WorldWideScience

Sample records for suspension balance model

  1. Force Measurements in Magnetic Suspension and Balance System

    Science.gov (United States)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  2. Effect of vibration versus suspension therapy on balance in children ...

    African Journals Online (AJOL)

    Most cerebral palsy children have deficits in balance, co-ordination, and gait throughout childhood and adulthood. So, it is essential to seek an ideal physical therapy program to help in solving such widespread problem. The present study was conducted to compare between the effect of vibration training and suspension ...

  3. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    So, it is essential to seek an ideal physical therapy program to help in solving such a widespread problem. The present study was conducted to compare between the effect of treadmill training and suspension therapy on balance in children with DS. Subjects and methods: Thirty children born with DS from both sexes ...

  4. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    Gehan H. El-Meniawy

    2011-11-29

    Nov 29, 2011 ... Role of treadmill training versus suspension therapy on balance in children with Down syndrome. Gehan H. El-Meniawy, Hebatallah M. Kamal *, Samah A. Elshemy. Department of Physical Therapy for Growth and Developmental Disorders in Children and its Surgery,. Faculty of Physical Therapy, Cairo ...

  5. Effect of vibration versus suspension therapy on balance in children ...

    African Journals Online (AJOL)

    Khaled A. Olama

    2012-03-03

    Mar 3, 2012 ... Effect of vibration versus suspension therapy on balance in children with hemiparetic cerebral palsy. Khaled A. Olama *, Nahed S. Thabit. Department of Physical Therapy for Disturbance of Growth and Development in Children and its Surgery,. Faculty of Physical Therapy, Cairo University, Cairo, Egypt.

  6. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    Gehan H. El-Meniawy

    2011-11-29

    Nov 29, 2011 ... treadmill training and suspension therapy on balance in children with DS. Subjects .... DS to ensure their comfort with the research team and proto- col. In this ... with sport shoes. For all children, conversation about their interests was done in addition to verbal and visual encourage- ment to motivate them.

  7. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    Science.gov (United States)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  8. A Hydro-pneumatic Suspension of the Horizontally Balanced Loading Platform

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available The subject of research is the horizontally balanced loading platform on soft suspension.Deviation from the horizontal direction of the platform can be caused by:- Displacement of the gravity centre of main unit load placed on it from the vertical axis of the platform;- Displacement of the mass centre of the load dispersed on the platform plane from its vertical axis;- Adding a load which gravity centre does not coincide with the gravity centre of the main load.In specific cases the use of complex and expensive tracking systems of high accuracy to balance loading platforms horizontally can be justified, e.g. when mounting the optical measuring or observation systems on a platform.The aim is to assess the possibility to use the soft hydro-pneumatic suspension with a low power supply unit to provide horizontal balance of platform.The paper offers a soft hydro-pneumatic suspension design of the rectangular loading platform based on four differential hydraulic cylinders to be the supports for two diagonal beams of the platform.The head and rod ends of each pair of the beam hydro-cylinders are cross-pipe connected, and to compensate for a difference between the volumes of head and rod ends of cylinders because of their differentiality, there are hydraulic bag-type accumulators installed in the hydraulic suspension system.The research technique involves the development of a mathematical model of the loading platform hydro-pneumatic suspension followed by its approbation using numerical methods. The paper presents algorithms of engineering analysis of parameters and structural dimensions of hydraulic suspension components.In order to assess the adequacy of the developed mathematical model of a hydro-pneumatic suspension the paper studiesthe an effect of the following factors on the quality of the platform stabilization in the horizon: initial volume values of the gas chamber of hydraulic accumulators; pressure level of initial pressurization of

  9. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    Science.gov (United States)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.; Scurlock, R. G.; Wu, Y. Y.; Goodyer, M. J.; Balcerek, K.; Eskins, J.; Britcher, C. P.

    1984-01-01

    A superconducting electromagnetic suspension and balance system for an 8 x 8-ft, Mach 0.9 wind tunnel is presented. The system uses a superconducting solenoid as a model core 70 cm long and with a 11.5 cm OD, and a combination of permanent magnet material in the model wings to produce the required roll torque. The design, which uses an integral cold structure rather than separate cryostats for mounting all control magnets, has 14 external magnets, including 4 racetrack-shaped roll coils. Helium capacity of the system is 3.0 to 3.5 l with idling boiloff rate predicted at 0.147 to 0.2 l/h. The improvements yielded a 50-percent reduction in the system size, weight, and cost.

  10. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    Most Down syndrome (DS) children, who constitute a large portion in our country, continue to evidence deficits in balance, co-ordination, and gait throughout childhood and adulthood. So, it is essential to seek an ideal physical therapy program to help in solving such a widespread problem. The present study was ...

  11. A forecast of new test capabilities using Magnetic Suspension and Balance Systems

    Science.gov (United States)

    Lawing, Pierce L.; Johnson, William G., Jr.

    1988-01-01

    This paper outlines the potential of Magnetic Suspension and Balance System (MSBS) technology to solve existing problems related to support interference in wind tunnels. Improvement of existing test techniques and exciting new techniques are envisioned as a result of applying MSBS. These include improved data accuracy, dynamic stability testing, two-body/stores release testing, and pilot/designer-in-the-loop tests. It also discusses the use of MSBS for testing exotic configurations such as hybrid hypersonic vehicles. A new facility concept that combines features of ballistic tubes, magnetic suspension, and cryogenic tunnels is described.

  12. A Model of Active Roll Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    I. Čech

    2010-01-01

    Full Text Available This paper describes active suspension with active roll for four-wheel vehicle (bus by means of an in-series pump actuator with doubled hydropneumatic springs. It also gives full control law with no sky-craping. Lateral stiffness and solid axle geometry in the mechanical model are not neglected. Responses to lateral input as well as responses to statistical unevennesses show considerable improvement of passengers comfort and safety when cornering.

  13. MAGNETICALLY LEVITATED TRAIN'S SUSPENSION MODEL

    Directory of Open Access Journals (Sweden)

    V. A. Polyakov

    2017-10-01

    Full Text Available Purpose. The implementation of the magnetically levitated train’s (MLT levitation force (LF occurs during the interaction between fields of superconducting train’s (STC and short-circuited track’s contours (STC, which are included in to levitation module (LU. Based on this, the purpose of this study is to obtain a correct description of such interaction. Methodology. At the present stage, the main and most universal tool for the analysis and synthesis of processes and systems is their mathematical and, in particular, computer modeling. At the same time, the radical advantages of this tool make even more important the precision of choosing a specific methodology for research conducting. This is particularly relevant in relation to such large and complex systems as MLT. For this reason, the work pays special attention to the reasoned choice of the selective features of the research paradigm. Findings. The analysis results of existing versions of LF implementation’s models show that each of them, along with the advantages, also has significant drawbacks. In this regard, one of the main results of the study should be the construction of this force implementation’s mathematical model, which preserves the advantages of the mentioned versions, but free from their shortcomings. The rationality of application, for the train’s LF researching, of an integrative holistic paradigm, which assimilates the advantages of the electric circuit's and magnetic field's theory’s, is reasonably justified in work. Originality. The scientific novelty of the research – in priority of such a paradigm’s and the corresponding version’s of the LF’s implementation’s model’s creating. Practical value. The main manifestation of the practical significance of the work is the possibility, in the case of using its results, to significantly increase the effectiveness of dynamic MLT research while reducing their resource costing.

  14. An evaporation model of colloidal suspension droplets

    Science.gov (United States)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  15. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  16. Multidisciplinary approach to railway pneumatic suspensions: pneumatic pipe modelling

    OpenAIRE

    Docquier, Nicolas; Fisette, Paul; Jeanmart, Hervé; Multibody Dynamics 2007 - ECCOMAS Thematic Conference

    2007-01-01

    On the majority of modern railway vehicles, airspring are used for the secondary suspension, i.e. the suspension located between the bogie frame and the carbody. The airspring is connected with several other pneumatic components such as auxiliary tanks, pipes, valves, etc. Such a system can be analysed in a multidisciplinary approach by coupling a multibody model of the train with a detailed pneumatic model of the suspension. This paper presents and compares various modelling approach for the...

  17. Optimization Analysis Model of Self-Anchored Suspension Bridge

    OpenAIRE

    Pengzhen Lu; Jianting Chen; Jingru Zhong; Penglong Lu

    2014-01-01

    The hangers of self-anchored suspension bridge need to be tensioned suitably during construction. In view of this point, a simplified optimization calculation method of cable force for self-anchored suspension bridge has been developed based on optimization theories, such as minimum bending energy method, and internal force balanced method, influence matrix method. Meanwhile, combined with the weak coherence of main cable and the adjacently interaction of hanger forces, a simplified analysis ...

  18. Suspension flow modelling in particle migration and microfiltration

    NARCIS (Netherlands)

    Vollebregt, H.M.; Sman, van der R.G.M.; Boom, R.M.

    2010-01-01

    We review existing mixture models for shear-induced migration (SIM) in flowing viscous, concentrated particle suspensions via an analysis of the models from the perspective of a two-fluid formulation. Our analysis shows that particle suspensions in strong non-linear shear fields are a prime example

  19. Improved population balance model for straining-dominant deep bed filtration using network calculations

    DEFF Research Database (Denmark)

    Yuan, Hao; You, Zhenjiang; Shapiro, Alexander

    2013-01-01

    Colloidal-suspension flow in porous media is modelled simultaneously by the large scale population balance equations and by the microscale network model. The phenomenological parameter of the correlation length in the population balance model is determined from the network modelling. It is found...... out that the correlation length in the population balance model depends on the particle size. This dependency calculated by two-dimensional network has the same tendency as that obtained from the laboratory tests in engineered porous media....

  20. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    The variation in body acceleration amplitude though affects the velocity profile in the capillary tubes, it has no effect on the leakback in the tubes. Leakback is mainly determined by the balance of the viscous drag and the driving force of the applied pressure gradient. Key words: Leakback, Pulsatile Flow, Fluid Suspension, ...

  1. Effect of suspension kinematic on 14 DOF vehicle model

    Science.gov (United States)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  2. Nonlinear Model of the Passenger Car Seat Suspension System

    Directory of Open Access Journals (Sweden)

    Danko Ján

    2017-04-01

    Full Text Available The paper deals with the modelling of a passenger car seat suspension system. Currently, vehicle safety and ride comfort are one of the most important factors of vehicle design. This article analyses a mathematical model of the passenger car seat suspension system. Furthermore, experimental measurements of the passenger car seat suspension system are performed. Utilizing the experimental data, model parameters are identified. From the chosen mathematical model a simulation model in constructed in Matlab is designed. In this simulation, the force-velocity and force-displacement characteristics of the passenger car seat suspension system are described. Finally, evaluation of simulated damper characteristics with the characteristics form measured data are performed.

  3. A seesaw-lever force-balancing suspension design for space and terrestrial gravity-gradient sensing

    OpenAIRE

    Liu, H; Pike, WT; Dou, G

    2016-01-01

    We present the design, fabrication, and characterization of a seesaw-lever force-balancing suspension for a silicon gravity-gradient sensor, a gravity gradiometer, that is capable of operation over a range of gravity from 0 to 1?g. This allows for both air and space deployment after ground validation. An overall rationale for designing a microelectromechanical systems(MEMS) gravity gradiometer is developed, indicating that a gravity gradiometer based on a torsion-balance, rather than a differ...

  4. Toward a general psychological model of tension and suspense

    Science.gov (United States)

    Lehne, Moritz; Koelsch, Stefan

    2015-01-01

    Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena. PMID:25717309

  5. Improve SSME power balance model

    Science.gov (United States)

    Karr, Gerald R.

    1992-01-01

    Effort was dedicated to development and testing of a formal strategy for reconciling uncertain test data with physically limited computational prediction. Specific weaknesses in the logical structure of the current Power Balance Model (PBM) version are described with emphasis given to the main routing subroutines BAL and DATRED. Selected results from a variational analysis of PBM predictions are compared to Technology Test Bed (TTB) variational study results to assess PBM predictive capability. The motivation for systematic integration of uncertain test data with computational predictions based on limited physical models is provided. The theoretical foundation for the reconciliation strategy developed in this effort is presented, and results of a reconciliation analysis of the Space Shuttle Main Engine (SSME) high pressure fuel side turbopump subsystem are examined.

  6. An investigation into force-moment calibration techniques applicable to a magnetic suspension and balance system. M.S. Thesis

    Science.gov (United States)

    Eskins, Jonathan

    1988-01-01

    The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.

  7. Optimization of nonlinear quarter car suspension-seat-driver model.

    Science.gov (United States)

    Nagarkar, Mahesh P; Vikhe Patil, Gahininath J; Zaware Patil, Rahul N

    2016-11-01

    In this paper a nonlinear quarter car suspension-seat-driver model was implemented for optimum design. A nonlinear quarter car model comprising of quadratic tyre stiffness and cubic stiffness in suspension spring, frame, and seat cushion with 4 degrees of freedom (DoF) driver model was presented for optimization and analysis. Suspension system was aimed to optimize the comfort and health criterion comprising of Vibration Dose Value (VDV) at head, frequency weighted RMS head acceleration, crest factor, amplitude ratio of head RMS acceleration to seat RMS acceleration and amplitude ratio of upper torso RMS acceleration to seat RMS acceleration along with stability criterion comprising of suspension space deflection and dynamic tyre force. ISO 2631-1 standard was adopted to assess ride and health criterions. Suspension spring stiffness and damping and seat cushion stiffness and damping are the design variables. Non-dominated Sort Genetic Algorithm (NSGA-II) and Multi-Objective Particle Swarm Optimization - Crowding Distance (MOPSO-CD) algorithm are implemented for optimization. Simulation result shows that optimum design improves ride comfort and health criterion over classical design variables.

  8. Optimization Analysis Model of Self-Anchored Suspension Bridge

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2014-01-01

    Full Text Available The hangers of self-anchored suspension bridge need to be tensioned suitably during construction. In view of this point, a simplified optimization calculation method of cable force for self-anchored suspension bridge has been developed based on optimization theories, such as minimum bending energy method, and internal force balanced method, influence matrix method. Meanwhile, combined with the weak coherence of main cable and the adjacently interaction of hanger forces, a simplified analysis method is developed using MATLAB, which is then compared with the optimization method that consider the main cable's geometric nonlinearity with software ANSYS in an actual example bridge calculation. This contrast proves the weak coherence of main cable displacement and the limitation of the adjacent cable force influence. Furthermore, a tension program that is of great reference value has been developed; some important conclusions, advices, and attention points have been summarized.

  9. Multidimensional Balanced Efficiency Decision Model

    Directory of Open Access Journals (Sweden)

    Antonella Petrillo

    2015-10-01

    Full Text Available In this paper a multicriteria methodological approach, based on Balanced Scorecard (BSC and Analytic Network Process (ANP, is proposed to evaluate competitiveness performance in luxury sector. A set of specific key performance indicators (KPIs have been proposed. The contribution of our paper is to present the integration of two methodologies, BSC – a multiple perspective framework for performance assessment – and ANP – a decision-making tool to prioritize multiple performance perspectives and indicators and to generate a unified metric that incorporates diversified issues for conducting supply chain improvements. The BSC/ANP model is used to prioritize all performances within a luxury industry. A real case study is presented.

  10. Mathematical models for suspension bridges nonlinear structural instability

    CERN Document Server

    Gazzola, Filippo

    2015-01-01

    This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

  11. Water balance model for Kings Creek

    Science.gov (United States)

    Wood, Eric F.

    1990-01-01

    Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.

  12. 3D modeling design and engineering analysis of automotive suspension beam

    Directory of Open Access Journals (Sweden)

    Ju Zhi Lan

    2016-01-01

    Full Text Available Automotive suspension is an important device for transmission and torque. The main parameters and dimensions of 40 tons of heavy duty truck spring suspension system are designed in the paper. According to the data, the 3D modeling and virtual assembly of the leaf spring suspension are carried out by using parametric design. Structural stress of spring suspension is analyzed which can provide a guide and basis for the design of the leaf spring suspension.

  13. An analytical model of pneumatic suspensions based on an experimental characterization

    Science.gov (United States)

    Nieto, A. J.; Morales, A. L.; González, A.; Chicharro, J. M.; Pintado, P.

    2008-06-01

    We present an analytical model of air spring suspensions that is based on an experimental characterization. The suspension consists of three principal parts: the air spring, an auxiliary tank, and a pipe connecting the two. An analytical nonlinear fluid dynamics model is first analyzed, modeling the suspension stiffness, damping factor, and transmissibility. The model is then linearized and this linear version is studied in depth, finding that the behavior of the suspension as reflected in the aforementioned three characteristics is strongly dependent on the size of the three suspension parts. The analysis allows us to propose a practical strategy for the operation of the suspension.

  14. Toward a general psychological model of tension and suspense

    Directory of Open Access Journals (Sweden)

    Moritz eLehne

    2015-02-01

    Full Text Available Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life. The omnipresence of tension experiences suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying experiences of tension. The model provides a theoretical framework that can inform future empirical research on tension phenomena.

  15. Modeling of Semi-Active Vehicle Suspension with Magnetorhological Damper

    Directory of Open Access Journals (Sweden)

    Hasa Richard

    2014-12-01

    Full Text Available Modeling of suspension is a current topic. Vehicle users require both greater driving comfort and safety. There is a space to invent new technologies like magnetorheological dampers and their control systems to increase these conflicting requirements. Magnetorheological dampers are reliably mathematically described by parametric and nonparametric models. Therefore they are able to reliably simulate the driving mode of the vehicle. These simulations are important for automotive engineers to increase vehicle safety and passenger comfort.

  16. Flow induced orientation in carbon nanotube suspensions: Modeling and experiments

    Science.gov (United States)

    Natale, Giovanniantonio

    shearing direction were studied. To correlate the microstructure with the rheological data, two different routes were undertaken. The first route involved rheo-optical analysis. Dichroism was investigated for suspensions belonging to the dilute and semi-dilute regimes. Direct information on dispersion, orientation evolution during flow and Brownian motion were obtained. The second route consisted in developing new rheological models in order to correlate micro-scale information to the evolution of the related stress tensor or refractive index tensor. In the dilute regime, the nanotubes were modeled as flexible particles. A modified two-rod model was used, allowing non-straight equilibrium conformations. In more concentrated regimes, the dynamic of the system is controlled by rod-rod interactions. The nanotubes were modeled as inertialess rigid rods and the system orientation state is influenced by interactions via non-linear lubrication forces, hydrodynamic forces and Brownian motion. The comparison of the experimental results with the models predictions allowed to quantify the fundamental mechanisms behind the microstructure evolution of CNT suspensions. To further differentiate the rheology of CNT suspensions, the model predictions were also confronted with the experimental data for a microsize particle suspension: glass fiber-filled polybutene [Sepehr et al. (2004b)]. In the case of the micro-size particles, the model predictions confirmed that the rheological response of the system was controlled by orientation effects while interactions were dominant in the case of CNT suspensions. Hence, this work explores the connections between the bulk rheology of carbon nanotube suspensions and their microstructural evolution. This is the first step towards the design of new processing schemes in order to completely exploit carbon nanotube unique properties.

  17. Test techniques: A survey paper on cryogenic tunnels, adaptive wall test sections, and magnetic suspension and balance systems

    Science.gov (United States)

    Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.

    1989-01-01

    The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.

  18. Research on Modeling of Hydropneumatic Suspension Based on Fractional Order

    Directory of Open Access Journals (Sweden)

    Junwei Zhang

    2015-01-01

    Full Text Available With such excellent performance as nonlinear stiffness, adjustable vehicle height, and good vibration resistance, hydropneumatic suspension (HS has been more and more applied to heavy vehicle and engineering vehicle. Traditional modeling methods are still confined to simple models without taking many factors into consideration. A hydropneumatic suspension model based on fractional order (HSM-FO is built with the advantage of fractional order (FO in viscoelastic material modeling considering the mechanics property of multiphase medium of HS. Then, the detailed calculation method is proposed based on Oustaloup filtering approximation algorithm. The HSM-FO is implemented in Matlab/Simulink, and the results of comparison among the simulation curve of fractional order, integral order, and the curve of real experiment prove the feasibility and validity of HSM-FO. The damping force property of the suspension system under different fractional orders is also studied. In the end of this paper, several conclusions concerning HSM-FO are drawn according to analysis of simulation.

  19. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  20. BOREAS TE-19 Ecosystem Carbon Balance Model

    Data.gov (United States)

    National Aeronautics and Space Administration — The Spruce and Moss Model (SPAM) was designed to simulate the daily carbon balance of a black spruce/moss boreal forest ecosystem. It is driven by daily weather...

  1. BOREAS TE-19 Ecosystem Carbon Balance Model

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Spruce and Moss Model (SPAM) was designed to simulate the daily carbon balance of a black spruce/moss boreal forest ecosystem. It is driven by daily...

  2. PID controller design for trailer suspension based on linear model

    Science.gov (United States)

    Kushairi, S.; Omar, A. R.; Schmidt, R.; Isa, A. A. Mat; Hudha, K.; Azizan, M. A.

    2015-05-01

    A quarter of an active trailer suspension system having the characteristics of a double wishbone type was modeled as a complex multi-body dynamic system in MSC.ADAMS. Due to the complexity of the model, a linearized version is considered in this paper. A model reduction technique is applied to the linear model, resulting in a reduced-order model. Based on this simplified model, a Proportional-Integral-Derivative (PID) controller was designed in MATLAB/Simulink environment; primarily to reduce excessive roll motions and thus improving the ride comfort. Simulation results show that the output signal closely imitates the input signal in multiple cases - demonstrating the effectiveness of the controller.

  3. Magnetic Suspension of an AGARD-B Model in 6 D.O.F.

    Science.gov (United States)

    Sawada, Hideo; Suda, Shinichi; Kunimasu, Tetsuya

    A method of evaluating rolling moment for a magnetic suspension model with pair magnets was successfully used when an AGARD-B model was designed. Especially the way is effective at inertia moment adjustment and at control parameters detection. The rolling motion was successfully controlled with the same control method as at the existing 5 D.O.F. control of the JAXA 60cm MSBS. Then the 60cm MSBS got 6 D.O.F. control ability. The model was successfully magnetically suspended from -4 degree to +4 degree in a flow up to 35m/s. Drag coefficient and lift and pitching moment coefficient slopes were measured with the magnetic balance and they showed reasonable values compared with other data set source.

  4. A stochastic model for filtration of particulate suspensions with incomplete pore plugging

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Santos, A; Bedrikovetsky, P. G.

    2007-01-01

    A population balance model for particulate suspension transport with capture of particles by porous medium accounting for complete and incomplete plugging of pores by retained particles is derived. The model accounts for pore space accessibility, due to restriction on finite size particle movemen...... of a single particle size suspension through a single pore size medium where a pore can be completely plugged by two particles allows for an exact analytical solution. The phenomenological deep bed filtration model follows from the analytical solution....... through the overall pore space, and for particle flux reduction, due to transport of particles by the fraction of the overall flux. The novel feature of the model is the residual pore conductivity after the particle retention in the pore and the possibility of one pore to capture several particles....... A closed system of governing stochastic equations determines the evolution of size distributions for suspended particles and pores. Its averaging results in the closed system of hydrodynamic equations accounting for permeability and porosity reduction due to plugging. The problem of deep bed filtration...

  5. Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces

    Science.gov (United States)

    Chalmers, C.; Smith, R.; Archer, A. J.

    2017-07-01

    We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to correctly choose the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a ‘lid’ above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.

  6. A mixture theory model for a particulate suspension flow in a thermal non-equilibrium context

    Energy Technology Data Exchange (ETDEWEB)

    Martins-Costa, M.L. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Lab. de Mecanica Teorica e Aplicada; Gama, R.M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Rio de Janeiro, RJ (Brazil)

    1998-07-01

    The present work proposes a local model for a particulate suspension flow employing the continuum theory of mixture - specially developed to deal with multiphase phenomena. The flow of a Newtonian fluid with small solid particles in suspension - in which thermal non-equilibrium is allowed - is described as a mixture of solid and fluid constituents coexisting superposed. Thermo-dynamically consistent constitutive hypotheses are derived in order an adequate model for suspensions. (author)

  7. A power balance model for handcycling

    NARCIS (Netherlands)

    Groen, Wim G.; van der Woude, Lucas H. V.; De Koning, Jos J.

    2010-01-01

    Purpose. To demonstrate the applicability of the power balance model to elite handcycling and to obtain values for gross efficiency (GE). Methods. Four members of the Dutch Paralympic team performed trials on a 250-m indoor track. Velocity (v) and power output (PO) were measured in conjunction with

  8. Cements and concentrated model suspensions. Flow, jamming and flocculation; Ciments et suspensions concentrees modeles. Ecoulement, encombrement et floculation

    Energy Technology Data Exchange (ETDEWEB)

    Lootens, D.

    2004-10-15

    Here we report about the rheological behavior of very concentrated dispersions -or pastes- of granular or colloidal particles of cement or of monodisperse spherical silica particles. The model system of silica particles is used in order to control the physical chemistry properties of the suspension. Our research project is centered on two points which are focusing on the slurries properties: (i) the first one is the study of the structuring process by the coagulation at rest and its relation with setting. We use special tools (ultrasonic, confocal) to follow and understand the evolution from coagulation to the setting of cement (ii) the second is the study of the dynamic structuring phenomena, under shear, typical of the concentrated suspensions and named jamming. The flow can enter into a shear-thickening and, possibly jamming regime. The onset of this regime is shown to involve giant fluctuations of stress, assigned to the formation and breakup of direct frictional contact chains. The surface state of the particles is a determining factor in this transition. The studies of the normal stress and microscopic observation give good reasons to believe that solid friction is involved in the jamming transition. (author)

  9. A constitutive model for simple shear of dense frictional suspensions

    Science.gov (United States)

    Singh, Abhinendra; Mari, Romain; Denn, Morton M.; Morris, Jeffrey F.

    2018-03-01

    Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $\\phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $\\phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(\\phi,\\tilde{\\sigma}$, and $\\mu)$, with $\\tilde{\\sigma} = \\sigma/\\sigma_0$ the dimensionless shear stress and $\\mu$ the coefficient of interparticle friction: the dimensional stress is $\\sigma$, and $\\sigma_0 \\propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \\textquotedblleft jamming\\textquotedblright\\ points at volume fraction $\\phi_{\\rm J}^0 = \\phi_{\\rm rcp}$ (random close packing) for the low-stress lubricated state, and at $\\phi_{\\rm J} (\\mu) < \\phi_{\\rm J}^0$ for any nonzero $\\mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.

  10. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...... is solved by creating cavities of air and distributing dense materials inside the model. Consequently, the surface is not deformed. However, printing materials with significantly different densities is often not possible and adding cavities of air is often not enough to make the model balance. Consequently...

  11. The use of suspension models and comparison with true weightlessness. [Animal Model Workshop on Gravitational Physiology

    Science.gov (United States)

    Musacchia, X. J.; Ellis, S.

    1985-01-01

    A resume is presented of various papers concerning the effect of weightlessness on particular physiological and biochemical phenomena in animal model systems. Findings from weightlessness experiments on earth using suspension models are compared with results of experiments in orbit. The biological phenomena considered include muscle atrophy, changes in the endocrine system, reduction in bone formation, and changes in the cardiovascular system.

  12. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-01-01

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition. PMID:28984836

  13. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Nasri Marzuca-Nassr

    2017-10-01

    Full Text Available The consequences of two-week hindlimb suspension (HS on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA, and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2 and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1 were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively, muscle isotonic and tetanic force (by 29% and 18%, respectively, CSA of the soleus muscle (by 36%, and soleus muscle fibers (by 45%. Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001. Fat-1 mice had lower soleus muscle dry mass loss (by 10% and preserved absolute isotonic force (by 17% and CSA of the soleus muscle (by 28% after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70% and MuRF-1 content decreased (by 50% in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  14. Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension

    Science.gov (United States)

    Balike, K. P.; Rakheja, S.; Stiharu, I.

    2011-02-01

    Linear or nonlinear 2-degrees of freedom (DOF) quarter-car models have been widely used to study the conflicting dynamic performances of a vehicle suspension such as ride quality, road holding and rattle space requirements. Such models, however, cannot account for contributions due to suspension kinematics. Considering the proven simplicity and effectiveness of a quarter-car model for such analyses, this article presents the formulation of a comprehensive kineto-dynamic quarter-car model to study the kinematic and dynamic properties of a linkage suspension, and influences of linkage geometry on selected performance measures. An in-plane 2-DOF model was formulated incorporating the kinematics of a double wishbone suspension comprising an upper control arm, a lower control arm and a strut mounted on the lower control arm. The equivalent suspension and damping rates of the suspension model are analytically derived that could be employed in a conventional quarter-car model. The dynamic responses of the proposed model were evaluated under harmonic and bump/pothole excitations, idealised by positive/negative rounded pulse displacement and compared with those of the linear quarter-car model to illustrate the contributions due to suspension kinematics. The kineto-dynamic model revealed considerable variations in the wheel and damping rates, camber and wheel-track. Owing to the asymmetric kinematic behaviour of the suspension system, the dynamic responses of the kineto-dynamic model were observed to be considerably asymmetric about the equilibrium. The proposed kineto-dynamic model was subsequently applied to study the influences of links geometry in an attempt to seek reduced suspension lateral packaging space without compromising the kinematic and dynamic performances.

  15. Electromagnet configurations for extreme attitude testing in magnetic suspension and balance systems

    Science.gov (United States)

    Britcher, C. P.

    1980-01-01

    The inclusion of adequate versatility into the electromagnet array configuration requires sizing the electromagnets to satisfy particular absolute force and moment requirements. Magnetic performance of a permanent magnet model core, air cored electromagnet may easily and reliably be computed by using the FORCE program which calculates model forces and moments via representations of the model as an assembly of dipoles and the electromagnets as an assembly of line currents. Some aspects of the performance of an ellipsoidal iron cored model may be inferred from the above under certain circumstances.

  16. Time-Weighted Balanced Stochastic Model Reduction

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2011-01-01

    A new relative error model reduction technique for linear time invariant (LTI) systems is proposed in this paper. Both continuous and discrete time systems can be reduced within this framework. The proposed model reduction method is mainly based upon time-weighted balanced truncation and a recently...... developed inner-outer factorization technique. Compared to the other analogous counterparts, the proposed method shows to provide more accurate results in terms of time weighted norms, when applied to different practical examples. The results are further illustrated by a numerical example....

  17. A numerical model of localized convection cells of Euglena suspensions

    Science.gov (United States)

    Iima, Makoto; Shoji, Erika; Yamaguchi, Takayuki

    2014-11-01

    Suspension of Euglena gracilis shows localized convection cells when it is illuminated form below with strong light intensity. Experiments in an annular container shows that there are two elementary localized structures. One consists of a pair of convection cells and a single region where number density of Euglena is high. The other consists a localized traveling wave. Based on the measurements of the flux of number density, we propose a model of bioconvection incorporating lateral phototaxis effect proportional to the light intensity gradient. Using pseudo spectral method, we performed numerical simulation of this model. We succeed in reproducing one of the localized structures, a convection pair with single region of high number density. Also, when the aspect ratio is large, there are a parameter region where the localized structure and conductive state are both stable, which is suggested by experiments. Spatial distribution of the number density implies that the accumulation of microorganism due to the convective flow causes such bistability. CREST(PJ74100011) and KAKENHI(26400396).

  18. Monthly Water Balance Model Hydrology Futures

    Science.gov (United States)

    Bock, Andy; Hay, Lauren E.; Markstrom, Steven; Atkinson, R. Dwight

    2016-01-01

    A monthly water balance model (MWBM) was driven with precipitation and temperature using a station-based dataset for current conditions (1950 to 2010) and selected statistically-downscaled general circulation models (GCMs) for current and future conditions (1950 to 2099) across the conterminous United States (CONUS) using hydrologic response units from the Geospatial Fabric for National Hydrologic Modeling (http://dx.doi.org/doi:10.5066/F7542KMD). Six MWBM output variables (actual evapotranspiration (AET), potential evapotranspiration (PET), runoff (RO), streamflow (STRM), soil moisture storage (SOIL), and snow water equivalent (SWE)) and the two MWBM input variables (atmospheric temperature (TAVE) and precipitation (PPT)) were summarized for hydrologic response units and aggregated at points of interest on a stream network. Results were then organized into the Monthly Water Balance Hydrology Futures database, an open-access database using netCDF format (http://cida-eros-mows1.er.usgs.gov/thredds/dodsC/nwb_pub/).  Methods used to calibrate and parameterize the MWBM are detailed in the Hydrology and Earth System Sciences (HESS)  paper "Parameter regionalization of a monthly water balance model for the conterminous United States" by Bock and others (2016).  See the discussion paper link in the "Related External Resources" section for access.  Supplemental data files related to the plots and data analysis in Bock and others (2016) can be found in the HESS-2015-325.zip folder in the "Attached Files" section.  Detailed information on the files and data can be found in the ReadMe.txt contained within the zipped folder. Recommended citation of discussion paper:Bock, A.R., Hay, L.E., McCabe, G.J., Markstrom, S.L., and Atkinson, R.D., 2016, Parameter regionalization of a monthly water balance model for the conterminous United States: Hydrology and Earth System Sciences, v. 20, 2861-2876, doi:10.5194/hess-20-2861-2016, 2016

  19. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  20. Balanced scorecard model for Paulinian educational institutions

    Directory of Open Access Journals (Sweden)

    Sr. Evangeline Lorenzo Anastacio

    2016-05-01

    Full Text Available The researcher aimed to come up with a mission-centered strategic management system for Paulinian schools using the Balanced Scorecard (BSC approach. To achieve this project, a consensus was derived from 39 schools in the Philippines run by the Sisters of St. Paul of Chartres (SPC using the Delphi technique. The resulting BSC model included five perspectives, namely, spirituality, internal processes, learner and external community, learning organization, and fiscal resources perspectives. Strategic objectives with the corresponding key performance indicators (KPIs were identified. Unique to the resulting BSC model is the inclusion of spirituality perspective which ensures the conscious infusion of long-lasting values in all aspects of the school.

  1. Quasi-Static Condensation of Aeroelastic Suspension Bridge Model

    DEFF Research Database (Denmark)

    Møller, Randi N.; Krenk, Steen; N. Svendsen, Martin

    2017-01-01

    . The present contribution demonstrates the application of quasi-static condensation to long suspension bridges as well as introduces an extension of the method to include the full aeroelastic system. This includes considerations on reduction of external wind loading as well as motion-induced forces....

  2. Using fuzzy logic to control active suspension system of one-half-car model

    Directory of Open Access Journals (Sweden)

    Kruczek Aleš

    2003-12-01

    Full Text Available In the paper, fuzzy logic is used to control active suspension of a one-half-car model. Velocity and acceleration of the front and rear wheels and undercarriage velocity above the mentioned wheels are taken as input data of the fuzzy logic controller. Active forces improving vehicle driving, ride comfort and handling properties are considered to be the controller outputs. The controller design is proposed to minimize chassis and wheels deflection when uneven road surfaces, pavement points, etc. are acting on the tires of running cars. In the conclusion, a comparison of active suspension fuzzy control and spring/damper passive suspension is shown using MATLAB simulations.

  3. Modeling and Scaling of the Viscosity of Suspensions of Asphaltene Nanoaggregates

    Directory of Open Access Journals (Sweden)

    Rajinder Pal

    2017-06-01

    Full Text Available The scaling and modeling of the viscosity of suspensions of asphaltene nanoaggregates is carried out successfully taking into consideration the solvation and clustering of nanoaggragates, and the jamming of the suspension at the glass transition volume fraction of asphaltene nanoaggregates. The nanoaggregates of asphaltenes are modeled as solvated disk-shaped “core–shell” particles taking into account the most recent small-angle neutron scattering (SANS, small-angle X-ray scattering (SAXS, and solid-state 1H NMR studies available on the size and structure of asphaltene nanoaggregates. This work is an extension of our earlier studies on modeling of asphaltene suspensions where solvation of asphaltene nanoaggregates was not considered. A new mathematical model is developed for estimating the aspect ratio (ratio of thickness to diameter of particle and the corresponding intrinsic viscosity of suspension of solvated disk-shaped asphaltene nanoaggregates using the experimental relative viscosity data of suspensions at low asphaltene concentrations. The solvation of asphaltene nanoaggregates is found to be significant. The intrinsic viscosity increases with the increase in the degree of solvation of nanoaggregates. At high concentrations of asphaltenes, clustering of solvated nanoaggregates dominates resulting in large viscosities. A new scaling law is discovered to scale the viscosity data of different asphaltene suspensions. According to the new scaling law, a unique correlation is obtained, independent of the type of asphaltene system, when the data are plotted as ( η r − 1 / [ η ] S versus ϕ S where η r is the relative viscosity of suspension, [ η ] S is the intrinsic viscosity of suspension of solvated nanoaggregates, and ϕ S is the volume fraction of solvated nanoaggregates. Twenty sets of experimental viscosity data on asphaltene suspensions gathered from different sources are used to verify and confirm the scaling law and the

  4. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    Science.gov (United States)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  5. Physics-based Modeling Techniques for Analysis and Design of Advanced Suspension Systems with Experimental Validation

    OpenAIRE

    Farjoud, Alireza

    2011-01-01

    This research undertakes the problem of vibration control of vehicular and structural systems using intelligent materials and controllable devices. Advanced modeling tools validated with experimental test data are developed to help with understanding the fundamentals as well as advanced and novel applications of smart and conventional suspension systems. The project can be divided into two major parts. The first part is focused on development of novel smart suspensions using Magneto-Rheolo...

  6. One-Quarter-Car Active SuspensionModel Verification

    Directory of Open Access Journals (Sweden)

    Hyniova Katerina

    2017-01-01

    Full Text Available Suspension system influences both the comfort and safety of the passengers. In the paper, energy recuperation and management in automotive suspension systems with linear electric motors that are controlled by a designed H∞ controller to generate a variable mechanical force for a car damper is presented. Vehicle shock absorbers in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to the conventional suspensions with passive elements (springs and dampers. The main advantage of the proposed solution that uses a linear AC motor is the possibility to generate desired forces acting between the unsprung (wheel and sprung (one-quarter of the car body mass masses of the car, providing good insulation of the car sprung mass from the road surface roughness and load disturbances. As shown in the paper, under certain circumstances linear motors as actuators enable to transform mechanical energy of the vertical car vibrations to electrical energy, accumulate it, and use it when needed. Energy flow control enables to reduce or even eliminate the demands on the external power source. In particular, the paper is focused on experiments with active shock absorber that has been taken on the designed test bed and the way we developed an appropriate input signal for the test bed that as real road disturbance acts upon the vibration absorber and the obtained results are evaluated at the end. Another important point the active suspension design should satisfy is energy supply control that is made via standard controller modification, and which allows changing amount of energy required by the system. Functionality of the designed controller modification was verified taking various experiments on the experiment stand as mentioned in the paper.

  7. Universal electromagnetic suspension balance with nanogramme mass resolution for measurement of sorption on small samples in top and bottom loading configurations

    Science.gov (United States)

    Norton, C. G.; Petermann, M.; Fieback, T. M.

    2017-04-01

    Determination of mass increase or decrease of very small amplitude is a task which goes hand in hand with gravimetric adsorption and absorption measurement and thermogravimetry. Samples are subjected to various process conditions and as such can experience a change in mass, i.e. when adsorbing gas from the process atmosphere, or can decrease in mass, such as when being dried or when thermal decomposition takes place. Current instruments used for such analysis, especially at high pressures, are often based on magnetic suspension balances, and have a maximum mass resolution of a few 10-6 g. This necessitates more often than not quite significant sample quantities, which can sometimes not easily be manufactured, e.g. in the case of metal organic framework adsorbents, or which in other cases do not have a sufficient specific surface area resulting in low measuring effect. A new apparatus based on a high resolution thermogravimetric analyser has been developed. This new apparatus combines very high resolution of up to a few 10-8 g with a relatively high sample mass of up to 1.5 g, whilst eliminating many of the disadvantages of the microbalances previously used in magnetic suspension balances. An interface was developed which permits free configuration of the new balance as top or bottom loading. Validation measurements of known adsorbents were subsequently performed, with sample quantities up to a factor of 174 smaller than in literature.

  8. NREL Offshore Balance-of-System Model

    Energy Technology Data Exchange (ETDEWEB)

    Maness, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The U.S. Department of Energy (DOE) has investigated the potential for 20% of nationwide electricity demand to be generated from wind by 2030 and, more recently, 35% by 2050. Achieving this level of wind power generation may require the development and deployment of offshore wind technologies. DOE (2008) has indicated that reaching these 2030 and 2050 scenarios could result in approximately 10% and 20%, respectively, of wind energy generation to come from offshore resources. By the end of 2013, 6.5 gigawatts of offshore wind were installed globally. The first U.S. project, the Block Island Wind Farm off the coast of Rhode Island, has recently begun operations. One of the major reasons that offshore wind development in the United States is lagging behind global trends is the high capital expenditures required. An understanding of the costs and associated drivers of building a commercial-scale offshore wind plant in the United States will inform future research and help U.S. investors feel more confident in offshore wind development. In an effort to explain these costs, the National Renewable Energy Laboratory has developed the Offshore Balance-of-System model.

  9. A modelling and experimental study of the bubble trajectory in a non-Newtonian crystal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, N M S [Process Engineering and Light Metals (PELM) Centre, Faculty of Sciences, Engineering and Health, CQUniversity, Rockhampton, QLD 4702 (Australia); Khan, M M K; Rasul, M G, E-mail: m.rasul@cqu.edu.a [School of Engineering and Built Environment, Faculty of Sciences, Engineering and Health, CQUniversity, Rockhampton, QLD 4702 (Australia)

    2010-12-15

    This paper presents an experimental and computational study of air bubbles rising in a massecuite-equivalent non-Newtonian crystal suspension. The bubble trajectory inside the stagnant liquid of a 0.05% xanthan gum crystal suspension was investigated and modelled using the computational fluid dynamics (CFD) model to gain an insight into the bubble flow characteristics. The CFD code FLUENT was used for numerical simulation, and the bubble trajectory calculations were performed through a volume of fluid (VOF) model. The influences of the Reynolds number (Re), the Weber number (We) and the bubble aspect ratio (E) on the bubble trajectory are discussed. The conditions for the bubbles' path oscillations are identified. The experimental results showed that the path instability for the crystal suspension was less rapid than in water. The trajectory analysis indicated that 5.76 mm diameter bubbles followed a zigzag motion in the crystal suspension. Conversely, the smaller bubbles (5.76 mm) followed a path of least horizontal movement and larger bubbles (21.21 mm) produced more spiral motion within the crystal suspension. Path instability occurred for bubbles of 15.63 and 21.21 mm diameter, and they induced both zigzag and spiral trajectories within the crystal suspension. At low Re and We, smaller bubbles (5.76 mm) produced a zigzag trajectory, whereas larger bubbles (15.63 and 21.21 mm) showed both zigzag and spiral trajectories at intermediate and moderately high Re and We in the crystal suspension. The simulation results illustrated that a repeating pattern of swirling vortices was created for smaller bubbles due to the unstable wake and unsteady flow of these bubbles. This is the cause of the smaller bubbles moving in a zigzag way. Larger bubbles showed two counter-rotating trailing vortices at the back of the bubble. These vortices induced a velocity component to the gas-liquid interface and caused a deformation. Hence, the larger bubbles produced a path

  10. A modelling and experimental study of the bubble trajectory in a non-Newtonian crystal suspension

    Science.gov (United States)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.

    2010-12-01

    This paper presents an experimental and computational study of air bubbles rising in a massecuite-equivalent non-Newtonian crystal suspension. The bubble trajectory inside the stagnant liquid of a 0.05% xanthan gum crystal suspension was investigated and modelled using the computational fluid dynamics (CFD) model to gain an insight into the bubble flow characteristics. The CFD code FLUENT was used for numerical simulation, and the bubble trajectory calculations were performed through a volume of fluid (VOF) model. The influences of the Reynolds number (Re), the Weber number (We) and the bubble aspect ratio (E) on the bubble trajectory are discussed. The conditions for the bubbles' path oscillations are identified. The experimental results showed that the path instability for the crystal suspension was less rapid than in water. The trajectory analysis indicated that 5.76 mm diameter bubbles followed a zigzag motion in the crystal suspension. Conversely, the smaller bubbles (5.76 mm) followed a path of least horizontal movement and larger bubbles (21.21 mm) produced more spiral motion within the crystal suspension. Path instability occurred for bubbles of 15.63 and 21.21 mm diameter, and they induced both zigzag and spiral trajectories within the crystal suspension. At low Re and We, smaller bubbles (5.76 mm) produced a zigzag trajectory, whereas larger bubbles (15.63 and 21.21 mm) showed both zigzag and spiral trajectories at intermediate and moderately high Re and We in the crystal suspension. The simulation results illustrated that a repeating pattern of swirling vortices was created for smaller bubbles due to the unstable wake and unsteady flow of these bubbles. This is the cause of the smaller bubbles moving in a zigzag way. Larger bubbles showed two counter-rotating trailing vortices at the back of the bubble. These vortices induced a velocity component to the gas-liquid interface and caused a deformation. Hence, the larger bubbles produced a path transition.

  11. THE SIGNAL APPROACH TO MODELLING THE BALANCE OF PAYMENT CRISIS

    Directory of Open Access Journals (Sweden)

    O. Chernyak

    2016-12-01

    Full Text Available The paper considers and presents synthesis of theoretical models of balance of payment crisis and investigates the most effective ways to model the crisis in Ukraine. For mathematical formalization of balance of payment crisis, comparative analysis of the effectiveness of different calculation methods of Exchange Market Pressure Index was performed. A set of indicators that signal the growing likelihood of balance of payments crisis was defined using signal approach. With the help of minimization function thresholds indicators were selected, the crossing of which signalize increase in the probability of balance of payment crisis.

  12. Design and Performance Assessment of a Semi-Active Suspension Model of Tractor Cabin

    Directory of Open Access Journals (Sweden)

    I Ahmadi

    2015-03-01

    Full Text Available Cumulative effect of transmitted vibrations to the tractor driver not only leads to driver health problems, but also reduces the driver working efficiency. Tractor suspension system is one of the methods which is employed to lower the level of transmitted vibrations to the driver. In this study the design and performance assessment of a semi-active suspension model of tractor cabin was considered. Tractor full vibration model was developed first, and subsequently a semi-active ON-OFF damper model was designed. The examination of the model indicated that doubling the piston area and the volume of hydraulic accumulator air chamber, led to 39% increase and 31% reduction of the resonance frequency of transmitted vibrations to the driver, respectively. On the other hand doubling the piston area and the primary air pressure of the accumulator, affected the RMS of transmitted vibration to the driver by 77 cm s-2 reduction and 66 cm s-2 increase, respectively. Moreover, the numerical comparison of the model outputs with and without activation of semi-active cabin suspension, while the model was stimulated with the same input function, led to 43% improvement in RMS acceleration of the transmitted vibrations to the tractor seat. Therefore, the designed semi-active suspension model of cabin was able to attenuate the level of transmitted vibrations to the tractor driver.

  13. Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System

    Directory of Open Access Journals (Sweden)

    Jurkiewicz Andrzej

    2017-09-01

    Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.

  14. ELASTO-KINEMATIC COMPUTATIONAL MODEL OF SUSPENSION WITH FLEXIBLE SUPPORTING ELEMENTS

    Directory of Open Access Journals (Sweden)

    Tomáš Vrána

    2016-04-01

    Full Text Available This paper analyzes the impact of flexibility of individual supporting elements of independent suspension on its elasto-kinematic characteristics. The toe and camber angle are the geometric parameters of the suspension, which waveforms and their changes under the action of vertical, longitudinal and transverse forces affect the stability of the vehicle. To study these dependencies, the computational multibody system (MBS model of axle suspension in the system HyperWorks is created. There are implemented Finite-Element-Method (FEM models reflecting the flexibility of the main supporting elements. These are subframe, the longitudinal arms, transverse arms and knuckle. Flexible models are developed using Component Mode Synthesis (CMS by Craig-Bampton. The model further comprises force elements, such as helical springs, shock absorbers with a stop of the wheel and the anti-roll bar. Rubber-metal bushings are modeled flexibly, using nonlinear deformation characteristics. Simulation results are validated by experimental measurements of geometric parameters of real suspension.

  15. Takagi-Sugeno Fuzzy Model of a One-Half Semiactive Vehicle Suspension: Lateral Approach

    Directory of Open Access Journals (Sweden)

    L. C. Félix-Herrán

    2015-01-01

    Full Text Available This work presents a novel semiactive model of a one-half lateral vehicle suspension. The contribution of this research is the inclusion of actuator dynamics (two magnetorheological nonlinear dampers in the modelling, which means that more realistic outcomes will be obtained, because, in real life, actuators have physical limitations. Takagi-Sugeno (T-S fuzzy approach is applied to a four-degree-of-freedom (4-DOF lateral one-half vehicle suspension. The system has two magnetorheological (MR dampers, whose numerical values come from a real characterization. T-S allows handling suspension’s components and actuator’s nonlinearities (hysteresis, saturation, and viscoplasticity by means of a set of linear subsystems interconnected via fuzzy membership functions. Due to their linearity, each subsystem can be handled with the very well-known control theory, for example, stability and performance indexes (this is an advantage of the T-S approach. To the best of authors’ knowledge, reported work does not include the aforementioned nonlinearities in the modelling. The generated model is validated via a case of study with simulation results. This research is paramount because it introduces a more accurate (the actuator dynamics, a complex nonlinear subsystem model that could be applied to one-half vehicle suspension control purposes. Suspension systems are extremely important for passenger comfort and stability in ground vehicles.

  16. Analysis of Sting Balance Calibration Data Using Optimized Regression Models

    Science.gov (United States)

    Ulbrich, N.; Bader, Jon B.

    2010-01-01

    Calibration data of a wind tunnel sting balance was processed using a candidate math model search algorithm that recommends an optimized regression model for the data analysis. During the calibration the normal force and the moment at the balance moment center were selected as independent calibration variables. The sting balance itself had two moment gages. Therefore, after analyzing the connection between calibration loads and gage outputs, it was decided to choose the difference and the sum of the gage outputs as the two responses that best describe the behavior of the balance. The math model search algorithm was applied to these two responses. An optimized regression model was obtained for each response. Classical strain gage balance load transformations and the equations of the deflection of a cantilever beam under load are used to show that the search algorithm s two optimized regression models are supported by a theoretical analysis of the relationship between the applied calibration loads and the measured gage outputs. The analysis of the sting balance calibration data set is a rare example of a situation when terms of a regression model of a balance can directly be derived from first principles of physics. In addition, it is interesting to note that the search algorithm recommended the correct regression model term combinations using only a set of statistical quality metrics that were applied to the experimental data during the algorithm s term selection process.

  17. Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2016-01-01

    -concentration field coupled to the continuity and Navier–Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model...... is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility...

  18. Existence of Torsional Solitons in a Beam Model of Suspension Bridge

    Science.gov (United States)

    Benci, Vieri; Fortunato, Donato; Gazzola, Filippo

    2017-11-01

    This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.

  19. Five models of players' rule behavior for game balance.

    Science.gov (United States)

    Song, Seungkeun; Kim, Mijin

    2012-09-01

    We present a five-part model of players' rule behaviors in a multiplayer online game (utilization, emergence, usefulness, usefulness-balance, and balance-usefulness). The model was identified through a pilot study involving nine expert players. The model fitness was then verified in a main experiment involving eighteen regular players. Our results showed that the utilization (4 players) and emergence (4 players) models were most frequently used, followed by the balance-usefulness (3 players), usefulness (3 players), and usefulness-balance (2 players) models. The coding scheme for this research was built from video observations and a literature review. We suggest this model is applicable for the implementation of a human-like virtual character's artificial intelligence algorithm in the game editors and the server loader for quality assurance.

  20. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling.

    Science.gov (United States)

    Jibuti, Levan; Zimmermann, Walter; Rafaï, Salima; Peyla, Philippe

    2017-11-01

    Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010)10.1103/PhysRevLett.104.098102].

  1. A Dynamic Model for Load Balancing in Cloud Infrastructure

    Directory of Open Access Journals (Sweden)

    Jitendra Bhagwandas Bhatia

    2015-08-01

    Full Text Available This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform-independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement violations and saves power. To achieve this, incoming requests are monitored for sudden burst, a prediction model is employed to maintain high availability and a power-aware algorithm is applied for choosing a suitable physical node for a virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.For anyone building a private, public or hybrid IaaS cloud infrastructure, load balancing of virtual hosts on a limited number of physical nodes, becomes a crucial aspect. This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement violations and saves power. To achieve this, incoming requests are monitored for sudden burst, prediction model is employed to maintain high availability and power aware algorithm is applied for choosing a suitable physical node for virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.

  2. Formulation and Validation of an Efficient Computational Model for a Dilute, Settling Suspension Undergoing Rotational Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran; Crawford, Nathan C.; Fischer, Paul F.

    2017-04-11

    Designing processing equipment for the mixing of settling suspensions is a challenging problem. Achieving low-cost mixing is especially difficult for the application of slowly reacting suspended solids because the cost of impeller power consumption becomes quite high due to the long reaction times (batch mode) or due to large-volume reactors (continuous mode). Further, the usual scale-up metrics for mixing, e.g., constant tip speed and constant power per volume, do not apply well for mixing of suspensions. As an alternative, computational fluid dynamics (CFD) can be useful for analyzing mixing at multiple scales and determining appropriate mixer designs and operating parameters. We developed a mixture model to describe the hydrodynamics of a settling cellulose suspension. The suspension motion is represented as a single velocity field in a computationally efficient Eulerian framework. The solids are represented by a scalar volume-fraction field that undergoes transport due to particle diffusion, settling, fluid advection, and shear stress. A settling model and a viscosity model, both functions of volume fraction, were selected to fit experimental settling and viscosity data, respectively. Simulations were performed with the open-source Nek5000 CFD program, which is based on the high-order spectral-finite-element method. Simulations were performed for the cellulose suspension undergoing mixing in a laboratory-scale vane mixer. The settled-bed heights predicted by the simulations were in semi-quantitative agreement with experimental observations. Further, the simulation results were in quantitative agreement with experimentally obtained torque and mixing-rate data, including a characteristic torque bifurcation. In future work, we plan to couple this CFD model with a reaction-kinetics model for the enzymatic digestion of cellulose, allowing us to predict enzymatic digestion performance for various mixing intensities and novel reactor designs.

  3. Mathematical modelling of the secondary airspring suspension in railway vehicles and its effect on safety and ride comfort

    Science.gov (United States)

    Facchinetti, Alan; Mazzola, Laura; Alfi, Stefano; Bruni, Stefano

    2010-12-01

    The mathematical model of suspension components in a railway vehicle may have an important effect on the results of vehicle dynamics simulations and their accuracy in reproducing the actual vehicle behaviour. This paper aims to define and compare alternative mathematical modelling approaches for the secondary airspring suspension and to assess their effect on the accuracy of rail vehicle dynamics multibody simulation. To derive reliable models of the suspension, a quasi-static and dynamic characterisation of the suspension was performed by means of a full-scale laboratory experiment. Based on this, two different modelling approaches were developed for the airspring suspension: a quasi-static one, in which the frequency-dependent behaviour of the suspension is neglected, but the coupling between shear and roll stiffness is included, and a dynamic one in which additionally the frequency-dependent behaviour of the suspension in vertical direction is represented using a thermodynamic model, and additionally the dependency of lateral/roll stiffness parameters on the load is incorporated. The results of vehicle dynamics simulations in curved track and/or in the presence of crosswinds and the results of ride comfort calculations are presented, to assess the effect of the models developed, in comparison with a simpler model only reproducing the vertical and lateral stiffness of the suspension. It is demonstrated that the quasi-static coupling effect between shear and roll deformation in the airsprings can have a large effect on the simulation of load transfer effects in curved track and in the presence of crosswinds, and hence remarkably affect the assessment of ride safety and track loading, whereas the dynamic model of the airspring suspension appears to be required when wheel unloading under the action of crosswind is evaluated. Finally, it is shown that a dynamic model of the airspring is required to assess ride comfort correctly, especially when the pneumatic layout

  4. Teaching a Model-based Climatology Using Energy Balance Simulation.

    Science.gov (United States)

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  5. Modeling and Optimization of Vehicle Suspension Employing a Nonlinear Fluid Inerter

    Directory of Open Access Journals (Sweden)

    Yujie Shen

    2016-01-01

    Full Text Available An ideal inerter has been applied to various vibration engineering fields because of its superior vibration isolation performance. This paper proposes a new type of fluid inerter and analyzes the nonlinearities including friction and nonlinear damping force caused by the viscosity of fluid. The nonlinear model of fluid inerter is demonstrated by the experiments analysis. Furthermore, the full-car dynamic model involving the nonlinear fluid inerter is established. It has been detected that the performance of the vehicle suspension may be influenced by the nonlinearities of inerter. So, parameters of the suspension system including the spring stiffness and the damping coefficient are optimized by means of QGA (quantum genetic algorithm, which combines the genetic algorithm and quantum computing. Results indicate that, compared with the original nonlinear suspension system, the RMS (root-mean-square of vertical body acceleration of optimized suspension has decreased by 9.0%, the RMS of pitch angular acceleration has decreased by 19.9%, and the RMS of roll angular acceleration has decreased by 9.6%.

  6. Balancing

    Science.gov (United States)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  7. Local Balancing System from the Business Model Canvas Perspective

    Directory of Open Access Journals (Sweden)

    Matusiak Bożena Ewa

    2016-01-01

    Full Text Available The paper presents an overall view of the business model (BM for the e-balance system for: balancing energy production and consumption in energy efficient, smart neighbourhoods (the e-balance project, FP7-SMARTCITIES-2013 along with its functionalities, based upon the Osterwalder’s canvas methodology. Additionally, this is the second, after two years of work, more incisive evaluation of the BM from the user’s and demo site’s perspective (Bronsbergen, the Netherlands. The aim of this paper is to present results and assess the above mentioned BM in the face its commercialisation and applicability to Europe.

  8. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  9. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  10. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.

    Science.gov (United States)

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  11. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension

    Science.gov (United States)

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  12. Internal model control of inductive magnetic suspension spherical active joints based on fuzzy neural network inverse system

    Directory of Open Access Journals (Sweden)

    Li Zeng

    2015-11-01

    Full Text Available This article puts forward inductive magnetic suspension spherical active joints and has researched on its mechanism. The expression of motor’s electromagnetic torque is derived from the point of power balance of three-dimensional electromagnetic model, and on the basis of the air gap magnetic flux density distribution, we establish the joint’s mathematical model of electromagnetic levitation force. The relationship between the two of displacement, angle, and current and the transfer function expression of motor system are derived by the state equation and the inverse system theory We established the inverse system of joint’s original system using fuzzy neural network theory and simplified coupling relationship of the motor’s complex multivariable to establish ANFIS model of joint’s inverse system. An internal model controller with high robustness and stability was designed, and an internal model control joint pseudo linear system was built. According to the simulation analysis and experimental verification of the joint control system, the conclusion indicates that the rotor has quick dynamic response and high robustness.

  13. Features of Balance Model Development of Exclave Region

    Directory of Open Access Journals (Sweden)

    Timur Rustamovich Gareev

    2015-06-01

    Full Text Available In the article, the authors build a balance model for an exclave region. The aim of the work is to explore the unique properties of exclaves to evaluate the possibility of development of a more complex model for the economy of a region. Exclaves are strange phenomena in both theoretical and practical regional economy. There is lack of comparative models, so it is typically quite challenging to study exclaves. At the same time, exclaves produce better statistics, which gives more careful consideration of cross-regional economic flows. The authors discuss methodologies of model-based regional development forecasting. They analyze balance approach on a more general level of regional governance and individually, on the example of specific territories. Thus, they identify and explain the need to develop balance approach models fitted to the special needs of certain territories. By combining regional modeling for an exclave with traditional balance and simulation-based methods and event-based approach, they come up with a more detailed model for the economy of a region. Having taken one Russian exclave as an example, the authors have developed a simulation event-based long-term sustainability model. In the article, they provide the general characteristics of the model, describe its components, and simulation algorithm. The approach introduced in this article combines the traditional balance models and the peculiarities of an exclave region to develop a holistic regional economy model (with the Kaliningrad region serving as an example. It is important to underline that the resulting model helps to evaluate the degree of influence of preferential economic regimes (such as Free Customs Zone, for example on the economy of a region.

  14. Melanocortin Control of Energy Balance: Evidence from Rodent Models

    Science.gov (United States)

    De Jonghe, Bart C.; Hayes, Matthew R.; Bence, Kendra K.

    2011-01-01

    Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of long term energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed. PMID:21553232

  15. Thermal Storage Power Balancing with Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2013-01-01

    The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination...

  16. Generation of river discharge using water balance computer model ...

    African Journals Online (AJOL)

    The paper presents a study on river discharge generation using a water balance computer model. The results of the data generated shows that the computer program designed gave a good· prediction of the recorded discharge within 95% confidence interval. The model is therefore recommended for other catchments with ...

  17. System Dynamics Modelling for a Balanced Scorecard

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2008-01-01

    Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design/methodology...

  18. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  19. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  20. A Review of Population Balance Modelling for Isothermal Bubbly Flows

    Directory of Open Access Journals (Sweden)

    Sherman C.P. Cheung

    2009-06-01

    Full Text Available In this article, we present a review of the state-of-the-art population balance modelling techniques that have been adopted to describe the phenomenological nature of isothermal bubbly flows. The main focus of the review can be broadly classified into three categories: (i Numerical approaches or solution algorithms of the PBE; (ii Applications of the PBE in practical gas-liquid multiphase problems and (iii Possible aspects of the future development in population balance modelling. For the first category, details of solution algorithms based on both method of moment (MOM and discrete class method (CM that have been proposed in the literature are provided. Advantages and drawbacks of both approaches are also discussed from the theoretical and practical viewpoints. For the second category, applications of existing population balance models in practical multiphase problems that have been proposed in the literature are summarized. Selected existing mathematical closures for modelling the “birth” and “death” rate of bubbles in gas-liquid bubbly flows are introduced. Particular attention is devoted to assess the capability of some selected models in predicting bubbly flow conditions through detail validation studies against experimental data. These studies demonstrate that good agreement can be achieved by the present model by comparing the predicted results against measured data with regards to the radial distribution of void fraction and sauter mean bubble diameter. Finally, weaknesses and limitations of the existing models are revealed are suggestions for further development are discussed. Emerging topics for future population balance studies are provided as to complete the aspect of population balance modelling.

  1. A volume-balance model for flow on porous media

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2015-11-01

    Volume-balance models are used by petroleum engineers for simulating multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Numerical tests for phase separation under gravity are presented for multiphase three dimensional flow in heterogeneous porous media. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER grant number 42536 (DGAJ-SPI-34-170412-217).

  2. Continuous-time model of structural balance.

    Science.gov (United States)

    Marvel, Seth A; Kleinberg, Jon; Kleinberg, Robert D; Strogatz, Steven H

    2011-02-01

    It is not uncommon for certain social networks to divide into two opposing camps in response to stress. This happens, for example, in networks of political parties during winner-takes-all elections, in networks of companies competing to establish technical standards, and in networks of nations faced with mounting threats of war. A simple model for these two-sided separations is the dynamical system dX/dt = X(2), where X is a matrix of the friendliness or unfriendliness between pairs of nodes in the network. Previous simulations suggested that only two types of behavior were possible for this system: Either all relationships become friendly or two hostile factions emerge. Here we prove that for generic initial conditions, these are indeed the only possible outcomes. Our analysis yields a closed-form expression for faction membership as a function of the initial conditions and implies that the initial amount of friendliness in large social networks (started from random initial conditions) determines whether they will end up in intractable conflict or global harmony.

  3. Colloidal suspensions hydrodynamic retention mechanisms in model porous media; Mecanismes de retention hydrodynamique de suspensions colloidales en milieux poreux modeles

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, N.

    1996-04-19

    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs.

  4. Three-dimensional finite-element modelling of a superconducting suspension system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.T.; Paul, R.J.A.; Simkin, J.

    1983-11-01

    The suspension system considered is characterised by a superconducting magnet with an arrangement of superconducting screens to provide stable levitation of a long mild-steel bar. This paper is concerned with static modelling of the magnetic forces for which a nonlinear three-dimensional analysis is required. Problems encountered using the magneto-static program TOSCA are discussed and the code is subsequently extended to accommodate a representation of superconducting screens taped on the critical-state model. Measured and computed results which are in good agreement are presented, leading to further consideration of the practical application of the method.

  5. Development of a Refined Rollover Model That Recognizes the Effects of Suspension and Tire Deformation

    Directory of Open Access Journals (Sweden)

    Xiaowen Song

    2013-01-01

    Full Text Available Vehicle rollover represents one of the most dangerous traffic accidents in the world. To improve the antirollover capability of a vehicle, we established an improved rollover model with a particular focus on the effects of independent suspensions and the lateral deformation of the tire. Based on this model, we further developed a new method to mitigate the rollover occurrence by adjusting the stiffness of the spring and the damping coefficient of the damper. Through simulation tests with a brand of SUV, we demonstrated that these adjustments improved the mitigation control as evidenced by better confined steady value and decreased overshoot of the roll angle.

  6. 1st order mass balance model - Excel and GAMS

    OpenAIRE

    ALS-NSCORT,

    2004-01-01

    Provider Notes:This zipfile contains the Excel files and GAMS code for a solvable version of the NSCORT mass balance.unzip this in an ECN working directory 1. in model_june04.xls, read the intro sheet and update the working directory cell. 2. run the macro create

  7. Uncertainty in a monthly water balance model using the generalized ...

    Indian Academy of Sciences (India)

    Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology. Diego Rivera1,∗. , Yessica Rivas. 2 and Alex Godoy. 3. 1. Laboratory of Comparative Policy in Water Resources Management, University of Concepcion,. CONICYT/FONDAP 15130015, Concepcion, Chile. 2.

  8. Net Balanced Floorplanning Based on Elastic Energy Model

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    with balanced net delays to increase the safety margins of the design. In this paper, we investigate the properties of floorplanning based on the elastic energy model. The B*-tree, which is based on an ordered binary tree, is used for circuit representation and the elastic energy is used as the cost function...

  9. Simple dissolution-reaction model for enzymatic conversion of suspension of solid substrate.

    Science.gov (United States)

    Wolff, A; Zhu, L; Kielland, V; Straathof, A J; Jongejan, J A; Heijnen, J J

    1997-11-20

    Although reactions in substrate suspension are employed in industry for several bioconversion processes, there appears to be no quantitative model available in the literature to rationalize the optimization of these processes. We present a simple model that incorporates the kinetics of substrate dissolution and a simultaneous enzymatic reaction. The model was tested in the alpha-chymotrypsin-catalyzed hydrolysis of an aqueous suspension of dimethyl benzylmethylmalonate to a homogeneous solution of enantiomerically pure monoester. This reaction occurs in the bulk phase, so catalysis by enzyme absorbed at the solid-liquid interface plays no role. The value of the parameters in the model (i.e., the mass transfer coefficient of substrate dissolution (k(L)), the substrate solubility, and the rate constant for the enzymatic reaction) were determined in separate experiments. Using these parameter values, the model gave a good quantitative prediction of the rate of the overall dissolution-reaction process. When the particle size distribution is known, k(L) may also be calculated instead. The model seems to be applicable also for other poorly soluble substrates, other enzymes, and other solvents. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 433-440, 1997.

  10. Development of Matlab Simulink model for dynamics analysis of passive suspension system for lightweight vehicle

    Science.gov (United States)

    Jamali, M. S.; Ismail, K. A.; Taha, Z.; Aiman, M. F.

    2017-10-01

    In designing suitable isolators to reduce unwanted vibration in vehicles, the response from a mathematical model which characterizes the transmissibility ratio of the input and output of the vehicle is required. In this study, a Matlab Simulink model is developed to study the dynamic behaviour performance of passive suspension system for a lightweight electric vehicle. The Simulink model is based on the two degrees of freedom system quarter car model. The model is compared to the theoretical plots of the transmissibility ratios between the amplitudes of the displacements and accelerations of the sprung and unsprung masses to the amplitudes of the ground, against the frequencies at different damping values. It was found that the frequency responses obtained from the theoretical calculations and from the Simulink simulation is comparable to each other. Hence, the model may be extended to a full vehicle model.

  11. Load Balancing of Large Distribution Network Model Calculations

    Directory of Open Access Journals (Sweden)

    MARTINOVIC, L.

    2017-11-01

    Full Text Available Performance measurement and evaluation study of calculations based on load flow analysis in power distribution network is presented. The focus is on the choice of load index as it is the basic input for efficient dynamic load balancing. The basic description of problem along with the proposed architecture is given. Different server resources are inspected and analyzed while running calculations, and based on this investigation, recommendations regarding the choice of load index are made. Short description of used static and dynamic load balancing algorithms is given and the proposition of load index choice is supported by tests run on large real-world power distribution network models.

  12. The balance model for heat transport from hydrolytic reaction mixture

    Directory of Open Access Journals (Sweden)

    Janacova Dagmar

    2017-01-01

    Full Text Available The content of the paper is the industrial application of enzyme hydrolysis of tanning solids waste with a view to minimizing the price of enzyme hydrolysate product, which has widely used. On the base of the energy balance of the enzymatic hydrolysis we estimated the critical minimal charge of a tanning drum. We performed of the critical minimal on the basis of a balance model for heat transport from reaction mixture into the environment through reactor wall. Employing a tanning drum for hydrolytic reaction allows to process tanning wastes in the place of their origin. It means thus considerably to enhancing economics of the whole process.

  13. Balance of payments constrained growth models: history and overview

    Directory of Open Access Journals (Sweden)

    Anthony P. Thirlwall

    2011-12-01

    Full Text Available Thirlwall’s 1979 balance of payments constrained growth model predicts that a country’s long run growth of GDP can be approximated by the ratio of the growth of real exports to the income elasticity of demand for imports assuming negligible effects from real exchange rate movements. The paper surveys developments of the model since then, allowing for capital flows, interest payments on debt, terms of trade movements, and disaggregation of the model by commodities and trading partners. Various tests of the model are discussed, and an extensive list of papers that have examined the model is presented.

  14. Is the stokeslet model sufficient for finding nutrient uptake of microscopic suspension feeders?

    Science.gov (United States)

    Lutton, Alexander T.; Pepper, Rachel E.

    2016-11-01

    Microscopic sessile suspension feeders are part of many aquatic ecosystems. They are single-celled, vary in size from a few to about 100 microns in length, live attached to substrates, and serve important ecological roles as both food for larger organisms and consumers of bacteria and other small particles. These organisms create currents in order to bring food toward them. Understanding these currents may allow us not only deeper insight into the ecology of aquatic ecosystems, but also may enable innovation in water treatment. Simulations of the feeding currents of these organisms typically use a simple model that places a stokeslet above an infinite plane boundary representing the surface of attachment. This model produces a useful approximation for the flow field of the organism, but may be of limited accuracy when the organism is near the boundary. We create a different model composed of a stokeslet and a potential dipole, which form a sphere. This sphere has a sin(θ) tangential velocity boundary condition, accounting for the cell body. Using nutrient flux to the organism as our metric, we investigate the discrepancy between the spherical and stokeslet models in order to determine the efficacy of the stokeslet model as an approximation of single-celled suspension feeders.

  15. T-S Fuzzy Model Based H-Infinity Control for 7-DoF Automobile Electrohydraulic Active Suspension System

    Directory of Open Access Journals (Sweden)

    Chenyu Zhou

    2017-01-01

    Full Text Available This paper presents a double loop controller for a 7-DoF automobile electrohydraulic active suspension via T-S fuzzy modelling technique. The outer loop controller employs a modified H-infinity feedback control based on a T-S fuzzy model to provide the actuation force needed to ensure better riding comfort and handling stability. The resulting optimizing problem is transformed into a linear matrix inequalities solution issue associated with stability analysis, suspension stroke limit, and force constraints. Integrating these via parallel distributed compensation method, the feedback gains are derived to render the suspension performance dependent on the perturbation size and improve the efficiency of active suspensions. Adaptive Robust Control (ARC is then adopted in the inner loop design to deal with uncertain nonlinearities and improve tracking accuracy. The validity of improvements attained from this controller is demonstrated by comparing with conventional Backstepping control and a passive suspension on a 7-DoF simulation example. It is shown that the T-S fuzzy model based controller can achieve favourable suspension performance and energy conservation under both mild and malevolent road inputs.

  16. A Nonlinear Model of Mix Coil Spring – Rubber for Vertical Suspension of Railway Vehicle

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2016-03-01

    Full Text Available The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring - rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components - the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.

  17. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  18. Construction of AN Active Suspension System of a Quarter CAR Model Using the Concept of Sliding Mode Control

    Science.gov (United States)

    YOSHIMURA, T.; KUME, A.; KURIMOTO, M.; HINO, J.

    2001-01-01

    This paper is concerned with the construction of an active suspension system for a quarter car model using the concept of sliding mode control. The active control is derived by the equivalent control and switching function where the sliding surface is obtained by using Linear quadratic control (LQ control) theory. The active control is generated with non-negligible time lag by using a pneumatic actuator, and the road profile is estimated by using the minimum order observer based on a linear system transformed from the exact non-linear system. The experimental result indicates that the proposed active suspension system is more effective in the vibration isolation of the car body than the linear active suspension system based on LQ control theory and the passive suspension system.

  19. A simple model of liquid-crystalline magnetic suspension of anisometric particles

    Energy Technology Data Exchange (ETDEWEB)

    Zakhlevnykh, A.N., E-mail: anz@psu.ru; Lubnin, M.S.; Petrov, D.A.

    2017-06-01

    On the base of molecular-statistical approach we study the phase transition between the ordered (ferromagnetic) and disordered (paramagnetic) phases in liquid-crystalline suspensions of magnetic nanoparticles in an external magnetic field. The free energy and equations of magnetic and orientational equilibrium are obtained in the framework of spherical approximation. - Highlights: • We propose a simple statistical model of ferronematic liquid crystals. • We use spherical approximation to derive equations of state. • We study magnetic field induced order-disorder transitions.

  20. Heat exchanger modelling in central receiver solar power plant using dense particle suspension

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Gómez-García, Fabrisio; González-Aguilar, José; Romero, Manuel; Benoit, Hadrien; Flamant, Gilles

    2017-06-01

    In this paper, a detailed thermodynamic model for a heat exchanger (HX) working with a dense particle suspension (DPS) as heat transfer fluid (HTF) in the solar loop and water-steam as working fluid is presented. HX modelling is based on fluidized bed (FB) technology and its design has been conceived to couple solar plant using DPS as HTF and storage media with Rankine cycle for power generation. Using DPS as heat transfer fluid allows extending operating temperature range what will help to reduce thermal energy storage costs favoring higher energy densities but will also allow running power cycle at higher temperature what will increase its efficiency. Besides HX modelling description, this model will be used to reproduce solar plant performance under steady state and transient conditions.

  1. Combined control effects of brake and active suspension control on the global safety of a full-car nonlinear model

    Science.gov (United States)

    Tchamna, Rodrigue; Youn, Edward; Youn, Iljoong

    2014-05-01

    This paper focuses on the active safety of a full-vehicle nonlinear model during cornering. At first, a previously developed electronic stability controller (ESC) based on vehicle simplified model is applied to the full-car nonlinear model in order to control the vehicle yaw rate and side-slip angle. The ESC system was shown beneficial not only in tracking the vehicle path as close as possible, but it also helped in reducing the vehicle roll angle and influences ride comfort and road-holding capability; to tackle that issue and also to have better attitude motion, making use of optimal control theory the active suspension control gain is developed from a vehicle linear model and used to compute the active suspension control force of the vehicle nonlinear model. The active suspension control algorithm used in this paper includes the integral action of the suspension deflection in order to make zero the suspension deflection steady state and keep the vehicle chassis flat. Keeping the chassis flat reduces the vehicle load transfer and that is helpful for road holding and yaw rate tracking. The effects of the two controllers when they work together are analysed using various computer simulations with different steering wheel manoeuvres.

  2. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1991-01-01

    The sensitivity of the mass balance of the Greenland ice sheet to climate change is studied with an energy-balance model of the ice/snow surface, applied at 200 m elevation intervals for four characteristic regions of the ice sheet. Solar radiation, longwave radiation, turbulent heat fluxes

  3. Dynamical models explaining social balance and evolution of cooperation.

    Science.gov (United States)

    Traag, Vincent Antonio; Van Dooren, Paul; De Leenheer, Patrick

    2013-01-01

    Social networks with positive and negative links often split into two antagonistic factions. Examples of such a split abound: revolutionaries versus an old regime, Republicans versus Democrats, Axis versus Allies during the second world war, or the Western versus the Eastern bloc during the Cold War. Although this structure, known as social balance, is well understood, it is not clear how such factions emerge. An earlier model could explain the formation of such factions if reputations were assumed to be symmetric. We show this is not the case for non-symmetric reputations, and propose an alternative model which (almost) always leads to social balance, thereby explaining the tendency of social networks to split into two factions. In addition, the alternative model may lead to cooperation when faced with defectors, contrary to the earlier model. The difference between the two models may be understood in terms of the underlying gossiping mechanism: whereas the earlier model assumed that an individual adjusts his opinion about somebody by gossiping about that person with everybody in the network, we assume instead that the individual gossips with that person about everybody. It turns out that the alternative model is able to lead to cooperative behaviour, unlike the previous model.

  4. Dynamical models explaining social balance and evolution of cooperation.

    Directory of Open Access Journals (Sweden)

    Vincent Antonio Traag

    Full Text Available Social networks with positive and negative links often split into two antagonistic factions. Examples of such a split abound: revolutionaries versus an old regime, Republicans versus Democrats, Axis versus Allies during the second world war, or the Western versus the Eastern bloc during the Cold War. Although this structure, known as social balance, is well understood, it is not clear how such factions emerge. An earlier model could explain the formation of such factions if reputations were assumed to be symmetric. We show this is not the case for non-symmetric reputations, and propose an alternative model which (almost always leads to social balance, thereby explaining the tendency of social networks to split into two factions. In addition, the alternative model may lead to cooperation when faced with defectors, contrary to the earlier model. The difference between the two models may be understood in terms of the underlying gossiping mechanism: whereas the earlier model assumed that an individual adjusts his opinion about somebody by gossiping about that person with everybody in the network, we assume instead that the individual gossips with that person about everybody. It turns out that the alternative model is able to lead to cooperative behaviour, unlike the previous model.

  5. Rheological Modeling of Macro Viscous Flows of Granular Suspension of Regular and Irregular Particles

    Directory of Open Access Journals (Sweden)

    Anna Maria Pellegrino

    2017-12-01

    Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.

  6. Bilayer Suspension Plasma-Sprayed Thermal Barrier Coatings with Enhanced Thermal Cyclic Lifetime: Experiments and Modeling

    Science.gov (United States)

    Gupta, Mohit; Kumara, Chamara; Nylén, Per

    2017-08-01

    Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.

  7. Pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer.

    Science.gov (United States)

    Yoshimura, Toshio; Takagi, Atsushi

    2004-09-01

    This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and functions by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.

  8. Dynamic energy-balance model predicting gestational weight gain123

    Science.gov (United States)

    Thomas, Diana M; Navarro-Barrientos, Jesus E; Rivera, Daniel E; Heymsfield, Steven B; Bredlau, Carl; Redman, Leanne M; Martin, Corby K; Lederman, Sally A; M Collins, Linda; Butte, Nancy F

    2012-01-01

    Background: Gestational weight gains (GWGs) that exceed the 2009 Institute of Medicine recommended ranges increase risk of long-term postpartum weight retention; conversely, GWGs within the recommended ranges are more likely to result in positive maternal and fetal outcomes. Despite this evidence, recent epidemiologic studies have shown that the majority of pregnant women gain outside the target GWG ranges. A mathematical model that predicts GWG and energy intake could provide a clinical tool for setting precise goals during early pregnancy and continuous objective feedback throughout pregnancy. Objective: The purpose of this study was to develop and validate a differential equation model for energy balance during pregnancy that predicts GWG that results from changes in energy intakes. Design: A set of prepregnancy BMI–dependent mathematical models that predict GWG were developed by using data from a longitudinal study that measured gestational-changes in fat-free mass, fat mass, total body water, and total energy expenditure in 63 subjects. Results: Mathematical models developed for women with low, normal, and high prepregnancy BMI were shown to fit the original data. In 2 independent studies used for validation, model predictions of fat-free mass, fat mass, and total body water matched actual measurements within 1 kg. Conclusions: Our energy-balance model provides plausible predictions of GWG that results from changes in energy intakes. Because the model was implemented as a Web-based applet, it can be widely used by pregnant women and their health care providers. PMID:22170365

  9. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  10. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States

    OpenAIRE

    Singh, Ramesh K.; Senay, Gabriel B.

    2015-01-01

    The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface Energy Balance Algorithm for Land (SEBAL) model, Surface Energy Balance System (SEBS) model, and the Operational Simplified Surface Energy Balance (SSEBop) model—using Landsat images to estimate evapotranspiration (ET) in the Midweste...

  11. Two-phase flow modelling of sediment suspension in the Ems/Dollard estuary

    Science.gov (United States)

    Xu, Chunyang; Dong, Ping

    2017-05-01

    Understanding and quantifying mud suspension and sediment transport processes are of great importance for effective exploitation and sustainable management of estuarine environments. Event-based predictive models are widely used to identify the key interactions and mechanisms that govern the dynamics involved and to provide the essential parameterisation for assessing the long-term morphodynamic evolution of the estuaries. This study develops a one-dimensional-vertical (1DV) Reynolds averaged two-phase model for cohesive sediments resuspension driven by tidal flows. To capture the time-dependent flocculation process more accurately, a new drag force closure which relates empirically to settling velocity of mud flocs with suspended sediment concentration (SSC) is incorporated into the two-phase model. The model is then applied to simulate mud suspension in the Ems/Dollard estuary during two periods (June and August 1996) of tidal forcing. Numerical predictions of bed shear stresses and sediment concentrations at different elevations above the bed are compared with measured variations. The results confirm the importance of including flocculation effects in calculating the settling velocity of mud flocs and demonstrates the sensitivity of prediction with the settling velocity in terms of flocs concentration. Although the two-phase modelling approach can in principle better capture the essential interactions between fluid and sediment phases, its practical advantages over the simpler single phase approach cannot be confirmed for the data periods simulated, partly because the overall suspended sediment concentration measured is rather low and the interaction between the two phases is weak and also because the uncertainties in the relationship between the settling velocity and flocs concentration.

  12. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    CERN Document Server

    Trinschek, Sarah; Thiele, Uwe

    2016-01-01

    Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid-liquid, solid-gas or liquid-gas). The formation of biofilms starts with the attachment of individual bacteria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which describes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading o...

  13. A catchment scale water balance model for FIFE

    Science.gov (United States)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  14. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  15. Effectiveness of different laser systems to kill Enterococcus faecalis in aqueous suspension and in an infected tooth model.

    Science.gov (United States)

    Meire, M A; De Prijck, K; Coenye, T; Nelis, H J; De Moor, R J G

    2009-04-01

    To assess the antibacterial action of laser irradiation (Nd:YAG, KTP), photo activated disinfection (PAD) and 2.5% sodium hypochlorite (NaOCl) on Enterococcus faecalis, in an aqueous suspension and in an infected tooth model. Root canals of 60 human teeth with single straight canals were prepared to apical size 50, autoclaved, inoculated with an E. faecalis suspension and incubated for 48 h. They were randomly allocated to four treatment and one control groups. After treatment, the root canals were sampled by flushing with physiological saline, and the number of surviving bacteria in each canal was determined by plate count and solid phase cytometry. The same experimental or control treatments were completed on aqueous suspensions of E. faecalis, and the number of surviving bacteria was determined in the same way. In aqueous suspension, PAD and NaOCl resulted in a significant reduction in the number of E. faecalis cells (P teeth yielded significantly different results relative to the untreated controls (P faecalis, both in aqueous suspension and in the infected tooth model.

  16. Simulation model of load balancing in distributed computing systems

    Science.gov (United States)

    Botygin, I. A.; Popov, V. N.; Frolov, S. G.

    2017-02-01

    The availability of high-performance computing, high speed data transfer over the network and widespread of software for the design and pre-production in mechanical engineering have led to the fact that at the present time the large industrial enterprises and small engineering companies implement complex computer systems for efficient solutions of production and management tasks. Such computer systems are generally built on the basis of distributed heterogeneous computer systems. The analytical problems solved by such systems are the key models of research, but the system-wide problems of efficient distribution (balancing) of the computational load and accommodation input, intermediate and output databases are no less important. The main tasks of this balancing system are load and condition monitoring of compute nodes, and the selection of a node for transition of the user’s request in accordance with a predetermined algorithm. The load balancing is one of the most used methods of increasing productivity of distributed computing systems through the optimal allocation of tasks between the computer system nodes. Therefore, the development of methods and algorithms for computing optimal scheduling in a distributed system, dynamically changing its infrastructure, is an important task.

  17. Coupling Mechanism and Decoupled Suspension Control Model of a Half Car

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2016-01-01

    Full Text Available A structure decoupling control strategy of half-car suspension is proposed to fully decouple the system into independent front and rear quarter-car suspensions in this paper. The coupling mechanism of half-car suspension is firstly revealed and formulated with coupled damping force (CDF in a linear function. Moreover, a novel dual dampers-based controllable quarter-car suspension structure is proposed to realize the independent control of pitch and vertical motions of the half car, in which a newly added controllable damper is suggested to be installed between the lower control arm and connection rod in conventional quarter-car suspension structure. The suggested damper constantly regulates the half-car pitch motion posture in a smooth and steady operation condition meantime achieving the expected completely structure decoupled control of the half-car suspension, by compensating the evolved CDF.

  18. Eulerian Multiphase Population Balance Model of Atomizing, Swirling Flows

    Directory of Open Access Journals (Sweden)

    Narayana P. Rayapati

    2011-06-01

    Full Text Available An Eulerian/Eulerian multiphase flow model coupled with a population balance model is used as the basis for numerical simulation of atomization in swirling flows. The objective of this exercise is to develop a methodology capable of predicting the local point-wise drop size distribution in a spray, such as would be measured by the Phase Doppler Particle Analyzer (PDA. Model predictions are compared to experimental measurements of particle size distributions in an air-blast atomizer spray to demonstrate good qualitative and quantitative agreement. It is observed that the dependence of velocity on drop size inherent in a multiphase description of the drop cloud appears necessary to capture some features of the experimental data. Using this model, we demonstrate the relative contributions of secondary atomization and transport to the variation observed in the downstream spray drop size distribution.

  19. Energy balance of forage consumption by phyllophagous insects: optimization model

    Directory of Open Access Journals (Sweden)

    O. V. Tarasova

    2015-06-01

    Full Text Available The model of optimal food consumption by phytophagous insects proposed, in which the metabolic costs are presented in the form of two components – the cost of food utilization and costs for proper metabolism of the individuals. Two measures were introduced – the «price» of food conversion and the «price» of biomass synthesis of individuals to assess the effectiveness of food consumption by caterpillars. The proposed approach to the description of food consumption by insects provides the exact solutions of the equation of energy balance of food consumption and determining the effectiveness of consumption and the risk of death of the individual. Experiments on larvae’s feeding in laboratory conditions were carried out to verify the model. Caterpillars of Aporia crataegi L. (Lepidoptera, Pieridae were the research subjects. Supply­demand balance, calculated value of the environmental price of consumption and efficiency of food consumption for each individual were determined from experimental data. It was found that the fertility of the female does not depend on the weight of food consumed by it, but is linearly dependent on the food consumption efficiency index. The greater the efficiency of food consumption by an individual, the higher its fertility. The data obtained in the course of experiments on the feeding caterpillars Aporia crataegi were compared with the data presented in the works of other authors and counted in the proposed model of consumption. Calculations allowed estimation of the critical value of food conversion price below which the energy balance is negative and the existence of an individual is not possible.

  20. A carbon balance model for the great dismal swamp ecosystem.

    Science.gov (United States)

    Sleeter, Rachel; Sleeter, Benjamin M; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd; Zhu, Zhiliang

    2017-12-01

    Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985-2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus. Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha -1 /year -1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires

  1. A carbon balance model for the great dismal swamp ecosystem

    Directory of Open Access Journals (Sweden)

    Rachel Sleeter

    2017-01-01

    Full Text Available Abstract Background Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. Results We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C coming from above-ground biomass and detritus. Conclusions Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic white cedar, the total

  2. A carbon balance model for the great dismal swamp ecosystem

    Science.gov (United States)

    Sleeter, Rachel; Sleeter, Benjamin M.; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd J.; Zhu, Zhiliang

    2017-01-01

    BackgroundCarbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.ResultsWe modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.ConclusionsNatural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic white cedar), the total soil carbon loss from the

  3. Aqueous suspension methods of carbon-based nanomaterials and biological effects on model aquatic organisms.

    Science.gov (United States)

    Gao, Jie; Llaneza, Veronica; Youn, Sejin; Silvera-Batista, Carlos A; Ziegler, Kirk J; Bonzongo, Jean-Claude J

    2012-01-01

    The preparation of aqueous suspensions of carbon-based nanomaterials (NMs) requires the use of dispersing agents to overcome their hydrophobic character. Although studies on the toxicity of NMs have focused primarily on linking the characteristics of particles to biological responses, the role of dispersing agents has been overlooked. This study assessed the biological effects of a number of commonly used dispersing agents on Pseudokirchneriella subcapitata and Ceriodaphnia dubia as model test organisms. The results show that for a given organism, NM toxicity can be mitigated by use of nontoxic surfactants, and that a multispecies approach is necessary to account for the sensitivity of different organisms. In addition to the intrinsic physicochemical properties of NMs, exposure studies should take into account the effects of used dispersing fluids. Copyright © 2011 SETAC.

  4. Spot counting on fluorescence in situ hybridization in suspension images using Gaussian mixture model

    Science.gov (United States)

    Liu, Sijia; Sa, Ruhan; Maguire, Orla; Minderman, Hans; Chaudhary, Vipin

    2015-03-01

    Cytogenetic abnormalities are important diagnostic and prognostic criteria for acute myeloid leukemia (AML). A flow cytometry-based imaging approach for FISH in suspension (FISH-IS) was established that enables the automated analysis of several log-magnitude higher number of cells compared to the microscopy-based approaches. The rotational positioning can occur leading to discordance between spot count. As a solution of counting error from overlapping spots, in this study, a Gaussian Mixture Model based classification method is proposed. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) of GMM are used as global image features of this classification method. Via Random Forest classifier, the result shows that the proposed method is able to detect closely overlapping spots which cannot be separated by existing image segmentation based spot detection methods. The experiment results show that by the proposed method we can obtain a significant improvement in spot counting accuracy.

  5. The balanced care model for global mental health.

    Science.gov (United States)

    Thornicroft, G; Tansella, M

    2013-04-01

    For too long there have been heated debates between those who believe that mental health care should be largely or solely provided from hospitals and those who adhere to the view that community care should fully replace hospitals. The aim of this study was to propose a conceptual model relevant for mental health service development in low-, medium- and high-resource settings worldwide. Method We conducted a review of the relevant peer-reviewed evidence and a series of surveys including more than 170 individual experts with direct experience of mental health system change worldwide. We integrated data from these multiple sources to develop the balanced care model (BCM), framed in three sequential steps relevant to different resource settings. Low-resource settings need to focus on improving the recognition and treatment of people with mental illnesses in primary care. Medium-resource settings in addition can develop 'general adult mental health services', namely (i) out-patient clinics, (ii) community mental health teams (CMHTs), (iii) acute in-patient services, (iv) community residential care and (v) work/occupation. High-resource settings, in addition to primary care and general adult mental health services, can also provide specialized services in these same five categories. The BCM refers both to a balance between hospital and community care and to a balance between all of the service components (e.g. clinical teams) that are present in any system, whether this is in low-, medium- or high-resource settings. The BCM therefore indicates that a comprehensive mental health system includes both community- and hospital-based components of care.

  6. Probability model of solid to liquid-like transition of a fluid suspension after a shear flow onset

    Czech Academy of Sciences Publication Activity Database

    Nouar, C.; Říha, Pavel

    2008-01-01

    Roč. 34, č. 5 (2008), s. 477-483 ISSN 0301-9322 R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : laminar suspension flow * liquid-liquid interface * probability model Subject RIV: BK - Fluid Dynamics Impact factor: 1.497, year: 2008

  7. Modeled Analysis of Entrance of Colloid Suspensions into the Middle Ear Cavity

    NARCIS (Netherlands)

    Ariana, Bahar; Geerse, Simon; Schot, Linda J.; Bos, Lieuwe D. J.

    2016-01-01

    Otic suspensions have a positive effect on the duration of otorrhea in children with a tympanostomy tube. It is still questionable how eardrops reach the middle ear. We hypothesized that otic suspensions do not pass the tympanostomy tube if the middle ear is dry but pass by diffusion when wet. The

  8. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  9. Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parameterization

    NARCIS (Netherlands)

    Klok, E.J.; Oerlemans, J.

    2004-01-01

    This paper presents a study of the climate sensitivity of the mass balance of Morteratschgletscher in Switzerland, estimated from a two-dimensional mass balance model. Since the albedo scheme chosen is often the largest error source in mass balance models, we investigated the impact of using

  10. The modelled liquid water balance of the Greenland Ice Sheet

    Science.gov (United States)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  11. Megacity project: Liwa, climate and water balance modeling

    Science.gov (United States)

    Chamorro, Alejandro; Bardossy, Andras

    2010-05-01

    Megacity project: Liwa, climate and water balance modeling Peru uses to face different natural phenomena such as El Nino and La Nina phenomena and, like many cities around the word, the climate change effects. Its capital Lima, located in a region where annual precipitation is about 9 mm, has a high hydrological cycle vulnerability which is demonstrated in periods of drought and extreme drought. Accurate and reliable methodology is requiring studying the impact of all these problems in the water supply of Lima. A statistical downscaling scheme (Bardossy, 2002) will be used to generate time series of different local climate scenarios in order to be applied in hydrological models. The conceptual model HBV (Bergström, 1995) is used to simulate water discharges at certain points of the catchments under study, water balance groundwater and for the estimation of storage volume in different reservoirs. As already mentioned, El Nino and La Nina currents influence the hydrological cycle. Previous studies have shown that these phenomena have serious impacts in Peru. In order to quantify these impacts in the area of interest we have analyzed the magnitude of the precipitation in several stations in years in which El Nino occurred, and in years where El Nino did not occurred. The next step is to increase the temporal resolution by incorporating new data. Due to the high vulnerability of the water supply system in Lima, potential new water sources are required. In particular, the catchment of Mantaro (including existing lakes) on the other side of Los Andes Mountains provides potential new alternatives for adding water to the current system. Alternatives for water transportation include using existing long tunnels which connect Mantaro with Rimac, where the majority of the lakes are located. Finally, the global climate models simulations for the coming years, considering different scenarios, will be used as an indicator and to estimate water availability for human use (city

  12. Increasing process integrity in global scale water balance models

    Science.gov (United States)

    Plöger, Lisa; Mewes, Benjamin; Oppel, Henning; Schumann, Andreas

    2017-04-01

    Hydrological models on a global or continental scale are often used to model human impact on the water balance in data scarce regions. Therefore, they are not validated for a time series of runoff measured at gauges but for long term estimates. The simplistic model GlobWat was introduced by the FAO to predict irrigation water demand based on open source data for continental catchments. Originally, the model was not designed to process time series, but to estimate the water demand on long-time averages of precipitation and evapotranspiration. Therefore the emphasis of detail of GlobWat was focused on crop evapotranspiration and water availability in agricultural regions. In our study we wanted to enhance the modelling in detail to forest evapotranspiration on the one hand and to time series simulation on the other hand. Meanwhile, we tried to keep the amount of input data as small as possible or at least limit it to open source data. Our objectives derived from case studies in the forest dominated catchments of Danube and Mississippi. With the use of Penman-Montheith equation as fundamental equation within the original GlobWat model, evapotranspiration losses in these regions could not be simulated adequately. As this being the fact, the water availability of downstream regions dominated by agriculture might be overestimated and hence estimation of irrigation demands biased. Therefore, we implemented a Shuttleworth & Calder as well as a Priestly-Taylor approach for evapotranspiration calculation of forested areas. Both models are compared and evaluated based on monthly time series validation of the model with runoff series provided by GRDC (Global Runoff Data Center). For an additional extension of the model we added a simple one-parameter snow-routine. In our presentation we compare the different stages of modelling to demonstrate the options to extent and validate these models with observed data on an appropriate scale.

  13. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    Science.gov (United States)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  14. Evaluation of a distributed catchment scale water balance model

    Science.gov (United States)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  15. A Generic Water Balance Model for a Trench Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Choi, Hee Joo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  16. The modelled liquid water balance of the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    C. R. Steger

    2017-11-01

    Full Text Available Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960–2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model–observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a−1 during 1990–2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a−1, respectively, where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  17. Evaluation of a road dust suspension model for predicting the concentrations of PM 10 in a street canyon

    Science.gov (United States)

    Kauhaniemi, M.; Kukkonen, J.; Härkönen, J.; Nikmo, J.; Kangas, L.; Omstedt, G.; Ketzel, M.; Kousa, A.; Haakana, M.; Karppinen, A.

    2011-07-01

    We have slightly refined, evaluated and tested a mathematical model for predicting the vehicular suspension emissions of PM 10. The model describes particulate matter generated by the wear of road pavement, traction sand, and the processes that control the suspension of road dust particles into the air. However, the model does not address the emissions from the wear of vehicle components. The performance of this suspension emission model has been evaluated in combination with the street canyon dispersion model OSPM. We used data from a measurement campaign that was conducted in the street canyon Runeberg Street in Helsinki from 8 January to 2 May, 2004. The model reproduced fairly well the seasonal variation of the PM 10 concentrations, also during the time periods, when studded tyres and anti-skid treatments were commonly in use. For instance, the index of agreement (IA) was 0.83 for the time series of the hourly predicted and observed concentrations of PM 10. The predictions of the model were found to be sensitive to precipitation and street traction sanding. The main uncertainties in the predictions are probably caused by (i) the cleaning processes of the streets, which are currently not included in the model, (ii) the uncertainties in the estimation of the sanding days, and (iii) the uncertainties in the evaluation of precipitation. This study provides more confidence that this model could potentially be a valuable tool of assessment to evaluate and forecast the suspension PM 10 emissions worldwide. However, a further evaluation of the model is needed against other datasets in various vehicle fleet, speed and climatic conditions.

  18. Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments

    Science.gov (United States)

    Ganvir, Ashish; Kumara, Chamara; Gupta, Mohit; Nylen, Per

    2017-01-01

    Axial suspension plasma spraying (ASPS) can generate microstructures with higher porosity and pores in the size range from submicron to nanometer. ASPS thermal barrier coatings (TBC) have already shown a great potential to produce low thermal conductivity coatings for gas turbine applications. It is important to understand the fundamental relationships between microstructural defects in ASPS coatings such as crystallite boundaries, porosity etc. and thermal conductivity. Object-oriented finite element (OOF) analysis has been shown as an effective tool for evaluating thermal conductivity of conventional TBCs as this method is capable of incorporating the inherent microstructure in the model. The objective of this work was to analyze the thermal conductivity of ASPS TBCs using experimental techniques and also to evaluate a procedure where OOF can be used to predict and analyze the thermal conductivity for these coatings. Verification of the model was done by comparing modeling results with the experimental thermal conductivity. The results showed that the varied scaled porosity has a significant influence on the thermal conductivity. Smaller crystallites and higher overall porosity content resulted in lower thermal conductivity. It was shown that OOF could be a powerful tool to predict and rank thermal conductivity of ASPS TBCs.

  19. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    Science.gov (United States)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  20. Population Balance Models: A useful complementary modelling framework for future WWTP modelling

    DEFF Research Database (Denmark)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel

    2014-01-01

    Population Balance Models (PBMs) represent a powerful modelling framework for the description of the dynamics of properties that are characterised by statistical distributions. This has been demonstrated in many chemical engineering applications. Modelling efforts of several current and future unit...... processes in WWTPs could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance. In these cases, current models that rely on average properties cannot sufficiently captured the true behaviour. Examples are bubble size......, floc size, crystal size or granule size,... PBMs can be used to provide new insights that can be embedded in our current models to improve their predictive capability. This paper provides an overview of current applications and the future potential of PBMs in the field of WWT modelling, introducing new...

  1. A performance measurement using balanced scorecard and structural equation modeling

    Directory of Open Access Journals (Sweden)

    Rosha Makvandi

    2014-02-01

    Full Text Available During the past few years, balanced scorecard (BSC has been widely used as a promising method for performance measurement. BSC studies organizations in terms of four perspectives including customer, internal processes, learning and growth and financial figures. This paper presents a hybrid of BSC and structural equation modeling (SEM to measure the performance of an Iranian university in province of Alborz, Iran. The proposed study of this paper uses this conceptual method, designs a questionnaire and distributes it among some university students and professors. Using SEM technique, the survey analyzes the data and the results indicate that the university did poorly in terms of all four perspectives. The survey extracts necessary target improvement by presenting necessary attributes for performance improvement.

  2. Modeling and analysis of linear hyperbolic systems of balance laws

    CERN Document Server

    Bartecki, Krzysztof

    2016-01-01

    This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

  3. Mass-balance model for predicting nitrate in ground water

    Science.gov (United States)

    Frimpter, Michael H.; Donohue, John J.; Rapacz, Michael V.

    1990-01-01

    A mass-balance accounting model can be used to guide the management of septic systems and fertilizers to control the degradation of ground-water quality in zones of an aquifer that contribute water to public-supply wells. The nitrate concentration of the mixture in the well can be predicted for steady-state conditions by calculating the concentration that results from the total weight of nitrogen and total volume of water entering the zone of contribution to the well. These calculations will allow water-quality managers to predict the nitrate concentrations that would be produced by different types and levels of development, and to plan development accordingly. Computations for different development schemes provide a technical basis for planners and managers to compare water-quality effects and to select alternatives that limit nitrate concentration in wells.

  4. Mass balance modeling of arsenic processes in cropland soils.

    Science.gov (United States)

    Bar-Yosef, B; Chang, A C; Page, A L

    2005-04-01

    This study delineated the mathematical forms for the reactions involved in the mass balance of As in cropland soils. Even mathematically simplified, many model parameters are required to define the reactive processes involved. Example simulations were conducted based on the range of parameter values and initial conditions derived from published literature. The outcomes showed that the As inputs due to fertilizers and irrigation water caused total As content of the root zone to gradually increase over time. The plant uptake and leaching were equally important as pathways for removal of the added As. In turn, the dissolution kinetics of the mineral phase and the distribution coefficient of the adsorbed phase affected the availability of the As for plant uptake and leaching. Parameters based on laboratory-derived data on the dissolution of As mineral phase, mineralization and oxidation of As(III), and the As plant uptake however appeared to overestimate the As transformations in soils. While the development of mathematical model was a straightforward process, its application to realistic situations was hindered by difficulties of defining model parameter values with confidence. Current knowledge on the processes and reactions of As transformation in the soil-plant system is inadequate to calibrate or validate the model. Studies are needed to understand the kinetics of soil As mineral dissolution and precipitation and the dynamics of root growth and As uptake by plant in soils.

  5. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    Directory of Open Access Journals (Sweden)

    Karin John

    2016-08-01

    Full Text Available Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid- liquid, solid-gas or liquid-gas. The formation of biofilms starts with the attachment of individual bac- teria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which de- scribes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading of biofilms. It explicitly includes the wetting properties of the biofilm on the agar substrate via a dis- joining pressure and can therefore give insight into the interplay between passive surface forces and bioactive growth processes.

  6. A distributed energy-balance melt model of an alpine debris-covered glacier

    OpenAIRE

    Fyffe, Catriona; Reid, Tim; Brock, Benjamin; Kirkbride, Martin; Diolaiuti, Guglielmina; Smiraglia, Claudio; Diotri, Fabrizio

    2014-01-01

    Distributed energy-balance melt models have rarely been applied to glaciers with extensive supraglacial debris cover. This paper describes the development of a distributed melt model and its application to the debris-covered Miage glacier, western Italian Alps, over two summer seasons. Sub-debris melt rates are calculated using an existing debris energy-balance model (DEB-Model), and melt rates for clean ice, snow and partially debris-covered ice are calculated using standard energy-balance e...

  7. Application of Stochastic Approaches to Modelling Suspension Flow in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Yuan, Hao

    2012-01-01

    briefly discussed. The population balance models growing out of the Boltzmann-Smolukhowski formalism take into account the particle and the pore size distributions. A system of integral-differential kinetic equations for the particle transport is derived and averaged. The continuous-time random walk...... theory considers the distribution of the residence times of particles in pores. The transport equation derived in the framework of CTRW contains a convolution integral with a memory kernel accounting for the particle flight distribution. An important simplification of the CTRW formalism, its reduction...

  8. Balancing reserves within a decarbonized European electricity system in 2050. From market developments to model insights

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Casimir [German Institute for Economic Research (DIW Berlin), Berlin (Germany). Dept. of Energy, Transportation, Environment; Univ. of Technology, Berlin (Germany). Workgroup for Infrastructure Policy (WIP)

    2017-03-30

    This paper expands the discussion about future balancing reserve provision to the long-term perspective of 2050. Most pathways for a transformation towards a decarbonized electricity sector rely on very high shares of fluctuating renewables. This can be a challenge for the provision of balancing reserves, although their influence on the balancing cost is unclear. Apart from the transformation of the generation portfolio, various technical and regulatory developments within the balancing framework might further influence balancing costs: i) dynamic dimensioning of balancing reserves, ii) provision by fluctuating renewables or new (battery) storage technologies, and iii) exchange of balancing reserves between balancing zones. The first part of this paper discusses and transforms these developments into quantitative scenario definitions. The second part applies these scenarios to dynELMOD (dynamic Electricity Model), an investment model of the European electricity system that is extended to include balancing reserve provision. In contrast to other models applied in most papers on balancing reserves, this model is capable of evaluating the interdependencies between developments in balancing reserve provision and high shares of fluctuating renewables jointly. The results show that balancing reserve cost can be kept at current levels for a renewable electricity system until 2050, when using a dynamic reserve sizing horizon. Apart from the sizing horizon, storage capacity withholding duration and additional balancing demand from RES are the main driver of balancing costs. Renewables participation in balancing provision is mainly important for negative reserves, while storages play an important role for the provision of positive reserves. However, only on very few occasions, additional storage investments are required for balancing reserve provision, as most of the time sufficient storage capacities are available in the electricity system.

  9. Statistical model for suspension transport in porous media; Modelo estatistico para o transporte de suspensoes em meios porosos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano dos; Barros, Paulo [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    An analytical model for transport of particulate suspensions in porous medium is discussed. The model takes microscopic rock characteristics into account and considers that size exclusion is the dominant particle retention mechanism. Analytical solutions for suspended and retained particle concentrations are obtained and the inverse problem is solved, allowing the filtration coefficients determination from experiments. The filtration coefficients for the proposed and the classical deep bed filtration models are calculated from experimental data available in the literature and the results are compared. Finally, it is shown that the proposed model tends to the classical deep bed filtration model when the particle retention probability tends to zero. (author)

  10. Simultaneous mass balance inverse modeling of methane and carbon monoxide

    Science.gov (United States)

    Butler, T. M.; Rayner, P. J.; Simmonds, I.; Lawrence, M. G.

    2005-11-01

    We perform a simultaneous mass-balance inversion of atmospheric methane (CH4) and carbon monoxide (CO) using measurements from the NOAA/CMDL Cooperative Air Sampling Network and a model of tropospheric transport and background chemistry over the period 1990-2000. Our method has a spatial resolution of a semihemisphere and a temporal resolution of 1 month. The deduced CO sources show relatively low interannual variability except around the major biomass burning event in 1997-1998, when we calculate an anomalous emission between July 1997 and December 1998 of 270 Tg(CO). This is enough to suppress the modeled global air mass weighted hydroxyl radical (OH) concentration during this time by 2.2%, and account for 75% of the observed increase in CH4 mixing ratios during 1998. We compare our implied CH4/CO emissions factors with published biomass burning emissions factors, suggesting that the remainder of the increase in CH4 observed in 1998 is due to anomalously high biomass burning emissions, with CH4 emissions from wetlands showing a small negative anomaly in 1998.

  11. Foot placement in balance recovery : complex humans vs simple model

    NARCIS (Netherlands)

    Vlutters, Mark

    2017-01-01

    Maintaining balance in daily life is very common to us. For a healthy individual, a fall is simply not supposed to happen. Unfortunately, various conditions such as stroke, spinal cord injury, or aging can lead to balance problems and affect a person's mobility. Robotic devices such as powered

  12. The modelled liquid water balance of the Greenland Ice Sheet

    NARCIS (Netherlands)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-01-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore

  13. Modeling of the ecological balance of construction and demolition facilities

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2017-09-01

    Full Text Available Anthropogenic impact of construction is diverse in nature and occurs at all stages of construction activities: beginning with the extraction of building materials and ending with the commissioning of completed construction projects, demolition of buildings, installations, and facilities with no life cycles. Stage-by-stage restoration of the natural environment in the territories disturbed by construction along with the rational use of Russia’s natural resources — land, water, forests and subsoil — is a priority in respect of both ecological safety and sustainable development of Russian society and the state. In the current multifaceted problem selected as the focus of the study that deals with the resource-saving and waste management in a building complex, the economic, civil, environmental, industrial, social relations defining the subject of the present study are closely interrelated. The research subject of this paper is represented by the processes of negative impact of construction on the components of the natural environment; the management of construction wastes and demolition of buildings, installations, facilities. This also includes issues of accounting and assessment of the potential economic damage to the environment and human health as a result of construction and demolition in justifying the costs of investment projects in this area. The purpose of the study is to create and justify the methodology for the formation of the organizational and structural as well as the economic model of the ecological balance of construction and demolition facilities. The background materials for this scientific research are guidelines, standards, methodologies, methodological recommendations, project and regulatory documentation in the field of construction, environmental protection and waste management, published data and materials of national and foreign scientific research on this subject. The methods of scientific research are based on the

  14. Inactivation and sublethal injury of Escherichia coli and Listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice

    Science.gov (United States)

    Sokołowska, Barbara; Skąpska, Sylwia; Niezgoda, Jolanta; Rutkowska, Małgorzata; Dekowska, Agnieszka; Rzoska, Sylwester J.

    2014-01-01

    Cells exposed to different physical and chemical treatments, including high hydrostatic pressure (HHP), suffer from injuries that could be reversible in food materials when stored. Escherichia coli and Listeria innocua cells suspended in phosphate-buffered saline (PBS) (model suspensions), and acidified beetroot juice were subjected to a pressure of 400 MPa at a temperature of 20°C for up to 10 min. The difference between the viable and non-injured cells was used to estimate the number of injured survivors. The reduction in E. coli cell number was 3.4-4.1 log after 10 min pressurization in model suspensions and 6.2 log in beetroot juice. Sublethally injured cells in PBS accounted for up to 2.7 log after 10 min HHP treatment and 0.8 log in beetroot juice. The reduction in L. innocua cell number after 10 min pressure treatment reached from 3.8 to 4.8 log, depending on the initial concentration in model suspensions. Among the surviving L. innocua cells, even up to 100% were injured. L. innocua cells were completely inactivated after 1 min HHP treatment in beetroot juice.

  15. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  16. A mass balance model for the Eurasian ice sheet for the last 120,000 years

    NARCIS (Netherlands)

    van den Berg, J.; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2008-01-01

    We present a mass balance model for Eurasia which is based on the calculation of accumulation from a moisture balance concept. The model is forced with 500 hPa temperatures from GCM time slices at LGM and present day. The model simulates key characteristics, such as control on the size of ice sheets

  17. A constraint programming model for mixed model type 2 assembly line balancing problem

    Directory of Open Access Journals (Sweden)

    Hacı Mehmet Alağaş

    2016-08-01

    Full Text Available This paper presents a new constraint programming model for mixed-model assembly line balancing problem. The proposed model minimizes the cycle time for a given number of stations. The proposed model is tested with literature problems and its performance is evaluated by comparing to mathematical model. Best obtained solution and elapsed CPU time are used as performance criteria. The experimental results show that the proposed constraint programming model performs well and can be used as an alternative modeling technique to solve the problem.

  18. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Science.gov (United States)

    Liu, Yunsong; Cai, Jian-Feng; Zhan, Zhifang; Guo, Di; Ye, Jing; Chen, Zhong; Qu, Xiaobo

    2015-01-01

    Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B) converges faster than previously proposed algorithms accelerated proximal algorithm (APG) and alternating directional method of multipliers for balanced model (ADMM-B).

  19. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  20. Modelling and Experimental Study on Active Energy-Regenerative Suspension Structure with Variable Universe Fuzzy PD Control

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2016-01-01

    Full Text Available A novel electromagnetic active suspension with an energy-regenerative structure is proposed to solve the suspension’s control consumption problem. For this new system, a 2-DOF quarter-car model is built, and dynamics performances are studied using the variable universe fuzzy theory and the PD control approach. A self-powered efficiency concept is defined to describe the regenerative structure’s contribution to the whole control consumption, and its influent factors are also discussed. Simulations are carried out using software Matlab/Simulink, and experiments are conducted on the B-class road. The results demonstrate that the variable universe fuzzy control can recycle more than 18 percent vibration energy and provide over 11 percent power for the control demand. Furthermore, the new suspension system offers a smaller body acceleration and decreases dynamic tire deflection compared to the passive ones, so as to improve both the ride comfort and the safety.

  1. Key performance indicators in hospital based on balanced scorecard model

    Directory of Open Access Journals (Sweden)

    Hamed Rahimi

    2017-01-01

    Full Text Available Introduction: Performance measurement is receiving increasing verification all over the world. Nowadays in a lot of organizations, irrespective of their type or size, performance evaluation is the main concern and a key issue for top administrators. The purpose of this study is to organize suitable key performance indicators (KPIs for hospitals’ performance evaluation based on the balanced scorecard (BSC. Method: This is a mixed method study. In order to identify the hospital’s performance indicators (HPI, first related literature was reviewed and then the experts’ panel and Delphi method were used. In this study, two rounds were needed for the desired level of consensus. The experts rated the importance of the indicators, on a five-point Likert scale. In the consensus calculation, the consensus percentage was calculated by classifying the values 1-3 as not important (0 and 4-5 to (1 as important. Simple additive weighting technique was used to rank the indicators and select hospital’s KPIs. The data were analyzed by Excel 2010 software. Results: About 218 indicators were obtained from a review of selected literature. Through internal expert panel, 77 indicators were selected. Finally, 22 were selected for KPIs of hospitals. Ten indicators were selected in internal process perspective and 5, 4, and 3 indicators in finance, learning and growth, and customer, respectively. Conclusion: This model can be a useful tool for evaluating and comparing the performance of hospitals. However, this model is flexible and can be adjusted according to differences in the target hospitals. This study can be beneficial for hospital administrators and it can help them to change their perspective about performance evaluation.

  2. Physical theory for near-bed turbulent particle suspension capacity

    Science.gov (United States)

    Eggenhuisen, Joris T.; Cartigny, Matthieu J. B.; de Leeuw, Jan

    2017-05-01

    The inability to capture the physics of solid-particle suspension in turbulent fluids in simple formulas is holding back the application of multiphase fluid dynamics techniques to many practical problems in nature and society involving particle suspension. We present a force balance approach to particle suspension in the region near no-slip frictional boundaries of turbulent flows. The force balance parameter Γ contains gravity and buoyancy acting on the sediment and vertical turbulent fluid forces; it includes universal turbulent flow scales and material properties of the fluid and particles only. Comparison to measurements shows that Γ = 1 gives the upper limit of observed suspended particle concentrations in a broad range of flume experiments and field settings. The condition of Γ > 1 coincides with the complete suppression of coherent turbulent structures near the boundary in direct numerical simulations of sediment-laden turbulent flow. Γ thus captures the maximum amount of sediment that can be contained in suspension at the base of turbulent flow, and it can be regarded as a suspension capacity parameter. It can be applied as a simple concentration boundary condition in modelling studies of the dispersion of particulates in environmental and man-made flows.

  3. Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin

    OpenAIRE

    Jiang Li; Xiaomin Mao; Songhao Shang; Steenhuis, Tammo S.

    2017-01-01

    Quantifying components of soil water balance in farmland of the middle reaches of Heihe River Basin is essential for efficiently scheduling and allocating limited water resources for irrigation in this arid region. A soil water balance model based on empirical assumptions in the vadose zone of farmland was developed and simulation results were compared/validated with results by the numerical model HYDRUS-1D. Results showed a good coherence between the simulated results of the water balance mo...

  4. Fuzzy Model of Autogenous Suspension Coal Cleaning / Model Rozmyty Procesu Wzbogacania Węgla W Zawiesinie Autogenicznej

    Science.gov (United States)

    Benović, Tomo; Miljanović, Igor; Vujić, Slobodan

    2012-12-01

    The paper presents one of the possible approaches to fuzzy logic modeling of coal cleaning in autogenous suspension. In the scope of reviewing the problem in general, the process algorithm and the structural model of coal cleaning were set up. The paper deals with the flow of fuzzy logic model creation following the example of coal cleaning plant of the "Bogutovo selo" open pit mine of the Mine and Thermal Power Plant Ugljevik. The model is set up on the MATLAB software platform. Fuzzy model testing results, presented at the end of paper confirms applicability and reliability of the model. The discrepancies between the model and the real process parameters are within the limits of allowed industrial error. W pracy przedstawiono jedną z dostępnych metod modelowania rozmytego zastosowaną do modelowania procesu wzbogacania węgla w zawiesinie autogenicznej. Analiza problemu obejmuje przedstawienie algorytmu procesu wzbogacania oraz jego model strukturalny. W pracy przedstawiono proces tworzenia modelu rozmytego na przykładzie zakładu wzbogacania `Bogutovo selo' przy kopalni odkrywkowej będącej częścią zakładów górniczych i elektrowni Ugljevik. Model stworzono przy wykorzystaniu platformy MATLAB. Wyniki testowania modelu rozmytego zaprezentowane w artykule potwierdzają przydatność i wiarygodność modelu. Rozbieżności pomiędzy wynikami modelowania a parametrami rzeczywistych procesów mieszczą się w dopuszczalnych przy procesach przemysłowych granicach tolerancji błędu.

  5. FE Model Updating on an In-Service Self-Anchored Suspension Bridge with Extra-Width Using Hybrid Method

    Directory of Open Access Journals (Sweden)

    Zhiyuan Xia

    2017-02-01

    Full Text Available Nowadays, many more bridges with extra-width have been needed for vehicle throughput. In order to obtain a precise finite element (FE model of those complex bridge structures, the practical hybrid updating method by integration of Gaussian mutation particle swarm optimization (GMPSO, Kriging meta-model and Latin hypercube sampling (LHS was proposed. By demonstrating the efficiency and accuracy of the hybrid method through the model updating of a damaged simply supported beam, the proposed method was applied to the model updating of a self-anchored suspension bridge with extra-width which showed great necessity considering the results of ambient vibration test. The results of bridge model updating showed that both of the mode frequencies and shapes had relatively high agreement between the updated model and experimental structure. The successful model updating of this bridge fills in the blanks of model updating of a complex self-anchored suspension bridge. Moreover, the updating process enables other model updating issues for complex bridge structures

  6. A minimal model for reconstructing interannual mass balance variability of glaciers in the European Alps

    Science.gov (United States)

    Marzeion, B.; Hofer, M.; Jarosch, A. H.; Kaser, G.; Mölg, T.

    2012-01-01

    We present a minimal model of the glacier surface mass balance. The model relies solely on monthly precipitation and air temperatures as forcing. We first train the model individually for 15 glaciers with existing mass balance measurements. Based on a cross validation, we present a thorough assessment of the model's performance outside of the training period. The cross validation indicates that our model is robust, and our model's performance compares favorably to that from a less parsimonious model based on seasonal sensitivity characteristics. Then, the model is extended for application on glaciers without existing mass balance measurements. We cross validated the model again by withholding the mass balance information from each of the 15 glaciers above during the model training, in order to measure its performance on glaciers not included in the model training. This cross validation indicates that the model retains considerable skill even when applied on glaciers without mass balance measurements. As an exemplary application, the model is then used to reconstruct time series of interannual mass balance variability, covering the past two hundred years, for all glaciers in the European Alps contained in the extended format of the world glacier inventory. Based on this reconstruction, we present a spatially detailed attribution of the glaciers' mass balance variability to temperature and precipitation variability.

  7. A minimal model for reconstructing interannual mass balance variability of glaciers in the European Alps

    Directory of Open Access Journals (Sweden)

    B. Marzeion

    2012-01-01

    Full Text Available We present a minimal model of the glacier surface mass balance. The model relies solely on monthly precipitation and air temperatures as forcing. We first train the model individually for 15 glaciers with existing mass balance measurements. Based on a cross validation, we present a thorough assessment of the model's performance outside of the training period. The cross validation indicates that our model is robust, and our model's performance compares favorably to that from a less parsimonious model based on seasonal sensitivity characteristics. Then, the model is extended for application on glaciers without existing mass balance measurements. We cross validated the model again by withholding the mass balance information from each of the 15 glaciers above during the model training, in order to measure its performance on glaciers not included in the model training. This cross validation indicates that the model retains considerable skill even when applied on glaciers without mass balance measurements.

    As an exemplary application, the model is then used to reconstruct time series of interannual mass balance variability, covering the past two hundred years, for all glaciers in the European Alps contained in the extended format of the world glacier inventory. Based on this reconstruction, we present a spatially detailed attribution of the glaciers' mass balance variability to temperature and precipitation variability.

  8. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    Science.gov (United States)

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  9. Ubuntu-Praxis: Re-Modelling the Balanced Scorecard Model at a University, an Afrocentric Perspective

    Science.gov (United States)

    Ndoda, Gladys Ruvimbo; Sikwila, Mike Nyamazana

    2014-01-01

    The authors design the innovation and learning perspective of the Balanced Scorecard (BSC) of "Ubuntu and client service charter nexus." This article borrows and advances the research carried out by Khomba, Vermaak and Gouws (2011). The point of departure is on praxis of ubuntu/unhu as a holistic approach in the re-modelling of the BSC…

  10. Theoretical analysis and evaluation of an optimally controlled full-car vehicle model with a variable-damping semi-active vehicle suspension forced by measured road inputs

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Y [TOBB University of Economics and Technology, Sogutozu, 06560 Ankara (Turkey)], E-mail: yercan@etu.edu.tr

    2009-02-01

    This study aims to obtain the optimal control algorithm for a full-car model with a variable-damping semi-active suspension, such as a magnetorheological damper, by solving the linear quadratic regulator problem, and then to evaluate the system performance if the control inputs are constrained and delayed, and the vehicle is subjected to measured road inputs. A seven-degree of freedom full-car vehicle model was considered, and the state equations of the system were obtained in bilinear form. An integral performance index involving a weighted combination of the mean squares of average sprung mass acceleration and suspension deflections was defined. Trade-off curves were obtained between the sprung mass acceleration and suspension deflections of the optimally controlled system which is subjected to a measured road profile input. Performance of the optimally controlled system was compared to the performance of the corresponding optimum passive suspension system. For the vehicle parameters and the road input profile considered in this study, a reduction of 6.4% in the average vertical acceleration and 2.8% in the average suspension deflection was achieved by the semi-active suspensions. The response of the system to an initial condition has shown that its transient oscillations are damped out effectively by the semi-active suspension.

  11. Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory.

    Science.gov (United States)

    Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis

    2015-10-01

    Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated.

  12. Electrophoretic deposition: a quantitative model for particle deposition and binder formation from alcohol-based suspensions

    NARCIS (Netherlands)

    Beer, De E.; Duval, J.F.L.; Meulenkamp, E.A.

    2000-01-01

    We investigated electrophoretic deposition from a suspension containing positively charged particles, isopropanol, water, and Mg(NO3)2, with the aim of describing the deposition rates of the particles and Mg(OH)2, which is formed due to chemical reactions at the electrode, in terms of quantitative

  13. A magneto rheological hybrid damper for railway vehicles suspensions

    Directory of Open Access Journals (Sweden)

    Gheorghe GHITA

    2012-09-01

    Full Text Available High speed railway vehicles features a specific lateral oscillation resulting from the coupled lateral displacement and yaw of the wheelset which leads to a sinusoid movement of the wheelset along the track, transferred to the entire vehicle. The amplitude of this oscillation is strongly dependant on vehicle’s velocity. Over a certain value, namely the critical speed, the instability phenomenon so-called hunting occurs. To raise the vehicle’s critical speed different designs of the suspension all leading to a much stiffer vehicle can be envisaged. Different simulations prove that a stiffer central suspension will decrease the passenger’s comfort in terms of lateral accelerations of the carboy. The authors propose a semi-active magneto rheological suspension to improve the vehicle’s comfort at high speeds. The suspension has as executive elements hybrid magneto rheological dampers operating under sequential control strategy type balance logic. Using an original mathematical model for the lateral dynamics of the vehicle the responses of the system with passive and semi-active suspensions are simulated. It is shown that the semi-active suspension can improve the vehicle performances.

  14. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Directory of Open Access Journals (Sweden)

    Frankovský P.

    2017-08-01

    Full Text Available This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot’s mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  15. Modeling Kinetics of CO2 (Carbon Dioxide Mineral Sequestration in Heterogeneous Aqueous Suspensions Systems of Cement Dust

    Directory of Open Access Journals (Sweden)

    Henryk Świnder

    2013-01-01

    Full Text Available The necessity to reduce CO2 emission in the environment has encouraged people to search for solutions for its safe capture and storage. Known methods for carbon dioxide mineral sequestration are based primarily on the use of its binding reaction with metal oxides, mainly earth metals. Increasingly important, due to the availability and price, are processes based on the suspension of various wastes such as fly ash, cement dust or furnace slag. Due to the complexity of the mineral sequestration of CO2 in water-waste suspensions, an important issue is to determine the reaction mechanisms. This applies mainly to the initial period of the transformation phase of mineral wastes, and consequently with the occurrence of a number of transition states of ionic equilibria. The mechanisms and reaction rates in the various stages of the process of CO2 mineral sequestration in heterogeneous systems containing selected wastes are defined herein. This paper presents a method of modeling kinetics of this type of process, developed on the basis of the results of the absorption of CO2 thanks to the aqueous suspension of fly ash and cement dust. This allowed for the transfer of obtained experimental results into the mathematical formula, using the invariant function method, used to describe the processes.

  16. Integrated model for line balancing with workstation inventory management

    Directory of Open Access Journals (Sweden)

    Dilip Roy

    2010-06-01

    Full Text Available In this paper, we address the optimization of an integrated line balancing process with workstation inventory management. While doing so, we have studied the interconnection between line balancing and its conversion process. Almost each and every moderate to large manufacturing industry depends on a long and integrated supply chain, consisting of inbound logistic, conversion process and outbound logistic. In this sense an approach addresses a very general problem of integrated line balancing. Research works reported in the literature so far mainly deals with minimization of cost for inbound and outbound logistic subsystems. In most of the cases conversion process has been ignored. We suggest a generic approach for linking the balancing of the line of production in the conversion area with the customers’ rate of demand in the market and for configuring the related stock chambers. Thus, the main aim of this paper is to translate the underlying problem in the form of mixed nonlinear programming problem and design the optimum supply chain so that the total inventory cost and the cost of balancing loss of the conversion process is jointly minimized and ideal cycle time of the production process is determined along with ideal sizes of the stock chambers. A numerical example has been added to demonstrate the suitability of our approach.

  17. The Balance Model of Regional Development Management in Certain Territorial Conditions: Development and Application

    Directory of Open Access Journals (Sweden)

    Voloshenko K.

    2014-09-01

    Full Text Available In this article the authors detail the methodology of regional development forecasting with the balance method. They provide with an overview and assessment of the existing models and systems, and their use for the purposes of public administration at the regional level. The article underlines the need to develop a balance approach models for specific territorial conditions. In particular, the authors identify the possibilities of studying the connections between the proportions of material and cash flows within the regional system, and reconciling the needs of a regional economy with the production and resource potentials. The long-term sustainability balance model – a simulation of event-based forecasting – has been developed for the Russian exclave. The authors provide a general description of the balance model, its elements and simulation algorithm. The results of calculations using the balance model for forecasting regional development are provided for three alternative scenarios for the Kaliningrad region for the period until 2018.

  18. Mechanistic Model for Ash Deposit Formation in Biomass Suspension-Fired Boilers. Part 2: Model Verification by Use of Full Scale Tests

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    A model for deposit formation in suspension firing of biomass has been developed. The model describes deposit build-up by diffusion and subsequent condensation of vapors, thermoforesis of aerosols, convective diffusion of small particles, impaction of large particles and reaction. The model...... describes particle sticking or rebound by a combination of the description of (visco)elsatic particles impacting a solid surface and particle capture by a viscous surface. The model is used to predict deposit formation rates measured during tests conducted with probes in full-scale suspension-fired biomass...... boilers. The rates predicted by the model was reasonably able to follow the rates observed in the tests, although with some variation, primarily as overestimations of the deposit formation rates. It is considered that the captive properties of the deposit surface are overestimated. Further examination...

  19. Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin

    National Research Council Canada - National Science Library

    Jiang Li; Xiaomin Mao; Songhao Shang; Tammo S Steenhuis

    2017-01-01

    .... A soil water balance model based on empirical assumptions in the vadose zone of farmland was developed and simulation results were compared/validated with results by the numerical model HYDRUS-1D...

  20. Satellite-retrieval and modeling of glacier mass balance

    NARCIS (Netherlands)

    Ruyter de Wildt, Martijn Sybren de

    2002-01-01

    In this research project we use satellite measurements to infer the mean specific mass balance (Bm) of glaciers. Vatnajökull, the largest ice cap in Europe, is being used as a test-case because this ice cap has often been studied. Only one aspect of Vatnajökull has not been investigated so far, and

  1. Model reduction by differential balancing based on nonlinear Hankel operators

    NARCIS (Netherlands)

    Kawano, Yu; Scherpen, Jacquelien M.A.

    In this paper, we construct balancing theory for nonlinear systems in the contraction framework. First, we define two novel controllability and observability functions via prolonged systems. We analyze their properties in relation to controllability and observability, and use them for so-called

  2. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    Science.gov (United States)

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  3. The balance model of oxygen enrichment of atmospheric air

    Science.gov (United States)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  4. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice.

    Science.gov (United States)

    Castagné, Vincent; Moser, Paul; Roux, Sylvain; Porsolt, Roger D

    2011-04-01

    The development of antidepressants requires simple rodent behavioral tests for initial screening before undertaking more complex preclinical tests and clinical evaluation. Presented in the unit are two widely used screening tests used for antidepressants, the forced swim (also termed behavioral despair) test in the rat and mouse, and the tail suspension test in the mouse. These tests have good predictive validity and allow rapid and economical detection of substances with potential antidepressant-like activity. The behavioral despair and the tail suspension tests are based on the same principle: measurement of the duration of immobility when rodents are exposed to an inescapable situation. The majority of clinically used antidepressants decrease the duration of immobility. Antidepressants also increase the latency to immobility, and this additional measure can increase the sensitivity of the behavioral despair test in the mouse for certain classes of antidepressant. Testing of new substances in the behavioral despair and tail suspension tests allows a simple assessment of their potential antidepressant activity by the measurement of their effect on immobility. © 2011 by John Wiley & Sons, Inc.

  5. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    Science.gov (United States)

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  6. Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal

    NARCIS (Netherlands)

    Miles, Evan S.; Pellicciotti, Francesca; Willis, Ian C.; Steiner, Jakob F.|info:eu-repo/dai/nl/119338653; Buri, Pascal; Arnold, Neil S.

    2016-01-01

    Supraglacial ponds on debris-covered glaciers present a mechanism of atmosphere/glacier energy transfer that is poorly studied, and only conceptually included in mass-balance studies of debris-covered glaciers. This research advances previous efforts to develop a model of mass and energy balance for

  7. Modelling evapotranspiration using the surface energy balance systems (sebs) and landsat tm data (rabat region, morocco)

    NARCIS (Netherlands)

    Kwast, J. van der; Jong, S.M. de

    2004-01-01

    Modelling and understanding the surface energy balance is important for assessing the re-distribution of moisture and heat in soil and atmosphere. The Surface Energy Balance System (SEBS) estimates turbulent heat fluxes using satellite earth observation data in the visible, near infrared, and

  8. Adjustment of regional climate model output for modeling the climatic mass balance of all glaciers on Svalbard.

    NARCIS (Netherlands)

    Möller, M.; Obleitner, F.; Reijmer, C.H.; Pohjola, V.A.; Glowacki, P.; Kohler, J.

    2016-01-01

    Large-scale modeling of glacier mass balance relies often on the output from regional climate models (RCMs). However, the limited accuracy and spatial resolution of RCM output pose limitations on mass balance simulations at subregional or local scales. Moreover, RCM output is still rarely available

  9. A STRUCTURAL EQUATION MODEL-II FOR WORK-LIFE BALANCE OF IT PROFESSIONALS IN CHENNAI

    OpenAIRE

    Rashida A. Banu

    2016-01-01

    The study developed and tested a model of work life balance of IT professionals employing structural equation modeling (SEM) to analyze the relationship between work place support (WPS) and work interference with personal life (WIPL), personal life interference with work (PLIW), satisfaction with work-life balance (SWLB) and improved effectiveness at work (IEW). The model fit the data well and hypotheses are generally supported. WPS and SWLB are negatively related to WIPL and P...

  10. A daily water balance model for representing streamflow generation process following land use change

    OpenAIRE

    Bari, M. A.; K. R. J. Smettem

    2005-01-01

    International audience; A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i) Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii) a transient Stream zone Store (iii) a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important component of the model and characterize the dynamically varyi...

  11. A conceptual model of daily water balance following partial clearing from forest to pasture

    OpenAIRE

    Bari, M. A.; K. R. J. Smettem

    2006-01-01

    A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i) Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii) a transient Stream zone Store (iii) a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically varying saturated areas resp...

  12. A conceptual model of daily water balance following partial clearing from forest to pasture

    OpenAIRE

    Bari, M. A.; K. R. J. Smettem

    2006-01-01

    International audience; A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i) Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii) a transient Stream zone Store (iii) a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically vary...

  13. A representation model for developing double-sided assembly line balancing model: An industrial case study

    Science.gov (United States)

    Hamzas, M. F. M. A.; Bareduan, S. A.; Zakaria, M. Z.; Ghazali, S.; Zairi, S.

    2017-09-01

    Assembly line balancing is an active area of optimisation research, in which the main purposes is to assign a task to a workstation so that the required time among workstations is approximately the same. This paper describes a methodology for developing a model. In this study, a motorcycle assembly plant has been selected as the main place of research study. The basic idea is how to represent and evaluate the assembly line model. The developed methodology is based on real life application problems faced by the industry. By using an applicable model selection procedure, a model representation is discussed. This paper presents a basic knowledge on model representation for an industrial case study related to a double-sided assembly line system. It is apparent that the developed model can evaluate the optimisation problems and be used for future system upgrades. The data was analyzed and it is suitable for mathematical programming model.

  14. Midlatitude forcing mechanisms for glacier mass balance investigated using general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, B.K.; Bengtsson, L. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Oerlemans, J. [Rijksuniversiteit Utrecht (Netherlands). Inst. for Marine and Atmospheric Research

    2000-09-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier specific Seasonal Sensitivity Characteristics based on a mass balance model of intermediate complexity are used to simulate mass balances of Nigardsbreen (Norway) and Rhonegletscher (Switzerland). Simulations using reanalyses (ECMWF) for the period 1979-1993 are in good agreement with in situ mass balance measurements for Nigardsbreen. The method is applied to multi-century integrations of coupled (ECHAM4/OPYC) and mixed-layer (ECHAM4/MLO) GCMs excluding external forcing. A high correlation between decadal variations in the north atlantic oscillation (NAO) and mass balance of the glaciers is found. The dominant factor for this relationship is the strong impact of winter precipitation associated with the NAO. A high NAO phase means enhanced (reduced) winter precipitation for Nigardsbreen (Rhonegletscher), typically leading to a higher (lower) than normal annual mass balance. This mechanism, entirely due to internal variations in the climate system, can explain observed strong positive mass balances for Nigardsbreen and possibly other maritime Norwegian glaciers within the period 1980-1995. It can also partly be responsible for recent strong negative mass balances of Alpine glaciers. (orig.)

  15. Independent suspension

    National Research Council Canada - National Science Library

    Chaikin, Don

    1992-01-01

    ... independent suspension. INDEPENDENCE! An independent system is simply one in which each of the vehicle's wheels is free to react totally separate from any of the other wheels. If the right rear wheel hits a bump, the left rear wheel is undisturbed. Since the whole car does not bounce and shake every time one of the wheels hits a potho...

  16. Use of the macroeconomic models in the analysis of the balance value

    Directory of Open Access Journals (Sweden)

    Manole Tatiana

    2013-02-01

    Full Text Available This paper investigates the problem of using the macroeconomic models to analyze the balance value. Actually, the analyses are performed under the IS-LM model. Since the balance value depends on the balance of goods and services market and the money market, the authors have studied the possibilities of balance on these two markets in terms of conditions from the Republic of Moldova. There is investigated the ratio of monetary mass and GDP under the law of equality of the amount of money in circulation. The case of the Republic of Moldova indicates a great increase of the monetary mass related to the GDP growth, fact that produces an inflationary effect. The interest rate is a key indicator in analyzing the balance value.

  17. USE OF THE MACROECONOMIC MODELS IN THE ANALYSIS OF THE BALANCE VALUE

    Directory of Open Access Journals (Sweden)

    Tatiana MANOLE

    2013-01-01

    Full Text Available This paper investigates the problem of using the macroeconomic models to analyze the balance value. Actually, the analyses are performed under the IS-LM model. Since the balance value depends on the balance of goods and services market and the money market, the authors have studied the possibilities of balance on these two markets in terms of conditions from the Republic of Moldova. There is investigated the ratio of monetary mass and GDP under the law of equality of the amount of money in circulation. The case of the Republic of Moldova indicates a great increase of the monetary mass related to the GDP growth, fact that produces an inflationary effect. The interest rate is a key indicator in analyzing the balance value.

  18. Optimization of Semi-active Seat Suspension with Magnetorheological Damper

    Science.gov (United States)

    Segla, Stefan; Kajaste, J.; Keski-Honkola, P.

    The paper deals with modeling, control and optimization of semiactive seat suspension with pneumatic spring and magnetorheological damper. The main focus is on isolating vertical excitation from the cabin of a bucket-wheel excavator in order to protect the excavator driver against harmful vibration. Three different control algorithms are used to determine the desired semi-active damping force: skyhook control, balance control and combination of balance and skyhook controls. The dynamic behavior of the semi-active system is optimized using genetic algorithms. As the objective function the effective value of the seat (sprung mass) acceleration is used.

  19. THERMAL COMFORT ZONES FORSTEADY-STATE ENERGY BALANCE MODEL

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2003-01-01

    Full Text Available In this study, the various thermal comfort parameters including temperature, relative humidity, air velocity, metabolic activity and clothing resistance and their effect to each other are examined. The heat transfer equations given for steady state energy balance between body and environment and the empirical equations which give thermal comfort and physiological control mechanisms of body are used. According to the ASHRAE Standard 55-1992, an environment can be assumed comfortable while Predicted Percentage of Dissatisfied (PPD is less than % 10. Considering this, thermal comfort zones in various conditions are studied and results are presented and discussed

  20. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    Directory of Open Access Journals (Sweden)

    Guoli Ren

    2017-01-01

    Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.

  1. LBA-ECO LC-14 Modeled Soil and Plant Water Balance, Amazon Basin, 1995-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — A simple GIS soil-water balance model for the Amazon Basin, called RisQue (Risco de Queimadasa -- Fire Risk), was used to conduct an analysis of spatial and temporal...

  2. LBA-ECO LC-14 Modeled Soil and Plant Water Balance, Amazon Basin, 1995-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: A simple GIS soil-water balance model for the Amazon Basin, called RisQue (Risco de Queimadasa -- Fire Risk), was used to conduct an analysis of spatial...

  3. The Balanced Scorecard and the Strategic Learning Process: A System Dynamics Modeling Approach

    National Research Council Canada - National Science Library

    Steen Nielsen; Erland H. Nielsen

    2015-01-01

      The main purpose of this paper is to improve on the conceptual as well as the methodological aspects of BSC as a quantitative model by combining elements from traditional balanced scorecard (BSC...

  4. Local predictability in a simple model of atmospheric balance

    Directory of Open Access Journals (Sweden)

    G. Gyarmati

    2003-01-01

    Full Text Available The 2 degree-of-freedom elastic pendulum equations can be considered as the lowest order analogue of interacting low-frequency (slow Rossby-Haurwitz and high-frequency (fast gravity waves in the atmosphere. The strength of the coupling between the low and the high frequency waves is controlled by a single coupling parameter, e, defined by the ratio of the fast and slow characteristic time scales. In this paper, efficient, high accuracy, and symplectic structure preserving numerical solutions are designed for the elastic pendulum equation in order to study the role balanced dynamics play in local predictability. To quantify changes in the local predictability, two measures are considered: the local Lyapunov number and the leading singular value of the tangent linear map. It is shown, both based on theoretical considerations and numerical experiments, that there exist regions of the phase space where the local Lyapunov number indicates exceptionally high predictability, while the dominant singular value indicates exceptionally low predictability. It is also demonstrated that the local Lyapunov number has a tendency to choose instabilities associated with balanced motions, while the dominant singular value favors instabilities related to highly unbalanced motions. The implications of these findings for atmospheric dynamics are also discussed.

  5. Mass balance inverse modelling of methane in the 1990s using a Chemistry Transport Model

    Science.gov (United States)

    Butler, T. M.; Simmonds, I.; Rayner, P. J.

    2004-12-01

    A mass balance inverse modelling procedure is applied with a time-dependent methane concentration boundary condition and a chemical transport model to relate observed changes in the surface distribution of methane mixing ratios during the 1990s to changes in its surface sources. The model reproduces essential features of the global methane cycle, such as the latitudinal distribution and seasonal cycle of fluxes, without using a priori knowledge of methane fluxes. A detailed description of the temporal and spatial variability of the fluxes diagnosed by the inverse procedure is presented, and compared with previously hypothesised changes in the methane budget, and previous inverse modelling studies. The sensitivity of the inverse results to the forcing data supplied by surface measurements of methane from the NOAA CMDL cooperative air sampling network is also examined. This work serves as an important starting point for future inverse modelling work examining changes in both the source and sink terms in the methane budget together.

  6. Mass balance inverse modelling of methane in the 1990s using a Chemistry Transport Model

    Directory of Open Access Journals (Sweden)

    T. M. Butler

    2004-01-01

    Full Text Available A mass balance inverse modelling procedure is applied with a time-dependent methane concentration boundary condition and a chemical transport model to relate observed changes in the surface distribution of methane mixing ratios during the 1990s to changes in its surface sources. The model reproduces essential features of the global methane cycle, such as the latitudinal distribution and seasonal cycle of fluxes, without using a priori knowledge of methane fluxes. A detailed description of the temporal and spatial variability of the fluxes diagnosed by the inverse procedure is presented, and compared with previously hypothesised changes in the methane budget, and previous inverse modelling studies. The sensitivity of the inverse results to the forcing data supplied by surface measurements of methane from the NOAA CMDL cooperative air sampling network is also examined. This work serves as an important starting point for future inverse modelling work examining changes in both the source and sink terms in the methane budget together.

  7. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    OpenAIRE

    Ren, Guoli; Liu, Jie; Huo, Wenyi; Lan, Ke

    2017-01-01

    The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG) series laser facilities and the National Ignition Facility (NIF) experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NI...

  8. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  9. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  10. Comparison and evaluation of experimental mediastinitis models: precolonized foreign body implants and bacterial suspension inoculation seems promising

    Directory of Open Access Journals (Sweden)

    Kose Necmi

    2006-04-01

    Full Text Available Abstract Background Post-sternotomy mediastinitis (PSM is a devastating surgical complication affecting 1–3% of patients that undergo cardiac surgery. Staphylococcus aureus is one of the most commonly encountered bacterial pathogen cultured from mediastinal samples obtained from patients with PSM. A component of the membrane of the gram positive bacteria, lipoteichoic acid, stimulates the blood monocytes and macrophages to secrete cytokines, radicals and nitrogen species leading to oxido-inflammatory damage. This seems to be responsible for the high mortality rate in PSM. For the evaluation of the pathogenesis of infection or for the investigation of alternative treatment models in infection, no standard model of mediastinitis seems to be available. In this study, we evaluated four mediastinitis models in rats. Methods The rats were divided into four groups to form different infection models. Group A: A suspension of 1 × 107 colony-forming units Staphylococcus aureus in 0,5 mL was inoculated from the right second intercostal space into the mediastinum. Group B: A hole was created in the right second intercostal space and a piece of stainless-steel implant with a length of 0.5 cm was inserted into the mediastinum and a suspension of 1 × 107 cfu bacteria in 0,5 mL was administered via the tail vein. Group C: Precolonized stainless-steel implant was inserted into the mediastinum. Group D: Precolonized stainless-steel implant was inserted into the mediastinum and the bacteria suspension was also injected into the mediastinum. On the 10th day, rats were sacrificed and the extension of infection in the mediastenae was evaluated by quantitative cultures. Myeloperoxidase activity (MPO and malondialdehyde (MDA levels were determined in the sera to evaluate the neutrophil activation and assess the inflammatory oxidation. Results The degree of infection in group C and D were 83.3% and 100% respectively (P P Conclusion Infected implants and high

  11. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    Science.gov (United States)

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Monthly water balance model for Ndarugu basin, Kenya | Nyadawa ...

    African Journals Online (AJOL)

    ... model in Ndarugu river basin in Kenya. The model is slightly modified to suit hydrologic conditions in the basin. The study apart from establishing relevant model parameters has recommended optimum length of period for continuous simulation to reduce effect dynamic changes in the basin. Journal of Civil Engineering, ...

  13. System Dynamic Modelling for a Balanced Scorecard: A Case Study

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    Purpose - The purpose of this research is to make an analytical model of the BSC foundation by using a dynamic simulation approach for a 'hypothetical case' model, based on only part of an actual case study of BSC. Design/methodology/approach - The model includes five perspectives and a number of...

  14. A toolkit modeling approach for sustainable forest management planning: achieving balance between science and local needs

    Science.gov (United States)

    Brian R. Sturtevant; Andrew Fall; Daniel D. Kneeshaw; Neal P. P. Simon; Michael J. Papaik; Kati Berninger; Frederik Doyon; Don G. Morgan; Christian Messier

    2007-01-01

    To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM). The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and...

  15. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z.

    2009-01-01

    This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 µm) as observed above the canopy to the fluxes of

  16. Modeling and simulating an electrical grid subsystem for power balance analysis

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana; Leth, John-Josef; Wisniewski, Rafal

    2012-01-01

    We present an approach for power balance analysis in Smart Grids where the physical behavior of different electrical devices is modeled at unit level, and the collective load and generation curves can later be obtained by aggregation. In this way, new behaviors, flexibilities and intelligent...... strategies for power consumption and generation can be easily introduced at the user-level and the system-level impact analyzed on the aggregated profiles. The future aim is to investigate bottom-up balancing strategies, where units with a flexible energy band can react independently to power balance signals...

  17. Greenland ice sheet surface mass-balance modeling in a 131-Yr perspective, 1950-2080

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.

    2010-01-01

    Fluctuations in the Greenland ice sheet (GrIS) surface mass balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise.Astate-of-the-art snow-evolution modeling system(SnowModel) was used...... to simulate variations in theGrISmelt extent, surfacewater balance components, changes inSMB, and freshwater influx to the ocean. The simulations are based on the Intergovernmental Panel on Climate Change scenario A1B modeled by the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM...

  18. Improving the Xin'anjiang hydrological model based on mass-energy balance

    Science.gov (United States)

    Fang, Yuan-Hao; Zhang, Xingnan; Corbari, Chiara; Mancini, Marco; Niu, Guo-Yue; Zeng, Wenzhi

    2017-07-01

    Conceptual hydrological models are preferable for real-time flood forecasting, among which the Xin'anjiang (XAJ) model has been widely applied in humid and semi-humid regions of China. Although the relatively simple mass balance scheme ensures a good performance of runoff simulation during flood events, the model still has some defects. Previous studies have confirmed the importance of evapotranspiration (ET) and soil moisture content (SMC) in runoff simulation. In order to add more constraints to the original XAJ model, an energy balance scheme suitable for the XAJ model was developed and coupled with the original mass balance scheme of the XAJ model. The detailed parameterizations of the improved model, XAJ-EB, are presented in the first part of this paper. XAJ-EB employs various meteorological forcing and remote sensing data as input, simulating ET and runoff yield using a more physically based mass-energy balance scheme. In particular, the energy balance is solved by determining the representative equilibrium temperature (RET), which is comparable to land surface temperature (LST). The XAJ-EB was evaluated in the Lushui catchment situated in the middle reach of the Yangtze River basin for the period between 2004 and 2007. Validation using ground-measured runoff data proves that the XAJ-EB is capable of reproducing runoff comparable to the original XAJ model. Additionally, RET simulated by XAJ-EB agreed well with moderate resolution imaging spectroradiometer (MODIS)-retrieved LST, which further confirms that the model is able to simulate the mass-energy balance since LST reflects the interactions among various processes. The validation results prove that the XAJ-EB model has superior performance compared with the XAJ model and also extends its applicability.

  19. Improving the Xin'anjiang hydrological model based on mass–energy balance

    Directory of Open Access Journals (Sweden)

    Y.-H. Fang

    2017-07-01

    Full Text Available Conceptual hydrological models are preferable for real-time flood forecasting, among which the Xin'anjiang (XAJ model has been widely applied in humid and semi-humid regions of China. Although the relatively simple mass balance scheme ensures a good performance of runoff simulation during flood events, the model still has some defects. Previous studies have confirmed the importance of evapotranspiration (ET and soil moisture content (SMC in runoff simulation. In order to add more constraints to the original XAJ model, an energy balance scheme suitable for the XAJ model was developed and coupled with the original mass balance scheme of the XAJ model. The detailed parameterizations of the improved model, XAJ-EB, are presented in the first part of this paper. XAJ-EB employs various meteorological forcing and remote sensing data as input, simulating ET and runoff yield using a more physically based mass–energy balance scheme. In particular, the energy balance is solved by determining the representative equilibrium temperature (RET, which is comparable to land surface temperature (LST. The XAJ-EB was evaluated in the Lushui catchment situated in the middle reach of the Yangtze River basin for the period between 2004 and 2007. Validation using ground-measured runoff data proves that the XAJ-EB is capable of reproducing runoff comparable to the original XAJ model. Additionally, RET simulated by XAJ-EB agreed well with moderate resolution imaging spectroradiometer (MODIS-retrieved LST, which further confirms that the model is able to simulate the mass–energy balance since LST reflects the interactions among various processes. The validation results prove that the XAJ-EB model has superior performance compared with the XAJ model and also extends its applicability.

  20. Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States

    Science.gov (United States)

    Singh, Ramesh K.; Senay, Gabriel B.

    2016-01-01

    The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface Energy Balance Algorithm for Land (SEBAL) model, Surface Energy Balance System (SEBS) model, and the Operational Simplified Surface Energy Balance (SSEBop) model—using Landsat images to estimate evapotranspiration (ET) in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (0.80), whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.

  1. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Ramesh K. Singh

    2015-12-01

    Full Text Available The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC model, Surface Energy Balance Algorithm for Land (SEBAL model, Surface Energy Balance System (SEBS model, and the Operational Simplified Surface Energy Balance (SSEBop model—using Landsat images to estimate evapotranspiration (ET in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1 and a high Nash–Sutcliffe coefficient of efficiency (>0.80, whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.

  2. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems

    OpenAIRE

    Fumin Ma; Gregory M. P. O’Hare; Tengfei Zhang; Michael J. O’Grady

    2015-01-01

    Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry en...

  3. An energy balance perspective on regional CO2-induced temperature changes in CMIP5 models

    OpenAIRE

    Räisänen, Jouni

    2017-01-01

    An energy balance decomposition of temperature changes is conducted for idealized transient CO2-only simulations in the fifth phase of the Coupled Model Intercomparison Project. The multimodel global mean warming is dominated by enhanced clear-sky greenhouse effect due to increased CO2 and water vapour, but other components of the energy balance substantially modify the geographical and seasonal patterns of the change. Changes in the net surface energy flux are important over the oceans, bein...

  4. A Residual Approach for Balanced Truncation Model Reduction (BTMR of Compartmental Systems

    Directory of Open Access Journals (Sweden)

    William La Cruz

    2014-05-01

    Full Text Available This paper presents a residual approach of the square root balanced truncation algorithm for model order reduction of continuous, linear and time-invariante compartmental systems. Specifically, the new approach uses a residual method to approximate the controllability and observability gramians, whose resolution is an essential step of the square root balanced truncation algorithm, that requires a great computational cost. Numerical experiences are included to highlight the efficacy of the proposed approach.

  5. Experimental Evaluation of Balance Prediction Models for Sit-to-Stand Movement in the Sagittal Plane

    Directory of Open Access Journals (Sweden)

    Oscar David Pena Cabra

    2013-01-01

    Full Text Available Evaluation of balance control ability would become important in the rehabilitation training. In this paper, in order to make clear usefulness and limitation of a traditional simple inverted pendulum model in balance prediction in sit-to-stand movements, the traditional simple model was compared to an inertia (rotational radius variable inverted pendulum model including multiple-joint influence in the balance predictions. The predictions were tested upon experimentation with six healthy subjects. The evaluation showed that the multiple-joint influence model is more accurate in predicting balance under demanding sit-to-stand conditions. On the other hand, the evaluation also showed that the traditionally used simple inverted pendulum model is still reliable in predicting balance during sit-to-stand movement under non-demanding (normal condition. Especially, the simple model was shown to be effective for sit-to-stand movements with low center of mass velocity at the seat-off. Moreover, almost all trajectories under the normal condition seemed to follow the same control strategy, in which the subjects used extra energy than the minimum one necessary for standing up. This suggests that the safety considerations come first than the energy efficiency considerations during a sit to stand, since the most energy efficient trajectory is close to the backward fall boundary.

  6. Remote Sensing based modelling of Annual Surface Mass Balances of Chhota Shigiri Glacier, Western Himalayas, India

    Science.gov (United States)

    Chandrasekharan, Anita; Ramsankaran, Raaj

    2017-04-01

    The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.

  7. On Scaling Modes and Balancing Stochastic, Discretization, and Modeling Error

    Science.gov (United States)

    Brown, J.

    2015-12-01

    We consider accuracy-cost tradeoffs and the problem of finding Pareto optimal configurations for stochastic forward and inverse problems. As the target accuracy is changed, we should use different physical models, stochastic models, discretizations, and solution algorithms. In this spectrum, we see different scientifically-relevant scaling modes, thus different opportunities and limitations on parallel computers and emerging architectures.

  8. Modelling responses of broiler chickens to dietary balanced protein

    NARCIS (Netherlands)

    Eits, R.M.

    2004-01-01

    Protein is an important nutrient for growing broiler chickens, as it affects broiler performance, feed cost as well as nitrogen excretion. The objective of this dissertation was to develop a growth model for broiler chickens that could be easily used by practical nutritionists. The model should

  9. Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2017-11-01

    Full Text Available Quantifying components of soil water balance in farmland of the middle reaches of Heihe River Basin is essential for efficiently scheduling and allocating limited water resources for irrigation in this arid region. A soil water balance model based on empirical assumptions in the vadose zone of farmland was developed and simulation results were compared/validated with results by the numerical model HYDRUS-1D. Results showed a good coherence between the simulated results of the water balance models and the HYDRUS-1D model in soil water storage, evapotranspiration, deep percolation and groundwater recharge, which indicated that the water balance model was suitable for simulating soil water movement in the study area. Considering the spatial distribution of cropping patterns, groundwater depth and agricultural management, ArcGIS was applied for the pre-/post-processing of the water balance model to quantify the spatial distribution of components of soil water balance in the major cropland in middle reaches of Heihe River Basin. Then, distributions of components of soil water balance in the major cropland under different water-saving irrigation practices during the growing season were predicted and discussed. Simulation results demonstrated that evapotranspiration of the main crops would be more prominently influenced by irrigation quota under deep groundwater depth than that under shallow groundwater depth. Groundwater recharge would increase with the increase of irrigation quota and decrease with the increase of groundwater depth. In general, when groundwater depth reached 3 m, groundwater recharge from root zone was negligible for spring wheat. While when it reached 6 m, groundwater recharge was negligible for maize. Water-saving irrigation practices would help to reduce groundwater recharge with a slight decrease of crop water consumption.

  10. Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres.

    Science.gov (United States)

    Stopper, Daniel; Marolt, Kevin; Roth, Roland; Hansen-Goos, Hendrik

    2015-08-01

    We study the dynamics of colloidal suspensions of hard spheres that are subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self- and distinct parts of the van Hove function by means of dynamical density functional theory. The free-energy model for the hard-sphere fluid that we use is the very accurate White Bear II version of Rosenfeld's fundamental measure theory. However, in order to remove interactions within the self-part of the van Hove function, a nontrivial modification has to be applied to the free-energy functional. We compare our theoretical results with data that we obtain from dynamical Monte Carlo simulations, and we find that the latter are well described by our approach even for colloid packing fractions as large as 40%.

  11. Comparative Modeling Studies of Boreal Water and Carbon Balance

    Science.gov (United States)

    Coughlan, J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    The coordination of the modeling and field efforts for an Intensive Field Campaign (IFC) may resemble the chicken and egg dilemma. This session's theme advocates that early and proactive involvement by modeling teams can produce a scientific and operational benefit for the IFC and Experiment. This talk will provide some examples and suggestions originating from the NASA funded IFC's of the FIFE First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment, Oregon Transect Ecosystem Research (OTTER) and predominately Boreal Ecosystem-Atmosphere Study (BOREAS) Experiments. In February 1994 and prior to the final selection of the BOREAS study sites, a group of funded BOREAS investigators agreed to run their models with data for five community types representing the proposed tower flux sites. All participating models were given identical initial values and boundary conditions and driven with identical climate data. The objectives of the intercomparison exercise were: 1) compare simulation results of participating terrestrial, hydrological, and atmospheric models over selected time frames; 2) learn about model behavior and sensitivity to estimated boreal site and vegetation definitions; 3) prioritize BOREAS field data collection efforts supporting modeling studies; 4) identify individual model deficiencies as early as possible. Out of these objectives evolved some important coordination and science issues for the BOREAS Experiment that can be generalized to IFCs and long term archiving of the data. Some problems are acceptable because they are endemic to maintaining fair and open competition prior to the peer review process. Others are logistical and addressable through application of planning, management, and information sciences. This investigator has identified one source of measurement and model incompatibility that is manifest in the IFC scaling approach. Although intuitively obvious, scaling problems are already more formally defined in

  12. Multi-dimensional population balance models of crystallization processes

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas

    A generic and model-based framework for batch cooling crystallization operations has been extended to incorporate continuous and fed-batch processes. Modules for the framework have been developed, including a module for reactions, allowing the study of reactive crystallization within the framework......, analyzed, used for simulation and stored again. The model library facilitates comparison of expressions for kinetic phenomena and is tightly integrated with the model analysis tools of the framework.Through the framework, a model for a crystallization operation may be systematically generated...... applied to case studies involving inorganic and organic compounds, including an active pharmaceutical ingredient (paracetamol) crystallized from different solvents. The case studies have been used to demonstrate the versatility of the framework....

  13. Damage to formation surrounding flooding wells: modelling of suspension filtration with account of particle trapping and mobilization

    Science.gov (United States)

    Boronin, S. A.; Tolmacheva, K. I.; Osiptsov, A. A.; Sitnikov, A. N.; Yakovlev, A. A.; Belozerov, B. V.; Belonogov, E. V.; Galeev, R. R.

    2017-11-01

    We consider the filtration of raw water in a formation surrounding injection wells in oilfields of Western Siberia. The mathematical model for suspension filtration developed earlier on the basis of tree-continua approach allows to describe the permeability damage and recovery due to trapping and mobilization of externally-introduced fines. As compared to classical deep-bed filtration models, the proposed model takes into account the filtration of the carrier fluid through the pack of trapped fines and uses only two free parameters to describe the particle trapping and mobilization rates. It has gone through a thorough validation campaign against experimental data with contamination of porous samples by external fines and mobilization of pre-seeded particles in sand packs. Simulations of permeability dynamics in the zone surrounding injection wells are carried out using the values of free parameters obtained by tuning the model against available lab experiments. Both continuous and periodic water flooding/cleanup is modelled. It is found that there are periodic regimes of water injection, in which the permeability of the rock is not damaged. The study will be continued after the calibration of the model against thorough laboratory tests with natural cores and field tests of injection rate dynamics in flooding wells.

  14. A STRUCTURAL EQUATION MODEL-II FOR WORK-LIFE BALANCE OF IT PROFESSIONALS IN CHENNAI

    Directory of Open Access Journals (Sweden)

    Rashida A. Banu

    2016-05-01

    Full Text Available The study developed and tested a model of work life balance of IT professionals employing structural equation modeling (SEM to analyze the relationship between work place support (WPS and work interference with personal life (WIPL, personal life interference with work (PLIW, satisfaction with work-life balance (SWLB and improved effectiveness at work (IEW. The model fit the data well and hypotheses are generally supported. WPS and SWLB are negatively related to WIPL and PLIW. However, there is a positive relationship between SWLB and IEW.

  15. Dynamic Calibration and Validation of an Accelerometer Force Balance for Hypersonic Lifting Models

    Directory of Open Access Journals (Sweden)

    Prakash Singh

    2014-01-01

    Full Text Available An accelerometer-based force balance was designed and developed for the measurement of drag, lift, and rolling moment on a blunt-nosed, flapped delta wing in a short-duration hypersonic shock tunnel. Calibration and validation of the balance were carried out by a convolution technique using hammer pulse test and surface pressure measurements. In the hammer pulse test, a known impulse was applied to the model in the appropriate direction using an impulse hammer, and the corresponding output of the balance (acceleration was recorded. Fast Fourier Transform (FFT was operated on the output of the balance to generate a system response function, relating the signal output to the corresponding load input. Impulse response functions for three components of the balance, namely, axial, normal, and angular, were obtained for a range of input load. The angular system response function was corresponding to rolling of the model. The impulse response functions thus obtained, through dynamic calibration, were operated on the output (signals of the balance under hypersonic aerodynamic loading conditions in the tunnel to get the time history of the unknown aerodynamic forces and moments acting on the model. Surface pressure measurements were carried out on the model using high frequency pressure transducers, and forces and moments were deduced thereon. Tests were carried out at model angles of incidence of 0, 5, 10, and 15 degrees. A good agreement was observed among the results of different experimental methods. The balance developed is a comprehensive force/moment measurement device that can be used on complex, lifting, aerodynamic geometries in ground-based hypersonic test facilities.

  16. An energy balance climate model with hydrological cycle. 1. Model description and sensitivity to internal parameters

    Science.gov (United States)

    Jentsch, Volker

    1991-09-01

    A thermodynamical model designed to illustrate the effect of a hydrological cycle on climate sensitivity is presented. The model contains three climatic variables: two temperatures referring to an idealized atmosphere and ocean, respectively, and atmospheric humidity. The independent variables are time and latitude. Atmosphere and ocean are coupled by radiation and convection at their interface. Some structure of the atmospheric circulation is retained by differentiating between the dynamics of a low latitude zone (0° - ϕH) and that of a high latitude zone (ϕH-90°), where ϕH ≈ 30° is the intersection of meridional temperature gradient and critical gradient for baroclinic instability. The atmospheric transport is split into an advective and a diffusive part, while the oceanic transport is approximated by pure diffusion. The coefficients associated with horizontal and vertical motion are modelled in terms of temperature gradients. The predicted water vapor gives rise to precipitation and clouds and influences (via cloud cover and greenhouse effect) the radiation balance of the system. The model is integrated for annual mean conditions until an asymptotic equilibrium is reached. The free (internal) parameters of the system are determined by optimization methods so that simulated temperature, heat flux and hydrological cycle are in close agreement with observations. The sensitivity of the model is governed by radiation parameters. Of these, the cloud albedo is the most sensitive quantity. By contrast, the model is relatively little affected by parameters associated with horizontal and vertical transport of heat.

  17. The balanced scorecard: an incremental approach model to health care management.

    Science.gov (United States)

    Pineno, Charles J

    2002-01-01

    The balanced scorecard represents a technique used in strategic management to translate an organization's mission and strategy into a comprehensive set of performance measures that provide the framework for implementation of strategic management. This article develops an incremental approach for decision making by formulating a specific balanced scorecard model with an index of nonfinancial as well as financial measures. The incremental approach to costs, including profit contribution analysis and probabilities, allows decisionmakers to assess, for example, how their desire to meet different health care needs will cause changes in service design. This incremental approach to the balanced scorecard may prove to be useful in evaluating the existence of causality relationships between different objective and subjective measures to be included within the balanced scorecard.

  18. Nonlinear dynamics modeling and simulation of two-wheeled self-balancing vehicle

    Directory of Open Access Journals (Sweden)

    Yunping Liu

    2016-11-01

    Full Text Available Two-wheeled self-balancing vehicle system is a kind of naturally unstable underactuated system with high-rank unstable multivariable strongly coupling complicated dynamic nonlinear property. Nonlinear dynamics modeling and simulation, as a basis of two-wheeled self-balancing vehicle dynamics research, has the guiding effect for system design of the project demonstration and design phase. Dynamics model of the two-wheeled self-balancing vehicle is established by importing a TSi ProPac package to the Mathematica software (version 8.0, which analyzes the stability and calculates the Lyapunov exponents of the system. The relationship between external force and stability of the system is analyzed by the phase trajectory. Proportional–integral–derivative control is added to the system in order to improve the stability of the two-wheeled self-balancing vehicle. From the research, Lyapunov exponent can be used to research the stability of hyperchaos system. The stability of the two-wheeled self-balancing vehicle is better by inputting the proportional–integral–derivative control. The Lyapunov exponent and phase trajectory can help us analyze the stability of a system better and lay the foundation for the analysis and control of the two-wheeled self-balancing vehicle system.

  19. An energy balance model of carbon's effect on climate change

    CERN Document Server

    Benney, Lucas

    2015-01-01

    Due to climate change, the interest of studying our climatic system using mathematical modeling has become tremendous in recent years. One well-known model is Budyko's system, which represents the coupled evolution of two variables, the ice-line and the average earth surface temperature. The system depends on natural parameters, such as the earth albedo, and the amount A of carbon in the atmosphere. We introduce a 3-dimensional extension of this model in which we regard A as the third coupled variable of the system. We analyze the phase space and dependence on parameters, looking for Hopf bifurcations and the birth of cycling behavior. We interpret the cycles as climatic oscillations triggered by the sensitivity in our regulation of carbon emissions at extreme temperatures.

  20. Status Update: Modeling Energy Balance in NIF Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    We have developed a standardized methodology to model hohlraum drive in NIF experiments. We compare simulation results to experiments by 1) comparing hohlraum xray fluxes and 2) comparing capsule metrics, such as bang times. Long-pulse, high gas-fill hohlraums require a 20-28% reduction in simulated drive and inclusion of ~15% backscatter to match experiment through (1) and (2). Short-pulse, low fill or near-vacuum hohlraums require a 10% reduction in simulated drive to match experiment through (2); no reduction through (1). Ongoing work focuses on physical model modifications to improve these matches.

  1. Modeling the Monthly Water Balance of a First Order Coastal Forested Watershed

    Science.gov (United States)

    S. V. Harder; Devendra M. Amatya; T. J. Callahan; Carl C. Trettin

    2006-01-01

    A study has been conducted to evaluate a spreadsheet-based conceptual Thornthwaite monthly water balance model and the process-based DRAINMOD model for their reliability in predicting monthly water budgets of a poorly drained, first order forested watershed at the Santee Experimental Forest located along the Lower Coastal Plain of South Carolina. Measured precipitation...

  2. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed

  3. States-of-Mind Model: Cognitive Balance in the Treatment of Agoraphobia.

    Science.gov (United States)

    Schwartz, Robert M.; Michelson, Larry

    1987-01-01

    Used states-of-mind model to track therapeutic changes in cognitive balance of 39 agoraphobics. Descriptive and statistical analyses from an outcome study of graduated exposure, relaxation training, and paradoxical intention supported the model. Agoraphobics evinced negative dialogue at pretreatment, positive dialogue at mid and posttreatment, and…

  4. A Thermal-based Two-Source Energy Balance Model for Estimating Evapotranspiration over Complex Canopies

    Science.gov (United States)

    Kustas, William; Anderson, Martha; Nieto, Hector; Andreu, Ana; Yang, Yun; Cammalleri, Carmelo; Alfieri, Joseph; Gao, Feng; Hain, Christopher; Torres-Rua, Alfonso

    2017-04-01

    Land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation describes a robust but relatively simple LST-based land surface model called the Two-Source Energy Balance (TSEB) model. The TSEB algorithms solve for the soil/substrate and canopy temperatures that achieves a balance in the radiation and turbulent heat flux exchange for the soil/substrate and vegetation elements coupled to the lower atmosphere. As a result, the TSEB modeling framework is applicable to a wide range of environmental and canopy cover conditions, which has been a limitation in many other LST-based energy balance approaches. This is particularly relevant in applying surface energy balance models using LST over heterogeneous landscapes with complex vegetation distribution and architecture/structure. An overview of applications of the TSEB modeling framework to a variety of landscapes will be presented. In addition, a modeling system will be described called the Atmosphere-Land Exchange Inverse (ALEXI) that couples the TSEB scheme with an atmospheric boundary layer model in time-differencing mode to routinely map continental-scale daily ET at 5 to 10-km resolution using geostationary satellites. A related algorithm (DisALEXI) spatially disaggregates ALEXI output down to finer spatial resolutions using polar orbiting satellites such as Landsat, which provides pixel resolutions at the scale of human management activities affecting land use⪉nd cover.

  5. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model

    NARCIS (Netherlands)

    Van Wessem, J. M.; Reijmer, C. H.; Morlighem, M.; Mouginot, J.; Rignot, E.; Medley, B.; Joughin, I.; Wouters, B.; Depoorter, M. A.; Bamber, J. L.; Lenaerts, J. T M; Van De Berg, W. J.; Van Den Broeke, M. R.; Van Meijgaard, E.

    2014-01-01

    This study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44Gt a-1),

  6. Population balance modelling of fluidized bed melt granulation: an overview

    NARCIS (Netherlands)

    Tan, H.S.; Goldschmidt, M.J.V.; Boerefijn, R.; Hounslow, M.J.; Salman, A.; Kuipers, J.A.M.

    2005-01-01

    This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both

  7. Adjustment of regional climate model output for modeling the climatic mass balance of all glaciers on Svalbard.

    Science.gov (United States)

    Möller, Marco; Obleitner, Friedrich; Reijmer, Carleen H; Pohjola, Veijo A; Głowacki, Piotr; Kohler, Jack

    2016-05-27

    Large-scale modeling of glacier mass balance relies often on the output from regional climate models (RCMs). However, the limited accuracy and spatial resolution of RCM output pose limitations on mass balance simulations at subregional or local scales. Moreover, RCM output is still rarely available over larger regions or for longer time periods. This study evaluates the extent to which it is possible to derive reliable region-wide glacier mass balance estimates, using coarse resolution (10 km) RCM output for model forcing. Our data cover the entire Svalbard archipelago over one decade. To calculate mass balance, we use an index-based model. Model parameters are not calibrated, but the RCM air temperature and precipitation fields are adjusted using in situ mass balance measurements as reference. We compare two different calibration methods: root mean square error minimization and regression optimization. The obtained air temperature shifts (+1.43°C versus +2.22°C) and precipitation scaling factors (1.23 versus 1.86) differ considerably between the two methods, which we attribute to inhomogeneities in the spatiotemporal distribution of the reference data. Our modeling suggests a mean annual climatic mass balance of -0.05 ± 0.40 m w.e. a-1 for Svalbard over 2000-2011 and a mean equilibrium line altitude of 452 ± 200 m  above sea level. We find that the limited spatial resolution of the RCM forcing with respect to real surface topography and the usage of spatially homogeneous RCM output adjustments and mass balance model parameters are responsible for much of the modeling uncertainty. Sensitivity of the results to model parameter uncertainty is comparably small and of minor importance.

  8. An advective volume-balance model for flow in porous media

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2016-11-01

    Volume-balance models are used by petroleum engineers to simulate multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Preliminary numerical tests of phase separation due to gravity suggest the model reproduces qualitatively the physical phenomena. Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  9. A water balance model to estimate flow through the Old and Middle River corridor

    Science.gov (United States)

    Andrews, Stephen W.; Gross, Edward S.; Hutton, Paul H.

    2016-01-01

    We applied a water balance model to predict tidally averaged (subtidal) flows through the Old River and Middle River corridor in the Sacramento–San Joaquin Delta. We reviewed the dynamics that govern subtidal flows and water levels and adopted a simplified representation. In this water balance approach, we estimated ungaged flows as linear functions of known (or specified) flows. We assumed that subtidal storage within the control volume varies because of fortnightly variation in subtidal water level, Delta inflow, and barometric pressure. The water balance model effectively predicts subtidal flows and approaches the accuracy of a 1–D Delta hydrodynamic model. We explore the potential to improve the approach by representing more complex dynamics and identify possible future improvements.

  10. A general model for passive balancing of supercritical shafts with experimental validation of friction and collision effects

    Science.gov (United States)

    Haidar, Ahmad M.; Palacios, Jose L.

    2016-12-01

    Passive balancing devices for rotary systems consist of masses that are free to move in concentric guides about a shaft axis. At supercritical speeds, the balancing masses automatically assume positions that counter any imbalance due to uneven mass distribution in the system. A comprehensive physics-based non-linear model of a rotary system with passive balancing was formulated including balancing mass collision and friction. An experiment was conducted to quantify the performance and dynamic behavior of a single-plane passive balancing device and to compare experimental results to model predictions. A parametric study validated the proposed modeling of the balancing mass interaction with other balancing masses and with the balancer track. In this research, the passive balancing device on average reduced shaft transverse vibrations experimentally by 62 percent at steady state. Models available in the literature predicted vibration amplitudes to within 68 percent of the experimental values. The presented model, accounting for balancer track friction and balancing mass collision, improved the accuracy of predicting shaft vibration amplitudes by a factor of 3.9 when compared to published models (18 percent vs. 68 percent).

  11. Towards coupling of regional atmosphere models to ice sheet models by mass balance gradients - application to the Greenland Ice Sheet

    NARCIS (Netherlands)

    Helsen, M.M.|info:eu-repo/dai/nl/325802459; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2012-01-01

    It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature,

  12. Towards coupling of regional atmosphere models to ice sheet models by mass balance gradients - application to the Greenland Ice Sheet

    NARCIS (Netherlands)

    Helsen, M.M.; van de Wal, R.S.W.; van den Broeke, M.R.; van de Berg, W.J.; Oerlemans, J.

    2011-01-01

    It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation fields from a climate model, and deriving SMB by parameterizing 5 the run-off as a function of

  13. Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model

    NARCIS (Netherlands)

    van Pelt, W.J.J.|info:eu-repo/dai/nl/326056645; Oerlemans, J.|info:eu-repo/dai/nl/06833656X; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; Pohjola, V.A.; Pettersson, R.; van Angelen, J.H.

    2012-01-01

    A distributed energy balance model is coupled to a multi-layer snow model in order to study the mass balance evolution and the impact of refreezing on the mass budget of Nordenski¨oldbreen, Svalbard. The model is forced with output from the regional climate model RACMO and meteorological data from

  14. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  15. A model-based approach for identifying signatures of ancient balancing selection in genetic data.

    Directory of Open Access Journals (Sweden)

    Michael DeGiorgio

    2014-08-01

    Full Text Available While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.

  16. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    H. Machguth

    2008-12-01

    Full Text Available By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was tuned to observed mass balance for the investigated time period and its robustness was tested by comparing observed and modelled mass balance over 11 years, yielding very small deviations. Both systematic and random uncertainties are assigned to twelve input parameters and their respective values estimated from the literature or from available meteorological data sets. The calculated overall uncertainty in the model output is dominated by systematic errors and amounts to 0.7 m w.e. or approximately 10% of total melt over the investigated time span. In order to provide a first order estimate on variability in uncertainty depending on the quality of input data, we conducted a further experiment, calculating overall uncertainty for different levels of uncertainty in measured global radiation and air temperature. Our results show that the output of a well calibrated model is subject to considerable uncertainties, in particular when applied for extrapolation in time and space where systematic errors are likely to be an important issue.

  17. Modeling daily energy balance of dairy cows in the first three lactations.

    Science.gov (United States)

    Banos, G; Coffey, M P; Brotherstone, S

    2005-06-01

    Daily energy balance was calculated for 111 Holstein cows in their first 3 lactations, based on combinations of smoothed preadjusted phenotypic records for milk yield, feed intake, live weight, and body condition score. Two energy balance traits were defined: one based on milk yield and feed intake (EB1) and the other on live weight and body condition score change (EB2). Bessel functions (BF), Legendre polynomials (LP), sinusoidal functions (SF), and cubic splines (CS) were used to model energy balance within and across lactations. Models with BF or LP fitted fixed regressions of order 1 to 6 and random regressions of order 1 to 10. Cubic splines were fitted at 5 to 30 equally spaced knot points. In within-lactation analyses with BF and LP models, likelihood ratio tests revealed that the fit improved significantly up to random regression order of 5 for EB1 and 4 for EB2, independently of the fixed regression order. For EB1 analyses with LP, improvement was marginal albeit significant even for higher random regression order. For CS models, optimal number of knot points was 13 and 12 for EB1 and EB2, respectively. Residual variance and comparisons between actual and predicted energy balance showed that LP of minimum order 8 and 5 modeled, respectively, EB1 and EB2 better than the other 3 functions. In across-lactation analyses with BF and LP models, likelihood ratio tests were significant as the random regression order increased, for any order of the fixed regression. For CS models, optimal number of knot points was 14 and 16 for EB1 and EB2, respectively. Residual variance and comparisons between actual and predicted energy balance showed that models fitting CS and high (>8) random order BF or LP provided the best fit to both traits. However, in an across-lactation analysis, even higher order of LP or BF will be required to provide as good a fit as within-lactation analyses.

  18. Adherence Evaluation of a MacPherson Suspension under EuSAMA Norm in a Mathematical Model and one Multibody

    Directory of Open Access Journals (Sweden)

    Juan J. Arbeláez-Toro

    2013-11-01

    Full Text Available A computational simulation is Implemented, in order to response to a problem of dynamics associated With The assessment of adherence in suspension systems. The process begins with the lifting of the most representative geometries of a MacPherson system of a Nissan Sentra B13, where each of the devices is created and assembled into a CAD software to give a dynamic solution on a CAE multibody package. Afterwards a mathematical model was created whose differential equations are generated substantiated on Newton's second law and this are resolved using Matlab-Simulink applications. Once the model developing process is over, the variables are fed with accurate information of the studied vehicle to obtain the graphs that give an answer to EuSAMA (European Shock Absorber Manufacturers Association test protocol for the adherence analysis. The results presented show the reliability of the developed models when compared with the experimental test; furthermore, it demonstrates that the decrease of the damping coefficient compromises the vehicle´s adherence on the track, affecting its stability and maneuverability.

  19. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth

    KAUST Repository

    Burger, Martin

    2016-11-18

    In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [15] to model knowledge growth in an economy. Agents can either increase their knowledge level by exchanging ideas in learning events or by producing goods with the knowledge they already have. The existence of balanced growth path solutions implies exponential growth of the overall production in time. We prove existence of balanced growth path solutions if the initial distribution of individuals with respect to their knowledge level satisfies a Pareto-tail condition. Furthermore we give first insights into the existence of such solutions if in addition to production and knowledge exchange the knowledge level evolves by geometric Brownian motion.

  20. Integration of Subretinal Suspension Transplants of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in a Large-Eyed Model of Geographic Atrophy.

    Science.gov (United States)

    Petrus-Reurer, Sandra; Bartuma, Hammurabi; Aronsson, Monica; Westman, Sofie; Lanner, Fredrik; André, Helder; Kvanta, Anders

    2017-02-01

    Subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) have the capacity to form functional monolayers in naive eyes. We explore hESC-RPE integration when transplanted in suspension to a large-eyed model of geographic atrophy (GA). Derivation of hESC-RPE was performed in a xeno-free and defined manner. Subretinal bleb injection of PBS or sodium iodate (NaIO3) was used to induce a GA-like phenotype. Suspensions of hESC-RPE were transplanted to the subretinal space of naive or PBS-/NaIO3-treated rabbits using a transvitreal pars plana technique. Integration of hESC-RPE was monitored by multimodal real-time imaging and by immunohistochemistry. Subretinal blebs of PBS or NaIO3 caused different degrees of outer neuroretinal degeneration, RPE hyperautofluorescence, focal RPE loss, and choroidal atrophy; that is, hallmark characteristics of GA. In nonpretreated naive eyes, hESC-RPE integrated as subretinal monolayers with preserved overlying photoreceptors, yet not in areas with outer neuroretinal degeneration and native RPE loss. When transplanted to eyes with PBS-/NaIO3-induced degeneration, hESC-RPE failed to integrate. In a large-eyed preclinical model, subretinal suspension transplants of hESC-RPE did not integrate in areas with GA-like degeneration.

  1. The influence of changes in glacier extent and surface elevation on modeled mass balance

    Directory of Open Access Journals (Sweden)

    F. Paul

    2010-12-01

    Full Text Available Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation must be considered as such adjustments form an essential part of the glacier reaction to new climatic conditions. In this study, a set of modelling experiments is performed to assess the influence of changes in glacier geometry on mass balance for constant climatic conditions. The calculations are based on a simplified distributed energy/mass balance model in combination with information on glacier extent and surface elevation for the years 1850 and 1973/1985 for about 60 glaciers in the Swiss Alps. The results reveal that over this period about 50–70% of the glacier reaction to climate change (here a one degree increase in temperature is "hidden" in the geometric adjustment, while only 30–50% can be measured as the long-term mean mass balance. For larger glaciers, the effect of the areal change is partly reduced by a lowered surface elevation, which results in a slightly more negative balance despite a potential increase of topographic shading. In view of several additional reinforcement feedbacks that are observed in periods of strong glacier decline, it seems that the climatic interpretation of long-term mass balance data is rather complex.

  2. Head-Down Tilt with Balanced Traction as a Model for Simulating Spinal Acclimation to Microgravity

    Science.gov (United States)

    Ballard, R. E.; Styf, J. R.; Watenpaugh, D. E.; Fechner, K.; Haruna, Y.; Kahan, N. J.; Hargens, A. R.

    1994-01-01

    Astronauts experience total body height increases of 4 to 7 cm in microgravity. Thus, stretching of the spinal cord, nerve roots, and muscular and ligamentous tissues may be responsible for the hyperreflexia, back pain, and muscular atrophy associated with exposure to microgravity. Axial compression of the spine makes 6 deg. head-down tilt (HDT) an unsuitable model for spinal acclimation to microgravity. However, this axial compression may be counteracted by balanced traction consisting of 10% body weight (sin 6 deg. = 0.1) applied to the legs. Six healthy male subjects underwent 3 days each of 60 HDT with balanced traction and horizontal bed rest (HBR), with a 2 week recovery period between treatments. Total body and spine length, lumbar disc height, back pain, erector spinae intramuscular pressure, and ankle joint torque were measured before, during and after each treatment. Total body and spine (processes of L5 - C7) lengths increased significantly more during HDT with balanced traction (22 +/- 8 mm and 25 +/- 8 mm, respectively) than during HBR (16 +/- 4 mm and 14 +/- 9 mm, respectively). Back and leg pain were significantly greater during HDT with balanced traction than during HBR. The distance between the lower end plate of L4 and the upper endplate of S1, as measured by sonography, increased significantly in both treatments to the same degree (2.9 +/- 1.9 mm, HDT with balanced traction; 3.3 +/- 1.5 mm, HBR). Intramuscular pressure of the erector spinae muscles and maximal ankle joint torque were unaltered with both models. While neither model increased height to the magnitude observed in microgravity, HDT with balanced traction may be a better model for simulating the body lengthening and back pain experienced in microgravity.

  3. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum

    Science.gov (United States)

    Wagle, Pradeep; Bhattarai, Nishan; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-06-01

    Robust evapotranspiration (ET) models are required to predict water usage in a variety of terrestrial ecosystems under different geographical and agrometeorological conditions. As a result, several remote sensing-based surface energy balance (SEB) models have been developed to estimate ET over large regions. However, comparison of the performance of several SEB models at the same site is limited. In addition, none of the SEB models have been evaluated for their ability to predict ET in rain-fed high biomass sorghum grown for biofuel production. In this paper, we evaluated the performance of five widely used single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and operational Simplified Surface Energy Balance (SSEBop), for estimating ET over a high biomass sorghum field during the 2012 and 2013 growing seasons. The predicted ET values were compared against eddy covariance (EC) measured ET (ETEC) for 19 cloud-free Landsat image. In general, S-SEBI, SEBAL, and SEBS performed reasonably well for the study period, while METRIC and SSEBop performed poorly. All SEB models substantially overestimated ET under extremely dry conditions as they underestimated sensible heat (H) and overestimated latent heat (LE) fluxes under dry conditions during the partitioning of available energy. METRIC, SEBAL, and SEBS overestimated LE regardless of wet or dry periods. Consequently, predicted seasonal cumulative ET by METRIC, SEBAL, and SEBS were higher than seasonal cumulative ETEC in both seasons. In contrast, S-SEBI and SSEBop substantially underestimated ET under too wet conditions, and predicted seasonal cumulative ET by S-SEBI and SSEBop were lower than seasonal cumulative ETEC in the relatively wetter 2013 growing season. Our results indicate the necessity of inclusion of soil moisture or plant water stress

  4. Using the Economic Balance Model to Teach Supply-Side and Demand-Side Economics.

    Science.gov (United States)

    Pisciotta, John

    1983-01-01

    The Economic Balance model can be used in secondary economics classes to show demand- and supply-sides of the overall economy as well as how the two sides influence each other. Demand-side approaches to recession and inflation and supply-side approaches to expansion of production capacity and inflation are discussed. (AM)

  5. A decision support model for monitoring nutrient balances under agricultural land use (NUTMON)

    NARCIS (Netherlands)

    Smaling, E.; Fresco, L.O.

    1993-01-01

    A quantitative model of the balance between inputs and outputs of nitrogen, phosphorus and potassium in African land use systems (NUTBAL) was recently developed at two scales: supra-national (38 sub-Saharan African countries) and regional (Kisii District, Kenya). Calculating inputs (mineral

  6. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Sterner, G.; Hertz, J.

    2006-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn, with a numerical procedure for solving the mean-field equations quantitatively. With our treatment, one can determine self-consistently both the firing rates and the firing correlations...

  7. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  8. Balanced Realization and Model Order Reduction for Nonlinear Systems based on Singular Value Analysis

    NARCIS (Netherlands)

    Fujimoto, Kenji; Scherpen, Jacquelien M. A.

    2010-01-01

    This paper discusses balanced realization and model order reduction for both continuous-time and discrete-time general nonlinear systems based on singular value analysis of the corresponding Hankel operators. Singular value analysis clarifies the gain structure of a given nonlinear operator. Here it

  9. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  10. Flux balance analysis of genome-scale metabolic model of rice ...

    Indian Academy of Sciences (India)

    Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components.

  11. Two source energy balance model:Refinements and lysimeter tests in the Southern High Plains

    Science.gov (United States)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  12. Two source energy balance model-refinements and lysimeter tests in the Southern High Plains

    Science.gov (United States)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  13. Research Universities for National Rejuvenation and Global Influence: China's Search for a Balanced Model

    Science.gov (United States)

    Postiglione, Gerard A.

    2015-01-01

    The search continues for a Chinese research university model that can balance quality and quantity in research and teaching. This paper argues that finding one depends upon deepening internationalization, defining educational sovereignty, and expanding university autonomy. The paper does this by examining selected aspects in the development of the…

  14. Mass balance-based plant-wide wastewater treatment plant models ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... Mass balance-based plant-wide wastewater treatment plant models – Part 3: Biodegradability of activated sludge organics under anaerobic conditions. GA Ekama*, SW Sötemann and MC Wentzel. Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch 7701, Cape, ...

  15. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling

    NARCIS (Netherlands)

    Ettema, J.|info:eu-repo/dai/nl/304831913; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Meijgaard, E.; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Bamber, Jonathan L.; Box, J.E.; Bales, R.C.

    2009-01-01

    High-resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958–2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher

  16. A Connectionist Model of a Continuous Developmental Transition in the Balance Scale Task

    Science.gov (United States)

    Schapiro, Anna C.; McClelland, James L.

    2009-01-01

    A connectionist model of the balance scale task is presented which exhibits developmental transitions between "Rule I" and "Rule II" behavior [Siegler, R. S. (1976). Three aspects of cognitive development. "Cognitive Psychology," 8, 481-520.] as well as the "catastrophe flags" seen in data from Jansen and van der Maas [Jansen, B. R. J., & van der…

  17. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Fumin Ma

    2015-10-01

    Full Text Available Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses.

  18. White poplar (Populus alba L.) suspension cultures as a model system to study apoptosis induced by alfalfa saponins.

    Science.gov (United States)

    Balestrazzi, Alma; Carbonera, Daniela; Avato, Pinarosa; Tava, Aldo

    2014-01-01

    In animal cells, the anticancer function played by plant saponins involves a complex network of molecular processes that still deserves investigation and apoptosis seems to be the outstanding pathway. An intriguing aspect of the biological activity of saponins is related to their effects on genome integrity. As demonstrated by the studies carried out in white poplar (Populus alba L., cv Villafranca) cell suspension cultures, plant cells can as well be used as a model system to unravel the molecular mechanisms activated by plant saponins. These recent studies have evidenced that animal and plant cells share common features in their response to saponins, paving the way for novel opportunities for both basic and applied research. Indeed, there is a certain interest in replacing the animal models for pharmacological research, at least when preliminary large-scale cytotoxicity tests are performed on wide collections of natural extracts and/or purified compounds. The review provides an up-date of the molecular pathways (signal transduction, antioxidant response, DNA repair) associated with plant saponin bioactivity, with an emphasis on apoptosis induced by alfalfa (Medicago sativa L.) saponins. The comparison between animal and plant cells as tools for the study of saponin bioactivity is also discussed in view of the most recent literature and innovative future applications.

  19. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  20. Including the effects of debris cover in a distributed glacier energy balance model (Invited)

    Science.gov (United States)

    Pellicciotti, F.; Reid, T.; Carenzo, M.; Brock, B. W.

    2010-12-01

    Distributed models of glacier energy balance, which make use of digital elevation models and extensive spatial data on local meteorology, have become very useful tools for predicting glacial ablation and runoff in recent years. They generally function by running a one-dimensional energy balance model at every point on a grid on the glacier surface - for each point in the grid the ablation is calculated based on the balance of heat fluxes at the ice-air boundary. However, one key component has been missing from distributed models to date, namely the effects of debris cover. Many glacier ablation zones are mantled in near-continuous blankets of rock debris, and debris-covered glaciers are important drivers of the water cycle in the European Alps, Andes and Himalayas. Moreover, debris covers have been seen to expand in recent years, so it is essential to assess exactly how the presence of debris may affect a glacier’s surface energy balance and potential responses to climate changes. The effects of a debris cover are complicated by the varying surface roughness, albedo and thermal properties of the debris in question, but generally a debris cover reduces glacier melt rate by insulating the glacier surface from direct solar radiation. Even on glaciers where the debris cover is not continuous, isolated patches of debris caused by rockfalls can affect the glacier evolution by introducing differential ablation across the glacier surface, thus creating ice-cored moraines that may persist after ‘clean’ parts of the glacier have wasted away. This paper presents the results of incorporating a one-dimensional ‘debris energy balance model’ called DEB-Model (Reid and Brock 2010) into a distributed melt model for Haut Glacier d’Arolla, Switzerland. DEB-Model numerically estimates debris surface temperature by considering the balance of heat fluxes at the air-debris interface, then calculates heat conduction through the debris in order to estimate melt rates at the

  1. KINETIC DISTRIBUTION MODEL OF EVAPORATION, BIOSORPTION AND BIODEGRADATION OF POLYCHLORINATED BIPHENYLS (PCBS) IN THE SUSPENSION OF PSEUDOMONAS STUTZERI. (R826652)

    Science.gov (United States)

    AbstractKinetics of distribution of PCBs in an active bacterial suspension of Pseudomonas stutzeri was studied by monitoring the evaporated amounts and the concentration remaining in the liquid medium with the biomass. To determine the biodegradation rate const...

  2. A parameter for the selection of an optimum balance calibration model by Monte Carlo simulation

    CSIR Research Space (South Africa)

    Bidgood, Peter M

    2013-09-01

    Full Text Available . In turn, this can only result in improved wind tunnel data quality. REFERENCES [1] Raymond Bergman, Iwan Phillipsen. "An experimental comparison of different load tables for balance calibration." Williamsburg, Virginia : 7th International Symposium... Regarding Rules of Thumb for Variance Inflation Factors." s.l. : Springer, 2007. Vols. Quality & Quantity (2007) 41:673-690, DOI 10.1007/s11135-006-9018-6. [5] T.Volden, N.Ulbrich. "Regression Model Term Selection for the Analysis of Strain–Gage Balance...

  3. Visualizing Experimental Designs for Balanced ANOVA Models using Lisp-Stat

    Directory of Open Access Journals (Sweden)

    Philip W. Iversen

    2004-12-01

    Full Text Available The structure, or Hasse, diagram described by Taylor and Hilton (1981, American Statistician provides a visual display of the relationships between factors for balanced complete experimental designs. Using the Hasse diagram, rules exist for determining the appropriate linear model, ANOVA table, expected means squares, and F-tests in the case of balanced designs. This procedure has been implemented in Lisp-Stat using a software representation of the experimental design. The user can interact with the Hasse diagram to add, change, or delete factors and see the effect on the proposed analysis. The system has potential uses in teaching and consulting.

  4. Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome.

    Science.gov (United States)

    Isgrig, Kevin; Shteamer, Jack W; Belyantseva, Inna A; Drummond, Meghan C; Fitzgerald, Tracy S; Vijayakumar, Sarath; Jones, Sherri M; Griffith, Andrew J; Friedman, Thomas B; Cunningham, Lisa L; Chien, Wade W

    2017-03-01

    Dizziness and hearing loss are among the most common disabilities. Many forms of hereditary balance and hearing disorders are caused by abnormal development of stereocilia, mechanosensory organelles on the apical surface of hair cells in the inner ear. The deaf whirler mouse, a model of human Usher syndrome (manifested by hearing loss, dizziness, and blindness), has a recessive mutation in the whirlin gene, which renders hair cell stereocilia short and dysfunctional. In this study, wild-type whirlin cDNA was delivered to the inner ears of neonatal whirler mice using adeno-associated virus serotype 2/8 (AAV8-whirlin) by injection into the posterior semicircular canal. Unilateral whirlin gene therapy injection was able to restore balance function as well as improve hearing in whirler mice for at least 4 months. Our data indicate that gene therapy is likely to become a treatment option for hereditary disorders of balance and hearing. Copyright © 2017. Published by Elsevier Inc.

  5. A conceptual model of daily water balance following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii a transient Stream zone Store (iii a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically varying saturated areas responsible for surface runoff, interflow and deep percolation. The Subsurface Store describes the unsaturated soil moisture balance, extraction of percolated water by vegetation and groundwater recharge. The Groundwater Store controls the baseflow to stream (if any and the groundwater contribution to the stream zone saturated areas. The daily model was developed following a downward approach by analysing data from Ernies (control and Lemon (53% cleared catchments in Western Australia and elaborating a monthly model. The daily model performed very well in simulating daily flow generation processes for both catchments. Most of the model parameters were incorporated a priori from catchment attributes such as surface slope, soil depth, porosity, stream length and initial groundwater depth, and some were calibrated by matching the observed and predicted hydrographs. The predicted groundwater depth, and streamflow volumes across all time steps from daily to monthly to annual were in close agreement with observations for both catchments.

  6. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water......Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...

  7. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    Science.gov (United States)

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  8. Artificial Neural Network Modelling of Photodegradation in Suspension of Manganese Doped Zinc Oxide Nanoparticles under Visible-Light Irradiation

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2014-01-01

    Full Text Available The artificial neural network (ANN modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software’s option. To obtain the optimum topologies, ANN was trained by quick propagation (QP, Incremental Back Propagation (IBP, Batch Back Propagation (BBP, and Levenberg-Marquardt (LM algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.

  9. Optimizing Intermodal Train Schedules with a Design Balanced Network Design Model

    DEFF Research Database (Denmark)

    Pedersen, Michael Berliner; Crainic, Teodor Gabriel

    We present a modeling approach for optimizing intermodal trains schedules based on an infrastructure divided into time-dependent train paths. The formulation can be generalized to a capacitated multi commodity network design model with additional design balance constraints. We present a Tabu Sear...... based metaheuristic to solve large instances of the generalized problem and compare its results on standard network design problems to those obtained using the solver XpressMP....

  10. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    OpenAIRE

    Vargas, Felipe A; Pizarro, Francisco; Pérez-Correa, J Ricardo; Agosin, Eduardo

    2011-01-01

    Abstract Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model,...

  11. Suitability of the water balance model LARSIM to determine the impact of climatic change

    Science.gov (United States)

    Gerlinger, K.

    2003-04-01

    The Large Area Runoff Simulation Model (LARSIM) was developed to simulate continuously the water balance of large river basins. Beside the runoff generation in the area and the translation and retention in river channels, LARSIM includes the processes of interception, evapo-transpiration and water storage in soils and aquifers. Snow accumulation and snow melt can be considered as well as artificial influences (e.g. storage basins, diversions or water transfer between different basins). LARSIM combines well-tried deterministic hydrological model components, which are as far as possible generally applicable and are based on accessible system data for the land surface. Emphasis is laid on the reliable determination of evapotranspiration by using the Penman-Monteith-equations. Evapotranspiration and the soil water budget are calculated separately for different land uses and field capacities of the soils. For the State of Baden-Wuerttemberg (SW-Germany, approx. 36.000 km2) water balance models were set up which are based on raster cells (square grid 1 km2). The model build up was done to a large extent computer-aided on the basis of extensive digital system data (elevation model, vectored river network, satellite classification of land use, field capacities of soils). For each raster cell up to 16 land use classes are considered separately. The models shall be used for the estimation of the effects of possible climatic modifications on the water regime (like discharge, infiltration, evaporation). The results of the regional hydrostatic atmospheric circulation model REMO will be applied as input data to the water balance models to define the impact of climate change on the hydrological processes. Especially for flood prevention, State officials and the administration expect reliable information on the expected changes. Prior to the use of the water balance model for climatic change calculations, the uncertainty of the model to simulate the actual hydrological conditions

  12. MODEL BUDAYA BACA-TULIS BERBASIS BALANCE LITERACY DAN GERAKAN INFORMASI LITERASI DI SD

    Directory of Open Access Journals (Sweden)

    Yuliyati -

    2014-09-01

    Full Text Available Abstract: Reading-Writing Culture Model Based on Balance Literacy Approach and Information Literacy Movement in Elementary School. This study was designed to construct a reading and writing culture model based on balance literacy approach and information literacy movement. This research-and-development study comprised two stages. In Stage 1, surveys, review of literature, and the development of the draft were conducted. Stage 2 focused on trying out a limited revision of the key products, applying product revision, and revising the final product. The product was validated experimentally using a two-group pretest-posttest random design, involving 127 students in the experimental group and 130 in the control. The data collected through a test, observations, and interviews were statistically analyzed. The results show that the model is effective to develop the students’ ability in reading and writing and  that reading-writing habits can be developed if all members of the school intentionally develop the students’ literacy habits through working hard and applying the model together. Keywords: reading and writing culture, balance literacy, literacy information movement, elementary school Abstrak: Model Budaya Baca-Tulis Berbasis Balance Literacy dan Gerakan Informasi di Sekolah Dasar. Penelitian pengembangan ini bertujuan mengonstruksi model budaya baca-tulis berbasis balance literacy dan gerakan informasi. Pengembangan dilaksanakan dalam dua tahap. Tahap 1 meliputi survei, reviu literatur, pengembangan draf. Tahap 2 meliputi uji lapangan terbatas, revisi produk utama, uji lapangan utama, revisi produk aplikatif, dan revisi produk akhir. Validasi produk dilakukan melalui eksperiman dengan rancangan prates-pascates rambang dua kelompok. Subjek terdiri dari 127 siswa pada kelompok eksperimen dan 130 siswa pada kelompok kontrol. Data dikumpulkan dengan tes, observasi, dan wawancara, kemudian dianalisis dengan analisis varian. Hasil pengembangan

  13. Time Varying Behavior of the Loudspeaker Suspension

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2007-01-01

    The suspension part of the electrodynamic loudspeaker is often modelled as a simple linear spring with viscous damping, however the dynamic behaviour of the suspension is much more complicated than predicted by such a simple model. At higher levels the compliance becomes non-linear and often...... changes during excitation at high levels. This paper investigates how the compliance of the suspension depends on the excitation, i.e. level and frequency content. The measurements are compared with other known measurement methods of the suspension....

  14. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    Science.gov (United States)

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  15. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-12-01

    Full Text Available This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes, which is a vertical (1-D integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

  16. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    Science.gov (United States)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  17. BALANCED SCORE CARD MODEL EVALUATION: THE CASE OF AD BARSKA PLOVIDBA

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2009-06-01

    Full Text Available The paper analyses creation of Balanced Scorecard, which includes environmental protection elements in AD Barska Plovidba. Firstly,the paper presents proposed models that include elements of conventional Balanced scorecard, and then we start with proposed models evaluation. In fact, as implementation and evaluation of the model in AD Barska Plovidba takes longer period of time, its evaluation and final choice is based on ISO 14598 and ISO 9126 with use of AHP method. Usually those standards are used for quality evaluation of software products, computer programs and databases inside organisation. After all, they serve as support for their development and acceptance because they provide quality evaluation during the phase when software is not yet implemented inside organistaion, what we assume as very important.

  18. Experimental Characterisation and Modelling of Homogeneous Solid Suspension in an Industrial Stirred Tank

    Directory of Open Access Journals (Sweden)

    Sébastien Calvo

    2013-01-01

    Full Text Available In this work, we study the conditions needed to reach homogeneous distribution of aluminium salts particles in water inside a torispherical bottom shaped stirred tank of 70 L equipped with a Pfaudler RCI type impeller and three equispaced vertical baffles. The aim of the present study is to develop a CFD model describing the quality of particle distribution in industrial scale tanks. This model, validated with experimental data, is used afterwards to develop scale-up and scale-down correlations to predict the minimum impeller speed needed to reach homogeneous solid distribution Nhs. The commercial CFD software Fluent 14 is used to model the fluid flow and the solid particle distribution in the tank. Sliding Mesh approach is used to take the impeller motion into account. Assuming that the discrete solid phase has no influence on the continuous liquid phase behaviour, the fluid flow dynamics is simulated independently using the well-known k-∊ turbulence model. The liquid-solid mixture behaviour is then described by implementing the Eulerian Mixture model. Computed liquid velocity fields are validated by comparison with PIV measurements. Computed Nhs were found to be in good agreement with experimental measurements. Results from different scales allowed correlating Nhs values to the volumetric power consumption.

  19. The development and evaluation of single cell suspension from wheat and barley as a model system; a first step towards functional genomics application

    DEFF Research Database (Denmark)

    Dong, Jing; Bowra, Steve; Vincze, Éva

    2010-01-01

    Background The overall research objective was to develop single cell plant cultures as a model system to facilitate functional genomics of monocots, in particular wheat and barley. The essential first step towards achieving the stated objective was the development of a robust, viable single cell...... suspension culture from both species. Results We established growth conditions to allow routine culturing of somatic cells in 24 well microtiter plate format. Evaluation of the wheat and barley cell suspension as model cell system is a multi step process. As an initial step in the evaluation procedure we...... chose to study the impact of selected abiotic stress elicitors at the physiological, biochemical and molecular level. We report the results of osmotic stress imposed by NaCl and PEG. As proline is an important osmoprotectant of the cereal cells, colorimetric assay for proline detection was developed...

  20. Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen

    NARCIS (Netherlands)

    Oerlemans, J.

    1992-01-01

    Three glaciers in southern Norway, with very different massbalance characteristics, are studied with an energy-balance model of the ice/snow surface. The model simulates the observed mass-balance profiles in a satisfactory way, and can thus be used with some confidence in a study of climate

  1. The spatial and temporal variability of the surface mass balance in Antarctica: results from a regional climate model

    NARCIS (Netherlands)

    Lipzig, N.P.M. van; Meijgaard, E. van; Oerlemans, J.

    2002-01-01

    A 14 year integration with a regional atmospheric model (RACMO) is used to obtain detailed information on the Antarctic surface mass balance and to understand the mechanisms that are responsible for the spatial and temporal distribution of the surface mass balance. The model (Δx = 55 km) uses the

  2. Surface Energy Balance in Jakarta and Neighboring Regions As Simulated Using Fifth Mesoscale Model (MM5

    Directory of Open Access Journals (Sweden)

    Yopi Ilhamsyah

    2014-04-01

    Full Text Available The objective of the present research was to assess the surface energy balance particularly in terms of the computed surface energy and radiation balance and the development of boundary layer over Jakarta and Neighboring Regions (JNR by means of numerical model of fifth generation of Mesoscale Model (MM5. The MM5 with four domains of 9 kilometers in spatial resolution presenting the outermost and the innermost of JNR is utilized. The research focuses on the third and fourth domains covering the entire JNR. The description between radiation and energy balance at the surface is obtained from the model. The result showed that energy balance is higher in the city area during daytime. Meanwhile, energy components, e.g., surface sensible and latent heat flux showed that at the sea and in the city areas were higher than other areas. Moreover, ground flux showed eastern region was higher than others. In general, radiation and energy balance was higher in the daytime and lower in the nighttime for all regions. The calculation of Bowen Ratio, the ratio of surface sensible and latent heat fluxes, was also higher in the city area, reflecting the dominations of urban and built-up land in the region. Meanwhile, Bowen Ratio in the rural area dominated by irrigated cropland was lower. It is consistent with changes of land cover properties, e.g. albedo, soil moisture, and thermal characteristics. In addition, the boundary layer is also higher in the city. Meanwhile western region dominated by suburban showed higher boundary layer instead of eastern region.

  3. Development of a Population Balance Model of a pharmaceutical drying process and testing of solution methods

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F.C.; Gernaey, Krist; De Beer, Thomas

    2013-01-01

    Drying is frequently used in the production of pharmaceutical tablets. Simulation-based control strategy development for such a drying process requires a detailed model. First, the drying of wet granules is modelled using a Population Balance Model. A growth term based on a reduced model was used......, which describes the decrease of the moisture content, to follow the moisture content distribution for a batch of granules. Secondly, different solution methods for solving the PBM are compared. The effect of grid size (discretization methods) is analyzed in terms of accuracy and calculation time. All...

  4. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sorin Zaharia; C.Z. Cheng

    2002-06-18

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.

  5. HIBAL: A hydrologic-isotopic-balance model for application to paleolake systems

    Science.gov (United States)

    Benson, L.; Paillet, F.

    2002-01-01

    A simple hydrologic-isotopic-balance (HIBAL) model for application to paleolake ??18O records is presented. Inputs to the model include discharge, on-lake precipitation, evaporation, and the ??18O values of these fluid fluxes. Monthly values of climatic parameters that govern the fractionation of 18O and 16O during evaporation have been extracted from historical data sets and held constant in the model. The ability of the model to simulate changes in the hydrologic balance and the ??18O evolution of the mixed layer has been demonstrated using measured data from Pyramid Lake, Nevada. Simulations of the response in ??18O to step- and periodic-function changes in fluid inputs indicate that the hydrologic balance and ??18O values lag climate change. Input of reconstructed river discharges and their ??18O values to Pyramid and Walker lakes indicates that minima and maxima in simulated ??18O records correspond to minima and maxima in the reconstructed volume records and that the overall shape of the volume and ??18O records is similar. The model was also used in a simulation of abrupt oscillations in the ??18O values of paleo-Owens Lake, California.

  6. Dynamic Modeling and Analysis of an Industrial Gas Suspension Absorber for Flue Gas Desulfurization

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Mansouri, Seyed Soheil; Sales-Cruz, Mauricio

    2016-01-01

    another plant data set. It was verified that in spite of the simplicity of the model, very good prediction of industrial behavior was obtained. Furthermore, the dynamic analysis of the system was performed by carrying out open-loop and closed-loop simulations to verify plant dynamics. Therefore, a simple...... parameters were fitted to operational data from a real cement plant. A detailed statistical analysis of the parameter estimation procedure was performed, and the confidence intervals for estimated kinetic parameters were calculated. The model and reaction rate expression prediction ability was tested using...

  7. Modelling the spatial and temporal variations of the water balance for the Weser catchment 1965 1994

    Science.gov (United States)

    Strasser, Ulrich; Mauser, Wolfram

    2001-12-01

    This study describes the application of the physically based SVAT model PROMET (PRocess Oriented Model for EvapoTranspiration) in the mesoscale catchment of the Weser (Northern Germany, approx. 37,500 km 2) utilizing a 30 years time series of meteorological input data. To enable a representative analysis of the spatial and temporal variations of the water balance components, the modelization is performed continuously without re-initialization of the state variables or specific calibration. Therefore, PROMET is expanded with the one-layer snow model ESCIMO (Energy balance Snow Cover Integrated MOdel) to provide an integrated model structure for continuous simulations of the water cycle. All necessary input data fields are integrated in a four-dimensional GIS data structure with a raster grid spacing of 1 km: a DEM, soil texture information derived from digitized maps, landuse distribution computed by unmixing a time series of NOAA/AVHRR satellite images and meteorological input data fields which are spatially and temporally interpolated using data provided by the standard measurement network of the German Weather Service (DWD). Spatially non-distributed physical soil and plant parameters are either derived from measurements or taken from literature. The study presents the structure of ESCIMO and its validation at the point and the catchment scale. Then, the modelled mean annual evapotranspiration, aET, as obtained by application of the linked models PROMET/ESCIMO is compared with the corresponding term ET calculated by inserting the measured precipitation and gauged runoff into the water balance equation. It is started from the assumption that for the 30 years period, the overall underground storage change Δ S is negligible. The mean annual deviation aET-ET over the 30 years period is 10.9 mm, indicating that the results represent a valid long-term description of the water balance. The patterns of the simulated water balance components are discussed with respect to

  8. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    Science.gov (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Modeled alongshore circulation and force balances onshore of a submarine canyon

    Science.gov (United States)

    Hansen, Jeff E.; Raubenheimer, Britt; List, Jeffrey H.; Elgar, Steve

    2015-03-01

    Alongshore force balances, including the role of nonlinear advection, in the shoaling and surf zones onshore of a submarine canyon are investigated using a numerical modeling system (Delft3D/SWAN). The model is calibrated with waves and alongshore flows recorded over a period of 1.5 months at 26 sites along the 1.0, 2.5, and 5.0 m depth contours spanning about 2 km of coast. Field observation-based estimates of the alongshore pressure and radiation-stress gradients are reproduced well by the model. Model simulations suggest that the alongshore momentum balance is between the sum of the pressure and radiation-stress gradients and the sum of the nonlinear advective terms and bottom stress, with the remaining terms (e.g., wind stress and turbulent mixing) being negligible. The simulations also indicate that unexplained residuals in previous field-based estimates of the momentum balance may be owing to the neglect of the nonlinear advective terms, which are similar in magnitude to the sum of the forcing (pressure and radiations stress gradients) and to the bottom stress.

  10. Evaluation of Regression Models of Balance Calibration Data Using an Empirical Criterion

    Science.gov (United States)

    Ulbrich, Norbert; Volden, Thomas R.

    2012-01-01

    An empirical criterion for assessing the significance of individual terms of regression models of wind tunnel strain gage balance outputs is evaluated. The criterion is based on the percent contribution of a regression model term. It considers a term to be significant if its percent contribution exceeds the empirical threshold of 0.05%. The criterion has the advantage that it can easily be computed using the regression coefficients of the gage outputs and the load capacities of the balance. First, a definition of the empirical criterion is provided. Then, it is compared with an alternate statistical criterion that is widely used in regression analysis. Finally, calibration data sets from a variety of balances are used to illustrate the connection between the empirical and the statistical criterion. A review of these results indicated that the empirical criterion seems to be suitable for a crude assessment of the significance of a regression model term as the boundary between a significant and an insignificant term cannot be defined very well. Therefore, regression model term reduction should only be performed by using the more universally applicable statistical criterion.

  11. Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus.

    Science.gov (United States)

    Charalambous, Katerina; Bruggeman, Adriana; Lange, Manfred A

    2012-01-01

    Modelling the urban water balance enables the understanding of the interactions of water within an urban area and allows for better management of water resources. However, few models today provide a comprehensive overview of all water sources and uses. The objective of the current paper was to develop a user-friendly tool that quantifies and visualizes all water flows, losses and inefficiencies in urban environments. The Urban Water Flow Model was implemented in a spreadsheet and includes a water-savings application that computes the contributions of user-selected saving options to the overall water balance. The model was applied to the coastal town of Limassol, Cyprus, for the hydrologic years 2003/04-2008/09. Data were collected from the different authorities and hydrologic equations and estimations were added to complete the balance. Average precipitation was 363 mm/yr, amounting to 25.4 × 10(6)m(3)/yr, more than double the annual potable water supply to the town. Surface runoff constituted 29.6% of all outflows, while evapotranspiration from impervious areas was 21.6%. Possible potable water savings for 2008/09 were estimated at 5.3 × 10(3) m(3), which is 50% of the total potable water provided to the area. This saving would also result in a 6% reduction of surface runoff.

  12. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders.

    Science.gov (United States)

    MacLeod, Erin L; Hall, Kevin D; McGuire, Peter J

    2016-01-01

    Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.

  13. Steady-state energy balance in animal models of obesity and weight loss.

    Science.gov (United States)

    Olsen, Magnus Kringstad; Johannessen, Helene; Cassie, Nikki; Barrett, Perry; Takeuchi, Koji; Kulseng, Bård; Chen, Duan; Zhao, Chun-Mei

    2017-04-01

    We wanted to exam the steady-state energy balance by using high-fat diet-induced obese (DIO) rats and mice as models for positive energy balance, and gastric bypassed (GB) rats and gene knockout of muscarinic acetylcholine M3 receptor (M3KO) mice as models for negative energy balance. One hundred and thirty-two rats and mice were used. Energy balance was measured by a comprehensive laboratory animal monitoring system. Gene expression was analysed by in situ hybridisation in M3KO mice. DIO rats reached the plateau of body weight 28 weeks after starting high-fat diet (25% heavier than controls), whereas DIO mice reached the plateau after 6 weeks (23% heavier than controls). At the plateau, DIO rats had higher calorie intake during the light phase but not during the dark phase, while mice had the same calorie intake per day as controls. DIO rats and mice had lower energy expenditure (EE) and respiratory exchange ratio (RER) than controls. GB-rats reached the plateau (15% weight loss) 2 weeks after surgery and had the same calorie intake as sham-operated controls. EE, but not RER, was higher in GB rats than controls during the dark phase. The lean M3KO mice (25% lighter than wild-type (WT) mice at the plateau between 6 and 15 months of age) had the same calorie intake but higher EE, RER and hypothalamic mRNA expression of NPY, AgRP and leptin receptor than WT mice. When body weight gain or loss reached a plateau, the steady-state energy balance was mainly maintained by EE and/or RER rather than calorie intake.

  14. Population balance models: a useful complementary modelling framework for future WWTP modelling

    DEFF Research Database (Denmark)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel

    2015-01-01

    sufficiently capture the true behaviour and even lead to completely wrong conclusions. Examples of distributed properties are bubble size, floc size, crystal size or granule size. In these cases, PBMs can be used to develop new knowledge that can be embedded in our current models to improve their predictive...

  15. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    National Research Council Canada - National Science Library

    van Angelen, J.H; Lenaerts, J.T.M; Lhermitte, S; Fettweis, X; Kuipers Munneke, P; van den Broeke, M.R; van Meijgaard, E; Smeets, C.J.P.P

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme...

  16. Noise-induced phase transition in the model of human virtual stick balancing

    CERN Document Server

    Zgonnikov, Arkady

    2016-01-01

    Humans face the task of balancing dynamic systems near an unstable equilibrium repeatedly throughout their lives. Much research has been aimed at understanding the mechanisms of intermittent control in the context of human balance control. The present paper deals with one of the recent developments in the theory of human intermittent control, namely, the double-well model of noise-driven control activation. We demonstrate that the double-well model can reproduce the whole range of experimentally observed distributions under different conditions. Moreover, we show that a slight change in the noise intensity parameter leads to a sudden shift of the action point distribution shape, that is, a phase transition is observed.

  17. Modeling and System-level Simulation of Force-balance MEMS Comb Accelerometers

    Directory of Open Access Journals (Sweden)

    Hao CHEN

    2011-04-01

    Full Text Available This paper presents a quick system-level modeling and simulation of force-balance MEMS comb accelerometers. The derivation of the system-level model including the sense element and interface electronics is elaborated and the simulation results are obtained from COVENTOR and MATLAB respectively. The force-balance MEMS comb accelerometer, with the size of 1920 µm ´ 960 µm ´ 50 µm, the static capacitance of 2.25 pF, and the inertial mass of 5.47 µg, can endure with over load of 2000 g. Through the system-level simulation, the sensitivity is 100 mv/g, the full scale range is ± 50 g, the nonlinear distortion is smaller than 0.5 % and the system bandwidth is 2.2 kHz.

  18. Energy balance and mass conservation in reduced order models of fluid flows

    Science.gov (United States)

    Mohebujjaman, Muhammad; Rebholz, Leo G.; Xie, Xuping; Iliescu, Traian

    2017-10-01

    In this paper, we investigate theoretically and computationally the conservation properties of reduced order models (ROMs) for fluid flows. Specifically, we investigate whether the ROMs satisfy the same (or similar) energy balance and mass conservation as those satisfied by the Navier-Stokes equations. All of our theoretical findings are illustrated and tested in numerical simulations of a 2D flow past a circular cylinder at a Reynolds number Re = 100. First, we investigate the ROM energy balance. We show that using the snapshot average for the centering trajectory (which is a popular treatment of nonhomogeneous boundary conditions in ROMs) yields an incorrect energy balance. Then, we propose a new approach, in which we replace the snapshot average with the Stokes extension. Theoretically, the Stokes extension produces an accurate energy balance. Numerically, the Stokes extension yields more accurate results than the standard snapshot average, especially for longer time intervals. Our second contribution centers around ROM mass conservation. We consider ROMs created using two types of finite elements: the standard Taylor-Hood (TH) element, which satisfies the mass conservation weakly, and the Scott-Vogelius (SV) element, which satisfies the mass conservation pointwise. Theoretically, the error estimates for the SV-ROM are sharper than those for the TH-ROM. Numerically, the SV-ROM yields significantly more accurate results, especially for coarser meshes and longer time intervals.

  19. Constrained structural dynamic model verification using free vehicle suspension testing methods

    Science.gov (United States)

    Blair, Mark A.; Vadlamudi, Nagarjuna

    1988-01-01

    Verification of the validity of a spacecraft's structural dynamic math model used in computing ascent (or in the case of the STS, ascent and landing) loads is mandatory. This verification process requires that tests be carried out on both the payload and the math model such that the ensuing correlation may validate the flight loads calculations. To properly achieve this goal, the tests should be performed with the payload in the launch constraint (i.e., held fixed at only the payload-booster interface DOFs). The practical achievement of this set of boundary conditions is quite difficult, especially with larger payloads, such as the 12-ton Hubble Space Telescope. The development of equations in the paper will show that by exciting the payload at its booster interface while it is suspended in the 'free-free' state, a set of transfer functions can be produced that will have minima that are directly related to the fundamental modes of the payload when it is constrained in its launch configuration.

  20. A Toolkit Modeling Approach for Sustainable Forest Management Planning: Achieving Balance between Science and Local Needs

    Directory of Open Access Journals (Sweden)

    Brian R. Sturtevant

    2007-12-01

    Full Text Available To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM. The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and local domain experts in the meta-model building process. The modeling team works iteratively with each of these groups to define essential questions, identify data resources, and then determine whether available tools can be applied or adapted, or whether new tools can be rapidly created to fit the need. The desired goal of the process is a linked series of domain-specific models (tools that balances generalized "top-down" models (i.e., scientific models developed without input from the local system with case-specific customized "bottom-up" models that are driven primarily by local needs. Information flow between models is organized according to vertical (i.e., between scale and horizontal (i.e., within scale dimensions. We illustrate our approach within a 2.1 million hectare forest planning district in central Labrador, a forested landscape where social and ecological values receive a higher priority than economic values. However, the focus of this paper is on the process of how SFM modeling tools and concepts can be rapidly assembled and applied in new locations, balancing efficient transfer of science with adaptation to local needs. We use the Labrador case study to illustrate strengths and challenges uniquely associated with a meta-modeling approach to integrated modeling as it fits within the broader collaborative modeling framework. Principle advantages of the approach include the scientific rigor introduced by peer-reviewed models, combined with the adaptability of meta-modeling. A key challenge is the limited transparency of scientific models to different participatory groups

  1. An improved method for estimating ice line for zonal energy balance climate models

    Directory of Open Access Journals (Sweden)

    Tsion Andine

    2016-03-01

    Full Text Available In this article we consider an energy balance climate model. For a given ice line, we use spectral method to derive an approximation of the solution. Then we propose a method to update the ice line and to derive an updated approximation of the solution. We compare the difference between the approximation with fixed ice line and the approximation with updated ice line by looking at the temperature profile at some specific locations and times. The significance of the method to update the ice line is that it is model free. Therefore, it can be used in other climate models.

  2. Impact of the initialisation on population balance CFD models coupled with two-phase flow

    Science.gov (United States)

    Hliwa, Ghizlane Zineb; Bannari, Rachid; Belghiti, Mly Taib

    2017-07-01

    Several studies have been made about Computational Fluid Dynamics simulations of bubble columns and compared to experimental data. In the present work, a rectangular bubble column is simulated using a model of two-phase flows. The inter-phase forces are used. A population balance equation is introduced by comparing two different models to account the effects of bubble size distribution. The turbulence model k-ɛ is used with mixture transport properties. In this work, the impact of boundary conditions at the inlet is studied. The numerical predictions are validated with experimental data available in the literature.

  3. NETPATH-WIN: an interactive user version of the mass-balance model, NETPATH

    Science.gov (United States)

    El-Kadi, A. I.; Plummer, L.N.; Aggarwal, P.

    2011-01-01

    NETPATH-WIN is an interactive user version of NETPATH, an inverse geochemical modeling code used to find mass-balance reaction models that are consistent with the observed chemical and isotopic composition of waters from aquatic systems. NETPATH-WIN was constructed to migrate NETPATH applications into the Microsoft WINDOWS® environment. The new version facilitates model utilization by eliminating difficulties in data preparation and results analysis of the DOS version of NETPATH, while preserving all of the capabilities of the original version. Through example applications, the note describes some of the features of NETPATH-WIN as applied to adjustment of radiocarbon data for geochemical reactions in groundwater systems.

  4. An analytical force balance model for dust particles with size up to several Debye lengths

    Science.gov (United States)

    Aussems, D. U. B.; Khrapak, S. A.; Doǧan, I.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-11-01

    In this study, we developed a revised stationary force balance model for particles in the regime a / λ D plasmas, a novel contribution to the dipole moment was derived. Moreover, the Coulomb logarithm and collection cross-section were modified. The model was applied on a case study where carbon dust is formed near the plasma sheath in the linear plasma device Pilot-PSI. The pressure force and dipole force were found to be significant. By tracing the equilibrium position, the particle radius was determined at which the particle deposits. The obtained particle radius agrees well with the experimentally obtained size and suggests better agreement as compared to the unrevised model.

  5. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    Science.gov (United States)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  6. Regional Balance Model of Financial Flows through Sectoral Approaches System of National Accounts

    Directory of Open Access Journals (Sweden)

    Ekaterina Aleksandrovna Zaharchuk

    2017-03-01

    Full Text Available The main purpose of the study, the results of which are reflected in this article, is the theoretical and methodological substantiation of possibilities to build a regional balance model of financial flows consistent with the principles of the construction of the System of National Accounts (SNA. The paper summarizes the international experience of building regional accounts in the SNA as well as reflects the advantages and disadvantages of the existing techniques for constructing Social Accounting Matrix. The authors have proposed an approach to build the regional balance model of financial flows, which is based on the disaggregated tables of the formation, distribution and use of the added value of territory in the framework of institutional sectors of SNA (corporations, public administration, households. Within the problem resolution of the transition of value added from industries to sectors, the authors have offered an approach to the accounting of development, distribution and use of value added within the institutional sectors of the territories. The methods of calculation are based on the publicly available information base of statistics agencies and federal services. The authors provide the scheme of the interrelations of the indicators of the regional balance model of financial flows. It allows to coordinate mutually the movement of regional resources by the sectors of «corporation», «public administration» and «households» among themselves, and cash flows of the region — by the sectors and directions of use. As a result, they form a single account of the formation and distribution of territorial financial resources, which is a regional balance model of financial flows. This matrix shows the distribution of financial resources by income sources and sectors, where the components of the formation (compensation, taxes and gross profit, distribution (transfers and payments and use (final consumption, accumulation of value added are

  7. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    White, K. L.; Takahara, A. [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Hawkins, S.; Sue, H.-J., E-mail: hjsue@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Miyamoto, M. [Kaneka US Materials Research Center, Kaneka America Holdings, Inc., College Station, Texas 77843 (United States)

    2015-12-15

    Hexagonal 2-dimensional α-zirconium phosphate crystals were prepared with lateral diameters ranging from 110 nm to 1.5 μm to investigate the effect of particle size on suspension rheology. The nanoplatelets were exfoliated to individual sheets with monodisperse thickness and dispersed in a Newtonian epoxy fluid. The steady shear response of dilute and semi-dilute suspensions was measured and compared to expressions obtained from theory for infinitely dilute suspensions. For suspensions containing the smaller nanoplatelets, aspect ratio ∼160, the low shear rate viscosity and transition to shear thinning behavior were well described by theory for loadings up to 0.5 vol. %. The agreement was improved by assuming a moderate polydispersity in lateral diameter, ∼30%–50%, which is consistent with experimental observation. For the higher aspect ratio nanoplatelets, good agreement between theory and experiment was observed only at high shear rates. At lower shear rate, theory consistently over-predicted viscosity, which was attributed to a progressive shift to non-isotropic initial conditions with increasing particle size. The results suggest that at a fixed Peclet number, there is an increasing tendency for the nanoplatelets to form transient, local stacks as particle size increases. The largest particles, aspect ratio ∼2200, showed unusual shear thinning and thickening behaviors that were attributed to particle flexibility. The findings demonstrate the surprising utility of theory for infinitely dilute suspensions to interpret, and in some cases quantitatively describe, the non-Newtonian viscosity of real suspensions containing high aspect ratio plate-like particles. A simple framework is proposed to interpret deviations from ideal behavior based on the local and collective behavior of the suspended nanoplatelets.

  8. Balancing the manufacturing lines through modelling and simulation using Tecnomatix Plant Simulation

    OpenAIRE

    Blaga Florin; Stanăşel Iulian; Hule Voichița; Pop Alin

    2017-01-01

    A frequently problem found in case of serial production is the balancing of flow lines. This paper shows how using modelling and simulation procedures can put in evidence the bottleneck in the manufacturing flow. These situations occur to the case where the corresponding times of the technological operations differ very much. Using the program TECNOMATIX PLANT SIMULATION can be highlighted those dysfunctions that may appear during of the manufacturing system operation. It is also possible to ...

  9. A water balance simulation model for teaching and learning – WaS

    OpenAIRE

    Hess, Tim M.; Counsell, Chris

    2008-01-01

    Developed by HR Wallingford and Cranfield University (with support from the UK Department for International Development), WaSim is a computer-based training package for the teaching and demonstration of issues involved in irrigation, drainage and salinity management. WaSim is a daily water balance model that simulates the soil water / salinity relationships in response to different management strategies (e.g. drainage designs and water management practices) and environmental...

  10. Estimation of Shallow Groundwater Recharge Using a Gis-Based Distributed Water Balance Model

    OpenAIRE

    Graf Renata; Przybyłek Jan

    2014-01-01

    In the paper we present the results of shallow groundwater recharge estimation using the WetSpass GISbased distributed water balance model. By taking into account WetSpass, which stands for Water an Energy Transfer between Soil, Plants and Atmosphere under quasi-Steady State, for average conditions during the period 1961–2000, we assessed the spatial conditions of the groundwater infiltration recharge process of shallow circulation systems in the Poznan Plateau area (the Great Pol...

  11. Numerical modeling of sandwich panel response to ballistic loading - energy balance for varying impactor geometries

    DEFF Research Database (Denmark)

    Kepler, Jørgen Asbøl; Hansen, Michael Rygaard

    2007-01-01

    thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance....

  12. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance

    Science.gov (United States)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.

    2017-01-01

    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  13. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  14. A Well-Balanced and Fully Coupled Noncapacity Model for Dam-Break Flooding

    Directory of Open Access Journals (Sweden)

    Zhiyuan Yue

    2015-01-01

    Full Text Available The last two decades have seen great progress in mathematical modeling of fluvial processes and flooding in terms of either approximation of the physical processes or dealing with the numerical difficulties. Yet attention to simultaneously taking advancements of both aspects is rarely paid. Here a well-balanced and fully coupled noncapacity model is presented of dam-break flooding over erodible beds. The governing equations are based on the complete mass and momentum conservation laws, implying fully coupled interactions between the dam-break flow and sediment transport. A well-balanced Godunov-type finite volume method is used to solve the governing equations, facilitating satisfactory representation of the complex flow phenomena. The well-balanced property is attained by using the divergence form of matrix related to the static force for the bottom slope source term. Existing classical tests, including idealized dam-break flooding over irregular topography and experimental dam-break flooding with/without sediment transport, are numerically simulated, showing a satisfactory quantitative performance of this model.

  15. Home-Based Risk of Falling Assessment Test Using a Closed-Loop Balance Model.

    Science.gov (United States)

    Ayena, Johannes C; Zaibi, Helmi; Otis, Martin J-D; Menelas, Bob-Antoine J

    2016-12-01

    The aim of this study is to improve and facilitate the methods used to assess risk of falling at home among older people through the computation of a risk of falling in real time in daily activities. In order to increase a real time computation of the risk of falling, a closed-loop balance model is proposed and compared with One-Leg Standing Test (OLST). This balance model allows studying the postural response of a person having an unpredictable perturbation. Twenty-nine volunteers participated in this study for evaluating the effectiveness of the proposed system which includes seventeen elder participants: ten healthy elderly ( 68.4 ±5.5 years), seven Parkinson's disease (PD) subjects ( 66.28 ±8.9 years), and twelve healthy young adults ( 28.27 ±3.74 years). Our work suggests that there is a relationship between OLST score and the risk of falling based on center of pressure measurement with four low cost force sensors located inside an instrumented insole, which could be predicted using our suggested closed-loop balance model. For long term monitoring at home, this system could be included in a medical electronic record and could be useful as a diagnostic aid tool.

  16. [Combustion zone investigation and modelling in fuel flexible suspension fired boilers]. Result summary and status

    Energy Technology Data Exchange (ETDEWEB)

    Lovmand Hvid, S.

    2011-12-15

    The project has been designed to obtain data from a power plant boiler with co-combustion, partly to gain greater knowledge of particle turnover in the fuel zone, partly to support the development of modeling tools. Data collection occurred at Studstrup Power Station Unit 4, where the fuel is a combination of coal and biomass. The boiler is equipped with 24 dust burners, four of which have been converted to firing with biomass. Measurements have been carried out in the flame zone with different fuels: coal alone, coal + straw and coal + wood. During the experiments velocity fields, temperature fields and gas concentration fields were measured in the firing zone. Also, particle samples from the flame zone ware collected. Several measurements are performed with well-known techniques, but in addition, the project developed new optical measurement methods based on UV spectroscopy. They allow measuring other gases than the hitherto known methods and allow you to gain insight into the dynamic variations beyond just mean fields. The collection of particle samples from the boiler was, as expected, a very challenging task under the given conditions, but was carried out with a largely satisfactory result. Analysis of the samples has initially failed to lead to an increased recognition of the speed of the conversion process, but the samples will be analyzed in more detail in other projects. (LN)

  17. Dynamic mass balance model for mercury in the St. Lawrence River near Cornwall, Ontario, Canada.

    Science.gov (United States)

    Lessard, Charlotte R; Poulain, Alexandre J; Ridal, Jeffrey J; Blais, Jules M

    2014-12-01

    A dynamic mass balance model was developed for the St. Lawrence River near Cornwall, Ontario that predicts and hindcasts mercury concentrations and fluxes in three forms, elemental Hg (Hg(0)), divalent mercury (Hg(2+)), and methyl mercury (MeHg), in a six compartment environment (air, water, porewater, sediment, periphyton, and benthic invertebrates). Our objective was to construct a dynamic mass balance model for mercury in the St. Lawrence River near Cornwall, Ontario based on the framework and results of a steady-state mass balance model developed previously for this site. The second objective was to estimate industrial mercury emissions based on mercury residues deposited in sediments prior to 1970, the year when regulations were implemented to reduce mercury pollution in the environment. We compiled mercury concentrations, fluxes, and transformation rates from previous studies completed in this section of the river (area of approximately 100km(2)) to develop the model. Estimated mercury concentrations in all media were similar to measured data (R(2)=0.99), with only minor exceptions, providing a satisfactory overall description of the mercury loadings and transformation rates of the different mercury species. The estimated historical emissions prior to 1970 from local industries along the Cornwall waterfront were approximately 400kgyear(-1). A storm sewer discharge of 5000m(3)/day resulted in a significant increase in mercury concentrations, particularly in sediment (617ngg(-1) to 624ngg(-1); p=0.004). Model results suggest that discharges of mercury from sources such as local industries and storm sewers have an impact on mercury in media such as sediment and water. This model should provide a basis for predicting and hindcasting mercury concentrations in other river environments as well, because it considers three distinct forms of mercury, and contains environmental media common to all rivers, including some (e.g. periphyton) not typically included in

  18. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  19. Mass balance modeling to elucidate historical and continuing sources of dioxin into an urban estuary.

    Science.gov (United States)

    Rifai, Hanadi S; Lakshmanan, Divagar; Suarez, Monica P

    2013-09-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are typically found in sediment, water and tissue as in the case of the Houston Ship Channel and Upper Galveston Bay (HSC-UGB) in Texas studied in this research. While hydrodynamic and fate and transport models are important to understand dioxin distribution in the various media, it is difficult to assimilate modeling results into a decision framework without appropriate tools that can aid in the interpretation of the simulated data. This paper presents the development of a mass-balance modeling tool linked to RMA2 and WASP models of the HSC-UGB system for 2002-2005. The mass-balance tool was used to aggregate modeling results spatially and temporally and estimate the relative contribution of sediments to dioxin loading into the Channel in comparison to runoff, deposition, and permitted effluent discharges. The total sediment associated-dioxin load into the system calculated using the mass balance model was 2.34 × 10(7) ng d(-1) (almost 86% of the toxic equivalent load), and the re-deposited load to the sediment from the water column was 1.48 × 10(7)ng-TEQd(-1), such that 8.6 × 10(6)ng-TEQ d(-1) or approximately 69% of the average daily dioxin flux is transported between model segments as sediment. The external loads to the system contribute approximately 3.83 × 10(6)ng-TEQ d(-1), a value that is an order of magnitude smaller when compared to the contribution from sediment. These findings point to the need for sediment remediation strategies that take into account the spatial locations within the system that serve as sediment sources to dioxin in the water column. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Impact of Air Temperature Distributed Calculation in Glacier Mass Balance Modeling

    Science.gov (United States)

    Dalla Fontana, G.; Carturan, L.; Cazorzi, F.

    2014-12-01

    Distributed models of snow and ice mass balance enable a better understanding of processes involved in glacier hydrology and the prediction of glacier runoff under possible future climatic scenarios. The so-called 'Enhanced Temperature-Index' (ETI) melt models are a good compromise between model simplicity, parsimony of input data, and the capability to account for dominant processes in snow and ice mass balance. Accurate spatial calculation of temperature input data is crucial, given the key role of air temperature in modeling ablation and accumulation processes, further emphasized in ETI models. Compared to ambient conditions, lower temperatures (the so-called glacier cooling effect), and temperature variability (the so-called glacier damping effect) generally occur over glaciers, complicating the extrapolation from off-glacier weather stations. A comprehensive dataset of mass balance measurements and high-altitude meteorological observations was collected on La Mare and Careser glaciers (Ortles-Cevedale, Italian Alps) in 2010 and 2011. This dataset was used to analyze the air temperature distribution and wind regime over the glaciers, and to evaluate the impact of different calculation methods proposed in the literature for calculating on-glacier temperatures from off-glacier data. A general-purpose ETI model (EISModel - Energy Index Snow-and-ice Model) was used for simulating snow and ice accumulation and melt processes. Results indicate that i) none of the existing methods fully accounts for the actual temperature distribution over glaciers, ii) even small deviations in air temperature calculations strongly impact the simulations, and iii) there is an important positive feedback related to glacier shrinking and disintegration. Among the tested methods, the more physically-based procedure of Greuell and Bohm (1998) provided the best overall results. Therefore, it was implemented in EISModel for distributed air temperature calculations over glaciers.

  1. Balanced excitation and inhibition: model based analysis of local field potentials.

    Science.gov (United States)

    Zheng, Ying; Luo, Jing Jing; Harris, Sam; Kennerley, Aneurin; Berwick, Jason; Billings, Steve A; Mayhew, John

    2012-10-15

    We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin-Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Water balance at an arid site: a model validation study of bare soil evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.L.; Campbell, G.S.; Gee, G.W.

    1984-03-01

    This report contains results of model validation studies conducted by Pacific Northwest Laboratory (PNL) for the Department of Energy's (DOE) National Low Level Waste Management Program (NLLWMP). The model validation tests consisted of using unsaturated water flow models to simulate water balance experiments conducted at the Buried Waste Test Facility (BWTF) located at the Department of Energy's Hanford site, near Richland, Washington. The BWTF is a lysimeter facility designed to collect field data on long-term water balance and radionuclide tracer movement. It has been operated by PNL for the NLLWMP since 1978. An experimental test case, developed from data collected at the BWTF, was used to evaluate predictions from different water flow models. The major focus of the validation study was to evaluate how the use of different evaporation models affected the accuracy of predictions of evaporation, storage, and drainage made by the whole model. Four evaporation models were tested including two empirical models and two mechanistic models. The empirical models estimate actual evaporation from potential evaporation; the mechanistic models describe water vapor diffusion within the soil profile and between the soil and the atmosphere in terms of fundamental soil properties, and transport processes. The water flow models that included the diffusion-type evaporation submodels performed best overall. The empirical models performed poorly in their description of evaporation and profile water storage during summer months. The predictions of drainage were supported quite well by the experimental data. This indicates that the method used to estimate hydraulic conductivity needed for the Darcian submodel was adequate. This important result supports recommendations for these procedures that were made previously based on laboratory results.

  3. Suspension biomechanics of swimming microbes.

    Science.gov (United States)

    Ishikawa, Takuji

    2009-10-06

    Micro-organisms play a vital role in many biological, medical and engineering phenomena. Some recent research efforts have demonstrated the importance of biomechanics in understanding certain aspects of micro-organism behaviours such as locomotion and collective motions of cells. In particular, spatio-temporal coherent structures found in a bacterial suspension have been the focus of many research studies over the last few years. Recent studies have shown that macroscopic properties of a suspension, such as rheology and diffusion, are strongly affected by meso-scale flow structures generated by swimming microbes. Since the meso-scale flow structures are strongly affected by the interactions between microbes, a bottom-up strategy, i.e. from a cellular level to a continuum suspension level, represents the natural approach to the study of a suspension of swimming microbes. In this paper, we first provide a summary of existing biomechanical research on interactions between a pair of swimming micro-organisms, as a two-body interaction is the simplest many-body interaction. We show that interactions between two nearby swimming micro-organisms are described well by existing mathematical models. Then, collective motions formed by a group of swimming micro-organisms are discussed. We show that some collective motions of micro-organisms, such as coherent structures of bacterial suspensions, are satisfactorily explained by fluid dynamics. Lastly, we discuss how macroscopic suspension properties are changed by the microscopic characteristics of the cell suspension. The fundamental knowledge we present will be useful in obtaining a better understanding of the behaviour of micro-organisms.

  4. Analysis of Balance Scorecards Model Performance and Perspective Strategy Synergized by SEM

    Directory of Open Access Journals (Sweden)

    Waluyo Minto

    2016-01-01

    Full Text Available The performance assessment analysis after the economic crisis by using Balanced Scorecard (BSC method becomes a powerful and effective tool and can provide an integrated view of the performance of an organization. This strategy led to the Indonesian economy being stretched positively after the economic crisis. Taking effective decisions is not spared from combining four BSC perspectives and strategies that focus on a system with different behavior or steps. This paper combines two methods of BSC with structural equation modeling (SEM because they have the same concept, which is a causal relationship, where the research model concept SEM variables use BSC variable. The purpose of this paper is to investigate the influence of variables that synergized between balanced scorecard with SEM as a means of strategic planning in the future. This study used primary data with a large enough sample to meet the maximum likelihood estimation by assessment scale of seven semantic points. This research model is a combination of one and two step models. The next step is to test the measurement model, structural equation modeling, and modification models. The test results indicated that the model has multi colinearities. Therefore, the model is converted into one step model. The test results after being modified into a model of the goodness of fit indices showed a good score. All BSC variables have direct significant influence, including the perspective of strategic goals and sustainable competitive advantage. The implication of the simulation model of goodness of fit-modification results are DF = 227, Chi-square =276.550, P =0.058, CMIN/DF = 1.150, GFI = 0.831, AGFI = 0.791, CFI = 0.972, TLI = 0.965 and RMSEA = 0.039.

  5. A PCSWMM/GIS-based water balance model for the Reesor Creek watershed

    Science.gov (United States)

    Smith, D.; Li, J.; Banting, D.

    2005-09-01

    This paper presents the results of a study of a watershed experiencing the pressures of land-use change resulting from urban development. The study was undertaken to facilitate an understanding of the water balance of the watershed by developing and implementing watershed procedures that are to be addressed in a watershed plan. There were three components to the research: firstly, observation of the effects of spatially distributed rainfall measurements and their effect on modelling were assessed. Secondly, the model was then calibrated by observing how differing techniques can discretize both the landscape (e.g. land-use and soil type) and incoming precipitation. Finally, a modelling methodology was developed to integrate a Geographic Information System and a hydrologic model (e.g. Storm Water Management Model) in a water balance analysis on a watershed basis. Results show that, under certain conditions, kriging spatially distributed rainfall values can help predict rainfall at ungauged (virtual) sites. Discretization of a watershed was found to affect the differences between measured and generated runoff volumes; however, this can be refined with calibration. It was seen that a strong correlation between measured and predicted rainfall values did not always guarantee a strong relationship between measured and generated runoff Recommendations include the use of a longer time series of rainfall, streamflow and predicted rainfall to observe temporal variations, and the need to assess the differences in modelled rainfall values generated by various surface interpolation methods (e.g. Inverse Distance Weighting and other kriging options) currently available in GIS packages.

  6. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  7. Parallel Simulation of Population Balance Model-Based Particulate Processes Using Multicore CPUs and GPUs

    Directory of Open Access Journals (Sweden)

    Anuj V. Prakash

    2013-01-01

    Full Text Available Computer-aided modeling and simulation are a crucial step in developing, integrating, and optimizing unit operations and subsequently the entire processes in the chemical/pharmaceutical industry. This study details two methods of reducing the computational time to solve complex process models, namely, the population balance model which given the source terms can be very computationally intensive. Population balance models are also widely used to describe the time evolutions and distributions of many particulate processes, and its efficient and quick simulation would be very beneficial. The first method illustrates utilization of MATLAB's Parallel Computing Toolbox (PCT and the second method makes use of another toolbox, JACKET, to speed up computations on the CPU and GPU, respectively. Results indicate significant reduction in computational time for the same accuracy using multicore CPUs. Many-core platforms such as GPUs are also promising towards computational time reduction for larger problems despite the limitations of lower clock speed and device memory. This lends credence to the use of highfidelity models (in place of reduced order models for control and optimization of particulate processes.

  8. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  9. Slow electron energy balance for hybrid models of direct-current glow discharges

    Science.gov (United States)

    Eliseev, S. I.; Bogdanov, E. A.; Kudryavtsev, A. A.

    2017-09-01

    In this paper, we present the formulation of slow electron energy balance for hybrid models of direct current (DC) glow discharge. Electrons originating from non-local ionization (secondary) contribute significantly to the energy balance of slow electrons. An approach towards calculating effective energy brought by a secondary electron to the group of slow electrons by means of Coulomb collisions is suggested. The value of effective energy shows a considerable dependence on external parameters of a discharge, such as gas pressure, type, and geometric parameters. The slow electron energy balance was implemented into a simple hybrid model that uses analytical formulation for the description of non-local ionization by fast electrons. Simulations of short (without positive column) DC glow discharge in argon are carried out for a range of gas pressures. Comparison with experimental data showed generally good agreement in terms of current-voltage characteristics, electron density, and electron temperature. Simulations also capture the trend of increasing electron density with decreasing pressure observed in the experiment. Analysis shows that for considered conditions, the product of maximum electron density ne and electron temperature Te in negative glow is independent of gas pressure and depends on the gas type, cathode material, and discharge current. Decreasing gas pressure reduces the heating rate of slow electrons during Coulomb collisions with secondary electrons, which leads to lower values of Te and, in turn, higher maximum ne.

  10. Modeling Plant-Atmosphere Interactions and Ramifications on the Surface Energy Balance in Arctic Ecosystems

    Science.gov (United States)

    Linn, R.; Cunningham, P.; Wilson, C. J.

    2011-12-01

    There is broad recognition that the melting of the permafrost in arctic landscapes could have pronounced global climatological impacts. The evolution of the permafrost and its impacts on the carbon and water balances is directly related to balances in the surface energy budget. There are a number of factors that are expected to impact the net heat flux at the surface of the soil including regional atmospheric conditions. However, ultimately this surface energy balance is controlled by local processes including evaporation from the surface, transpiration from vegetation as well as radiative and convective heat transfer. These four processes are directly impacted by coupling between the vegetation and atmosphere, and thus depend heavily upon the horizontal and vertical vegetation structure. If shrubs replace grasses in the arctic ecosystem there will be net shifts in the heat transfer to the ground. For example, the solar radiation that is absorbed by shrubs is separated from the soil by a stem space through which winds blow. In order for the energy to reach the soil it must warm the air and then warm the soil, however some of the warm air is mixed into the atmosphere and diffused. This structural feature can act in a fashion similar to a closed canopy forest, which frequently have cooler temperatures below the canopy than nearby grasslands An atmospheric hydrodynamics model, HIGRAD, has been enhanced to simulate complex, three-dimensional plant-atmosphere interactions at extremely high resolution (~0.1 m in all three directions). The model represents the transport of momentum, heat, moisture, and CO2 and their exchange between the vegetation and surrounding air. HIGRAD was used to simulate coupled atmosphere/vegetation systems representative of heterogeneous shrub and tussock grass surrounding a thermokarst. In these simulations shrubs, uneven grasses, and a thermokarst depression are explicitly resolved, and atmospheric conditions are similar to those of summer

  11. Uncertainty in alpine snow mass balance simulations due to snow model parameterisation and windflow representation

    Science.gov (United States)

    Musselman, K. N.; Pomeroy, J. W.; Essery, R.; Leroux, N.

    2013-12-01

    Despite advances in alpine snow modelling there remain two fundamental areas of divergent scientific thought in estimating alpine snow mass balances: i) blowing snow sublimation losses, and ii) wind flow representation. Sublimation calculations have poorly understood humidity feedbacks that vary considerably and mathematical representations of alpine windflow vary in complexity - these differences introduce uncertainty. To better estimate and restrain this uncertainty, a variety of physically based, spatially distributed snowmelt models that consider the physics of wind redistribution and sublimation of blowing snow were evaluated for their ability to simulate seasonal snow distribution and melt patterns in a windy alpine environment in the Canadian Rockies. The primary difference in the snow models was their calculation of blowing snow sublimation losses which ranged from large to small estimates. To examine the uncertainty introduced by windflow calculations on the snow model simulations, each model was forced with output from windflow models of varying computational complexity and physical realism from a terrain-based empirical interpolation of station observations to a simple turbulence model to a computational fluid dynamics model that solves for the Navier-Stokes equations. The high-resolution snow simulations were run over a 1 km2 spatial extent centred on a ridgetop meteorological station within the Marmot Creek Research basin, Alberta, Canada. The three windflow simulations all produced reasonable results compared to wind speeds measured on two opposing slopes (bias better than ×0.3 m s-1; RMSE < 1.1 m s-1), however there was great sensitivity in SWE simulated by the snow models to the driving windflow simulation used. Specifically, there were distinct differences in the magnitude and location of snow drifts from all snow models that depended on the windflow scheme. When compared to measurements from airborne LiDAR, snow surveys, and automated snow depth

  12. Dynamic modeling and control of DFIG-based wind turbines under balanced network conditions

    DEFF Research Database (Denmark)

    Mehdipour, Cyrous; Hajizadeh, Amin; Mehdipour, Iman

    2016-01-01

    The performance of wind power station is researched by utilizing a detailed model which includes a wind turbine (WT), doubly fed induction generator (DFIG) and power electronic devices. In the initial stage, a comprehensive review and definition of each part of this system are presented....... Then dynamic modeling and simulation of a sample power system are carried out. The operation of a DFIG coupled with WT under balanced condition of a power grid is investigated and stationary reference frame is utilized for analysis of a wind energy conversion system. At the second step, a wind power station...

  13. Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat...... net water transport coefficient. Thus we can reduce flooding at the cathode and may obtain improved cell performance due to a better humidified membrane. The results also suggest that membrane dehydration may occur at either anode or cathode depending on the net water transport....

  14. Suspension as an Emergency Power

    National Research Council Canada - National Science Library

    Amanda L. Tyler

    2009-01-01

    ... Legislation B. Suspension During Reconstruction: Putting Down the Klan in South Carolina IV. UNDERSTANDING SUSPENSION AS AN EMERGENCY POWER A. Reading the Suspension Clause in Context B. Giving Meaning to the Suspension Power C. Mapping the Suspension Clause Within the Constitution V. SUSPENSION AND THE SEPARATION OF POWERS CONCLUSION [A] suspensio...

  15. The effect of synaptic plasticity on orientation selectivity in a balanced model of primary visual cortex

    Science.gov (United States)

    Gonzalo Cogno, Soledad; Mato, Germán

    2015-01-01

    Orientation selectivity is ubiquitous in the primary visual cortex (V1) of mammals. In cats and monkeys, V1 displays spatially ordered maps of orientation preference. Instead, in mice, squirrels, and rats, orientation selective neurons in V1 are not spatially organized, giving rise to a seemingly random pattern usually referred to as a salt-and-pepper layout. The fact that such different organizations can sharpen orientation tuning leads to question the structural role of the intracortical connections; specifically the influence of plasticity and the generation of functional connectivity. In this work, we analyze the effect of plasticity processes on orientation selectivity for both scenarios. We study a computational model of layer 2/3 and a reduced one-dimensional model of orientation selective neurons, both in the balanced state. We analyze two plasticity mechanisms. The first one involves spike-timing dependent plasticity (STDP), while the second one considers the reconnection of the interactions according to the preferred orientations of the neurons. We find that under certain conditions STDP can indeed improve selectivity but it works in a somehow unexpected way, that is, effectively decreasing the modulated part of the intracortical connectivity as compared to the non-modulated part of it. For the reconnection mechanism we find that increasing functional connectivity leads, in fact, to a decrease in orientation selectivity if the network is in a stable balanced state. Both counterintuitive results are a consequence of the dynamics of the balanced state. We also find that selectivity can increase due to a reconnection process if the resulting connections give rise to an unstable balanced state. We compare these findings with recent experimental results. PMID:26347615

  16. NIDWat: A Water Balance Model for the Niger Inland Delta (NID) Floodplain in Mali

    Science.gov (United States)

    Moussa, I.; Wisser, D.; Ali, A.; Seidou, O.; Mariko, A.; Afouda, A.

    2015-12-01

    The Niger river basin is characterized by hydro-climatic changes induced by land use and climate change that have significant impacts on local populations. The Niger Inland Delta (NID) is the single most important wetland conditioning the water availability downstream. A significant fraction of the river flow is lost through evaporation and water use in the NID and the conditions are likely to change with increasing population and changing inflow conditions. A comprehensive understanding of the NID's hydro-climatological functioning is therefore crucial for assessing the water resources in the basin under changing conditions in the future. Despite this significance, the components of the water balance in the NID are poorly quantified. We use optical and microwave remote sensing data to characterize the temporal flooding, and observations of river flow and spatially explicit information on water abstractions to develop NIDWat, a water balance model for the NID. Simulated evapotranspiration losses varied by ~ 50%, depending on flooded area map or climatic data. The combined effect of irrigation abstraction and climatic data generated a global water losses range of 16 to 33.04 km3 a-1. The model was validated against observed river discharge and water abstractions and shows a good performance. We then implemented the model as a module in a hydrological model to assess the water balance in the NID and the downstream water availability under changing conditions. We use a multi model approach using regional climate data from the CORDEX initiative. Results suggest, despite increasing runoff an increase in ET losses and changes in the temporal dynamics of flooding that impact water resources availability downstream.

  17. Sensitivity of an energy balance climate model with predicted snowfall rates

    Science.gov (United States)

    Bowman, K. P.

    1985-01-01

    A snowfall parameterization and a polar-ice-sheet model are developed and applied to the two-level zonally averaged seasonal energy-balance climate model of Held and Suarez (1979), and sensitivity experiments involving changes in insolation are performed both with and without ice sheets. The results are presented in tables and graphs, and the hydrological-cycle response to insolation changes is found to be similar to that predicted by global-circulation models employing prescribed precipitation levels, with a somewhat higher sensitivity in the snow line. The area covered by ice sheets in the ice-sheet models is shown to be greater than that covered by permanent snow in the models without ice sheets, an effect attributed to lower surface temperatures over the ice. It is inferred that an increase in the solar constant can cause increased high-latitude precipitation but not an ice age.

  18. The global land surface energy balance and its representation in CMIP5 models

    Science.gov (United States)

    Wild, Martin; Folini, Doris; Hakuba, Maria; Schär, Christoph; Seneviratne, Sonia; Kato, Seiji; Rutan, David; Ammann, Christof; Wood, Eric; König-Langlo, Gert

    2015-04-01

    The energy budget over terrestrial surfaces is a key determinant of the land surface climate and governs a variety of physical, chemical and biological surface processes. The purpose of the present study is to establish new reference estimates for the different components of the energy balance over global land surfaces. Thanks to the impressive progress in space-based observation systems in the past decade, we now know the energy exchanges between our planet and the surrounding space with unprecedented accuracy. However, the energy flows at the Earth's surface have not been established with the same accuracy, since they cannot be directly measured from satellites. Accordingly, estimates on the magnitude of the fluxes at terrestrial surfaces largely vary, and latest climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) still show significant differences in their simulated energy budgets on a land mean basis, which prevents a consistent simulation of the land surface processes in these models. In the present study we use to the extent possible direct observations of surface radiative fluxes from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) to better constrain the simulated fluxes over global land surfaces. These model-calculated fluxes stem from the comprehensive set of more than 40 global climate from CMIP5 used in the latest IPCC report AR5. The CMIP5 models overall still show a tendency to overestimate the downward solar and underestimate the downward thermal radiation at terrestrial surfaces, a long standing problem in climate modelling. Based on the direct radiation observations and the bias structure of the CMIP5 models we infer best estimates for the downward solar and thermal radiation averaged over global land surfaces. They amount to 184 Wm-2 and 306 Wm-2, respectively. These values closely agree with the respective quantities independently derived by recent state-of-the-art reanalyses

  19. Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions

    Science.gov (United States)

    Chen, Xiuqing; Liu, Jian-Guo

    We prove the existence of the global weak entropy solution to the Doi-Saintillan-Shelley model for active and passive rod-like particle suspensions, which couples a Fokker-Planck equation with the incompressible Navier-Stokes or Stokes equation, under the no-flux boundary conditions, L2(Ω;L1(S)) initial data, and finite initial entropy for the particle distribution function in two and three dimensions. Furthermore, for the model with the Stokes equation, we obtain the global L2(Ω×S) weak solution in two and three dimensions and the uniqueness in two dimension.

  20. Characterization of synthesized NANO-encapsulated drug for bone loss on hind limb suspension rat model by NMR and micro-CT.

    Science.gov (United States)

    Ni, Qingwen; Dixon, Hong; Gutierrez, Gloria; Bi, Long; Qin, Yi-Xian

    2013-06-01

    A formulation of nano-encapsulated enantiomer of (+) promethazine with desired release rate has been synthesized for establish a localized drug delivery system. It was tested on a hind limb suspension (HLS) disuse rat model, and by using a non-destructive Nuclear Magnetic Resonance (NMR) relaxation technique, and micro computed tomography (Micro-CT) analysis technique to qualitatively evaluate the effectiveness of the new bone formations as well as to compare the current commercial anti-bone loss drug Alendeonate. Our studies suggest that nano-encapsulated (+) promethazine in controlled release formulations conjugating bone-targeting functional groups are effective in promoting bone growth in a disuse rat model.

  1. Toward a Tighter Coupling between Models and Observations of Arctic Energy Balance

    Science.gov (United States)

    L'Ecuyer, T. S.

    2016-12-01

    The Arctic climate is changing more rapidly than almost anywhere else on Earth owing to a number of unique feedbacks that locally amplify the effects of increased greenhouse gas concentrations. While the basic theory behind these feedback mechanisms has been known for a long time, current climate models still struggle to capture observed rates of sea ice decline and ice sheet melt. This may be explained, at least partially, by a lack of observational constraints on cloud and precipitation processes owing to the challenges of making sustained, high quality atmospheric measurements in this inhospitable region. This presentation will introduce a new multi-satellite, multi-model combined Arctic dataset for probing the state of the Arctic climate and documenting and improving prediction models. Recent satellite-based reconstructions of the Arctic energy budget and its annual cycle contained within this dataset will used to demonstrate that many climate models exhibit significant biases in several key energy flows in the region. These biases, in turn, lead to discrepancies in both the magnitude and seasonality of the implied heat transport into the Arctic from lower latitudes. The potential impacts of these biases on the surface mass balance of the Greenland Ice Sheet will be explored. New estimates of downwelling radiative fluxes that explicitly account for the effects of super-cooled liquid water observed by new active satellite sensors will be used to drive a regional ice sheet model to assess the sensitivity of ice sheet dynamical processes to uncertainties in surface radiation balance.

  2. Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

    Directory of Open Access Journals (Sweden)

    J. González-Piqueras

    2015-06-01

    Full Text Available The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn, soil heat flux (G, sensible heat (H, latent heat (LE, evapotranspiration (ET and crop coefficient (Kc. The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W m2 on Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.

  3. Multiphase multi-velocity discrete population balance model of fragmenting particulate flows

    Science.gov (United States)

    Panchagnula, Mahesh; Rayapati, Prasad; Peddieson, John

    2008-11-01

    Fragmenting particulate flows are studied using discrete population balance modeling. The range of particle sizes is divided into N classes with each size class being allowed to behave as an individual fluid-like phase. The particulate phases are embedded in a continuous phase with which they share a pressure field and are coupled through drag forces. The particulate material is therefore modeled as a mixture of N+1 inter-penetrating continua. The fragmentation process is modeled using the population balance approach which allows for parent size-class particles to break up into any of the smaller daughter size-classes following a pre-defined breakage phenomenology. The accompanying mass and momentum exchange between the size-classes is modeled as source terms in the conservation equations. The model is applied to a micro-centrifuge flow field. We show here that the larger particles, while being encouraged to break up are also preferentially transported towards the walls of the centrifuge, owing to the swirl induced radial pressure gradient. By experimenting with various breakage phenomenologies, we show that the classical log-normal particle size distribution can be recovered in the long time limit for all breakage phenomenologies but the short time evolution of the particle size distribution is sensitive to that choice.

  4. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.

    Science.gov (United States)

    Lübken, Manfred; Wichern, Marc; Schlattmann, Markus; Gronauer, Andreas; Horn, Harald

    2007-10-01

    Knowledge of the net energy production of anaerobic fermenters is important for reliable modelling of the efficiency of anaerobic digestion processes. By using the Anaerobic Digestion Model No. 1 (ADM1) the simulation of biogas production and composition is possible. This paper shows the application and modification of ADM1 to simulate energy production of the digestion of cattle manure and renewable energy crops. The paper additionally presents an energy balance model, which enables the dynamic calculation of the net energy production. The model was applied to a pilot-scale biogas reactor. It was found in a simulation study that a continuous feeding and splitting of the reactor feed into smaller heaps do not generally have a positive effect on the net energy yield. The simulation study showed that the ratio of co-substrate to liquid manure in the inflow determines the net energy production when the inflow load is split into smaller heaps. Mathematical equations are presented to calculate the increase of biogas and methane yield for the digestion of liquid manure and lipids for different feeding intervals. Calculations of different kinds of energy losses for the pilot-scale digester showed high dynamic variations, demonstrating the significance of using a dynamic energy balance model.

  5. A comprehensive energy and mass balance firn model for simulations over multiple glacial cycles

    Science.gov (United States)

    Imhof, Michael; Born, Andreas; Stocker, Thomas

    2017-04-01

    We present a fast yet physically comprehensive glacier surface mass balance model capable of simulations that cover the entire Northern Hemisphere over several glacial cycles. Fluxes of energy and mass are calculated between the atmosphere and a multilayer snow cover, including internal processes like densification and water percolation as well as snow and ice melt. The model is especially designed to provide upper boundary conditions to force ice sheet models on time scales of up to 106 years. To achieve a high numerical efficiency, the model employs a variable time stepping scheme on the grid point level and a Lagrangian grid attached to the snow mass. The input variables are short wave radiation, air temperature and precipitation with half-weekly or daily time steps. This new surface mass balance model has been tested in extensive ensemble simulations and yields realistic representations of present-day ice sheets. The extent of the intra-annual snow cover on the Northern Hemisphere correlates temporally and spatially well with satellite measurements. Perennial firn aquifers are simulated realistically in Greenland and the simulated densification and snow temperature at two bore hole sites in central Greenland yield promising results.

  6. Inactivation of particle-associated microorganisms in wastewater disinfection: modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions.

    Science.gov (United States)

    Dietrich, Joseph P; Loge, Frank J; Ginn, Timothy R; Başağaoğlu, Hakan

    2007-05-01

    Occlusion of microorganisms in wastewater particles often governs the overall performance of a disinfection system, and the associated health risks of post-disinfected effluents. Little is currently known on the penetration of chemical oxidants into particles developed in wastewater treatment. In this work, a reactive transport model that incorporates intra- and extra-particle chemical decay, radial intra-particle diffusion, mass transfer resistance at particle surfaces, and non-linear reaction kinetics within a competitive multi-particle size aqueous environment, was used to analyze the penetration of ozone and chlorine into wastewater particles. Individual characteristics from two secondary wastewater treatment facilities were used in model calibration. Simulations revealed that significant ozone transport within particles greater than 6 microm required large initial concentrations to exhaust the preferential reaction with aqueous soluble matter. Chlorinated samples exhibited apparently slower reactions and thus deeper penetration (22-40 microm). Chlorine penetration was less sensitive to variations in the extra-particle reaction and disinfectant concentration than ozone. Model simulations that considered elevated initial concentrations of chemical disinfectants revealed that complete inactivation of all particle size domains was not possible with current disinfection practices (e.g., contact times). Reduction in the health risks associated with wastewater particles requires treatment that efficiently balances particle removal (filtration) and particle inactivation (disinfection).

  7. Comparing effects of gridded input data from different sources in glacier mass balance modelling using a minimal glacier model

    Science.gov (United States)

    Schröer, Katharina; Marzeion, Ben

    2014-05-01

    The knowledge of the development of glaciers in both past and future is valuable for understanding our climate system. The vast majority of the world's glaciers is poorly observed and often no data or resources are available to study them. Minimal modelling approaches requiring a minimal amount of easily available input data can be a valuable first step to gain valuable information at low cost. This study is concerned with the effects of the spatial and temporal resolution of gridded input data on the applicability of a minimal surface mass balance model. Three sources of temperature and precipitation data freely available for the Alpine region were used to drive a statistical multiple linear regression surface mass balance model (HISTALP 'grid mode 2' instrumental database, monthly, 5' spatial resolution (Auer et al., 2007); CRU TS 3.10.01 instrumental database, monthly, 0.5° spatial resolution (Harris et al., 2013); European temperature and precipitation reconstructions 1500-2000, seasonal, 0.5° spatial resolution (Luterbacher et al., 2004; Pauling et al., 2006)). The model is trained, tested and cross-validated to test the model's robustness using the different datasets. The surface mass balance model is coupled to a simple volume-area and volume-length scaling scheme to roughly include surface mass balance and glacier geometry feedbacks. Observed mass balance data of Hintereisferner in the Ötztal Alps (Austria) allow for a sound validation of the model. The findings of the study reveal that there is only a weak dependency of the reliability of the multiple linear regression model on the spatial resolution of the input data sets. The anomalies of the regional HISTALP 5' grid mode 2 data series were not found to lead to better model results than the anomalies of the 0.5° global CRU TS 3.10.01 data set. An artificial deterioration of the input data quality by aggregating the 5' data grid to 10' and 0.5° of spatial resolution did even lead to slightly enhanced

  8. Global sensitivity analysis of a local water balance model predicting evaporation, water yield and drought

    Science.gov (United States)

    Speich, Matthias; Zappa, Massimiliano; Lischke, Heike

    2017-04-01

    Evaporation and transpiration affect both catchment water yield and the growing conditions for vegetation. They are driven by climate, but also depend on vegetation, soil and land surface properties. In hydrological and land surface models, these properties may be included as constant parameters, or as state variables. Often, little is known about the effect of these variables on model outputs. In the present study, the effect of surface properties on evaporation was assessed in a global sensitivity analysis. To this effect, we developed a simple local water balance model combining state-of-the-art process formulations for evaporation, transpiration and soil water balance. The model is vertically one-dimensional, and the relative simplicity of its process formulations makes it suitable for integration in a spatially distributed model at regional scale. The main model outputs are annual total evaporation (TE, i.e. the sum of transpiration, soil evaporation and interception), and a drought index (DI), which is based on the ratio of actual and potential transpiration. This index represents the growing conditions for forest trees. The sensitivity analysis was conducted in two steps. First, a screening analysis was applied to identify unimportant parameters out of an initial set of 19 parameters. In a second step, a statistical meta-model was applied to a sample of 800 model runs, in which the values of the important parameters were varied. Parameter effect and interactions were analyzed with effects plots. The model was driven with forcing data from ten meteorological stations in Switzerland, representing a wide range of precipitation regimes across a strong temperature gradient. Of the 19 original parameters, eight were identified as important in the screening analysis. Both steps highlighted the importance of Plant Available Water Capacity (AWC) and Leaf Area Index (LAI). However, their effect varies greatly across stations. For example, while a transition from a

  9. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  10. On the Benefits of Semi-Active Suspensions with Inerters

    Directory of Open Access Journals (Sweden)

    Xin-Jie Zhang

    2012-01-01

    Full Text Available Inerters have become a hot topic in recent years especially in vehicle, train, building suspension systems, etc. Eight different layouts of suspensions were analyzed with a quarter-car model in this paper. Dimensionless root mean square (RMS responses of the sprung mass vertical acceleration, the suspension travel, and the tire deflection are derived which were used to evaluate the performance of the quarter-car model. The behaviour of semi-active suspensions with inerters using Groundhook, Skyhook, and Hybrid control has been evaluated and compared to the performance of passive suspensions with inerters. Sensitivity analysis was applied to the development of a high performance semi-active suspension with an inerter. Numerical simulations indicate that a semi-active suspension with an inerter has much better performance than the passive suspension with an inerter, especially with the Hybrid control method, which has the best compromise between comfort and road holding quality.

  11. Heat balance model for a human body in the form of wet bulb globe temperature indices.

    Science.gov (United States)

    Sakoi, Tomonori; Mochida, Tohru; Kurazumi, Yoshihito; Kuwabara, Kohei; Horiba, Yosuke; Sawada, Shin-Ichi

    2018-01-01

    The purpose of this study is to expand the empirically derived wet bulb globe temperature (WBGT) index to a rational thermal index based on the heat balance for a human body. We derive the heat balance model in the same form as the WBGT for a human engaged in moderate intensity work with a metabolic heat production of 174W/m 2 while wearing typical vapor-permeable clothing under shady and sunny conditions. Two important relationships are revealed based on this derivation: (1) the natural wet bulb and black globe temperature coefficients in the WBGT coincide with the heat balance equation for a human body with a fixed skin wettedness of approximately 0.45 at a fixed skin temperature; and (2) the WBGT can be interpreted as the environmental potential to increase skin temperature rather than the heat storage rate of a human body. We propose an adjustment factor calculation method that supports the application of WBGT for humans dressed in various clothing types and working under various air velocity conditions. Concurrently, we note difficulties in adjusting the WBGT by using a single factor for humans wearing vapor-impermeable protective clothing. The WBGT for shady conditions does not need adjustment depending on the positive radiant field (i.e., when a radiant heat source exists), whereas that for the sunny condition requires adjustments because it underestimates heat stress, which may result in insufficient human protection measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Model-based Assessment for Balancing Privacy Requirements and Operational Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Knirsch, Fabian [Salzburg Univ. (Austria); Engel, Dominik [Salzburg Univ. (Austria); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor [Univ. of Southern California, Los Angeles, CA (United States)

    2015-02-17

    The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increase of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and – if feasible – an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.

  13. A water balance model for Saxonian catchments - present state and projections up to 2100

    Science.gov (United States)

    Winkler, Peter; Hauffe, Corina; Baldy, Agnes; Schwarze, Robert

    2014-05-01

    The impact of climate change on the regional water balance regime may have severe consequences for agriculture, forestry and water resources management. In this respect the following questions arise: Will extensive irrigation be necessary on Saxonian crop land in future? Which are the necessary adaptions in water resources management? Are new agricultural and forestry concepts necessary? Therefore, the project KliWES aims at modelling the present water balance regime for whole Saxonia (with the exception of the mining regions and the Elbe-corridor which is largely governed by flood events). Moreover, the effects of climate projections from the WetReg model (CEC) on the water balance regime have been investigated. The calibration strategy relies on splitting up the measured discharges into the major water balance components (evaporation, surface flow, subsurface flow and percolation) by a geometrical analysis of the hydrograph (DIFGA, Schwarze et al.). Thereafter, the water balance software ArcEGMO (Pfützner et al.) has been calibrated on these water balance components. Calibration parameters include correction factors for soil macroporosity, evapo-transpiration and the distribution factor between fast and slow groundwater components. Geological and Soil data have been drawn from official databases (LfULG). Subareas where no continuous gauge data are available have been parametrised by a regionalisation procedure relying on correlations between parameters and physical properties of the subareas considered. Possibilities and limitations of such a regionalisation procedure have been pointed out. Focal point of the present study is an investigation of water balance components in different spatial and temporal resolutions. The Results of the model for the climate projections show drastic increase of evaporation and decrease of groundwater recharge especially in the north-eastern parts of Saxonia (Lausitz). Here, this problem is worsened by the predominantly sandy soils

  14. Balanced Exploration and Exploitation Model search for efficient epipolar geometry estimation.

    Science.gov (United States)

    Goshen, Liran; Shimshoni, Ilan

    2008-07-01

    The estimation of the epipolar geometry is especially difficult when the putative correspondences include a low percentage of inlier correspondences and/or a large subset of the inliers is consistent with a degenerate configuration of the epipolar geometry that is totally incorrect. This work presents the Balanced Exploration and Exploitation Model Search (BEEM) algorithm that works very well especially for these difficult scenes. The algorithm handles these two problems in a unified manner. It includes the following main features: (1) Balanced use of three search techniques: global random exploration, local exploration near the current best solution and local exploitation to improve the quality of the model. (2) Exploits available prior information to accelerate the search process. (3) Uses the best found model to guide the search process, escape from degenerate models and to define an efficient stopping criterion. (4) Presents a simple and efficient method to estimate the epipolar geometry from two SIFT correspondences. (5) Uses the locality-sensitive hashing (LSH) approximate nearest neighbor algorithm for fast putative correspondences generation. The resulting algorithm when tested on real images with or without degenerate configurations gives quality estimations and achieves significant speedups compared to the state of the art algorithms.

  15. Using the power balance model to simulate cross-country skiing on varying terrain.

    Science.gov (United States)

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2014-01-01

    The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.

  16. A Network-Based Data Envelope Analysis Model in a Dynamic Balanced Score Card

    Directory of Open Access Journals (Sweden)

    Mojtaba Akbarian

    2015-01-01

    Full Text Available Performance assessment during the time and along with strategies is the most important requirements of top managers. To assess the performance, a balanced score card (BSC along with strategic goals and a data envelopment analysis (DEA are used as powerful qualitative and quantitative tools, respectively. By integrating these two models, their strengths are used and their weaknesses are removed. In this paper, an integrated framework of the BSC and DEA models is proposed for measuring the efficiency during the time and along with strategies based on the time delay of the lag key performance indicators (KPIs of the BSC model. The causal relationships during the time among perspectives of the BSC model are drawn as dynamic BSC at first. Then, after identifying the network-DEA structure, a new objective function for measuring the efficiency of nine subsidiary refineries of the National Iranian Oil Refining and Distribution Company (NIORDC during the time and along with strategies is developed.

  17. Fuzzy logic control of vehicle suspensions with dry friction nonlinearity

    Indian Academy of Sciences (India)

    We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...

  18. Monthly urban (municipal and industrial use) pumpage for the Central Valley Hydrologic Model (CVHM) by Water Balance Subregion (WBS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly urban (municipal and industrial use) pumpage for the Central Valley Hydrologic Model (CVHM) by Water Balance Subregion...

  19. Multiphase flow analysis using population balance modeling bubbles, drops and particles

    CERN Document Server

    Yeoh, Guan Heng; Tu, Jiyuan

    2013-01-01

    Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS-Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. Builds a complete understanding of the theory behind the

  20. Seasonal Water Balance of an Alpine Catchment as Evaluated by Different Methods for Spatially Distributed Snowmelt Modelling

    NARCIS (Netherlands)

    Zappa, M.; Pos, F.; Strasser, U.; Warmerdam, P.M.M.; Gurtz, J.

    2003-01-01

    The application of three temperature-index based models and of one energy balance based snowmelt model was investigated. The snow models were integrated in the spatially distributed hydrological model PREVAH. In this study the hydrological simulations of the alpine catchment of the Dischmabach in

  1. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    Science.gov (United States)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  2. Surface Mass Balance Distributions: Downscaling of Coarse Climates to drive Ice Sheet Models realistically

    Science.gov (United States)

    Rodehacke, Christian; Mottram, Ruth; Langen, Peter; Madsen, Marianne; Yang, Shuting; Boberg, Fredrik; Christensen, Jens

    2017-04-01

    The surface mass balance (SMB) is the most import boundary conditions for the state of glaciers and ice sheets. Hence its representation in numerical model simulations is of highest interest for glacier, ice cap and ice sheet modeling efforts. While descent SMB distributions of the current climate could be interfered with the help of various observation techniques and platforms, its construction for older past and future climates relies on input from spatially coarse resolved global climate models or reconstructions. These coarse SMB estimates with a footprint in the order of 100 km could hardly resolve the marginal ablations zones where the Greenland ice sheets, for instance, loses snow and ice. We present a downscaling method that is based on the physical calculation of the surface mass and energy balance. By the consequent application of universal and computationally cheap parameterizations we get an astonishing good representation of the SMB distribution including its marginal ablation zone. However the method has its limitations; for example wrong accumulation rates due to an insufficient precipitation field leaves its imprint on the SMB distribution. Also the still not satisfactory description of the bare ice albedo, in particular, in parts of Greenland is a challenge. We inspect our Greenland SMB fields' for various forcings and compare them with some widely used reference fields in the community to highlight the weakness and strength of our approach. We use the ERA-Interim reanalyzes period starting in 1979 directly as well as dynamically downscaled by our regional climate model HIRHAM (5 km resolution). Also SMB distributions obtained from the climate model EC-Earth with a resolution of T159 (approx. 125 km resolution in Greenland) are used either directly or downscaled with our regional climate model HIRHAM. Model-based End-of-the-century SMB estimates give an outlook of the future.

  3. Evaluation of a static granular bed reactor using a chemical oxygen demand balance and mathematical modeling.

    Science.gov (United States)

    Lim, Seung Joo; Fox, Peter; Ellis, Timothy G

    2011-06-01

    In order to evaluate the static granular bed reactor (SGBR), a chemical oxygen demand (COD) balance was used along with a mathematical model. The SGBR was operated with an organic loading rate (OLR) ranging from 0.8 to 5.5 kg/m(3) day at 24°C. The average COD removal efficiency was 87.4%, and the removal efficiencies of COD, carbohydrates, and proteins increased with an OLR, while the lipids removal efficiency was not a function of an OLR. From the results of the COD balance, the yield of biomass increased with an OLR. The SGBR was modeled using the general transport equation considering advection, diffusion, and degradation by microorganisms, and the first-order reaction rate constant was 0.0166/day. The simulation results were in excellent agreement with experimental data. In addition, the SGBR model provided mechanistic insight into why the COD removal efficiency in the SGBR is proportional to an OLR. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Active influence in dynamical models of structural balance in social networks

    Science.gov (United States)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  5. An Energy Balance Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat

    Science.gov (United States)

    Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.

    2006-01-01

    Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also energy, to these organisms, so that chemical and energy budgets should be coupled. We tested this hypothesis by applying an energy balance model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of energy available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal energy demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative energy generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that energy balance models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.

  6. Model Predictive Controlled Active NPC Inverter for Voltage Stress Balancing Among the Semiconductor Power Switches

    Science.gov (United States)

    Parvez Akter, Md.; Dah-Chuan Lu, Dylan

    2017-07-01

    This paper presents a model predictive controlled three-level three-phase active neutral-point-clamped (ANPC) inverter for distributing the voltage stress among the semiconductor power switches as well as balancing the neutral-point voltage. The model predictive control (MPC) concept uses the discrete variables and effectively operates the ANPC inverter by avoiding any linear controller or modulation techniques. A 4.0 kW three-level three-phase ANPC inverter is developed in the MATLAB/Simulink environment to verify the effectiveness of the proposed MPC scheme. The results confirm that the proposed model predictive controlled ANPC inverter equally distributes the voltage across all the semiconductor power switches and provides lowest THD (0.99%) compared with the traditional NPC inverter. Moreover, the neutral-point voltage balancing is accurately maintained by the proposed MPC algorithm. Furthermore, this MPC concept shows the robustness capability against the parameter uncertainties of the system which is also analyzed by MATLAB/Simulink.

  7. An economic model of friendship and enmity for measuring social balance in networks

    Science.gov (United States)

    Lee, Kyu-Min; Shin, Euncheol; You, Seungil

    2017-12-01

    We propose a dynamic economic model of networks where agents can be friends or enemies with one another. This is a decentralized relationship model in that agents decide whether to change their relationships so as to minimize their imbalanced triads. In this model, there is a single parameter, which we call social temperature, that captures the degree to which agents care about social balance in their relationships. We show that the global structure of relationship configuration converges to a unique stationary distribution. Using this stationary distribution, we characterize the maximum likelihood estimator of the social temperature parameter. Since the estimator is computationally challenging to calculate from real social network datasets, we provide a simple simulation algorithm and verify its performance with real social network datasets.

  8. Theoretical quasar emission-line ratios. VII - Energy-balance models for finite hydrogen slabs

    Science.gov (United States)

    Hubbard, E. N.; Puetter, R. C.

    1985-01-01

    The present energy balance calculations for finite, isobaric, hydrogen-slab quasar emission line clouds incorporate probabilistic radiative transfer (RT) in all lines and bound-free continua of a five-level continuum model hydrogen atom. Attention is given to the line ratios, line formation regions, level populations and model applicability results obtained. H lines and a variety of other considerations suggest the possibility of emission line cloud densities in excess of 10 to the 10th/cu cm. Lyman-beta/Lyman-alpha line ratios that are in agreement with observed values are obtained by the models. The observed Lyman/Balmer ratios can be achieved with clouds whose column depths are about 10 to the 22nd/sq cm.

  9. The Balance-of-Payments-Constrained Growth Model and the Limits to Export-Led Growth

    Directory of Open Access Journals (Sweden)

    Robert A. Blecker

    2000-12-01

    Full Text Available This paper discusses how A. P. Thirlwall's model of balance-of-payments-constrained growth can be adapted to analyze the idea of a "fallacy of composition" in the export-led growth strategy of many developing countries. The Deaton-Muellbauer model of the Almost Ideal Demand System (AIDS is used to represent the adding-up constraints on individual countries' exports, when they are all trying to export competing products to the same foreign markets (i.e. newly industrializing countries are exporting similar types of manufactured goods to the OECD countries. The relevance of the model to the recent financial crises in developing countries and policy alternatives for redirecting development strategies are also discussed.

  10. Water balance model for polymer electrolyte fuel cells with ultrathin catalyst layers.

    Science.gov (United States)

    Chan, Karen; Eikerling, Michael

    2014-02-07

    We present a water balance model of membrane electrode assemblies (MEAs) with ultrathin catalyst layers (UTCLs). The model treats the catalyst layers in an interface approximation and the gas diffusion layers as linear transmission lines of water fluxes. It relates current density, pressure distribution, and water fluxes in the different functional layers of the assembly. The optimal mode of operation of UTCLs is in a fully flooded state. The main challenge for MEAs with UTCLs is efficient liquid water removal, to avoid flooding of the gas diffusion layers. The model provides strategies for increasing the critical current density for the onset of flooding, via liquid permeabilities, vaporization areas, and gas pressure differentials. Finally, we discuss methods to identify regimes of transport via water flux measurements.

  11. BALANCED SCORECARD AS AN ADVANCED MANAGEMENT CONCEPT WITHIN THE INTEGRATED QUALITY MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Stevan Zivojinovic

    2008-03-01

    Full Text Available The significance of >Integratedquality management< (IQM model, originating form St.Gallen-model, is reflected in the need for synergic application of new and advanced concepts of management theory and practise. Balanced score card (BSC within IQM model becomes a catalyst of business success for a modern organization by focusing on organizational variables-business strategy, organization structure and corporate culture. BSC is the leading system of performance tracking and strategy implementation, consistent with other management concepts and methods for managing process improvement. Through BSC, IQM processes' activities correlate with organization business results. BSC management processes enable integration of all decision-making levels, from institutional via strategic to operative, in the process starting from planing, i.e. formulating and implementation of strategy, to feed back by performance measurement and control.

  12. A comparison between two pneumatic suspension architectures

    OpenAIRE

    Scopesi, Marco; Franco, Walter; Quaglia, Giuseppe

    2012-01-01

    The aim of this work is to assess and compare the mathematical models of two pneumatic suspension architectures and show how they can converge, after appropriate simplifications, to a general linear form. After making this model dimensionless, it will be used to study, with a transmissibility analysis, the behaviour of a mono-suspension (quarter-car model). Finally, an example of a design process will be shown to highlight the strengths and weaknesses of both architectures and to provide the ...

  13. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  14. Settling of isolated particles and of suspensions in a shear-thinning medium; Sedimentation de particules isolees et de suspensions en milieu rheofluidifiant

    Energy Technology Data Exchange (ETDEWEB)

    Daugan, S.

    2002-11-01

    After drawing up a balance sheet of current knowledge of settling of particles and suspensions in Newtonian and non Newtonian fluids, we introduce the characterisation of the fluid-particles system and especially the shear-thinning behavior of Xanthan solutions. This experimental study is organised into two parts. First of all, we study the settling behavior of a few particles falling along their line of centres. The conditions for particles aggregation with respect to the rheological properties of the suspending fluid are systematically reported. To that extent, rheological relaxation experiments are performed. Once aggregated, the particles velocities are much more important that the velocity of a single one. We show that a simple model, based on the Newtonian case, allows to predict the position and the velocity of each particle with respect to the initial separation distance between them. The second part of this work is devoted to the study of the settling behavior of spherical and monodisperse particles suspensions according to the particles volume fraction, the polymer concentration of the suspending fluid and the geometry of the sedimenting cell. From a model giving the particle volume fraction as a function of the luminous intensity transmitted by the suspension, we show that three regimes of different kinetics occur. During the second regime, the particle volume fraction decreases exponentially with time and the observed phenomena are very fast. Finally, we study the spatial structuration of the suspension and we link it to the topography of the sediment obtained at the end of the sedimentation. (author)

  15. Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation

    Science.gov (United States)

    Ding, Baohong; Yang, Kun; Yang, Wei; He, Xiaobo; Chen, Yingying; Lazhu; Guo, Xiaofeng; Wang, Lei; Wu, Hui; Yao, Tandong

    2017-04-01

    This paper presents a new water and energy budget-based glacier mass balance model. Enthalpy, rather than temperature, is used in the energy balance equations to simplify the computation of the energy transfers through the water phase change and the movement of liquid water in the snow. A new parameterization for albedo estimation and state-of-the-art parameterization schemes for rainfall/snowfall type identification and surface turbulent heat flux calculations are implemented in the model. This model was driven with meteorological data and evaluated using mass balance and turbulent flux data collected during a field experiment implemented in the ablation zone of the Parlung No. 4 Glacier on the Southeast Tibetan Plateau during 2009 and 2015-2016. The evaluation shows that the model can reproduce the observed glacier ablation depth, surface albedo, surface temperature, sensible heat flux, and latent heat flux with high accuracy. Comparing with a traditional energy budget-based glacier mass balance model, this enthalpy-based model shows a superior capacity in simulation accuracy. Therefore, this model can reasonably simulate the energy budget and mass balance of glacier melting in this region and be used as a component of land surface models and hydrological models.

  16. Impact of spatial data resolution on simulated catchment water balances and model performance of the multi-scale TOPLATS model

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2006-01-01

    Full Text Available This paper analyses the effect of spatial input data resolution on the simulated water balances and flow components using the multi-scale hydrological model TOPLATS. A data set of 25m resolution of the central German Dill catchment (693 km2 is used for investigation. After an aggregation of digital elevation model, soil map and land use classification to 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1000 m and 2000 m, water balances and water flow components are calculated for the entire Dill catchment as well as for 3 subcatchments without any recalibration. The study shows that model performance measures and simulated water balances almost remain constant for most of the aggregation steps for all investigated catchments. Slight differences in the simulated water balances and statistical quality measures occur for single catchments at the resolution of 50 m to 500 m (e.g. 0–3% for annual stream flow, significant differences at the resolution of 1000 m and 2000 m (e.g. 2–12% for annual stream flow. These differences can be explained by the fact that the statistics of certain input data (land use data in particular as well as soil physical characteristics changes significantly at these spatial resolutions. The impact of smoothing the relief by aggregation occurs continuously but is barely reflected by the simulation results. To study the effect of aggregation of land use data in detail, in addition to current land use the effect of aggregation on the water balance calculations based on three different land use scenarios is investigated. Land use scenarios were available aiming on economic optimisation of agricultural and forestry practices at different field sizes (0.5 ha, 1.5 ha and 5.0 ha. The changes in water balance terms, induced by aggregation of the land use scenarios, are comparable with respect to catchment water balances compared to the current land use. A correlation analysis between statistics of input data and simulated annual

  17. Simulating the carbon balance in reclaimed forest ecosystems with the FORECAST model

    Energy Technology Data Exchange (ETDEWEB)

    Welham, C. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences, Forest Ecosystem Simulation Group; ForRx Consulting, Belcarra, BC (Canada); 3GreenTree Ecosystem Services Ltd., Belcarra, BC (Canada)

    2010-07-01

    Large emission sources are beginning to report their carbon footprint on an annual basis as a result of government mandates, shareholder demand for disclosure of a company's risk to climate change, and as part of corporate social responsibility initiatives. Oil sands mining is a carbon intensive activity from the perspective of carbon dioxide emissions. The intensity of carbon emissions can be mitigated through technological and process innovations. However, reclamation is the only mining-related activity that directly removes atmospheric carbon dioxide. This presentation described a modeling exercise that had 3 principal objectives, notably to simulate the carbon balance in a developing reclaimed upland forest ecosystem; to explore the relative change in carbon pools over time; and to compare the carbon balance of the reclaimed ecosystem to its natural analogue. The presentation provided a description of the model and methodology and discussed the simulation protocol. Imperial Oil's Kearl Lake operation, which was used as a test case, showed that approximately 83,000 tonnes of carbon dioxide per hectare can be sequestered per year as a result of reclamation. tabs., figs.

  18. Introducing the Evaluation Tools for HSE Management System Performance Using Balanced Score Card Model

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2016-12-01

    Full Text Available Background: The performance of the HSE units has various dimensions Leading to different performances. Thus, any industry should be capable of evaluating these systems. The aim of this study was to design a standard questionnaire in the field of performance evaluation of HSE management system employing Balanced Score Card model. Methods: In this study we, first determined the criteria to be evaluated in the framework of Balanced Score Card model based on the objectives and strategies of HSE Management System and existing standards, and then designed questions on every criterion. We used content validity and Cronbach's Alpha to determine the reliability and validity of the questionnaire. Results: The primary questionnaire was comprised of 126 questions some of which were omitted regarding the results obtained from the CVR and CVI values. We obtained the CVI average of environmental dimension to be 0.75 and its CVI average 0.71. Conclusion: With respect to the results of the reliability and validity of this questionnaire,and its standardized design we can suggest using it for evaluation of HSE management system performance in organizations and industries with the mentioned system.

  19. Power Balance Modeling of Local Helicity Injection for Non-Solenoidal ST Startup

    Science.gov (United States)

    Weberski, J. D.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.

    2017-10-01

    A zero-dimensional power balance model for predicting Ip(t) for Local Helicity Injection (LHI) discharges has been used to interpret experimental results from recent experimental campaigns using high-field-side (HFS) helicity injection. This model quantifies LHI's effective drive (Veff) through helicity balance while enforcing the Taylor relaxation current limit and tracking inductive effects to determine Ip(t) . Recent analysis of HFS LHI discharges indicate LHI is the dominant source of drive and provides Veff up to 1.3 V while geometric effects and inductive drive provide < 0.1 V throughout much of the discharge. In contrast to previous analysis of low-field-side (LFS) LHI discharges, which were driven by Veff = 0.3 V and 2.0 V from geometric effects and inductive drive. A significant remaining uncertainty in the model is the resistive dissipation of LHI discharges. This requires greater understanding of LHI confinement scaling and impurity content, which are currently under investigation. However, the model and experimental Ip(t) exhibit good agreement for parameters consistent with previous experimental findings. Extrapolation of plasma parameters and shaping from recent experiments allow for the model to project the performance of LHI systems. These projections indicate Ip 0.3 MA can be accessed on Pegasus via HFS LHI through changes to injector geometry to provide more Veff. This regime can be accessed via a LFS system by increasing the Taylor relaxation current limit early in the discharge. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  20. Surface mass balance model evaluation from satellite and airborne lidar mapping

    Science.gov (United States)

    Sutterley, T. C.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    We present estimates of Greenland Ice Sheet (GrIS) surface elevation change from a novel combination of satellite and airborne laser altimetry measurements. Our method combines measurements from the Airborne Topographic Mapper (ATM), the Land, Vegetation and Ice Sensor (LVIS) and ICESat-1 to generate elevation change rates at high spatial resolution. This method allows to extend the records of each instrument, increases the overall spatial coverage compared to a single instrument, and produces high-quality, coherent maps of surface elevation change. In addition by combining the lidar datasets, we are able to investigate seasonal and interannual surface elevation change for years where Spring and Fall Operation IceBridge campaigns are available. We validate our method by comparing with the standard NSIDC elevation change product calculated using overlapping Level-1B ATM data. We use the altimetry-derived mass changes to evaluate the uncertainty in surface mass balance, particularly in the runoff component, from two Regional Climate Models (RCM's), the Regional Atmospheric Climate Model (RACMO) and the Modéle Atmosphérique Régional (MAR), and one Global Climate Model (GCM), MERRA2/GEOS-5. We investigate locations with low ice sheet surface velocities that are within the estimated ablation zones of each regional climate model. We find that the surface mass balance outputs from RACMO and MAR show good correspondence with mass changes derived from surface elevation changes over long periods. At two sites in Northeast Greenland (NEGIS), the MAR model has better correspondence with the altimetry estimate. We find that the differences at these locations are primarily due to the characterization of meltwater refreeze within the ice sheet.

  1. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change

    Directory of Open Access Journals (Sweden)

    A. Robinson

    2010-04-01

    Full Text Available In order to explore the response of the Greenland ice sheet (GIS to climate change on long (centennial to multi-millennial time scales, a regional energy-moisture balance model has been developed. This model simulates seasonal variations of temperature and precipitation over Greenland and explicitly accounts for elevation and albedo feedbacks. From these fields, the annual mean surface temperature and surface mass balance can be determined and used to force an ice sheet model. The melt component of the surface mass balance is computed here using both a positive degree day approach and a more physically-based alternative that includes insolation and albedo explicitly. As a validation of the climate model, we first simulated temperature and precipitation over Greenland for the prescribed, present-day topography. Our simulated climatology compares well to observations and does not differ significantly from that of a simple parameterization used in many previous simulations. Furthermore, the calculated surface mass balance using both melt schemes falls within the range of recent regional climate model results. For a prescribed, ice-free state, the differences in simulated climatology between the regional energy-moisture balance model and the simple parameterization become significant, with our model showing much stronger summer warming. When coupled to a three-dimensional ice sheet model and initialized with present-day conditions, the two melt schemes both allow realistic simulations of the present-day GIS.

  2. Ride responses of macpherson suspension systems

    Directory of Open Access Journals (Sweden)

    Yu Cheng-Chi

    2017-01-01

    Full Text Available The main purpose of this study is to obtain more correct vehicle ride responses by using a nonlinear ride model considering the effect of Macpherson suspension geometry. Traditional ride model applied to analysis and controller design uses a two degree of freedom linear model, which includes sprung mass and unsprung mass and a spring and a damper vertically connect them. In fact, suspension components do not vertically position above the tire. The motions of body and tire are not going straight up and down. Therefore, the analysis results obtained by the simple model are often different from the experimental values of the actual vehicle. Because of the difference between simple model and actual vehicle, the control strategy almost cannot apply to actual vehicle. In order to understand the effect of suspension geometry on the vehicle ride responses and design a more practical control strategy, a nonlinear model including the geometric parameters of the suspension is constructed in this study. To estimate the initial equilibrium position of the suspension assembly under load, the static equilibrium analysis and mechanism motion analysis are synchronous implemented at the same time. The nonlinear model describes not only the relative position and velocity but also the force transmission between body and tire. Furthermore, by linearize this nonlinear model the development of control strategy for subsequent (semi active suspension system could be expected.

  3. Discrete population balance models of random agglomeration and cleavage in polymer pyrolysis

    Directory of Open Access Journals (Sweden)

    John E. J. Staggs

    2017-05-01

    Full Text Available The processes of random agglomeration and cleavage (both of which are important for the development of new models of polymer combustion, but are also applicable in a wide range of fields including atmospheric physics, radiation modelling and astrophysics are analysed using population balance methods. The evolution of a discrete distribution of particles is considered within this framework, resulting in a set of ordinary differential equations for the individual particle concentrations. Exact solutions for these equations are derived, together with moment generating functions. Application of the discrete Laplace transform (analogous to the Z-transform is found to be effective in these problems, providing both exact solutions for particle concentrations and moment generating functions. The combined agglomeration-cleavage problem is also considered. Unfortunately, it has been impossible to find an exact solution for the full problem, but a stable steady state has been identified and computed.

  4. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    CERN Document Server

    Lerchner, A; Hertz, J; Ahmadi, M

    2004-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn. The theory is complemented by a description of a numerical procedure for solving the mean-field equations quantitatively. With our treatment, we can determine self-consistently both the firing rates and the firing correlations, without being restricted to specific neuron models. Here, we solve the analytically derived mean-field equations numerically for integrate-and-fire neurons. Several known key properties of orientation selective cortical neurons emerge naturally from the description: Irregular firing with statistics close to -- but not restricted to -- Poisson statistics; an almost linear gain function (firing frequency as a function of stimulus contrast) of the neurons within the network; and a contrast-invariant tuning width of the neuronal firing. We find that the irregularity in firing depends sensitively on synaptic strengths. If Fano factors are bigger than 1, then they are so for all stim...

  5. Looking for a balance between internal and external evaluation of school quality: evaluation of the SVI model.

    NARCIS (Netherlands)

    Blok, H.; Sleegers, P.; Karsten, S.

    2008-01-01

    This article describes the results of a study into the utility of the SVI model, a model in which internal and external evaluation are balanced. The model consists of three phases: school self-evaluation, visitation and inspection. Under the guidance of school consultants, 27 Dutch primary schools

  6. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    Science.gov (United States)

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  7. Global, continental and regional water balance estimates from HYPE catchment modelling

    Science.gov (United States)

    Arheimer, Berit; Andersson, Jafet; Crochemore, Louise; Donnelly, Chantal; Gustafsson, David; Hasan, Abdoulghani; Isberg, Kristina; Pechlivanidis, Ilias; Pimentel, Rafael; Pineda, Luis

    2017-04-01

    In the past, catchment modelling mainly focused on simulating the lumped hydrological cycle at local to regional domains with high precision in a specific point of a river. Today, the level of maturity in hydrological process descriptions, input data and methods for parameter constraints makes it possible to apply these models also for multi-basins over large domains, still using the catchment modellers approach with high demands on agreement with observed data. HYPE is a process-oriented, semi-distributed and open-source model concept that is developed and used operationally in Sweden since a decade. Its finest calculation unit is hydrological response units (HRUs) in a catchment and these are assumed to give the same rainfall-runoff response. HRUs are normally made up of similar land cover and management, combined with soil type or elevation. Water divides are retrieved from topography and calculations are integrated for catchments, which can be of different spatial resolution and are coupled along the river network. In each catchment, HYPE calculates the water balance of a given time-step separately for various hydrological storages, such glaciers, active soil, groundwater, river channels, wetlands, floodplains, and lakes. The model is calibrated in a step-wise manner (following the water path-ways) against various sources additional data sources, including in-situ observations, Earth Observation products, soft information and expert judgements (Arheimer et al., 2012; Donnelly et al, 2016; Pechlivanidis and Arheimer 2015). Both the HYPE code and the model set-ups (i.e. input data and parameter values) are frequently released in new versions as they are continuously improved and updated. This presentation will show the results of aggregated water-balance components over large domains, such as the Arctic basin, the European continent, the Indian subcontinent and the Niger River basin. These can easily be compared to results from other kind of large-scale modelling

  8. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    Science.gov (United States)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes

  9. Electrorheology of nanofiber suspensions

    National Research Council Canada - National Science Library

    Yin, Jianbo; Zhao, Xiaopeng

    2011-01-01

    .... In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers...

  10. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  11. Mathematical modelling of sparkplug ignition of a coal-dust monodisperse suspension in a methane-air mixture

    Directory of Open Access Journals (Sweden)

    Krainov Alexey Yu.

    2017-01-01

    Full Text Available The paper provides the numerical simulation of a coal-dust monodisperse suspension sparkplug ignition in a methane-air mixture. The methane-air mixture is not stoichiometric. The aim of the research is a design-theoretical determination of the minimum ignition energy of coal-dust-methane-air mixture (CDMAM depending on the methane volume fraction. Simulation has shown that the increase of the methane volume fraction leads to the decrease of the CDMAM minimum ignition energy, and with the expansion of coal particles the minimum ignition energy rises.

  12. Mass balance of Djankuat Glacier, Central Caucasus: observations, modeling and prediction

    Science.gov (United States)

    Rybak, Oleg; Mariia, Kaminskaia; Stanislav, Kutuzov; Ivan, Lavrentiev; Polina, Morozova; Victor, Popovnin; Elena, Rybak

    2017-04-01

    Djankuat is a typical valley glacier on the northern slope of the main Caucasus chain. Its present day area is approximately 2.5 square km with the characteristic ice thickness of several tens of meters. As well as other glaciers in the region, Djankuat has been shrinking during the last several decades, its cumulative mass balance in 1968-2016 was equal to -13.6 m w.e. In general, Caucasus' glaciers lost approximately one-third of their area and half of the volume. Prediction of further deradation of glaciers in changing environment is a challenging task because rivers fed by glacier melt water provide from 40 to 70% of the total river run-off in the adjacent piedmont territories. Growing demand in fresh water is rather critical for the local economy development and for growing population, motivating elaboration of an effitient instrument for evaluation and forecasting of the glaciation in the Greater Caucasus. Unfortunately, systematic observations are sparse limiting possibilities for proper model development for the most of the glaciers. Under these circumstances, we have to rely on the models developed for the few well-studied ones, like Djankuat, which is probably one of the most explored glaciers in the world. Accumulation and ablation rates have been observed here systematically and uninterruptedly since mid 60-ies using dense stake network. Together with the mass balance components, changes in flow velocity, ice thickness and geometry were regularly evaluated. During the last several ablation seasons, direct meteorological observations were carried out using an AMS. Long series of meteorological observations at the nearest weather station allow making assessment of the glacier response to climate change in the second half of the 20th century. Abundant observation data gave us the opportunity to elaborate, calibrate and validate an efficient mathematical model of surface mass balance of a typical glacier in the region. Since many glaciers in the Caucasus

  13. Common circuit defect of excitatory-inhibitory balance in mouse models of autism.

    Science.gov (United States)

    Gogolla, Nadine; Leblanc, Jocelyn J; Quast, Kathleen B; Südhof, Thomas C; Fagiolini, Michela; Hensch, Takao K

    2009-06-01

    One unifying explanation for the complexity of Autism Spectrum Disorders (ASD) may lie in the disruption of excitatory/inhibitory (E/I) circuit balance during critical periods of development. We examined whether Parvalbumin (PV)-positive inhibitory neurons, which normally drive experience-dependent circuit refinement (Hensch Nat Rev Neurosci 6:877-888, 1), are disrupted across heterogeneous ASD mouse models. We performed a meta-analysis of PV expression in previously published ASD mouse models and analyzed two additional models, reflecting an embryonic chemical insult (prenatal valproate, VPA) or single-gene mutation identified in human patients (Neuroligin-3, NL-3 R451C). PV-cells were reduced in the neocortex across multiple ASD mouse models. In striking contrast to controls, both VPA and NL-3 mouse models exhibited an asymmetric PV-cell reduction across hemispheres in parietal and occipital cortices (but not the underlying area CA1). ASD mouse models may share a PV-circuit disruption, providing new insight into circuit development and potential prevention by treatment of autism. The online version of this article (doi:10.1007/s11689-009-9023-x) contains supplementary material, which is available to authorized users.

  14. Estimating Evapotranspiration from an Improved Two-Source Energy Balance Model Using ASTER Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Qifeng Zhuang

    2015-11-01

    Full Text Available Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER images from an improved two-source energy balance (TSEB model. The original TSEB approach may overestimate latent heat flux under vegetative stress conditions, as has also been reported in recent research. We replaced the Priestley-Taylor equation used in the original TSEB model with one that uses plant moisture and temperature constraints based on the PT-JPL model to obtain a more accurate canopy latent heat flux for model solving. The collected ASTER data and field observations employed in this study are over corn fields in arid regions of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER area, China. The results were validated by measurements from eddy covariance (EC systems, and the surface energy flux estimates of the improved TSEB model are similar to the ground truth. A comparison of the results from the original and improved TSEB models indicates that the improved method more accurately estimates the sensible and latent heat fluxes, generating more precise daily evapotranspiration (ET estimate under vegetative stress conditions.

  15. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NARCIS (Netherlands)

    Duan, Z.; Bastiaanssen, W.G.M.

    2017-01-01

    The heat storage changes (Qt) can be a significant component of the energy balance in lakes, and it is important to account for Qt for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Qt has been often neglected in

  16. Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance models

    Directory of Open Access Journals (Sweden)

    G. Rallo

    2009-07-01

    Full Text Available Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS, near-infrared (NIR and thermal (TIR observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage and the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. Actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference to be used for energy balance models accuracy assessment.

    Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK campaign in 2005 have been used. The results of this

  17. The development of an integrated Indonesian health care model using Kano's model, quality function deployment and balanced scorecard

    Science.gov (United States)

    Jonny, Zagloed, Teuku Yuri M.

    2017-11-01

    This paper aims to present an integrated health care model for Indonesian health care industry. Based on previous researches, there are two health care models in the industry such as decease- and patient-centered care models. In their developments, the patient-centered care model is widely applied due to its capability in reducing cost and improving quality simultaneously. However, there is still no comprehensive model resulting in cost reduction, quality improvement, patient satisfaction and hospital profitability simultaneously. Therefore, this research is intended to develop that model. In doing so, first, a conceptual model using Kano's Model, Quality Function Deployment (QFD) and Balanced Scorecard (BSC) is developed to generate several important elements of the model as required by stakeholders. Then, a case study of an Indonesian hospital is presented to evaluate the validity of the model using correlation analysis. As a result, it can be concluded that the model is validated implying several managerial insights among its elements such as l) leadership (r=0.85) and context of the organization (r=0.77) improve operations; 2) planning (r=0.96), support process (r=0.87) and continual improvement (r=0.95) also improve operations; 3) operations improve customer satisfaction (r=0.89) and financial performance (r=0.93) and 4) customer satisfaction improves the financial performance (0.98).

  18. Application of Gaussian cubature to model two-dimensional population balances

    Directory of Open Access Journals (Sweden)

    Bałdyga Jerzy

    2017-09-01

    Full Text Available In many systems of engineering interest the moment transformation of population balance is applied. One of the methods to solve the transformed population balance equations is the quadrature method of moments. It is based on the approximation of the density function in the source term by the Gaussian quadrature so that it preserves the moments of the original distribution. In this work we propose another method to be applied to the multivariate population problem in chemical engineering, namely a Gaussian cubature (GC technique that applies linear programming for the approximation of the multivariate distribution. Examples of the application of the Gaussian cubature (GC are presented for four processes typical for chemical engineering applications. The first and second ones are devoted to crystallization modeling with direction-dependent two-dimensional and three-dimensional growth rates, the third one represents drop dispersion accompanied by mass transfer in liquid-liquid dispersions and finally the fourth case regards the aggregation and sintering of particle populations.

  19. T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage

    Directory of Open Access Journals (Sweden)

    Georgios Liappas

    2015-01-01

    Full Text Available Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD.

  20. T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage

    Science.gov (United States)

    Liappas, Georgios; Gónzalez-Mateo, Guadalupe Tirma; Majano, Pedro; Sánchez- Tomero, José Antonio; Ruiz-Ortega, Marta; Martín, Pilar; Sanchez-Díaz, Raquel; Selgas, Rafael; López-Cabrera, Manuel; Aguilera Peralta, Abelardo

    2015-01-01

    Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD) treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT) are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance) leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD. PMID:26064907

  1. Mass balance-based regression modeling of Cd and Zn accumulation in urban soils of Beijing.

    Science.gov (United States)

    Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C; Crittenden, John C

    2017-03-01

    Accumulation of heavy metals in urban soil can pose adverse impacts on public health and terrestrial ecosystems. We developed a mass balance-based regression model to simulate the heavy metal accumulation in urban soils as a function of time and to explore connections between metal concentration and urbanization processes. Concentrations of Cd and Zn in 68 residential soil samples in the urban area of Beijing were used. The background concentrations, the loss rates and the input fluxes of Cd and Zn in urban soils of Beijing during the last three decades were estimated using a regression of the time series of accumulations of the metals. Based on the regression estimates, we simulated the general trends of Cd and Zn accumulation in the soils from 1978 to 2078. The concentrations of Cd and Zn in urban soil generally increased with the population growth, vehicle use and coal consumption. The mean concentrations of Cd and Zn in urban soil of Beijing would increase by 3 fold over the next 70years for the current development scenario. The mass balance-based regression approach, which is able to reconstruct the history data of urban soil pollution, provides fundamental information for urban planning and environmental management. Copyright © 2016. Published by Elsevier B.V.

  2. Changes in acid-base balance during electrolytic ablation in an ex vivo perfused liver model.

    Science.gov (United States)

    Gravante, Gianpiero; Ong, Seok Ling; Metcalfe, Matthew S; Sorge, Roberto; Fox, Andrew J; Lloyd, David M; Maddern, Guy J; Dennison, Ashley R

    2012-11-01

    Electrolytic ablation (EA) destroys tissues through extreme pH changes in the local microenvironment. An ex vivo perfused liver model was used to assess the systemic effects of EA on the acid-base balance without the influence of compensatory organs (lungs and kidneys). Eleven pigs were perfused extracorporeally at 39°C with autologous blood; 4 also underwent EA after 1 hour of reperfusion. Arterial blood samples were obtained hourly. pH and CO(2) levels did not change throughout the experiments. A significant increase of HCO(3)-, anion gap, base excess, and lactate was present after the third hour. No differences were observed between EA experiments and controls. EA does not alter the acid-base balance even when the confounding influence of compensatory organs is removed. Such findings should be considered when planning ablations in patients with renal failure or respiratory diseases in which EA could avoid undesirable metabolic changes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. An energy balance perspective on regional CO2-induced temperature changes in CMIP5 models

    Science.gov (United States)

    Räisänen, Jouni

    2017-05-01

    An energy balance decomposition of temperature changes is conducted for idealized transient CO2-only simulations in the fifth phase of the Coupled Model Intercomparison Project. The multimodel global mean warming is dominated by enhanced clear-sky greenhouse effect due to increased CO2 and water vapour, but other components of the energy balance substantially modify the geographical and seasonal patterns of the change. Changes in the net surface energy flux are important over the oceans, being especially crucial for the muted warming over the northern North Atlantic and for the seasonal cycle of warming over the Arctic Ocean. Changes in atmospheric energy flux convergence tend to smooth the gradients of temperature change and reduce its land-sea contrast, but they also amplify the seasonal cycle of warming in northern North America and Eurasia. The three most important terms for intermodel differences in warming are the changes in the clear-sky greenhouse effect, clouds, and the net surface energy flux, making the largest contribution to the standard deviation of annual mean temperature change in 34, 29 and 20 % of the world, respectively. Changes in atmospheric energy flux convergence mostly damp intermodel variations of temperature change especially over the oceans. However, the opposite is true for example in Greenland and Antarctica, where the warming appears to be substantially controlled by heat transport from the surrounding sea areas.

  4. Modeling nonlinear problems in the mechanics of strings and rods the role of the balance laws

    CERN Document Server

    O'Reilly, Oliver M

    2017-01-01

    This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant ...

  5. Modeling and Algorithm for Multiple Spanning Tree Provisioning in Resilient and Load Balanced Ethernet Networks

    Directory of Open Access Journals (Sweden)

    Steven S. W. Lee

    2015-01-01

    Full Text Available We propose a multitree based fast failover scheme for Ethernet networks. In our system, only few spanning trees are used to carry working traffic in the normal state. As a failure happens, the nodes adjacent to the failure redirect traffic to the preplanned backup VLAN trees to realize fast failure recovery. In the proposed scheme, a new leaf constraint is enforced on the backup trees. It enables the network being able to provide 100% survivability against any single link and any single node failure. Besides fast failover, we also take load balancing into consideration. We model an Ethernet network as a twolayered graph and propose an Integer Linear Programming (ILP formulation for the problem. We further propose a heuristic algorithm to provide solutions to large networks. The simulation results show that the proposed scheme can achieve high survivability while maintaining load balancing at the same time. In addition, we have implemented the proposed scheme in an FPGA system. The experimental results show that it takes only few μsec to recover a network failure. This is far beyond the 50 msec requirement used in telecommunication networks for network protection.

  6. How to constrain multi-objective calibrations using water balance components for an improved realism of model results

    Science.gov (United States)

    Pfannerstill, Matthias; Bieger, Katrin; Guse, Björn; Bosch, David; Fohrer, Nicola; Arnold, Jeffrey G.

    2017-04-01

    Accurate discharge simulation is one of the most common objectives of hydrological modeling studies. However, a good simulation of discharge is not necessarily the result of a realistic simulation of hydrological processes within the catchment. To enhance the realism of model results, we propose an evaluation framework that considers both discharge and water balance components as evaluation criteria for hydrological models. In this study, we integrated easily available expert knowledge such as average annual values of surface runoff, groundwater flow, and evapotranspiration in the model evaluation procedure to constrain the selection of good model runs. For evaluating water balance and discharge dynamics, the Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS) were used. In addition, the ratio of root mean square error and standard deviation of measured data (RSR) was calculated for individual segments of the flow duration curve to identify the best model runs in terms of discharge magnitude. Our results indicate that good statistics for discharge do not guarantee realistic simulations of individual water balance components. Therefore, we recommend constraining the ranges of water balance components to better capture internal and external fluxes of the hydrological system, even if trade-offs between good statistics for discharge simulations and reasonable amounts of the water balance components are unavoidable.

  7. Glacier surface mass balance and freshwater runoff modeling for the entire Andes Cordillera

    Science.gov (United States)

    Mernild, Sebastian H.; Liston, Glen E.; Yde, Jacob C.

    2017-04-01

    Glacier surface mass balance (SMB) observations for the Andes Cordillera are limited and, therefore, estimates of the SMB contribution from South America to sea-level rise are highly uncertain. Here, we simulate meteorological, snow, glacier surface, and hydrological runoff conditions and trends for the Andes Cordillera (1979/80-2013/14), covering the tropical latitudes in the north down to the sub-polar latitudes in the far south, including the Northern Patagonia Ice Field (NPI) and Southern Patagonia Ice Field (SPI). SnowModel - a fully integrated energy balance, blowing-snow distribution, multi-layer snowpack, and runoff routing model - was used to simulate glacier SMBs for the Andes Cordillera. The Randolph Glacier Inventory and NASA Modern-Era Retrospective Analysis for Research and Applications products, downscaled in SnowModel, allowed us to conduct relatively high-resolution simulations. The simulated glacier SMBs were verified against independent directly-observed and satellite gravimetry and altimetry-derived SMB, indicating a good statistical agreement. For glaciers in the Andes Cordillera, the 35-year mean annual SMB was found to be -1.13 m water equivalent. For both NPI and SPI, the mean SMB was positive (where calving is the likely reason for explaining why geodetic estimates are negative). Further, the spatio-temporal freshwater river runoff patterns from individual basins, including their runoff magnitude and change, were simulated. For the Andes Cordillera rivers draining to the Pacific Ocean, 86% of the simulated runoff originated from rain, 12% from snowmelt, and 2% from ice melt, whereas, for example, for Chile, the water-source distribution was 69, 24, and 7%, respectively. Along the Andes Cordillera, the 35-year mean basin outlet-specific runoff (L s-1 km-2) showed a characteristic regional hourglass shape pattern with highest runoff in both Colombia and Ecuador and in Patagonia, and lowest runoff in the Atacama Desert area.

  8. Climatic Forcing of Glacier Surface Mass Balance Changes Along North-Central Peru: A Modeling Perspective

    Science.gov (United States)

    Mark, B. G.; Fernandez, A.

    2015-12-01

    Most tropical glaciers are Peru, where they are key water sources for communities in mountain environments and beyond. Thus, their sustained shrinkage portrays these glaciers as archetype of global warming impacts on the local scale. However, there is still no deep understanding on the mechanism connecting temperature and these glaciers. Among others, the effect of temperature on the glacier surface mass balance (GSMB) can be expressed within accumulation regimes and hence in surface albedo, or in ablation dynamics through incoming longwave energy (LE). Here, we report a study combining statistical analyses of reanalysis data (~30km grid-cell), regional climate modeling and glacier mass balance simulations at high resolution (2km) to analyze long-term (30 years) and seasonal GSMB along north-central Peru. Our goal is to mechanistically understand climate change impact on these glaciers. Results suggest temperature as the main factor controlling GSMB changes through the lapse rate (LR). Correlations of GSMB with LR, humidity and zonal wind point to vertical homogenization of temperature, causing LE to increase, despite this flux always remaining negative. This "less negative" LE multiplies the impact of the seasonal fluctuation in albedo, thereby enhancing total ablation. As this mechanism only needs a relative increase in temperature, it may even occur in subfreezing conditions. Model output also indicates that turbulent fluxes are small, largely cancelling out. This suggests that the impact of LE is more likely to occur compared to either turbulent fluxes changes or shifts in the proportion of sublimation versus melt, which we find to be regionally stable. These findings imply that glaciers in north-central Peru are sensitive to subtle changes in temperature. We discuss the implications for process-based understanding and how this non-linear and somewhat hidden effect of temperature reduces the skill of temperature index models to simulate GSMB in the Tropics.

  9. Does mechanistic modeling of filter strip pesticide mass balance and degradation processes affect environmental exposure assessments?

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Ritter, Amy; Fox, Garey A; Perez-Ovilla, Oscar

    2015-11-01

    Vegetative filter strips (VFS) are a widely adopted practice for limiting pesticide transport from adjacent fields to receiving waterbodies. The efficacy of VFS depends on site-specific input factors. To elucidate the complex and non-linear relationships among these factors requires a process-based modeling framework. Previous research proposed linking existing higher-tier environmental exposure models with a well-tested VFS model (VFSMOD). However, the framework assumed pesticide mass stored in the VFS was not available for transport in subsequent storm events. A new pesticide mass balance component was developed to estimate surface pesticide residue trapped in the VFS and its degradation between consecutive runoff events. The influence and necessity of the updated framework on acute and chronic estimated environmental concentrations (EECs) and percent reductions in EECs were investigated across three, 30-year U.S. EPA scenarios: Illinois corn, California tomato, and Oregon wheat. The updated framework with degradation predicted higher EECs than the existing framework without degradation for scenarios with greater sediment transport, longer VFS lengths, and highly sorbing and persistent pesticides. Global sensitivity analysis (GSA) assessed the relative importance of mass balance and degradation processes in the context of other input factors like VFS length (VL), organic-carbon sorption coefficient (Koc), and soil and water half-lives. Considering VFS pesticide residue and degradation was not important if single, large runoff events controlled transport, as is typical for higher percentiles considered in exposure assessments. Degradation processes become more important when considering percent reductions in acute or chronic EECs, especially under scenarios with lower pesticide losses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A model proposal concerning balance scorecard application integrated with resource consumption accounting in enterprise performance management

    Directory of Open Access Journals (Sweden)

    ORHAN ELMACI

    2014-06-01

    Full Text Available The present study intended to investigate the “Balance Scorecard (BSC model integrated with Resource Consumption Accounting (RCA” which helps to evaluate the enterprise as matrix structure in its all parts. It aims to measure how much tangible and intangible values (assets of enterprises contribute to the enterprises. In other words, it measures how effectively, actively, and efficiently these values (assets are used. In short, it aims to measure sustainable competency of enterprises. As expressing the effect of tangible and intangible values (assets of the enterprise on the performance in mathematical and statistical methods is insufficient, it is targeted that RCA Method integrated with BSC model is based on matrix structure and control models. The effects of all complex factors in the enterprise on the performance (productivity and efficiency estimated algorithmically with cause and effect diagram. The contributions of matrix structures for reaching the management functional targets of the enterprises that operate in market competitive environment increasing day to day, is discussed. So in the context of modern management theories, as a contribution to BSC approach which is in the foreground in today’s administrative science of enterprises in matrix organizational structures, multidimensional performance evaluation model -RCA integrated with BSC Model proposal- is presented as strategic planning and strategic evaluation instrument.

  11. Nonlinear modeling of an immersed transmitting capacitive micromachined ultrasonic transducer for harmonic balance analysis.

    Science.gov (United States)

    Oguz, H Kagan; Olcum, Selim; Senlik, Muhammed N; Taş, Vahdettin; Atalar, Abdullah; Köymen, Hayrettin

    2010-01-01

    Finite element method (FEM) is used for transient dynamic analysis of capacitive micromachined ultrasonic transducers (CMUT) and is particularly useful when the membranes are driven in the nonlinear regime. One major disadvantage of FEM is the excessive time required for simulation. Harmonic balance (HB) analysis, on the other hand, provides an accurate estimate of the steady-state response of nonlinear circuits very quickly. It is common to use Mason's equivalent circuit to model the mechanical section of CMUT. However, it is not appropriate to terminate Mason's mechanical LC section by a rigid piston's radiation impedance, especially for an immersed CMUT. We studied the membrane behavior using a transient FEM analysis and found out that for a wide range of harmonics around the series resonance, the membrane displacement can be modeled as a clamped radiator. We considered the root mean square of the velocity distribution on the membrane surface as the circuit variable rather than the average velocity. With this definition, the kinetic energy of the membrane mass is the same as that in the model. We derived the force and current equations for a clamped radiator and implemented them using a commercial HB simulator. We observed much better agreement between FEM and the proposed equivalent model, compared with the conventional model.

  12. Balancing energy development and conservation: A method utilizing species distribution models

    Science.gov (United States)

    Jarnevich, C.S.; Laubhan, M.K.

    2011-01-01

    Alternative energy development is increasing, potentially leading to negative impacts on wildlife populations already stressed by other factors. Resource managers require a scientifically based methodology to balance energy development and species conservation, so we investigated modeling habitat suitability using Maximum Entropy to develop maps that could be used with other information to help site energy developments. We selected one species of concern, the Lesser Prairie-Chicken (LPCH; Tympanuchus pallidicinctus) found on the southern Great Plains of North America, as our case study. LPCH populations have been declining and are potentially further impacted by energy development. We used LPCH lek locations in the state of Kansas along with several environmental and anthropogenic parameters to develop models that predict the probability of lek occurrence across the landscape. The models all performed well as indicated by the high test area under the curve (AUC) scores (all >0.9). The inclusion of anthropogenic parameters in models resulted in slightly better performance based on AUC values, indicating that anthropogenic features may impact LPCH lek habitat suitability. Given the positive model results, this methodology may provide additional guidance in designing future survey protocols, as well as siting of energy development in areas of marginal or unsuitable habitat for species of concern. This technique could help to standardize and quantify the impacts various developments have upon at-risk species. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  13. Numerical Study of Suspension Plasma Spraying

    CERN Document Server

    Farrokhpanah, Amirsaman; Mostaghimi, Javad

    2016-01-01

    A numerical study of suspension plasma spraying (SPS) is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for particles as they travel towards the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate are investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power are studied. Additionally, effect of injector parameters like injection location, flow rate, and angle are examined. The model used in current study takes high temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, s...

  14. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andy

    2017-03-16

    Simulations of future climate suggest profiles of temperature and precipitation may differ significantly from those in the past. These changes in climate will likely lead to changes in the hydrologic cycle. As such, natural resource managers are in need of tools that can provide estimates of key components of the hydrologic cycle, uncertainty associated with the estimates, and limitations associated with the climate forcing data used to estimate these components. To help address this need, the U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) provides a user friendly interface to deliver hydrologic and meteorological variables for monthly historic and potential future climatic conditions across the continental United States.

  15. Balancing the manufacturing lines through modelling and simulation using Tecnomatix Plant Simulation

    Directory of Open Access Journals (Sweden)

    Blaga Florin

    2017-01-01

    Full Text Available A frequently problem found in case of serial production is the balancing of flow lines. This paper shows how using modelling and simulation procedures can put in evidence the bottleneck in the manufacturing flow. These situations occur to the case where the corresponding times of the technological operations differ very much. Using the program TECNOMATIX PLANT SIMULATION can be highlighted those dysfunctions that may appear during of the manufacturing system operation. It is also possible to identify the solutions to allow equilibration of the lines of the manufacturing process. The program TECNOMATIX PLANT SIMULATION offers a variety of information useful for/in the decision makers in the management of the manufacturing process.

  16. Estimation of Shallow Groundwater Recharge Using a Gis-Based Distributed Water Balance Model

    Directory of Open Access Journals (Sweden)

    Graf Renata

    2014-09-01

    Full Text Available In the paper we present the results of shallow groundwater recharge estimation using the WetSpass GISbased distributed water balance model. By taking into account WetSpass, which stands for Water an Energy Transfer between Soil, Plants and Atmosphere under quasi-Steady State, for average conditions during the period 1961-2000, we assessed the spatial conditions of the groundwater infiltration recharge process of shallow circulation systems in the Poznan Plateau area (the Great Poland Lowland in western Poland, which is classified as a region with observed water deficits. For three temporal variants, i.e. year, winter and summer half-years, we determined using the geological infiltration method by about 5-10% on average, marginally by 20%.

  17. Performance measurement of administration services using balance scorecard and Kano model

    Directory of Open Access Journals (Sweden)

    Abolfazl Danaei

    2014-04-01

    Full Text Available This paper performs a survey to measure the performance of an administration unit in Iran based on a popular technique of balance scorecard. The study also uses Kano model to prioritize various factors and to provide necessary recommendation to improve the performance of different units. The survey has indicated that while these offices do well in terms of financial figures as well as customer perspective, they perform poorly in terms of learning and growth. According to our survey, it is essential to use information technology in general service offices, properly. In addition, these administrative agencies need to use hardware and software packages, more efficiently and these two basic items have received much attraction.

  18. Greenland ice sheet surface mass-balance modeling in a 131-year perspective, 1950-2080

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.; Hiemstra, Christopher [COLORADO STATE UNIV.; Christensen, Jens [DANISH METEOROLOGICAL INS.

    2009-01-01

    Fluctuations in the Greenland Ice Sheet (GrIS) surface mass-balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. SnowModel, a state-of-the-art snow-evolution modeling system, was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the IPCC scenario AlB modeled by the HIRHAM4 RCM (using boundary conditions from ECHAM5 AOGCM) from 1950 through 2080. In-situ meteorological station (GC-Net and WMO DMI) observations from inside and outside the GrIS were used to validate and correct RCM output data before it was used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model's robustness. We simulated a {approx}90% increase in end-of-summer surface melt extent (0.483 x 10{sup 6} km{sup 2}) from 1950 to 2080, and a melt index (above 2,000-m elevation) increase of 138% (1.96 x 10{sup 6} km{sup 2} x days). The greatest difference in melt extent occured in the southern part of the GrIS, and the greatest changes in the number of melt days was seen in the eastern part of the GrIS ({approx}50-70%) and was lowest in the west ({approx}20-30%). The rate of SMB loss, largely tied to changes in ablation processes, lead to an enhanced average loss of 331 km{sup 3} from 1950 to 2080, an average 5MB level of -99 km{sup 3} for the period 2070-2080. GrIS surface freshwater runoff yielded an eustatic rise in sea level from 0.8 {+-} 0.1 (1950-1959) to 1.9 {+-} 0.1 mm (2070-2080) sea level equivalent (SLE) y{sup -1}. The accumulated GrIS freshwater runoff contribution from surface melting equaled 160 mm SLE from 1950 through 2080.

  19. Infiltration and water balance modeling along a toposequence in a rubber tree plantation of NE Thailand

    Science.gov (United States)

    Hammecker, Claude; Seltacho, Siwaporn; Suvanang, Nopmanee; Do, Frederic; Angulo-Jaramillo, Rafael

    2015-04-01

    Northeast of Thailand, is a plateau at 200 m AMSL with a typical undulating landscape. Traditionally the lowlands were dedicated to paddy fields and the uplands covered by Dipterocarpus forest. However development of cash crops during the last decades has led to intensive land clearing in the uplands and to modifications at a regional scale of the water balance in the critical zone with increasing runoff and soil erosion. Recent international demand increase for natural rubber motivated many local farmers to shift from these cash crops towards rubber-tree (Heva Brasiliensis) plantations. However these land use changes have been undertaken without considering the climatic and edaphic specificity of the region, which are not well adapted to the growth of rubber tree (rainfall lower than recommended and sandy soils with low fertility). Therefore, in order to assess and try to predict the environmental consequences (water resources, water-table, ..) of the development of rubber tree plantations in this area, a small watershed in the region ok Khon Kaen has been selected to follow the infiltration and to monitor the different components of the water balance along a toposequence. A six years monitoring of the main components of water balance along a toposequence associated to numerical simulation were used to quantify and try to forecast the evolution of the water use and water resources. Unsaturated soil properties were determined at different depths, in various positions along the toposequence. Experimental results supported by modeling of 2D water flow with HYDRUS3D show clearly that infiltration is blocked by a clayey layer on top of the bedrock and conditioned the occurrence of a perched watertable during the rainy seasons. Most of the soil water flow was found to be directed laterally during the rainy season. The deep groundwater was found to be fed from the lower part of toposequence in the thalweg. The transpiration rate measured on the trees at this stage of

  20. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia

    Directory of Open Access Journals (Sweden)

    Colin Kehrer

    2008-04-01

    Full Text Available Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDAreceptor subtype in the etiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation-inhibition (E/I balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed.

  1. Nutrients and Energy Balance Analysis for a Conceptual Model of a Three Loops off Grid, Aquaponics

    Directory of Open Access Journals (Sweden)

    Uri Yogev

    2016-12-01

    Full Text Available Food security, specifically in water scarce regions, is an increasing local and global challenge. Finding new ways to increase agricultural production in a sustainable manner is required. The current study suggests a conceptual model to integrate established recirculating aquaculture practices into a near-zero discharge aquaponic system that efficiently utilizes water, excreted nutrients and organic matter for energy. The suggested model allows to significantly extend the planted area and recover energy in the form of biogas to operate the system off-grid. A mass balance model of nitrogen, carbon and energy was established and solved, based on data from the literature. Results demonstrate that a fish standing stock of about 700 kg would produce 3.4 tons of fish annually and enough nutrients to grow about 35 tons of tomatoes per year (chosen as a model plant and recover sufficient energy (70 kWh/day to run the system on biogas and use less water. If proven successful, this approach may play a major role in sustainably enhancing food security in rural and water scarce regions.

  2. Bayesian treatment of a chemical mass balance receptor model with multiplicative error structure

    Science.gov (United States)

    Keats, Andrew; Cheng, Man-Ting; Yee, Eugene; Lien, Fue-Sang

    The chemical mass balance (CMB) receptor model is commonly used in source apportionment studies as a means for attributing measured airborne particulate matter (PM) to its constituent emission sources. Traditionally, error terms (e.g., measurement and source profile uncertainty) associated with the model have been treated in an additive sense. In this work, however, arguments are made for the assumption of multiplicative errors, and the effects of this assumption are realized in a Bayesian probabilistic formulation which incorporates a 'modified' receptor model. One practical, beneficial effect of the multiplicative error assumption is that it automatically precludes the possibility of negative source contributions, without requiring additional constraints on the problem. The present Bayesian treatment further differs from traditional approaches in that the source profiles are inferred alongside the source contributions. Existing knowledge regarding the source profiles is incorporated as prior information to be updated through the Bayesian inferential scheme. Hundreds of parameters are therefore present in the expression for the joint probability of the source contributions and profiles (the posterior probability density function, or PDF), whose domain is explored efficiently using the Hamiltonian Markov chain Monte Carlo method. The overall methodology is evaluated and results compared to the US Environmental Protection Agency's standard CMB model using a test case based on PM data from Fresno, California.

  3. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    Directory of Open Access Journals (Sweden)

    Agosin Eduardo

    2011-05-01

    Full Text Available Abstract Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations.

  4. Expanding a dynamic flux balance model of yeast fermentation to genome-scale.

    Science.gov (United States)

    Vargas, Felipe A; Pizarro, Francisco; Pérez-Correa, J Ricardo; Agosin, Eduardo

    2011-05-19

    Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations.

  5. Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR

    NARCIS (Netherlands)

    Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallee, H

    2012-01-01

    We report future projections of Surface Mass Balance (SMB) over the Greenland ice sheet (GrIS) obtained with the regional climate model MAR, forced by the outputs of three CMIP5 General Circulation Models (GCMs) when considering two different warming scenarios (RCP 4.5 and RCP 8.5). The GCMs

  6. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  7. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    NARCIS (Netherlands)

    van Angelen, J.H.|info:eu-repo/dai/nl/325922470; Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Meijgaard, E.; Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover,

  8. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica

    NARCIS (Netherlands)

    van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Medley, Brooke

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in

  9. Analytical Models for Rotor Test Module, Strut, and Balance Frame Dynamics in the 40 by 80 Ft Wind Tunnel

    Science.gov (United States)

    Johnson, W.

    1976-01-01

    A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40 by 80 ft wind tunnel. A model for ground resonance calculations is also described.

  10. Monte Carlo Simulation Of The Portfolio-Balance Model Of Exchange Rates: Finite Sample Properties Of The GMM Estimator

    OpenAIRE

    Hong-Ghi Min

    2011-01-01

    Using Monte Carlo simulation of the Portfolio-balance model of the exchange rates, we report finite sample properties of the GMM estimator for testing over-identifying restrictions in the simultaneous equations model. F-form of Sargans statistic performs better than its chi-squared form while Hansens GMM statistic has the smallest bias.

  11. Thermal Resistances in the Everest Area derived from Satellite Imagery using a Nonlinear Energy Balance Model

    Science.gov (United States)

    Rounce, D.; McKinney, D. C.

    2013-12-01

    Debris cover has a large impact on sub-debris ablation rates and glacier evolution. A thin debris layer may enhance ablation by reducing albedo increasing radiation absorption, while thicker debris insulates the glacier causing ablation to decrease. Debris thickness, thermal conductivity, and meteorological conditions may be measured in the field, but they require extensive fieldwork (Brock et al., 2010; Nicholson and Benn, 2012). This has forced many simplifications and assumptions in models. Satellite imagery combined with an energy balance model has been used with to extract information about debris cover remotely (Nakawo and Rana, 1999; Zhang et al., 2011). The spatial distribution of thermal resistances derived from these studies have agreed well with field values; however, the values were considerably lower than the field values. The difference has been attributed to the mixed pixel effect. Foster et al. (2012) developed an energy balance model that agrees well with debris thickness measured in the field. The model requires knowledge of the thermal conductivity and utilizes a relationship between air and surface temperature to lower sensible heat fluxes. We derive thermal resistances of debris-covered glaciers from satellite imagery in the Everest area. Previous satellite studies have assumed a linear debris temperature gradient, which is valid for time periods of 24 hours or greater (Nicholson and Benn, 2006); however, gradients during the day are nonlinear (Nicholson and Benn, 2006; Reid and Brock, 2010). Landsat 7 imagery is used to account for the non-linear gradient, using the ratio of temperature gradient in the upper 10cm versus the entire debris thickness. These values are derived from temperature profiles on Ngozumpa Glacier (Nicholson, 2004). Meteorological data are obtained from the Pyramid Station. The derived thermal resistances agree well with those found on debris-covered glaciers in the Everest region. Brock, B., Mihalcea, C., Kirkbride, M

  12. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    Science.gov (United States)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  13. Integrating the context-appropriate balanced attention model and reinforcement sensitivity theory: Towards a domain-general personality process model.

    Science.gov (United States)

    Collins, Michael D; Jackson, Chris J; Walker, Benjamin R; O'Connor, Peter J; Gardiner, Elliroma

    2017-01-01

    Over the last 40 years or more the personality literature has been dominated by trait models based on the Big Five (B5). Trait-based models describe personality at the between-person level but cannot explain the within-person mental mechanisms responsible for personality. Nor can they adequately account for variations in emotion and behavior experienced by individuals across different situations and over time. An alternative, yet understated, approach to personality architecture can be found in neurobiological theories of personality, most notably reinforcement sensitivity theory (RST). In contrast to static trait-based personality models like the B5, RST provides a more plausible basis for a personality process model, namely, one that explains how emotions and behavior arise from the dynamic interaction between contextual factors and within-person mental mechanisms. In this article, the authors review the evolution of a neurobiologically based personality process model based on RST, the response modulation model and the context-appropriate balanced attention model. They argue that by integrating this complex literature, and by incorporating evidence from personality neuroscience, one can meaningfully explain personality at both the within- and between-person levels. This approach achieves a domain-general architecture based on RST and self-regulation that can be used to align within-person mental mechanisms, neurobiological systems and between-person measurement models. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. AN INTEGRATED MODELING FRAMEWORK FOR ENVIRONMENTALLY EFFICIENT CAR OWNERSHIP AND TRIP BALANCE

    Directory of Open Access Journals (Sweden)

    Tao FENG

    2008-01-01

    Full Text Available Urban transport emissions generated by automobile trips are greatly responsible for atmospheric pollution in both developed and developing countries. To match the long-term target of sustainable development, it seems to be important to specify the feasible level of car ownership and travel demand from environmental considerations. This research intends to propose an integrated modeling framework for optimal construction of a comprehensive transportation system by taking into consideration environmental constraints. The modeling system is actually a combination of multiple essential models and illustrated by using a bi-level programming approach. In the upper level, the maximization of both total car ownership and total number of trips by private and public travel modes is set as the objective function and as the constraints, the total emission levels at all the zones are set to not exceed the relating environmental capacities. Maximizing the total trips by private and public travel modes allows policy makers to take into account trip balance to meet both the mobility levels required by travelers and the environmentally friendly transportation system goals. The lower level problem is a combined trip distribution and assignment model incorporating traveler's route choice behavior. A logit-type aggregate modal split model is established to connect the two level problems. In terms of the solution method for the integrated model, a genetic algorithm is applied. A case study is conducted using road network data and person-trip (PT data collected in Dalian city, China. The analysis results showed that the amount of environmentally efficient car ownership and number of trips by different travel modes could be obtained simultaneously when considering the zonal control of environmental capacity within the framework of the proposed integrated model. The observed car ownership in zones could be increased or decreased towards the macroscopic optimization

  15. A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies

    Science.gov (United States)

    Bonetti, F.; McInnes, C. R.

    2016-12-01

    Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.

  16. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    Directory of Open Access Journals (Sweden)

    B. Yu

    2015-06-01

    Full Text Available Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud in the French Alps (area = 1.478 km2 (1966–2006. Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash–Sutcliffe coefficient of efficiency (NSE varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10–20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.

  17. Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment

    DEFF Research Database (Denmark)

    Guzinski, R.; Nieto, H.; Stisen, S.

    2015-01-01

    , distributed hydrological model, while the energy-balance approach is often used with remotely sensed observations of, for example, the land surface temperature (LST) and the state of the vegetation. In this study we compare the catchment-scale output of two remote sensing models based on the two-source energy......-balance (TSEB) scheme, against a hydrological model, MIKE SHE, calibrated over the Skjern river catchment in western Denmark. The three models utilize different primary inputs to estimate ET (LST from different satellites in the case of remote sensing models and modelled soil moisture and heat flux in the case....... The temporal patterns produced by the remote sensing and hydrological models are quite highly correlated (r ≈ 0.8). This indicates potential benefits to the hydrological modelling community of integrating spatial information derived through remote sensing methodology (contained in the ET maps...

  18. Novel models and algorithms of load balancing for variable-structured collaborative simulation under HLA/RTI

    Science.gov (United States)

    Yue, Yingchao; Fan, Wenhui; Xiao, Tianyuan; Ma, Cheng

    2013-07-01

    High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.

  19. Simple Models for Model-based Portfolio Load Balancing Controller Synthesis

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Mølbak, Tommy; Bendtsen, Jan Dimon

    2010-01-01

    of generation units existing in an electrical power supply network, for instance in model-based predictive control or declarative control schemes. We focus on the effectuators found in the Danish power system. In particular, the paper presents models for boiler load, district heating, condensate throttling...

  20. Restructuring and aging in a capillary suspension.

    Science.gov (United States)

    Koos, Erin; Kannowade, Wolfgang; Willenbacher, Norbert

    2014-12-01

    The rheological properties of capillary suspensions, suspensions with small amounts of an added immiscible fluid, are dramatically altered with the addition of the secondary fluid. We investigate a capillary suspension to determine how the network ages and restructures at rest and under applied external shear deformation. The present work uses calcium carbonate suspended in silicone oil (11 % solids) with added water as a model system. Aging of capillary suspensions and their response to applied oscillatory shear is distinctly different from particulate gels dominated by the van der Waals forces. The suspensions dominated by the capillary force are very sensitive to oscillatory flow, with the linear viscoelastic regime ending at a deformation of only 0.1% and demonstrating power-law aging behavior. This aging persists for long times at low deformations or for shorter times with a sudden decrease in the strength at higher deformations. This aging behavior suggests that the network is able to rearrange and even rupture. This same sensitivity is not demonstrated in shear flow where very high shear rates are required to rupture the agglomerates returning the apparent viscosity of capillary suspensions to the same viscosity as for the pure vdW suspension. A transitional region is also present at intermediate water contents wherein the material response depends very strongly on the type, strength, and duration of the external forcing.

  1. Test models for estimating radiation balance in different scales for Jaboticabal, SP

    Directory of Open Access Journals (Sweden)

    Valquíria de Alencar Beserra

    2012-12-01

    Full Text Available The net radiation (Rn in agroecosystems is the amount of energy that is available in the environment to heating processes of living organisms, air and soil; perspiration of animals and plants; photosynthesis and water evaporation. The Rn defines the type of climate and weather conditions prevailing in a region affecting the availability and thermal water, the fundamental understanding of genotype-environment, which ultimately determine the productivity of the agricultural system. Rn usually is used in models of weather and climate studies. The sustainability and economic viability of zootechnical activity is dependent on the positive interaction between animal and environment. Environmental factors such as water, shading, thermal exchanges sensible heat (conduction, convection and radiation skin and latent heat losses (evaporation and transpiration, conditioned by Rn, must be managed to provide the best results. The present study was conducted to develop and test models for accurate and precise radiation balance on the scales daily, monthly and seasonal ten-day for Jaboticabal - SP, due to the importance of estimates of net radiation for agricultural activities. We used daily meteorological data from weather station located in Jaboticabal, SP (coordinates: 21 ° 14'05 "South, 48 ° 17'09" West, 615m altitude at Universidade Estadual Paulista "Júlio Mesquita Filho" - FCAV/UNESP in a situation of default grass "Bahiagrass" during the period 20/08/2005 to 20/01/2012. The data used were the maximum temperature (Tmax, minimum (Tmin and mean (TMED; maximum relative humidity (URMáx, minimum (URMín and average (URMéd precipitation (mm, average velocity (m/s, Qo, solar radiation (MJ m-2, sunshine (hour meter (MJ m², soil temperature at two depths (Tsoil2CM, Tsoil5CM and class A pan evaporation (TCA (mm. The measures taken by the balance radiometer were taken as a reference to test other models. The models tested were those reported by NORMAN et al

  2. A mass balance model for the Mapleson D anaesthesia breathing system.

    Science.gov (United States)

    Lovich, M A; Simon, B A; Venegas, J G; Sims, N M; Cooper, J B

    1993-06-01

    A mathematical model is described which calculates the alveolar concentration of CO2(FACO2) in a patient breathing through a Mapleson D anaesthesia system. The model is derived using a series of mass balances for CO2 in the alveolar space, dead space, breathing system limb volume and reservoir. The variables included in the model are tidal volume (VT), respiratory rate, fresh gas flow rate (Vf), dead space volume, I:E ratio, and expiratory limb volume (Vl) time constant of lung expiration, and carbon dioxide production rate. The model predictions are compared with measurements made using a mechanical lung simulator in both spontaneous and controlled ventilation. Both the model and the experimental data predict that at high fresh gas flow rates and low respiratory rates, FACO2 is independent of Vf; at low fresh gas flow rates and high respiratory rates, FACO2 is independent of respiratory rate. The model and the data show that the VT influences FACO2, independent of minute ventilation alone, during both partial re-breathing and non-rebreathing operation. Therefore, describing the operation in terms of minute ventilation is ambiguous. It is also shown that Vl influences FACO2 such that, for any combination of patient and breathing-system variables, there is a Vl that minimizes the Vf required to maintain FACO2. In addition, expiratory resistance can increase the fresh gas flow rate required to maintain a given FACO2. The respiratory patterns observed with spontaneous and controlled ventilation are responsible for the difference in Vf required with each mode of ventilation.

  3. Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model

    Science.gov (United States)

    McDonnell, Mark D.; Ward, Lawrence M.

    2014-01-01

    Abstract Directed random graph models frequently are used successfully in modeling the population dynamics of networks of cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that are physiologically different. This suggests that complex network models whose subnetworks have distinct topological structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it is important to identify neurons that

  4. Water and nutrient balances in a large tile-drained agricultural catchment: a distributed modeling study

    Directory of Open Access Journals (Sweden)

    H. Li

    2010-11-01

    Full Text Available This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  5. Whole body acid-base and fluid-electrolyte balance: a mathematical model.

    Science.gov (United States)

    Wolf, Matthew B

    2013-10-15

    A cellular compartment was added to our previous mathematical model of steady-state acid-base and fluid-electrolyte chemistry to gain further understanding and aid diagnosis of complex disorders involving cellular involvement in critically ill patients. An important hypothesis to be validated was that the thermodynamic, standard free-energy of cellular H(+) and Na(+) pumps remained constant under all conditions. In addition, a hydrostatic-osmotic pressure balance was assumed to describe fluid exchange between plasma and interstitial fluid, including incorporation of compliance curves of vascular and interstitial spaces. The description of the cellular compartment was validated by close comparison of measured and model-predicted cellular pH and electrolyte changes in vitro and in vivo. The new description of plasma-interstitial fluid exchange was validated using measured changes in fluid volumes after isoosmotic and hyperosmotic fluid infusions of NaCl and NaHCO3. The validated model was used to explain the role of cells in the mechanism of saline or dilutional acidosis and acid-base effects of acidic or basic fluid infusions and the acid-base disorder due to potassium depletion. A module was created that would allow users, who do not possess the software, to determine, for free, the results of fluid infusions and urinary losses of water and solutes to the whole body.

  6. Mathematical modelling of nutrient balance of a goldfish (Carassius auratus Linn. recirculating aquaculture system (GRAS

    Directory of Open Access Journals (Sweden)

    Sudeep Puthravilakom Sadasivan Nair

    2010-08-01

    Full Text Available In the present study, a goldfish (Carassius auratus Linn. recirculating aquaculture system (GRAS has been developed. The GRAS consisted of a culture tank, a screen filter and a foam fractionator for removal of particulate and dissolved solids and a trickling filter for conversion of ammonium- and nitrite-nitrogen to relatively harmless nitrate-nitrogen. The culture of goldfish at a stocking density of 1.08 kg/m3 was continued for a period of two and half months. Based on mass balance analysis of ammonium- and nitrate-nitrogen and assuming the trickling filter to be a plug flow reactor, a model was formulated to determine the necessary recirculation flow rate at different times of culture for maintaining the major nutrients, viz., ammonium- and nitrate-nitrogen below their permissible limits. The model was calibrated and validated using the real time data obtained from the experimental run. The high values of coefficient of determination and low values of root mean square error show the effectiveness of the model.

  7. Material Balance And Reaction Kinetics Modeling For Penex Isomerization Process In Daura Refinery

    Directory of Open Access Journals (Sweden)

    Hamadi Adel Sharif

    2017-01-01

    Full Text Available Penex Deisohexanizer isomerization of light straight run naphtha is a significant process for petroleum refining and proved to be effective technology to produce gasoline components with a high octane number. Modeling of the chemical kinetic reactions is an important tool because it is a better tool for optimization of the experimental data into parameters used for industrial reactors. The present study deals on the isomerization process in Daura refinery. Material balance calculations were done mathematically on the unit for the kinetics prediction purpose. A kinetic mathematical model was derived for the prediction rate constants K1 and K2 and activation energy Ea at operating temperatures range 120-180°C. According to the model, the results show that with increasing of temperature leads to increased K1 directly, where the K2 values proportional inversely. The activation energy results show that Ea1(nC6

  8. A spatially distributed energy balance snowmelt model for application in mountain basins

    Science.gov (United States)

    Marks, Danny; Domingo, James; Susong, Dave; Link, Tim; Garen, David

    1999-09-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.

  9. Service-life limitations in vacuum glazing: A transient pressure balance model

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, Matthias M.; Manz, Heinrich; Emanuel Mayerhofer, Karl; Keller, Beat (Swiss Federal Laboratories for Materials Research and Testing, Empa, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland.)

    2010-06-15

    Windows constitute a weak link in the building envelope and hence contribute significantly to the heating energy demand. By evacuating the glazing cavity, heat transfer rates two to five times lower than those of gas-filled conventional glazing units are predicted in theory and have been practically confirmed in a few cases. Of central importance to any practical realization of vacuum glazing is the edge-sealing problem because the technology used defines many secondary and tertiary parameters and strongly influences service life. This work establishes a correlation between the sealing method and its effect on the products service life. A cavity pressure balance model is presented, which takes into account four possible sources to the total pressure increase. Using this model a set of critical parameters is defined and the range of tolerable values for each parameter can be extracted. These findings underline the importance of choosing a sealing process, which is carried out in a high-vacuum environment. A possible source of pressure increase not considered in detail so far is the photofragmentation of long-chain organic adsorbate contaminants on the inner glazing surfaces. It was shown that a surface treatment via UV/ozone cleaning reduces the surface concentration of a model surface contaminant sodium dodecyl sulfate (SDS) by approximately 3 orders of magnitude. (author)

  10. Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model

    Science.gov (United States)

    Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.

    2013-01-01

    Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

  11. Effects of AgRP inhibition on energy balance and metabolism in rodent models.

    Directory of Open Access Journals (Sweden)

    Roxanne Dutia

    Full Text Available Activation of brain melanocortin-4 receptors (MC4-R by α-melanocyte-stimulating hormone (MSH or inhibition by agouti-related protein (AgRP regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.

  12. Effects of AgRP inhibition on energy balance and metabolism in rodent models.

    Science.gov (United States)

    Dutia, Roxanne; Kim, Andrea J; Modes, Matthew; Rothlein, Robert; Shen, Jane M; Tian, Ye Edward; Ihbais, Jumana; Victory, Sam F; Valcarce, Carmen; Wardlaw, Sharon L

    2013-01-01

    Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.

  13. Kinematic Modeling of Central Nepal: Thermochronometer Cooling Ages as a Constraint for Balanced Cross Sections

    Science.gov (United States)

    Olree, E.; Robinson, D. M.; McQuarrie, N.; Ghoshal, S.; Olsen, J.

    2016-12-01

    Using balanced cross sections, one can visualize a valid and admissible interpretation of the surface and subsurface data. Khanal (2014) and Cross (2014) produced two valid and admissible cross sections along the Marsyandi River in central Nepal. However, thermochronologic data adds another dimension that must be adhered to when producing valid and admissible balanced cross sections. Since the previous cross sections were produced, additional zircon-helium (ZHe) cooling ages along the Marsyandi River show ages of 1 Ma near the Main Central thrust in the hinterland to 4 Ma near the Main Boundary thrust closer to the foreland. This distribution of cooling ages requires recent uplift in the hinterland, which is not present in the cross sections. Although a restored version of the Khanal (2014) cross section is sequentially deformed using 2D Move, the kinematic sequence implied in the cross section is inconsistent with the ZHe age distribution. The hinterland dipping duplex proposed by Khanal would require cooling ages that are oldest near the Main Central thrust and young southwards toward the active ramp located 80 km north of the Main Frontal thrust. Instead, the 4 Ma age near the Main Boundary thrust and the increasingly younger ages to the north could be produced by either a foreland-dipping Lesser Himalayan duplex, which would keep active uplift in the north, or by translation of the hinterland dipping duplex southward over the ramp, moving the active thrust ramp northward. To address this problem, a new balanced cross section was produced using both new mapping through the region and the ZHe age distribution as additional constraints. The section was then restored and sequentially deformed in 2D Move. This study illustrates that multiple cross sections can be viable and admissible; however, they can still be incorrect. Thermochronology places additional constraints on the permissible geometries, and thus increases our ability to predict subsurface geometries

  14. A 2D climate energy balance model coupled with a 3D deep ocean model

    Directory of Open Access Journals (Sweden)

    J. Ildefonso Diaz

    2007-05-01

    Full Text Available We study a three dimensional climate model which represents the coupling of the mean surface temperature with the ocean temperature. We prove the existence of a bounded weak solution by a fixed point argument.

  15. Relationship between work-family balance and job satisfaction among employees in China: A moderated mediation model.

    Science.gov (United States)

    Yu, Yue; Wang, Yuchen; Zhang, Jianxin

    2017-09-01

    Previous studies have revealed the association between work-family balance and job satisfaction. The present research further explored the underlying mechanism of this association and aimed to provide a moderated mediation model to explain if personality traits moderate the relationship between work-family balance and job satisfaction through work engagement. A cross-sectional study was conducted in which 263 employees from a petrochemical enterprise in China completed self-report questionnaires including the Work-Family Balance Scale, the Utrecht Work Engagement Scale, the Big Five Inventory-10, and the Job Satisfaction Scale. Hierarchical regression analysis and structural equation modeling showed that work engagement partially mediated the relationship between work-family balance and job satisfaction, and the indirect effect was further moderated only by extraversion. Therefore, an integrative moderated mediation model was proposed wherein work-family balance boosts job satisfaction by first enhancing employees' work engagement, while the indirect effect was in turn moderated by extraversion. The results suggest that interventions for improving job satisfaction may be enhanced by targeting work engagement, especially for employees with higher extraversion. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  17. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  18. Improving and validating 3D models for the leaf energy balance in canopy-scale problems with complex geometry

    Science.gov (United States)

    Bailey, B.; Stoll, R., II; Miller, N. E.; Pardyjak, E.; Mahaffee, W.

    2014-12-01

    Plants cover the majority of Earth's land surface, and thus play a critical role in the surface energy balance. Within individual plant communities, the leaf energy balance is a fundamental component of most biophysical processes. Absorbed radiation drives the energy balance and provides the means by which plants produce food. Available energy is partitioned into sensible and latent heat fluxes to determine surface temperature, which strongly influences rates of metabolic activity and growth. The energy balance of an individual leaf is coupled with other leaves in the community through longwave radiation emission and advection through the air. This complex coupling can make scaling models from leaves to whole-canopies difficult, specifically in canopies with complex, heterogeneous geometries. We present a new three-dimensional canopy model that simultaneously resolves sub-tree to whole-canopy scales. The model provides spatially explicit predictions of net radiation exchange, boundary-layer and stomatal conductances, evapotranspiration rates, and ultimately leaf surface temperature. The radiation model includes complex physics such as anisotropic emission and scattering. Radiation calculations are accelerated by leveraging graphics processing unit (GPU) technology, which allows canopy-scale problems to be performed on a standard desktop workstation. Since validating the three-dimensional distribution of leaf temperature can be extremely challenging, we used several independent measurement techniques to quantify errors in measured and modeled values. When compared with measured leaf temperatures, the model gave a mean error of about 2°C, which was close to the estimated measurement uncertainty.

  19. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2012-03-01

    Full Text Available It is notoriously difficult to couple surface mass balance (SMB results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs. In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS. Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  20. An energy-balance model for the debris layer on debris-covered glaciers

    Science.gov (United States)

    Reid, Tim; Brock, Ben

    2010-05-01

    Many glacier ablation zones are mantled in near-continuous blankets of rock debris. These debris-covered glaciers are important drivers of the water cycle in many mountain regions, for example, in the headwaters of the Ganges and Indus Rivers. The debris layers have a very significant impact on glacier thermodynamics, and have been seen to expand in recent years, so it is essential to assess exactly how their presence affects a glacier's response to climate changes. However, while many studies have investigated the surface energy balance on clean or debris-free glaciers, there is still a lack of models of the processes that influence debris-covered snow and ice. This paper presents a physically-based, one-dimensional energy balance model for the surface of a debris-covered glacier. The model is driven by meteorological variables and specified debris thermal properties without the need for surface temperature measurements, and was developed and tested using data collected hourly at Miage Glacier, Italy, which has an extensive cover of rock debris, during the ablation seasons (June to September) of 2005, 2006 and 2007. In the model, fluxes of solar shortwave and atmospheric longwave radiation can be entered directly from measurements or calculated using appropriate parameterisations. All other surface fluxes including upwelling longwave from the debris surface, sensible and latent heat transfer, and the conductive flux into the debris, depend on equations requiring the debris surface temperature. Therefore, the surface temperature is solved using an iterative Newton-Raphson procedure, assuming that it will adjust to a value such that the total sum of fluxes at the air-debris interface is zero. Temperatures within the debris are found by dividing the debris into several layers and solving the heat conservation equation numerically, with boundary conditions defined by the newly-calculated surface temperature and the temperature at the debris-ice interface (which is