Zernike F and Prins J A 1927 Z. Phys. 41 184 Colloidal suspensions contents How much does the core structure of a three-phase contact line contribute to the line tension near a wetting transition? J O Indekeu, K Koga and B Widom A systematic coarse-graining strategy for semi-dilute copolymer solutions: from monomers to micelles Barbara Capone, Ivan Coluzza and Jean-Pierre Hansen Structural searches using isopointal sets as generators: densest packings for binary hard sphere mixtures Toby S Hudson and Peter Harrowell The theory of delamination during drying of confined colloidal suspensions K J Wallenstein and W B Russel Electrostatics Modeling of equilibrium hollow objects stabilized by electrostatics Ethayaraja Mani, Jan Groenewold and Willem K Kegel The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state A Philipse and A Vrij Colloidal rods and platelets Cholesteric order in systems of helical Yukawa rods H H Wensink and G Jackson Magnetic-field-induced nematic-nematic phase separation and droplet formation in colloidal goethite E van den Pol, A A Verhoeff, A Lupascu, M A Diaconeasa, P Davidson, I Dozov, B W M Kuipers, D M E Thies-Weesie and G J Vroege Structure of colloidal sphere-plate mixtures N Doshi, G Cinacchi, J S van Duijneveldt, T Cosgrove, S W Prescott, I Grillo, J Phipps and D I Gittins 3D structure of nematic and columnar phases of hard colloidal platelets A B G M Leferink op Reinink, J M Meijer, D Kleshchanok, D V Byelov, G J Vroege, A V Petukhov and H N W Lekkerkerker Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field Jonathan Phillips and Matthias Schmidt Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions A M Philippe, C Baravian, M Imperor-Clerc, J De Silva, E Paineau, I Bihannic, P Davidson, F Meneau, P Levitz and L J Michot

  17. Development and Assessment of a Computer-Based Equation of State for Equilibrium Air

    Science.gov (United States)

    2013-09-01

    and a thermally imperfect term. This philosophy will be used again and extended later. Regardless of the approach, pressure explicit or free-energy...below ambient was about 1.29*10-10 kg/m3. The limit for current EOS is 10-12 kg/m3. The reduced minimum is more for aesthetic reasons than for...atomic species present at equilibrium but neglected in the AEDC Mollier 2008 EOS. 3.2.2.1 Approach The philosophy for assessing the accuracy in high

  18. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  19. Two-phase equilibrium states in individual Cu-Ni nanoparticles: size, depletion and hysteresis effects.

    Science.gov (United States)

    Shirinyan, Aram S

    2015-01-01

    In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature-composition phase diagram occur. Our calculations for individual Cu-Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature-composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu-Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

  20. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

    Science.gov (United States)

    2015-01-01

    Summary In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature–composition phase diagram occur. Our calculations for individual Cu–Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature–composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu–Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram. PMID:26425433

  1. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

    Directory of Open Access Journals (Sweden)

    Aram S. Shirinyan

    2015-08-01

    Full Text Available In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature–composition phase diagram occur. Our calculations for individual Cu–Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops. For the first time we have calculated and present here on the temperature–composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu–Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

  2. Unified approach to the derivation of work theorems for equilibrium and steady-state, classical and quantum Hamiltonian systems.

    Science.gov (United States)

    Gelin, M F; Kosov, D S

    2008-07-01

    We present a unified and simple method for deriving work theorems for classical and quantum Hamiltonian systems, both under equilibrium conditions and in a steady state. Throughout the paper, we adopt the partitioning of the total Hamiltonian into the system part, the bath part, and their coupling. We rederive many equalities which are available in the literature and obtain a number of new equalities for nonequilibrium classical and quantum systems. Our results can be useful for determining partition functions and (generalized) free energies through simulations or measurements performed on nonequilibrium systems.

  3. Phase and structural transformations in magnetorheological suspensions

    Science.gov (United States)

    Iskakova, L. Yu.; Romanchuk, A. P.; Zubarev, A. Yu.

    2006-07-01

    Particle condensation in magnetorheological suspensions (MRS) under external magnetic field is studied theoretically. It is shown that the bulk condensation of particles into dense phases is preceded by the formation of fairly long chain aggregates. Phase transition occurs as a condensation of such chains due to their magnetic interaction. In thin layers of MRS, placed into the normal magnetic field, scenario of the phase transition differs essentially from that in infinite volumes of these systems. Equilibrium state of the system after the phase transition corresponds to the formation of ensemble of discrete domains of the dense phase rather than to separation into two massive phases as it takes place in infinite media.

  4. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.

    Science.gov (United States)

    Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K

    2017-07-17

    Under the influence of a constant drive the moving vortex state in 2H-NbS2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].

  5. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France); Jacquemin, Denis [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5 (France); Blase, Xavier [CNRS, Inst. NÉEL, F-38000 Grenoble (France); Univ. Grenoble Alpes, Inst. NÉEL, F-38000 Grenoble (France)

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  6. Non-equilibrium thermodynamical framework for rate- and state-dependent friction

    CERN Document Server

    Ván, P; Hatano, T

    2015-01-01

    Rate- and state-dependent friction law for velocity-step and healing are analysed from a thermodynamic point of view. Assuming a logarithmic deviation from steady-state a unification of the classical Dieterich and Ruina models of rock friction is proposed.

  7. The Nigerian State as an equilibrium of violence: An explanation of ...

    African Journals Online (AJOL)

    Emmanuel Ikechi Onah. 1. Introduction. Despite the state of emergency that has been in operation in three states of the northeastern part of Nigeria for almost a year, the violent campaign embarked upon by the Boko Haram Islamic sect has refused to die down. In fact, the violence seems to be escalating, especially in its toll ...

  8. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles.

    Science.gov (United States)

    Spruijt, E; Biesheuvel, P M

    2014-02-19

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation-diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of

  9. Counterion accumulation effects on a suspension of DNA molecules: Equation of state and pressure-driven denaturation

    Science.gov (United States)

    Nicasio-Collazo, Luz Adriana; Delgado-González, Alexandra; Hernández-Lemus, Enrique; Castañeda-Priego, Ramón

    2017-04-01

    The study of the effects associated with the electrostatic properties of DNA is of fundamental importance to understand both its molecular properties at the single molecule level, like the rigidity of the chain, and its interaction with other charged bio-molecules, including other DNA molecules; such interactions are crucial to maintain the thermodynamic stability of the intra-cellular medium. In the present work, we combine the Poisson-Boltzmann mean-field theory with an irreversible thermodynamic approximation to analyze the effects of counterion accumulation inside DNA on both the denaturation profile of the chain and the equation of state of the suspension. To this end, we model the DNA molecule as a porous charged cylinder immersed in an aqueous solution. These thermo-electrostatic effects are explicitly studied in the particular case of some genes for which damage in their sequence is associated with diffuse large B-cell lymphoma.

  10. Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art climate models

    Science.gov (United States)

    Yokohata, Tokuta; Emori, Seita; Nozawa, Toru; Ogura, Tomoo; Kawamiya, Michio; Tsushima, Yoko; Suzuki, Tatsuo; Yukimoto, Seiji; Abe-Ouchi, Ayako; Hasumi, Hiroyasu; Sumi, Akimasa; Kimoto, Masahide

    2008-10-01

    We compared the climate response of doubled CO2 equilibrium experiments (2 × CO2) by atmosphere-slab ocean coupled general circulation models (ASGCMs) and that of 1% per year CO2 increase experiments (1%CO2 by atmosphere-ocean coupled general circulation models (AOGCMs) using eight state-of-the-art climate models. Climate feedback processes in 2 × CO2 are different from those in 1%CO2, and the equilibrium climate sensitivity (T2×) in 2 × CO2 is different from the effective climate sensitivity (T2×,eff) in 1%CO2. The difference between T2× and T2×,eff is from -1.3 to 1.6 K, a large part of which can be explained by the difference in the ice-albedo and cloud feedback. The largest contribution is cloud SW feedback, and the difference in cloud SW feedback for 2 ×CO2 and 1%CO2 could be determined by the distribution of the SAT anomaly which causes differences in the atmospheric thermal structure. An important factor which determines the difference in ice-albedo feedback is the initial sea ice distribution at the Southern Ocean, which is generally overestimated in 2 ×CO2 as compared to 1%CO2 and observation. Through the comparison of climate feedback processes in 2 ×CO2 and 1%CO2, the possible behaviour of the time evolution of T2×,eff is discussed.

  11. Simulating 3D Stellar Winds and Diffuse X-ray Emissions from Gases in Non-equilibrium Ionization State

    Science.gov (United States)

    Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li

    2017-08-01

    We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.

  12. Experimental investigation of supercurrent enhancement in S-N-S junctions by non-equilibrium injection into supercurrent-carrying bound Andreev states

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Sørensen, C B

    2001-01-01

    We report measurements on three-terminal superconductor-semiconductor-superconductor injection devices demonstrating enhancement of the supercurrent by injection from a superconducting injector electrode. Two other electrodes were used to form the detector junction. Applying a small voltage to th...... of enhancement of the supercurrent by non-equilibrium injection into bound supercurrent-carrying Andreev states. The effect persists to temperatures where the equilibrium supercurrent has vanished. (C) 2001 Elsevier Science B.V. All rights reserved....

  13. Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition.

    Directory of Open Access Journals (Sweden)

    Hamidur Rahaman

    Full Text Available While many proteins are recognized to undergo folding via intermediate(s, the heterogeneity of equilibrium folding intermediate(s along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD, ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS were used to study the structural and thermodynamic characteristics of the native (N, denatured (D and intermediate state (X of goat cytochorme c (cyt-c induced by weak salt denaturants (LiBr, LiCl and LiClO4 at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400 and CD ([θ]409, is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1 that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III axial bond and Trp59-propionate interactions; (2 that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3 that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1, classical (X2 and disordered (X3, i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.

  14. A solid-state controllable power supply for a magnetic suspension wind tunnel

    Science.gov (United States)

    Daniels, Taumi S.; Tripp, John S.

    1991-01-01

    The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  15. Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet.

    Science.gov (United States)

    Bordács, S; Butykai, A; Szigeti, B G; White, J S; Cubitt, R; Leonov, A O; Widmann, S; Ehlers, D; von Nidda, H-A Krug; Tsurkan, V; Loidl, A; Kézsmárki, I

    2017-08-08

    The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV 4 Se 8 , a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.

  16. Steady state drift vortices in plasmas with shear flow in equilibrium

    DEFF Research Database (Denmark)

    Chakrabarti, N.

    1999-01-01

    The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...

  17. Evaluation of equations of state for simultaneous representation of phase equilibrium and critical phenomena

    DEFF Research Database (Denmark)

    Pinto Coelho Muniz Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios

    2017-01-01

    Precise description of the critical points with association equations of state requires rescaling of the parameters to match experimental critical temperature and pressure of pure components. In this work we developed a method to include critical data restrictions in the parametrization procedure...

  18. A gravel-sand bifurcation : a simple model and the stability of the equilibrium states

    NARCIS (Netherlands)

    Schielen, Ralph M.J.; Blom, Astrid

    2017-01-01

    A river bifurcation, can be found in, for instance, a river delta, in braided or anabranching reaches, and in manmade side channels in restored river reaches. Depending on the partitioning of water and sediment over the bifurcating branches, the bifurcation develops toward (a) a stable state with

  19. State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface

    Science.gov (United States)

    Voráč, Jan; Synek, Petr; Procházka, Vojtěch; Hoder, Tomáš

    2017-07-01

    Optical emission spectroscopy applied to non-equilibrium plasmas in molecular gases can give important information on basic plasma parameters, including the rotational and vibrational temperatures and densities of the investigated radiative states. In order to precisely understand the non-equilibrium of rotational-vibrational state distribution from the investigated spectra without limiting presumptions, a state-by-state temperature-independent fitting procedure is the ideal approach. In this paper, we present a novel software tool developed for this purpose, freely available for the scientific community. The introduced tool offers a convenient way to construct Boltzmann plots even from partially overlapping spectra, in a user-friendly environment. We apply the novel software to the challenging case of OH spectra in surface streamer discharges generated from the triple-line of the argon/water/dielectrics interface. After the barrier discharge is characterised by ICCD and electrical measurements, the spatially and phase resolved rotational temperatures from N2(C-B) and OH(A-X) spectra are determined and compared. The precise analysis shows that OH(A) states with quantum numbers ≤ft({{v}\\prime}=0,~9≤slant {{N}\\prime}≤slant 13\\right) are overpopulated with respect to the found two-Boltzmann distribution. We hypothesise that fast vibrational-energy transfer is responsible for this phenomenon, observed here for the first time. Finally, the vibrational temperature of the plasma and the relative populations of hot and cold OH(A) states are quantified spatially and phase resolved.

  20. Economic Impacts of Potential Foot and Mouth Disease Agro-terrorism in the United States: A Computable General Equilibrium Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oladosu, Gbadebo A [ORNL; Rose, Adam [University of Southern California, Los Angeles; Bumsoo, Lee [University of Illinois

    2013-01-01

    The foot and mouth disease (FMD) virus has high agro-terrorism potential because it is contagious, can be easily transmitted via inanimate objects and can be spread by wind. An outbreak of FMD in developed countries results in massive slaughtering of animals (for disease control) and disruptions in meat supply chains and trade, with potentially large economic losses. Although the United States has been FMD-free since 1929, the potential of FMD as a deliberate terrorist weapon calls for estimates of the physical and economic damage that could result from an outbreak. This paper estimates the economic impacts of three alternative scenarios of potential FMD attacks using a computable general equilibrium (CGE) model of the US economy. The three scenarios range from a small outbreak successfully contained within a state to a large multi-state attack resulting in slaughtering of 30 percent of the national livestock. Overall, the value of total output losses in our simulations range between $37 billion (0.15% of 2006 baseline economic output) and $228 billion (0.92%). Major impacts stem from the supply constraint on livestock due to massive animal slaughtering. As expected, the economic losses are heavily concentrated in agriculture and food manufacturing sectors, with losses ranging from $23 billion to $61 billion in the two industries.

  1. Caliber approach for non-equilibrium systems with a small number of states

    Science.gov (United States)

    Schmit, Jeremy; Ghosh, Kingshuk; Dill, Ken

    2008-03-01

    We present a theory for the dynamics of systems with a small number of states based on E.T. Jaynes' principle of Maximum Caliber. We construct the full dynamical partition function using a transfer matrix formalism with the transition rates as input parameters. Using this partition function, we are able to calculate all moments of dynamical quantities, and thus are able to predict fluctuations around the average behavior. We compare our results to single molecule and microfluidics experiments and contrast our results to the predictions of Minimum Entropy Production.

  2. Quantum non-equilibrium effects in rigidly-rotating thermal states

    Directory of Open Access Journals (Sweden)

    Victor E. Ambruş

    2017-08-01

    Full Text Available Based on known analytic results, the thermal expectation value of the stress-energy tensor (SET operator for the massless Dirac field is analysed from a hydrodynamic perspective. Key to this analysis is the Landau decomposition of the SET, with the aid of which we find terms which are not present in the ideal SET predicted by kinetic theory. Moreover, the quantum corrections become dominant in the vicinity of the speed of light surface (SOL. While rigidly-rotating thermal states cannot be constructed for the Klein–Gordon field, we perform a similar analysis at the level of quantum corrections previously reported in the literature and we show that the Landau frame is well-defined only when the system is enclosed inside a boundary located inside or on the SOL. We discuss the relevance of these results for accretion disks around rapidly-rotating pulsars.

  3. Effective equilibrium states in mixtures of active particles driven by colored noise

    Science.gov (United States)

    Wittmann, René; Brader, J. M.; Sharma, A.; Marconi, U. Marini Bettolo

    2018-01-01

    We consider the steady-state behavior of pairs of active particles having different persistence times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the particles are driven by colored noises with exponential correlation functions whose intensities and correlation times vary from species to species. By extending Fox's theory to many components, we derive by functional calculus an approximate Fokker-Planck equation for the configurational distribution function of the system. After illustrating the predicted distribution in the solvable case of two particles interacting via a harmonic potential, we consider systems of particles repelling through inverse power-law potentials. We compare the analytic predictions to computer simulations for such soft-repulsive interactions in one dimension and show that at linear order in the persistence times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body phenomena, such as demixing and depletion, by means of effective pair potentials.

  4. Quantum non-equilibrium effects in rigidly-rotating thermal states

    Science.gov (United States)

    Ambruş, Victor E.

    2017-08-01

    Based on known analytic results, the thermal expectation value of the stress-energy tensor (SET) operator for the massless Dirac field is analysed from a hydrodynamic perspective. Key to this analysis is the Landau decomposition of the SET, with the aid of which we find terms which are not present in the ideal SET predicted by kinetic theory. Moreover, the quantum corrections become dominant in the vicinity of the speed of light surface (SOL). While rigidly-rotating thermal states cannot be constructed for the Klein-Gordon field, we perform a similar analysis at the level of quantum corrections previously reported in the literature and we show that the Landau frame is well-defined only when the system is enclosed inside a boundary located inside or on the SOL. We discuss the relevance of these results for accretion disks around rapidly-rotating pulsars.

  5. Improved phenomenological description of equilibrium charge state distributions for Ni, Co, and Cu ions in Mo based on new experimental data at 2 MeV/u

    CERN Document Server

    Gastis, P; Robertson, D; Almus, R; Anderson, T; Bauder, W; Collon, P; Lu, W; Ostdiek, K; Skulski, M

    2015-01-01

    Equilibrium charge state distributions of stable 60Ni, 59Co, and 63Cu beams passing through a 1um thick Mo foil were measured at beam energies of 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u respectively. A 1-D position sensitive Parallel Grid Avalanche Counter detector (PGAC) was used at the exit of a spectrograph magnet, enabling us to measure the intensity of several charge states simultaneously. The number of charge states measured for each beam constituted more than 99% of the total equilibrium charge state distribution for that elements. Currently, little experimental data exists for equilibrium charge state distributions for heavy ions with 19equilibrium CSDs (mean charge states and distribution widths), has not been thoroughly tested at the energy region of interest. A number of semi-empirical models from the literature were evalu...

  6. 20 CFR 416.1329 - Suspension due to loss of United States residency, United States citizenship, or status as an...

    Science.gov (United States)

    2010-04-01

    ... residency, United States citizenship, or status as an alien lawfully admitted for permanent residence or... citizenship, or status as an alien lawfully admitted for permanent residence or otherwise permanently residing... § 416.202(b) with respect to United States residency, United States citizenship, or status as an alien...

  7. Critical evaluation of the two-state model describing the equilibrium unfolding of the PI3K SH3 domain by time-resolved fluorescence resonance energy transfer.

    Science.gov (United States)

    Kishore, Megha; Krishnamoorthy, G; Udgaonkar, Jayant B

    2013-12-31

    It appears that equilibrium unfolding transitions of many small proteins can be described as two-state transitions, because the probes commonly used to measure such transitions cannot detect the underlying heterogeneity inherent in protein folding and unfolding reactions. Time-resolved fluorescence or Forster resonance energy transfer (TRFRET) measurements have the potential to uncover such heterogeneity and to test the cooperativity of protein folding reactions. Here, TRFRET measurements have been used to study the equilibrium unfolding of the SH3 domain of PI3 kinase. The single tryptophan residue (W53) was used as the FRET donor, and a covalently attached thionitrobenzoate moiety at either of two sites (C17 and C70) was used as the FRET acceptor. The individual lifetime and amplitude components estimated from fitting the fluorescence decay kinetics to the sum of three or four exponentials were determined over a range of denaturant concentrations. The equilibrium unfolding transitions reported by these components were found to be noncoincident, suggesting the presence of multiple conformations in equilibrium during the course of unfolding. Fluorescence lifetime distributions were also generated by the model-free maximum entropy method of analysis. Different segments of the protein were found to show differences in the expansion of the native state at low denaturant concentrations, suggestive of gradual structural transitions. The unfolded protein was found to swell at increasingly high denaturant concentrations. The evolution of the fluorescence lifetime distributions with increasing denaturant concentration was also found to be incompatible with a two-state equilibrium unfolding model.

  8. Solid state transformation of non-equilibrium Ni-Sn powder with a eutectic composition

    Directory of Open Access Journals (Sweden)

    Ruangdaj Tongsri

    2011-04-01

    Full Text Available Solid state transformation of supersaturated solid solution to anomalous Ni-Sn eutectic has been studied. The metastableNi-Sn solid solution was prepared via mechanical alloying of a mixed Ni+Sn powder containing 32.5 wt-% Sn powder.The milling conditions included ball to powder ratio (BPR of 5:1 and milling speed of 300 rpm. Milling times were varied as5, 15, and 25 hours. Milling the mixed powder for longer than 15 hours resulted in formation of supersaturated Ni-Sn solidsolution. Differential thermal analysis of the supersaturated Ni-Sn solid solution revealed two reactions, namely peritectoidand peritectic reactions, occurring at 945 and 1,141°C, respectively. Heating of the supersaturated Ni-Sn solid solution todifferent temperatures such as 800, 850, 900, 950, 1,100, and 1,140°C with holding time of 10 minutes resulted in developmentof anomalous eutectic with Ni3Sn phase matrix embedded with Ni solution particles. Sintering and coarsening of the eutecticwas depending on heating temperatures.

  9. Generation and extinction of crystal nuclei in an extremely non-equilibrium glassy state of salol

    CERN Document Server

    Paladi, F

    2003-01-01

    Strange generation and subsequent extinction of crystal nuclei were observed in the glassy state of salol (phenyl salicylate) during the course of ageing at very low constant-temperatures. The presence/absence of crystal nuclei within the glass were judged, by using a differential scanning calorimeter (DSC), from whether the crystal growth and fusion phenomena were observed in the following heating process or not. The liquid sample was cooled rapidly at 200 K min sup - sup 1 from 333 K above the fusion temperature down to a desired ageing temperature (T sub a) below the glass transition temperature (T sub g = 220 K), aged there for different periods (t sub a), and then heated up to 213 K at 200 K min sup - sup 1. The DSC measurement was carried out at 10 K min sup - sup 1 from 213 to 333 K. The ageing periods were taken in a range between 30 s and 316 min. At T sub a = 213 K, crystal nucleation was found to proceed for ageing longer than 100 min. No crystal nucleation was found at T sub a in between 123 and 1...

  10. Ground state properties and non-equilibrium dynamics of hard-core bosons confined on optical lattices

    Science.gov (United States)

    Rigol, Marcos; Muramatsu, Alejandro

    2004-03-01

    We study by means of an exact approach, a gas of hard core bosons (HCB) confined on optical lattices. The ground state properties of such systems are analyzed. Local incompressible phases appear in the system, like in the case of interacting soft-core bosons [1] and fermions [2,3]. The changes in momentum distribution function and in the natural orbitals (effective single particle states) introduced by the formation of such phases are analyzed. We also study non-equilibrium properties for those systems, which within our numerical approach can be obtained exactly for systems with 200 particles on lattices with 3000 sites. In particular we analyze the free expansion of the gas when it is released from the trap turning off the confining potential. We show that the expansion is non-trivial (as opposed to the fermionic case) and new features to be observed in the experiments are analyzed. [1] G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A. Muramatsu, P. J. H. Denteneer, and M. Troyer, Phys. Rev. Lett. 89, 117203 (2002). [2] M. Rigol, A. Muramatsu, G. G. Batrouni, and R. T. Scalettar, Phys. Rev. Lett. 91, 130403 (2003). [3] M. Rigol and A. Muramatsu, cond-mat/0309670 (2003).

  11. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: Microscopic calculation of the Chapman-Jouguet state

    Science.gov (United States)

    Bourasseau, Emeric; Dubois, Vincent; Desbiens, Nicolas; Maillet, Jean-Bernard

    2007-08-01

    In this work, we used simultaneously the reaction ensemble Monte Carlo (ReMC) method and the adaptive Erpenbeck equation of state (AE-EOS) method to directly calculate the thermodynamic and chemical equilibria of mixtures of detonation products on the Hugoniot curve. The ReMC method [W. R. Smith and B. Triska, J. Chem. Phys. 100, 3019 (1994)] allows us to reach the chemical equilibrium of a reacting mixture, and the AE-EOS method [J. J. Erpenbeck, Phys. Rev. A 46, 6406 (1992)] constrains the system to satisfy the Hugoniot relation. Once the Hugoniot curve of the detonation product mixture is established, the Chapman-Jouguet (CJ) state of the explosive can be determined. A NPT simulation at PCJ and TCJ is then performed in order to calculate direct thermodynamic properties and the following derivative properties of the system using a fluctuation method: calorific capacities, sound velocity, and Grüneisen coefficient. As the chemical composition fluctuates, and the number of particles is not necessarily constant in this ensemble, a fluctuation formula has been developed to take into account the fluctuations of mole number and composition. This type of calculation has been applied to several usual energetic materials: nitromethane, tetranitromethane, hexanitroethane, PETN, and RDX.

  12. 45 CFR 1210.3-3 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Suspension. 1210.3-3 Section 1210.3-3 Public... § 1210.3-3 Suspension. (a) The ACTION State Director may suspend a Volunteer for up to 30 days in order... Volunteer. Suspension is not warranted if the State Director determines that sufficient grounds already...

  13. Experimental investigation of mesoscopic heterogeneous motion of laser-activated self-propelling Janus particles in suspension

    Science.gov (United States)

    Io, Chong-Wai; Chen, Tzu-Yin; Yeh, Jai-Wei; Cai, Sin-Cen

    2017-12-01

    The mesoscopic collective motion of self-propelling active particle suspension is experimentally investigated. The active particles are silica micro spheres with Au hemisphere coating, and their propelling strength is activated by laser irradiation. The suspension is driven from equilibrium to near equilibrium and far from equilibrium by tuning the excitation laser intensity. By use of the long-term particle tracking technique, the time evolution of a large amount of active particles is resolvable. For low laser intensity, the suspension is driven to near equilibrium state with homogeneous superdiffusion motion. The strength of enhanced superdiffusion is monotonically related to the laser intensity. For high laser intensity, the motility-induced phase separation with the coexistence of dense cluster and very dilute individual particle are observed. It leads to highly heterogeneous dynamic with less mobile jammed cluster and fast-moving particles and subsequently suppresses the enhanced superdiffusion. Such heterogeneous dynamics is similar to many far from equilibrium systems. Finally, the degree away from equilibrium (Gaussian dynamics) triggered by propelling strength is quantified by non-Gaussian parameters.

  14. Ab initio analysis of the effect of strain on the density of non-equilibrium electronic states and their role in the wave model of martensitic transformations

    Energy Technology Data Exchange (ETDEWEB)

    Kashchenko, M.P. [Ural State Forest Engineering University, Sybirskiy trakt 37, 620100 Ekaterinburg (Russian Federation)], E-mail: mpk46@mail.ru; Skorikova, N.A.; Chashchina, V.G. [Ural State Forest Engineering University, Sybirskiy trakt 37, 620100 Ekaterinburg (Russian Federation)

    2008-05-25

    In the wave model of martensitic transformations, the influence of the tensile strain on the creation of non-equilibrium electrons is crucial for the principle of wave amplification by stimulated emission of phonons from an inverted electronic population. By consideration of the strain-effect on the electronic energy spectrum it is shown that - for certain interval of finite strain - the density of active electronic non-equilibrium states in a strained lattice can satisfy the conditions for a phonon-maser effect.

  15. Electronic states and nature of bonding in the molecule YC by all electron ab initio multiconfiguration self-consistent-field calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Pelino, Mario; Gingerich, Karl A.

    1992-01-01

    In the present work we present results of all electron ab initio multiconfiguration self-consistent-field calculations of eight electronic states of the molecule YC. Also reported are the calculated spectroscopic constants. The predicted electronic ground state is 4PI, but this state is found......, and they hardly contribute to the bonding. The chemical bond in the YC molecule is polar with charge transfer from Y to C giving rise to a dipole moment of 3.90 D at 3.9 a.u. in the 4PI ground state. Mass spectrometric equilibrium investigations in the temperature range 2365-2792 K have resulted...

  16. An application of the spatial equilibrium model to soybean production in tocantins and neighboring states in Brazil

    Directory of Open Access Journals (Sweden)

    Betty Clara Barraza De La Cruz

    2010-08-01

    Full Text Available In the production chain of soybeans in Brazil a sizable part of the corresponding cost structure is the result of logistics costs. Given the location of its production sites, distant from the ocean, the optimization of the transportation costs is essential for preserving competitiveness. Using nonlinear programming, this study proposes a spatial multimodal and temporal equilibrium model. The applicability of the model is tested with a case study regarding the exports of the soybeans produced in three states in the northern part of the Brazilian cerrado region. In the state of Tocantins, the effects of infrastructure investments in the competitiveness of the production are described through four proposed scenarios, while the basic scenario compares the three states. The data are treated using the GAMS/MINOS program. The study asserts that soybean production will be more competitive if warehousing facilities are used extensively and when the project hydroway becomes operational.Na cadeia de produção da soja no Brasil, parte substancial da estrutura correspondente dos custos é resultado dos custos logísticos. Dada a localização das áreas produtivas, distante do oceano, a otimização dos custos de transporte é essencial para garantir a competitividade. Usando programação não-linear, este estudo propõe um modelo de equilíbrio espacial temporal e multimodal. A aplicabilidade do modelo proposto é testada com um estudo de caso referente às exportações de soja produzida em três estados na parte norte do cerrado brasileiro. No estado de Tocantins, o efeito na competitividade de investimentos na infraestrutura de transporte estão descritos por meio de quatro cenários, enquanto que os três estados são comparados pelo cenário básico. Os dados são tratados usando o programa GAMS/MINOS. O estudo assegura que a produção de soja nesses estados será mais competitiva se armazéns forem usados mais extensamente e quando o projeto

  17. 48 CFR 609.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 609.407 Section 609.407 Federal Acquisition Regulations System DEPARTMENT OF STATE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 609.407 Suspension. ...

  18. 22 CFR 34.20 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Suspension. 34.20 Section 34.20 Foreign Relations DEPARTMENT OF STATE CLAIMS AND STOLEN PROPERTY DEBT COLLECTION Collection Adjustments § 34.20 Suspension. The suspension of collection action shall be made in accordance with the standards set forth in...

  19. Maximin equilibrium

    NARCIS (Netherlands)

    Ismail, M.S.

    2014-01-01

    We introduce a new concept which extends von Neumann and Morgenstern's maximin strategy solution by incorporating `individual rationality' of the players. Maximin equilibrium, extending Nash's value approach, is based on the evaluation of the strategic uncertainty of the whole game. We show that

  20. Independent suspension

    National Research Council Canada - National Science Library

    Chaikin, Don

    1992-01-01

    ... independent suspension. INDEPENDENCE! An independent system is simply one in which each of the vehicle's wheels is free to react totally separate from any of the other wheels. If the right rear wheel hits a bump, the left rear wheel is undisturbed. Since the whole car does not bounce and shake every time one of the wheels hits a potho...

  1. Equilibrium models and variational inequalities

    CERN Document Server

    Konnov, Igor

    2007-01-01

    The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...

  2. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues

    Science.gov (United States)

    Gray, Derek G.

    2017-12-01

    Cellulose nanocrystals (CNCs) are polydisperse rod-shaped particles of crystalline cellulose I, typically prepared by sulfuric acid hydrolysis of natural cellulose fibres to give aqueous colloidal suspensions stabilized by sulfate half-ester groups. Sufficiently dilute suspensions are isotropic fluids, but as the concentration of CNC in water is increased, a critical concentration is reached where a spontaneously ordered phase is observed. The (equilibrium) phase separation of the ordered chiral nematic phase is in competition with a tendency of the CNC suspension to form a gel. Qualitatively, factors that reduce the stability of the CNC suspension favour the onset of gelation. The chiral nematic structure is preserved, at least partially, when the suspension dries. Solid chiral nematic films of cellulose are of interest for their optical and templating properties, but the preparation of the films requires improvement. The processes that govern the formation of solid chiral nematic films from CNC suspensions include phase separation, gelation and also the effects of shear on CNC orientation during evaporation. Some insight into these processes is provided by polarized light microscopy, which indicates that the relaxation of shear-induced orientation to give a chiral nematic structure may occur via an intermediate twist-bend state. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  3. On Quantum Microcanonical Equilibrium

    OpenAIRE

    Dorje C. Brody; Hook, Daniel W.; Hughston, Lane P.

    2007-01-01

    A quantum microcanonical postulate is proposed as a basis for the equilibrium properties of small quantum systems. Expressions for the corresponding density of states are derived, and are used to establish the existence of phase transitions for finite quantum systems. A grand microcanonical ensemble is introduced, which can be used to obtain new rigorous results in quantum statistical mechanics. Accepted version

  4. On quantum microcanonical equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C [Department of Mathematics, Imperial College, London SW7 2BZ (United Kingdom); Hook, Daniel W [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Hughston, Lane P [Department of Mathematics, King' s College London, The Strand, London WC2R 2LS (United Kingdom)

    2007-05-15

    A quantum microcanonical postulate is proposed as a basis for the equilibrium properties of small quantum systems. Expressions for the corresponding density of states are derived, and are used to establish the existence of phase transitions for finite quantum systems. A grand microcanonical ensemble is introduced, which can be used to obtain new rigorous results in quantum statistical mechanics.

  5. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  6. Equilibrium thermodynamics

    CERN Document Server

    Oliveira, Mário J

    2013-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions.  These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This textbo...

  7. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  8. Spontaneity and Equilibrium: Why "?G Equilibrium" Are Incorrect

    Science.gov (United States)

    Raff, Lionel M.

    2014-01-01

    The fundamental criteria for chemical reactions to be spontaneous in a given direction are generally incorrectly stated as ?G equilibrium are also misstated as being ?G = 0 or ?A = 0. Following a brief review of the…

  9. Modeling the liquid-liquid equilibrium of petroleum fluid and polar compounds containing systems with the PC-SAFT equation of state

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Yan, Wei; Thomsen, Kaj

    2015-01-01

    parameters for the characterized non-associating pseudo-components of petroleum fluids. New pure component parameters of mono-ethylene glycol (MEG) are obtained by considering the liquid liquid equilibrium (LLE) data of MEG with normal hydrocarbons in the estimation process and a simple binary interaction......A critical test for the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (FOS) is the modeling of systems containing petroleum fluid and polar compounds. In this work, two approaches are proposed for the simplified PC-SAFT EOS to obtain the necessary pure component...

  10. AN ASSESSMENT OF THE EFFECTS OF THE CURRENCY REGIME CHANGE SHOCK ON THE EXTERNAL EQUILIBRIUM OF SOME NEW EUROPEAN UNION MEMBER STATES

    Directory of Open Access Journals (Sweden)

    CAMELIA MILEA

    2014-02-01

    Full Text Available In the context of globalization and regionalization, we consider to be important an analysis of the asymmetries from the balances of payments of the member states of the European Union (EU. The propagation of a shock determines different effects in the member states of the European Union, due to the existence of some heterogeneous elements in the structure of these economies. Such a situation implies the risk of occurrence of divergences between the member states regarding the joint decisions with impact on the economic development and the external equilibrium. The article aims at providing a theoretical analysis of the way a shock considered by the authors as being representative affects the current account balance of some countries with different economic characteristics, at least in terms of the foreign exchange regime. The theoretical analysis is followed by an empirical analysis of two European Union countries that have undergone the shock of the exchange rate regime shift generated by the entry into ERM II (Exchange Rate Mechanism II. Our research aims at showing the way in which this shock has been reflected upon the balance of the current account, and if the change of the exchange rate regime has been beneficial or not for the economies analysed. The article is based on wider research studies concerning the matters of external equilibrium, asymmetric shocks and European integration, and which have been developed by the authors during the last three years.

  11. Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics.

    Science.gov (United States)

    Bi, Ting-Jun; Xu, Long-Kun; Wang, Fan; Ming, Mei-Jun; Li, Xiang-Yuan

    2017-12-13

    Nonequilibrium solvation effects need to be treated properly in the study of electronic absorption processes of solutes since solvent polarization is not in equilibrium with the excited-state charge density of the solute. In this work, we developed a state specific (SS) method based on the novel nonequilibrium solvation model with constrained equilibrium manipulation to account for solvation effects in electronic absorption processes. Time-dependent density functional theory (TD-DFT) is adopted to calculate electronic excitation energies and a polarizable continuum model is employed in the treatment of bulk solvent effects on both the ground and excited electronic states. The equations based on this novel nonequilibrium solvation model in the framework of TDDFT to calculate vertical excitation energy are presented and implemented in the Q-Chem package. The implementation is validated by comparing reorganization energies for charge transfer excitations between two atoms obtained from Q-Chem and those obtained using a two-sphere model. Solvent effects on electronic transitions of coumarin 153 (C153), acetone, pyridine, (2E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (DMHP), and uracil in different solvents are investigated using the newly developed code. Our results show that the obtained vertical excitation energies as well as spectral shifts generally agree better with the available experimental values than those obtained using the traditional nonequlibrium solvation model. This new model is thus appropriate to study nonequilibrium excitation processes in solution.

  12. Transient intermediary states with high and low folding probabilities in the apparent two-state folding equilibrium of ACBP at low pH

    DEFF Research Database (Denmark)

    Thomsen, Jens K; Kragelund, Birthe B; Teilum, Kaare

    2002-01-01

    indicates strongly the existence of short-lived and transient helical structures at pH 2.3. Magnetization transfer studies have been applied to study the equilibrium between folded and unfolded ACBP near the pH transition point measured by NMR. This study has shown that there are two categories...

  13. Ride responses of macpherson suspension systems

    Directory of Open Access Journals (Sweden)

    Yu Cheng-Chi

    2017-01-01

    Full Text Available The main purpose of this study is to obtain more correct vehicle ride responses by using a nonlinear ride model considering the effect of Macpherson suspension geometry. Traditional ride model applied to analysis and controller design uses a two degree of freedom linear model, which includes sprung mass and unsprung mass and a spring and a damper vertically connect them. In fact, suspension components do not vertically position above the tire. The motions of body and tire are not going straight up and down. Therefore, the analysis results obtained by the simple model are often different from the experimental values of the actual vehicle. Because of the difference between simple model and actual vehicle, the control strategy almost cannot apply to actual vehicle. In order to understand the effect of suspension geometry on the vehicle ride responses and design a more practical control strategy, a nonlinear model including the geometric parameters of the suspension is constructed in this study. To estimate the initial equilibrium position of the suspension assembly under load, the static equilibrium analysis and mechanism motion analysis are synchronous implemented at the same time. The nonlinear model describes not only the relative position and velocity but also the force transmission between body and tire. Furthermore, by linearize this nonlinear model the development of control strategy for subsequent (semi active suspension system could be expected.

  14. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  15. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    CERN Document Server

    Dewar, R

    2003-01-01

    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p subGAMMA of the underlying microscopic phase space trajectories GAMMA over a time interval of length tau satisfies p subGAMMA propor to exp(tau sigma subGAMMA/2k sub B) where sigma subGAMMA is the time-averaged rate of entropy production of GAMMA. Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as tau -> infinity; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth's climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general inf...

  16. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  17. An examination of the rheology of flocculated clay suspensions

    Science.gov (United States)

    Spearman, Jeremy

    2017-04-01

    A dense cohesive sediment suspension, sometimes referred to as fluid mud, is a thixotropic fluid with a true yield stress. Current rheological formulations struggle to reconcile the structural dynamics of cohesive sediment suspensions with the equilibrium behaviour of these suspensions across the range of concentrations and shear. This paper is concerned with establishing a rheological framework for the range of sediment concentrations from the yield point to Newtonian flow. The shear stress equation is based on floc fractal theory, put forward by Mills and Snabre (1988). This results in a Casson-like rheology equation. Additional structural dynamics is then added, using a theory on the self-similarity of clay suspensions proposed by Coussot (1995), giving an equation which has the ability to match the equilibrium and time-dependent viscous rheology of a wide range of suspensions of different concentration and mineralogy.

  18. The concept of equilibrium in organization theory

    NARCIS (Netherlands)

    Gazendam, Henk W.M.

    1997-01-01

    Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or

  19. The concept of equilibrium in organization theory

    NARCIS (Netherlands)

    Gazendam, H.W.M.

    1998-01-01

    Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or

  20. Transition state theory demonstrated at the micron scale with out-of-equilibrium transport in a confined environment

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Mikkelsen, Morten Bo Lindholm; Reisner, Walter

    2016-01-01

    that they are observable in a microscope. Reaction rates are so slow that transitions are recorded on video. We find sharp transition states that are independent of the applied force, similar to chemical bond rupture, as well as transition states that change location on the reaction pathway with the strength...

  1. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.

    Science.gov (United States)

    Hu, Yujing; Gao, Yang; An, Bo

    2015-07-01

    An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.

  2. Influence of disorder on ageing and memory effects in non-equilibrium critical dynamics of 3D Ising model relaxing from an ordered state

    Science.gov (United States)

    Prudnikov, Vladimir V.; Prudnikov, Pavel V.; Pospelov, Evgeny A.

    2016-04-01

    We have performed a numerical investigation of the influence of disorder on the dynamical non-equilibrium evolution of a 3D site-diluted Ising model from a low-temperature initial state with magnetization m 0  =  1. It is shown that two-time dependences of the autocorrelation and integrated response functions for systems with spin concentrations p  =  1.0, 0.95, 0.8, 0.6 and 0.5 demonstrate ageing properties with anomalous slowing-down relaxation and violation of the fluctuation-dissipation ratio. It was revealed that during non-equilibrium critical dynamics in the long-time regime t-{{t}\\text{w}}\\gg {{t}\\text{w}}\\gg 1 the autocorrelation functions for diluted systems are extremely slow due to the pinning of domain walls on impurity sites. We have found that the fluctuation-dissipation ratio {{X}∞}=0 for diluted systems with spin concentration p  memory effects for critical evolution in the ageing regime with realization of cyclic temperature change and quenching at T<{{T}\\text{c}} .

  3. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  4. Dissipative random quantum spin chain with boundary-driving and bulk-dephasing: magnetization and current statistics in the non-equilibrium-steady-state

    Science.gov (United States)

    Monthus, Cécile

    2017-04-01

    The Lindblad dynamics with dephasing in the bulk and magnetization-driving at the two boundaries is studied for the quantum spin chain with random fields h j and couplings J j (that can be either uniform or random). In the regime of strong disorder in the random fields, or in the regime of strong bulk-dephasing, the effective dynamics can be mapped onto a classical simple symmetric exclusion process with quenched disorder in the diffusion coefficient associated to each bond. The properties of the corresponding non-equilibrium-steady-state in each disordered sample between the two reservoirs are studied in detail by extending the methods that have been previously developed for the symmetric exclusion process without disorder. Explicit results are given for the magnetization profile, for the two-point correlations, for the mean current and for the current fluctuations, in terms of the random fields and couplings defining the disordered sample.

  5. Characterization of organic electrolyte systems by nuclear magnetic resonance and molecular orbital simulation: equilibrium constant and net charge distribution in solvation state

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Juichi; Nishimura, Katsunori; Muranaka, Yasushi; Ito, Yutaka [Hitachi Ltd., Ibaraki (Japan). Res. Lab.

    1997-10-01

    Solvation states of single solvent electrolyte systems of ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC) with LiPF{sub 6} were characterized by {sup 13}C-NMR solvation shift and molecular orbital (MO) simulation. Dissociation constants and solvation constants were estimated by parameter fitting to solvation shift using a simple equilibrium model. The solvation shifts {Delta}{delta} were observed not only at a lower field but also at a higher field due to change of net charge {Delta}{rho} in solvent molecules by Li{sup +} attachment. This particular feature of solvation shifts was demonstrated in the molecular orbital simulation as driven by the change of net charge using a 1:1 (Li{sup +}:solvent) solvation model. (orig.)

  6. Characterization of organic electrolyte systems by nuclear magnetic resonance and molecular orbital simulation: Equilibrium constant and net charge distribution in solvation state

    Science.gov (United States)

    Arai, Juichi; Nishimura, Katsunori; Muranaka, Yasushi; Ito, Yutaka

    Solvation states of single solvent electrolyte systems of ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ehylmethyl carbonate (EMC) and diethyl carbonate (DEC) with LiPF 6 were characterized by 13C-NMR solvation shift and molecular orbital (MO) simulation. Dissociation constants and solvation constants were estimated by parameter fitting to solvation shift using a simple equilibrium model. The solvation shifts Δδ were observed not only at a lower field but also at a higher field due to change of net charge Δ ρ in solvent molecules by Li + attachment. This particular feature of solvation shifts was demonstrated in the molecular orbital simulation as driven by the change of net charge using a 1:1 (Li +:solvent) solvation model.

  7. 39 CFR 955.28 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Suspension. 955.28 Section 955.28 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE BEFORE THE POSTAL SERVICE BOARD OF CONTRACT APPEALS § 955.28 Suspension. (a) Whenever at any time it appears that the parties are in agreement as to...

  8. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Science.gov (United States)

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  9. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Rajesh Ramaswamy

    2011-01-01

    Full Text Available Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM or fluorescence-correlation spectroscopy (FCS to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  10. Textbook Forum: Equilibrium Constants of Chemical Reactions Involving Condensed Phases: Pressure Dependence and Choice of Standard State.

    Science.gov (United States)

    Perlmutter-Hayman, Berta

    1984-01-01

    Problems of equilibria in condensed phases (particularly those involving solutes in dilute solutions) are encountered by students in their laboratory work; the thermodynamics of these equilibria is neglected in many textbooks. Therefore, several aspects of this topic are explored, focusing on pressure dependence and choice of standard state. (JN)

  11. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  12. Diffusion and Spatial Equilibrium of a Social Norm: Voting Participation in the United States, 1920-2008

    OpenAIRE

    Coleman, Stephen

    2012-01-01

    Social conformity can spread social norms and behaviors through a society. This research examines such a process geographically and over time for voting, which is strongly influenced by the norm that citizens should vote. A mathematical model for the spread of voting participation under the influence of social conformity is developed based on the diffusion equation, and predictions are tested with spatial analysis of state-level voter turnout in American presidential elections from 1920 to 20...

  13. Comparison of the Rheology of Bauxite Residue Suspensions

    Science.gov (United States)

    Pashias, N.; Boger, D. V.; Summers, J.; Glenister, D. J.

    The paper presents an overview on the rheology of bauxite residue suspensions. Comparative viscosity and yield stress data are presented for bauxite residues generated in Australia, Jamaica, Surinam, and the USA. A yield stress for optimum dry disposal is specified as is the concentration for minimum energy consumption for the pumping of the four different materials. The data show that bauxite residues can be characterised at two structural states: the initial and the equilibrium or time-independent state. Data can be collected and reproduced for different muds providing there is an understanding of the time dependent nature of the material. The four red mud samples obtained from around the world have been characterised in both the initial and final equilibrium state. A comparison shows that after the course particle fraction has been removed the US, Surinam, and three samples from Western Australia all show similar rheological characteristics in the reduced structural state. A fundamental understanding of the basic rheology of bauxite residue is necessary for establishing an optimal waste disposal strategy.

  14. Sampling the Denatured State of Polypeptides in Water, Urea, and Guanidine Chloride to Strict Equilibrium Conditions with the Help of Massively Parallel Computers.

    Science.gov (United States)

    Meloni, Roberto; Camilloni, Carlo; Tiana, Guido

    2014-02-11

    The denatured state of polypeptides and proteins, stabilized by chemical denaturants like urea and guanidine chloride, displays residual secondary structure when studied by nuclear-magnetic-resonance spectroscopy. However, these experimental techniques are weakly sensitive, and thus molecular-dynamics simulations can be useful to complement the experimental findings. To sample the denatured state, we made use of massively-parallel computers and of a variant of the replica exchange algorithm, in which the different branches, connected with unbiased replicas, favor the formation and disruption of local secondary structure. The algorithm is applied to the second hairpin of GB1 in water, in urea, and in guanidine chloride. We show with the help of different criteria that the simulations converge to equilibrium. It results that urea and guanidine chloride, besides inducing some polyproline-II structure, have different effect on the hairpin. Urea disrupts completely the native region and stabilizes a state which resembles a random coil, while guanidine chloride has a milder effect.

  15. Analyzing the equilibrium states of a quasi-neutral spatially inhomogeneous system of charges above a liquid dielectric film based on the first principles of quantum statistics

    Science.gov (United States)

    Lytvynenko, D. M.; Slyusarenko, Yu V.

    2017-08-01

    A theory of quasi-neutral equilibrium states of charges above a liquid dielectric surface is developed. This theory is based on the first principles of quantum statistics for systems comprising many identical particles. The proposed approach involves applying the variational principle, modified for the considered systems, and the Thomas-Fermi model. In the terms of the developed theory self-consistency equations are obtained. These equations provide the relation between the main parameters describing the system: the potential of the static electric field, the distribution function of charges and the surface profile of the liquid dielectric. The equations are used to study the phase transition in the system to a spatially periodic state. The proposed method can be applied in analyzing the properties of the phase transition in the system in relation to the spatially periodic states of wave type. Using the analytical and numerical methods, we perform a detailed study of the dependence of the critical parameters of such a phase transition on the thickness of the liquid dielectric film. Some stability criteria for the new asymmetric phase of the studied system are discussed.

  16. 26 CFR 301.6503(c)-1 - Suspension of running of period of limitation; location of property outside the United States or...

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Suspension of running of period of limitation... Limitations on Assessment and Collection § 301.6503(c)-1 Suspension of running of period of limitation... November 3, 1966. The running of the period of limitations on collection after assessment prescribed in...

  17. X-ray Mapping of Dynamic Suspensions

    Science.gov (United States)

    Gholami, Mohammad; Lenoir, Nicolas; Ovarlez, Guillaume; Hormozi, Sarah

    2016-11-01

    Dense non-colloidal suspensions are materials with broad application both in industrial processes and natural phenomena. In most of these applications, the suspensions are either far from equilibrium or strongly non-Newtonian (i.e., non-colloidal particles are suspended in non-Newtonian fluid) meaning that the flow kinetics are not only strain-dependent but also strain-rate dependent. Therefore, experimental techniques must be developed to analyze the flows of these complex suspensions over a wide range of steady and transient shear rates. Techniques such as Nuclear Magnetic Resonance/Imaging (NMR/I) are inapplicable due to low sampling frequency and low image resolution (typically 10 minutes per averaged NMR image of 1x1cm). We introduce a new technique using an X-ray/CT-scan system to study dynamic suspensions. We show our recent results on the application of this technique for the study of shear induced migration of particles in a yield stress matrix fluid in a wide-gap cylindrical Couette cell. This work opens new avenues to study dynamic non-colloidal suspensions and the suspensions with other types of nonlinear suspending fluids such as viscoelastic and shear thickening fluids. NFS(CBET-1554044-CAREER).

  18. A simple model of liquid-crystalline magnetic suspension of anisometric particles

    Energy Technology Data Exchange (ETDEWEB)

    Zakhlevnykh, A.N., E-mail: anz@psu.ru; Lubnin, M.S.; Petrov, D.A.

    2017-06-01

    On the base of molecular-statistical approach we study the phase transition between the ordered (ferromagnetic) and disordered (paramagnetic) phases in liquid-crystalline suspensions of magnetic nanoparticles in an external magnetic field. The free energy and equations of magnetic and orientational equilibrium are obtained in the framework of spherical approximation. - Highlights: • We propose a simple statistical model of ferronematic liquid crystals. • We use spherical approximation to derive equations of state. • We study magnetic field induced order-disorder transitions.

  19. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  20. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    Directory of Open Access Journals (Sweden)

    Mehrtash Babadi

    2015-10-01

    Full Text Available We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014PRLTAO0031-900710.1103/PhysRevLett.113.147205].

  1. Pu oxidation state distributions in suspensions of the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HZDR Young Investigator Group; Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    The time-dependent {sup 242}Pu oxidation state distribution in the presence of Sporomusa sp. cells as a function of pH with or without Na-pyruvate was analyzed. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g. biosorption and bioreduction.

  2. Efficiency and limits of Stability Charts in the analysis of limit equilibrium state of slopes of geological interest

    Science.gov (United States)

    Ausilia Paparo, Maria; Tinti, Stefano

    2014-05-01

    The stability charts are one of the most common tools used in engineering and applied geology to derive the value of the Safety Factor, say F, of slopes of engineering and geological interest. Its importance is due to the easiness of finding the solution for F without falling into complex numerical calculations. These charts propose a graphical method to derive F=F(Ns), where Ns is the Stability Number, obtained by a combination of geotechnical (cohesion, friction angle, weight) and geometrical parameters (angle of incline and slope height): for each value of Ns it is possible to find one single value of F. Taylor (1948) was the first to introduce the stability charts method and later until recently many others proposed different improved versions of them (Michalowski, 1997; 2002; Baker, 1999; 2003; Baker et al. 2006; Easa and Vatankhah, 2011). The aim of this work is to show that there is no univocal relationship between F and Ns like it is erroneously assumed by the stability charts method. Indeed, the comparison of the stability charts with new charts obtained with the Minimum Lithostatic Deviation (MLD) method (Tinti and Manucci, 2006; 2008) reveals that F depends separately on all the parameters that concur to form the stability number, though the dependence on some of them, especially the soil weight, is more relevant. The work has been conducted not only on soil parameter configurations typical of embankments and dykes, but also on configurations typical of homogeneous slopes of geophysical interest. It is found that the values of F usually fall below the ones predicted by the stability charts though the general trend of the stability curves is confirmed. This discrepancy is particularly crucial when the value of F is close to the critical value of 1, since in this case classical methods could indicate that a slope is stable, even though it is not. One can therefore state that the classical stability single-valued curves F(Ns) can provide an acceptable first

  3. Suspension as an Emergency Power

    National Research Council Canada - National Science Library

    Amanda L. Tyler

    2009-01-01

    ... Legislation B. Suspension During Reconstruction: Putting Down the Klan in South Carolina IV. UNDERSTANDING SUSPENSION AS AN EMERGENCY POWER A. Reading the Suspension Clause in Context B. Giving Meaning to the Suspension Power C. Mapping the Suspension Clause Within the Constitution V. SUSPENSION AND THE SEPARATION OF POWERS CONCLUSION [A] suspensio...

  4. Factor Markets in Applied Equilibrium Models: The current state and planned extensions towards an improved presentation of factor markets in agriculture

    NARCIS (Netherlands)

    Shutes, L.J.; Rothe, A.; Banse, M.A.H.

    2012-01-01

    This paper describes how factor markets are presented in applied equilibrium models and how we plan to improve and to extend the presentation of factor markets in two specific models: MAGNET and ESIM. We do not argue that partial equilibrium models should become more ‘general’ in the sense of

  5. Communication: Microphase equilibrium and assembly dynamics

    Science.gov (United States)

    Zhuang, Yuan; Charbonneau, Patrick

    2017-09-01

    Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.

  6. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  7. Phase equilibrium for surfactant Ls-54 in liquid CO(2) with water and solubility estimation using the Peng-Robinson equation of state.

    Science.gov (United States)

    Tarafa, Pedro J; Matthews, Michael A

    2010-11-25

    It is known that the commercial surfactant Dehypon® Ls-54 is soluble in supercritical CO(2) and that it enables formation of water-in-CO(2) microemulsions. In this work we observed phase equilibrium for the Ls-54/CO(2) and Ls-54/water/CO(2) systems in the liquid CO(2) region, from 278.15 - 298.15 K. In addition, the Peng-Robinson equation of state (PREOS) was used to model the phase behavior of Ls-54/CO(2) binary system as well as to estimate water solubilities in CO(2). Ls-54 in CO(2) can have solubilities as high as 0.086 M at 278.15 K and 15.2 MPa. The stability of the microemulsion decreases with increasing concentration of water, and lower temperatures favor increased solubility of water into the one-phase microemulsion. The PREOS model showed satisfactory agreement with the experimental data for both Ls-54/CO(2) and water/CO(2) systems.

  8. Flow induced orientation in carbon nanotube suspensions: Modeling and experiments

    Science.gov (United States)

    Natale, Giovanniantonio

    shearing direction were studied. To correlate the microstructure with the rheological data, two different routes were undertaken. The first route involved rheo-optical analysis. Dichroism was investigated for suspensions belonging to the dilute and semi-dilute regimes. Direct information on dispersion, orientation evolution during flow and Brownian motion were obtained. The second route consisted in developing new rheological models in order to correlate micro-scale information to the evolution of the related stress tensor or refractive index tensor. In the dilute regime, the nanotubes were modeled as flexible particles. A modified two-rod model was used, allowing non-straight equilibrium conformations. In more concentrated regimes, the dynamic of the system is controlled by rod-rod interactions. The nanotubes were modeled as inertialess rigid rods and the system orientation state is influenced by interactions via non-linear lubrication forces, hydrodynamic forces and Brownian motion. The comparison of the experimental results with the models predictions allowed to quantify the fundamental mechanisms behind the microstructure evolution of CNT suspensions. To further differentiate the rheology of CNT suspensions, the model predictions were also confronted with the experimental data for a microsize particle suspension: glass fiber-filled polybutene [Sepehr et al. (2004b)]. In the case of the micro-size particles, the model predictions confirmed that the rheological response of the system was controlled by orientation effects while interactions were dominant in the case of CNT suspensions. Hence, this work explores the connections between the bulk rheology of carbon nanotube suspensions and their microstructural evolution. This is the first step towards the design of new processing schemes in order to completely exploit carbon nanotube unique properties.

  9. On the influence of environmental factors on radon levels in caves of Ribeira valley state parks, SP and evaluation of radioactive equilibrium and equilibrium factor between radon and its progeny; Sobre a influencia de fatores ambientais nos niveis de radonio em cavernas dos parques estaduais do vale do Ribeira, SP e avaliacao do equilibrio radioativo e fator de equilibrio entre radonio e seus descendentes

    Energy Technology Data Exchange (ETDEWEB)

    Alberigi, Simone

    2011-07-01

    In the present study it was carried out the monitoring of radon in caves distributed among three state parks of Sao Paulo. The radon concentration were determinate in Morro Preto and Santana caves, located at PETAR - Parque Estadual Turistico do Alto Ribeira (High Ribeira River Tourist State Park), Diabo cave, situated in PEJ - Parque Estadual de Jacupiranga (Jacupiranga State Park) and Colorida cave located in PEI - Parque Estadual Intervales (Intervales State Park PEI). The monitoring covered measurements between April 2009 and June 2010. Radon concentrations were carried out by using the technique of passive detection with CR-39 solid state nuclear track detectors and NRPB diffusion chambers. The detectors were exposed in periods ranging from 30 to 150 days. Radon concentrations varied from 132 Bq/m{sup 3} to 9456 Bq/m{sup 3}. The values of radon concentrations were analyzed together with information about rainfall and internal and external temperature values of the Santana cave environment and regional literature values for a possible relationship between radon variations and weather information. Both the determinations of {sup 22}'6Ra in water samples collected in some caves and rivers and radon emanation from a stalactite collected at Santana cave allowed to verify that the radon in the caves comes from the walls rocks. The verification of the radioactive equilibrium between {sup 222}Rn, {sup 218}Po and '2{sup 14}Po in the exposed detectors was prejudiced by the high tracks densities, committing the methodology effectiveness. The annual effective dose was calculated for three values obtained from the literature for the equilibrium factor. Considering the most realistic scenario, with equilibrium factor of 0.5 and 52 working weeks, the annual effective dose was 5.1 mSv/y. Concerning the worst scenario, which simulates an extreme case, adopting an equilibrium factor equal to 1 and 52 weeks of work per year, the annual effective dose is 10.2 m

  10. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  11. Quantity Constrained General Equilibrium

    NARCIS (Netherlands)

    Babenko, R.; Talman, A.J.J.

    2006-01-01

    In a standard general equilibrium model it is assumed that there are no price restrictions and that prices adjust infinitely fast to their equilibrium values.In case of price restrictions a general equilibrium may not exist and rationing on net demands or supplies is needed to clear the markets.In

  12. Statistical physics ""Beyond equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  13. Do intertidal flats ever reach equilibrium?

    NARCIS (Netherlands)

    Maan, D.C.; van Prooijen, B.C.; Wang, Z.B.; de Vriend, H.J.

    2015-01-01

    Various studies have identified a strong relation between the hydrodynamic forces and the equilibrium profile for intertidal flats. A thorough understanding of the interplay between the hydrodynamic forces and the morphology, however, concerns more than the equilibrium state alone. We study the

  14. A Holistic Equilibrium Theory of Organization Development

    Science.gov (United States)

    Yang, Baiyin; Zheng, Wei

    2005-01-01

    This paper proposes a holistic equilibrium theory of organizational development (OD). The theory states that there are three driving forces in organizational change and development--rationality, reality, and liberty. OD can be viewed as a planned process of change in an organization so as to establish equilibrium among these three interacting…

  15. Thermodynamics and fluctuations far from equilibrium

    CERN Document Server

    Ross, John

    2008-01-01

    This book deals with the formulation of the thermodynamics of chemical and other systems far from equilibrium, including connections to fluctuations. It contains applications to non-equilibrium stationary states and approaches to such states, systems with multiple stationary states, stability and equi-stability conditions, reaction diffusion systems, transport properties, and electrochemical systems. The theoretical treatment is complemented by experimental results to substantiate the formulation. Dissipation and efficiency are analyzed in autonomous and externally forced reactions, including several biochemical systems.

  16. Electrorheology of nanofiber suspensions

    National Research Council Canada - National Science Library

    Yin, Jianbo; Zhao, Xiaopeng

    2011-01-01

    .... In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers...

  17. Revealing the frictional transition in shear-thickening suspensions

    Science.gov (United States)

    Clavaud, Cécile; Bérut, Antoine; Metzger, Bloen; Forterre, Yoël

    2017-05-01

    Shear thickening in dense particulate suspensions was recently proposed to be driven by the activation of friction above an onset stress needed to overcome repulsive forces between particles. Testing this scenario represents a major challenge because classical rheological approaches do not provide access to the frictional properties of suspensions. Here we adopt a different strategy inspired by pressure-imposed configurations in granular flows that specifically gives access to this information. By investigating the quasi-static avalanche angle, compaction, and dilatancy effects in different nonbuoyant suspensions flowing under gravity, we demonstrate that particles in shear-thickening suspensions are frictionless under low confining pressure. Moreover, we show that tuning the range of the repulsive force below the particle roughness suppresses the frictionless state and also the shear-thickening behavior of the suspension. These results, which link microscopic contact physics to the suspension macroscopic rheology, provide direct evidence that the recent frictional transition scenario applies in real suspensions.

  18. Disturbances in equilibrium function after major earthquake

    Science.gov (United States)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-10-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  19. Information-theoretic equilibrium and observable thermalization

    Science.gov (United States)

    Anzà, F.; Vedral, V.

    2017-03-01

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  20. Information-theoretic equilibrium and observable thermalization.

    Science.gov (United States)

    Anzà, F; Vedral, V

    2017-03-07

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  1. Phase equilibrium engineering

    CERN Document Server

    Brignole, Esteban Alberto

    2013-01-01

    Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and

  2. Simplified Analytical Method for Optimized Initial Shape Analysis of Self-Anchored Suspension Bridges and Its Verification

    Directory of Open Access Journals (Sweden)

    Myung-Rag Jung

    2015-01-01

    Full Text Available A simplified analytical method providing accurate unstrained lengths of all structural elements is proposed to find the optimized initial state of self-anchored suspension bridges under dead loads. For this, equilibrium equations of the main girder and the main cable system are derived and solved by evaluating the self-weights of cable members using unstrained cable lengths and iteratively updating both the horizontal tension component and the vertical profile of the main cable. Furthermore, to demonstrate the validity of the simplified analytical method, the unstrained element length method (ULM is applied to suspension bridge models based on the unstressed lengths of both cable and frame members calculated from the analytical method. Through numerical examples, it is demonstrated that the proposed analytical method can indeed provide an optimized initial solution by showing that both the simplified method and the nonlinear FE procedure lead to practically identical initial configurations with only localized small bending moment distributions.

  3. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Junsheng; Su, Shijie; Fang, Xu [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Wang, Dazhi, E-mail: d.wang@dlut.edu.cn [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China); Xu, Shuangchao [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2016-09-15

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H{sub 2}SO{sub 4}) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m{sup 2}·g{sup −1}. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g{sup −1}, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg{sup −1}. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g{sup −1} at a current density of 4 A·g{sup −1}, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g{sup −1}. And the specific capacitance of the electrode can retain 89

  4. Local Nash equilibrium in social networks.

    Science.gov (United States)

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  5. Adsorption of Direct of Yellow ARLE Dye by Activated Carbon of Shell of Coconut Palm: Diffusional Effects on Kinetics and Equilibrium States

    Directory of Open Access Journals (Sweden)

    Aparecido Nivaldo Módenes

    2015-06-01

    Full Text Available In this paper, the characteristics and potential removal of direct yellow ARLE (DYA dye by using coconut palm shell-based activated carbon (CPS-AC were assessed. Both kinetic and equilibrium experimental data were obtained from a series of DYA dye sorption experiments. All the sorption experiments were performed in closed batch system under constant temperature and stirring speed, at the predetermined pH of initial solution. The kinetic mathematical models of pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion model were used in order to better interpret the adsorption kinetics phenomenon. Equilibrium data were described by applying the isotherm models of Langmuir, Freundlich, Tóth, Sips and Khan. The best description of DYA sorption equilibrium data was achieved for the Langmuir isotherm model, reaching a maximum adsorption capacity of 100 mg·g-1. Finally, the DYA dye adsorption functional groups characterizations were successfully accomplished and the results elucidated the most important groups linked with CPS-AC surface where molecular interactions could occur. Hence, the quantitative evaluation of equilibrium and kinetic experiments of adsorption process have demonstrated that the CPS-AC adsorbent was a promising high effective adsorbent and its potential can be successfully used for DYA dye removal.

  6. Electroneutrality and phase behavior of colloidal suspensions.

    Science.gov (United States)

    Denton, A R

    2007-11-01

    Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-Hückel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Lower-dimensional systems (e.g., monolayers, clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining the observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.

  7. Phase equilibrium measurements on nine binary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wilding, W.V. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.; Giles, N.F.; Wilson, L.C. [Wiltec Research Co. Inc., Provo, UT (United States)

    1996-11-01

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region exists in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.

  8. Equilibrium, scale and inheritance in geomorphology

    Science.gov (United States)

    Ahnert, Frank

    1994-12-01

    Of the many "equilibrium" terms that have been proposed, only two are needed: dynamic equilibrium in the original sense of G.K. Gilbert (1877) and steady state. The former refers to the relationship between the process components of a system, the latter to the system as a whole. The tendency towards establishing a dynamic equilibrium is inherent in all natural systems that contain negative feedbacks between processes capable of compensating each other. In geomorphology, equilibrium tendencies of the mass budget are more relevant than those of the energy budget. The validity of the equilibrium concept is discussed at several scales from a slope point to entire slopes, drainage basins and mountain ranges. The effects of eksystemic changes vary depending upon the length of the intervals between such changes in comparison to the length of the required relaxation times. This relationship also applies to the influence of inherited forms, patterns and materials that have become components of present-day systems.

  9. The U.S. Market for Higher Education: A General Equilibrium Analysis of State and Private Colleges and Public Funding Policies

    OpenAIRE

    Dennis Epple; Richard Romano; Sinan Sarpça; Holger Sieg

    2013-01-01

    We develop a general equilibrium model of the market for undergraduate higher education that captures the coexistence of public and private colleges, the large degree of quality differentiation among them, and the tuition and admission policies that emerge from their competition for students. The calibrated version of the model matches well the aggregate characteristics of U.S. higher education including college attendance in public and private schools, tuition levels, and the distribution of...

  10. Suspension Trauma / Orthostatic Intolerance

    Science.gov (United States)

    ... Emphasis Programs Directives Severe Violators TOPICS By Sector Construction Health Care Agriculture Maritime Oil and Gas Federal ... such fatalities often are referred to as "harnessinduced pathology" or "suspension trauma." Signs & symptoms that may be ...

  11. Urinary incontinence - retropubic suspension

    Science.gov (United States)

    ... your doctor will have you try bladder retraining, Kegel exercises, medicines, or other options. If you tried ... retropubic colposuspension; Needle suspension; Burch colposuspension Patient Instructions Kegel exercises - self-care Self catheterization - female Suprapubic catheter ...

  12. Rheology of organoclay suspension

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-05-01

    Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...

  13. Equilibrium Constant as Solution to the Open Chemical Systems

    OpenAIRE

    Zilbergleyt, B.

    2008-01-01

    According to contemporary views, equilibrium constant is relevant only to true thermodynamic equilibria in isolated systems with one chemical reaction. The paper presents a novel formula that ties-up equilibrium constant and chemical system composition at any state, isolated or open as well. Extending the logarithmic logistic map of the Discrete Thermodynamics of Chemical Equilibria, this formula maps the system population at isolated equilibrium into the population at any open equilibrium at...

  14. Rheological behavior of oxide nanopowder suspensions

    Science.gov (United States)

    Cinar, Simge

    modified. Because of the limited separation distances and large surface areas of nanopowders, the electrostatic double layer has an amplified effect on the viscosity of the suspensions. The addition of NaCl decreased the viscosity of alumina nanopowder suspensions significantly by compressing the double layer hence limiting the repulsion length. We also discovered that ascorbic acid can be used to disperse the alumina nanopowder suspensions. By adding only 1 wt% of ascorbic acid, the viscosity of the suspensions decreased significantly. It was shown that ascorbic acid molecules adsorbed to the alumina surfaces and when the adsorption reached equilibrium, the lowest viscosities were observed. By lowering the viscosities, the maximum achievable solids content (where viscosity = 1 Pa at a shear rate of 100 s-1) could be increased up to about 0.35, which is the highest solids content achieved with readily available processing additives reported in the open literature. Even though it is almost impossible to isolate the individual effects, three dominant mechanisms were observed in nanopowder suspensions: (i) increase in effective volume fraction (bound water), (ii) interparticle interactions (electrostatic), and (iii) adsorption of organic molecules. It was shown that the understanding of the system's parameters enables the optimization of the rheological behavior of the suspensions and the prediction of the green body quality.

  15. Articulated suspension system

    Science.gov (United States)

    Bickler, Donald B. (Inventor)

    1989-01-01

    The invention provides a rough terrain vehicle which maintains a substantially constant weight, and therefore traction, on all wheels, despite one wheel moving considerably higher or lower than the others, while avoiding a very soft spring suspension. The vehicle includes a chassis or body to be supported and a pair of side suspensions at either side of the body. In a six wheel vehicle, each side suspension includes a middle wheel, and front and rear linkages respectively coupling the front and rear wheels to the middle wheel. A body link pivotally connects the front and rear linkages together, with the middle of the body link rising or falling by only a fraction of the rise or fall of any of the three wheels. The body link pivotally supports the middle of the length of the body. A transverse suspension for suspending the end of the body on the side suspensions includes a middle part pivotally connected to the body about a longitudinal axis and opposite ends each pivotally connected to one of the side suspensions along at least a longitudinal axis.

  16. Non-equilibrium Economics

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  17. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Science.gov (United States)

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  18. Equilibrium and Termination

    Directory of Open Access Journals (Sweden)

    Nicolas Oury

    2010-06-01

    Full Text Available We present a reduction of the termination problem for a Turing machine (in the simplified form of the Post correspondence problem to the problem of determining whether a continuous-time Markov chain presented as a set of Kappa graph-rewriting rules has an equilibrium. It follows that the problem of whether a computable CTMC is dissipative (ie does not have an equilibrium is undecidable.

  19. Equilibrium statistical mechanics

    CERN Document Server

    Mayer, J E

    1968-01-01

    The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t

  20. Quantum mechanical evolution towards thermal equilibrium.

    Science.gov (United States)

    Linden, Noah; Popescu, Sandu; Short, Anthony J; Winter, Andreas

    2009-06-01

    The circumstances under which a system reaches thermal equilibrium, and how to derive this from basic dynamical laws, has been a major question from the very beginning of thermodynamics and statistical mechanics. Despite considerable progress, it remains an open problem. Motivated by this issue, we address the more general question of equilibration. We prove, with virtually full generality, that reaching equilibrium is a universal property of quantum systems: almost any subsystem in interaction with a large enough bath will reach an equilibrium state and remain close to it for almost all times. We also prove several general results about other aspects of thermalization besides equilibration, for example, that the equilibrium state does not depend on the detailed microstate of the bath.

  1. 3 CFR - Suspension of Limitations Under the Jerusalem Embassy Act

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Suspension of Limitations Under the Jerusalem... June 5, 2009 Suspension of Limitations Under the Jerusalem Embassy Act Memorandum for the Secretary of... States, including section 7(a) of the Jerusalem Embassy Act of 1995 (Public Law 104-45) (the “Act”), I...

  2. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  3. Beyond transition state theory: accurate description of nuclear quantum effects on the rate and equilibrium constants of chemical reactions using Feynman path integrals.

    Science.gov (United States)

    Vanícek, Jirí

    2011-01-01

    Nuclear tunneling and other nuclear quantum effects have been shown to play a significant role in molecules as large as enzymes even at physiological temperatures. I discuss how these quantum phenomena can be accounted for rigorously using Feynman path integrals in calculations of the equilibrium and kinetic isotope effects as well as of the temperature dependence of the rate constant. Because these calculations are extremely computationally demanding, special attention is devoted to increasing the computational efficiency by orders of magnitude by employing efficient path integral estimators.

  4. Equilibrium gels of limited valence colloids

    OpenAIRE

    Sciortino, Francesco; Zaccarelli, Emanuela

    2017-01-01

    Gels are low-packing arrested states of matter which are able to support stress. On cooling, limited valence colloidal particles form open networks stabilized by the progressive increase of the interparticle bond lifetime. These gels, named equilibrium gels, are the focus of this review article. Differently from other types of colloidal gels, equilibrium gels do not require an underlying phase separation to form. Oppositely, they form in a region of densities deprived of thermodynamic instabi...

  5. Diurnal and seasonal variation of the equilibrium state between short-lived radon decay products and radon gas in ground-level air.

    Science.gov (United States)

    Winkler, R; Ruckerbauer, F; Trautmannsheimer, M; Tschiersch, J; Karg, E

    2001-06-01

    To study seasonal and diurnal variations and the effect of meteorological parameters, the equilibrium factor F (i.e. the ratio of equilibrium equivalent radon daughter concentration and radon gas concentration) was determined as a result of measurements on a test field at Munich-Neuherberg, Germany, continuously from October 1995 through March 1997. On average, F was found to be 0.62+/-0.09 (95% confidence level). The time series of F showed no distinct seasonal variations. Nevertheless, typical diurnal variations as well as seasonal variations of the diurnal behaviour were observed. Generally, F was found to be increased in the early afternoon, i.e. under conditions of enhanced vertical mixing in the atmosphere. The daily differences between high and low values of F depended on the season. On average, low F values were characteristic for days with precipitation and high wind speed, i.e. under turbulent atmospheric conditions. Therefore, taking daily mean values into account, F was found to be positively correlated with the aerosol concentration, although a relationship between the diurnal behaviour of the aerosol concentration and that of F was not detectable.

  6. Local equilibrium in bird flocks

    Science.gov (United States)

    Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene

    2016-12-01

    The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  7. Melting in temperature sensitive suspensions

    Science.gov (United States)

    Alsayed, Ahmed M.

    We describe two experimental studies about melting in colloidal systems. In particular we studied melting of 1-dimensional lamellar phases and 3-dimensional colloidal crystals. In the first set of experiments we prepared suspensions composed of rodlike fd virus and the thermosensitive polymer, poly(N-isopropylacrylamide). The phase diagram of this systems is temperature and concentration dependent. Using video microscopy, we directly observed melting of lamellar phases and single lamellae into nematic phase. We found that lamellar phases swell with increasing temperature before melting into the nematic phase. The highly swollen lamellae can be superheated as a result of topological nucleation barriers that slow the formation of the nematic phase. In another set of experiments we prepared colloidal crystals from thermally responsive microgel spheres. The crystals are equilibrium close-packed three-dimensional structures. Upon increasing the temperature slightly above room temperature, particle volume fraction decreased from 0.74 to less than 0.5. Using video microscopy, we observed premelting at grain boundaries and dislocations within bulk colloidal crystals. Premelting is the localized loss of crystalline order at surfaces and defects at sample volume fractions above the bulk melting transition. Particle tracking revealed increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. In total these observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and in atomic scale crystals.

  8. Chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation.

    NARCIS (Netherlands)

    Engel, D.C.; Engel, D.C.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M = NH4) systems by measuring the equilibrium composition. This reaction was allowed to proceed from both sides of the equilibrium in a suspension of Pd/C and Pd/γ-Al2O3 catalyst particles, and was carried out at 20, 40

  9. Local Stellarator Equilibrium Model

    Science.gov (United States)

    Hudson, Stuart R.; Hegna, Chris C.; Lewandowski, Jerome W.

    2000-10-01

    Extensive calculations of ballooning and drift waves spectrums in asymmetric toroidal configurations (e.g. stellarators) to appreciate the role of magnetic geometry and profile variations are usually are usually prohibitive as the evaluation of the magneto-hydrodynamic (MHD) equilibrium is in itself a non-trivial problem. Although simple analytical MHD model equilibria do exist for tokamak configurations, their stellarator counterparts are usually crude or very approximate. In order to make more extensive stability calculations (of both ideal ballooning and drift-type modes), a technique for generating three-dimensional magneto-static equilibria, localized to a magnetic surface, has been developed. The technique allows one to easily manipulate various 3-D shaping and profile effects on a magnetic surface avoiding the need to recompute an entire three dimensional solution of the equilibrium. The model equilibrium has been implemented into existing ideal MHD ballooning and drift wave numerical codes. Marginal ballooning stability diagrams and drift wave calculations will be reported.

  10. EFFECTIVE SPECIFIC ACTIVITY OF NATURAL RADIONUCLIDES FOR THE NORM BELONGED TO 238U AND 232TH SERIES BEING IN THE STATE OF DISTURBED RADIOACTIVE EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2008-01-01

    Full Text Available In the Sanitary Rules SR 2.6.1.1292-03 and SR 2.6.6.1169-02 classification of the industrial waste containing naturally occurring radioactive materials is adopted in accordance to the values of their effective specific activity Aeff. In a case of the disturbed equilibrium in 238U and 232Th series it is necessary to take into consideration actual contribution of the separate natural radionuclides of the mentioned series into the value of gamma dose rate of the waste. This will permit to avoid unjustified overestimating or understating of the waste category which prevents as unjustified expenditures on their treating so undertaking of the necessary measures providing radiation safety.

  11. Beyond Equilibrium Thermodynamics

    Science.gov (United States)

    Öttinger, Hans Christian

    2005-01-01

    Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.

  12. An analytical model of crater count equilibrium

    Science.gov (United States)

    Hirabayashi, Masatoshi; Minton, David A.; Fassett, Caleb I.

    2017-06-01

    Crater count equilibrium occurs when new craters form at the same rate that old craters are erased, such that the total number of observable impacts remains constant. Despite substantial efforts to understand this process, there remain many unsolved problems. Here, we propose an analytical model that describes how a heavily cratered surface reaches a state of crater count equilibrium. The proposed model formulates three physical processes contributing to crater count equilibrium: cookie-cutting (simple, geometric overlap), ejecta-blanketing, and sandblasting (diffusive erosion). These three processes are modeled using a degradation parameter that describes the efficiency for a new crater to erase old craters. The flexibility of our newly developed model allows us to represent the processes that underlie crater count equilibrium problems. The results show that when the slope of the production function is steeper than that of the equilibrium state, the power law of the equilibrium slope is independent of that of the production function slope. We apply our model to the cratering conditions in the Sinus Medii region and at the Apollo 15 landing site on the Moon and demonstrate that a consistent degradation parameterization can successfully be determined based on the empirical results of these regions. Further developments of this model will enable us to better understand the surface evolution of airless bodies due to impact bombardment.

  13. A century of Hardy-Weinberg equilibrium.

    Science.gov (United States)

    Mayo, Oliver

    2008-06-01

    Hardy-Weinberg equilibrium (HWE) is the state of the genotypic frequency of two alleles of one autosomal gene locus after one discrete generation of random mating in an indefinitely large population: if the alleles are A and a with frequencies p and q(=1-p), then the equilibrium gene frequencies are simply p and q and the equilibrium genotypic frequencies for AA, Aa and aa are p2, 2pq and q2. It was independently identified in 1908 by G. H. Hardy and W. Weinberg after earlier attempts by W. E. Castle and K. Pearson. Weinberg, well known for pioneering studies of twins, made many important contributions to genetics, especially human genetics. Existence of this equilibrium provides a reference point against which the effects of selection, linkage, mutation, inbreeding and chance can be detected and estimated. Its discovery marked the initiation of population genetics.

  14. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we...

  15. Stability of dynamic response of suspension bridges

    Science.gov (United States)

    Capsoni, Antonio; Ardito, Raffaele; Guerrieri, Andrea

    2017-04-01

    The potential occurrence of internal parametric resonance phenomena has been recently indicated as a potential contributory cause of the appearance of critical dynamic states in long-span suspension bridges. At the same time, suspension bridges, in view of their flexibility, are prone to aeroelastic response, such as vortex shedding, torsional divergence and flutter. In this paper, a non-linear dynamic model of a suspension bridge is devised, with the purpose of providing a first attempt toward a unified framework for the study of aeroelastic and internal resonance instabilities. Inspired by the pioneering work of Herrmann and Hauger, the analyses have been based on a linearized formulation that is able to represent the main structural non-linear effects and the coupling given by aerodynamic forces. The results confirm that the interaction between aeroelastic effects and non-linear internal resonance leads to unstable conditions for wind speeds which can be lower than the critical threshold for standard aeroelastic predictions.

  16. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  17. Contributions of equilibrium and non-equilibrium clusters to viscosity in concentrated protein solutions

    Science.gov (United States)

    Sarangapani, Prasad; Hudson, Steven; Pathak, Jai; Migler, Kalman

    2013-03-01

    Equilibrium and non-equilibrium clustering are ubiquitous phenomena in soft matter physics and are typically observed in systems ranging from colloidal suspensions to monoclonal antibodies (mAbs). Such phenomena are central to understanding and preventing irreversible aggregation in addition to controlling viscosity challenges related to formulation and drug delivery of protein therapeutics. Curiously, little work has been done in exploring the cluster size dependence of low-shear viscosity and intrinsic viscosity in protein solutions in a controlled manner. In this work, we carefully control cluster size of reversible and irreversible clusters formed by globular proteins or monoclonal antibodies over a concentration range of 2 mg/mL-500 mg/mL and pH from 3-9. We find a marked dependence of low-shear viscosity on cluster size using custom-designed silicon-based microfluidic viscometers. Measurements of cluster sizes using static light scattering reveal a correlation of low shear viscosity as well as intrinsic viscosity with the average cluster size. We model the composition dependence of viscosity for the case of equilibrium and non-equilibrium clusters using an adaptation of a model recently presented by Minton for protein mixtures.

  18. Electronic states and nature of bonding of the molecule PdGe by all electron ab initio HF–CI calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.

    1986-01-01

    In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...

  19. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  20. Flywheel Magnetic Suspension Developments

    Science.gov (United States)

    Palazzolo, Alan; Kenny, Andrew; Sifford, Curtiss; Thomas, Erwin; Bhuiyan, Mohammad; Provenza, Andrew; Kascak, Albert; Montague, Gerald; Lei, Shuliang; Kim, Yeonkyu; hide

    2002-01-01

    The paper provides an overview of many areas of the flywheel magnetic suspension (MS) R&D being performed at the Texas A&M Vibration Control and Electromechanics Lab (TAMU-VCEL). This includes system response prediction, actuator optimization and redundancy, controller realizations and stages, sensor enhancements and backup bearing reliability.

  1. Cryonic Suspension and the Law.

    Science.gov (United States)

    Smith, George P.; Hall, Clare

    1987-01-01

    Analyzes three central problems which adversely affect use, development, and perfection of cryonic suspension of individuals: the extent to which a physician may be guilty of malpractice in assisting with a suspension; the need for a recognition of suspension; and the present effect of the law's anachronistic treatment of estate devolution upon a…

  2. License suspensions for nondriving offenses : practices in four states that may ease the financial impact on low-income individuals, February 2010.

    Science.gov (United States)

    2010-02-01

    States suspend drivers licenses for a variety of offenses that are not directly related to driving safety.1 For example, all states have procedures to suspend licenses for child support arrearages. In addition, a majority of states issue suspensio...

  3. Equilibrium shoreface profiles

    DEFF Research Database (Denmark)

    Aagaard, Troels; Hughes, Michael G

    2017-01-01

    Large-scale coastal behaviour models use the shoreface profile of equilibrium as a fundamental morphological unit that is translated in space to simulate coastal response to, for example, sea level oscillations and variability in sediment supply. Despite a longstanding focus on the shoreface prof...

  4. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  5. Volatility in Equilibrium

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Sizova, Natalia; Tauchen, George

    Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast...

  6. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the ... tedious and more time saving than the classical method in the solution of the aforementioned differential equation. ... silos, pipelines, bridge arches or wind turbine towers [3]. The objective of this ...

  7. Microeconomics : Equilibrium and Efficiency

    NARCIS (Netherlands)

    Ten Raa, T.

    2013-01-01

    Microeconomics: Equilibrium and Efficiency teaches how to apply microeconomic theory in an innovative, intuitive and concise way. Using real-world, empirical examples, this book not only covers the building blocks of the subject, but helps gain a broad understanding of microeconomic theory and

  8. Coarsening mechanics of a colloidal suspension in toggled fields

    Science.gov (United States)

    Bauer, Jonathan L.; Liu, Yifei; Kurian, Martin J.; Swan, James W.; Furst, Eric M.

    2015-08-01

    Suspensions of paramagnetic colloids are driven to phase separate and self-assemble in toggled magnetic fields. At field strengths above 575 A/m and toggle frequencies between 0.66 and 2 Hz, an initial gel-like, arrested network collapses into condensed, ellipsoidal aggregates. The evolution to this equilibrium structure occurs via a Rayleigh-Plateau instability. The toggle frequency ν determines the fluidity of the breakup process. At frequencies between 0.66 and 1.5 Hz, the suspension breaks up similar to a viscous, Newtonian fluid. At frequencies ν > 1.5 Hz, the network ruptures like a viscoplastic material. The field strength alters the onset time of the instability. A power law relationship emerges as the scaled frequency and field strength can be used to predict the onset of breakup. These results further aid in understanding the mechanics and dynamics of the phase separation process of suspensions of polarizable colloids in toggled external fields.

  9. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  10. Shear Stress Dependence of Flow Properties of Gelatinized Modified Starch Suspensions

    OpenAIRE

    朝田, 仁; 鈴木, 寛一

    1996-01-01

    Flow properties of gelatinized modified starch suspensions were studied using a tube viscometer. The modified starches used were commercially available samples of hydroxypropylated distarch phosphate derived from waxy corn and potato starches (Starch A and Starch B). Two types of irreversible shear stress dependence of flow behavior were observed. By applying shear stress on the gelatinized starch suspensions, fluidity of Starch A (5.0 wt%) decreased to an equilibrium value, while fluidity of...

  11. Tuning the non-equilibrium state of a drug-encapsulated poly(ethylene glycol) hydrogel for stem and progenitor cell mobilization.

    Science.gov (United States)

    Liang, Youyun; Jensen, Tor W; Roy, Edward J; Cha, Chaenyung; Devolder, Ross J; Kohman, Richie E; Zhang, Bao Zhong; Textor, Kyle B; Rund, Lauretta A; Schook, Lawrence B; Tong, Yen Wah; Kong, Hyunjoon

    2011-03-01

    Injectable and biodegradable hydrogels have been increasingly studied for sustained drug delivery in various molecular therapies. However, it remains a challenge to attain desired delivery rate at injection sites due to local tissue pressures exerted on the soft hydrogels. Furthermore, there is often limited controllability of stiffness and degradation rates, which are key factors required for achieving desired drug release rate and therapeutic efficacy. This study presents a stiff and metastable poly(ethylene glycol) diacrylate (PEGDA)-poly(ethylene imine) (PEI) hydrogel which exhibits an elastic modulus equivalent to bulk plastic materials, and controllable degradation rate independent of its initial elastic modulus. Such unique stiffness was attained from the highly branched architecture of PEI, and the decoupled controllability of degradation rate was achieved by tuning the non-equilibrium swelling of the hydrogel. Furthermore, a single intramuscular administration of granulocyte colony stimulating factor (GCSF)-encapsulated PEGDA-PEI hydrogel extended the mobilization of mononuclear cells to four days. A larger yield of expanded CD34+ and CD31+ endothelial progenitor cells (EPCs) was also obtained as compared to the daily bolus administration. Overall, the hydrogel created in this study will be useful for the controlled and sustained delivery of a wide array of drug molecules. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. MP4 Study of the Anharmonic Coupling of the Shared Proton Stretching Vibration of the Protonated Water Dimer in Equilibrium and Transition States.

    Science.gov (United States)

    Pitsevich, G; Malevich, A; Kozlovskaya, E; Mahnach, E; Doroshenko, I; Pogorelov, V; Pettersson, Lars G M; Sablinskas, V; Balevicius, V

    2017-03-16

    The structure and harmonic and anharmonic IR spectra of the protonated water dimer (PWD) were calculated in C1, C2, and Cs symmetry at the MP4/acc-pVTZ level of theory. We found that structure and IR spectra are practically identical in C2 and C1 symmetry, demonstrating that an equilibrium C1 configuration of the PWD is not realized. Anharmonic coupling of the shared proton stretching vibration with all other modes in the PWD in C2 and Cs symmetry was the focus of this investigation. For this purpose, 28 two-dimensional potential energy surfaces (2D PES) were built at the MP4/acc-pVTZ level of theory and the corresponding vibrational Schrödinger equations were solved using the DVR method. Differences in the coupling of the investigated mode with other modes in the C2 and Cs configurations, along with some factors that determine the red- or blue-shift of the stretching vibration frequency, were analyzed. We obtained a rather reasonable value of the stretching frequency of the bridging proton (1058.4 cm(-1)) unperturbed by Fermi resonance. The Fermi resonance between the fundamental vibration ν7 and the combined vibration ν2 + ν6 of the same symmetry was analyzed through anharmonic second-order perturbation theory calculations, as well as by 3D PES constructed using Q2, Q6, and Q7 as normal coordinates. A significant (up to 50%) transfer of intensity from the fundamental vibration to the combined one was found. We have estimated the frequency of the bridging proton stretching vibration in the Cs configuration of the PWD based on calculations of the intrinsic anharmonicity and anharmonic double modes interactions at the MP4/acc-pVTZ level of theory (1261 cm(-1)).

  13. Problems in equilibrium theory

    CERN Document Server

    Aliprantis, Charalambos D

    1996-01-01

    In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.

  14. Equilibrium statistical mechanics

    CERN Document Server

    Jackson, E Atlee

    2000-01-01

    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  15. Heteropolar Magnetic Suspension

    Science.gov (United States)

    Misovec, Kathleen; Johnson, Bruce; Downer, James; Eisenhaure, David; Hockney, Richard

    1990-01-01

    Compact permanent-magnet/electromagnet actuator has six degrees of freedom. Heteropolar magnetic actuator conceived for use as actively controlled vibration-isolating suspension device. Exerts forces along, and torques about, all three principal coordinate axes to resist all three components of translational vibration and all three components of rotational vibration. Inner cylinder suspended magnetically within outer cylinder. Electro-magnet coils interact with fields of permanent magnets to provide active control of suspending force and torque.

  16. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  17. Average inbreeding or equilibrium inbreeding?

    OpenAIRE

    Hedrick, P. W.

    1986-01-01

    The equilibrium inbreeding is always higher than the average inbreeding. For human populations with high inbreeding levels, the inbreeding equilibrium is more than 25% higher than the average inbreeding. Assuming no initial inbreeding in the population, the equilibrium inbreeding value is closely approached in 10 generations or less. A secondary effect of this higher inbreeding level is that the equilibrium frequency of recessive detrimental alleles is somewhat lower than expected using avera...

  18. The equilibrium of overpressurized polytropes

    Science.gov (United States)

    Huré, J.-M.; Hersant, F.; Nasello, G.

    2018-03-01

    We investigate the impact of an external pressure on the structure of self-gravitating polytropes for axially symmetric ellipsoids and rings. The confinement of the fluid by photons is accounted for through a boundary condition on the enthalpy H. Equilibrium configurations are determined numerically from a generalized `self-consistent-field' method. The new algorithm incorporates an intraloop re-scaling operator R(H), which is essential for both convergence and getting self-normalized solutions. The main control parameter is the external-to-core enthalpy ratio. In the case of uniform rotation rate and uniform surrounding pressure, we compute the mass, the volume, the rotation rate and the maximum enthalpy. This is repeated for a few polytropic indices, n. For a given axial ratio, overpressurization globally increases all output quantities, and this is more pronounced for large n. Density profiles are flatter than in the absence of an external pressure. When the control parameter asymptotically tends to unity, the fluid converges towards the incompressible solution, whatever the index, but becomes geometrically singular. Equilibrium sequences, obtained by varying the axial ratio, are built. States of critical rotation are greatly exceeded or even disappear. The same trends are observed with differential rotation. Finally, the typical response to a photon point source is presented. Strong irradiation favours sharp edges. Applications concern star-forming regions and matter orbiting young stars and black holes.

  19. Equilibrium Arrival Times to Queues

    DEFF Research Database (Denmark)

    Breinbjerg, Jesper; Østerdal, Lars Peter

    a symmetric (mixed) Nash equilibrium, and show that there is at most one symmetric equilibrium. We provide a numerical method to compute this equilibrium and demonstrate by a numerical example that the social effciency can be lower than the effciency induced by a similar queueing system that serves customers...

  20. Extended Mixed Vector Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    Mijanur Rahaman

    2014-01-01

    Full Text Available We study extended mixed vector equilibrium problems, namely, extended weak mixed vector equilibrium problem and extended strong mixed vector equilibrium problem in Hausdorff topological vector spaces. Using generalized KKM-Fan theorem (Ben-El-Mechaiekh et al.; 2005, some existence results for both problems are proved in noncompact domain.

  1. Particle Sorting and Motility Out of Equilibrium

    Science.gov (United States)

    Sandford, Cato

    The theory of equilibrium statistical physics, formulated over a century ago, provides an excellent description of physical systems which have reached a static, relaxed state. Such systems can be loosely thought of as maximally disordered, in keeping with the Second Law of Thermodynamics which states that a thermal system in equilibrium has reached a state of highest entropy. However, many entities in the world around us maintain themselves in an remarkably ordered and dynamic state, and must pay for this by producing entropy in their surroundings. Organisms, for example, convert chemical energy (food) into heat, which is then dumped into the environment, raising its entropy. Systems which produce entropy through any mechanism must be described by theories of non-equilibrium statistical physics, for which there currently exists no unified framework or ontology. Here we examine two specific cases of non-equilibrium phenomena from a theoretical perspective. First, we explore the behaviour of microscopic particles which continually dissipate energy to propel themselves through their environment. Second, we consider how devices which distinguish between different types of particles can exploit non-equilibrium processes to enhance their performance. For the case of self-propelled particles, we consider a theoretical model where the particle's propulsion force has "memory"--it is a random process whose instantaneous value depends on its past evolution. This introduces a persistence in the particle's motion, and requires the dissipation of energy into its surroundings. These particles are found to exhibit a variety of behaviours forbidden in equilibrium systems: for instance they may cluster around barriers, exert unbalanced forces, and sustain steady flows through space. We develop the understanding of these particles' dynamics through a combination of explicit calculations, approximations and numerical simulation which characterise and quantify their non-equilibrium

  2. Numerical simulations of magnetic suspensions with hydrodynamic and dipole-dipole magnetic interactions

    Science.gov (United States)

    Gontijo, R. G.; Cunha, F. R.

    2017-06-01

    This work describes a numerical model to compute the translational and rotational motion of N spherical magnetic particles settling in a quiescent viscous fluid under creeping flow condition. The motion of the particles may be produced by the action of gravitational forces, Brownian thermal fluctuations, magnetic dipole-dipole interactions, external magnetic field, and hydrodynamic interactions. In order to avoid particle overlap, we consider a repulsive force based on a variation of a screened-Coulomb potential mixed with Hertz contact forces. The inertia of the particles is neglected so that a mobility approach to describe the hydrodynamic interactions is used. The magnetic dipoles are fixed with respect to the particles themselves. Thus they can only interact magnetically between them and with an external applied magnetic field. Therefore the effect of magnetic field moment rotation relative to the particle as a consequence of a finite amount of particle anisotropy is neglected in this work. On the other hand, the inclusion of particle viscous hydrodynamic interactions and dipolar interactions is considered in our model. Both long-range hydrodynamic and magnetic interactions are accounted by a sophisticated technique of lattice sums. This work considers several possibilities of periodic and non-periodic particle interaction schemes. This paper intends to show the benefits and disadvantages of the different approaches, including a hybrid possibility of computing periodic and non-periodic particle interactions. The well-known mean sedimentation velocity and the equilibrium magnetization of the suspension are computed to validate the numerical scheme. The comparison is performed with the existent theoretical models valid for dilute suspensions and several empirical correlations available in the current literature. In the presence of dipole-dipole particle interactions, the simulations show a non-monotonic behavior of the mean sedimentation velocity as the particle

  3. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  4. General equilibrium without utility functions

    DEFF Research Database (Denmark)

    Balasko, Yves; Tvede, Mich

    2010-01-01

    How far can we go in weakening the assumptions of the general equilibrium model? Existence of equilibrium, structural stability and finiteness of equilibria of regular economies, genericity of regular economies and an index formula for the equilibria of regular economies have been known...... and the diffeomorphism of the equilibrium manifold with a Euclidean space; (2) the diffeomorphism of the set of no-trade equilibria with a Euclidean space; (3) the openness and genericity of the set of regular equilibria as a subset of the equilibrium manifold; (4) for small trade vectors, the uniqueness, regularity...... and stability of equilibrium for two version of tatonnement; (5) the pathconnectedness of the sets of stable equilibria....

  5. Disorganization of Equilibrium Directional Interactions in the Brain Motor Network of Parkinson's disease: New Insight of Resting State Analysis Using Granger Causality and Graphical Approach

    OpenAIRE

    Ghasemi, Mahdieh; Mahloojifar, Ali

    2013-01-01

    Parkinson's disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movements. Particular changes related to various pathological attacks in PD could result in causal interactions of the brain network from resting state functional magnetic resonance imaging (rs-fMRI) data. In this paper, we aimed to disclose the network structure of the directed influences over the brain using multivariate Granger causality analysis and graph theory in patients w...

  6. 31 CFR 10.82 - Expedited suspension.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Expedited suspension. 10.82 Section... INTERNAL REVENUE SERVICE Rules Applicable to Disciplinary Proceedings § 10.82 Expedited suspension. (a... suspension. A suspension under this section will commence on the date that written notice of the suspension...

  7. Equilibrium theory of heatless adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Y.N.I.; Hill, F.B.; Wong, Y.W.

    1979-01-01

    The equilibrium theory of heatless adsorption was derived for the case of isothermal removal of a single trace adsorbable component from an inert carrier. The adsorbing component obeyed a linear distribution law. A modification is made in order to render all material balances exact. The modified theory is presented and extended to the case of the two-component system in which both components are adsorbable. A survey was made of the predictions of the corrected theory. Calculations were made of the steady state performance of a single heatless adsorption stage when operating at the condition of complete removal of the trace component from the product stream. Quantities calculated included the critical purge to feed ratio, enrichments in the purge and in the blowdown gas, and overall enrichment. Operation at the critical purge to feed ratio for perfect cleanup and the shortest column length corresponds to the condition of maximum sorbent utilization, providing an upper bound on the performance of the column. The overall enrichment increases with pressure ratio and decreases with the equilibrium parameter ..beta... It is dominated by the enrichment in the purge stream for small values of ..beta... At a purge to feed ratio greater than the critical, the overall enrichment is diminished and exhibits a maximum with respect to pressure ratio. For separation factors less than unity, only modest depletion of the trace component in th product stream is found, and this depletion is relatively insensitive to pressure ratio. From transient calculations, the number of cycles required to reach steady state increases with pressure ratio.

  8. Thermal equilibrium of goats.

    Science.gov (United States)

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Energetic instability unjams sand and suspension.

    Science.gov (United States)

    Jiang, Yimin; Liu, Mario

    2004-10-01

    Jamming is a phenomenon occurring in systems as diverse as traffic, colloidal suspensions, and granular materials. A theory on the reversible elastic deformation of jammed states is presented. First, an explicit granular stress-strain relation is derived that captures many relevant features of sand, including especially the Coulomb yield surface and a third-order jamming transition. Then this approach is generalized, and employed to consider jammed magnetorheological and electrorheological fluids, again producing results that compare well to experiments and simulations.

  10. Non-equilibrium phase transitions in complex plasma

    NARCIS (Netherlands)

    Sutterlin, K. R.; Wysocki, A.; Rath, C.; Ivlev, A. V.; Thomas, H. M.; Khrapak, S.; Zhdanov, S.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase

  11. Experimental verification of morphological instability in freezing aqueous colloidal suspensions.

    Science.gov (United States)

    Peppin, S S L; Wettlaufer, J S; Worster, M G

    2008-06-13

    We describe an experimental test of a new theory of the unidirectional freezing of aqueous colloidal suspensions. At low freezing speeds a planar ice lens completely rejects the particles, forming a steady-state compacted boundary layer in the liquid region. At higher speeds the planar interface becomes thermodynamically unstable and breaks down geometrically to trap bulk regions of colloid within. The theoretical stability threshold is determined experimentally, thereby demonstrating that colloidal suspensions can be treated analogously to atomic or molecular alloys.

  12. Disorganization of Equilibrium Directional Interactions in the Brain Motor Network of Parkinson's disease: New Insight of Resting State Analysis Using Granger Causality and Graphical Approach.

    Science.gov (United States)

    Ghasemi, Mahdieh; Mahloojifar, Ali

    2013-04-01

    Parkinson's disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movements. Particular changes related to various pathological attacks in PD could result in causal interactions of the brain network from resting state functional magnetic resonance imaging (rs-fMRI) data. In this paper, we aimed to disclose the network structure of the directed influences over the brain using multivariate Granger causality analysis and graph theory in patients with PD as compared with control group. rs-fMRI at rest from 10 PD patients and 10 controls were analyzed. Topological properties of the networks showed that information flow in PD is smaller than that in healthy individuals. We found that there is a balanced local network in healthy control group, including positive pair-wise cross connections between caudate and cerebellum and reciprocal connections between motor cortex and caudate in the left and right hemispheres. The results showed that this local network is disrupted in PD due to disturbance of the interactions in the motor networks. These findings suggested alteration of the functional organization of the brain in the resting state that affects the information transmission from and to other brain regions related to both primary dysfunctions and higher-level cognition impairments in PD. Furthermore, we showed that regions with high degree values could be detected as betweenness centrality nodes. Our results demonstrate that properties of small-world connectivity could also recognize and quantify the characteristics of directed influence brain networks in PD.

  13. Philicities, Fugalities, and Equilibrium Constants.

    Science.gov (United States)

    Mayr, Herbert; Ofial, Armin R

    2016-05-17

    The mechanistic model of Organic Chemistry is based on relationships between rate and equilibrium constants. Thus, strong bases are generally considered to be good nucleophiles and poor nucleofuges. Exceptions to this rule have long been known, and the ability of iodide ions to catalyze nucleophilic substitutions, because they are good nucleophiles as well as good nucleofuges, is just a prominent example for exceptions from the general rule. In a reaction series, the Leffler-Hammond parameter α = δΔG(⧧)/δΔG° describes the fraction of the change in the Gibbs energy of reaction, which is reflected in the change of the Gibbs energy of activation. It has long been considered as a measure for the position of the transition state; thus, an α value close to 0 was associated with an early transition state, while an α value close to 1 was considered to be indicative of a late transition state. Bordwell's observation in 1969 that substituent variation in phenylnitromethanes has a larger effect on the rates of deprotonation than on the corresponding equilibrium constants (nitroalkane anomaly) triggered the breakdown of this interpretation. In the past, most systematic investigations of the relationships between rates and equilibria of organic reactions have dealt with proton transfer reactions, because only for few other reaction series complementary kinetic and thermodynamic data have been available. In this Account we report on a more general investigation of the relationships between Lewis basicities, nucleophilicities, and nucleofugalities as well as between Lewis acidities, electrophilicities, and electrofugalities. Definitions of these terms are summarized, and it is suggested to replace the hybrid terms "kinetic basicity" and "kinetic acidity" by "protophilicity" and "protofugality", respectively; in this way, the terms "acidity" and "basicity" are exclusively assigned to thermodynamic properties, while "philicity" and "fugality" refer to kinetics

  14. Detection of "punctuated equilibrium" by bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny.

    Science.gov (United States)

    Bokma, Folmer

    2008-11-01

    Algorithms are presented to simultaneously estimate probabilities of speciation and extinction, rates of anagenetic and cladogenetic phenotypic evolution, as well as ancestral character states, from a complete ultrametric species-level phylogeny with dates assigned to all bifurcations and one or more phenotypes in three or more extant species, using Metropolis-Hastings Markov Chain Monte Carlo sampling. The algorithms also estimate missing phenotypes of extant species and numbers of speciation events that occurred on all branches of the phylogeny. The algorithms are discussed and their performance is evaluated using simulated data. That evaluation shows that precise estimation of rates of evolution of one or a few phenotypes requires large phylogenies. Estimation accuracy improves with the number of species on the phylogeny.

  15. Computer simulations of equilibrium magnetization and microstructure in magnetic fluids

    Science.gov (United States)

    Rosa, A. P.; Abade, G. C.; Cunha, F. R.

    2017-09-01

    In this work, Monte Carlo and Brownian Dynamics simulations are developed to compute the equilibrium magnetization of a magnetic fluid under action of a homogeneous applied magnetic field. The particles are free of inertia and modeled as hard spheres with the same diameters. Two different periodic boundary conditions are implemented: the minimum image method and Ewald summation technique by replicating a finite number of particles throughout the suspension volume. A comparison of the equilibrium magnetization resulting from the minimum image approach and Ewald sums is performed by using Monte Carlo simulations. The Monte Carlo simulations with minimum image and lattice sums are used to investigate suspension microstructure by computing the important radial pair-distribution function go(r), which measures the probability density of finding a second particle at a distance r from a reference particle. This function provides relevant information on structure formation and its anisotropy through the suspension. The numerical results of go(r) are compared with theoretical predictions based on quite a different approach in the absence of the field and dipole-dipole interactions. A very good quantitative agreement is found for a particle volume fraction of 0.15, providing a validation of the present simulations. In general, the investigated suspensions are dominated by structures like dimmer and trimmer chains with trimmers having probability to form an order of magnitude lower than dimmers. Using Monte Carlo with lattice sums, the density distribution function g2(r) is also examined. Whenever this function is different from zero, it indicates structure-anisotropy in the suspension. The dependence of the equilibrium magnetization on the applied field, the magnetic particle volume fraction, and the magnitude of the dipole-dipole magnetic interactions for both boundary conditions are explored in this work. Results show that at dilute regimes and with moderate dipole

  16. 48 CFR 209.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Suspension. 209.407... OF DEFENSE ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 209.407 Suspension. ...

  17. Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the Fox and unified colored noise approximations

    Science.gov (United States)

    Wittmann, René; Maggi, C.; Sharma, A.; Scacchi, A.; Brader, J. M.; Marini Bettolo Marconi, U.

    2017-11-01

    The equations of motion of active systems can be modeled in terms of Ornstein–Uhlenbeck processes (OUPs) with appropriate correlators. For further theoretical studies, these should be approximated to yield a Markovian picture for the dynamics and a simplified steady-state condition. We perform a comparative study of the unified colored noise approximation (UCNA) and the approximation scheme by Fox recently employed within this context. We review the approximations necessary to define effective interaction potentials in the low-density limit and study the conditions for which these represent the behavior observed in two-body simulations for the OUPs model and active Brownian particles. The demonstrated limitations of the theory for potentials with a negative slope or curvature can be qualitatively corrected by a new empirical modification. In general, we find that in the presence of translational white noise the Fox approach is more accurate. Finally, we examine an alternative way to define a force-balance condition in the limit of small activity.

  18. Topologically protected modes in non-equilibrium stochastic systems

    Science.gov (United States)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2017-01-01

    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.

  19. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    Science.gov (United States)

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  20. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  1. Thermodynamic length for far-from-equilibrium quantum systems.

    Science.gov (United States)

    Deffner, Sebastian; Lutz, Eric

    2013-02-01

    We consider a closed quantum system initially at thermal equilibrium and driven by arbitrary external parameters. We derive a lower bound on the entropy production which we express in terms of the Bures angle between the nonequilibrium and the corresponding equilibrium state of the system. The Bures angle is an angle between mixed quantum states and defines a thermodynamic length valid arbitrarily far from equilibrium. As an illustration, we treat the case of a time-dependent harmonic oscillator for which we obtain analytic expressions for generic driving protocols.

  2. Napoleon Is in Equilibrium

    Science.gov (United States)

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  3. Beyond equilibrium climate sensitivity

    Science.gov (United States)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  4. Landscape and flux theory of non-equilibrium open economy

    Science.gov (United States)

    Zhang, Kun; Wang, Jin

    2017-09-01

    The economy is open and never in true equilibrium due to the exchanges with outside. However, most of the quantitative studies have been focused on the equilibrium economy. Despite of the recent efforts, it is still challenging to formulate a quantitative theory for uncovering the principles of non-equilibrium open economy. In this study, we developed a landscape and flux theory for non-equilibrium economy. We quantified the states of economy and identify the multi-stable states as the basins of attractions on the underlying landscape. We found the global driving force of the non-equilibrium economy is determined by both the underlying landscape gradient and the curl probability flux measuring the degree of non-equilibriumness through the detailed balance breaking. The non-equilibrium thermodynamics, the global stability, the optimal path and speed of the non-equilibrium economy can be formulated and quantified. In the conventional economy, the supply and demand usually has only one equilibrium. By considering nonlinear supply-demand dynamics, we found that both bi-stable states and limit cycle oscillations can emerge. By shifting the slope of demand curve, we can see how the bi-stability transforms to the limit cycle dynamics and vice versa. By parallel shifting the demand curve, we can also see how the monopoly, the competition, and the bistable monopoly and competition states emerge and transform to one other. We can also see how the mono-stable monopoly, the limit cycle and the mono-stable competition states emerge and transform to one another.

  5. An equilibrium and kinetic modeling

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... The Langmuir and Freundlich adsorption models fitted well with the equilibrium data of the process studied. ... followed the first order rate expression. Key words: Penicillin-G wastewater, Phanerochate chrysosporium, equilibrium, kinetic study. ... Ammonia-nitrogen (mg/l). 300 - 500. Total phosphate (mg/l).

  6. Group Contribution Methods for Phase Equilibrium Calculations.

    Science.gov (United States)

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  7. Emergent supersymmetry in local equilibrium systems

    Science.gov (United States)

    Gao, Ping; Liu, Hong

    2018-01-01

    Many physical processes we observe in nature involve variations of macroscopic quantities over spatial and temporal scales much larger than microscopic molecular collision scales and can be considered as in local thermal equilibrium. In this paper we show that any classical statistical system in local thermal equilibrium has an emergent supersymmetry at low energies. We use the framework of non-equilibrium effective field theory for quantum many-body systems defined on a closed time path contour and consider its classical limit. Unitarity of time evolution requires introducing anti-commuting degrees of freedom and BRST symmetry which survive in the classical limit. The local equilibrium is realized through a Z 2 dynamical KMS symmetry. We show that supersymmetry is equivalent to the combination of BRST and a specific consequence of the dynamical KMS symmetry, to which we refer as the special dynamical KMS condition. In particular, we prove a theorem stating that a system satisfying the special dynamical KMS condition is always supersymmetrizable. We discuss a number of examples explicitly, including model A for dynamical critical phenomena, a hydrodynamic theory of nonlinear diffusion, and fluctuating hydrodynamics for relativistic charged fluids.

  8. Ultracold atomic quantum gases far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Gasenzer, Thomas [Institut fuer Theoretische Physik, Ruprecht-Karls Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Berges, Juergen [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse, 64289 Darmstadt (Germany); Schmidt, Michael G. [Institut fuer Theoretische Physik, Ruprecht-Karls Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Seco, Marcos [Institut fuer Theoretische Physik, Ruprecht-Karls Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2007-03-15

    We calculate the time evolution of a far-from-equilibrium initial state of a non-relativistic ultracold Bose gas in one spatial dimension. The non-perturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory and off-shell effects that are not captured in mean-field theory.

  9. Ultracold atomic quantum gases far from equilibrium

    OpenAIRE

    Gasenzer, T.; Berges, J.; Schmidt, M G; Seco, M.

    2006-01-01

    We calculate the time evolution of a far-from-equilibrium initial state of a non-relativistic ultracold Bose gas in one spatial dimension. The non-perturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory and off-shell effects that are not captured in mean-field theory.

  10. Ionization equilibrium of hot hydrogen plasma

    CERN Document Server

    Potekhin, A Yu

    1996-01-01

    The hydrogen plasma is studied at temperatures T ~ 10^4 - 10^6 K using the free energy minimization method. A simple analytic free energy model is proposed which is accurate at densities up to 1 g/cc and yields convergent internal partition function of atoms. The occupation probability formalism is modified for solving the ionization equilibrium problem. The ionization degree and equation of state are calculated and compared with the results of other models.

  11. A Multiperiod Equilibrium Pricing Model

    Directory of Open Access Journals (Sweden)

    Minsuk Kwak

    2014-01-01

    Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.

  12. Highly conductive, printable pastes from capillary suspensions

    Science.gov (United States)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert

    2016-08-01

    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  13. 49 CFR 238.427 - Suspension system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Suspension system. 238.427 Section 238.427... Equipment § 238.427 Suspension system. (a) General requirements. (1) Suspension systems shall be designed to... equipment. (2) Passenger equipment shall meet the safety performance standards for suspension systems...

  14. 78 FR 57525 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-09-19

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  15. 48 CFR 2909.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Suspension. 2909.407... CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2909.407 Suspension. (a) The Senior... authorized to make an exception, regarding suspension by another agency suspending official under the...

  16. 14 CFR 1267.670 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Suspension. 1267.670 Section 1267.670... WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 1267.670 Suspension. Suspension means an action taken by a..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  17. 22 CFR 1008.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Suspension. 1008.670 Section 1008.670 Foreign... ASSISTANCE) Definitions § 1008.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  18. 2 CFR 182.670 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Suspension. 182.670 Section 182.670 Grants... Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a recipient from... guidance on nonprocurement debarment and suspension (2 CFR part 180, which implements Executive Orders...

  19. 40 CFR 36.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Suspension. 36.670 Section 36.670... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 36.670 Suspension. Suspension means... contracts (48 CFR part 9, subpart 9.4) and the common rule, Government-wide Debarment and Suspension...

  20. 78 FR 5734 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-01-28

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  1. 77 FR 53775 - Suspension of Community Eligibility

    Science.gov (United States)

    2012-09-04

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  2. 29 CFR 94.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Suspension. 94.670 Section 94.670 Labor Office of the... § 94.670 Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a... Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive Order 12689...

  3. 45 CFR 1173.670 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Suspension. 1173.670 Section 1173.670 Public... (FINANCIAL ASSISTANCE) Definitions § 1173.670 Suspension. Suspension means an action taken by a Federal..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  4. 45 CFR 1641.11 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Suspension. 1641.11 Section 1641.11 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION DEBARMENT, SUSPENSION AND REMOVAL OF RECIPIENT AUDITORS Suspension § 1641.11 Suspension. (a) IPAs suspended from providing audit...

  5. 77 FR 2646 - Suspension of Community Eligibility

    Science.gov (United States)

    2012-01-19

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  6. 31 CFR 19.1015 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Suspension. 19.1015 Section 19.1015 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 19.1015 Suspension. Suspension is an action taken by a suspending...

  7. 41 CFR 105-68.1015 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Suspension. 105-68.1015 Section 105-68.1015 Public Contracts and Property Management Federal Property Management Regulations...-GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 105-68.1015 Suspension. Suspension is an...

  8. 15 CFR 29.670 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Suspension. 29.670 Section 29.670... WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 29.670 Suspension. Suspension means an action taken by a..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  9. 13 CFR 147.670 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Suspension. 147.670 Section 147...-FREE WORKPLACE (NONPROCUREMENT) Definitions § 147.670 Suspension. Suspension means an action taken by a..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  10. 78 FR 2622 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-01-14

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  11. 10 CFR 607.670 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Suspension. 607.670 Section 607.670 Energy DEPARTMENT OF... ASSISTANCE) Definitions § 607.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  12. 76 FR 9666 - Suspension of Community Eligibility

    Science.gov (United States)

    2011-02-22

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  13. 29 CFR 1471.1015 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Suspension. 1471.1015 Section 1471.1015 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1471.1015 Suspension. Suspension is an action taken by a suspending...

  14. 22 CFR 133.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Suspension. 133.670 Section 133.670 Foreign... ASSISTANCE) Definitions § 133.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  15. 43 CFR 43.670 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Suspension. 43.670 Section 43.670 Public... WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 43.670 Suspension. Suspension means an action taken by a..., subpart 9.4) and 2 CFR part 180. Suspension of a recipient is a distinct and separate action from...

  16. 22 CFR 312.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Suspension. 312.670 Section 312.670 Foreign... § 312.670 Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a... Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive Order 12689...

  17. 34 CFR 84.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Suspension. 84.670 Section 84.670 Education Office of... ASSISTANCE) Definitions § 84.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  18. 77 FR 7537 - Suspension of Community Eligibility

    Science.gov (United States)

    2012-02-13

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  19. 19 CFR 146.82 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Suspension. 146.82 Section 146.82 Customs Duties U... (CONTINUED) FOREIGN TRADE ZONES Penalties; Suspension; Revocation § 146.82 Suspension. (a) For cause. The... for a period not to exceed 90 days. Upon order of the Board the suspension may be continued. If...

  20. 77 FR 24858 - Suspension of Community Eligibility

    Science.gov (United States)

    2012-04-26

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  1. 75 FR 5890 - Suspension of Community Eligibility

    Science.gov (United States)

    2010-02-05

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  2. 76 FR 39782 - Suspension of Community Eligibility

    Science.gov (United States)

    2011-07-07

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  3. 22 CFR 1509.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Suspension. 1509.670 Section 1509.670 Foreign... ASSISTANCE) Definitions § 1509.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  4. 22 CFR 210.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Suspension. 210.670 Section 210.670 Foreign... (FINANCIAL ASSISTANCE) Definitions § 210.670 Suspension. Suspension means an action taken by a Federal agency..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  5. 45 CFR 1206.1-4 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Suspension. 1206.1-4 Section 1206.1-4 Public... GRANTS AND CONTRACTS-SUSPENSION AND TERMINATION AND DENIAL OF APPLICATION FOR REFUNDING Suspension and Termination of Assistance § 1206.1-4 Suspension. (a) General. The responsible Corporation official may suspend...

  6. 31 CFR 20.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Suspension. 20.670 Section 20.670...-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 20.670 Suspension. Suspension means an action taken..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  7. 78 FR 68999 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-11-18

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  8. 29 CFR 1472.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Suspension. 1472.670 Section 1472.670 Labor Regulations... DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 1472.670 Suspension. Suspension means an... CFR part 9, subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement...

  9. 24 CFR 21.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Suspension. 21.670 Section 21.670... GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (GRANTS) Definitions § 21.670 Suspension. Suspension means an... CFR part 9, subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement...

  10. 77 FR 9856 - Suspension of Community Eligibility

    Science.gov (United States)

    2012-02-21

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  11. 49 CFR 32.670 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Suspension. 32.670 Section 32.670 Transportation... ASSISTANCE) Definitions § 32.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  12. 21 CFR 1405.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Suspension. 1405.670 Section 1405.670 Food and... (FINANCIAL ASSISTANCE) Definitions § 1405.670 Suspension. Suspension means an action taken by a Federal..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  13. 50 CFR 13.27 - Permit suspension.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Permit suspension. 13.27 Section 13.27... GENERAL PERMIT PROCEDURES Permit Administration § 13.27 Permit suspension. (a) Criteria for suspension... Government. Such suspension shall remain in effect until the issuing officer determines that the permittee...

  14. 45 CFR 1155.670 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Suspension. 1155.670 Section 1155.670 Public... ASSISTANCE) Definitions § 1155.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  15. 78 FR 57523 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-09-19

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  16. 5 CFR 919.1015 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Suspension. 919.1015 Section 919.1015 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 919.1015 Suspension. Suspension is an...

  17. 78 FR 2624 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-01-14

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  18. 76 FR 2596 - Suspension of Community Eligibility

    Science.gov (United States)

    2011-01-14

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  19. 75 FR 52861 - Suspension of Community Eligibility

    Science.gov (United States)

    2010-08-30

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  20. 28 CFR 83.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Suspension. 83.670 Section 83.670... WORKPLACE (GRANTS) Definitions § 83.670 Suspension. Suspension means an action taken by a Federal agency..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement), that...

  1. 39 CFR 957.27 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Suspension. 957.27 Section 957.27 Postal Service... SUSPENSION FROM CONTRACTING § 957.27 Suspension. (a) Any firm or individual suspended under chapter 3, section 7 of the Postal Service Purchasing Manual who believes that the suspension has not been in...

  2. 7 CFR 3021.670 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Suspension. 3021.670 Section 3021.670 Agriculture... Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a recipient from... Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive Order 12689...

  3. 76 FR 5284 - Suspension of Community Eligibility

    Science.gov (United States)

    2011-01-31

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  4. 78 FR 69001 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-11-18

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  5. 45 CFR 630.670 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Suspension. 630.670 Section 630.670 Public Welfare... DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 630.670 Suspension. Suspension means an action... CFR part 9, subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement...

  6. 20 CFR 439.670 - Suspension.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Suspension. 439.670 Section 439.670 Employees... ASSISTANCE) Definitions § 439.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive...

  7. 75 FR 9111 - Suspension of Community Eligibility

    Science.gov (United States)

    2010-03-01

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  8. 77 FR 63753 - Suspension of Community Eligibility

    Science.gov (United States)

    2012-10-17

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  9. 77 FR 2650 - Suspension of Community Eligibility

    Science.gov (United States)

    2012-01-19

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  10. 78 FR 5736 - Suspension of Community Eligibility

    Science.gov (United States)

    2013-01-28

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and a...

  11. Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.

    Science.gov (United States)

    He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming

    2018-02-28

    Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Toward a general psychological model of tension and suspense

    Science.gov (United States)

    Lehne, Moritz; Koelsch, Stefan

    2015-01-01

    Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena. PMID:25717309

  13. Non-equilibrium dynamics from RPMD and CMD

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C.; Miller, Thomas F.

    2016-11-01

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O (t4) and O (t1) , respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O (t5) and O (t2) , respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  14. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t4) and O(t1), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t5) and O(t2), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  15. Equilibrium and non-equilibrium effects in nucleus-nucleus collisions

    CERN Document Server

    Bravina, L V; Zabrodin, E E; Bass, S A; Belkacem, M; Bleicher, M; Brandstetter, M; Hofmann, M; Soff, S; Spieles, C; Weber, H; Stockerand, H; Greiner, W

    1999-01-01

    Local thermal and chemical equilibration is studied for central A+A collisions at 10.7-160 AGeV in the ultrarelativistic quantum molecular dynamics model (UrQMD). The UrQMD model exhibits strong deviations from local equilibrium at the high density hadron-string phase formed during the early stage of the collision. Equilibration of the hadron-resonance matter is established in the central cell of volume V=125 fm/sup 3/ at later stages, t>or=10 fm/c, of the resulting quasi-isentropic expansion. The thermodynamical functions in the cell and their time evolution are presented. Deviations of the UrQMD quasi-equilibrium state from the statistical mechanics equilibrium are found. They increase with energy per baryon and lead to a strong enhancement of the pion number density as compared to statistical mechanics estimates at SPS energies. (38 refs).

  16. "Point de suspension"

    CERN Multimedia

    2004-01-01

    CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This spectacle in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local population. There will be three performances for...

  17. "Point de suspension"

    CERN Multimedia

    2004-01-01

    CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This wondrous show in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local population. There will be three perfo...

  18. "Point de suspension"

    CERN Document Server

    2004-01-01

    http://www.cern.ch/cern50/ CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This wondrous show in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local pop...

  19. Equilibrium with arbitrary market structure

    DEFF Research Database (Denmark)

    Grodal, Birgit; Vind, Karl

    2005-01-01

    Fifty years ago Arrow [1] introduced contingent commodities and Debreu [4] observed that this reinterpretation of a commodity was enough to apply the existing general equilibrium theory to uncertainty and time. This interpretation of general equilibrium theory is the Arrow-Debreu model....... The complete market predicted by this theory is clearly unrealistic, and Radner [10] formulated and proved existence of equilibrium in a multiperiod model with incomplete markets. In this paper the Radner result is extended. Radner assumed a specific structure of markets, independence of preferences...

  20. Equilibrium-Based Nonhomogeneous Anisotropic Beam Element

    DEFF Research Database (Denmark)

    Krenk, Steen; Couturier, Philippe

    2017-01-01

    The stiffness matrix and the nodal forces associated with distributed loads are obtained for a nonhomogeneous anisotropic elastic beam element by the use of complementary energy. The element flexibility matrix is obtained by integrating the complementary-energy density corresponding to six beam...... equilibrium states, and then inverted and expanded to provide the element-stiffness matrix. Distributed element loads are represented via corresponding internal-force distributions in local equilibrium with the loads. The element formulation does not depend on assumed shape functions and can, in principle......, include any variation of cross-sectional properties and load variation, provided that these are integrated with sufficient accuracy in the process. The ability to represent variable cross-sectional properties, coupling from anisotropic materials, and distributed element loads is illustrated by numerical...

  1. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  2. Equilibrium and Orientation in Cephalopods.

    Science.gov (United States)

    Budelmann, Bernd-Ulrich

    1980-01-01

    Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)

  3. Fumed and Precipitated Hydrophilic Silica Suspension Gels in Mineral Oil: Stability and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Yoshiki Sugino

    2017-08-01

    Full Text Available Hydrophilic fumed silica (FS and precipitated silica (PS powders were suspended in mineral oil; increasing the silica volume fraction (φ in the suspension led to the formation of sol, pre-gel, and gel states. Gelation took place at lower φ values in the FS than the PS suspension because of the lower silanol density on the FS surface. The shear stresses and dynamic moduli of the FS and PS suspensions were measured as a function of φ. Plots of the apparent shear viscosity against shear rate depended on φ and the silica powder. The FS suspensions in the gel state exhibited shear thinning, followed by a weak shear thickening or by constant viscosity with an increasing shear rate. In contrast, the PS suspensions in the gel state showed shear thinning, irrespective of φ. The dynamic moduli of the pre-gel and gel states were dependent on the surface silanol density: at a fixed φ, the storage modulus G′ in the linear viscoelasticity region was larger for the FS than for the PS suspension. Beyond the linear region, the G′ of the PS suspensions showed strain hardening and the loss modulus G″ of the FS and PS suspensions exhibited weak strain overshoot.

  4. 46 CFR 550.507 - Postponement, discontinuance, or suspension of action.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Postponement, discontinuance, or suspension of action... FOREIGN TRADE OF THE UNITED STATES Proceedings § 550.507 Postponement, discontinuance, or suspension of... or suspend any or all such actions if the President informs the Commission that postponement...

  5. Educational Lynching: Critical Race Theory and the Suspension of Black Boys

    Science.gov (United States)

    Payne, Macheo

    2010-01-01

    Looking at the disproportionate suspension of African American, Black male students through the lens of critical race theory, this presents arguments from a CRT how the disproportionate suspension of Black male students is rooted in white supremacy and racist policy in the United States. Local recommendations are offered for Oakland Unified School…

  6. Suspension, Expulsion, and Achievement of English Learner Students in Six Oregon Districts. REL 2015-094

    Science.gov (United States)

    Burke, Arthur

    2015-01-01

    This study examines the rates of exclusionary discipline (i.e., suspensions and expulsions) among English learners and non-English learners in six diverse Oregon districts that serve a third of the state's English learner students. Using 2011/12 databases from the Oregon Department of Education, the study found that differences in suspension and…

  7. Non-Equilibrium Quantum Dissipation

    OpenAIRE

    Segal, Dvira; Reichman, David R.; Millis, Andrew J.

    2007-01-01

    Dissipative processes in non-equilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to ...

  8. Influence of 2'-deoxy sugar moiety on excited-state protonation equilibrium of adenine and adenosine with acridine inside SDS micelles: a time-resolved study with quantum chemical calculations.

    Science.gov (United States)

    Sarangi, Manas Kumar; Bhattacharyya, Dhananjay; Basu, Samita

    2012-02-01

    The protonation dynamics of the DNA base adenine (Ade) and its nucleoside 2'-deoxyadenosine (d-Ade) are investigated by monitoring the deprotonation kinetics of an N-heterocyclic DNA intercalator, acridine (Acr), in the confined environment of sodium dodecyl sulfate (SDS) micelles. Protonation of acridine (AcrH(+)) occurs at the hydrophilic interface and this species remains in dynamic equilibrium with its deprotonated counterpart (Acr) inside the hydrophobic core of SDS micelles. Quenching of the fluorescence of AcrH(+)* at 478 nm is observed after addition of Ade and d-Ade with Stern-Volmer constant (K(SV)) 298 and 75 M(-1), respectively, with a concomitant increment in Acr* at 425 nm. Time-resolved fluorescence studies reveal quenching in the lifetime of AcrH(+)*. The relative amplitude of AcrH(+)* decreases from 0.97 to 0.51 and 0.97 to 0.89 with equimolar addition of Ade and d-Ade, respectively. These observations are explained by excited-state proton transfer (ESPT) from AcrH(+)* to the bases. The reduced K(SV) value and negligible change in the relative amplitudes of AcrH(+)* with d-Ade infer that ESPT is hindered substantially by the presence of a 2'-deoxy sugar unit. Transient time-resolved absorption spectra of Acr reflect that Ade reduces the absorbance of (3)AcrH(+)*; however, d-Ade keeps it unaltered for more than a time delay of 2 μs. The optimized geometries calculated by quantum chemical methods reflect deprotonation of AcrH(+)* with protonation at the N1 position of Ade, while it remains protonated with d-Ade. The hindered ESPT between AcrH(+)* and d-Ade singles out the significance of the 2'-deoxy sugar moiety in controlling the deprotonation kinetics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Suspension biomechanics of swimming microbes.

    Science.gov (United States)

    Ishikawa, Takuji

    2009-10-06

    Micro-organisms play a vital role in many biological, medical and engineering phenomena. Some recent research efforts have demonstrated the importance of biomechanics in understanding certain aspects of micro-organism behaviours such as locomotion and collective motions of cells. In particular, spatio-temporal coherent structures found in a bacterial suspension have been the focus of many research studies over the last few years. Recent studies have shown that macroscopic properties of a suspension, such as rheology and diffusion, are strongly affected by meso-scale flow structures generated by swimming microbes. Since the meso-scale flow structures are strongly affected by the interactions between microbes, a bottom-up strategy, i.e. from a cellular level to a continuum suspension level, represents the natural approach to the study of a suspension of swimming microbes. In this paper, we first provide a summary of existing biomechanical research on interactions between a pair of swimming micro-organisms, as a two-body interaction is the simplest many-body interaction. We show that interactions between two nearby swimming micro-organisms are described well by existing mathematical models. Then, collective motions formed by a group of swimming micro-organisms are discussed. We show that some collective motions of micro-organisms, such as coherent structures of bacterial suspensions, are satisfactorily explained by fluid dynamics. Lastly, we discuss how macroscopic suspension properties are changed by the microscopic characteristics of the cell suspension. The fundamental knowledge we present will be useful in obtaining a better understanding of the behaviour of micro-organisms.

  10. Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension

    Science.gov (United States)

    Balike, K. P.; Rakheja, S.; Stiharu, I.

    2011-02-01

    Linear or nonlinear 2-degrees of freedom (DOF) quarter-car models have been widely used to study the conflicting dynamic performances of a vehicle suspension such as ride quality, road holding and rattle space requirements. Such models, however, cannot account for contributions due to suspension kinematics. Considering the proven simplicity and effectiveness of a quarter-car model for such analyses, this article presents the formulation of a comprehensive kineto-dynamic quarter-car model to study the kinematic and dynamic properties of a linkage suspension, and influences of linkage geometry on selected performance measures. An in-plane 2-DOF model was formulated incorporating the kinematics of a double wishbone suspension comprising an upper control arm, a lower control arm and a strut mounted on the lower control arm. The equivalent suspension and damping rates of the suspension model are analytically derived that could be employed in a conventional quarter-car model. The dynamic responses of the proposed model were evaluated under harmonic and bump/pothole excitations, idealised by positive/negative rounded pulse displacement and compared with those of the linear quarter-car model to illustrate the contributions due to suspension kinematics. The kineto-dynamic model revealed considerable variations in the wheel and damping rates, camber and wheel-track. Owing to the asymmetric kinematic behaviour of the suspension system, the dynamic responses of the kineto-dynamic model were observed to be considerably asymmetric about the equilibrium. The proposed kineto-dynamic model was subsequently applied to study the influences of links geometry in an attempt to seek reduced suspension lateral packaging space without compromising the kinematic and dynamic performances.

  11. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    Science.gov (United States)

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  12. A mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon tetrachloride mixtures: equilibrium hydrogen-bond structure and dynamics at the ground state and the infrared absorption spectrum.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2011-07-28

    We present a mixed quantum-classical molecular dynamics study of the structure and dynamics of the hydroxyl stretch in methanol/carbon tetrachloride mixtures. One of the methanol molecules is tagged, and its hydroxyl stretch is treated quantum-mechanically, while the remaining degrees of freedom are treated classically. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the corresponding adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are in turn affected by the quantum-mechanical state of the tagged hydroxyl stretch via the corresponding Hellmann-Feynman forces. The ability of five different force-field combinations to reproduce the experimental absorption infrared spectrum of the hydroxyl stretch is examined for different isotopomers and on a wide range of compositions. It is found that, in addition to accounting for the anharmonic nature of the hydroxyl stretch, one also has to employ polarizable force fields and account for the damping of the polarizability at short distances. The equilibrium ground-state hydrogen-bonding structure and dynamics is analyzed, and its signature on the absorption infrared spectrum of the hydroxyl stretch is investigated in detail. Five different hydroxyl stretch subpopulations are identified and spectrally assigned: monomers (α), hydrogen-bond acceptors (β), hydrogen-bond donors (γ), simultaneous hydrogen-bond donors and acceptors (δ), and simultaneous hydrogen-bond donors and double-acceptors (ε). The fundamental transition frequencies of the α and β subpopulations are found to be narrowly distributed and to overlap, thereby giving rise to a single narrow band whose intensity is significantly diminished by rotational relaxation. The fundamental transition frequency distributions of the γ, δ, and ε subpopulations are found to be

  13. Microstructural description of shear-thickening suspensions

    Directory of Open Access Journals (Sweden)

    Singh Abhinendra

    2017-01-01

    Full Text Available Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional and non-thickened (lubricated, frictionless states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.

  14. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  15. Exploring the Gap between Perfect Bayesian Equilibrium and Sequential Equilibrium

    Directory of Open Access Journals (Sweden)

    Giacomo Bonanno

    2016-11-01

    Full Text Available In (Bonanno, 2013, a solution concept for extensive-form games, called perfect Bayesian equilibrium (PBE, was introduced and shown to be a strict refinement of subgame-perfect equilibrium; it was also shown that, in turn, sequential equilibrium (SE is a strict refinement of PBE. In (Bonanno, 2016, the notion of PBE was used to provide a characterization of SE in terms of a strengthening of the two defining components of PBE (besides sequential rationality, namely AGM consistency and Bayes consistency. In this paper we explore the gap between PBE and SE by identifying solution concepts that lie strictly between PBE and SE; these solution concepts embody a notion of “conservative” belief revision. Furthermore, we provide a method for determining if a plausibility order on the set of histories is choice measurable, which is a necessary condition for a PBE to be a SE.

  16. Three-body correlations and conditional forces in suspensions of active hard disks

    Science.gov (United States)

    Härtel, Andreas; Richard, David; Speck, Thomas

    2018-01-01

    Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.

  17. New theory of superfluidity. Method of equilibrium density matrix

    CERN Document Server

    Bondarev, Boris

    2014-01-01

    The variational theory of equilibrium boson system state to have been previously developed by the author under the density matrix formalism is applicable for researching equilibrium states and thermodynamic properties of the quantum Bose gas which consists of zero-spin particles. Particle pulse distribution function is obtained and duly employed for calculation of chemical potential, internal energy and gas capacity temperature dependences. It is found that specific phase transition, which is similar to transition of liquid helium to its superfluid state, occurs at the temperature exceeding that of the Bose condensation.

  18. Fixed Points in Grassmannians with Applications to Economic Equilibrium

    DEFF Research Database (Denmark)

    Keiding, Hans

    2017-01-01

    In some applications of equilibrium theory, the fixed point involves not only a state and a value of a parameter in the dual of the state space, but also a particular subspace of the state space. Since the set of all subspaces of a finite-dimensional Euclidean space has a structure which does...... not allow immediate application of fixed point theorems, the problem must be reformulated using a suitable parametrization of subspaces. One such parametrization, the Plücker coordinates, is used here to prove a general equilibrium existence theorem. Applications to economic problems involving hierarchies...... of consumers or incomplete markets with real assets are outlined....

  19. 37 CFR 2.117 - Suspension of proceedings.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Suspension of proceedings. 2.117 Section 2.117 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Procedure in Inter Partes Proceedings § 2.117...

  20. Digital Control Analysis and Design of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2015-03-01

    Full Text Available Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  1. Digital control analysis and design of a field-sensed magnetic suspension system.

    Science.gov (United States)

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-03-13

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  2. Local Equilibrium and Retardation Revisited.

    Science.gov (United States)

    Hansen, Scott K; Vesselinov, Velimir V

    2018-01-01

    In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Equilibrium Phase Behavior of the Square-Well Linear Microphase-Forming Model.

    Science.gov (United States)

    Zhuang, Yuan; Charbonneau, Patrick

    2016-07-07

    We have recently developed a simulation approach to calculate the equilibrium phase diagram of particle-based microphase formers. Here, this approach is used to calculate the phase behavior of the square-well linear model for different strengths and ranges of the linear long-range repulsive component. The results are compared with various theoretical predictions for microphase formation. The analysis further allows us to better understand the mechanism for microphase formation in colloidal suspensions.

  4. Statistical mechanics of red blood cell aggregation: The distribution of rouleaux in thermal equilibrium

    OpenAIRE

    Wiegel, F.W.; Perelson, Alan S.

    1982-01-01

    When placed in suspension red blood cells adhere face-to-face and form long, cylindrical, and sometimes branched structures called rouleaux. We use methods developed in statistical mechanics to compute various statistical properties describing the size and shape of rouleaux in thermodynamic equilibrium. This leads to analytical expressions for (1) the average number of rouleaux consisting ofn cells and havingm branch points; (2) the average number of cells per rouleau; (3) the average number ...

  5. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  6. Solution or suspension - Does it matter for lipid based systems?

    DEFF Research Database (Denmark)

    Larsen, A T; Holm, R; Müllertz, A

    2017-01-01

    In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS...... or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability...

  7. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  8. The Approach to Equilibrium: Detailed Balance and the Master Equation

    Science.gov (United States)

    Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.

    2011-01-01

    The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…

  9. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    Science.gov (United States)

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  10. Chemical Principles Revisited: Using the Equilibrium Concept.

    Science.gov (United States)

    Mickey, Charles D., Ed.

    1981-01-01

    Discusses the concept of equilibrium in chemical systems, particularly in relation to predicting the position of equilibrium, predicting spontaneity of a reaction, quantitative applications of the equilibrium constant, heterogeneous equilibrium, determination of the solubility product constant, common-ion effect, and dissolution of precipitates.…

  11. The Equilibrium Rule--A Personal Discovery

    Science.gov (United States)

    Hewitt, Paul G.

    2016-01-01

    Examples of equilibrium are evident everywhere and the equilibrium rule provides a reasoned way to view all things, whether in static (balancing rocks, steel beams in building construction) or dynamic (airplanes, bowling balls) equilibrium. Interestingly, the equilibrium rule applies not just to objects at rest but whenever any object or system of…

  12. Steady-State Equilibrium Phase Inversion Recovery ON-resonant Water Suppression (IRON) Magnetic Resonance Angiography in Conjunction with Superparamagnetic Nanoparticles. A Robust Technique for Imaging within a Wide Range of Contrast Agent Dosages

    Science.gov (United States)

    Gitsioudis, Gitsios; Stuber, Matthias; Arend, Ingolf; Thomas, Moritz; Yu, Jing; Hilbel, Thomas; Giannitsis, Evangelos; Katus, Hugo A.; Korosoglou, Grigorios

    2012-01-01

    Objectives To investigate the ability of inversion recovery ON-resonant water suppression (IRON) in conjunction with P904 (superparamagnetic nanoparticles which consisting of a maghemite core coated with a low-molecular-weight amino-alcohol derivative of glucose) to perform steady-state equilibrium phase magnetic resonance angiography (MRA) over a wide dose range. Materials and Methods Experiments were approved by the institutional animal care committee. Rabbits (n=12) were imaged at baseline and serially after the administration of 10 incremental dosages of 0.57–5.7 mgFe/Kg P904. Conventional T1-weighted and IRON MRA were obtained on a clinical 1.5-T scanner to image the thoracic and abdominal aorta, and peripheral vessels. Contrast-to-noise ratios (CNR) and vessel sharpness were quantified. Results Using IRON MRA, CNR and vessel sharpness progressively increased with incremental dosages of the contrast agent P904, exhibiting constantly higher contrast values than T1-weighted MRA over a very wide range of contrast agent doses (CNR of 18.8±5.6 for IRON versus 11.1±2.8 for T1-weighted MRA at 1.71 mgFe/kg, p=0.02 and 19.8±5.9 for IRON versus −0.8±1.4 for T1-weighted MRA at 3.99 mgFe/kg, p=0.0002). Similar results were obtained for vessel sharpness in peripheral vessels, (Vessel sharpness of 46.76±6.48% for IRON versus 33.20±3.53% for T1-weighted MRA at 1.71 mgFe/Kg, p=0.002, and of 48.66±5.50% for IRON versus 19.00±7.41% for T1-weighted MRA at 3.99 mgFe/Kg, p=0.003). Conclusion Our study suggests that quantitative CNR and vessel sharpness after the injection of P904 are consistently higher for IRON MRA when compared to conventional T1-weighted MRA. These findings apply for a wide range of contrast agent dosages. PMID:23418107

  13. Nash equilibrium with lower probabilities

    DEFF Research Database (Denmark)

    Groes, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte

    1998-01-01

    We generalize the concept of Nash equilibrium in mixed strategies for strategic form games to allow for ambiguity in the players' expectations. In contrast to other contributions, we model ambiguity by means of so-called lower probability measures or belief functions, which makes it possible...... to distinguish between a player's assessment of ambiguity and his attitude towards ambiguity. We also generalize the concept of trembling hand perfect equilibrium. Finally, we demonstrate that for certain attitudes towards ambiguity it is possible to explain cooperation in the one-shot Prisoner's Dilemma...

  14. A non-equilibrium extension of quantum gravity

    CERN Document Server

    Mandrin, Pierre A

    2016-01-01

    A variety of quantum gravity models (including spin foams) can be described using a path integral formulation. A path integral has a well-known statistical mechanical interpretation in connection with a canonical ensemble. In this sense, a path integral describes the thermodynamic equilibrium of a local system in a thermal bath. This interpretation is in contrast to solutions of Einstein's Equations which depart from local thermodynamical equilibrium (one example is shown explicitly). For this reason, we examine an extension of the path integral model to a (locally) non-equilibrium description. As a non-equilibrium description, we propose to use a global microcanonical ensemble with constraints. The constraints reduce the set of admissible microscopic states to be consistent with the macroscopic geometry. We also analyse the relation between the microcanonical description and a statistical approach not based on dynamical assumptions which has been proposed recently. This analysis is of interest for the test o...

  15. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  16. Dynamical evolution of quantum oscillators toward equilibrium.

    Science.gov (United States)

    Usha Devi, A R; Rajagopal, A K

    2009-07-01

    A pure quantum state of large number N of oscillators, interacting via harmonic coupling, evolves such that any small subsystem nstate approaches equilibrium. This provides a different example where stability emerges as natural phenomena under quantum dynamics alone, with no necessity to bring in any additional statistical postulates. Mixing of equilibrated subsystems consisting of 1,2,...,nstate, i.e., the bath. Every single mode oscillator is found to relax in a mixed density matrix of the Boltzmann canonical form. In two oscillator stationary subsystems, intraentanglement within the "system" oscillators is found to exist when the magnitude of the squeezing parameter of the bath is comparable in magnitude with that of the coupling strength.

  17. Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2012-01-01

    This paper is the second of two papers, describing probe measurements of deposit buildup and removal (shedding), conducted in a 350 MWth suspension-fired boiler, firing straw and wood. Investigations of deposit buildup and shedding have been made by use of an advanced online deposit probe and a s...

  18. Rotational diffusion in dense suspensions

    NARCIS (Netherlands)

    Hagen, M. H. J.; Frenkel, D.; Lowe, C.P.

    1999-01-01

    We have computed the rotational diffusion coefficient for a suspension of hard spheres. We find excellent agreement with experimental results over a density range up to, and including, the colloidal crystal. However, we find that theories derived to second order in the volume fraction overestimate

  19. Transmission function of pneumatic suspension

    OpenAIRE

    Turenko, A.; Bogomolov, V.; Klimenko, V.; Shilov, A.

    2006-01-01

    The transmission function of pneumatic suspension at assumption, that walls of pneumatic elastic element is absolute not stretched; the rubber buffers of compression and of retreat are absent; description of shock absorber is linear and symmetric; the processes of compression and expansion of air are adiabatic; motion of the oscillating system carry out without separation of wheel from a road is received.

  20. 49 CFR 570.61 - Suspension system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension system. 570.61 Section 570.61 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.61 Suspension system. (a) Suspension condition. Ball joint seals shall not be cut...

  1. 49 CFR 570.8 - Suspension systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension systems. 570.8 Section 570.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.8 Suspension systems. (a) Suspension condition. Ball joint seals shall not be cut or...

  2. 49 CFR 393.207 - Suspension systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Suspension systems. 393.207 Section 393.207... NECESSARY FOR SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393.207 Suspension systems. (a) Axles. No axle positioning part shall be cracked, broken, loose or missing...

  3. 48 CFR 2509.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 2509.407 Section 2509.407 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2509.407 Suspension. ...

  4. 32 CFR 26.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Suspension. 26.670 Section 26.670 National... GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 26.670 Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a recipient from...

  5. 41 CFR 105-74.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Suspension. 105-74.670...-GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 105-74.670 Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a recipient from...

  6. 25 CFR 558.5 - License suspension.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false License suspension. 558.5 Section 558.5 Indians NATIONAL... MANAGEMENT OFFICIALS § 558.5 License suspension. (a) If, after the issuance of a gaming license, the... tribe shall suspend such license and shall notify in writing the licensee of the suspension and the...

  7. 48 CFR 1309.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 1309.407 Section 1309.407 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1309.407 Suspension. ...

  8. 36 CFR 1212.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Suspension. 1212.670 Section... GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 1212.670 Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a recipient from...

  9. 25 CFR 23.52 - Grant suspension.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Grant suspension. 23.52 Section 23.52 Indians BUREAU OF... Grant Administration Provisions and Requirements § 23.52 Grant suspension. (a) When a grantee has... assistance, suspend the grant. The notice preceding the suspension shall include the effective date of the...

  10. 32 CFR 552.80 - Suspension period.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Suspension period. 552.80 Section 552.80 National... Suspension period. All solicitation privileges suspended by installation commanders will be for a specific time. Normally, it will not exceed 2 years. When the suspension period expires, the agent may reapply...

  11. 48 CFR 509.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 509.407 Section 509.407 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 509.407 Suspension. ...

  12. 7 CFR 3015.123 - Suspension.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Suspension. 3015.123 Section 3015.123 Agriculture... AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Grant and Subgrant Closeout, Suspension and Termination § 3015.123 Suspension. (a) When a recipient has materially failed to comply with the provisions...

  13. 21 CFR 520.1806 - Piperazine suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine suspension. 520.1806 Section 520.1806... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1806 Piperazine suspension. (a) Specifications. Each milliliter of suspension contains piperazine monohydrochloride equivalent to...

  14. 48 CFR 9.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Suspension. 9.407 Section 9.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 9.407 Suspension. ...

  15. 48 CFR 909.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 909.407 Section 909.407 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 909.407 Suspension. ...

  16. 48 CFR 809.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 809.407 Section 809.407 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 809.407 Suspension. ...

  17. 48 CFR 1509.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 1509.407 Section 1509.407 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 1509.407 Suspension. ...

  18. 21 CFR 522.1289 - Lufenuron suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lufenuron suspension. 522.1289 Section 522.1289 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Lufenuron suspension. (a) Specifications. Each milliliter of sterile aqueous suspension contains 10...

  19. 32 CFR 776.82 - Interim suspension.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Interim suspension. 776.82 Section 776.82... Complaint Processing Procedures § 776.82 Interim suspension. (a) Where the Rules Counsel determines there is... interim suspension, pending completion of a professional responsibility investigation. The covered...

  20. 48 CFR 409.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 409.407 Section 409.407 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension and Ineligibility 409.407 Suspension. ...

  1. 48 CFR 2009.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Suspension. 2009.407 Section 2009.407 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 2009.407 Suspension. ...

  2. 75 FR 24494 - Nonprocurement Debarment and Suspension

    Science.gov (United States)

    2010-05-05

    ...; ] ELECTION ASSISTANCE COMMISSION 2 CFR Chapter 58 Nonprocurement Debarment and Suspension AGENCY: U.S... proposed debarment and suspension regulations. These proposed regulations will apply to nonprocurement... Management and Budget (OMB) in a document on nonprocurement debarment and suspension published in the Federal...

  3. 21 CFR 520.1630 - Oxfendazole suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxfendazole suspension. 520.1630 Section 520.1630... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1630 Oxfendazole suspension. (a) Specifications. Each milliliter of suspension contains: (1) 90.6 milligrams (mg) oxfendazole (9...

  4. 32 CFR 552.79 - Suspension action.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Suspension action. 552.79 Section 552.79 National... Suspension action. (a) When suspended for cause, immediately notify the company and the agent, in writing, of the reason. When the installation commander determines that suspension should be extended throughout...

  5. 36 CFR 223.141 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Suspension. 223.141 Section... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Suspension and Debarment of Timber Purchasers § 223.141 Suspension. (a) The suspending official may, in the public interest, suspend a purchaser on the basis of...

  6. 22 CFR 127.8 - Interim suspension.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Interim suspension. 127.8 Section 127.8 Foreign... Interim suspension. (a) The Managing Director of the Directorate of Defense Trade Controls or the Director of the Office of Defense Trade Controls Compliance is authorized to order the interim suspension of...

  7. 38 CFR 48.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Suspension. 48.670...) GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 48.670 Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a recipient from...

  8. 48 CFR 309.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Suspension. 309.407 Section 309.407 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 309.407 Suspension. ...

  9. 48 CFR 1409.407 - Suspension.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Suspension. 1409.407 Section 1409.407 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 1409.407 Suspension. ...

  10. Equilibrium reconstruction for Single Helical Axis reversed field pinch plasmas

    CERN Document Server

    Martines, Emilio; Momo, Barbara; Terranova, David; Zanca, Paolo; Alfier, Alberto; Bonomo, Federica; Canton, Alessandra; Fassina, Alessandro; Franz, Paolo; Innocente, Paolo

    2011-01-01

    Single Helical Axis (SHAx) configurations are emerging as the natural state for high current reversed field pinch (RFP) plasmas. These states feature the presence of transport barriers in the core plasma. Here we present a method for computing the equilibrium magnetic surfaces for these states in the force-free approximation, which has been implemented in the SHEq code. The method is based on the superposition of a zeroth order axisymmetric equilibrium and of a first order helical perturbation computed according to Newcomb's equation supplemented with edge magnetic field measurements. The mapping of the measured electron temperature profiles, soft X-ray emission and interferometric density measurements on the computed magnetic surfaces demonstrates the quality of the equilibrium reconstruction. The procedure for computing flux surface averages is illustrated, and applied to the evaluation of the thermal conductivity profile. The consistency of the evaluated equilibria with Ohm's law is also discussed.

  11. Equilibrium reconstruction for single helical axis reversed field pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Martines, E; Lorenzini, R; Momo, B; Terranova, D; Zanca, P; Alfier, A; Bonomo, F; Canton, A; Fassina, A; Franz, P; Innocente, P, E-mail: emilio.martines@igi.cnr.it [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, corso Stati Uniti 4, 35127 Padova (Italy)

    2011-03-15

    Single helical axis configurations are emerging as the natural state for high-current reversed field pinch plasmas. These states feature the presence of transport barriers in the core plasma. Here we present a method for computing the equilibrium magnetic surfaces for these states in the force-free approximation, which has been implemented in the SHEq code. The method is based on the superposition of a zeroth-order axisymmetric equilibrium and of a first-order helical perturbation computed according to Newcomb's equation supplemented with edge magnetic field measurements. The mapping of the measured electron temperature profiles, soft x-ray emission and interferometric density measurements on the computed magnetic surfaces demonstrates the quality of the equilibrium reconstruction. The procedure for computing flux surface averages is illustrated, and applied to the evaluation of the thermal conductivity profile. The consistency of the evaluated equilibria with Ohm's law is also discussed.

  12. Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel

    Science.gov (United States)

    Karthick, S.; Sen, A. K.

    2017-11-01

    We provide improved understanding of acoustophoretic focusing of a dense suspension (volume fraction φ >10 % ) in a microchannel subjected to an acoustic standing wave using a proposed theoretical model and experiments. The model is based on the theory of interacting continua and utilizes a momentum transport equation for the mixture, continuity equation, and transport equation for the solid phase. The model demonstrates the interplay between acoustic radiation and shear-induced diffusion (SID) forces that is critical in the focusing of dense suspensions. The shear-induced particle migration model of Leighton and Acrivos, coupled with the acoustic radiation force, is employed to simulate the continuum behavior of particles. In the literature, various closures for the diffusion coefficient Dφ* are available for rigid spheres at high concentrations and nonspherical deformable particles [e.g., red blood cells (RBCs)] at low concentrations. Here we propose a closure for Dφ* for dense suspension of RBCs and validate the proposed model with experimental data. While the available closures for Dφ* fail to predict the acoustic focusing of a dense suspension of nonspherical deformable particles like RBCs, the predictions of the proposed model match experimental data within 15%. Both the model and experiments reveal a competition between acoustic radiation and SID forces that gives rise to an equilibrium width w* of a focused stream of particles at some distance Leq* along the flow direction. Using different shear rates, acoustic energy densities, and particle concentrations, we show that the equilibrium width is governed by Péclet number Pe and Strouhal number Stas w*=1.4(PeSt) -0.5 while the length required to obtain the equilibrium-focused width depends on St as Leq*=3.8 /(St)0.6 . The proposed model and correlations would find significance in the design of microchannels for acoustic focusing of dense suspensions such as undiluted blood.

  13. 77 FR 37549 - Suspension of Limitations Under the Jerusalem Embassy Act

    Science.gov (United States)

    2012-06-22

    ... Suspension of Limitations Under the Jerusalem Embassy Act Memorandum for the Secretary of State Pursuant to..., including section 7(a) of the Jerusalem Embassy Act of 1995 (Public Law 104-45) (the ``Act''), I hereby...

  14. 75 FR 33489 - Suspension of Limitations Under the Jerusalem Embassy Act

    Science.gov (United States)

    2010-06-14

    ... Suspension of Limitations Under the Jerusalem Embassy Act Memorandum for the Secretary of State Pursuant to..., including section 7(a) of the Jerusalem Embassy Act of 1995 (Public Law 104-45) (the ``Act''), I hereby...

  15. 76 FR 1333 - Suspension of Limitations Under the Jerusalem Embassy Act

    Science.gov (United States)

    2011-01-10

    ..., 2010 Suspension of Limitations Under the Jerusalem Embassy Act Memorandum for the Secretary of State..., including section 7(a) of the Jerusalem Embassy Act of 1995 (Public Law 104-45) (the ``Act''), I hereby...

  16. Game Theory-Nash Equilibrium

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 7. Game Theory - Nash Equilibrium. P G Babu. General Article Volume 3 Issue 7 July 1998 pp 53- ... Author Affiliations. P G Babu1. Indira Gandhi Institute of Development Research Gen. A K Vaidya Marg Goregaon(East) Mumbai 400 065, India.

  17. Understanding Thermal Equilibrium through Activities

    Science.gov (United States)

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  18. Equilibrium theory : A salient approach

    NARCIS (Netherlands)

    Schalk, S.

    1999-01-01

    Whereas the neoclassical models in General Equilibrium Theory focus on the existence of separate commodities, this thesis regards 'bundles of trade' as the unit objects of exchange. Apart from commodities and commodity bundles in the neoclassical sense, the term `bundle of trade' includes, for

  19. Incentives in Supply Function Equilibrium

    DEFF Research Database (Denmark)

    Vetter, Henrik

    2014-01-01

    The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...

  20. Risk premia in general equilibrium

    DEFF Research Database (Denmark)

    Posch, Olaf

    solutions of dynamic stochastic general equilibrium models, including a novel solution with endogenous labor supply, to obtain closed-form expressions for the risk premium in production economies. We find that the curvature of the policy functions affects the risk premium through controlling the individual...

  1. Equilibrium and shot noise in mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.

    1994-10-01

    Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.

  2. Flow of colloidal suspensions through small orifices

    Science.gov (United States)

    Hidalgo, R. C.; Goñi-Arana, A.; Hernández-Puerta, A.; Pagonabarraga, I.

    2018-01-01

    In this work, we numerically study a dense colloidal suspension flowing through a small outlet driven by a pressure drop using lattice-Boltzmann methods. This system shows intermittent flow regimes that precede clogging events. Several pieces of evidence suggest that the temperature controls the dynamic state of the system when the driving force and the aperture size are fixed. When the temperature is low, the suspension's flow can be interrupted during long time periods, which can be even two orders of magnitude larger than the system's characteristic time (Stokes). We also find that strong thermal noise does not allow the formation of stable aggregate structures avoiding extreme clogging events, but, at the same time, it randomizes the particle trajectories and disturbs the advective particle flow through the aperture. Moreover, examining the particle velocity statistics, we obtain that in the plane normal to the pressure drop the colloids always move as free particles regardless of the temperature value. In the pressure drop direction, at high temperature the colloids experience a simple balance between advective and diffusive transport, but at low temperature the nature of the flow is much more complex, correlating with the occurrence of very long clogging events.

  3. Standardisation of magnetic nanoparticles in liquid suspension

    Science.gov (United States)

    Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K.; Southern, Paul; Pankhurst, Quentin; Johansson, Christer

    2017-09-01

    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way.

  4. Suspensions with reduced violin string modes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B H; Ju, L; Blair, D G [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-03-02

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz.

  5. The equilibrium model of relationship maintenance.

    Science.gov (United States)

    Murray, Sandra L; Holmes, John G; Griffin, Dale W; Derrick, Jaye L

    2015-01-01

    A new equilibrium model of relationship maintenance is proposed. People can protect relationship bonds by practicing 3 threat-mitigation rules: Trying to accommodate when a partner is hurtful, ensuring mutual dependence, and resisting devaluing a partner who impedes one's personal goals. A longitudinal study of newlyweds revealed evidence for the equilibrium model, such that relationship well-being (as indexed by satisfaction and commitment) declining from its usual state predicted increased threat-mitigation; in turn, increasing threat mitigation from its usual state predicted increased relationship well-being. Longitudinal findings further revealed adaptive advantages to uncertain trust. First, the match between trust and partner-risk predicted the trajectory of threat mitigation over time. People who hesitated to trust a high-risk partner became more likely to mitigate threats over 3 years, but people who hesitated to trust a safe partner became less likely to mitigate threats. The match between threat mitigation and partner-risk also predicted when being less trusting eroded later relationship well-being. Namely, when women paired with high-risk partners became more likely to mitigate threats, being less trusting at marriage lost its capacity to erode later relationship well-being. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  6. Static Output-Feedback Control for Vehicle Suspensions: A Single-Step Linear Matrix Inequality Approach

    Directory of Open Access Journals (Sweden)

    Josep Rubió-Massegú

    2013-01-01

    Full Text Available In this paper, a new strategy to design static output-feedback controllers for a class of vehicle suspension systems is presented. A theoretical background on recent advances in output-feedback control is first provided, which makes possible an effective synthesis of static output-feedback controllers by solving a single linear matrix inequality optimization problem. Next, a simplified model of a quarter-car suspension system is proposed, taking the ride comfort, suspension stroke, road holding ability, and control effort as the main performance criteria in the vehicle suspension design. The new approach is then used to design a static output-feedback H∞ controller that only uses the suspension deflection and the sprung mass velocity as feedback information. Numerical simulations indicate that, despite the restricted feedback information, this static output-feedback H∞ controller exhibits an excellent behavior in terms of both frequency and time responses, when compared with the corresponding state-feedback H∞ controller.

  7. Effective viscosity of actively swimming algae suspensions

    Science.gov (United States)

    Ewoldt, Randy; Caretta, Lucas; Chengala, Anwar; Sheng, Jian

    2010-11-01

    Suspensions of actively swimming microorganisms exhibit an effective viscosity which may depend on volume fraction, cell shape, and the nature of locomotion (e.g. "pushers" vs. "pullers"). Here we report experimental measurements of shear viscosity for suspensions of unicellular green algae (Dunaliella primolecta, a biflagellated "puller"). We use a cone-and-plate rheometer to measure the dynamic shear viscosity for both motile and non-motile suspensions of D. primolecta. Viscosity increases with concentration for both cases, but the active suspensions of "pullers" have a comparatively lower effective viscosity than passive suspensions. This observation contrasts recently proposed theories which predict that "pullers" should instead have a higher viscosity than non-motile suspensions. Additionally, we observe shear-induced migration of active suspensions and consider its impact on the resulting effective shear viscosity.

  8. Stochastic thermodynamics of quantum maps with and without equilibrium.

    Science.gov (United States)

    Barra, Felipe; Lledó, Cristóbal

    2017-11-01

    We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.

  9. Stochastic thermodynamics of quantum maps with and without equilibrium

    Science.gov (United States)

    Barra, Felipe; Lledó, Cristóbal

    2017-11-01

    We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.

  10. New phenomena in non-equilibrium quantum physics

    Science.gov (United States)

    Kitagawa, Takuya

    From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.

  11. Equilibrium and Non-Equilibrium Condensation Phenomena in Tuneable 3D and 2D Bose Gases

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0009 Equilibrium and non- equilibrium condensation phenomena in tuneable 3D and 2D Bose gases Zoran Hadzibabic THE CHANCELLOR...31-Aug-2015 4. TITLE AND SUBTITLE Equilibrium and non- equilibrium condensation phenomena in tuneable 3D and 2D Bose gases 5a. CONTRACT NUMBER... equilibrium and non- equilibrium many-body phenomena, trapping ultracold atomic gases in different geometries including both 3 and 2 spatial dimensions

  12. Approach to thermal equilibrium of macroscopic quantum systems.

    Science.gov (United States)

    Goldstein, Sheldon; Lebowitz, Joel L; Mastrodonato, Christian; Tumulka, Roderich; Zanghi, Nino

    2010-01-01

    We consider an isolated macroscopic quantum system. Let H be a microcanonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+deltaE . The thermal equilibrium macrostate at energy E corresponds to a subspace H(eq) of H such that dim H(eq)/dim H is close to 1. We say that a system with state vector psi is the element of H is in thermal equilibrium if psi is "close" to H(eq). We show that for "typical" Hamiltonians with given eigenvalues, all initial state vectors psi(0) evolve in such a way that psi(t) is in thermal equilibrium for most times t. This result is closely related to von Neumann's quantum ergodic theorem of 1929.

  13. Protonation Equilibrium of Linear Homopolyacids

    Directory of Open Access Journals (Sweden)

    Požar J.

    2015-07-01

    Full Text Available The paper presents a short summary of investigations dealing with protonation equilibrium of linear homopolyacids, in particularly those of high charge density. Apart from the review of experimental results which can be found in the literature, a brief description of theoretical models used in processing the dependence of protonation constants on monomer dissociation degree and ionic strength is given (cylindrical model based on Poisson-Boltzmann equation, cylindrical Stern model, the models according to Ising, Högfeldt, Mandel and Katchalsky. The applicability of these models regarding the polyion charge density, electrolyte concentration and counterion type is discussed. The results of Monte Carlo simulations of protonation equilibrium are also briefly mentioned. In addition, frequently encountered errors connected with calibration of of glass electrode and the related unreliability of determined protonation constants are pointed out.

  14. Robust Tensioned Kevlar Suspension Design

    Science.gov (United States)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  15. Particle Suspension Mechanisms - Supplemental Material

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  16. Dynamics of magnetic nanoparticle suspensions

    OpenAIRE

    Singh, Vanchna; Banerjee, Varsha; Sharma, Manish

    2012-01-01

    We study the dynamics of a suspension of magnetic nanoparticles. Their relaxation times are strongly size-dependent. The dominant mode of relaxation is also governed by the size of the particles. As a result the dynamics is greatly altered due to polydispersity in the sample. We study the effect of polydispersity on the response functions. These exhibit significant changes as the parameters characterizing polydispersity are varied. We also provide a procedure to extract the particle size dist...

  17. Nash Equilibrium in Social Media

    OpenAIRE

    Salehisadaghiani, Farzad

    2017-01-01

    In this work, we investigate an application of a Nash equilibrium seeking algorithm in a social network. In a networked game each player (user) takes action in response to other players' actions in order to decrease (increase) his cost (profit) in the network. We assume that the players' cost functions are not necessarily dependent on the actions of all players. This is due to better mimicking the standard social media rules. A communication graph is defined for the game through which players...

  18. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  19. Ascending auctions and Walrasian equilibrium

    OpenAIRE

    Ben-Zwi, Oren; Lavi, Ron; Newman, Ilan

    2013-01-01

    We present a family of submodular valuation classes that generalizes gross substitute. We show that Walrasian equilibrium always exist for one class in this family, and there is a natural ascending auction which finds it. We prove some new structural properties on gross-substitute auctions which, in turn, show that the known ascending auctions for this class (Gul-Stacchetti and Ausbel) are, in fact, identical. We generalize these two auctions, and provide a simple proof that they terminate in...

  20. Punctuated equilibrium comes of age

    Science.gov (United States)

    Gould, Stephan Jay; Eldredge, Niles

    1993-11-01

    The intense controversies that surrounded the youth of punctuated equilibrium have helped it mature to a useful extension of evolutionary theory. As a complement to phyletic gradualism, its most important implications remain the recognition of stasis as a meaningful and predominant pattern within the history of species, and in the recasting of macroevolution as the differential success of certain species (and their descendants) within clades.

  1. Polymorphism in Bacterial Flagella Suspensions

    Science.gov (United States)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  2. Thermalization and Return to Equilibrium on Finite Quantum Lattice Systems

    Science.gov (United States)

    Farrelly, Terry; Brandão, Fernando G. S. L.; Cramer, Marcus

    2017-04-01

    Thermal states are the bedrock of statistical physics. Nevertheless, when and how they actually arise in closed quantum systems is not fully understood. We consider this question for systems with local Hamiltonians on finite quantum lattices. In a first step, we show that states with exponentially decaying correlations equilibrate after a quantum quench. Then, we show that the equilibrium state is locally equivalent to a thermal state, provided that the free energy of the equilibrium state is sufficiently small and the thermal state has exponentially decaying correlations. As an application, we look at a related important question: When are thermal states stable against noise? In other words, if we locally disturb a closed quantum system in a thermal state, will it return to thermal equilibrium? We rigorously show that this occurs when the correlations in the thermal state are exponentially decaying. All our results come with finite-size bounds, which are crucial for the growing field of quantum thermodynamics and other physical applications.

  3. Universal scaling behavior at the upper critical dimension of non-equilibrium continuous phase transitions

    OpenAIRE

    Lubeck, S.; Heger, P. C.

    2003-01-01

    In this work we analyze the universal scaling functions and the critical exponents at the upper critical dimension of a continuous phase transition. The consideration of the universal scaling behavior yields a decisive check of the value of the upper critical dimension. We apply our method to a non-equilibrium continuous phase transition. But focusing on the equation of state of the phase transition it is easy to extend our analysis to all equilibrium and non-equilibrium phase transitions obs...

  4. The Geometry of Finite Equilibrium Datasets

    DEFF Research Database (Denmark)

    Balasko, Yves; Tvede, Mich

    We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely non collinear....

  5. The geometry of finite equilibrium sets

    DEFF Research Database (Denmark)

    Balasko, Yves; Tvede, Mich

    2009-01-01

    We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely noncollinear....

  6. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  7. Electrophoretic ``Equilibrium'' Profile of Charged Colloids

    Science.gov (United States)

    Planques, Romain; Chaikin, Paul

    2008-03-01

    We perform an electrophoresis experiment of a concentrated colloid against a semipermeable membrane. The electric field forces the charged particles against the membrane and sets up a concentration profile similar to that of a colloid in gravitational sedimentation equilibrium where gravitational forces compete against the osmotic pressure gradient. In the present case there is a current which flows through the electrolyte so the system reaches a steady state profile rather than equilibrium. The electric field, colloid and ionic concentrations adjust self consistently to produce the profile. We use 91 nm polystyrene spheres with sufficient charge that they crystallize and observe their Bragg scattering as a function of height to determine the lattice spacing and particle concentration. We also use 700nm spheres and obtain their concentration profile with X-ray absorption. The fluid flow is zero for a capped system. Connecting a return tube from the supernatant side above the electrophoretic sediment to below the filter yields an electroosmotic flow and circulation. The profile changes substantially and allows us to study the hydrodynamic interactions as a function of concentration for the electrophoresing particles.

  8. Hardy–Weinberg Equilibrium and the Foundations of Evolutionary ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Hardy–Weinberg Equilibrium and the Foundations of Evolutionary Genetics - The Inertial State in Population Genetics. Amitabh Joshi. Series Article Volume 13 Issue 10 October 2008 pp 951-970 ...

  9. Growth and decay of large fluctuations far from equilibrium

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5 ... interesting `detailed balance' like condition in the steady state which is manifested in the time reversal symmetry between growth and decay of fluctuation far from equilibrium, similar to what is observed in thermally equilibrated systems, is demonstrated.

  10. Open problems in non-equilibrium physics

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  11. Adaptive magnetorheological seat suspension for the expeditionary fighting vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Hiemenz, G J [Techno-Sciences, Inc., 11750 Beltsville Dr. Ste. 300, Beltsville, MD 20705 (United States); Hu, W; Wereley, N M [Aerospace Engineering, University of Maryland, College Park, MD 20712 (United States)], E-mail: greg@technosci.com, E-mail: wereley@umd.edu

    2009-02-01

    The Expeditionary Fighting Vehicle (EFV) is an amphibious vehicle designed to operate through harsh conditions and at much higher speeds than its predecessors. These unique capabilities and broadly varying operational conditions lead to a complex design and human factors scenario for the forward seating positions that cannot be solved using conventional passive seat suspension systems. Injurious shock loads transmitted to the occupants when traversing over water in high sea states and/or at high speeds, as well as harmful shock and vibration transmitted to the occupants when the vehicle is travelling over land, pose a threat to occupant health and significantly limit mission duration. In this study, a semi-active magnetorheological (MR) seat suspension is developed which adapts to broadly varying operational conditions, as well as occupant weight, to provide optimal protection of EFV occupants. It is shown that this MR seat suspension system will reduce the shock and vibration transmitted to the occupant by up to 33% and 65%, respectively, as compared to the existing passive suspension.

  12. Toward a general psychological model of tension and suspense

    Directory of Open Access Journals (Sweden)

    Moritz eLehne

    2015-02-01

    Full Text Available Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life. The omnipresence of tension experiences suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying experiences of tension. The model provides a theoretical framework that can inform future empirical research on tension phenomena.

  13. Plasticizing aqueous suspensions of concentrated alumina with maltodextrin sugar

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, C.H.; Bellman, R.A.; Smith, R.M.; Goel, H. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Giesche, H. [Alfred Univ., NY (United States). New York State Coll. of Ceramics

    1999-01-01

    Aqueous suspensions of submicrometer, 20 vol% Al{sub 2}O{sub 3} powder exhibited a transition from strongly flocculated, thixotropic behavior to a low-viscosity, Newtonian-like state upon adding small amounts of maltodextrin (0.03 g of maltodextrin/(g of Al{sub 2}O{sub 3})). These suspensions could be filter pressed to highly dense (57%) and extrudable pastes only when prepared with maltodextrin. The authors analyzed the interaction of maltodextrin with Al{sub 2}O{sub 3} powder surfaces and quantitatively measured the resulting claylike consolidation, rheological, and extrusion behaviors. Benbow extrusion parameters were comparable to, but higher than, those of kaolin at approximately the same packing density of 57 vol%. In contrast, Al{sub 2}O{sub 3} filter cakes without maltodextrin at 57 vol% density were too stiff to be extruded. Measurements of rheological properties, acoustophoresis, electrophoresis, sorption isotherms, and diffuse reflectance Fourier infrared spectroscopy supported the hypothesis that sorbate-mediated steric hindrance, rather than electrostatic, interparticle repulsion, is important to enhancing the consolidation and fluidity of maltodextrin-Al{sub 2}O{sub 3} suspensions. Viscosity measurements on aqueous maltodextrin solutions indicated that free maltodextrin in solution does not improve suspension fluidity by decreasing the viscosity of the interparticle solution.

  14. Fumed and Precipitated Hydrophilic Silica Suspension Gels in Mineral Oil: Stability and Rheological Properties

    OpenAIRE

    Yoshiki Sugino; Masami Kawaguchi

    2017-01-01

    Hydrophilic fumed silica (FS) and precipitated silica (PS) powders were suspended in mineral oil; increasing the silica volume fraction (φ in the suspension led to the formation of sol, pre-gel, and gel states. Gelation took place at lower φ values in the FS than the PS suspension because of the lower silanol density on the FS surface. The shear stresses and dynamic moduli of the FS and PS suspensions were measured as a function of φ. Plots of the apparent shear viscosity against shear rate d...

  15. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    Science.gov (United States)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  16. The key quality control technology of main cable erection in long-span suspension bridge construction

    Science.gov (United States)

    Chen, Yongrui; Wei, Wei; Dai, Jie

    2017-04-01

    Main cable is one of the most important structure of suspension Bridges, which bear all the dead and live load from upper structure. Cable erection is one of the most critical process in suspension bridge construction. Key points about strand erection are studied in this paper, including strand traction, lateral movement, section adjustment, placing into saddle, anchoring, line shape adjustment and keeping, and tension control. The technology has helped a long-span suspension bridge in Yunnan Province, China get a ideal finished state.

  17. Non-equilibrium tuning of attractive colloidal gels

    Science.gov (United States)

    Boromand, Arman; Maia, Joao

    2015-11-01

    In colloidal gel systems, the presence of multiple interactions in multiple length scales such as Van der Waals, depletion attractions, and electrostatic repulsions makes these systems challenging from both experimental and simulation aspects. Recently, there has been growing interest to tune and manipulate the structural and dynamics properties of those systems without adjusting interparticle interactions, just by taking them out of equilibrium. In this work, we used Core-Modified Dissipative Particle Dynamics (CM-DPD) with a modified depletion potential, as a coarse-grain model to address the gel formation process in short ranged-attractive colloidal suspensions for a range of volume fractions and attraction strengths. It is suggested that at high volume fractions and near the glass transition, there is a transformation from non-bonded glass to bonded-glass for which that the effect of topological frustration (caging) will be alleviated by the presence of attractive potentials (bonding) i.e. melting during cooling. In the first part of the presentation, we discuss our similar findings for semi-dilute volume fraction of attractive bimodal colloidal gels at equilibrium, which can be explained through local densification of attractive colloidal gels. In the second part, structural and dynamics properties of arrested gels will be studied under shear and after cessation of shear to study how the different flow profiles and history will alter final morphology of the gel systems.

  18. Drag Reduction of Bacterial Cellulose Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata

    2011-01-01

    Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.

  19. Multidisciplinary design optimization of mechatronic vehicles with active suspensions

    Science.gov (United States)

    He, Yuping; McPhee, John

    2005-05-01

    A multidisciplinary optimization method is applied to the design of mechatronic vehicles with active suspensions. The method is implemented in a GA-A'GEM-MATLAB simulation environment in such a way that the linear mechanical vehicle model is designed in a multibody dynamics software package, i.e. A'GEM, the controllers and estimators are constructed using linear quadratic Gaussian (LQG) method, and Kalman filter algorithm in Matlab, then the combined mechanical and control model is optimized simultaneously using a genetic algorithm (GA). The design variables include passive parameters and control parameters. In the numerical optimizations, both random and deterministic road inputs and both perfect measurement of full state variables and estimated limited state variables are considered. Optimization results show that the active suspension systems based on the multidisciplinary optimization method have better overall performance than those derived using conventional design methods with the LQG algorithm.

  20. Surfactant-induced core/shell phase equilibrium in hydrogels.

    Science.gov (United States)

    Gernandt, J; Hansson, P

    2016-02-14

    The formation of core/shell structures in hydrogels upon interaction with surfactants is a well-known phenomenon, but whether they are equilibrium states or not is still under debate. This paper presents an equilibrium theory of phase coexistence in hydrogels meant to answer the question of the stability of core/shell separation. The theory suggests that core/shell separation caused by surfactants can indeed be thermodynamically stable if the amount of added surfactant is not too large, but that the exact phase behaviour is governed by both the volume and concentration of the added surfactant solution.