Sample records for suspending fusion fuel

  1. Surface tension of Nanofluid-type fuels containing suspended nanomaterials. (United States)

    Tanvir, Saad; Qiao, Li


    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  2. Surface tension of Nanofluid-type fuels containing suspended nanomaterials (United States)


    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039

  3. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D


    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  4. Fusion fuel cycle: material requirements and potential effluents

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.


    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  5. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan


    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  6. Quantification of fusion in ashes from solid fuel combustion

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Frandsen, Flemming; Dam-Johansen, Kim


    , for which the agreement with fusion as determined by phase diagrams is very good, and for straw (salt-rich) and coal (silicate-rich) ashes. Comparing ash fusion curves to index points of current standard ash fusion tests showed initial melting at temperatures typically between 50 degrees and 100 degrees C......The fusion of ashes produced during solid fuel combustion greatly affects the tendency of these ashes to cause operational problems in utility boilers. In this paper, a new and quantitative laboratory method for assessing the fusion of ashes based on simultaneous thermal analysis, STA, is described....... Using STA, melting is detected as an endothermic reaction involving no change in mass. The measurement signals are transferred into a fusion curve showing the melt fraction in the ash as a function of temperature. This is done either by a simple comparison of the energies used for melting in different...

  7. Fabrication and Installation of Radiation Shielded Spent Fuel Fusion System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Dal; Park, Yang Soon; Kim, Jong Goo; Ha, Yeong Keong; Song, Kyu Seok


    Most of the generated fission gases are retained in the fuel matrix in supersaturated state, thus alter the original physicochemical properties of the fuel. And some of them are released into free volume of a fuel rod and that cause internal pressure increase of a fuel rod. Furthermore, as extending fuel burnup, the data on fission gas generation(FGG) and fission gas release(FGR) are considered very important for fuel safety investigation. Consequently, it is required to establish an experimental facility for handling of highly radioactive sample and to develop an analytical technology for measurement of retained fission gas in a spent fuel. This report describes not only on the construction of a shielded glove box which can handle highly radioactive materials but also on the modifications and instrumentations of spent fuel fusion facilities and collection apparatuses of retained fission gas

  8. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.


    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  9. Uniformity of fuel target implosion in Heavy Ion Fusion

    CERN Document Server

    Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y


    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

  10. Fuel Target Implosion in Ion beam Inertial Confinement Fusion

    CERN Document Server

    Kawata, Shigeo


    The numerical results for the fuel target implosion are presented in order to clarify the target physics in ion beam inertial fusion. The numerical analyses are performed for a direct-driven ion beam target. In the paper the following issues are studied: the beam obliquely incidence on the target surface, the plasma effect on the beam-stopping power, the beam particle energy, the beam time duration, the target radius, the beam input energy and the non-uniformity effect on the fuel target performance. In this paper the beam ions are protons.

  11. Uniform hydrogen fuel layers for inertial fusion targets by microgravity (United States)

    Parks, P. B.; Fagaly, Robert L.


    A critical concern in the fabrication of targets for inertial confinement fusion (ICF) is ensuring that the hydrogenic (D(sub 2) or DT) fuel layer maintains spherical symmetry. Solid layered targets have structural integrity, but lack the needed surface smoothness. Liquid targets are inherently smooth, but suffer from gravitationally induced sagging. One method to reduce the effective gravitational field environment is freefall insertion into the target chamber. Another method to counterbalance field gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force on the liquid fuel layer. Based on time dependent calculations of the dynamics of the liquid fuel layer in microgravity environments, we show that it may be possible to produce a liquid layered ICF target that satisfies both smoothness and symmetry requirements.

  12. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik


    For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced...

  13. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan


    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  14. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion. (United States)

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A


    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  15. A Review on Suspended Wood Dust Combustion. Efficiency and Fuel Quality (United States)

    Silins, Kaspars


    The paper is dedicated to review the combustion efficiency in low capacity wood dust suspension burners. Fuel quality is reviewed as the main contributor to the combustion efficiency. Wood dust moisture content, particle size and shape, amount of volatiles are discussed as the main contributors. Some additional aspects like burner ignition, fuel and combustion air feeding are reviewed to increase the efficiency. A brief overview of particle combustion process is provided followed by an identification and discussion of combustion efficiency influencing parameters. The significance of fuel feeding and air supply is discussed at the end of the paper.

  16. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail:; Krokhin, O. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Osipov, I. E. [Power Efficiency Centre, Inter RAO UES (Russian Federation)


    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain size should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.

  17. Comment on 'Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions'

    CERN Document Server

    Zheng, Hua


    Recent implosion experiments performed at the OMEGA laser facility reported by Casey et al.[1], displayed an anomalously low dd proton yield and a high tt neutron yield as compared to dt fusion reactions, explained as a stratification of the fuel in the implosion core. We suggest that in the com- pression stage the fuel is out of equilibrium. Ions are inward accelerated to a velocity v0 independent on the particle type. Yield ratios are simply given by the ratios of fusion cross-sections obtained at the same velocity. A 'Hubble' type model gives also a reasonable description of the data. These considerations might be relevant for implosion experiments at the National Ignition Facility as well.

  18. Fusion

    CERN Document Server

    Mahaffey, James A


    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  19. Fusion of Landsat-8/OLI and GOCI Data for Hourly Mapping of Suspended Particulate Matter at High Spatial Resolution: A Case Study in the Yangtze (Changjiang Estuary

    Directory of Open Access Journals (Sweden)

    Yanqun Pan


    Full Text Available Suspended particulate matter (SPM concentrations ([SPM] in the Yangtze estuary, which has third-order bifurcations and four outlets, exhibit large spatial and temporal variations. Studying the characteristics of these variations in [SPM] is important for understanding sediment transport and pollutant diffusion in the estuary as well as for the construction of port and estuarine engineering structures. The 1-h revisit frequency of the Geostationary Ocean Color Imager (GOCI sensor and the 30-m spatial resolution of the Landsat 8 Operational Land Imager (L8/OLI provide a new opportunity to study the large spatial and temporal variations in the [SPM] in the Yangtze estuary. In this study, [SPM] images with a temporal resolution of 1 h and a spatial resolution of 30 m are generated through the product-level fusion of [SPM] data derived from L8/OLI and GOCI images using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM. The results show that the details and accuracy of the spatial and temporal variations are maintained well in the [SPM] images that are predicted based on the fused images. Compared to the [SPM] observations at fixed field stations, the mean relative error (MRE of the predicted SPM is 17.7%, which is lower than that of the GOCI-derived [SPM] (27.5%. In addition, thanks to the derived high-resolution [SPM] with high spatiotemporal dynamic changes, both natural phenomena (dynamic variation of the maximum turbid zone and human engineering changes leading to the dynamic variability of SPM in the channel are observed.

  20. A study of hydrogen isotopes fuel control by wall effect in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Motevalli, S.M., E-mail:; Safari, M.


    Highlights: • A particle balance model for the main plasma and wall inventory in magnetic fusion device has been represented. • The dependence of incident particles energy on the wall has been considered in 10–300 eV for the sputtering yield and recycling coefficient. • The effect of fueling methods on plasma density behavior has been studied. - Abstract: Determination of plasma density behavior in magnetic confinement system needs to study the plasma materials interaction in the facing components such as first wall, limiter and divertor. Recycling of hydrogen isotope is an effective parameter in plasma density rate and plasma fueling. Recycling coefficient over the long pulse operation, gets to the unity, so it has a significant effect on steady state in magnetic fusion devices. Typically, sputtered carbon atoms from the plasma facing components form hydrocarbons and they redeposit on the wall. In this case little rate of hydrogen loss occurs. In present work a zero dimensional particle equilibrium model has been represented to determine particles density rate in main plasma and wall inventory under recycling effect and codeposition of hydrogen in case of continues and discontinues fueling methods and effective parameters on the main plasma decay has been studied.

  1. Fuel Areal-Density Measurements in Laser-Driven Magnetized Inertial Fusion from Secondary Neutrons (United States)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Glebov, V. Yu.; Knauer, J. P.; Peebles, J. L.


    Laser-driven magnetized liner inertial fusion is being developed on the OMEGA laser to provide the first data at a significantly smaller scale than the Z pulsed-power machine in order to test scaling and to provide more shots with better diagnostic access than Z. In OMEGA experiments, a 0.6-mm-outer-diam plastic cylinder filled with 11 atm of D2 is placed in an axial magnetic field of 10 T, the D2 is preheated by a single beam along the axis, and then the cylinder is compressed by 40 beams. Secondary DT neutron yields provide a measurement of the areal density of the compressed D2 because the compressed fuel is much smaller than the mean free path and the Larmor radius of the T produced in D-D fusion. Measured secondary yields confirm theoretical predictions that preheating and magnetization reduce fuel compression. Higher fuel compression is found to consistently lead to lower neutron yields, which is not predicted by simulations. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000568 and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A


    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0

  3. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach (United States)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo


    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  4. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar


    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  5. Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions. (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Manuel, M J-E; Rinderknecht, H G; Sinenian, N; Séguin, F H; Li, C K; Petrasso, R D; Radha, P B; Delettrez, J A; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; McNabb, D P; Amendt, P A; Boyd, R N; Rygg, J R; Herrmann, H W; Kim, Y H; Bacher, A D


    Measurements of the D(d,p)T (dd) and T(t,2n)(4)He (tt) reaction yields have been compared with those of the D(t,n)(4)He (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement fusion capsule implosions. In these experiments, carried out on the OMEGA laser, absolute spectral measurements of dd protons and tt neutrons were obtained. From these measurements, it was concluded that the dd yield is anomalously low and the tt yield is anomalously high relative to the dt yield, an observation that we conjecture to be caused by a stratification of the fuel in the implosion core. This effect may be present in ignition experiments planned on the National Ignition Facility.

  6. Fusion of WorldView-2 and LiDAR Data to Map Fuel Types in the Canary Islands

    Directory of Open Access Journals (Sweden)

    Alfonso Alonso-Benito


    Full Text Available Wildland fires are one of the factors causing the deepest disturbances on the natural environment and severely threatening many ecosystems, as well as economic welfare and public health. Having accurate and up-to-date fuel type maps is essential to properly manage wildland fire risk areas. This research aims to assess the viability of combining Geographic Object-Based Image Analysis (GEOBIA and the fusion of a WorldView-2 (WV2 image and low density Light Detection and Ranging (LiDAR data in order to produce fuel type maps within an area of complex orography and vegetation distribution located in the island of Tenerife (Spain. Independent GEOBIAs were applied to four datasets to create four fuel type maps according to the Prometheus classification. The following fusion methods were compared: Image Stack (IS, Principal Component Analysis (PCA and Minimum Noise Fraction (MNF, as well as the WV2 image alone. Accuracy assessment of the maps was conducted by comparison against the fuel types assessed in the field. Besides global agreement, disagreement measures due to allocation and quantity were estimated, both globally and by fuel type. This made it possible to better understand the nature of disagreements linked to each map. The global agreement of the obtained maps varied from 76.23% to 85.43%. Maps obtained through data fusion reached a significantly higher global agreement than the map derived from the WV2 image alone. By integrating LiDAR information with the GEOBIAs, global agreement improvements by over 10% were attained in all cases. No significant differences in global agreement were found among the three classifications performed on WV2 and LiDAR fusion data (IS, PCA, MNF. These study’s findings show the validity of the combined use of GEOBIA, high-spatial resolution multispectral data and low density LiDAR data in order to generate fuel type maps in the Canary Islands.

  7. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey James [Univ. of California, Berkeley, CA (United States)


    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  8. Suspended microfluidics


    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Jean BERTHIER; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.


    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale...

  9. First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility. (United States)

    Weber, C R; Döppner, T; Casey, D T; Bunn, T L; Carlson, L C; Dylla-Spears, R J; Kozioziemski, B J; MacPhee, A G; Nikroo, A; Robey, H F; Sater, J D; Smalyuk, V A


    Direct measurements of hydrodynamic instability growth at the fuel-ablator interface in inertial confinement fusion (ICF) implosions are reported for the first time. These experiments investigate one of the degradation mechanisms behind the lower-than-expected performance of early ICF implosions on the National Ignition Facility. Face-on x-ray radiography is used to measure instability growth occurring between the deuterium-tritium fuel and the plastic ablator from well-characterized perturbations. This growth starts in two ways through separate experiments-either from a preimposed interface modulation or from ablation front feedthrough. These experiments are consistent with analytic modeling and radiation-hydrodynamic simulations, which say that a moderately unstable Atwood number and convergence effects are causing in-flight perturbation growth at the interface. The analysis suggests that feedthrough from outersurface perturbations dominates the interface perturbation growth at mode 60.

  10. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter. (United States)

    Chowdhury, Amor; Sarjaš, Andrej


    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  11. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter (United States)

    Chowdhury, Amor; Sarjaš, Andrej


    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197


    Directory of Open Access Journals (Sweden)

    Hüseyin YAPICI


    Full Text Available The potential of a catalyzed (D, D fusion-driven hybrid blanket is investigated for the regeneration of light water reactor spent fuel. Total enrichment grade is 2.172 % at beginning of regeneration. The hybrid blanket has excellent neutronic performance and is investigated to achieve different cumulative fission fuel enrichment (CFFE grades. A regeneration period of up to 36 months is investigated by a plant factor of 75% under a first wall catalyzed (D, D fusion neutron current load of 10 14. Neutron (14.1 MeV/cm 2. s and 10 14 neuton (2.45 MeV/cm 2. s. This corresponds to a first wall load of 2.64 MW/m 2. Regeneration periods of 12, 20, 28 and 36 months are considered, resulting in final enrichment grades of 3.0, 3.5, 4.0, and 4.5 %, respectively. The blanket energy multiplication M is quite high and increases only by ~ 30 % in 36 months. The electricity production remains fairly constant during this period. Consequently, this power exploits the non-nuclear island very well. At the same time, the peak-to-average fission power density ratio ? decreases by ~10 %.

  13. The moon: An abundant source of clean and safe fusion fuel for the 21st century (United States)

    Kulcinski, G. L.; Schmitt, Harrison H.


    It is shown how helium-3 can be obtained from the moon and how its use in fusion reactors can benefit the inhabitants of this planet. The physics and technology issues associated with the use of He-3 is addressed. A description is given of He-3 distribution on the moon and of methods which could be used to retrieve it.

  14. Neutronic Model of a Mirror Based Fusion-Fission Hybrid for the Incineration of Spent Nuclear Fuel and with Potential for Energy Amplification (United States)

    Noack, Klaus; Moiseenko, V. E.; Agren, O.; Hagnestall, A.


    In the last decade the Georgia Institute of Technology (Georgia Tech) published several design concepts of tokamak based fusion-fission hybrids which use solid fuels consisting of transuranic elements of the spent nuclear fuel from Light-Water-Reactors. The objectives of the hybrids are the incineration of the transuranic elements and an additional net energy production under the condition of tritium self-sufficiency. The present paper presents a preliminary scientific design of the blanket of a mirror based hybrid which was derived from the results of Monte Carlo neutron transport calculations. The main operation parameters of two hybrid options were specified. One is the analog to Georgia Techs first version of a ``fusion transmutation of waste reactor'' (FTWR) and the other is a possible near-term option which requires minimal fusion power. The latter version shows considerably better performance parameters.

  15. Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect

    Energy Technology Data Exchange (ETDEWEB)


    In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

  16. In depth fusion flame spreading with a deuterium—tritium plane fuel density profile for plasma block ignition (United States)

    Malekynia, B.; S. Razavipour, S.


    Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 1012 J/m2, has been reached. Recently, fast ignition by employing clean petawatt—picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium—tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electron—ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, E*t, for the x ≠ 0 layers is 1.95 × 1012 J/m2. Thus threshold ignition energy in comparison with that at x = 0 layers would be reduced to less than 50 percent.

  17. Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions (United States)

    Shah, R. C.; Haines, B. M.; Wysocki, F. J.; Benage, J. F.; Fooks, J. A.; Glebov, V.; Hakel, P.; Hoppe, M.; Igumenshchev, I. V.; Kagan, G.; Mancini, R. C.; Marshall, F. J.; Michel, D. T.; Murphy, T. J.; Schoff, M. E.; Silverstein, K.; Stoeckl, C.; Yaakobi, B.


    We present narrow-band self-emission x-ray images from a titanium tracer layer placed at the fuel-shell interface in 60-laser-beam implosion experiments at the OMEGA facility. The images are acquired during deceleration with inferred convergences of ˜9 - 14. Novel here is that a systematically observed asymmetry of the emission is linked, using full sphere 3D implosion modeling, to performance-limiting low mode asymmetry of the drive.

  18. Numerical Study on Effects of Fuel Mixture Fraction and Li-6 Enrichment on Neutronic Parameters of a Fusion-Fission Hybrid Reactor (United States)

    Yapııcıı, Hüseyin; Genç, Gamze; Demir, Nesrin


    This study presents the effects of mixture fractions of nuclear fuels (mixture of fissile-fertile fuels and mixture of two different fertile fuels) and 6Li enrichment on the neutronic parameters (the tritium breeding ratio, TBR, the fission rate, FR, the energy multiplication ratio, M, the fissile breeding rate, FBR, the neutron leakage out of blanket, L, and the peak-to-average fission power density ratio, Γ) of a deuterium-tritium (D-T) fusion neutron-driven hybrid blanket. Three different fertile fuels (232Th, 238U and 244Cm), and one fissile fuel (235U) were selected as the nuclear fuel. Two different coolants (pressurized helium and natural lithium) were used for the nuclear heat transfer out of the fuel zone (FZ). The Boltzmann transport equation was solved numerically for obtaining the neutronic parameters with the help of the neutron transport code XSDRNPM/SCALE4.4a. In addition, these calculations were performed by also using the MCNP4B code. The sub-limits of the mixture fractions and 6Li enrichment were determined for the tritium self-sufficiency. The considered hybrid reactor can be operated in a self-sufficiency mode in the cases with the fuel mixtures mixed with a fraction of equal to or greater than these sub-limits. Furthermore, the numerical results show that the fissile fuel breeding and fission potentials of the blankets with the helium coolant are higher than with the lithium coolant.

  19. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N.; Kulikov, G. G., E-mail: [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation)


    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future

  20. Fusion research principles

    CERN Document Server

    Dolan, Thomas James


    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  1. Magnetic fusion reactor economics

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.


    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  2. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  3. Spinal fusion (United States)

    ... Low back pain - fusion; Herniated disk - fusion; Spinal stenosis - fusion; Laminectomy - fusion ... be done: With other surgical procedures for spinal stenosis , such as foraminotomy or laminectomy After diskectomy in ...

  4. Fabrication of polystyrene hollow microspheres as laser fusion ...

    Indian Academy of Sciences (India)

    Inertial confinement fusion, frequently referred to as ICF, inertial fusion, or laser fusion, is a means of producing energy by imploding small hollow microspheres containing thermonuclear fusion fuel. Polymer microspheres, which are used as fuel containers, can be produced by solution-based micro-encapsulation technique ...

  5. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures. (United States)

    Amendt, Peter; Landen, O L; Robey, H F; Li, C K; Petrasso, R D


    The observation of large, self-generated electric fields (≥10(9)  V/m) in imploding capsules using proton radiography has been reported [C. K. Li, Phys. Rev. Lett. 100, 225001 (2008)]. A model of pressure gradient-driven diffusion in a plasma with self-generated electric fields is developed and applied to reported neutron yield deficits for equimolar D3He [J. R. Rygg, Phys. Plasmas 13, 052702 (2006)] and (DT)3He [H. W. Herrmann, Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deuterium fuels [J. D. Lindl, Phys. Plasmas 11, 339 (2004)]. The observed anomalies are explained as a mild loss of deuterium nuclei near capsule center arising from shock-driven diffusion in the high-field limit.

  6. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)



    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  7. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)


    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  8. Cable suspended windmill (United States)

    Farmer, Moses G. (Inventor)


    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  9. Spinal Fusion (United States)

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... are taking for other conditions, and your overall health can affect the rate of healing and fusion, ...

  10. Nuclear Fusion

    National Research Council Canada - National Science Library

    Ghoranneviss, Mahmood; Parashar, S. K. S; Aslan, Necdet; Aslaninejad, Morteza; Salar Elahi, A


    ... in both inertial and magnetic confinement fusion, with attendees from major fusion energy research centers worldwide. It is one of the most important issues in this field. Nuclear fusion continues t...

  11. Fission-suppressed hybrid reactor: the fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Coops, M.S.


    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  12. Physics of magnetic confinement fusion

    Directory of Open Access Journals (Sweden)

    Wagner F.


    Full Text Available Fusion is the energy source of the universe. The local conditions in the core of the Sun allow the transfer of mass into energy, which is finally released in the form of radiation. Technical fusion melts deuterons and tritons to helium releasing large amounts of energy per fusion process. Because of the conditions for fusion, which will be deduced, the fusion fuel is in the plasma state. Here we report on the confinement of fusion plasmas by magnetic fields. Different confinement concepts — tokamaks and stellarators — will be introduced and described. The first fusion reactor, ITER, and the most modern stellarator, Wendelstein 7-X, are under construction. Their basic features and objectives will be presented.

  13. Method of controlling fusion reaction rates (United States)

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice


    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  14. Dispersive suspended microextraction. (United States)

    Yang, Zhong-Hua; Liu, Yu; Lu, Yue-Le; Wu, Tong; Zhou, Zhi-Qiang; Liu, Dong-Hui


    A novel sample pre-treatment technique termed dispersive suspended microextraction (DSME) coupled with gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of eight organophosphorus pesticides (ethoprophos, malathion, chlorpyrifos, isocarbophos, methidathion, fenamiphos, profenofos, triazophos) in aqueous samples. In this method, both extraction and two phases' separation process were performed by the assistance of magnetic stirring. After separating the two phases, 1 μL of the suspended phase was injected into GC for further instrument analysis. Varieties of experiment factors which could affect the experiment results were optimized and the following were selected: 12.0 μL p-xylene was selected as extraction solvent, extraction speed was 1200 rpm, extraction time was 30 s, the restoration speed was 800 rpm, the restoration time was 8 min, and no salt was added. Under the optimum conditions, limits of detections (LODs) varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSDs, n=6) ranged from 4.6% to 12.1%. The linearity was obtained by five points in the concentration range of 0.1-100.0 μg L(-1). Correlation coefficients (r) varied from 0.9964 to 0.9995. The enrichment factors (EFs) were between 206 and 243. In the final experiment, the developed method has been successfully applied to the determination of organophosphorus pesticides in wine and tap water samples and the obtained recoveries were between 83.8% and 101.3%. Compared with other pre-treatment methods, DSME has its own features and could achieve satisfied results for the analysis of trace components in complicated matrices. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Aerosol feed direct methanol fuel cell (United States)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)


    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  16. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.


    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  17. Mars manned fusion spaceship (United States)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric


    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  18. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent


    suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...... on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through......Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...

  19. Structure-level fuel load assessment in the wildland-urban interface: a fusion of airborne laser scanning and spectral remote-sensing methodologies (United States)

    Nicholas S. Skowronski; Scott Haag; Jim Trimble; Kenneth L. Clark; Michael R. Gallagher; Richard G. Lathrop


    Large-scale fuel assessments are useful for developing policy aimed at mitigating wildfires in the wildland-urban interface (WUI), while finer-scale characterisation is necessary for maximising the effectiveness of fuel reduction treatments and directing suppression activities. We developed and tested an objective, consistent approach for characterising hazardous fuels...

  20. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin


    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  1. Civilian applications of laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.


    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

  2. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  3. Fusion neutronics

    CERN Document Server

    Wu, Yican


    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  4. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander


    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  5. Cryogenics for Fusion (United States)

    Dauguet, P.; Gistau-Baguer, G. M.; Bonneton, M.; Boissin, J. C.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.


    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to "fusion for energy" will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  6. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.


    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  7. Reference commercial fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.R.; Gore, B.F.


    Currently available conceptual designs for commercial fusion power plants are for first generation plants using deuterium-tritium (D-T) fuel, and are all functionally similar. This similarity has been used as a basis for defining an envelope of D-T fusion power plant characteristics which encompasses the characteristics of the available designs. A description of this envelope, including general process descriptions, proposed materials uses and a tabulation of numerical ranges of plant parameters is presented in this document.

  8. LiWall Fusion - The New Concept of Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Zakharov


    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  9. Civilian applications of laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.


    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

  10. Controlled fusion; La fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, J.L


    During the last fifty years the researches on controlled thermonuclear fusion reached great performance in the magnetic confinement (tokamaks) as in the inertial confinement (lasers). But the state of the art is not in favor of the apparition of the fusion in the energy market before the second half of the 21 century. To explain this opinion the author presents the fusion reactions of light nuclei and the problems bound to the magnetic confinement. (A.L.B.)

  11. Indirect drive targets for fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter A.; Miles, Robin R.


    A hohlraum for an inertial confinement fusion power plant is disclosed. The hohlraum includes a generally cylindrical exterior surface, and an interior rugby ball-shaped surface. Windows over laser entrance holes at each end of the hohlraum enclose inert gas. Infrared reflectors on opposite sides of the central point reflect fusion chamber heat away from the capsule. P2 shields disposed on the infrared reflectors help assure an enhanced and more uniform x-ray bath for the fusion fuel capsule.

  12. Fusion physics

    CERN Document Server

    Lackner, Karl; Tran, Minh Quang


    This publication is a comprehensive reference for graduate students and an invaluable guide for more experienced researchers. It provides an introduction to nuclear fusion and its status and prospects, and features specialized chapters written by leaders in the field, presenting the main research and development concepts in fusion physics. It starts with an introduction to the case for the development of fusion as an energy source. Magnetic and inertial confinement are addressed. Dedicated chapters focus on the physics of confinement, the equilibrium and stability of tokamaks, diagnostics, heating and current drive by neutral beam and radiofrequency waves, and plasma–wall interactions. While the tokamak is a leading concept for the realization of fusion, other concepts (helical confinement and, in a broader sense, other magnetic and inertial configurations) are also addressed in the book. At over 1100 pages, this publication provides an unparalleled resource for fusion physicists and engineers.

  13. Suspended animation for delayed resuscitation. (United States)

    Safar, Peter J; Tisherman, Samuel A


    'Suspended animation for delayed resuscitation' is a new concept for attempting resuscitation from cardiac arrest of patients who currently (totally or temporarily) cannot be resuscitated, such as traumatic exsanguination cardiac arrest. Suspended animation means preservation of the viability of brain and organism during cardiac arrest, until restoration of stable spontaneous circulation or prolonged artificial circulation is possible. Suspended animation for exsanguination cardiac arrest of trauma victims would have to be induced within the critical first 5 min after the start of cardiac arrest no-flow, to buy time for transport and resuscitative surgery (hemostasis) performed during no-flow. Cardiac arrest is then reversed with all-out resuscitation, usually requiring cardiopulmonary bypass. Suspended animation has been explored and documented as effective in dogs in terms of long-term survival without brain damage after very prolonged cardiac arrest. In the 1990s, the Pittsburgh group achieved survival without brain damage in dogs after cardiac arrest of up to 90 min no-flow at brain (tympanic) temperature of 10 degrees C, with functionally and histologically normal brains. These studies used emergency cardiopulmonary bypass with heat exchanger or a single hypothermic saline flush into the aorta, which proved superior to pharmacologic strategies. For the large number of normovolemic sudden cardiac death victims, which currently cannot be resuscitated, more research in large animals is needed.

  14. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube (United States)

    MacPhee, A. G.; Casey, D. T.; Clark, D. S.; Felker, S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Kroll, J.; Landen, O. L.; Martinez, D. A.; Michel, P.; Milovich, J.; Moore, A.; Nikroo, A.; Rice, N.; Robey, H. F.; Smalyuk, V. A.; Stadermann, M.; Weber, C. R.


    Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ˜2 using in-flight x-ray radiography. The initial seed due to shadow imprint is estimated to be equivalent to ˜50-100 nm of solid ablator material. This discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.

  15. Development scenario for laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.A.; Hovingh, J.; Buntzen, R.R.


    This scenario proposes establishment of test and engineering facilities to (1) investigate the technological problems associated with laser fusion, (2) demonstrate fissile fuel production, and (3) demonstrate competitive electrical power production. Such facilities would be major milestones along the road to a laser-fusion power economy. The relevant engineering and economic aspects of each of these research and development facilities are discussed. Pellet design and gain predictions corresponding to the most promising laser systems are presented for each plant. The results show that laser fusion has the potential to make a significant contribution to our energy needs. Beginning in the early 1990's, this new technology could be used to produce fissile fuel, and after the turn of the century it could be used to generate electrical power.

  16. 7 CFR 1206.21 - Suspend. (United States)


    ... part thereof during a particular period of time specified in the rule. ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means to...

  17. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  18. Fusion plasmas (United States)

    Engelmann, F.


    In the following, a synthetic review of the information reported at the Conference will be given. No attempt is made to summarize specific contributions; rather the material contributed will be looked at from a few different angles. All areas of fusion plasma physics were represented: there were experimental results on magnetic confinement (tokamaks; stellarators; mirrors; reversed field pinches; field reversed configurations; Z-pinches, with emphasis on the dense Z-pinch; plasma focus, ect.) and on inertial confinement; related modelling and diagnolstics development; theory, as well as some technological activities (power generators; RF sources, etc.) and component (e.g. antennae) development for smaller fusion devices. In particular, fusion-related research in Latin America was exhaustively covered. In addition, large future projects in fusion research were summarized. (AIP)

  19. Fusion by grand catastrophe

    Energy Technology Data Exchange (ETDEWEB)

    Sahlin, H.L.


    The plasma focus, an accidentally discovered natural phenomenon, provides a pulsed power source of 10/sup 12/-10/sup 13/ watts in a variety of forms: electron bursts, ion bursts, and the stagnation and direct field heating of the snowplow. High density fusion work being conducted at Livermore with a plasma focus with maximum bank energy of 500 kJ at 40 kV is described. The primary purpose of the project is to employ the plasma focus as a pulsed power source to explore various fusion microexplosion concepts. The first exotic fuel experiments have been carried out at this facility by operating the focus on D/sub 2/+He/sup 3/ at 120 kJ and 27 kV.

  20. Fundamental processes of fuel removal by cyclotron frequency range plasmas and integral scenario for fusion application studied with carbon co-deposits

    Energy Technology Data Exchange (ETDEWEB)

    Möller, S., E-mail: [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Wauters, T. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Kreter, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Petersson, P.; Carrasco, A.G. [Fusion Plasma Physics, KTH Royal Institute of Technology, Teknikringen 31, 10044 Stockholm (Sweden)


    Plasma impact removal using radio frequency heated plasmas is a candidate method to control the co-deposit related tritium inventory in fusion devices. Plasma parameters evolve according to the balance of input power to losses (transport, radiation, collisions). Material is sputtered by the ion fluxes with impact energies defined by the plasma sheath. H{sub 2}, D{sub 2} and {sup 18}O{sub 2} plasmas are produced in the carbon limiter tokamak TEXTOR. Pre-characterised a-C:D layers are exposed to study local removal rates. The D{sub 2} plasma exhibits the highest surface release rate of 5.7 ± 0.9 ∗ 10{sup 19} D/m{sup 2}s. Compared to this the rate of the O{sub 2} plasma is 3-fold smaller due to its 11-fold lower ion flux density. Re-deposition of removed carbon is observed, indicating that pumping and ionisation are limiting the removal in TEXTOR. Presented models can explain the observations and allow tailoring removal discharges. An integral application scenario using ICWC and thermo-chemical removal is presented, allowing to remove 700 g T from a-C:DT co-deposits in 20 h with fusion compatible wall conditions using technical specifications similar to ITER.

  1. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira


    the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  2. Prospects for Tokamak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Galambos, J.


    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  3. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Suk Yong; You, Jae Jun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author).

  4. Fusion systems


    Aschbacher, Michael; Oliver, Bob


    This is a survey article on the theory of fusion systems, a relatively new area of mathematics with connections to local finite group theory, algebraic topology, and modular representation theory. We first describe the general theory and then look separately at these connections.

  5. Rippling instabilities in suspended nanoribbons (United States)

    Wang, Hailong; Upmanyu, Moneesh


    Morphology mediates the interplay between the structure and electronic transport in atomically thin nanoribbons such as graphene as the relaxation of edge stresses occurs preferentially via out-of-plane deflections. In the case of end-supported suspended nanoribbons that we study here, past experiments and computations have identified a range of equilibrium morphologies, in particular, for graphene flakes, yet a unified understanding of their relative stability remains elusive. Here, we employ atomic-scale simulations and a composite framework based on isotropic elastic plate theory to chart out the morphological stability space of suspended nanoribbons with respect to intrinsic (ribbon elasticity) and engineered (ribbon geometry) parameters, and the combination of edge and body actuation. The computations highlight a rich morphological shape space that can be naturally classified into two competing shapes, bendinglike and twistlike, depending on the distribution of ripples across the interacting edges. The linearized elastic framework yields exact solutions for these rippled shapes. For compressive edge stresses, the body strain emerges as a key variable that controls their relative stability and in extreme cases stabilizes coexisting transverse ripples. Tensile edge stresses lead to dimples within the ribbon core that decay into the edges, a feature of obvious significance for stretchable nanoelectronics. The interplay between geometry and mechanics that we report should serve as a key input for quantifying the transport along these ribbons.

  6. Review of the Inertial Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)



    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  7. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)



    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  8. Optimal control of suspended sediment distribution model of Talaga lake (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.


    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  9. Fuel flexible fuel injector (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao


    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  10. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch


    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  11. Splenogonadal Fusion

    Directory of Open Access Journals (Sweden)

    Sung-Lang Chen


    Full Text Available Splenogonadal fusion (SGF is a rare congenital non-malignant anomaly characterized by fusion of splenic tissue to the gonad, and can be continuous or discontinuous. Very few cases have been diagnosed preoperatively, and many patients who present with testicular swelling undergo unnecessary orchiectomy under the suspicion of testicular neoplasm. A 16-year-old boy presented with a left scrotal mass and underwent total excision of a 1.6-cm tumor without damaging the testis, epididymis or its accompanying vessels. Pathologic examination revealed SFG (discontinuous type. If clinically suspected before surgery, the diagnosis may be confirmed by Tc-99m sulfur colloid imaging, which shows uptake in both the spleen and accessory splenic tissue within the scrotum. Frozen section should be considered if there remains any doubt regarding the diagnosis during operation.

  12. Fusion ambassador (United States)

    Smith, Chris Llewellyn


    With his glasses and shock of thick, white hair, Chris Llewellyn Smith does not look like a superhero saving the world from peril. Yet the slim, 66-year-old physicist is seemingly becoming a potential saviour in the public eye. At least that is the reaction he says he got while recently moving house in Oxford. "I was quite surprised by my new neighbours' knowledge of energy issues when they said 'The world is relying on you to develop fusion!'."

  13. 23 Elemental Composition of Suspended Particulate Matter ...

    African Journals Online (AJOL)


    Elemental Composition of Suspended Particulate Matter Collected at Two Different. Heights above the Ground in A Sub-Urban Site in Kenya. Gitari W. M1, Kinyua A. M. 2, Kamau G. N3 and C. K. Gatebe C. K4. Abstract. Suspended particulate matter samples were collected in a sub-urban area in Nairobi over a 12 month ...

  14. Improving suspended sediment measurements by automatic samplers. (United States)

    Gettel, Melissa; Gulliver, John S; Kayhanian, Masoud; DeGroot, Gregory; Brand, Joshua; Mohseni, Omid; Erickson, Andrew J


    Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.

  15. Direct Fusion Drive for a Human Mars Orbital Mission

    Energy Technology Data Exchange (ETDEWEB)

    Paluszek, Michael [Princeton Satellite Systems; Pajer, Gary [Princeton Satellite Systems; Razin, Yosef [Princeton Satellite Systems; Slonaker, James [Princeton Satellite Systems; Cohen, Samuel [PPPL; Feder, Russ [PPPL; Griffin, Kevin [Princeton University; Walsh, Matthew [Princeton University


    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  16. Catalysed fusion

    CERN Document Server

    Farley, Francis


    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  17. Fusion cuisine

    DEFF Research Database (Denmark)

    Peters, Chris; Broersma, Marcel


    the challenge of multiplicity in journalism studies by proposing an audience-centred, functional approach to scholarship. We argue this approach encourages the creative intellectual advancements afforded by interdisciplinary experimental cooking while respecting the classical intellectual questions that helped......Journalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze...... to the outside for conceptual inspiration and methodological tools lends itself to a journalism studies that is a fusion cuisine of media, communication and related scholarship. However, what happens when this object becomes as fragmented and multifaceted as the ways we study it? This essay addresses...

  18. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S


    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  19. Hybrid indirect-drive/direct-drive target for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Lindsay John


    A hybrid indirect-drive/direct drive for inertial confinement fusion utilizing laser beams from a first direction and laser beams from a second direction including a central fusion fuel component; a first portion of a shell surrounding said central fusion fuel component, said first portion of a shell having a first thickness; a second portion of a shell surrounding said fusion fuel component, said second portion of a shell having a second thickness that is greater than said thickness of said first portion of a shell; and a hohlraum containing at least a portion of said fusion fuel component and at least a portion of said first portion of a shell; wherein said hohlraum is in a position relative to said first laser beam and to receive said first laser beam and produce X-rays that are directed to said first portion of a shell and said fusion fuel component; and wherein said fusion fuel component and said second portion of a shell are in a position relative to said second laser beam such that said second portion of a shell and said fusion fuel component receive said second laser beam.

  20. Fuel Exhaling Fuel Cell. (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam


    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  1. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus


    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  2. 9 CFR 201.81 - Suspended registrants. (United States)


    ... 201.81 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS ADMINISTRATION (PACKERS AND STOCKYARDS PROGRAMS), DEPARTMENT OF AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.81 Suspended registrants. No stockyard owner, packer, market agency, or dealer shall employ...

  3. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse


    experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  4. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    ... from the control values were found significant at 99% confidence level. Possible inhalatory problems are thus anticipated from prolonged accumulation of the dust in the respiratory system. KEY WORDS: Environmental toxicology, Suspended particulate matter, Dust analysis, Hematological indices, Wister albino rats. Bull.

  5. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    face area, shape, minerals and source) and conse- quent interaction with heavy metal concentrations. (HMCs). Recent studies have shown a growing awareness of the wider environmental significance of the suspended sediment loads transported by rivers and streams. This includes the importance of fine grain sediment in ...

  6. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    The elemental contents of suspended particulate matter (dust) samples from Maiduguri, Nigeria, were determined which showed appreciably high levels for especially Pb, Fe, Cu, Zn, K, Ca, and. Na. Wister albino rats were exposed to graded doses of phosphate buffered saline carried dust particles. The hematological ...

  7. A depth integrated model for suspended transport

    NARCIS (Netherlands)

    Galappatti, R.


    A new depth averaged model for suspended sediment transport in open channels has been developed based on an asymptotic solution to the two dimensional convection-diffusion equation in the vertical plane. The solution for the depth averaged concentration is derived from the bed boundary condition and

  8. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.


    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  9. Flow Laminarization and Acceleration by Suspended Particles

    NARCIS (Netherlands)

    Bertsch, M.; Hulshof, J.; Prostokishin, V.M.


    In [Comm. Appl. Math. Comput. Sci., 4(2009), pp. 153-175], Barenblatt presents a model for partial laminarization and acceleration of shear flows by the presence of suspended particles of different sizes, and provides a formal asymptotic analysis of the resulting velocity equation. In the present

  10. Emulsifying and Suspending Properties of Enterolobium ...

    African Journals Online (AJOL)

    Background:The thermodynamic instability of emulsions and suspensions necessitate the incorporation of emulsifiers and suspending agents respectively, in order to stabilize the formulations and ensure administration of accurate doses. Objective:Enterolobium cyclocarpum gum was characterized and evaluated for its ...

  11. Advanced Fusion Reactors for Space Propulsion and Power Systems (United States)

    Chapman, John J.


    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  12. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.; Dixon, T.; Bull, D.; Canagarajah, N.


    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much

  13. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.J.; Dixon, T.D.; Bull, D.R.; Canagarajah, C.N.


    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much

  14. Design studies of innovatively small fusion reactor based on biomass-fusion hybrid concept: GNOME

    Energy Technology Data Exchange (ETDEWEB)

    Ibano, K., E-mail: [Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto 611-0011 (Japan); Utoh, H.; Tobita, K. [Japan Atomic Energy Agency, Naka-shi, Ibaraki 311-0193 (Japan); Yamamoto, Y.; Konishi, S. [Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto 611-0011 (Japan)


    Conceptual design of an innovatively small tokamak reactor 'GNOME' based on a non-fission biomass-fusion hybrid concept is proposed. This fusion plant concept intends to use high-temperature heat from the blanket to generate hydrogen or synthetic fuels out of waste biomass. Since energy multiplication is expected by utilizing chemical energy of biomass, the requirement for the fusion plasma for net plant energy output is reduced to Q {>=} 5. As a result, the GNOME reactor has been designed to produce 320 MW fusion power with a 5.2 m major radius, 3.1 normalized beta and 11 T maximum field. This relatively small maximum field can be achieved by using Nb{sub 3}Sn superconducting magnets. Besides, this reactor allows 3.0 m diameter space for its center solenoid coil and requires 60 MW of the input power. These features require minimal technical extensions from ITER.

  15. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications (United States)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin


    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  16. Energy content of suspended detritus from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Sumitra-Vijayaraghavan; Royan, J.P.

    Energy components of suspended matter included phytoplankton, zooplankton and detritus inclusive of microorganisms adsorbed to detritus. Of these, detritus contributed most of the energy (98%). The average caloric content of suspended detritus...

  17. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan


    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  18. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.; Gromada, R.J.; McCarville, T.J.; Moir, R.W.; Lee, J.D.; Bandini, B.R.; Fulton, F.J.; Wong, C.P.C.; Maya, I.; Hoot, C.G.; Schultz, K.R.; Miller, L.G.; Beeston, J.M.; Harris, B.L.; Westman, R.A.; Ghoniem, N.M.; Orient, G.; Wolfer, M.; DeVan, J.H.; Torterelli, P.


    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future.

  19. EDITORIAL: Safety aspects of fusion power plants (United States)

    Kolbasov, B. N.


    neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.

  20. A semi-analytic model of magnetized liner inertial fusion

    CERN Document Server

    McBride, Ryan D


    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized alpha-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original Ma...

  1. Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation. (United States)

    Hodges, Alan; Fica, Zachary; Wanlass, Jordan; VanDarlin, Jessica; Sims, Ronald


    Wastewater derived from petroleum refining currently accounts for 33.6 million barrels per day globally. Few wastewater treatment strategies exist to produce value-added products from petroleum refining wastewater. In this study, mixed culture microalgal biofilm-based treatment of petroleum refining wastewater using rotating algae biofilm reactors (RABRs) was compared with suspended-growth open pond lagoon reactors for removal of nutrients and suspended solids. Triplicate reactors were operated for 12 weeks and were continuously fed with petroleum refining wastewater. Effluent wastewater was monitored for nitrogen, phosphorus, total suspended solids (TSS), and chemical oxygen demand (COD). RABR treatment demonstrated a statistically significant increase in removal of nutrients and suspended solids, and increase in biomass productivity, compared to the open pond lagoon treatment. These trends translate to a greater potential for the production of biomass-based fuels, feed, and fertilizer as value-added products. This study is the first demonstration of the cultivation of mixed culture biofilm microalgae on petroleum refining wastewater for the dual purposes of treatment and biomass production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Converting energy from fusion into useful forms

    CERN Document Server

    Kovari, M; Jenkins, I; Kiely, C


    If fusion power reactors are to be feasible, it will still be necessary to convert the energy of the nuclear reaction into usable form. The heat produced will be removed from the reactor core by a primary coolant, which might be water, helium, molten lithium-lead, molten lithium-containing salt, or CO2. The heat could then be transferred to a conventional Rankine cycle or Brayton (gas turbine) cycle. Alternatively it could be used for thermochemical processes such as producing hydrogen or other transport fuels. Fusion presents new problems because of the high energy neutrons released. These affect the selection of materials and the operating temperature, ultimately determining the choice of coolant and working cycle. The limited temperature ranges allowed by present day irradiated structural materials, combined with the large internal power demand of the plant, will limit the overall thermal efficiency. The operating conditions of the fusion power source, the materials, coolant, and energy conversion system w...

  3. Estimating total suspended sediment yield with probability sampling (United States)

    Robert B. Thomas


    The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...

  4. Fossil fuels -- future fuels

    Energy Technology Data Exchange (ETDEWEB)



    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  5. Optomechanics for thermal characterization of suspended graphene (United States)

    Dolleman, Robin J.; Houri, Samer; Davidovikj, Dejan; Cartamil-Bueno, Santiago J.; Blanter, Yaroslav M.; van der Zant, Herre S. J.; Steeneken, Peter G.


    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time τ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled τ , a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.

  6. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E.; Okrent, D.


    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible.

  7. Estimation of Total Fusion Reactivity and Contribution from Suprathermal Tail using 3-parameter Dagum Ion Speed Distribution

    CERN Document Server

    Majumdar, Rudrodip


    Thermonuclear fusion reactivity is a pivotal quantity in the studies pertaining to fusion energy production, fusion ignition and energy break-even analysis in both inertially and magnetically confined systems. Although nuclear fusion reactivity and thereafter the power density of a magnetic confinement fusion reactor and the fulfillment of the ignition criterion are quantitatively determined by assuming the ion speed distribution to be Maxwellian, a significant population of suprathermal ions,with energy greater than the quasi-Maxwellian background plasma temperature, is generated by the fusion reactions and auxiliary heating in the fusion devices. In the current work 3-parameter Dagum speed distribution has been introduced to include the effect of suprathermal ion population in the calculation of total fusion reactivity. The extent of enhancement in the fusion reactivity, at different back-ground temperatures of the fusion fuel plasma, due to the suprathermal ion population has also been discussed.

  8. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera


    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  9. Suspended sediments limit coral sperm availability (United States)

    Ricardo, Gerard F.; Jones, Ross J.; Clode, Peta L.; Humanes, Adriana; Negri, Andrew P.


    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L−1), with 2–37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water’s surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water’s surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment. PMID:26659008

  10. Recent contributions to fusion reactor design and technology development

    Energy Technology Data Exchange (ETDEWEB)


    The report contains a collection of 16 recent fusion technology papers on the STARFIRE Project, the study of alternate fusion fuel cycles, a maintainability study, magnet safety, neutral beam power supplies and pulsed superconducting magnets and energy transfer. This collection of papers contains contributions for Argonne National Laboratory, McDonnell Douglas Astronautics Company, General Atomic Company, The Ralph M. Parsons Company, the University of Illinois, and the University of Wisconsin. Separate abstracts are presented for each paper. (MOW)

  11. The Role of Fusion in the Future World Energy Market (United States)

    Sheffield, John


    The energy world, in which fusion energy must compete, has changed in recent years with the prospect of a 40-year supply of low-cost oil and gas. This cheap fuel represents a one-time opportunity for developing countries to raise their standards of living, and if historical trends continue, lower their rate of population growth. This brief opportunity for cheap fossil-fuel and the similar 40-year period to commercialize fusion are transients when viewed against the time scale of civilization. We need to develop and deploy the long-term energy sources, such as fusion (fission and 'renewables'), and in all cases improve energy efficiency before the fossil fuels rise in cost and a large fraction of a burgeoning world population is condemned to permanent poverty.

  12. High-gain volume ignition for inertial confinement fusion (ICF)

    Energy Technology Data Exchange (ETDEWEB)

    Hora, H. [University of New South Wales, Kensington 2033 (Australia); Eliezer, S. [University of New South Wales, Kensington 2033 (Australia)]|[SOREQ Nuclear Research Centre, Yavne (Israel); Martinez-Val, J.M. [University of New South Wales, Kensington 2033 (Australia)]|[Instituto de Fusion Nuclear, ETSI Industriales, Madrid (Spain); Miley, G.H. [University of New South Wales, Kensington 2033 (Australia)]|[Fusion Studies Laboratory, University of Illinois, Urbana, Illinois (United States)


    Since 1976, volume ignition calculations of pellet-fueled inertial confinement fusion have shown very high fusion gains due to the strong temperature increases caused by self-heating. This phenomenon was first reported in 1978 (Hora & Ray) and subsequently named the ``Wheeler modes.`` The very low optimum initial temperatures ({approx}1 keV) and the fuel burn of up to 80% permit gains of {gt}100, for compression of D-T to 2000--10,000 times the solid state for total input driver energy of a few MJ per pulse. The simple, smooth density and temperature profiles---unlike those of spark ignition---indicate it may be a faster and easier route to pellet fueling for a fusion power reactor capable of low-cost energy production. {copyright} 1994 {ital American} {ital Institute} {ital of} {ital Physics}

  13. Maximizing the stability of pyrolysis oil/diesel fuel emulsions (United States)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  14. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)



    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  15. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, P.


    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  16. Overview of safety and environmental issues for inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Piet, S.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Brereton, S.J. [Lawrence Livermore National Lab., CA (United States); Tanaka, S. [Univ. of Tokyo (Japan)] [and others


    This paper summarizes safety and environmental issues of Inertial Fusion Energy (IFE): inventories, effluents, maintenance, accident safety, waste management, and recycling. The fusion confinement approach among inertial and magnetic options affects how the fusion reaction is maintained and which materials surround the reaction chamber. The target fill technology has a major impact on the target factory tritium inventory. IFE fusion reaction chambers usually employ some means to protect the first structural wall from fusion pulses. This protective fluid or granular bed also moderates and absorbs most neutrons before they reach the first structural wall. Although the protective fluid activates, most candidate fluids have low activation hazard. Hands-on maintenance seems practical for the driver, target factory, and secondary coolant systems; remote maintenance is likely required for the reaction chamber, primary coolant, and vacuum exhaust cleanup systems. The driver and fuel target facility are well separated from the main reaction chamber.

  17. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket (United States)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael


    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  18. Fusion energy: the agony, the ecstacy and the alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J. [Lawrence Livermore National Lab., CA (United States)


    The desirability of achieving commercially viable fusion power generations is argued on environmental, fuel availability and radioactive waste management grounds. The author describes some of the technical aspects of the two main types of device being used to aim for fusion ignition, tokamaks and stellerators, giving brief details of current and future research initiative based on each type of device. He argues for continued diversity in research methods as a safety catch-all to ensure no possible options for commercial fusion power are missed. (UK).

  19. Fusion: from sacred cow to white elephant

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, J.


    Controlled thermonuclear fusion has the potential to supply lots of relatively cheap power relatively cheaply. It is also renewable and has public support. Because of this potential, fusion has been able to attract huge research funds. The four main research programmes, in Europe, USA, Japan and Russia, include cooperation on the International Thermonuclear Experimental Reactor, ITER. The siting of this reactor will be decided in 1998 and it is due to start operation in 2010. It should lead to a demonstration reactor, DEMO, after which a prototype commercial reactor is envisaged for 2030-2050. But this is too far away to solve some of the immediate energy problems such as carbon dioxide emissions and global warming. So even if the technical problems are solved, fusion may not be the wonder energy source when it finally arrives; the trend is away from centralised, high cost, high output generation. Fusion research has taken interest and money away from other alternatives such as tidal energy, fuel cells and photovoltaic cells. Photovoltaics in particular look more feasible than fusion and could be in place far sooner, but lack the funding for research. (UK).

  20. Maximum Likelihood Fusion Model (United States)


    Symposium of Robotics Re- search. Sienna, Italy: Springer, 2003. [12] D. Hall and J. Llinas, “An introduction to multisensor data fusion ,” Proceed- ings of...a data fusion approach for combining Gaussian metric models of an environment constructed by multiple agents that operate outside of a global... data fusion , hypothesis testing,maximum likelihood estimation, mobile robot navigation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  1. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J


    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  2. Filter Bank Fusion Frames


    Chebira, Amina; Fickus, Matthew; Mixon, Dustin G.


    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using ...

  3. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru


    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  4. Magnetic-confinement fusion (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.


    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  5. Minimally invasive lumbar fusion. (United States)

    Foley, Kevin T; Holly, Langston T; Schwender, James D


    Review article. To provide an overview of current techniques for minimally invasive lumbar fusion. Minimally invasive techniques have revolutionized the management of pathologic conditions in various surgical disciplines. Although these same principles have been used in the treatment of lumbar disc disease for many years, minimally invasive lumbar fusion procedures have only recently been developed. The goals of these procedures are to reduce the approach-related morbidity associated with traditional lumbar fusion, yet allow the surgery to be performed in an effective and safe manner. The authors' clinical experience with minimally invasive lumbar fusion was reviewed, and the pertinent literature was surveyed. Minimally invasive approaches have been developed for common lumbar procedures such as anterior and posterior interbody fusion, posterolateral onlay fusion, and internal fixation. As with all new surgical techniques, minimally invasive lumbar fusion has a learning curve. As well, there are benefits and disadvantages associated with each technique. However, because these techniques are new and evolving, evidence to support their potential benefits is largely anecdotal. Additionally, there are few long-term studies to document clinical outcomes. Preliminary clinical results suggest that minimally invasive lumbar fusion will have a beneficial impact on the care of patients with spinal disorders. Outcome studies with long-term follow-up will be necessary to validate its success and allow minimally invasive lumbar fusion to become more widely accepted.

  6. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.


    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  7. Conceptual Design of Low Fusion Power Hybrid System for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)


    DRUP (Direct Reuse of Used PWR) fuel has same process with DUPIC (Direct Use of spent PWR fuel Into CANDU reactor). There are 2 big benefits by using DRUP fuel in Hybrid system. One is fissile production during operating period. Required power is decreased by fissile production from DRUP fuel. When the fusion power is reduced, integrity of structure materials is not significantly weakened due to reduction of 14.1MeV high energy neutrons. In addition, required amount of tritium for self-sufficiency TBR (Tritium Breeding Ratio ≥ 1.1) is decreased. Therefore, it is possible to further loading the SNF as much as the amount of lithium decreased. It is effective in transmutation. The other one is that DRUP fuel is also SNF. Therefore, using DRUP fuel is reusing of SNF, as a result it makes reduction of SNF from PWR. However, thermal neutron system is suitable for using DRUP fuel compared to fast neutron system. Therefore, transmutation zone designed (U-TRU)Zr fuel and fissile production zone designed DRUP fuel are separated in this study. In this paper, using DRUP fuel for low fusion power in hybrid system is suggested. Fusion power is decreased by using DRUP fuel. As a result, TBR is satisfied design condition despite of using natural lithium. In addition, not only (U-TRU)Zr fuel but also DRUP fuel are transmuted.

  8. Identification of cancer fusion drivers using network fusion centrality


    Wu, Chia-Chin; Kannan, Kalpana; Lin, Steven; Yen, Laising; Milosavljevic, Aleksandar


    Summary: Gene fusions are being discovered at an increasing rate using massively parallel sequencing technologies. Prioritization of cancer fusion drivers for validation cannot be performed using traditional single-gene based methods because fusions involve portions of two partner genes. To address this problem, we propose a novel network analysis method called fusion centrality that is specifically tailored for prioritizing gene fusions. We first propose a domain-based fusion model built on ...

  9. Monitoring of suspended sediment in South Tyrol (United States)

    Nadalet, Rudi; Dinale, Roberto; Pernter, Martin; Maraldo, Luca; Peterlin, Dieter; Richter, Arnold; Comiti, Francesco


    In the context of the EU Water Framework Directive (WFD), which aims to achieve a good status of European water bodies, the Hydrographic Office of the Autonomous Province of Bolzano (Italy) extended in 2014 its institutional activities including the monitoring of suspended sediment in the river channel network. Currently, the only active monitoring station is on the Adige River at the gauging station of Ponte Adige near Bolzano (drainage area 2705 km2). The applied monitoring strategy and the data analysis concept are both based on the guidelines issued by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW). The results indicates that the temporal variability strongly differs during the investigated period (2014-2015). In addition to the analysis of precipitation and water discharge, temperature and lightning activity were also included to better understand the sediment transport dynamics observed at the station. In summer 2015, the combination of constantly high daily temperature throughout the Adige basin (which drove intense glacier melting in the headwaters) with a high frequency of convective rainfall events (90% more than in 2014, obtained through lightning detection), led to an annual mass of transported suspended sediment of 260000 t. Interestingly, this value is similar to the one estimated for 2014 (300000 t), which was characterized by very different meteorological conditions (colder and wetter summer), but with the occurrence of an important flood in August, which transported half of the annual amount. Finally, we can conclude that the adopted monitoring strategy is applicable for institutional aims in terms of costs as well as in terms of time effort. During the next years, other stations for suspended sediment monitoring are planned to be installed in the Province to cover the most important river segments.

  10. Active noise cancellation in a suspended interferometer

    CERN Document Server

    Driggers, Jennifer C; Pepper, Keenan; Adhikari, Rana


    We demonstrate feed-forward vibration isolation on a suspended Fabry-Perot interferometer using Wiener filtering and a variant of the common Least Mean Square (LMS) adaptive filter algorithm. We compare the experimental results with theoretical estimates of the cancellation efficiency. Using data from the recent LIGO Science Run, we also estimate the impact of this technique on full scale gravitational wave interferometers. In the future, we expect to use this technique to also remove acoustic, magnetic, and gravitational noise perturbations from the LIGO interferometers. This noise cancellation technique is simple enough to implement in standard laboratory environments and can be used to improve SNR for a variety of high precision experiments.

  11. Geodetic monitoring of suspended particles in rivers (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan


    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  12. Safety Harness For Work Under Suspended Load (United States)

    Sunoo, Su Young


    Safety device protects worker under suspended engine or other heavy load. Mechanically linked with load so if load should fall, worker yanked safely away. Worker wears chest-plate vest with straps crossing eye on back. Lower safety cable connected to eye extends horizontally away from worker to nearby wall, wrapped on pulley and extends upward to motion amplifier or reducer. Safety cables transform any sudden downward motion of overhanging load into rapid sideways motion of worker. Net catches worker, preventing worker from bumping against wall.

  13. Cell fusion and nuclear fusion in plants. (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya


    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Definition of Ignition in Inertial Confinement Fusion (United States)

    Christopherson, A. R.; Betti, R.


    Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =EαEα 2Ehs 2Ehs (a measurable quantity), it appears possible not only to define ignition but also to measure the onset of ignition by the experimental inference of the fractional alpha energy and yield amplification. This material is based upon work supported by the Department of Energy Office of Fusion Energy Services under Award Number DE-FC02-04ER54789 and National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Fusion helps diversification

    NARCIS (Netherlands)

    Liang, S.; Ren, Z.; de Rijke, M.


    A popular strategy for search result diversification is to first retrieve a set of documents utilizing a standard retrieval method and then rerank the results. We adopt a different perspective on the problem, based on data fusion. Starting from the hypothesis that data fusion can improve performance

  16. Controlled Nuclear Fusion. (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  17. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis


    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  18. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr


    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  19. Fusion of biological membranes

    Indian Academy of Sciences (India)

    The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent ...

  20. Fusion Science Education Outreach (United States)

    Danielson, C. A.; DIII-D Education Group


    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  1. Controlled thermonuclear fusion; La fusion thermonucleaire controlee

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, Jean-Louis


    This book presents, first, the basic nuclear physics and plasma physics principles at the origin of the researches on nuclear fusion which started in the 1950's. Then the magnetic and inertial confinement principles are described with their corresponding facilities: the tokamaks and the laser-induced inertial confinement fusion devices. After a brief outline of some exotic processes, the book describes some projects of thermonuclear power plants capable to supply electricity by the end of the 21. century. (J.S.)

  2. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva


    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  3. Elastic properties of suspended multilayer WSe2 (United States)

    Zhang, Rui; Koutsos, Vasileios; Cheung, Rebecca


    We report the experimental determination of the elastic properties of suspended multilayer WSe2, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe2 membranes have been fabricated by mechanical exfoliation of bulk WSe2 and transfer of the exfoliated multilayer WSe2 flakes onto SiO2/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe2 membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe2 has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe2 (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS2 and WS2. Moreover, the multilayer WSe2 can endure ˜12.4 GPa stress and ˜7.3% strain without fracture or mechanical degradation. The 2D WSe2 can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  4. Method for forming suspended micromechanical structures (United States)

    Fleming, James G.


    A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.

  5. The fusion-supported decentralized nuclear energy system (United States)

    Jassby, D. L.


    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. The smallest reactors could be deployed as “nuclear batteries,” kept in the equivalent of spent-fuel shipping casks and returned to nuclear fuel centers for refueling. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors.

  6. Environmentally-suspended sediment production of the Nasia River ...

    African Journals Online (AJOL)

    The study assessed the level of suspended sediment produced in the Nasia River Basin. Hydrological and meteorological data and water samples were used for the study. Average suspended sediment yield (33 years) in the basin was 19.90 t/km2/yr. With mean annual runoff of 439.13m3/s, 322.43 t/yr suspended sediment ...

  7. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.


    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  8. Suspended sediment yield in Texas watersheds (United States)

    Coonrod, Julia Ellen Allred

    The Texas Water Development Board collected suspended sediment samples across the state of Texas for approximately 60 years. Until this research, no comprehensive analysis of the data had been conducted. This study compiles the suspended sediment data along with corresponding streamflow and rainfall. GIS programs are developed which characterize watersheds corresponding to the sediment gauging stations. The watersheds are characterized according to topography, climate, soils, and land use. All of the data is combined to form several SAS data sets which can subsequently be analyzed using regression. Annual data for all of the stations across the state are classified temporally and spatially to determine trends in the sediment yield. In general, the suspended sediment load increases with increasing runoff but no correlation exists with rainfall. However, the annual average rainfall can be used to classify the watersheds according to climate, which improves the correlation between sediment load and runoff. The watersheds with no dams have higher sediment loads than watersheds with dams. Dams in the drier parts of Texas reduce the sediment load more than dams in the wetter part of the state. Sediment rating curves are developed separately for each basin in Texas. All but one of the curves fall into a band which varies by about two orders of magnitude. The study analyzes daily time series data for the Lavaca River near Edna station. USGS data are used to improve the sediment rating curve by the addition of physically related variables and interaction terms. The model can explain an additional 41% of the variability in sediment concentration compared to a simple bivariate regression of sediment load and flow. The TWDB daily data for the Lavaca River near Edna station are used to quantify temporal trends. There is a high correlation between sediment load and flowrate for the Lavaca River. The correlation can be improved by considering a flow-squared term and by

  9. Fusion Breeding for Sustainable, Mid Century, Carbon Free Power (United States)

    Manheimer, Wallace


    If ITER achieves Q ~10, it is still very far from useful fusion. The fusion power, and the driver power will allow only a small amount of power to be delivered, power producers. Considering the status of other magnetic fusion concepts, it is also very unlikely that any alternate concept will either. Laser fusion does not seem to be constrained by any conservative design rules, but considering the failure of NIF to achhieve ignition, at this point it has many more obstacles to overcome than magnetic fusion. One way out of this dilemma is to use an ITER size tokamak, or a NIF size laser, as a fuel breeder for searate nuclear reactors. Hence ITER and NIF become ends in themselves, instead of steps to who knows what DEMO decades later. Such a tokamak can easily live within the consrtaints of conservative design rules. This has led the author to propose ``The Energy Park'' a sustainable, carbon free, economical, and environmently viable power source without prolifertion risk. It is one fusion breeder fuels 5 conventional nuclear reactors, and one fast neutron reactor burns the actinide wastes.

  10. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian


    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  11. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea


    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  12. Review of heavy-ion inertial fusion physics

    Directory of Open Access Journals (Sweden)

    S. Kawata


    Full Text Available In this review paper on heavy ion inertial fusion (HIF, the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ∼30%–40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ∼50–70 to operate a HIF fusion reactor with the standard energy output of 1 GW of electricity. The HIF reactor operation frequency would be ∼10–15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range is defined by the HIB ions stopping length, which would be ∼1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. One of the critical issues in inertial fusion would be a spherically uniform target compression, which would be degraded by a non-uniform implosion. The implosion non-uniformity would be introduced by the Rayleigh-Taylor (R-T instability, and the large density-gradient-scale length helps to reduce the R-T growth rate. On the other hand, the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature: normally about 300 eV or so is realized in the energy absorption region, and that a direct-drive target would be appropriate in HIF. In

  13. Design consideration for magnetically suspended flywheel systems (United States)

    Anand, D.; Kirk, J. A.; Frommer, D. A.


    Consideration is given to the design, fabrication, and testing of a magnetically suspended flywheel system for energy storage applications in space. The device is the prototype of a system combining passive suspension of the flywheel plate by samarium cobalt magnets and active control in the radial direction using eight separate magnetic coils. The bearing assembly was machined from a nickel-iron alloy, and the machine parts are all hydrogen annealed. Slots in the magnetic plate allow four independent quadrants for control. The motor/generator component of the system is a brushless dc-permanent magnetic/ironless engine using electronic communication. The system has been tested at over 2500 rpm with satisfactory results. The system characteristics of the flywheel for application in low earth orbit (LEO) are given in a table.

  14. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood


    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  15. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.


    We report a fabrication method, which uses standard UV-lithography to pattern the catalyst for the chemical vapour deposition(CVD) of suspended double clamped single walled carbon nanotubes. By using an aqueous solution of Fe(NO3)3 the patterning of the catalyst material onto microelectrodes can...... be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...

  16. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.


    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  17. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.


    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  18. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.


    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  19. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  20. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    effects on the fusion excitation function. However, a simultaneous analysis of the fusion, elastic and quasi-elastic channels would fix the structure and the reaction unambiguously. Keywords. Heavy ion fusion; fusion barrier distributions; nuclear structure; coupled reaction chan- nel calculations. PACS Nos 25.70.Bc; 25.70.

  1. Fusion Revisits CERN

    CERN Multimedia


    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  2. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M


    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  3. Spinal fusion - slideshow (United States)

    ... ency/presentations/100121.htm Spinal fusion - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  4. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik


    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  5. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D


    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  6. The ITER project - the road to fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Jennifer; Spears, Bill


    Commercial fusion power promises safe, CO2-free, environmentally benign, large-scale energy production, with abundant and widely available fuels. Fusion researchers are ready to take the next step towards this goal, with the construction of ITER, which should demonstrate the technical and scientific feasibility of fusion power production. The signing, by seven Parties representing more than half of humanity, of the ITER Joint Implementation Agreement on 21 November 2006, established the ITER Organization (pending ratification by some of the ITER Parties), and opens the way to the construction phase of the project. This paper describes the history of the project, its objectives, schedule and organization, and its place on the road to the realisation of commercial fusion power. (auth)

  7. What is Binocular Fusion?

    Directory of Open Access Journals (Sweden)

    Stuart Wallis


    Full Text Available When images in the two eyes are sufficiently similar, they are ‘fused’. Fusion has motor (vergence and sensory components. When vergence is prevented, sensory ‘fusion’ of disparate images still occurs, but the nature of this fusion has received curiously little attention. Summation of signals from the two eyes is fairly well understood and seems the obvious basis for fusion. But summation of disparate edges should cause the fused edge to appear more blurred. We tested this by studying the perceived blur of single edges with vertical disparities that spanned fusion and diplopia. Single, horizontal, Gaussian-blurred edges (blur, B=1.6 to 40 minarc were presented to each eye at various disparities (0 to 4B, or were added together in the same eye (monoptic control. Perceived blur was measured by blur-matching, using a two-interval forced-choice method. In monoptic conditions, matched blur increased with disparity in the fusional range (0 to 2B as expected. But, surprisingly, when the two edges were in different eyes (dichoptic, matched blur remained almost constant and did not increase with disparity. This shows that fusion preserves the sharpness or blur of each eye's image, and that fusion cannot easily be explained by summation or arithmetic averaging of spatial signals across the eyes. We show that fusion of this kind occurs if (a each monocular signal is the spatial derivative (gradient profile of the input edge, and (b binocular combination is the contrast-weighted geometric mean of these signals. This achieves positional averaging (‘allelotropia’ without blurring or smearing.

  8. Reconstituted Fusion Pore


    Jeremic, Aleksandar; Kelly, Marie; Cho, Sang-Joon; Stromer, Marvin H.; Jena, Bhanu P.


    Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the por...

  9. Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations (United States)

    Ramakrishnan, Ratheesh; Rajawat, A. S.


    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are realized with respect to the sediment size distribution and the bottom bed materials observed in the Gulf. Simulated SSCs are compared with alternate OCM derived SSC. The results are observed to be impetus where the model is able to generate the spatial dynamics of the sediment concentrations. Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. Tidal range is observed as the important physical factor controlling the deposition and resuspension of sediments within the Gulf. From the simulation studies; maximum residual current velocities, tidal fronts and high turbulent zones are found to characterise the islands and shoals within the Gulf, which results in high sediment concentrations in those regions. Remarkable variability in the bathymetry of the Gulf, different bed materials and varying tidal conditions induces several circulation patterns and turbulence creating the unique suspended sediment concentration pattern in the Gulf.

  10. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    An empirical equation that can be used for estimating the suspended sediment yields of river drainage basins without sediment data has been established for basins in the sub-tropical forest Southwestern river basin system of Ghana. The power law equation relates mean annual specific suspended sediment yield (t km-2 ...

  11. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud. Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are ...

  12. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  13. A wave-resolving model for nearshore suspended sediment transport (United States)

    Ma, Gangfeng; Chou, Yi-Ju; Shi, Fengyan


    This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.

  14. Evaluation of the suspending properties of Cola acuminata gum on ...

    African Journals Online (AJOL)

    Many natural gums are employed as suspending agents in the formulation of pharmaceutical suspensions. The search to develop locally available natural gum from apparently a waste product as an alternative suspending agent stimulated the interest in this present study. Cola acuminata gum (CAG) extracted from Cola ...

  15. 40 CFR 230.21 - Suspended particulates/turbidity. (United States)


    ... time. These new levels may reduce light penetration and lower the rate of photosynthesis and the... suspended particulates persist. The biological and the chemical content of the suspended material may react with the dissolved oxygen in the water, which can result in oxygen depletion. Toxic metals and organics...

  16. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are ...

  17. Evaluation of the suspending property of grewia gum in ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in sulphadimidine suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for sulphadimidine. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  18. Evaluation of the suspending properties of Adansonia digitata gum ...

    African Journals Online (AJOL)

    Sedimentation volume and rate, rheology, and ease of redispersion were employed as evaluation parameters. The results showed that both hot and cold water extracts of the gum used at 2-3 % w/v produced a better suspending property than 4 % w/v Compound Tragacanth gum. The suspending ability of the gums was in ...

  19. Evaluation of the Suspending Property of Grewia Gum in ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in metronidazole suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for metronidazole. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  20. Nuclear fuel management in JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Naka, Michihiro; Miyazawa, Masataka; Sato, Hiroshi; Nakayama, Fusao; Ito, Haruhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment


    The Japan Materials Testing Reactor (JMTR) is the largest scale materials (author)ted the fission gas release compared with the steady state opkW/l in Japan. JMTR as a multi-purpose reactor has been contributing to research and development on nuclear field with a wide variety of irradiation for performing engineering tests and safety research on fuel and component for light water reactor as well as fast breeder reactor, high temperature gas-cooled reactor etc., for research and development on blanket material for fusion reactor, for fundamental research, and for radio-isotope (RI) production. The driver nuclear fuel used in JMTR is aluminum based MTR type fuel. According to the Reduced Enrichment for Research and Test Reactors (RERTR) Program, the JMTR fuel elements had been converted from 93% high enriched uranium (HEU) fuel to 45% medium enriched uranium (MEU) fuel in 1986, and then to 20% low enriched uranium (LEU) fuel in 1994. The cumulative operation cycles until March 1999 reached to 127 cycles since the first criticality in 1968. JMTR has used 1,628 HEU, 688 MEU and 308 LEU fuel elements for these operation cycles. After these spent fuel elements were cooled in the JMTR water canal more than one year after discharged from the JMTR core, they had been transported to reprocessing plants in Europe, and then to plants in USA in order to extract the uranium remaining in the spent fuel. The JMTR spent fuel transportation for reprocessing had been continued until the end of 1988. However, USA had ceased spent fuel reprocessing in 1989, while USDOE committed to prepare an environmental review of the impacts of accepting spent fuels from foreign research reactors. After that, USDOE decided to implement a new acceptance policy in 1996, the spent fuel transportation from JMTR to Savannah River Site was commenced in 1997. It was the first transportation not only in Japan but in Asia also. Until resuming the transportation, the spent fuel elements stored in JMTR

  1. Management of waste from the International Thermonuclear Experimental Reactor and from future fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. [Association EURATOM, Nykoeping (Sweden); Lindberg, M. [Association EURATOM, Nykoeping (Sweden); Nisan, S. [The NET Team, Garching (Germany); Rocco, P. [European Commission, Institute for Advanced Materials, Joint Research Centre, Ispra (Vatican City State, Holy See) (Italy); Zucchetti, M. [Energetics Department, Polytechnic of Turin, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Taylor, N. [Association EURATOM-UKAEA, UKAEA Fusion, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Forty, C. [Association EURATOM-UKAEA, UKAEA Fusion, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)


    An important inherent advantage of fusion would be the total absence of high-level radioactive spent fuel as produced in fission reactors. Fusion will, however, produce activated material containing both activation products and tritium. Part of the material may also contain chemically toxic substances. This paper describes methods that could be used to manage these materials and also methods to reduce or entirely eliminate the waste quantities. The results are based on studies for the International Thermonuclear Experimental Reactor and also for future fusion power station designs currently under investigation within the European programme on the safety and environmental assessment of fusion power, long-term. (orig.)

  2. Thermonuclear plasma physic: inertial confinement fusion; Physique des plasmas thermonucleaires: la fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Ch.; Juraszek, D


    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  3. Exploring a unique vision for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    LOGAN, B.G.; Logan, B.G.


    A quest for more efficient beam-to-fuel energy coupling via polar direct drive (30% overall), to enable: (1) Self-T-breeding, self-neutron-energy-absorbing, large {pi}r, T-Lean targets {at} < 4 MJ driver energies; (2) Efficient fusion energy coupling into plasma for direct MHD conversion with moderate yields < 1 GJ; (3) Balance-of-plant costs 10X lower than steam cycle (e.g., < 80 $/kWe instead of 800 $/kWe); (4) CoE low enough (<3 cts/kWehr) for affordable water and H{sub 2} fuel for 10 B people on a hot planet; and (5) Enough fissile fuel production for 38 LWR's per GW{sub fusion} if uranium gets too expensive meantime.

  4. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F


    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  5. Commercial objectives, technology transfer, and systems analysis for fusion power development (United States)

    Dean, Stephen O.


    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  6. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.


    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  7. Fuels and Lubricants for Aircraft (United States)


    combustion (oxidation of combustible elements); 40.. Recombination of atoms; 41. Interaction of elementary particles; 42. Nuclear fuel; 43. Chemical...hydrocarbons, tars, etc. A significant content of aroma - tic hydrocarbons in this case promotes overheating, buckling, and burnout of the fire tube walls...the fission and fusion of atomic nuclei is deter- mined by the difference in the packing energies of the elementary particles - protons and neutrons

  8. Diffusion processes in freely suspended smectic films (United States)

    Śliwa, I.; Zakharov, A. V.


    A molecular model describing translational diffusion in freely suspended smectic films (FSSFs) in air is proposed. This model is based on the random walk theory and allows calculation of the translational diffusion coefficient (TDC) across smectic layers (along the director). All values necessary for calculating the TDC are obtained within the generalized mean-field model considering not only anisotropic interactions between nearest neighbors of molecules forming FSSFs, but also the stabilizing effect of the smectic/air interface. The spatial inhomogeneity of order parameters over the FSSF section, arising in this case, results in the fact that the surface tension at the smectic/air interface not only suppresses thermal fluctuations in surface layers, but also completely suppresses translational diffusion of molecules from the FSSF to air. The results of calculations of dimensional translational diffusion in the bulk of the FSSF formed by 5- n-alkyl-2-(4- n-(perfluoroalkyl-metyleneoxy))pentyl molecules during its thinning show that the TDC monotonically increases as the smectic film is thinned.

  9. Identification of cancer fusion drivers using network fusion centrality (United States)

    Wu, Chia-Chin; Kannan, Kalpana; Lin, Steven; Yen, Laising; Milosavljevic, Aleksandar


    Summary: Gene fusions are being discovered at an increasing rate using massively parallel sequencing technologies. Prioritization of cancer fusion drivers for validation cannot be performed using traditional single-gene based methods because fusions involve portions of two partner genes. To address this problem, we propose a novel network analysis method called fusion centrality that is specifically tailored for prioritizing gene fusions. We first propose a domain-based fusion model built on the theory of exon/domain shuffling. The model leads to a hypothesis that a fusion is more likely to be an oncogenic driver if its partner genes act like hubs in a network because the fusion mutation can deregulate normal functions of many other genes and their pathways. The hypothesis is supported by the observation that for most known cancer fusion genes, at least one of the fusion partners appears to be a hub in a network, and even for many fusions both partners appear to be hubs. Based on this model, we construct fusion centrality, a multi-gene-based network metric, and use it to score fusion drivers. We show that the fusion centrality outperforms other single gene-based methods. Specifically, the method successfully predicts most of 38 newly discovered fusions that had validated oncogenic importance. To our best knowledge, this is the first network-based approach for identifying fusion drivers. Availability: Matlab code implementing the fusion centrality method is available upon request from the corresponding authors. Contact: Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23505294

  10. Study of high gain spherical shell ICF targets containing uniform layers of liquid deuterium tritium fuel. A numericial model for analyzing thermal layering of liquid mixtures of hydrogen isotopes inside a spherical inertial confinement fusion target: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, E.M.; Kim, Kyekyoon [Lawrence Livermore National Lab., CA (United States)


    A numerical model has been developed to describe the thermally induced behavior of a liquid layer of hydrogen isotopes inside a spherical Inertial Confinement Fusion (ICF) target and to calculate the far-field temperature gradient which will sustain a uniform liquid layer. This method is much faster than the trial-and-error method previously employed. The governing equations are the equations of continuity, momentum, energy, mass diffusion-convection, and conservation of the individual isotopic species. Ordinary and thermal diffusion equations for the diffusion of fluxes of the species are included. These coupled equations are solved by a finite-difference method using upwind schemes, variable mesh, and rigorous boundary conditions. The solution methodology unique to the present problem is discussed in detail. in particular, the significance of the surface tension gradient driven flows (also called Marangoni flows) in forming uniform liquid layers inside ICF targets is demonstrated. Using the theoretical model, the values of the externally applied thermal gradients that give rise to uniform liquid layers of hydrogen inside a cryogenic spherical-shell ICF target are calculated, and the results compared with the existing experimental data.

  11. Fusion Electra: A Krypton Fluoride Laser for Fusion Energy

    National Research Council Canada - National Science Library

    Sethian, J; Friedman, M; Giuliani, J; Lehmberg, R; Myers, M; Obenschain, S; Hegeler, F; Swanekamp, S


    .... We will focus on technologies that can be scalable to the 50-150 kJ energy needed for a full-size fusion power plant beam line and are projected to meet the economic requirements for fusion power...

  12. Inertial Fusion Power Plant Concept of Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knutson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kasper, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheehan, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lang, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mau, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  13. Inertial fusion power plant concept of operations and maintenance (United States)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek


    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  14. Influence of charge carriers on corrugation of suspended graphene (United States)

    Kirilenko, Demid A.; Gorodetsky, Andrei; Baidakova, Marina V.


    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation.

  15. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  16. Nafion and modified-Nafion membranes for polymer electrolyte fuel ...

    Indian Academy of Sciences (India)


    geothermal energy, wind energy and fusion power tech- nology have attracted attention, there is also increasing interest in hydrogen and its most efficient utilization in generating electrical energy. The latter is most appropri- ately achieved through fuel cells. A fuel cell is an electrochemical power source with advantages of ...

  17. Fossil Fuels. (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  18. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.


    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  19. Fusion for Space Propulsion (United States)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)


    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  20. Introduction to suspended-sediment sampling (United States)

    Nolan, K. Michael; Gray, John R.; Glysson, G. Douglas


    Knowledge of the amount and timing of sediment transport in streams is important to those directly or indirectly responsible for developing and managing water and land resources. Such data are often used to judge the health of watershed and the success or failure of activities designed to mitigate adverse impacts of sediment on streams and stream habitats. This training class presents an introduction to methods currently used by the U.S. Geological Survey (USGS) to sample suspended-sediment concentrations in streams. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos interspersed in the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class, which is registered as class SW4416 with the National Training Center of the USGS, should take two or three hours to complete. In order to use the presentation provided via this Web page, you will need to download a large disc images (linked below) and 'burn' it to a blank CD-ROM using a CD-ROM recorder on your computer. The presentation will only run on a Windows-based personal computer (PC). The presentation was developed using Macromedia Director MX 20041 and is contained in the file 'SIR05-5077.exe' which should autolaunch. If it does not, the presentation can be started by double-clicking on the file name. A sound card and speakers are necessary to take advantage of narrations that accompany the presentation. Text of narrations is provided, if you are unable to listen to narrations. Instructions for installing and running the presentation are included in the file 'Tutorial.htm', which is on the CD. 1 Registered Trademark: Macromedia Incorporated

  1. Workmanship standards for fusion welding (United States)

    Phillips, M. D.


    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  2. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  3. Multisensor data fusion algorithm development

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.


    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  4. The quest for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L. [National Inst. for Fusion Science, Toki, Gifu (Japan)


    A brief history of the magnetic fusion program from the point of view of a stellarator enthusiast who worked at a major tokamak laboratory. The reason that success in the magnetic fusion energy program is essential is presented. (author)

  5. Ratios of total suspended solids to suspended sediment concentrations by particle size (United States)

    Selbig, W.R.; Bannerman, R.T.


    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  6. Measuring robustness of port plug maintenance schedules in fusion remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, P.W., E-mail: [Heemskerk Innovative Technology, Sassenheim (Netherlands); Thomas, J. [CCFE EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boessenkool, H. [FOM Institute DIFFER, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology, Sassenheim (Netherlands)


    Unexpected events during maintenance operations of a fusion plant like JET or ITER may require rescheduling, suspending the execution of the current procedure to pick it up later. In this paper, we look at how the introduction of slack influences the port plug maintenance schedule robustness. We introduce a metrics to measure the robustness. Simulating disruptions we evaluate the effect on a schedule. Finally, we show how the robustness is affected when introducing different amounts of slack.

  7. Energy gain of ignitable targets in inertial confinement fusion (ICF

    Directory of Open Access Journals (Sweden)

    A. Parvazian,J Jafari


    Full Text Available   In order to determine the fusion energy gain in a target due to inertial confinement fusion, it is necessary to solve hydrodynamic equations governed on plasma behavior during confinement time. To compress spherical multilayer targets having fuel in the central part, they are irradiated by laser or heavy ion beams. A suitable mass ratio of a pusher is used to ignite the central part of the target. When compression is maximum, fuel density exceeds from 500 to 1000 times of the cold density. Temperature in the cold fuel region rises rapidly and cause the plasma and fusion reaction to take place. Calculations of density, temperature and pressure profiles in the plasma are necessary to obtain the energy flux of neurons, electrons and radiations coming out from the target. Using numerical solutions for continuity, the momentum and energy equations based on a defined continuity equation we prepared a computer program to calculate density, temperature and pressure profiles. The gain of the target as output to input energy is determined. Using this procedure to a designed target with deuterium-tritium (DT fuel derived by heavy ion beams gives an energy gain over 400.

  8. Suspended sediment concentration profiles from synoptic satellite observations

    Digital Repository Service at National Institute of Oceanography (India)

    Ramakrishnan, R.; Rajawat, A; Chauhan, O.S.

    A method is developed to estimate vertical suspended sediment concentration (SSC) profiles in Gulf of Kachchh, from the sediment concentration values derived from synoptic observations of Ocean Colour Monitor (OCM). Under the influence of currents...

  9. Monosaccharide composition of suspended particles from the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sankaran, P.D.; Wagh, A.B.

    Neutral carbohydrates were determined as alditol acetates by capillary gas chromatography in the hydrolysates of suspended particulate samples (40) collected from 8 depths (approx 1 to 1,000 m) at 5 stations of the Bay of Bengal. Eight individual...

  10. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.


    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  11. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.


    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  12. Fusion Engineering Device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.


    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  13. Membrane tension and membrane fusion


    Kozlov, Michael M.; Chernomordik, Leonid V.


    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually la...

  14. Magnetic confinement fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Grad, H


    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10/sup 8/ degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface.

  15. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.


    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  16. Suspended-sediment and suspended-sand concentrations and loads for selected streams in the Mississippi River Basin, 1940-2009 (United States)

    Heimann, David C.; Cline, Teri L.; Glaspie, Lori M.


    This report presents suspended-sediment concentration and streamflow data, describes load-estimation techniques used in the computation of annual suspended-sediment loads, and presents annual suspended-sediment loads for 48 streamgaging stations within the Mississippi River Basin. Available published, unpublished, and computed annual total suspended-sediment and suspended-sand loads are presented for water years 1940 through 2009. When previously published annual loads were not available, total suspended-sediment and sand loads were computed using available data for water years 1949 through 2009. A table of suspended-sediment concentration and daily mean streamflow data used in the computation of annual loads is presented along with a table of compiled and computed annual suspended-sediment and suspended-sand loads, annual streamflows, and flow-weighted concentrations for the 48 stations.

  17. Suspended sediment apportionment in a South-Korean mountain catchment (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine


    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  18. Graphite for fusion energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.


    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source. (JDH)

  19. Muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nagamine, K. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawamura, N. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)


    The latest progress of muon catalyzed fusion study at the RIKEN-RAL muon facility (and partly at TRIUMF) is reported. The topics covered are magnetic field effect, muon transfer to {sup 3}He in solid D/T and ortho-para effect in dd{mu} formation.

  20. Bouillabaisse sushi fusion power

    CERN Multimedia


    "If avant-garde cuisine is any guide, Japanese-French fusion does not work all that well. And the interminable discussions over the International Thermonuclear Experimental Reactor (ITER) suggest that what is true of cooking is true of physics" (1 page)

  1. Separating fusion from rivalry.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    Full Text Available Visual fusion is the process in which differing but compatible binocular information is transformed into a unified percept. Even though this is at the basis of binocular vision, the underlying neural processes are, as yet, poorly understood. In our study we therefore aimed to investigate neural correlates of visual fusion. To this end, we presented binocularly compatible, fusible (BF, and incompatible, rivaling (BR stimuli, as well as an intermediate stimulus type containing both binocularly fusible and monocular, incompatible elements (BFR. Comparing BFR stimuli with BF and BR stimuli, respectively, we were able to disentangle brain responses associated with either visual fusion or rivalry. By means of functional magnetic resonance imaging, we measured brain responses to these stimulus classes in the visual cortex, and investigated them in detail at various retinal eccentricities. Compared with BF stimuli, the response to BFR stimuli was elevated in visual cortical areas V1 and V2, but not in V3 and V4 - implying that the response to monocular stimulus features decreased from V1 to V4. Compared to BR stimuli, the response to BFR stimuli decreased with increasing eccentricity, specifically within V3 and V4. Taken together, it seems that although the processing of exclusively monocular information decreases from V1 to V4, the processing of binocularly fused information increases from earlier to later visual areas. Our findings suggest the presence of an inhibitory neural mechanism which, depending on the presence of fusion, acts differently on the processing of monocular information.

  2. Separating fusion from rivalry. (United States)

    Kallenberger, Stefan M; Schmidt, Constanze; Dechent, Peter; Forster, Clemens; von Steinbüchel, Nicole; Wüstenberg, Torsten; Strasburger, Hans


    Visual fusion is the process in which differing but compatible binocular information is transformed into a unified percept. Even though this is at the basis of binocular vision, the underlying neural processes are, as yet, poorly understood. In our study we therefore aimed to investigate neural correlates of visual fusion. To this end, we presented binocularly compatible, fusible (BF), and incompatible, rivaling (BR) stimuli, as well as an intermediate stimulus type containing both binocularly fusible and monocular, incompatible elements (BFR). Comparing BFR stimuli with BF and BR stimuli, respectively, we were able to disentangle brain responses associated with either visual fusion or rivalry. By means of functional magnetic resonance imaging, we measured brain responses to these stimulus classes in the visual cortex, and investigated them in detail at various retinal eccentricities. Compared with BF stimuli, the response to BFR stimuli was elevated in visual cortical areas V1 and V2, but not in V3 and V4 - implying that the response to monocular stimulus features decreased from V1 to V4. Compared to BR stimuli, the response to BFR stimuli decreased with increasing eccentricity, specifically within V3 and V4. Taken together, it seems that although the processing of exclusively monocular information decreases from V1 to V4, the processing of binocularly fused information increases from earlier to later visual areas. Our findings suggest the presence of an inhibitory neural mechanism which, depending on the presence of fusion, acts differently on the processing of monocular information.

  3. International fusion og spaltning

    DEFF Research Database (Denmark)

    Hansen, Lone L.

    Bogen analyserer de nye muligheder fra 2007 i europæisk ret med hensyn til fusion eller spaltning mellem aktieselskaber og anpartsselskaber med hjemsted i forskellige europæiske lande. Bogen gennemgår de nye muligheder for strukturændringer, der herved er opstået mulighed for, og den sætter fokus...

  4. Turbulence control of suspended matter aggregate size (United States)

    Jago, C. F.; Jones, S. E.; Rippeth, T. P.; Simpson, J. H.


    The size and properties of the aggregates which comprise suspended particulate matter (SPM) change on short time and length scales in shelf seas. There is experimental and theoretical evidence to suggest that turbulence plays a key role in aggregation but there is contradictory evidence with respect to disaggregation: it has been proposed that sinking stresses, rather than turbulent stresses, are the dominant control of disaggregation. But there is little observational evidence for turbulence control of particle properties. New observations are presented which provide compelling evidence for turbulence control of both aggregation and disaggregation. TKE dissipation and particle size were measured in situ at stratified sites in the northern North Sea in 110 m water depth during the period of weakening of the seasonal thermocline (in October/November) and in the Clyde Sea in 55 m water depth (April). There were similar vertical distributions of TKE dissipation E, SPM concentration C, and particle size D at both sites. At the base of the thermocline, there were minima in E and C, but a maximum in D, indicating that enhanced aggregation was occurring in this region of low turbulent stress. In the bottom mixed layer, E and C increased, while D decreased due to disaggregation in this region of increasing turbulent stress towards the seabed. Particles settling out of the low stress region at the base of the thermocline began to disaggregate when E increased to 3.2x10-6 watts m-2. D did not correlate directly with E because aggregation is a function of collision frequency (and hence of both C and E): this can be accounted for using a simplified theoretical aggregation model which treats flocs as self-similar fractal entities and allows simultaneous floc formation and break up, specified as functions of C and E. It was found that in the northern North Sea the measured D represents an equilibrium size predicted by the model, while in the Clyde Sea tidal variation in both C

  5. Fusion technology annual report of the association EURATOM/CEA 1998; Technologie de la fusion Rapport annuel 1998 Association EURATOM/CEA 1998

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P.; Le vagueres, F


    In this book are found technical and scientific papers on the main works carried out in the frame of the european program of fusion technology, during 1998. The presented activities are: plasma facing components, vacuum vessel and shield, magnets, remote handling, safety (short and long term), european blanket project (long term) with water cooled lithium lead and helium cooled pebble bed blanket, materials for fusion power plant, socio-economic research on fusion, plasma facing components, fuel cycle, inertial confinement. (A.L.B.)

  6. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)


    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  7. Inertial Confinement Fusion R&D and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston


    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  8. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing


    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai


    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and ...

  9. Laser fusion driven breeder design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.H.; Massey, J.V.


    The results of the Laser Fusion Breeder Design Study are given. This information primarily relates to the conceptual design of an inertial confinement fusion (ICF) breeder reactor (or fusion-fission hybrid) based upon the HYLIFE liquid metal wall protection concept developed at Lawrence Livermore National Laboratory. The blanket design for this breeder is optimized to both reduce fissions and maximize the production of fissile fuel for subsequent use in conventional light water reactors (LWRs). When the suppressed fission blanket is compared with its fast fission counterparts, a minimal fission rate in the blanket results in a unique reactor safety advantage for this concept with respect to reduced radioactive inventory and reduced fission product decay afterheat in the event of a loss-of-coolant-accident.

  10. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder


    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  11. Dynamical Safety Analysis of the SABR Fusion-Fission Hybrid Reactor (United States)

    Sumner, Tyler; Stacey, Weston; Ghiaassian, Seyed


    A hybrid fusion-fission reactor for the transmutation of spent nuclear fuel is being developed at Georgia Tech. The Subcritical Advanced Burner Reactor (SABR) is a 3000 MWth sodium-cooled, metal TRU-Zr fueled fast reactor driven by a tokamak fusion neutron source based on ITER physics and technology. We are investigating the accident dynamics of SABR's coupled fission, fusion and heat removal systems to explore the safety characteristics of a hybrid reactor. Possible accident scenarios such as loss of coolant mass flow (LOFA), of power (LOPA) and of heat sink (LOHSA), as well as inadvertent reactivity insertions and fusion source excursion are being analyzed using the RELAP5-3D code, the ATHENA version of which includes liquid metal coolants.

  12. Apparatus and method for extracting power from energetic ions produced in nuclear fusion (United States)

    Fisch, Nathaniel J.; Rax, Jean M.


    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  13. Lead (Pb) hohlraum: target for inertial fusion energy. (United States)

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R


    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.

  14. Deuterium-tritium fusion reactors without external tritium breeding

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, S. [Soreq Nucl. Res. Center, Yavne (Israel). Dept. of Plasma Phys.]|[Instituto de Fusion Nuclear, Jose Gutierrez Abascal, 2, Madrid (Spain); Henis, Z. [Soreq Nucl. Res. Center, Yavne (Israel). Dept. of Plasma Phys.; Martinez-Val, J.M. [Instituto de Fusion Nuclear, Jose Gutierrez Abascal, 2, Madrid (Spain); Piera, M. [Instituto de Fusion Nuclear, Jose Gutierrez Abascal, 2, Madrid (Spain)]|[UNED, Madrid (Spain)


    An inherent property of deuterium fusion burn-up equations is presented, due to which deuterium-tritium reactions can be exploited without needing tritium breeding in external blankets. A small amount of tritium is added to the deuterium plasma in order to trigger ignition at less than 10 keV, and the same amount of tritium is found in the debris of the burnt-up plasma if the burning temperature is higher than 200 keV. Plasma parameters to exploit this property are very similar to those of inertial fusion confinement. Tritium inventory in a reactor would thus be reduced to a minimum value, because the initial composition of the fuel would be of the type DT{sub x}, with x{approx}0.02, and tritium would immediately be reprocessed to fabricate new fuel. (orig.) 13 refs.

  15. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)


    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  16. Jazz-Philosophy Fusion


    Tartaglia, JPF


    In this paper I describe and provide a justification for the fusion of jazz music and philosophy which I have developed; the justification is provided from the perspectives of both jazz and philosophy. I discuss two of my compositions, based on philosophical ideas presented by Schopenhauer and Derek Parfit respectively; links to sound files are provided. The justification emerging from this discussion is that philosophy produces ‘non-argumentative effects’ which provide suitable material for ...

  17. Inertial Confinement fusion targets (United States)

    Hendricks, C. D.


    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  18. Accelerator based fusion reactor (United States)

    Liu, Keh-Fei; Chao, Alexander Wu


    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  19. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T


    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  20. Temperature signal in suspended sediment export from an Alpine catchment (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie


    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  1. Inertial fusion driven by intense cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, C.; Bret, A. [Universite Paris, Orsay (France); Eliezer, S.; Martinez-Val, J.M. [Universidad Politechnica de Madrid (Spain); Tahir, N.A. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)


    The present state of the art concerning the use of intense cluster ion beams for driving an inertial fusion pellet containing a thermonuclear fuel is reviewed. Emphasis is placed on the fragmentation and stopping of correlated ion fragments in dense target material. The direct drive approach is given a hydrodynamic as well as a full one-dimensional simulation treatment. Indirect drive looks highly promising. 28 refs., 22 figs.

  2. Osteoclast Fusion is Based on Heterogeneity Between Fusion Partners

    DEFF Research Database (Denmark)

    Hobolt-Pedersen, Anne-Sofie; Delaissé, Jean-Marie; Søe, Kent


    with respect to their maturation stage and their expression and cellular organization of fusion factors. Support for this hypothesis was found from immunofluorescence staining of the osteoclast fusion factors CD47, dendritic cell-specific transmembrane protein (DC-STAMP), and syncytin-1. These stainings...... revealed heterogeneous localization patterns of all three factors within a given culture of osteoclasts. CD47 was found to be localized primarily in small osteoclasts and preosteoclasts, which were also positive for DC-STAMP but negative for cathepsin K expression. A role of CD47 in the early osteoclast...... fusion steps was also suggested from experiments with a CD47 blocking antibody, which resulted in an inhibition of the fusion of small osteoclasts. Conversely, blocking of connexin 43 affected the fusion of larger osteoclasts with four or more nuclei. The suggestion that different fusion factors function...

  3. Generation IV{sup +f}usion fission hybrid engineering

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)


    World energy outlook requires environmental friendliness, sustatinability and improved economic feasibility. The Exploratory Energy Utilization Systemics (XEUS) is being developed at the Seoul National University (SNU) to satisfy these demands. Generation IV (Gen IV) and fusion reactors are considered as candidates for the primary system. Battery omnibus Reactor Integral System (BORIS) is a liquid metal cooled fast reactor which is one of the Gen IV concepts. Fusion Engineering Lifetime Integral Explored (FELIX) is a fusion demonstration reactor for power generation. These two concepts are considered as dominant options for future nuclear energy source from the environmental, commercial and nonproliferation points of view. XEUS may as well be applied to the fusion fission hybrid system. The system code is being developed to analyze the steady state and transient behavior of the primary system. Compact and high efficiency heat exchangers are designed in the Loop Energy Exchanger Integral System (LEXIS). Modular Optimized Brayton Integral System (MOBIS) incorporates a Brayton cycle with supercritical fluid to achieve high power conversion ratio. The high volumetric energy density of the Brayton cycle enables designers to reduce the size and eventually the cost of the system when compared with that of the Ranking cycle. MOBIS is home to heat exchangers and turbo machineries. The advanced shell and tube or printed circuit heat exchanger is considered as heat transfer components to reduce size of the system. the supercritical fluid driven turbines and compressor are designed to achieve higher component efficiency. The fusion breeder FELIX is a fusion reactor designed with special blankets to maximize the transmutation by 14MeV neutrons of {sup 9}2{sup U2}38{sup t}o {sup 9}4{sup P}u{sup 2}39{sup o}r {sup 9}0{sup T}h{sup 2}32{sup t}o {sup 9}2{sup U2}33{sup f}or use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the Korean fusion energy

  4. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent


    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  5. Inertial fusion energy; L'energie de fusion inertielle

    Energy Technology Data Exchange (ETDEWEB)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)


    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  6. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)


    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  7. Hydrodynamic and suspended sediment transport controls on river mouth morphology (United States)

    Falcini, F.; Piliouras, A.; Garra, R.; Guerin, A.; Jerolmack, D. J.; Rowland, J.; Paola, C.


    mouths building into standing bodies of water have strikingly varied growth habits. This presents a compelling pattern formation problem that is also of great practical relevance for subsurface prediction and managing coastal wetlands. Here we present a generalized 2.5-dimensional potential vorticity (PV) theory that explains sedimentation patterns of a sediment-laden stationary jet by coupling an understanding of vorticity with suspended sediment concentration fields. We explore the physical meaning of this new sediment-PV definition, and its impact on outflow depositional patterns, by analyzing data from a shallow wall-bounded plane jet experiment and by discussing new theoretical insights. A key result is that lateral advection and diffusion of suspended sediment are directly proportional to jet vorticity, a feature that reveals the mechanistic process that forms elongated channels by focused levee deposition. The new PV theory constitutes a more generalized mathematical framework that expands the Rouse theory for the equilibrium of suspended sediment.

  8. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)


    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  9. Review of LIBS application in nuclear fusion technology (United States)

    Li, Cong; Feng, Chun-Lei; Oderji, Hassan Yousefi; Luo, Guang-Nan; Ding, Hong-Bin


    Nuclear fusion has enormous potential to greatly affect global energy production. The next-generation tokamak ITER, which is aimed at demonstrating the feasibility of energy production from fusion on a commercial scale, is under construction. Wall erosion, material transport, and fuel retention are known factors that shorten the lifetime of ITER during tokamak operation and give rise to safety issues. These factors, which must be understood and solved early in the process of fusion reactor design and development, are among the most important concerns for the community of plasma-wall interaction researchers. To date, laser techniques are among the most promising methods that can solve these open ITER issues, and laser-induced breakdown spectroscopy (LIBS) is an ideal candidate for online monitoring of the walls of current and next-generation (such as ITER) fusion devices. LIBS is a widely used technique for various applications. It has been considered recently as a promising tool for analyzing plasma-facing components in fusion devices in situ. This article reviews the experiments that have been performed by many research groups to assess the feasibility of LIBS for this purpose.

  10. Diagnosing inertial confinement fusion gamma ray physics (invited). (United States)

    Herrmann, H W; Hoffman, N; Wilson, D C; Stoeffl, W; Dauffy, L; Kim, Y H; McEvoy, A; Young, C S; Mack, J M; Horsfield, C J; Rubery, M; Miller, E K; Ali, Z A


    The gamma reaction history (GRH) diagnostic is a multichannel, time-resolved, energy-thresholded γ-ray spectrometer that provides a high-bandwidth, direct-measurement of fusion reaction history in inertial confinement fusion implosion experiments. 16.75 MeV deuterium+tritium (DT) fusion γ-rays, with a branching ratio of the order of 10(-5)γ/(14 MeV n), are detected to determine fundamental burn parameters, such as nuclear bang time and burn width, critical to achieving ignition at the National Ignition Facility. During the tritium/hydrogen/deuterium ignition tuning campaign, an additional γ-ray line at 19.8 MeV, produced by hydrogen+tritium fusion with a branching ratio of unity, will increase the available γ-ray signal and may allow measurement of reacting fuel composition or ion temperature. Ablator areal density measurements with the GRH are also made possible by detection of 4.43 MeV γ-rays produced by inelastic scatter of DT fusion neutrons on (12)C nuclei in the ablating plastic capsule material.

  11. Diagnosing inertial confinement fusion gamma ray physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H. W.; Hoffman, N.; Wilson, D. C.; Kim, Y. H.; McEvoy, A.; Young, C. S.; Mack, J. M. [Los Alamos National Laboratory, P.O. Box 1663, M/S E526, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Dauffy, L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Horsfield, C. J.; Rubery, M. [Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR (United Kingdom); Miller, E. K. [Special Technologies Laboratory, NSTec, Santa Barbara, California 93111 (United States); Ali, Z. A. [Livermore Operations, NSTec, Livermore, California 94550 (United States)


    The gamma reaction history (GRH) diagnostic is a multichannel, time-resolved, energy-thresholded {gamma}-ray spectrometer that provides a high-bandwidth, direct-measurement of fusion reaction history in inertial confinement fusion implosion experiments. 16.75 MeV deuterium+tritium (DT) fusion {gamma}-rays, with a branching ratio of the order of 10{sup -5}{gamma}/(14 MeV n), are detected to determine fundamental burn parameters, such as nuclear bang time and burn width, critical to achieving ignition at the National Ignition Facility. During the tritium/hydrogen/deuterium ignition tuning campaign, an additional {gamma}-ray line at 19.8 MeV, produced by hydrogen+tritium fusion with a branching ratio of unity, will increase the available {gamma}-ray signal and may allow measurement of reacting fuel composition or ion temperature. Ablator areal density measurements with the GRH are also made possible by detection of 4.43 MeV {gamma}-rays produced by inelastic scatter of DT fusion neutrons on {sup 12}C nuclei in the ablating plastic capsule material.

  12. Dynamic transport of suspended sediment by solitary wave: Experimental study (United States)

    cho, JaeNam; Kim, DongHyun; Hwang, KyuNam; Lee, SeungOh


    Solitary waves are able to transport a large amount of suspended sediment when approaching on the beach, which sometimes causes - serious beach erosion, especially in the east and south coastal lines in Korea. But it has rarely been known about the method how to evaluate or estimate the amount of beach erosion caused by solitary waves. Experimental assessment is necessary to comprehend the process of sediment transport on a slope. The prismatic rectangular channel is 12 m long, 0.8 m wide, and 0.75 m high. A sluice gate is applied at prismatic channel in order to produce the solitary waves. Upstream water depth is more than channel water depth and the sluice gate is suddenly opened to simulate conditions of solitary waves. A sand slope with a 1/6 and a sediment thickness is 0.03 m. The experimental sediments are used anthracite (d_50=1.547 mm ,C_u=1.38) and Jumoonjin sand (d_50=0.627 mm ,C_u=1.68). Specific laboratory equipment are designed to collect suspended sediment samples at the same time along the wave propagation at 5 points with evenly space. Each amount of sampling is approximately 25 ml and they are completely dried in oven over 24 hours according to the USGS (Guideline and standard techniques and method 3-C4). Two video cameras (Model No. : Sony, HDR-XR550) are mounted for capturing images at top and side-view when the processes of solitary wave and run up/down on slope. Also, this study are analyzed the correlation between Suspended sediment concentration and turbidity. Also, this study are analyzed the correlation between suspended sediment concentration and turbidity. Turbidity is used to verify suspended sediment concentration. Dimensionless analyses of experimental results carried out in this study. One dimensionless parameter is expressed with pressure of solitary wave on a slope to suspended sediment concentration, which is concerned about lifting force. The other is relate to drag force presenting with run up/down velocity on a slope and

  13. Design of a LC-tuned magnetically suspended rotating gyroscope (United States)

    Jin, Lichuan; Zhang, Huaiwu; Zhong, Zhiyong


    A inductor-capacitor (LC) tuned magnetically suspended rotating gyroscope prototype is designed and analyzed. High permeability ferrite cores are used for providing suspension force, and the rotation system is designed using the switched reluctance motor (SRM) principle. According to the LC-tuned principle, magnetic suspension force expression has been derived. The electromagnetic properties of the gyroscope are simulated by the Ansoft Maxwell software. And our result is expected to be able to serve as a prototype of micro-electromechanical system (MEMS) magnetically suspended rotating gyroscope in future practical applications.

  14. Quantum Hall effect in multi-terminal suspended graphene devices (United States)

    Ghahari, Fereshte; Zhao, Yue; Bolotin, Kirill; Kim, Philip


    The integer and fractional quantum hall effects have been already observed in two terminal suspended graphene devices. However in this two probe device geometry, mixing between magnetoresistance ρxx and Hall resistance ρxy for incompletely developed quantum Hall states leads to substantial deviation of conductance plateaus values. In this talk, we present the experimental results from four terminal suspended graphene devices. The quality of quantum Hall effect will be discussed in muti-terminal device geometry in conjunction with the current-induced annealing process to improve the quality of graphene samples.

  15. Colorimetry Technique for Scalable Characterization of Suspended Graphene. (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer


    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  16. Fuel cell-fuel cell hybrid system (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.


    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  17. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Nigel Oswald [Univ. of California, Berkeley, CA (United States)


    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of ~17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, ~200 g/cm3 and ~20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases ~350 MJ of energy in optimized power plant scenarios.

  18. Polarized fusion, its Implications and plans for Direct Measurements in a Tokamak


    Sandorfi, A. M.; Deur, A.; Hanretty, C.; Jackson, G. L.; Lanctot, M.; Liu, J.; Lowry, M. M.; Miller, G. W.; Pace, D.; Smith, S. P.; Wei, K.; Wei, X.; Zheng, X.


    A long-term energy option that is just approaching the horizon after decades of struggle, is fusion. Recent developments allow us to apply techniques from spin physics to advance its viability. The cross section for the primary fusion fuel in a tokamak reactor, D+T=>alpha+n, would be increased by a factor of 1.5 if the fuels were polarized. Simulations predict further non-linear power gains in large-scale machines such as ITER, due to increased alpha heating. These are significant enhancement...

  19. Tritium resources available for fusion reactors (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.


    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  20. Thermal Studies of the Laser Inertial Fusion Energy (LIFE) Target during Injection into the Fusion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Havstad, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LeBlanc, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Golosker, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosso, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The tests of the external heat transfer coefficient suggests that the values used in the numerical analysis for the temperature distribution within the fusion fuel target following flight into the target chamber are probably valid. The tests of the heat transfer phenomena occurring within the target due the rapid heating of the LEH window for the hot gasses within the fusion chamber show that the heat does indeed convect via the internal helium environment of the target towards the capsule and that the pressure in the front compartment of the target adjacent to the LEH window increases such that t bypass venting of the internal helium into the second chamber adjacent to the capsule is needed to prevent rupture of the membranes. The bypass flow is cooled by the hohlraum during this venting. However, the experiments suggest that our internal heat flow calculations may be low by about a factor of 2. Further studies need to be conducted to investigate the differences between the experiment and the numerical analysis. Future studies could also possibly bring the test conditions closer to those expected in the fusion chamber to better validate the results. A sacrificial layer will probably be required on the LEH window of the target and this can be used to mitigate any unexpected target heating.

  1. The future of fusion (United States)

    Sheffield, John


    The population of the world is increasing, mainly in the developing world, and is projected to saturate within about 100 years at up to twice the present population of 6 billion people (Bos et al., World Population Projections: 1994-95 Edition, Published for the World Bank). Studies (Goldemberg and Johansson (Eds.), Energy as an Instrument for Socio-Economic Development United Nations Development Programme, New York, 1995, p. 9; United Nations Statistical Yearbooks, 10th issue; 1965; 20th issue; 1975, 22nd issue, 1977; 32nd issue, 1987; and 39th issue 1994, United Nations Publications; Sheffield, J. Technol. Forecasting Social Change 59 (1998) 55.) show that, historically, the population growth rate has varied inversely as the annual per capita energy use in most parts of the developing world, where per capita energy use is typically less than 1 t of oil equivalent energy per year. However, in areas with more than 2-3 t of oil equivalent of energy use per year per person, the growth rate is around zero. If this trend continues, a stable world population will require, allowing for energy efficiency improvements, some 2-3 times the present annual energy use. There is an abundance of energy in the world both exploited and potential to meet this need - fossil, fission, and renewables - but it is not evenly distributed, some are costly, and there are issues of environmental pollution in present use, that may limit use. Fusion energy is a potential longer-term source with attractive environmental features. It is the least-developed energy option and still faces a challenging development path, but there are many areas of the world that would benefit hugely from its deployment from the later part of the 21st century onward, and it is important to consider how it might be deployed. Most fusion power plant options considered today show an economy of scale, owing to the fixed distance needed for shielding fusion neutrons, tritium breeding and handling the heat loads. One

  2. Fusion Advanced Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    El-Guebaly, Laila [Univ. of Wisconsin, Madison, WI (United States); Henderson, Douglass [Univ. of Wisconsin, Madison, WI (United States); Wilson, Paul [Univ. of Wisconsin, Madison, WI (United States); Blanchard, Jake [Univ. of Wisconsin, Madison, WI (United States)


    During the January 1, 2013 – December 31, 2015 contract period, the UW Fusion Technology Institute personnel have actively participated in the ARIES-ACT and FESS-FNSF projects, led the nuclear and thermostructural tasks, attended several project meetings, and participated in all conference calls. The main areas of effort and technical achievements include updating and documenting the nuclear analysis for ARIES-ACT1, performing nuclear analysis for ARIES-ACT2, performing thermostructural analysis for ARIES divertor, performing disruption analysis for ARIES vacuum vessel, and developing blanket testing strategy and Materials Test Module for FNSF.

  3. Sorbent materials for fusion reactor tritium processing

    Energy Technology Data Exchange (ETDEWEB)

    Toci, F. [JRC Ispra (Italy). Nucl. Fuel Cycle Div.; Viola, A. [JRC Ispra (Italy). Nucl. Fuel Cycle Div.; Edwards, R.A.H. [JRC Ispra (Italy). Nucl. Fuel Cycle Div.; Mencarelli, T. [JRC Ispra (Italy). Nucl. Fuel Cycle Div.; Forcina, V. [JRC Ispra (Italy). Nucl. Fuel Cycle Div.


    A fusion reactor (such as NET/ITER) which breeds its own tritium fuel requires tritium recovery, purification and separation from the other isotopes. Cyclic adsorption processes are strong candidates for several of the processes involved: amongst other advantages, they promise a low tritium inventory. A good adsorbent for such processes must have high adsorption capacity, high selectivity and very low tritium retention after each cycle. Pure zeolite powder is shown to have an excellent combination of these three properties. However, in practice problems can arise from tritium which is not removed by reactivation. In this paper we show that tritium retention in zeolites can be caused either by water retained in the zeolite structure, which can be removed by ore rigorous activation, or by water tapped on binders in commercial pellets. (orig.).

  4. Sorbent materials for fusion reactor tritium processing

    Energy Technology Data Exchange (ETDEWEB)

    Toci, F.; Viola, A.; Edwards, R.A.H. [Joint Research Centre, Ispra (Italy)] [and others


    A fusion reactor (like NET/ITER) which breeds its own tritium fuel requires tritium recovery, purification and separation from the other isotopes. Gas-solid exchange processes are amongst the most promising techniques for accomplishing this with minimum tritium inventory. A good adsorbent for gas-solid exchange processes must have high adsorption capacity, high selectivity and very low tritium retention after each cycle. Pure zeolite powder is shown to have an excellent combination of these three properties. However, commercial pellets show appreciable tritium retention probably due to the presence of the binder, and to inappropriate activation procedures. In this paper the authors report a research study aimed at producing a pelletized zeolite with low tritium retention. Furthermore, they report a study of zeolite activation procedures.

  5. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.


    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  6. Spatial distribution of soil erosion and suspended sediment ...

    Indian Academy of Sciences (India)

    sediment transport rate for Chou-Shui river basin ... 5, Anzhong Road,. Tainan 70970, Taiwan. 4. Department of Hydraulics and Ocean Engineering, National Cheng-Kung University, No. 1,. University Road, Tainan ... surface runoff discharge, suspended sediment transport rate, quantity of soil erosion, and spatial distribu-.

  7. Calamine lotion: experimenting with a new suspending agent. (United States)

    Al-Achi, A; Greenwood, R; Akin-Isijola, A; Bullard, J


    The use of a new suspending agent is investigated. Calamine lotion, USP contains bentonite magma as a suspending agent. In this study, bentonite magma was partially or completely replaced with a new suspending agent called tahini. Tahini is sesame paste composed of crushed sesame seeds in sesame oil. It is frequently used in middle eastern food as a thickening and suspending agent. Calamine lotion was prepared, generally, according to the USP method. The formula contained 40% v/v magma. Tahini was added instead of bentonite magma by replacing 100%, 99%, 90%, 75%, 50% and 25% of the magma. The sedimentation volume and the degree of flocculation were calculated for the resulting preparations. Rheological characteristics of bentonite- and tahini-containing lotions were also determined. Sedimentation volume showed 0.723 and 0.851 (p=0.05) for the lotions containing 100% bentonite and 100% tahini, respectively. The degree of flocculation was 2.00 and 2.35 (p=0.05) for the 100% bentonite and 100% tahini lotions, respectively. The rheograms of all the suspensions showed pseudoplastic flow. Overall, the use of tahini in calamine lotion has improved the physical stability of the formula.

  8. Turbulence Flow Characteristics of Suspended Sediments and its ...

    African Journals Online (AJOL)

    These are inturn integrated to give the hydraulic resistance law for sediment laden flow. The law of velocity distribution in open channel flow with suspended sediments was derived introducing Monin-Obukhov Length L . The distribution equation agrees well with the observation of velocity profile in the experiments.

  9. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.


    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  10. Geochemistry of suspended and settling solids in two freshwater lakes.

    NARCIS (Netherlands)

    Koelmans, A.A.


    This study describes the 1987–1992 time variationof the bulk chemical composition, levels of heavymetals, arsenic, nitrogen and phosporous insuspended and settling solids in Lake Volkerak andLake Zoom (The Netherlands). Suspended and setlingsolids were collected with continuous flowcentrifuges and

  11. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen


    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  12. Current-use insecticides, phosphates and suspended solids in the ...

    African Journals Online (AJOL)

    In Western Cape orchard areas, the last pesticide application of the growing season in summer takes place at the end of February. Pesticides, total phosphates and total suspended solids (TSS) were measured in the Lourens River at the beginning of April 1999 prior to the first rainfall of the rainy season and in the middle of ...

  13. Reduction in density of suspended - sediment - laden natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    to 0.4% - 4.5%) that of the density of the same water without suspended sediment. Teh values of peff in a given site differed from one tidal cycle to another (approx equal to 1.9%). These values varied slightly (less than 0.8%) from mid-tide to slack...

  14. Transport of suspended particles in turbulent open channel flows

    NARCIS (Netherlands)

    Breugem, W.A.


    Two experiments are performed in order to investigate suspended sediment transport in a turbulent open channel flow. The first experiment used particle image velocimetry (PIV) to measure the fluid velocity with a high spatial resolution, while particle tracking velocimetry (PTV) was used to measure

  15. Spatial Distribution of Suspended Particulate Matter in Mtwapa ...

    African Journals Online (AJOL)

    Surface water concentrations of inorganic nutrients and suspended particulate matter (SPM) components from Mtwapa and Shirazi creeks in Kenya were measured and compared. This was aimed at assessing the contribution of phytoplankton carbon, particulate organic carbon (POC) and detritus on the total SPM pool, and ...

  16. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  17. Amino sugars in suspended particulate matter from the Bay of ...

    Indian Academy of Sciences (India)

    Amino sugars (AS)are important constituents of organic matter.However,very little is known about their cycling in marine waters.In this research,we assessed the distribution and cycling of these compounds in waters of the Bay of Bengal.For this purpose,samples of suspended particulate matter (SPM)were collected from 8 ...

  18. Stabilised suspending efficiency of Laponite XLG and sodium ...

    African Journals Online (AJOL)

    Charged drugs like Sulphamerazine may make pseudoplastic/plastic materials become Newtonian and loose their suspending power. In this study ... For this purpose, the rheograms of the systems were obtained by the use of a Haake rotoviscometer RV 12 utilizing a cup and rotor sensor system MV 1. In the absence of ...

  19. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis


    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  20. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  1. 40 CFR 52.330 - Control strategy: Total suspended particulates. (United States)


    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Total suspended... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.330 Control strategy..., the State must repromulgate Regulation No. 1 to satisfy reasonably available control technology...

  2. Evaluation of the suspending properties of Abizia zygia gum on ...

    African Journals Online (AJOL)

    Method: The suspending properties of Albizia zygia gum (family Mimosoideae) were evaluated comparatively with those of Compound Tragacanth, Acacia and Gelatin at concentration range of 0.5 – 4.0%w/v in Sulphadimidine suspension. Characterization tests were carried out on purified Albizia zygia gum. Sedimentation ...

  3. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik


    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  4. Method for separating biological cells. [suspended in aqueous polymer systems (United States)

    Brooks, D. E. (Inventor)


    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  5. Opportunities Suspended: The Disparate Impact of Disciplinary Exclusion from School (United States)

    Losen, Daniel J.; Gillespie, Jonathan


    Well over three million children, K-12, are estimated to have lost instructional "seat time" in 2009-2010 because they were suspended from school, often with no guarantee of adult supervision outside the school. That's about the number of children it would take to fill every seat in every major league baseball park and every NFL stadium…

  6. Investigation of suspended sediment transport using ultrasonic techniques

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø


    The results of the initial experimental studies involving the scattering of ultrasonic signals from canonical and non-canonical shaped suspended particles with known elastical qualities are reported. These results have formed the basis for the development of a numerical model for ultrasound...

  7. Microwave-induced nonequilibrium temperature in a suspended carbon nanotube

    NARCIS (Netherlands)

    Hortensius, H.L.; Öztürk, A.; Zeng, P.; Driessen, E.F.C.; Klapwijk, T.M.


    Antenna-coupled suspended single carbon nanotubes exposed to 108?GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-dependent DC voltage. The increased conductance

  8. Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes

    NARCIS (Netherlands)

    LeRoy, B.J.; Lemay, S.G.; Kong, J.; Dekker, C.


    We have performed low-temperature scanning tunneling microscopy measurements on single-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by chemical vapor deposition on a Pt substrate with predefined trenches etched into it. Atomic resolution was obtained on the

  9. Evaluation of the Suspending Properties of the Coprecipitate of ...

    African Journals Online (AJOL)

    The suspending ability of the different ratios was evaluated in magnesium trisilicate suspension, and compared with a suspension prepared with Compound Tragacanth Powder BP (CTP) as well as a commercially available magnesium trisilicate suspension (MTS). The parameters tested were sedimentation rate, flow rate, ...

  10. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia


    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...

  11. Fusion and the cosmos

    Directory of Open Access Journals (Sweden)



    Full Text Available In the following investigation we pay special attention to the role of self-organization in fusion plasma physics and in the cosmos. We present a new approach to the expansion of the universe. Formally the technique developed relies on our experience from treating hot fusion plasmas. We account for the possibility that the universe, as it seems, could have a finite life-time (even if it is counted in billions of years, and combine this assumption with the experimental observation that the velocity of separation of distant galaxies is proportional to the distance between the galaxies (the Hubble law. By analysis of a NL PDE (nonlinear partial differential equation we succed in proving that the crucial value of an exponent has a simple linear relationship with the Hubble constant. It is recognized that the scale-length that we use as a measure of the expansion is equivalent to the Einstein radius of curvature. The final results suggest that the Hubble law should be extended by a factor, which could have an explosive tendency of growth in time (open universe, or a decaying character (closed universe. The possibility of reversed expansion or an oscillating universe "cosmic pendulum" is also discussed.

  12. Inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W. (eds.)


    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  13. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail:; Jandacka, Jozef, E-mail: [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)


    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  14. Three-dimensional model for fusion processes

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.P.


    Active galactic nuclei (AGN) emit unusual spectra of radiation which is interpreted to signify extreme distance, extreme power, or both. The status of AGNs was recently reviewed by Balick and Heckman. It seems that the greatest conceptual difficulty with understanding AGNs is how to form a coherent phenomenological model of their properties. What drives the galactic engine. What and where are the mass-flows of fuel to this engine. Are there more than one engine. Do the engines have any symmetry properties. Is observed radiation isotropically emitted from the source. If it is polarized, what causes the polarization. Why is there a roughly spherical cloud of ionized gas about the center of our own galaxy, the Milky Way. The purpose of this paper is to discuss a new model, based on fusion processes which are not axisymmetric, uniform, isotropic, or even time-invariant. Then, the relationship to these questions will be developed. A unified model of fusion processes applicable to many astronomical phenomena will be proposed and discussed.

  15. Suspended-Bed Reactor preliminary design, /sup 233/U--/sup 232/Th cycle. Final report (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Karam, R.A.; Alapour, A.; Lee, C.C.


    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 thick, (2) silicon carbide pressure vessel, 30 thick, and (3) ZrC layer, 50 thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particles is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems.

  16. LIFE: a sustainable solution for developing safe, clean fusion power. (United States)

    Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob


    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors.

  17. Fusion research programme in India

    Indian Academy of Sciences (India)

    The fusion energy research program of India is summarized in the context of energy needs and scenario of tokamak advancements on domestic and international fronts. In particular, the various technologies that will lead us to ultimately build a fusion power reactor are identified along with the steps being taken for their ...

  18. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt


    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  19. Fusion Policy Advisory Committee (FPAC)

    Energy Technology Data Exchange (ETDEWEB)


    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

  20. An analysis of bedload and suspended load interactions (United States)

    Recking, alain; Navratil, Oldrich


    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to

  1. Possible Energy Gain for a Plasma Liner-Driven Magneto-Inertial Fusion Concept


    Knapp, C. E.; Kirkpatrick, R. C.


    A one dimensional parameter study of a magneto-inertial fusion (MIF) concept indicates that significant gain may be achievable. This concept uses a dynamically formed plasma shell with inwardly directed momentum to drive a magnetized fuel to ignition, which in turn partially burns an intermediate layer of unmagnetized fuel. The concept is referred to as Plasma Jet MIF or PJMIF. The results of an adaptive mesh refinement (AMR) Eulerian code (Crestone) are compared to those of a Lagrangian code...

  2. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 5: Conclusions and recomendations (United States)

    Williams, J. R.


    Air pollution resulting from the use of fossil fuels is discussed. Phenomena relating to the emission of CO2 such as the greenhouse effect and multiplier effect are explored. Particulate release is also discussed. The following recommendations are made for the elimination of fossil fuel combustion products in the United States: development of nuclear breeder reactors, use of solar energy systems, exploration of energy alternatives such as geothermal and fusion, and the substitution of coal for gas and oil use.

  3. Investigation of fusion gain in fast ignition with conical targets

    Directory of Open Access Journals (Sweden)

    MJ Tabatabaei


    Full Text Available Fast ignition is a new scheme for inertial confinement fusion (ICF. In this scheme, at first the interaction of ultraintense laser beam with the hohlraum wall surrounding a capsule containing deuterium-tritium (D-T fuel causes implosion and compression of fuel to high density and then laser produced protons penetrate in the compressed fuel and deposit their energy in it as the ignition hot spot is created. In this paper, following the energy gain of spherical target and considering relationship of the burn fraction to burn duration, we have obtained the energy gain of conical targets characterized by the angle β, and found a hemispherical capsule (β=π/2 has a gain as high as 96% of that of the whole spherical capsule. The results obtained in this study are qualitatively consistent with Atzeni et al.'s studies of simulations.

  4. Adjoint affine fusion and tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Urichuk, Andrew, E-mail: [Physics and Astronomy Department, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Walton, Mark A., E-mail: [Physics and Astronomy Department, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste (Italy)


    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  5. Fusion - 2050 perspective (in Polish)

    CERN Document Server

    Romaniuk, R S


    The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

  6. Information integration for data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bray, O.H.


    Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

  7. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems (United States)

    Hançerliogulları, Aybaba; Cini, Mesut


    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  8. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa


    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  9. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup


    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... patterns that increase activation of the innate immune system. Importantly, viral-vectored vaccines that act through the induction of one or more of these factors also may benefit from cytokine coadministration and increased antigen presentation. In order to increase immunogenicity to the level achieved...

  10. Suspended sediment profiles derived from spectral attenuation coefficients measurements using neural network method

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, G.; Suresh, T.; Matondkar, S.G.P.; Desa, E.; Kamath, S.S.

    total suspended matter values from water samples obtained at discrete depths at the same location. An artificial neural network (ANN) model has been used to derive suspended matter from the spectral values of beam attenuation coefficients measured using...

  11. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.


    Although designed for velocity measurements, acoustic Doppler current profilers (ADCPs) are widely being used to monitor suspended particulate matter in rivers and in marine environments. To quantify mass concentrations of suspended matter, ADCP backscatter is generally calibrated with in situ

  12. Effect of Martian Suspended Dust on Albedo Measurements from the MGS-TES Data


    A. Zinzi; Palomba, E.; Rinaldi, G.; d'Amore, M.


    Suspended dust on Mars influences albedo measurements by orbiting instruments, but not necessary the real surface albedo. The aim of this study is to characterize the role of suspended aerosols on albedo measurement by remote sensing instruments.

  13. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin


    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  14. Laser-driven magnetized liner inertial fusion on OMEGA (United States)

    Barnak, D. H.; Davies, J. R.; Betti, R.; Bonino, M. J.; Campbell, E. M.; Glebov, V. Yu.; Harding, D. R.; Knauer, J. P.; Regan, S. P.; Sefkow, A. B.; Harvey-Thompson, A. J.; Peterson, K. J.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Chang, P.-Y.


    Magneto-inertial fusion (MIF) combines the compression of fusion fuel, a hallmark of inertial confinement fusion (ICF), with strongly magnetized plasmas that suppress electron heat losses, a hallmark of magnetic fusion. It can reduce the traditional velocity, pressure, and convergence ratio requirements of ICF. The magnetized liner inertial fusion (MagLIF) concept being studied at the Z Pulsed-Power Facility is a key target concept in the U.S. ICF Program. Laser-driven MagLIF is being developed on OMEGA to test the scaling of MagLIF over a range of absorbed energy of the order of 1 kJ on OMEGA to 500 kJ on Z. It is also valuable as a platform for studying the key physics of MIF. An energy-scaled point design has been developed for OMEGA that is roughly 10 × smaller in linear dimensions than Z MagLIF targets. A 0.6-mm-outer-diameter plastic cylinder filled with 2.4 mg/cm3 of D2 is placed in a ˜10-T axial magnetic field, generated by a Magneto-inertial fusion electrical discharge system, the cylinder is compressed by 40 OMEGA beams, and the gas fill is preheated by a single OMEGA beam propagating along the axis. Preheating to >100 eV and axially uniform compression over 0.7 mm have been demonstrated, separately, in a series of preparatory experiments that meet our initial expectations. The preliminary results from the first integrated experiments combining magnetization, compression, and preheat demonstrating a roughly 2 x increase in the neutron yield will be reported here for the first time.

  15. Numerical simulation on a new cylindrical target for Z-pinch driven inertial confinement fusion (United States)

    Chu, Y. Y.; Wang, Z.; Qi, J. M.; Wu, F. Y.; Li, Z. H.


    A new indirectly driven cylindrical target is proposed for Z-pinch inertial confinement fusion, and the target implosion dynamics is simulated with a combination of the mass-point model and the radiation hydrodynamic model. Driven by a current waveform with the peak value of 60 MA and 10-90% rising time of 180 ns, the shell kinetic energy of 5 MJ cm-1 can be obtained when the 60 mg cm-1 liner with initial radius 5 cm is imploded to radius of 5 mm. The simulated kinetic energy is loaded to compress the multi-layer cylindrical target, and 24.6 MJ fusion energy can be released according to the radiation hydrodynamic simulation. The power balance relationship is analyzed for the fusion fuel, and the fuel is ignited in the volume-ignition style. The target here can avoid the problem of coupling between the cylindrical Z-pinch and spherical fusion capsule, and can make use of dynamics hohlraum to weaken the influence of Z-pinch instability on the fuel compression. The implosion dynamics of the cylindrical fusion target is easy to diagnose from the axial direction, which makes it suitable to be investigated in future experiments.

  16. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)


    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  17. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina


    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction and a realis......We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  18. Fusion Simulation Project Workshop Report (United States)

    Kritz, Arnold; Keyes, David


    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.

  19. Advances in Tandem Mirror fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L.J.; Logan, B.G.


    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  20. Overview of fusion nuclear technology in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R. E-mail:; Gasparotto, M. E-mail:


    The fusion nuclear technology programme in the EU is focussed on materials and breeding blankets development, tritium and high heat flux component technologies. A strong effort is also devoted to the validation of the design of an intense 14 MeV neutron source (IFMIF). The material programme includes the development of reduced activation ferritic martensitic steel (EUROFER) to be used as structural material in a DEMO reactor, and potentially more attractive higher performance materials: ODS and SiC/SiC composites. The breeding blanket activities are focussed in the preparation of the two European Test Blanket Moduli to be installed in ITER. The Fuel Cycle activities for ITER include development of the torus exhaust cryopump, fuel storage system, performance characterisation of the torus exhaust processing and design of water detritiation system. High heat flux components have been developed in the framework of ITER R and D programme and based on copper alloy heat sink protected by an armour of beryllium, CFC or tungsten. Studies give an important contribution in defining the nuclear technology programme strategy.

  1. 48 CFR 52.209-6 - Protecting the Government's Interest When Subcontracting With Contractors Debarred, Suspended, or... (United States)


    ...'s Interest When Subcontracting With Contractors Debarred, Suspended, or Proposed for Debarment. 52....209-6 Protecting the Government's Interest When Subcontracting With Contractors Debarred, Suspended... Government's Interest When Subcontracting With Contractors Debarred, Suspended, or Proposed for Debarment...

  2. Reforming of fuel inside fuel cell generator (United States)

    Grimble, Ralph E.


    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  3. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city (United States)

    Kong, Shaofei; Lu, Bing; Bai, Zhipeng; Zhao, Xueyan; Chen, Li; Han, Bin; Li, Zhiyong; Ji, Yaqin; Xu, Yonghai; Liu, Yong; Jiang, Hua


    30 re-suspended dust samples were collected from building surfaces of an oilfield city, then re-suspended through PM 2.5, PM 10 and PM 100 inlets and analyzed for 10 metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb by inductively coupled plasma-mass spectroscopy. Metals concentrations in different fractions and locations were studied. Metals sources were identified by cluster and primary component analysis. The potential risk to human health was assessed by human exposure model. Results showed that Zn, Mn, Pb and Cu were higher in all the three fractions. V, Cr, Mn and Co ranged close to the background values of Chinese soil indicating that they were mainly from crustal materials. Concentrations of Zn, Mn, Pb, V, Cr, Ni, Co and Cd were higher in old district than that in new district for the three fractions. The PM 2.5/PM 10, PM 10/PM 100 and PM 2.5/PM 100 ratios were higher for Zn, Cd, Cu, Pb, Ni, As and Cr (all higher than 1.0), and lower for Co, Mn and V (all less than or close to 1.0) which meant that anthropologic sources associated metals were more easily accumulated in finer particles than metals from crustal materials. Spatial variations indicated that the ten metals peaked at surroundings near railway station, gas stations, industrial boilers and machine manufacturing plant implying the influence of local vehicle emission, fossil fuel combustion and industrial activities as well as crustal materials which was verified by cluster analysis and primary component analysis results. Ingestion of dust particles appeared to be the main route of exposure to re-suspended dust. Hazard Indexes of As were both highest for children and adult which could be a potential threat to human health for non-cancer effect and it also exhibited the highest values for cancer effect as 1.01E-06, 7.04E-07 and 7.21E-07 for PM 2.5, PM 10 and PM 100, respectively.

  4. Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion (United States)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.


    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 T axial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te≈Ti, and produces up to 2×1012 thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 1010 secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  5. FuzzyFusion: an application architecture for multisource information fusion (United States)

    Fox, Kevin L.; Henning, Ronda R.


    The correlation of information from disparate sources has long been an issue in data fusion research. Traditional data fusion addresses the correlation of information from sources as diverse as single-purpose sensors to all-source multi-media information. Information system vulnerability information is similar in its diversity of sources and content, and in the desire to draw a meaningful conclusion, namely, the security posture of the system under inspection. FuzzyFusionTM, A data fusion model that is being applied to the computer network operations domain is presented. This model has been successfully prototyped in an applied research environment and represents a next generation assurance tool for system and network security.

  6. 78 FR 48145 - Lemon Juice From Argentina: Continuation of Suspended Antidumping Duty Investigation (United States)


    ... Doc No: 2013-19067] DEPARTMENT OF COMMERCE International Trade Administration [A-357-818] Lemon Juice... of the suspended investigation on lemon juice from Argentina would likely lead to continuation or... of the suspended antidumping duty investigation on lemon juice from Argentina (``suspended...

  7. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)



    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  8. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina


    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...... functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also compute the fu- sion rings for type G2....

  9. Simultaneous catalytic regime of tritium and helium-3 in D–D fusion ...

    Indian Academy of Sciences (India)

    A catalytic regime of tritium and helium-3 in deuterium–deuterium fusion, including ion–electron collisions, mechanical expansion, bremsstrahlung radiation, inverse Compton scattering losses and reacting particles energy effect has been investigated. In this paper a new fuel configuration, DT 3He, is formed by adding ...

  10. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest


    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes for electrochem...... resistance as compared to 2D carbon electrodes. The higher sensitivity of 3D carbon microelectrodes for electrochemical sensing was illustrated by dopamine detection.......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  11. Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables

    Directory of Open Access Journals (Sweden)

    Yaobing Zhao


    Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.

  12. A fusion-driven subcritical system concept based on viable technologies (United States)

    Wu, Y.; Jiang, J.; Wang, M.; Jin, M.; FDS Team


    A fusion-driven hybrid subcritical system (FDS) concept has been designed and proposed as spent fuel burner based on viable technologies. The plasma fusion driver can be designed based on relatively easily achieved plasma parameters extrapolated from the successful operation of existing fusion experimental devices such as the EAST tokamak in China and other tokamaks in the world, and the subcritical fission blanket can be designed based on the well-developed technologies of fission power plants. The simulation calculations and performance analyses of plasma physics, neutronics, thermal-hydraulics, thermomechanics and safety have shown that the proposed concept can meet the requirements of tritium self-sufficiency and sufficient energy gain as well as effective burning of nuclear waste from fission power plants and efficient breeding of nuclear fuel to feed fission power plants.

  13. Methods of economic analysis applied to fusion research. Fourth annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hazelrigg, Jr, G A


    The current study reported here has involved three separate tasks. The first task deals with the development of expected utility analysis techniques for economic evaluation of fusion research. A decision analytic model is developed for the incorporation of market uncertainties, as well as technological uncertainties in an economic evaluation of long-range energy research. The model is applied to the case of fusion research. The second task deals with the potential effects of long-range energy RD and D on fossil fuel prices. ECON's previous fossil fuel price model is extended to incorporate a dynamic demand function. The dynamic demand function supports price fluctuations such as those observed in the marketplace. The third task examines alternative uses of fusion technologies, specifically superconducting technologies and first wall materials to determine the potential for alternative, nonfusion use of these technologies. In both cases, numerous alternative uses are found.

  14. Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion

    DEFF Research Database (Denmark)

    Videbaek, Tina S; Christensen, Finn B; Soegaard, Rikke


    was found. CONCLUSION: Circumferential lumbar fusion demands more extensive operative resources compared with posterolateral lumbar fusion. However, 5 to 9 years after surgery, the circumferentially fused patients had a significantly improved outcome compared with those treated by means of posterolateral......-36 instrument, and the Low Back Pain Rating Scale. All measures assessed the endpoint outcomes at 5 to 9 years after surgery. RESULTS: The available response rate was 93%. The circumferential group showed a significantly better improvement (P


    Energy Technology Data Exchange (ETDEWEB)



    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE.

  16. Inertial electrostatic confinement (IEC) fusion fundamentals and applications

    CERN Document Server

    Miley, George H


    This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment propose...

  17. Inertial fusion program. Progress report, July 1-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R.B.


    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  18. [Light absorption by suspended particulate matter in Chagan Lake, Jilin]. (United States)

    Wang, Yuan-Dong; Liu, Dian-Wei; Song, Kai-Shan; Zhang, Bai; Wang, Zong-Ming; Jiang, Guang-Ji; Tang, Xu-Guang; Lei, Xiao-Chun; Wu, Yan-Qing


    Spectral characteristics and the magnitudes of light absorption by suspended particulate matter were determined by spectrophotometry in this optically complex Lake Chagan waters for the purpose of surveying the natural variability of the absorption coefficients to parameterize the bio-optical models for converting satellite or in-situ water reflectance signatures into water quality information. Experiments were carried out on seasonal frozen Lake Chagan, one representative inland case-2 water body in Northeast of China. Particulate absorption properties analyzed using the field data on July 15th and October 12th 2009 were measured using the quantitative filter technique to produce absorption spectra containing several fractions that could be attributed to two main optical active constituents (OACs) phytoplankton pigments and non-algal particulates (mineral sediments, and organic detritus). Results suggested that the suspended particulate matter (SPM) concentration was higher while phytoplankton biomass (chlorophyll-a concentration) was lower in July and that in October. The spectral shape of total suspended particulate matter resembled that of non-algal particulates which contributed greater than phytoplankton in total particulate absorption during both periods. An obvious absorption peak occurring at around 440 nm exhibited an increase in phytoplankton contribution in October. Non-algal particulate absorption at 440 nm (a(NAP) (440)) had better correlation with total suspended particulate matter concentration than that with chlorophyll-a over the two periods. Light absorption by phytoplankton pigments in the Chagan lake region was generally lower than that of non-algal components. Chl. a dominating phytoplankton pigment composition functioned exponentially with its absorption coefficients at 440 and 675 nm specifically, the average values of which in July were 0.146 8 m2 x mg(-1) and 0.050 3 respectively while in October they were 0.153 3 and 0.013 2 m2 x mg(-1

  19. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.


    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  20. Development of a microfluidic interface for suspended microchannel resonators


    Maillard, Damien


    Suspended microchannel resonators (SMRs) are devices that detect particles in liquid samples. In comparison with similar resonating devices that must be immersed, SMRs allow the fluids to flow through microfluidic resonators. This principle of operation leads to a great reduction of the required sample and to enhanced quality factors. As such, SMRs show great potential for a variety of sensing applications. This thesis reports on the final steps of the microfabrication of SMRs and on the deve...

  1. On the Design of Suspended Roofs with Paraboloidal Surfaces

    Directory of Open Access Journals (Sweden)

    N. Ungureanu


    Full Text Available Some considerations concerning the design of the paraboloidal suspended roofs are made. The main geometric aspects are first time presented. For the roofs we propose, as pattern, the equivalent continuum membranes, and the efforts in the cable are determined by using the membrane efforts and their equations. Two examples are analyzed: elliptic paraboloide and hyperbolic paraboloide, with horizontal projection under the form of an ellipse.

  2. Technological advances in suspended-sediment surrogate monitoring (United States)

    Gray, John R.; Gartner, Jeffrey W.


    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  3. Segment Fixed Priority Scheduling for Self Suspending Real Time Tasks (United States)


    for soft real- time systems [15]. Table 1 shows a brief... for execution are the times when a job of task arrives. For 2 ≤ ≤ , when , finishes its execution, it suspends itself for a time duration that lies...assume , and , can take non-negative values such that , ≤ , and let , = , . For each job, a segment , executes for a time duration that lies in

  4. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus


    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  5. Fusion-fission-fusion fast ignition plasma focus [rapid communication (United States)

    Winterberg, F.


    A crucial advancement in the problem for the controlled release of energy by nuclear fusion appears possible by an autocatalytic fusion-fission-fusion microexplosion, where the deuterium-tritium (DT) fusion reaction of a dense magnetized DT plasma placed inside a thin liner made up of U238, Th232 (perhaps B10) releases a sufficient number of 14 MeV fusion neutrons which by fission reactions in the liner implode the liner on the DT plasma. The liner implosion increases the DT plasma density and with it the neutron output accelerating the fast fission reactions. Following the fast fission assisted ignition, a thermonuclear detonation wave can propagate into unburnt DT to reach a high gain. The simplest way for the realization of this concept appears to be the dense plasma focus configuration, amended with a nested high voltage magnetically insulated transmission line for the heating of the DT. The large magnetic field needed for the α-particle entrapment of the DT fusion reaction is here generated by the thermomagnetic Nernst effect, amplifying the magnetic field of the plasma focus current sheet.

  6. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing. (United States)

    Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai


    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Strain sensitivity enhancement in suspended core fiber tapers (United States)

    André, Ricardo M.; Silva, Susana O.; Becker, Martin; Schuster, Kay; Rothardt, M.; Bartelt, H.; Marques, Manuel B.; Frazão, Orlando


    Suspended core fiber tapers with different cross sections (with diameters from 70 μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs.

  8. Abrasion properties of self-suspended hairy titanium dioxide nanomaterials (United States)

    Zhang, Jiao-xia; Liu, Si; Yan, Chao; Wang, Xiao-jing; Wang, Lei; Yu, Ya-ming; Li, Shi-yun


    Considering the excellent solubility of pyrrolidone ring organic compounds, the synthesized N-(trimethoxysilyl) propyl-N-methyl-2-pyrrolidone chlorides was tethered onto titanium dioxide (TiO2) nanoparticles to improve dispersion of TiO2, and then polyethylene oxide (PEO) oligomer through ion exchange embraced the tethered TiO2 to obtain a novel self-suspended hairy TiO2 nanomaterials without any solvent. A variety of techniques were carried out to illustrate the structure and properties of the self-suspended hairy TiO2 nanomaterials. It was found that TiO2 nanoparticles embody monodispersity in the hybrid system though the "false reunion" phenomenon occurring due to nonpermanent weak physical cross-linking. Remarkably, self-suspended hairy TiO2 nanomaterials exhibit lower viscosity, facilitating maneuverable and outstanding antifriction and wear resistance properties, due to the synergistic lubricating effect between spontaneously forming lubricating film and nano-lubrication of TiO2 cores, overcoming the deficiency of both solid and liquid lubricants. This make them promising candidates for the micro-electromechanic/nano-electromechanic systems (MEMS/NEMS).

  9. Data Fusion Concepts and Ideas

    CERN Document Server

    Mitchell, H B


    “Data Fusion: Concepts and Ideas” provides a comprehensive introduction to the concepts and idea of multisensor data fusion. This textbook is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction". The book is self-contained and no previous knowledge of multi-sensor data fusion is assumed. The reader is made familiar with tools taken from a wide range of diverse subjects including: neural networks, signal processing, statistical estimation, tracking algorithms, computer vision and control theory which are combined by using a common statistical framework. As a consequence, the underlying pattern of relationships that exists between the different methodologies is made evident. The book is illustrated with many real-life examples taken from a diverse range of applications and contains an extensive list of modern references. The new completely revised and updated edition includes nearly 70 pages of new material including a full new chapter as well as...

  10. Aneutronic Fusion Spacecraft Architecture Project (United States)

    National Aeronautics and Space Administration — Description: provide framework to realize fusion propulsion for long-range space travel; analyze “hybrid” schemes with a solar or fission primary energy...

  11. New trends in fusion research

    CERN Multimedia

    CERN. Geneva


    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  12. Burnside Rings of Fusion Systems

    DEFF Research Database (Denmark)

    Reeh, Sune Precht

    In this thesis we study the interactions between saturated fusion systems and group actions of the underlying p-groups. For a saturated fusion system F on a finite p-group S we construct the Burnside ring of F in terms of the finite S-sets whose actions respect the structure of the fusion system...... of the characteristic idempotent of F { the unique idempotent in the p-local double Burnside ring of S satisfying properties of Linckelmann and Webb. We describe this idempotent both in terms of fixed points and as a linear combination of transitive bisets. Additionally, using fixed points we determine the map...... of Burnside rings given by multiplication with the characteristic idempotent, and we show that this map is the transfer map previously constructed. Applying these results, we show that for every saturated fusion system the ring generated by all (non-idempotent) characteristic elements in the p-local double...

  13. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar


    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  14. Fuel Cells (United States)

    Hawkins, M. D.


    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  15. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.


    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  16. Fusion energy division annual progress report, period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)


    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  17. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung [National Fusion Research Institute, Daejeon (Korea, Republic of)


    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  18. Uranium resources and their implications for fission breeder and fusion hybrid development

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.


    Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity.

  19. Z-inertial fusion energy: power plant final report FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)


    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  20. Volume ignition targets for heavy-ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val, J.M.; Eliezer, S.; Piera, M. [Madrid Polytcehnical Univ. (Spain). Inst. of Nuclear Fusion


    Inertial confinement fusion (ICF) targets can be imploded by heavy-ion beams (HIBs) in order to obtain a highly compressed fuel microsphere. The hydrodynamic efficiency of the compression can be optimized by tuning the ablation process in order to produce the total evaporation of the pusher material by the end of the implosion. Such pusherless compressions produce very highly compressed targets for relatively short confinement times. However, these times are long enough for a fusion burst to take place, and burnup fractions of 30% and higher can be obtained if the volume ignition requirements are met. Numerical simulations demonstrate that targets of 1-mg DT driven by a few MJ can yield energy gains of over 70. Although direct drive is used in these simulations, the main conclusions about volume ignition are also applicable to indirect drive. (author).

  1. Getting started with Clickteam Fusion

    CERN Document Server

    Brunner, Jürgen


    An easy-to-understand, step-by-step guide that shows you how to create 2D video games with Clickteam Fusion. You will learn the magic of game development from scratch without any knowledge of scripting languages.This book is for game enthusiasts who want to create their own 2D video games. No prior knowledge of programming or Multimedia Fusion 2 is necessary.

  2. Cyclic Processing for Context Fusion

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun


    Many machine-learning techniques use feedback information. However, current context fusion systems do not support this because they constrain processing to be structured as acyclic processing. This paper proposes a generalization which enables the use of cyclic processing in context fusion systems....... A solution is proposed to the inherent problem of how to avoid uncontrollable looping during cyclic processing. The solution is based on finding cycles using graph-coloring and breaking cycles using time constraints....

  3. Bilateral fusion of permanent maxillary incisors


    Manoj Kumar Hans; Shashit Shetty; Hitesh Chopra


    Dental fusion is a rare developmental anomaly, which is included in the anomalies of tooth morphology or shape. Fusion can occur at the level of enamel or enamel and dentin, which results in the formation of a single tooth with enlarged clinical crown. Fusion is more common in deciduous dentition. Incisors are reported to be fused in primary and permanent dentition, but bilateral fusion is a rare occurrence. The prevalence of bilateral fusion in the permanent dentition is less frequent than u...

  4. Fusion Rules for Extended Current Algebras


    Baver, Ernest; Gepner, Doron


    The initial classification of fusion rules have shown that rational conformal field theory is very limited. In this paper we study the fusion rules of extend ed current algebras. Explicit formulas are given for the S matrix and the fusion rules, based on the full splitting of the fixed point fields. We find that in s ome cases sensible fusion rules are obtained, while in others this procedure lea ds to fractional fusion constants.

  5. Data Fusion in Information Retrieval

    CERN Document Server

    Wu, Shengli


    The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data fusion algorithms are discussed, analyzed and evaluated. A reader will find answers to the following questions, among others: -          What are the key factors that affect the performance of data fusion algorithms significantly? -          What conditions are favorable to data fusion algorithms? -          CombSum and CombMNZ, which one is better? and why? -          What is the rationale of using the linear combination method? -          How can the best fusion option be found under any given circumstances?

  6. Some Simple Arguments about Cost Externalization and its Relevance to the Price of Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.; Winfree, R.


    The primary goal of fusion energy research is to develop a source of energy that is less harmful to the environment than are the present sources. A concern often expressed by critics of fusion research is that fusion energy will never be economically competitive with fossil fuels, which in 1997 provided 75% of the world's energy. And in fact, studies of projected fusion electricity generation generally project fusion costs to be higher than those of conventional methods. Yet it is widely agreed that the environmental costs of fossil fuel use are high. Because these costs aren't included in the market price, and furthermore because many governments subsidize fossil fuel production, fossil fuels seem less expensive than they really are. Here we review some simple arguments about cost externalization which provide a useful background for discussion of energy prices. The collectively self-destructive behavior that is the root of many environmental problems, including fossil fuel use, was termed ''the tragedy of the commons'' by the biologist G. Hardin. Hardin's metaphor is that of a grazing commons that is open to all. Each herdsman, in deciding whether to add a cow to his herd, compares the benefit of doing so, which accrues to him alone, to the cost, which is shared by all the herdsmen using the commons, and therefore adds his cow. In this way individually rational behavior leads to the collective destruction of the shared resource. As Hardin pointed out, pollution is one kind of tragedy of the commons. CO{sub 2} emissions and global warming are in this sense classic tragedies.

  7. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail:


    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  8. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview (United States)

    Doshi, Bharat; Reddy, D. Chenna


    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  9. A study on nuclear properties of Zr, Nb, and Ta nuclei used as structural material in fusion reactor

    Directory of Open Access Journals (Sweden)

    Sahan Halide


    Full Text Available Fusion has a practically limitless fuel supply and is attractive as an energy source. The main goal of fusion research is to construct and operate an energy generating system. Fusion researches also contains fusion structural materials used fusion reactors. Material issues are very important for development of fusion reactors. Therefore, a wide range of fusion structural materials have been considered for fusion energy applications. Zirconium (Zr, Niobium (Nb and Tantalum (Ta containing alloys are important structural materials for fusion reactors and many other fields. Naturally Zr includes the 90Zr (%51.5, 91Zr (%11.2, 92Zr (%17.1, 94Zr (%17.4, 96Zr (%2.80 isotopes and 93Nb and 181Ta include the 93Nb (%100 and 181Ta (%99.98, respectively. In this study, the charge, mass, proton and neutron densities and the root-mean-square (rms charge radii, rms nuclear mass radii, rms nuclear proton, and neutron radii have been calculated for 87-102Zr, 93Nb, 181Ta target nuclei isotopes by using the Hartree–Fock method with an effective Skyrme force with SKM*. The calculated results have been compared with those of the compiled experimental taken from Atomic Data and Nuclear Data Tables and theoretical values of other studies.

  10. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins.

    Directory of Open Access Journals (Sweden)

    Lauri Reuter

    Full Text Available Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification.

  11. SKIDS data fusion project (United States)

    Greenway, Phil


    The European Community's strategic research initiative in information technology (ESPRIT) has been in place for nearly five years. An early example of the pan-European collaborative projects being conducted under this initiative is 'SKIDS': Signal and Knowledge Integration with Decisional Control for Multisensory Systems. This four year project, which is approaching completion, aims to build a real-time multisensor perception machine. This machine will be capable of performing data fusion, interpretation, situation assessment, and resource allocation tasks, under the constraints of both time and resource availability, and in the presence of uncertain data. Of the many possible applications, the surveillance and monitoring of a semi-automated 'factory environment' has been chosen as a challenging and representative test scenario. This paper presents an overview of the goals and objectives of the project, the makeup of the consortium, and roles of the members within it, and the main technical achievements to data. In particular, the following are discussed: relevant application domains, and the generic requirements that can be inferred from them; sensor configuration, including choice, placement, etc.; control paradigms, including the possible trade-offs between centralized, hierarchical, and decentralized approaches; the corresponding hardware architectural choices, including the need for parallel processing; and the appropriate software architecture and infra-structure required to support the chosen task oriented approach. Specific attention is paid to the functional decomposition of the system and how the requirements for control impact the organization of the identified interpretation tasks. Future work and outstanding problems are considered in some concluding remarks. By virtue of limited space, this paper is descriptive rather than explanatory.

  12. Advanced thermally stable jet fuels. Technical progress report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C. [and others


    The Penn State program in advanced thermally stable jet fuels has five components:(1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub- micrometer and micrometer sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics by direct liquefaction of coal. Progress reports for these tasks are presented.

  13. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)


    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  14. Fusion burning waves in proton-boron-11 plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val, J.M. [Universidad Poltecnica de Madrid (Spain). Inst. de Fusion Nuclear; Eliezer, S. [Universidad Poltecnica de Madrid (Spain). Inst. de Fusion Nuclear; Piera, M. [Universidad Poltecnica de Madrid (Spain). Inst. de Fusion Nuclear; Velarde, G. [Universidad Poltecnica de Madrid (Spain). Inst. de Fusion Nuclear


    A method is proposed to exploit the aneutronic proton-{sup 11}B fusion reaction by means of igniting a heat detonation wave that expands across the fuel from a small heated region. The ignition process is triggered by a particle beam (or a couple of beams) impinging on an inertially compressed target. We determine conditions for ignition and burn propagation. Although the requirements on the igniting beam current are very high, the method is a clear hint how to produce the cleanest energy from nuclear reactions. (orig.).

  15. The elementary fusion modalities of osteoclasts

    DEFF Research Database (Denmark)

    Søe, Kent; Hobolt-Pedersen, Anne-Sofie; Delaisse, Jean-Marie


    , are not known for the osteoclast. Here we show that osteoclast fusion partners are characterized by differences in mobility, nuclearity, and differentiation level. Our demonstration was based on time-laps videos of human osteoclast preparations from three donors where 656 fusion events were analyzed. Fusions......The last step of the osteoclast differentiation process is cell fusion. Most efforts to understand the fusion mechanism have focused on the identification of molecules involved in the fusion process. Surprisingly, the basic fusion modalities, which are well known for fusion of other cell types...... between a mobile and an immobile partner were most frequent (62%), while fusion between two mobile (26%) or two immobile partners (12%) was less frequent (pfusion partner contained more nuclei than the mobile one (p

  16. Recent developments concerning the fusion; Developpements recents sur la fusion

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint Paul lez Durance (France); Andre, M. [CEA/DAM Ile de France, 91 - Bruyeres Le Chatel (France); Aymar, R. [ITER Joint Central Team Garching, Muenchen (Germany)] [and others


    Organized the 9 march 2000 by the SFEN, this meeting on the european program concerning the fusion, showed the utility of the exploitation and the enhancement of the actual technology (JET, Tore Supra, ASDEX) and the importance of the Europe engagement in the ITER program. The physical stakes for the magnetic fusion have been developed with a presentation of the progresses in the knowledge of the stability limits. A paper on the inertial fusion was based on the LMJ (Laser MegaJoule) project. The two blanket concepts chosen in the scope of the european program on the tritium blankets, have been discussed. These concepts will be validated by irradiation tests in the ITER-FEAT and adapted for a future reactor. (A.L.B.)

  17. Progress towards Acoustic Suspended Sediment Transport Monitoring: Fraser River, BC (United States)

    Attard, M. E.; Venditti, J. G.; Church, M. A.; Kostaschuk, R. A.


    Our ability to predict the timing and quantity of suspended sediment transport is limited because fine sand, silt and clay delivery are supply limited, requiring empirical modeling approaches of limited temporal stability. A solution is the development of continuous monitoring techniques capable of tracking sediment concentrations and grain-size. Here we examine sediment delivery from upstream sources to the lower Fraser River. The sediment budget of the lower Fraser River provides a long-term perspective of the net changes in the channels and in sediment delivery to Fraser Delta. The budget is based on historical sediment rating curves developed from data collected from 1965-1986 by the Water Survey of Canada. We explore the possibility of re-establishing the sediment-monitoring program using hydro-acoustics by evaluating the use of a 300 kHz side-looking acoustic Doppler current profiler (aDcp), mounted just downstream of the sand-gravel transition at Mission, for continuous measurement of suspended sediment transport. Complementary field observations include conventional bottle sampling with a P-63 sampler, vertical profiles with a downward-looking 600 kHz aDcp, and 1200 kHz aDcp discharge measurements. We have successfully completed calibration of the downward-looking aDcp with the P-63 samples; the side-looking aDcp signals remain under investigation. A comparison of several methods for obtaining total sediment flux indicates that suspended sediment concentration (SSC) closely follows discharge through the freshet and peaks in total SSC and sand SSC coincide with peak measurements of discharge. Low flows are dominated by fine sediment and grain size increases with higher flows. This research assesses several techniques for obtaining sediment flux and contributes to the understanding of sediment delivery to sand-bedded portions of the river.

  18. Surface-enhanced Raman scattering of suspended monolayer graphene (United States)

    Huang, Cheng-Wen; Lin, Bing-Jie; Lin, Hsing-Ying; Huang, Chen-Han; Shih, Fu-Yu; Wang, Wei-Hua; Liu, Chih-Yi; Chui, Hsiang-Chen


    The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman signals are greatly enhanced by the ability of surface-enhanced Raman spectroscopy which has attracted considerable interests. The technique is regarded as wonderful and useful tool, but the dopants that are produced by depositing metallic nanoparticles may affect the electron scattering processes of graphene. Therefore, the doping and substrate influences on graphene are also important issues to be investigated. In this work, the peak positions of G peak and 2D peak, the I 2D/ I G ratios, and enhancements of G and 2D bands with suspended and supported graphene flakes were measured and analyzed. The peak shifts of G and 2D bands between the Raman and SERS signals demonstrate the doping effect induced by silver nanoparticles by n-doping. The I 2D/ I G ratio can provide a more sensitive method to carry out the doping effect on the graphene surface than the peak shifts of G and 2D bands. The enhancements of 2D band of suspended and supported graphenes reached 138, and those of G band reached at least 169. Their good enhancements are helpful to measure the optical properties of graphene. The different substrates that covered the graphene surface with doping effect are more sensitive to the enhancements of G band with respect to 2D band. It provides us a new method to distinguish the substrate and doping effect on graphene.

  19. A1.5 Fusion Performance

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P


    Analysis and radiation hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant in the mid-2030s timeframe are presented. The required laser energy driver is 2.2 MJ at a 0.351-{micro}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for a near-term experimental resolution of the key physics uncertainties on the National Ignition Facility (NIF). The NIF is poised to demonstrate ignition by 2012 based on the central hot spot (CHS) mode of ignition and propagating thermonuclear burn [1]. This immediate prospect underscores the imperative and timeliness of advancing inertial fusion as a carbon-free, virtually limitless source of energy by the mid-21st century to substantially offset fossil fuel technologies. To this end, an intensive effort is underway to leverage success at the NIF and to provide the foundations for a prototype 'LIFE.1' engineering test facility by {approx}2025, followed by a commercially viable 'LIFE.2' demonstration power plant operating at 1 GWe by {approx}2035. The current design goal for LIFE.2 is to accommodate {approx}2.2 MJ of laser energy (entering the high-Z radiation enclosure or 'hohlraum') at a 0.351-{micro}m wavelength operating at a repetition rate of 16 Hz and to provide a fusion target yield of 132 MJ. To achieve this design goal first requires a '0-d' analytic gain model that allows convenient exploration of parameter space and target optimization. This step is then followed by 2- and 3-dimensional radiation-hydrodynamics simulations that incorporate laser beam transport, x

  20. Purdue Contribution of Fusion Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Brooks


    . It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  1. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)


    sale of both electricity and production of fissile fuel with fissioning blankets might need Q~1 while suppressing fissioning might be the most economical application of fusion but will require Q≥4.

  2. Coupling between electronic transport and longitudinal phonons in suspended nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sapmaz, S; Jarillo-Herrero, P; Blanter, Ya M; Zant, H S J van der [Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)


    Current-voltage characteristics of suspended single-wall carbon nanotube (NT) quantum dots show a series of steps equally spaced in voltage. The energy scale of this harmonic, low-energy excitation spectrum is consistent with that of the longitudinal low-k phonon mode in the NT. Agreement is found with a Franck-Condon-based model in which the phonon-assisted tunnelling process is modelled as a coupling of electronic levels to underdamped quantum harmonic oscillators. Comparison with this model indicates a rather strong electron-phonon coupling factor of order unity. We investigate different electron-phonon coupling mechanisms and give estimates of the coupling factor.

  3. Regional volume changes in canine lungs suspended in air (United States)

    Abbrecht, Peter H.; Kyle, Richard R.; Bryant, Howard J.; Feuerstein, Irwin


    The purpose of this study was to determine the effect of the absence of a pleural pressure gradient (simulating the presumed condition found in microgravity) upon regional expansion of the lung. We attempted to produce a uniform pressure over the surface of the lung by suspending excised lungs in air. Such studies should help determine whether or not the absence of a pleural pressure gradient leads to uniform ventilation. A preparation in which there is no pleural pressure gradient should also be useful in studying non-gravitational effects on ventilation distribution.

  4. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen


    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors observed using experiments performed on time scales of tens of seconds can be projected to obtain maps of their dynamical response on geological time scales. That such extraordinarily slow dynamic processes can be uncovered from real-time measurements by simply stretching a system provides a simple but powerful tool for interrogating extremely slow motions in other jammed physical states. © 2010 American Chemical Society.

  5. Suspended liminality: Vacillating affects in cyberbullying/research


    Kofoed, J.; Stenner, Paul


    This paper develops a concept of liminal hotspots in the context of i) a secondary analysis of a cyberbullying case involving a group of school children from a Danish school, and ii) an altered auto-ethnography in which the authors ‘entangle’ their own experiences with the case analysis. These two sources are used to build an account of a liminal hotspot conceived as an occasion of troubled and suspended transformative transition in which a liminal phase is extended and remains unresolved. Th...

  6. Oscillation of a diamagnetic liquid bubble suspended by magnetic force

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, R. E-mail:; Tomita, S.; Mai, J.; Park, M.K.; Oshima, S


    The levitation of the diamagnetic liquid droplet with the strong magnetic field is experimentally simulated, using the magnetic fluid as the surrounding fluid in place of air or gas, and the water bubble is levitated with the conventional permanent magnet. When the stepwise magnetic field is superposed, the suspended bubble behaves as a typical step response with the overshoot and viscous damping. The effects of the volume of the bubble, the strength of the magnetic field and the concentration of the magnetic fluid are investigated.

  7. A Model for Membrane Fusion (United States)

    Ngatchou, Annita


    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  8. Remote Sensing Studies of Suspended Sediment Concentration Variation in Barito Delta (United States)

    Arisanty, Deasy; Nur Saputra, Aswin


    The dynamic of suspended sediment concentration in Barito Delta depend on the process in upstream. Agriculture, mining, and illegal logging in Barito River upstream has an effect for suspended sediment concentration in Barito Delta. The objective of research is to estimate the variation of suspended sediment concentration in Barito Delta. The data of research consist of Landsat 7 in year 2011 and measurement result data of suspended sediment concentration both in wet season and dry season in year 2011. Data analysis is regression analysis to estimates the variation of suspended sediment concentration in Barito Delta. The method of research compares three types of spectral transformation for suspended sediment that is Normalized Suspended Material Index (NSMI), Normalized Differences Suspended Sediment Index (NDSSI), and band ratio (green/blue). The result of the transformation is compared with the value of the field measurement. Based on the result of the comparison can be known the suitable type of transformation for the suspended sediment estimation in Barito Delta. The result of research explains that NSMI has the highest value to estimate the variation of suspended sediment concentration in Barito Delta.

  9. Data fusion mathematics theory and practice

    CERN Document Server

    Raol, Jitendra R


    Fills the Existing Gap of Mathematics for Data FusionData fusion (DF) combines large amounts of information from a variety of sources and fuses this data algorithmically, logically and, if required intelligently, using artificial intelligence (AI). Also, known as sensor data fusion (SDF), the DF fusion system is an important component for use in various applications that include the monitoring of vehicles, aerospace systems, large-scale structures, and large industrial automation plants. Data Fusion Mathematics: Theory and Practice offers a comprehensive overview of data fusion, and provides a

  10. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.


    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density.

  11. Development of Compton Radiography Diagnostics for Inertial Confinement Fusion Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Tommasini, R; Hatchett, S P; Hey, D S; Izumi, N; Koch, J A; Landen, O L; Mackinnon, A J; Delettrez, J; Glebov, V; Stoeckl, C


    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60-200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton Radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility. The radiographs have a spatial and temporal resolution of {approx}10 {micro}m and {approx}10ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D non-uniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  12. Autocatalytic Fusion-Fission Burn in the Focus of Two Magnetically Insulated Transmission Lines (United States)

    Winterberg, F.


    A configuration made up of two nested magnetically insulated transmission lines, the inner one carrying a high voltage lower current - and the outer one a high current lower voltage - pulse, was in a previous communication proposed for the ignition of a magnetic field assisted thermonuclear detonation wave. Unlike the fast ignition concept, it does not require the compression of the DT fusion fuel to densities in excess of the solid state. Here I show that with the same configuration, but by surrounding the DT fusion fuel with a blanket of solid U238, Th232 or B10, the ignition of a thermonuclear detonation wave is possible with densities of the DT fuel less than solid state densities, because the DT fusion neutrons can make a sufficient number of fission reactions, greatly increasing the pressure in the blanket, compressing the DT to high densities, launching a magnetic field assisted thermonuclear detonation wave. This autocatalytic fusion-fission burn has the further advantage that it can burn natural uranium, thorium and even boron.

  13. An Inertial-Fusion Z-Pinch Power Plant Concept

    Energy Technology Data Exchange (ETDEWEB)



    With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30

  14. Laser fusion experiments at LLL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.


    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  15. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro


    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  16. Thermoelectric unipolar spin battery in a suspended carbon nanotube (United States)

    Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang


    A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when {{k}\\text{B}}T is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.

  17. Thermoelectric unipolar spin battery in a suspended carbon nanotube. (United States)

    Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang


    A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when [Formula: see text] is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.

  18. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.


    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Suspended animation-like state protects mice from lethal hypoxia. (United States)

    Blackstone, Eric; Roth, Mark B


    Joseph Priestley observed the high burn rate of candles in pure oxygen and wondered if people would "live out too fast" if we were in the same environment. We hypothesize that sulfide, a natural reducer of oxygen that is made in many cell types, acts as a buffer to prevent unrestricted oxygen consumption. To test this, we administered sulfide in the form of hydrogen sulfide (H2S) to mice (Mus musculus). As we have previously shown, H2S decreases the metabolic rate of mice by approximately 90% and induces a suspended animation-like state. Mice cannot survive for longer than 20 min when exposed to 5% oxygen. However, if mice are first put into a suspended animation-like state by a 20-min pretreatment with H2S and then are exposed to low oxygen, they can survive for more than 6.5 h in 5% oxygen with no apparent detrimental effects. In addition, if mice are exposed to a 20-min pretreatment with H2S followed by 1 h at 5% oxygen, they can then survive for several hours at oxygen tensions as low as 3%. We hypothesize that prior exposure to H2S reduces oxygen demand, therefore making it possible for the mice to survive with low oxygen supply. These results suggest that H2S may be useful to prevent damage associated with hypoxia.

  20. Skin permeation of lidocaine from crystal suspended oily formulations. (United States)

    Matsui, Rakan; Hasegawa, Masaaki; Ishida, Masami; Ebata, Toshiya; Namiki, Noriyuki; Sugibayashi, Kenji


    In vitro permeation of lidocaine (lidocaine base, LID) through excised rat skin was investigated using several LID-suspended oily formulations. The first skin permeation of LID from an LID-suspended oily solution such as liquid paraffin (LP), isopropyl myristate (IPM), polyoxyethylene (2) oleylether (BO-2), and diethyl sebacate (DES) was evaluated and compared with that from polyethylene glycol 400 (PEG400) solution, a hydrophilic base. The obtained permeation rate of LID, Japp, from PEG400, LP, IPM, BO-2, and DES was in the order of DES>BO-2=IPM>LP>PEG400, and increased with LID solubility in the oily solvents, although LID crystals were dispersed in all solvents. Subsequently, oily formulations that consisted of different ratios of the first oily solvent (IPM, BO-2, or DES) (each 0-20%), the second oily solvent (LP) and an oily mixture of microcrystalline wax/white petrolatum/paraffin (1/5/4) were evaluated. BO-2 groups at a concentration of 5% and 10% had the highest Japp among the oily formulations, although a higher BO-2 resulted in lower skin permeation. In addition, pretreatment with BO-2 increased the skin permeation of LID. These results suggest that the penetration enhancing effect by the system may be related to the skin penetration of BO-2 itself. Finally, mathematical analysis was done to evaluate the effect of BO-2, and it was shown that BO-2 improved the LID solubility in stratum corneum lipids to efficiently enhance the LID permeation through skin.

  1. A Passively-Suspended Tesla Pump Left Ventricular Assist Device (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson


    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  2. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis


    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  3. Assessment of CO, CO2 and Suspended Particulate Matter Emissions

    Directory of Open Access Journals (Sweden)

    Bala Isah ABDULKARIM


    Full Text Available The concentrations of carbon oxides (CO and CO2 and suspended particulate matter at Benue Cement Company (BCC and Tse-Kucha community was investigated. Results obtained, shows that concentrations of carbon dioxide of 34.40ppm, 39.50 ppm, 48.50 ppm, 78.55 ppm, 65.25 ppm, 26.80 ppm and 29.5 ppm for quarry, raw mill, cement mill, Kiln, packing house, limestone stockpile and Tse-Kucha community respectively were below the maximum standard natural concentration of CO2 in atmosphere of 600ppm while concentrations of CO (1.25ppm - 4.00ppm measured in all the sample stations were below the Nigerian Ambient Air Quality Standards (NAAQS and WHO max limit of 10 ppm - 20 ppm for an 8-hourly average time. Lastly, the concentrations of suspended particulate matter of 375 μg/m3, 338 μg/m3 and 290 μg/m3 at the cement mill, packing house and raw mill respectively were also above the World Health Organization’s (WHO’s Guidelines and Standards for Ambient Air Quality which stipulates a range of 150 μg/m3 to 230 μg/m3 for a 24- hourly average.

  4. Fuel utilization and fuel sensitivity of solid oxide fuel cells (United States)

    Huang, Kevin


    Fuel utilization and fuel sensitivity are two important process variables widely used in operation of SOFC cells, stacks, and generators. To illustrate the technical values, the definitions of these two variables as well as practical examples are particularly given in this paper. It is explicitly shown that the oxygen-leakage has a substantial effect on the actual fuel utilization, fuel sensitivity and V-I characteristics. An underestimation of the leakage flux could potentially results in overly consuming fuel and oxidizing Ni-based anode. A fuel sensitivity model is also proposed to help extract the leakage flux information from a fuel sensitivity curve. Finally, the "bending-over" phenomenon observed in the low-current range of a V-I curve measured at constant fuel-utilization is quantitatively coupled with leakage flux.

  5. Laser fusion monthly, February 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.


    This report is divided into the following sections: (1) facility reports (Argus and Shiva); (2) Nova project; and (3) fusion experiments. In the Fusion Experiments section of this report, the author describes the results of a series of experiments on Shiva which further the understanding of the production and transport of suprathermal electrons. He found that of the suprathermal electrons which strike a laser irradiated disk target or which interact with the rear surface of a half Cairn hohlraum target, a significant fraction of these electrons orbit the target and strike the rear of the disk. These results have significant implications in the interpretation and modeling of the laser irradiated target experiments.

  6. Development of an Integrated Suspended Sediment Sampling System - Prototype Results (United States)

    Nerantzaki, Sofia; Moirogiorgou, Konstantia; Efstathiou, Dionissis; Giannakis, George; Voutsadaki, Stella; Zervakis, Michalis; Sibetheros, Ioannis A.; Zacharias, Ierotheos; Karatzas, George P.; Nikolaidis, Nikolaos P.


    The Mediterranean region is characterized by a unique micro-climate and a complex geologic and geomorphologic environment caused by its position in the Alpine orogenesis belt. Unique features of the region are the temporary rivers that are dry streams or streams with very low flow for most of the time over decadal time scales. One of their key characteristics is that they present flashy hydrographs with response times ranging from minutes to hours. It is crucial to monitor flash-flood events and observe their behavior since they can cause environmental degradation of the river's wider location area. The majority of sediment load is transferred during these flash events. Quantification of these fluxes through the development of new measuring devices is of outmost importance as it is the first step for a comprehensive understanding of the water quality, the soil erosion and erosion sources, and the sediment and nutrient transport routes. This work proposes an integrated suspended sediment sampling system which is implemented in a complex semi-arid Mediterranean watershed (i.e. the Koiliaris River Basin of Crete) with temporary flow tributaries and karstic springs. The system consists of sensors monitoring water stage and turbidity, an automated suspended sediment sampler, and an online camera recording video sequence of the river flow. Water stage and turbidity are continuously monitored and stage is converted to flow with the use of a rating curve; when either of these variables exceeds certain thresholds, the pump of the sediment sampler initiates sampling with a rotation proportional to the stage (flow weighted sampling). The water passes through a filter that captures the sediment, the solids are weighted after each storm and the data are converted to a total sediment flux. At the same time, the online camera derives optical measurements for the determination of the two-dimensional river flow velocity and the spatial sediment distribution by analyzing the Hue

  7. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  8. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas (United States)

    De, B. R.; Srnka, L. J.


    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  9. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies (United States)

    Campbell, E. Michael


    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  10. Proliferation Resistant Nuclear Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E


    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount

  11. [Chromosomal rearrangements and fusion genes in carcinoma]. (United States)

    Massard, Christophe; Auger, Nathalie; Lacroix, Ludovic; Bénard, Jean


    In the last decades, rarity of chromosomal rearrangements and fusion genes detected in epithelial cancers in using classical karyotyping led to consider these genomic events as specifically restricted to haematological neoplasia and mesenchymal tumors. Today, gene positioning as well as bio-informatics approaches has enabled identifying in carcinoma various fusion genes subsequent to chromosomal translocations, inversions, or deletions. Thus, gene fusion formation appears as a common mechanism in oncology that concerns most of human cancers, independent of original tissue lineage. At a clinical point of view, applications of fusion genes in terms of diagnosis, prognosis and therapeutics can be envisioned. This review will present current knowledge about fusion genes in common carcinoma (prostate, breast, colon). Following a structural and functional description of various fusion genes so far found in human malignant solid tumors, as well as techniques used for their detection, the review will integrate fusion genes in epithelia oncogenesis general scheme. Finally, promising clinical issues of fusion genes will be surveyed.

  12. Collescipoli - An unusual fusion crust glass. [chondrite (United States)

    Nozette, S.


    An electron microprobe study was conducted on glass fragments taken from the fusion crust and an internal glass-lined vein in the H-5 chondrite Collescipoli. Microprobe analyses of the glasses revealed an unusual fusion crust composition, and analyses of glass from inside the meteorite showed compositions expected for a melt of an H-group chondrite. Studies of fusion crusts by previous workers, e.g., Krinov and Ramdohr, showed that fusion crusts contain large amounts of magnetite and other oxidized minerals. The Collescipoli fusion crusts do contain these minerals, but they also contain relatively large amounts of reduced metal, sulphide, and a sodium-rich glass. This study seems to indicate that Collescipoli preserved an early type of fusion crust. Oxidation was incomplete in the fusion crust melt that drained into a crack. From this study it is concluded that fusion crust formation does not invariably result in complete oxidation of metal and sulphide phases.

  13. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene


    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  14. Suspended Integrated Strip-line Transition Design for Highly Integrated Radar Systems (United States)


    Frequency Structural Figure 3. Internal-view of SISL thru structure. Figure 2. Suspended substrate strip- line side -view. Figure 4. Top-view of trace and...response, you can see that the measured response is shifted to Figure 2. Suspended Substrate Strip- line Side -View Figure 5. Fabricated thru line ...Suspended Integrated Strip- line Transition Design for Highly Integrated Radar Systems Jay W. McDaniel, Shahrokh Saeedi, Mark B. Yeary, and

  15. Z-Pinch Fusion for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)



    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  16. Exo-endo cellulase fusion protein (United States)

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA


    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  17. Review on Recent Developments in Laser Driven Inertial Fusion

    Directory of Open Access Journals (Sweden)

    M. Ghoranneviss


    Full Text Available Discovery of the laser in 1960 hopes were based on using its very high energy concentration within very short pulses of time and very small volumes for energy generation from nuclear fusion as “Inertial Fusion Energy” (IFE, parallel to the efforts to produce energy from “Magnetic Confinement Fusion” (MCF, by burning deuterium-tritium (DT in high temperature plasmas to helium. Over the years the fusion gain was increased by a number of magnitudes and has reached nearly break-even after numerous difficulties in physics and technology had been solved. After briefly summarizing laser driven IFE, we report how the recently developed lasers with pulses of petawatt power and picosecond duration may open new alternatives for IFE with the goal to possibly ignite solid or low compressed DT fuel thereby creating a simplified reactor scheme. Ultrahigh acceleration of plasma blocks after irradiation of picosecond (PS laser pulses of around terawatt (TW power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996 as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced.

  18. Fission or fusion for Mars missions - Expectations and challenges (United States)

    Kammash, Terry


    A fission-based system in the form of the Gas Core Nuclear Rocket (GCR) and a laser-driven inertial fusion system that utilizes a self-generated magnetic field (MICF) are compared as potential propulsion systems for manned planetary travel. The first generates thrust by a hydrogen propellant that is heated by radiation emitted from a critical reactor with a uranium fuel in plasma form, to take advantage of high achievable temperatures. The fusion system produces attractive propulsion characteristics through energy magnification of a hot hydrogenous plasma which is guided by a magnetic nozzle that allows thermal energy to be converted into thrust. Each system faces some formidable physics and engineering problems that must be addressed if they are to become viable propulsion systems. With the aid of an appropriate set of fluid and plasma equations, we assess the dynamics of each system and identify those issues that could detract from their performance. In the case of GCR, thermal hydraulic considerations reveal deterioration of propulsive capability when wall heat flux limitations and turbulent mixing are taken into account. Moreover, hydrodynamics and acoustic instabilities could also adversely affect its performance, although they may be amenable to stabilization by magnetic fields. For MICF, large energy multiplication at modest input laser energies appears to be a major concern, but if antihydrogen can be used to initiate the fusion reactions, this concept can be truly an outstanding propulsion device.

  19. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J E; Bowers, M W


    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  20. Modified betatron for ion beam fusion

    Energy Technology Data Exchange (ETDEWEB)

    Rostoker, N.; Fisher, A.


    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs.

  1. Addressing Common Technical challenges in Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Donald A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The implosion phase for Inertial Confinement Fusion (ICF) occurs from initiation of the drive until just before stagnation. Evolution of the shell and fusion fuel during the implosion phase is affected by the initial conditions of the target, the drive history. Poor performing implosions are a result of the behavior that occurs during the implosion phase such as low mode asymmetries, mixing of the ablator into the fuel, and the hydrodynamic evolution of initial target features and defects such as the shell mounting hardware. The ultimate results of these effects can only be measured at stagnation. However, studying the implosion phase can be effective for understanding and mitigating these effects and for of ultimately improving the performance of ICF implosions. As the ICF program moves towards the 2020 milestone to “determine the efficacy of ignition”, it will be important to understand the physics that occurs during the implosion phase. This will require both focused and integrated experiments. Focused experiments will provide the understanding and the evidence needed to support any determination concerning the efficacy of ignition.

  2. Model year 2010 Ford Fusion Level-1 testing report.

    Energy Technology Data Exchange (ETDEWEB)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems


    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  3. Will fusion be ready to meet the energy challenge for the 21st century? (United States)

    Bréchet, Yves; Massard, Thierry


    Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.

  4. Mechanisms of influenza viral membrane fusion

    NARCIS (Netherlands)

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M


    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact

  5. Genetic variability available through cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.H.; Mastrangelo-Hough, I.A.


    Results are reported for the following studies: plant hybridization through protoplast fusion using species of Nicotiana and Petunia; chromosome instability studies on culture-induced chromosome changes and chromosome elimination; chloroplast distribution in parasexual hybrids; chromosomal introgression following fusion; plant-animal fusion; and microcell-mediated chromosome transfer and chromosome-mediated gene transfer. (HLW)

  6. Fusion research programme in India

    Indian Academy of Sciences (India)

    quences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews 16(3): 1735–1744. Chen F F 2010 An indispensable truth, how fusion power can save the planet, New York: Springer. Clarke G M and Harben P W 2009 Lithium Availability ...

  7. Incomplete fusion reactions in Ho

    Indian Academy of Sciences (India)

    It is now generally recognized that several reaction mechanisms are operative in heavy- ion-induced reactions below 10 MeV/amu. Predominant among these are, complete fusion. (CF), deep-inelastic collision (DIC), and quasi-elastic collisions. As the projectile energy increases to 5–10 MeV/amu and above, it turns out that ...

  8. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  9. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    The fusion excitation functions for 16O+208Pb, using the coupled reaction channel (CRC) method and correct structure information, have been analysed. The barrier distributions derived from these excitation functions including many of the significant channels are featureless, although these channels have considerable ...

  10. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang


    characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....


    NARCIS (Netherlands)

    Keppens, R.; Goedbloed, J. P.; Blokland, J. W. S.


    The magnetohydrodynamic model for fusion plasma dynamics governs the large-scale equilibrium properties, and sets the most stringent constraints on the parameter space accessible without violent disruptions. In conjunction with linear stability analysis in the complex tokamak geometry, the MHD

  12. Fusion using radioactive ion beams

    Indian Academy of Sciences (India)

    The capture-fission cross-section is measured for the collision of the massive nucleus 132Sn with 96Zr at near-barrier energies and compared with the collision of 124Sn with 96Zr. This study gives insight into fusion enhancement and hindrance in systems involving neutron-rich nuclei. The dinuclear system model (DNS) ...

  13. Focus on nuclear fusion research

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Mlynář, Jan


    Roč. 61, - (2011), s. 62-63 ISSN 0375-8842 Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * COMPASS * fusion energy * tokamak * EURATOM Subject RIV: BL - Plasma and Gas Discharge Physics

  14. Fuel processors for fuel cell APU applications (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  15. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  16. Renewable Fuel Standard Program (United States)

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  17. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza


    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  18. Retention property of deuterium for fuel recovery in divertor by using hydrogen storage material (United States)

    Mera, Saori; Tonegawa, Akira; Matsumura, Yoshihito; Sato, Kohnosuke; Kawamura, Kazutaka


    Magnetic confinement fusion reactor by using Deuterium and Tritium of hydrogen isotope as fuels is suggested as one of the future energy source. Most fuels don't react and are exhausted out of fusion reactor. Especially, Tritium is radioisotope and rarely exists in nature, so fuels recovery is necessary. This poster presentation will explain about research new fuel recovery method by using hydrogen storage materials in divertor simulator TPD-Sheet IV. Samples are tungsten coated with titanium; tungsten of various thickness, and titanium films deposited by ion plating on tungsten substrates. The sample surface temperature is measured by radiation thermometer. Retention property of deuterium after deuterium plasma irradiation was examined with thermal desorption spectroscopy (TDS). As a result, the TDS measurement shows that deuterium is retained in titanium. Therefore, Titanium as a hydrogen storage material expects to be possible to use separating and recovering fuel particles in divertor.

  19. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.


    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  20. Fuel processor for fuel cell power system (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.


    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  1. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin


    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  2. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin


    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  3. Final prototype of magnetically suspended flywheel energy storage system (United States)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.


    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  4. Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater (United States)

    Oh, Dong-Wook


    In this paper, the traditional 3ω method is modified in order to measure the thermal conductivity of a droplet of liquid. The 3ω sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 μ m thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.

  5. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart


    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005......-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method...

  6. Fluorine and sulfur simultaneously co-doped suspended graphene (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.


    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  7. Heat Transfer Correlations for Free Convection from Suspended Microheaters

    Directory of Open Access Journals (Sweden)

    David GOSSELIN


    Full Text Available Portability and autonomy for biomedical diagnostic devices are two rising requirements. It is recognized that low-energy heating of such portable devices is of utmost importance for molecular recognition. This work focuses on screen-printed microheaters based on on Joule effect, which constitute an interesting solution for low-energy heating. An experimental study of the natural convection phenomena occurring with such microheaters is conducted. When they are suspended in the air, and because of the thinness of the supporting film, it is shown that the contributions of both the upward and downward faces have to be taken into account. A total Nusselt number and a total convective heat transfer coefficient have been used to describe the natural convection around these microheaters. In addition a relation between the Nusselt number and the Rayleigh number is derived, leading to an accurate prediction of the heating temperature (MRE< 2 %.

  8. Giant magneto-photoelectric effect in suspended graphene (United States)

    Sonntag, Jens; Kurzmann, Annika; Geller, Martin; Queisser, Friedemann; Lorke, Axel; Schützhold, Ralf


    We study the optical response of a suspended, monolayer graphene field-effect transistor structure in magnetic fields of up to 9 T (quantum Hall regime). With an illumination power of only 3 μW, we measure a photocurrent of up to 400 nA (without an applied bias) corresponding to a photo-responsivity of 0.13 A W-1, which we believe to be one of the highest values ever measured in single-layer graphene. We discuss possible mechanisms for generating this strong photo-response (17 electron-hole pairs per 100 incident photons). Based on our experimental findings, we believe that the most likely scenario is a ballistic two-stage process including carrier multiplication via Auger-type inelastic Coulomb scattering at the graphene edge.

  9. Spherically-Convergent, Advanced-Fuel Systems (United States)

    Barnes, D. C.; Nebel, R. A.; Schauer, M. M.; Umstadter, K. R.


    Combining nonneutral electron confinement with spherical ion convergence leads to a cm sized reactor volume with high power density.(R. A. Nebel and D. C. Barnes, Fusion Technol.), to appear (1998); D. C. Barnes and R. A. Nebel, Phys. of Plasmas 5, 2498 (1998). This concept is being investigated experimentally,(D. C. Barnes, T. B. Mitchell, and M. M. Schauer, Phys. Plasmas) 4, 1745 (1997). and results will be reported. We argue that D-D operation of such a system offers all the advantages of aneutronic fusion cycles. In particular, no breeding or large tritium inventory is required, and material problems seem tractable based on previous LWR experience. In addition the extremely small unit size leads to a massively modular system which is easily maintained and repaired, suggesting a very high availability. It may also be possible to operate such a system with low or aneutronic fuels. Preliminary work in this direction will be presented.

  10. Catalytic Fuel Conversion Facility (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  11. GSPEL - Fuel Cell Laboratory (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  12. Near bed suspended sediment flux by single turbulent events (United States)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian


    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  13. Net transport of suspended matter due to tidal straining (United States)

    Jones, S. E.; Jago, C. F.; Simpson, J. H.; Rippeth, T. P.


    Net transport of suspended particulate matter (SPM) is well-known in tidal regions where there is time-velocity asymmetry due to frictional modification of the tide in shallow water. We present here observations which show a new mechanism for net flux of SPM in response to tidal straining in a region of freshwater influence (ROFI). In situ measurements of the particle size of suspended particulate matter (SPM) and turbulent energy dissipation have been made at a site in Liverpool Bay (Irish Sea) where there is significant resuspension of particles from the muddy sand substrate during spring tides. This is a ROFI where tidal straining dominates the temporal development of turbulence. On a spring tide the water column tries to stratify on the ebb and destratify on the flood, but these tendencies are masked by mixing due to tidal stirring. Nevertheless, there is a marked excess of TKE dissipation rate E on the flood, especially in the upper part of the water column. Resuspension occurs on both flood and ebb, but SPM flux is strongly asymmetric with a net shorewards component. Asymmetry is most pronounced for the larger particles which comprise most of the mass. Enhanced ? on the flood mixes large particles upwards into faster flowing water, which increases the flux. Comparable upwards mixing of large particles does not occur on the ebb where enhanced E is confined to slower bottom waters. The net flux is not seen on neap tides because, although there is more stratification due to tidal straining, there is essentially no resuspension. The net flux on springs is undoubtedly an important component of SPM transport (and any comparable particulates) in coastal regions.

  14. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))


    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  15. Safety review of conceptual fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.G.


    The potential public safety impacts from accidents in conceptual fusion power plants were investigated. Fusion was found to have some potential for accidents, as does any energy generating system. Functions of fusion power plants were identified that possess sufficient potential for an accidental release of toxic materials to the environment. An assessment was made of the impact of the potential accidents and recommendations are included for R and D that will allow incorporation of safety concerns in fusion power plant design. This work was based on a review of information available in conceptual design documents of fusion reactor systems.

  16. Internal reforming fuel cell assembly with simplified fuel feed (United States)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.


    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  17. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research (United States)

    Shi, Xue-Ming; Peng, Xian-Jue


    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  18. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    NARCIS (Netherlands)

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.


    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the

  19. Data security on the national fusion grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.


    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  20. Security on the US Fusion Grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.


    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  1. Bilateral fusion of permanent maxillary incisors

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Hans


    Full Text Available Dental fusion is a rare developmental anomaly, which is included in the anomalies of tooth morphology or shape. Fusion can occur at the level of enamel or enamel and dentin, which results in the formation of a single tooth with enlarged clinical crown. Fusion is more common in deciduous dentition. Incisors are reported to be fused in primary and permanent dentition, but bilateral fusion is a rare occurrence. The prevalence of bilateral fusion in the permanent dentition is less frequent than unilateral fusion and is reported to be around 0.05%. The authors report a case of a 20-year-old male with bilateral fusion of maxillary central and lateral incisors. Multi-disciplinary treatment approach is essential to get the desired esthetic result. The best way to manage these difficult cases depends on a number of factors including the knowledge and technical skills of the practitioner.

  2. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program (United States)

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.; Lamppa, D. C.; Baker, J. L.; Rovang, D. C.; Robertson, G. K.


    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ˜2 kJ laser that must pass through a ˜1.5-3.5-μm-thick polyimide "window" at the target's laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel, initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility's cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. The MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.

  3. Magnetized Target Fusion At General Fusion: An Overview (United States)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General


    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  4. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.


    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  5. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat


    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  6. Fokker Planck kinetic modeling of suprathermal alpha-particles in a fusion plasma

    CERN Document Server

    Peigney, Benjamin-Edouard; Tikhonchuk, Vladimir


    We present an ion kinetic model describing the ignition and burn of the deuterium-tritium fuel of inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (alpha-particles) at a kinetic level. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal alpha-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.

  7. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility. (United States)

    Perkins, L J; Betti, R; LaFortune, K N; Williams, W H


    Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of approximately 120-250 MJ may be possible with laser drive energies of 1-1.6 MJ, while gains of approximately 50 may still be achievable at only approximately 0.2 MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G approximately 126E (MJ);{0.510}. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.

  8. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion (United States)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.


    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  9. Comparative evaluation of solar, fission, fusion, and fossil energy resources, part 3 (United States)

    Clement, J. D.; Reupke, W. A.


    The role of nuclear fission reactors in becoming an important power source in the world is discussed. The supply of fissile nuclear fuel will be severely depleted by the year 2000. With breeder reactors the world supply of uranium could last thousands of years. However, breeder reactors have problems of a large radioactive inventory and an accident potential which could present an unacceptable hazard. Although breeder reactors afford a possible solution to the energy shortage, their ultimate role will depend on demonstrated safety and acceptable risks and environmental effects. Fusion power would also be a long range, essentially permanent, solution to the world's energy problem. Fusion appears to compare favorably with breeders in safety and environmental effects. Research comparing a controlled fusion reactor with the breeder reactor in solving our long range energy needs is discussed.

  10. Fuel dissipater for pressurized fuel cell generators (United States)

    Basel, Richard A.; King, John E.


    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  11. 76 FR 6462 - Notice of Intent To Suspend Certain Pesticide Registrations (United States)


    ... hearing is made by a person adversely affected by the Notice of Intent to Suspend or the registrant has... this notice (i.e., how to request a hearing or how to comply fully with the requirements that served as... name notice of intent No. to suspend The Fountainhead Group, Inc.... Resmethrin 53853-1 Burgess Insect...

  12. 19 CFR 351.222 - Revocation of orders; termination of suspended investigations. (United States)


    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Revocation of orders; termination of suspended investigations. 351.222 Section 351.222 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE... orders; termination of suspended investigations. (a) Introduction. “Revocation” is a term of art that...

  13. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data

    NARCIS (Netherlands)

    Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X.


    The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of

  14. 75 FR 60720 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance... (United States)


    ... Goldberger, (202) 482-4136. from South Korea (A-580-836) (2rd Review). Granular Polytetrafluoroethylene Resin... South Korea (C-580-837) (2rd Review). Suspended Investigations No Sunset Review of suspended...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration...

  15. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2

    NARCIS (Netherlands)

    Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; Van der Zant, H.S.J.; Agrait, N.; Rubio-Bollinger, G.


    We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope. The Young’s

  16. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material. (United States)


    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION...

  17. Cricket inspired sensory hairs on suspended membranes with capacitive displacement detection

    NARCIS (Netherlands)

    van Baar, J.J.J.; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.


    This paper presents the fabrication of artificial hairs of siliconnitride and SU-8 on suspended membranes for flow sensing applications. The suspended membranes contain electrodes for capacitive sensing of the rotation of the hairs. For the siliconnitride hairs a silicon wafer is used as mould and

  18. High suspended solids as a factor in reproductive failure of a freshwater mussel (United States)

    Andrew M. Gascho-Landis; Wendell R. Haag; James A. Stoeckel


    Elevated suspended solids are a widespread stressor of aquatic ecosystems, but their effects on growth and reproduction in freshwater mussels are largely unknown. We fertilized experimental ponds to create a gradient in total suspended solids (TSS) and examined the effects of TSS on growth, nutritional status, reproduction, and clearance rate in Ligumia subrostrata....

  19. 76 FR 28730 - Notice of Intent To Suspend the Agricultural Labor Survey and Farm Labor Reports (United States)


    ... National Agricultural Statistics Service Notice of Intent To Suspend the Agricultural Labor Survey and Farm Labor Reports AGENCY: National Agricultural Statistics Service, USDA. ACTION: Notice of suspension of... Agricultural Statistics Service (NASS) to suspend a currently approved information collection, the Agricultural...

  20. Physical and biological changes of suspended particles in a free surface flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; Claassen, T.H.L.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.


    Suspended particles are considered as contaminants in treated wastewater and can have profound effects on the biological, physical and chemical properties of receiving aquatic ecosystems, depending on the concentration, type and nature of the suspended particles. Constructed wetlands are known to